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A B S T R A C T

The forward prediction and inverse design of 4D printing have primarily focused on 2D rectangular surfaces
or plates, leaving the challenge of 4D printing parts with arbitrary shapes underexplored. This gap arises from
the difficulty of handling varying input sizes in machine learning paradigms. To address this, we propose a
novel machine learning-driven approach for forward prediction and inverse design tailored to 4D printed
hierarchical architectures with arbitrary shapes. Our method encodes non-rectangular shapes with special
identifiers, transforming the design domain into a format suitable for machine learning analysis. Using Residual
Networks (ResNet) for forward prediction and evolutionary algorithms (EA) for inverse design, our approach
achieves accurate and efficient predictions and designs. The results validate the effectiveness of our proposed
method, with the forward prediction model achieving a loss below 10−2 mm, and the inverse optimization
model maintaining an error near 1 mm, which is low relative to the entire shape of the optimized model. These
outcomes demonstrate the capability of our approach to accurately predict and design complex hierarchical
structures in 4D printing applications.
1. Introduction

4D printing, an evolution of traditional 3D printing [1–5], has
gained significant attention in the past decades due to its revolutionary
potential in construction [6], textile [7,8], automotive [9], aerospace
industry [10], and biomedical applications [11–15]. Unlike conven-
tional additive manufacturing processes that yield static objects, 4D
printing empowers the creation of dynamic structures capable of self-
transformation over time in response to external stimuli [16,17], such
as heat [18–24], light [25,26], humidity [27,28], pH [29,30], and
electric or magnetic fields [31–34].

Advances in 4D printing depend on the development of robust for-
ward prediction and inverse design methods [35–37]. Forward predic-
tion involves predicting how a 4D-printed structure will behave when
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subjected to specific stimuli, such as temperature fluctuations, moisture
absorption, or mechanical deformation [38]. In contrast, inverse design
focuses on optimizing the material composition and structural config-
uration of a component to obtain predefined performance criteria or a
desired response [39]. These two aspects of 4D printing design (forward
prediction and inverse optimization) form the cornerstone of efficient
structure development, providing insights into material behavior and
guiding the design process to achieve desired results.

In traditional design workflows, finite element analysis (FEA) has
served as the primary tool for predicting the behavior of 4D printed
structures. However, the reliance on FEA poses several limitations,
including time-consuming simulations and computational burdens, par-
ticularly in inverse design tasks requiring millions of iterations. Hamel
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Fig. 1. Schematic diagram of the proposed loop pipeline including machine learning-enabled forward prediction and evolutionary algorithms enabled inverse optimization.
et al. [40] proposed a machine-learning approach that combines the
finite element method with an evolutionary algorithm to design ac-
tive composite structures capable of achieving target shape-shifting
responses. Their method optimizes the distribution of passive and active
materials within equally sized voxel units to attain the desired shape
changes. However, the reliance on finite element analysis for forward
prediction poses computational challenges due to its time-consuming
nature. Similarly, Athinarayanarao et al. [41] addressed the inverse de-
sign problem of 4D printing by presenting a computational framework
based on finite element analysis and evolutionary algorithms. Their
approach optimizes both the materials distribution and material layout
within a design space through topology optimization, offering a highly
capable tool for designing 4D-printed active composites. Nonetheless,
like Hamel et al. [40]’s approach, the utilization of FEA for forward
prediction presents computational bottlenecks.

To overcome these challenges and expedite the design process,
machine learning emerges as a compelling alternative [5]. By lever-
aging machine learning algorithms, it becomes possible to establish
relationships between material allocation and desired responses, fa-
cilitating fast and accurate predictions. The integration of machine
learning into 4D printing design workflows aims to streamline the
forward prediction and inverse optimization processes, offering a data-
driven approach to structure development. Sun et al. [42] introduced
a novel machine learning and evolutionary algorithm-based approach
for designing 4D-printed active composite structures. They employed
a recurrent neural network (RNN) based machine learning model for
forward shape-change prediction and then use evolutionary algorithms
to solve the inverse problem of finding the optimal design. Despite the
efficiency demonstrated by their approach for multiple target shapes,
it focuses primarily on forward prediction and optimization of 2D
rectangular surfaces, limiting its applicability to arbitrary shapes. Sim-
ilarly, Sun et al. [43] proposed an integrated machine learning and
sequential subdomain optimization approach for ultrafast inverse de-
sign of 4D-printed active composite structures. However, like previ-
ous studies, its focus is limited to forward prediction and optimiza-
tion of 2D rectangular surfaces, restricting its applicability to arbi-
trary shapes. Sun et al.[44] also focused on inverse design for active
composite plates which were still rectangle. Their approach combines
2

machine learning (ML) with gradient-descent (GD) and evolutionary
algorithms (EA) to efficiently determine the material distribution nec-
essary for achieving desired 3D shape changes. Besides, Jin et al. [45]
designed a residual neural network-enabled forward prediction and
genetic algorithm-based inverse optimization for the design and opti-
mization of 4D-printed rectangular hierarchical architecture. In addi-
tion, Zhao et al. [46] proposed an optimization method for grayscale
digital light processing (DLP) 3D printing based on machine learning
and evolutionary algorithms. Their approach integrates automated fi-
nite element model-based evaluation and a machine learning model
based on recurrent neural networks to efficiently predict and optimize
grayscale distributions for desired deformations. However, similar to
previous approaches, it is tailored for 2D rectangular surfaces and lacks
versatility in handling arbitrary shapes.

Therefore, in this paper, we present a novel approach to forward
prediction and inverse design for 4D printed hierarchical architec-
ture with arbitrary shapes, driven by machine learning techniques.
Our methodology aims to address the limitations of traditional de-
sign methods by harnessing the power of machine learning to predict
structure behavior and optimize design parameters. By encoding non-
rectangular shapes with unique identifiers and leveraging Residual
Networks (ResNet) for forward prediction and evolutionary algorithms
for inverse design, our proposed framework demonstrates promising
results in predicting and designing complex hierarchical structures in
4D printing applications. The schematic diagram of the proposed loop
pipeline is shown in Fig. 1. On the one hand, machine learning-enabled
forward prediction is used to efficiently figure out the relationship
between the design and the behavior of the hierarchical architectures,
which answers the question of how to predict the behavior of this
design when subjected to stimuli. On the other hand, the evolutionary
algorithms enabled inverse optimization is applied to inverse design
the hierarchical architecture, which answers the question that given
desired behavior, how to design the part so that the designed part
can reach the desired behavior when subjected to stimuli. Through
empirical validation and case studies, we showcase the efficacy of our
approach in achieving precise and efficient design outcomes, paving the
way for the advancement of 4D printing technology.

The remainder of this paper is organized as follows. In Section 2,
we will discuss the modeling and digital representation of 4D printed
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Fig. 2. The demonstration of digital representation of active and passive materials with arbitrary shapes.
hierarchical architecture with arbitrary shapes to facilitate training and
optimization by machine learning algorithms. Section 3 will present
the methodology of the forward prediction method based on ma-
chine learning. In Section 4, we will illustrate the inverse optimization
method for 4D printed hierarchical architecture with arbitrary shapes
using evolutionary algorithms. Section 5 will present the results ob-
tained from our approach. Finally, in Section 6, we will draw conclu-
sions based on our findings and discuss potential future works in this
field.

2. Modeling and digital representation of hierarchical architec-
ture

To facilitate machine learning training and understanding, we em-
ploy digital representation to encode the material allocation within the
hierarchical architecture. For instance, in Fig. 2, depicting a hierarchi-
cal architecture with two distinct materials – blue and red – we assign
numerical labels for representation. Specifically, we designate ‘‘1’’ to
represent the blue material and ‘‘2’’ to denote the red material. This
digital representation enables the entire structure to be inputted into
machine learning algorithms for analysis and learning purposes.

It is important to note that within this representation, we introduce
the definitions of active and passive materials to enhance clarity and
differentiation between them. Active materials, in the context of 4D
printing, refer to those with a significant thermal expansion ratio,
meaning they undergo considerable dimensional changes in response
to changes in temperature. These materials exhibit dynamic behavior,
expanding or contracting when subjected to external stimuli such as
heat. In contrast, passive materials either have no thermal expansion ra-
tio or exhibit minimal dimensional changes in response to temperature
variations.

The concept of hierarchical architecture with active and passive
materials harnesses the unique properties of these materials to achieve
the 4D printing effect. By strategically combining active and passive
materials within a hierarchical structure, dynamic systems capable of
self-transformation over time can be created. When exposed to external
stimuli such as heat or moisture, the active materials undergo signifi-
cant dimensional changes, while the passive materials remain relatively
unchanged. This contrast in behavior between the active and passive
3

components drives the shape-shifting capabilities of the hierarchical
architecture, resulting in the observed 4D printing effect. The hierarchi-
cal arrangement ensures that specific regions of the structure respond
differently to external stimuli, allowing for precise control over the
overall shape transformation process.

The existing research commonly employs matrices of 0s and 1s to
digitally represent the passive and active materials for data inputs of
entire rectangular parts [40,42,43], facilitating machine learning anal-
yses. However, challenges emerge when dealing with non-rectangular
shapes, leading to either non-uniform input data for recurrent neural
networks or non-rectangular input data for convolutional neural net-
works. These discrepancies in input data format pose obstacles to the
application of machine learning techniques, highlighting the need for
solutions to ensure uniformity and compatibility with neural network
architectures.

To address the challenge posed by non-rectangular shapes in ma-
chine learning models, we propose a solution wherein we fill the gaps
between the non-rectangular shape and a rectangular shape with zeros.
Subsequently, we assign non-zero numbers to represent the material-
containing parts of the non-rectangular shape. This approach ensures
that the input data fed into the machine learning model becomes
uniform and rectangular, thereby facilitating the training process and
enabling efficient analysis and prediction.

As depicted in Fig. 2, the nonrectangular shapes such as triangles,
circles, and pentagons represent the regions requiring material allo-
cation optimization. Conventional approaches may use binary values
(0 for passive materials, 1 for active materials) to represent such
shapes, leading to irregular input data shapes, posing challenges for
machine learning models. Our proposed solution involves enclosing
these irregular shapes within a rectangular frame, filling the empty
spaces with zeros, and assigning numeric values (e.g., 1 for passive ma-
terials, 2 for active materials) to the corresponding regions. Additional
numeric values can be utilized to represent further material variations.
This method ensures that the input data shape fed into the machine
learning model becomes uniform or rectangular, thereby enhancing
model compatibility and efficiency.

3. Forward prediction methods

In the context of forward prediction methods for hierarchical ar-

chitecture, the primary objective revolves around harnessing machine
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Fig. 3. Forward prediction model constructed by ResNet to predict the deformation based on the material allocation.
learning algorithms to establish correlations between the allocation of
different materials within components and the resultant behavior of
the printed parts. Traditionally, finite element analysis has served as
the predominant method for forward prediction, involving intricate
simulations to replicate real-world scenarios. However, the inherent
time-consuming nature of FEA, particularly in the context of inverse
design tasks, presents a significant bottleneck. With inverse design
necessitating millions of cases for thorough forward prediction evalua-
tion, the limitations of FEA become apparent, especially when dealing
with large or complex parts. Consequently, the advancement of inverse
design methodologies is hindered by the computational overhead asso-
ciated with traditional FEA approaches. To address this challenge, our
proposal advocates for the integration of machine learning as a viable
alternative to FEA. By leveraging machine learning, which can assimi-
late data from FEA outcomes or experiment data in reality, predictive
models can be developed to establish robust relationships between
material allocation and behavior. These models offer a substantially
faster alternative to traditional FEA simulations, thereby expediting the
forward prediction process and facilitating the exploration of diverse
material configurations.

In this paper, we utilize ResNet, short for Residual Networks, as our
forward prediction model due to its remarkable capability to capture
4

intricate patterns and features within complex datasets. ResNet is a
deep learning architecture that was introduced to address the vanishing
gradient problem in deep convolutional neural networks [47]. The
vanishing gradient problem occurs when training deep networks with
many layers, as the gradients can become extremely small, leading
to slow convergence or even a complete halt in learning. ResNet
introduces skip connections or shortcut connections that enable the
flow of gradients directly from earlier layers to later layers, bypassing
a few layers in between. These skip connections allow for the training
of deeper networks by alleviating the vanishing gradient problem. By
propagating the gradients more effectively, ResNet enables the training
of models with hundreds or even thousands of layers. The skip connec-
tions in ResNet are implemented through the use of residual blocks.
A residual block consists of a convolutional layer followed by batch
normalization and a non-linear activation function. The output from the
block is then added to the input of the block, forming the skip connec-
tion. This addition operation allows the network to learn the residual
or the difference between the input and the desired output. The ResNet
structure we have constructed is visually depicted in Fig. 3, providing
a clear representation of its architectural layout and components. In
the subsequent subsections, we embark on a detailed exploration of
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the ResNet model, elucidating its operational process and underlying
methodologies.

3.1. Data acquisition

The data acquisition process for the machine learning model re-
lies on the utilization of Abaqus simulation software to generate the
requisite datasets. This process unfolds in several key stages. Firstly,
we employ Python scripting to automate the creation of Abaqus input
files tailored to our specific requirements. These input files encapsulate
the parameters and conditions necessary for simulating the behavior of
our hierarchical architectural structures. Through this automation, we
generate a substantial volume of input files, ensuring an ample dataset
for subsequent analysis and model training. Subsequently, we initiate
Abaqus simulations in parallel using Python, a crucial step that accel-
erates the data generation process. By harnessing parallel computing
capabilities, we can execute multiple simulations concurrently, thereby
maximizing computational efficiency and expediting the acquisition
of output databases. During the simulation phase, Abaqus calculates
and records various output metrics, including deformation data, which
are integral to our machine learning task. Upon completion of the
simulations, we access the output databases containing the pertinent
information generated during the computational experiments. To ex-
tract the requisite data for our machine learning models, we employ
Python scripts to read and parse the output databases generated by the
Abaqus simulations. This step allows us to systematically retrieve the
material allocation data and corresponding deformation data for each
simulation case, facilitating the assembly of comprehensive datasets
for analysis and model training. Upon completion of the data acqui-
sition process, we possess the necessary material allocation data and
deformation data required to train and validate our machine learning
models. These datasets serve as the foundation for the machine learning
model, enabling it to explore the complex relationships between mate-
rial allocation and structural behavior within hierarchical architectural
designs.

Here, we present the details for the finite element analysis. For
meshing. we employed a detailed meshing strategy to enhance the
accuracy of our results. Specifically, each voxel in our model was
subdivided into a 10 × 10 mesh. This means that every voxel, which
represents a discrete volume element in the simulation space, is further
divided into a grid of 100 smaller finite elements.

The boundary conditions are essential for ensuring realistic simula-
tions in finite element method. In our simulation setup using Abaqus,
we implemented a fixed boundary condition on the left edge of the
model during the temperature increasing step. This boundary condition
restricts displacement in the 𝑥-direction to zero, simulating a scenario
where the left edge of the structure is fixed or clamped. The entire part
is subjected to a temperature change of 30◦C.

In this paper, we used TPU as the passive material and SMP (with
a glass transition temperature of 55 degrees Celsius) from SMP Tech-
nology, Japan, as the active material. The materials were then printed
using a dual-nozzle Polarbear 3D printer. The material properties for
the active material are Young’s modulus of 3.26 MPa, Poisson’s ratio of
0.35, and coefficient of thermal expansion of −0.01 (1∕◦C). Conversely,
the passive material has Young’s modulus of 15.4 MPa, Poisson’s ratio
of 0.35, and coefficient of thermal expansion of 0.0 (1∕◦C). These
properties delineate the mechanical and thermal characteristics of the
materials used in the beam. For simplification and efficiency, both ma-
terials were assigned elastic properties. We used two-state properties to
simulate the performance of the printed part, including the properties
at low and high temperatures. The thermal expansion coefficient is
calculated by the difference in length at low and high temperatures. The
Young’s modulus and the Poisson’s ratio are taken from the properties
at the high temperature because most of the deformation happens
above the glass transition temperature. For TPU, although the real
5

thermal expansion coefficient is positive, the shrinkage of the part due t
to residual stress and strain after 3D printing effectively compensates
for the thermal expansion. This compensation results in a near-zero
effective thermal expansion coefficient. Therefore, for simplification,
using a zero thermal expansion coefficient for TPU in the simulation is a
reasonable approximation to reflect the actual behavior observed in the
printed samples. For SMP, the real thermal expansion coefficient is also
positive. However, the large amount of residual stress and strain that
exists post-3D printing leads to significant shrinkage of the part when
the temperature increases and these stresses and strains are released.
To accurately represent this effect in our simulations, we regard the
thermal expansion coefficient as negative. This adjustment allows us
to model the thermal behavior of SMP more accurately, reflecting the
observed shrinkage due to the release of residual stresses.

3.2. Data preprocessing

The first step in preparing the data for the ResNet model is data
preprocessing. This involves normalizing both the input and output
data to ensure they are in a suitable range for training. For the input
data, which represents active (2), passive (1), and no (0) allocation

atrices, we apply a normalization equation: 𝑥𝑛 = 𝑥−1, where 𝑥 is the
input data and 𝑥𝑛 is normalized input data. This converts the original
values of 0, 1, and 2 to −1, 0, and 1 respectively, allowing for better
onvergence during training. On the other hand, the output data is
ormalized based on the mean and standard deviation. By using the
quation 𝑦𝑛 = (𝑦 − 𝑦𝑚𝑒𝑎𝑛)∕𝑦𝑠𝑡𝑑 , where 𝑦 is the output data, 𝑦𝑛 is the
ormalized output data, and 𝑦𝑚𝑒𝑎𝑛 and 𝑦𝑠𝑡𝑑 represents the mean and
he standard deviation of all output data, respectively, we transform
he output data to have a mean of 0 and a standard deviation of 1,
nsuring consistency and stability in the training process.

After normalizing the data, the next step is to split it into training
nd validation sets. The purpose of this split is to evaluate the perfor-
ance of the model on unseen data and prevent overfitting. We allocate
0% of the normalized data to the training set and the remaining 20%
o the validation set. This division ensures that the model is trained
n a significant amount of data while still having a separate set for
valuation.

.3. Model architecture

The ResNet model architecture is designed to capture complex
atterns and features in the data. As demonstrated in Fig. 3, it consists
f convolution layers, max-pooling, and residual blocks. The input
ayer starts with a convolution layer that has 4 filters and a (3, 3)
ernel size, followed by max-pooling to downsample the data. The
ore of the model consists of five residual blocks, each containing
onvolution layers with 8 filters. These blocks contribute to the depth
nd complexity of the model, enabling it to extract intricate features
rom the data. Finally, the output layer is a fully connected layer with
linear activation function. This layer shapes the model’s output to the
esired form, ready for prediction or classification.

.4. Hyperparameters

To train the ResNet model effectively, several hyperparameters need
o be specified. The learning rate is set to 0.0005, determining the step
ize for adjusting the model weights during optimization. A suitable
earning rate ensures that the model converges efficiently without over-
hooting or getting stuck in local minima. The batch size is set to 50,
hich determines the number of samples processed in each mini-batch
uring training. A larger batch size can lead to faster convergence, but
t requires more memory. The max epochs parameter is set to 500,
efining the maximum number of training iterations. This parameter
revents the model from training indefinitely and helps control training
ime. Additionally, a loop decay factor of 0.6 per 25 epochs is applied
o decrease the learning rate gradually over time, allowing the model

o fine-tune its performance.
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3.5. Training

Once the data and model architecture are prepared, the training
process begins. The model is compiled using the Adam optimizer, a
popular optimization algorithm that adapts the learning rate for each
parameter. Mean squared error (MSE) is chosen as the loss function,
which measures the dissimilarity between the predicted output and
the actual output. Additionally, early stopping is employed to monitor
the validation loss. If the validation loss fails to improve for a set
number of consecutive epochs, the training process is halted to prevent
overfitting. Throughout the training process, the model learns patterns
and relationships within the input data and its corresponding output,
aiming to make accurate predictions or classifications on new, unseen
data.

4. Inverse design methods

Inverse optimization is employed to determine the optimal mate-
rial allocation within the hierarchical architecture to ensure that the
resulting printed part exhibits predefined performance characteristics.
In essence, it involves working backward from the desired performance
requirements to identify the material distribution that will best achieve
those objectives.

In this paper, we employ an evolutionary algorithm to perform
inverse optimization for 4D printed hierarchical architectures with
arbitrary shapes. The evolutionary algorithm is a computational op-
timization technique inspired by the process of natural selection and
evolution in biology. It mimics the principles of natural evolution to
search for optimal solutions to complex problems iteratively. Unlike
topology optimization, which often relies on gradient-based methods
and can get trapped in local optima [48–50], evolutionary algorithms
perform a global search. This ability to explore the entire solution
space increases the likelihood of finding the true global optimum,
especially in complex and high-dimensional problems. At the core
of the evolutionary algorithm is a population of candidate solutions,
represented as individuals or chromosomes. Each individual in the
population encodes a potential solution to the optimization problem.
In our case, the individuals represent different configurations of the 4D
printed hierarchical architecture with arbitrary shapes.

The steps for the evolutionary algorithms are depicted in Fig. 4. The
algorithm begins by generating an initial population comprising 5000
individuals. Each individual represents a potential solution for the ma-
terial allocation and stimuli distribution in 4D printing. These solutions
are randomly generated to provide a diverse range of configurations for
the 4D-printed structures. Random initialization helps explore a wide
range of design possibilities and prevents the algorithm from getting
stuck in local optima.

Once the initial population is generated, each individual under-
goes fitness evaluation using a fitness function. The fitness function
quantifies the performance of the 4D-printed structure based on the
Root Mean Square Error (RMSE) between the predicted and target
coordinates. The RMSE serves as a measure of how well the material
allocation and stimuli distribution align with the desired deformation.
Lower RMSE values indicate better alignment and higher fitness. The
fitness evaluation provides a numerical measure of each individual’s
effectiveness in achieving the desired deformation.

After fitness evaluation, the population is sorted based on the fitness
scores. The top 10% of individuals, which exhibit the highest fitness
scores, are selected as elite individuals. These elite individuals possess
favorable characteristics in terms of material allocation and stimuli
distribution that contribute to achieving the desired deformation. By
preserving the best-performing individuals, the algorithm ensures that
promising solutions are carried over to the next generation, increasing
the chances of finding optimal or near-optimal solutions.

The remaining 70% of the population is used for crossover opera-
tions. Crossover is a genetic operation that combines genetic material
6

from two parent individuals to create two offspring. In this imple-
mentation, a two-point crossover is employed. Two random crossover
columns, referred to as 𝑎 and 𝑏, are selected. The genetic material
between these columns, which is circled in green in Fig. 4, is exchanged
between the parents, creating two children. This process introduces
diversity and potential improvements into the population by exploring
different combinations of genetic material. By combining genetic infor-
mation from different individuals, crossover helps in the exploration of
the solution space and can lead to the discovery of novel and better
solutions.

The remaining 20% of the population is allocated for mutation
operations. Mutation introduces random changes to the genetic mate-
rial of individual members within the population. It helps introduce
diversity and prevents the algorithm from prematurely converging to
suboptimal solutions. In this implementation, a random column in the
digital chromosome is selected, and the corresponding bit is flipped
(from 2 to 1 or vice versa), as illustrated in Fig. 4. This operation adds
randomness to the population and aids in exploring the solution space
by introducing small, random variations to the genetic material.

The combination of elite individuals, offspring generated through
crossover, and individuals subjected to mutation forms the new popu-
lation for the next generation. This new population represents the up-
dated generation and undergoes the same process of fitness evaluation,
selection of elite individuals, crossover, and mutation. By iteratively
refining the population, the algorithm explores the design space and
aims to converge towards optimal or near-optimal solutions for the 4D
printing design optimization problem.

The iterative process continues until a satisfactory level of con-
vergence or desired performance is achieved. Convergence refers to
the point where the algorithm has reached a stable state, and further
iterations do not significantly improve the solutions. The stopping
criteria for convergence can be predefined based on the desired level
of performance or a specific number of generations. Once the algo-
rithm converges or achieves the desired performance, the best solu-
tion(s) found in the final population can be selected as the optimal or
near-optimal solutions for the 4D printing design optimization problem.

5. Results and discussions

In this section, we present the results of both the forward prediction
and inverse optimization models developed for the 4D-printed hierar-
chical architecture with arbitrary shape, as outlined in the previous
sections.

There are two scenarios for the inverse design of 4D printed hi-
erarchical architecture with arbitrary shapes as illustrated in Fig. 5.
The first scenario is the fixed design domain with material allocation.
In this scenario, the design domain remains fixed, which is defined
within the green line in Fig. 5, and the objective is to determine the
optimal allocation of active and passive materials within this design
domain. The goal is to find the material distribution that achieves the
desired deformation or shape change when subjected to the appropriate
stimuli. The evolutionary algorithm is utilized to search for the optimal
allocation of materials within the given design domain. By iteratively
evaluating and refining the population of material allocations, the al-
gorithm aims to converge towards the optimal or near-optimal solution
that maximizes the desired deformation while satisfying any imposed
constraints. The second scenario is the random design domain with
topology optimization. In the second scenario, the design domain is
not fixed, and each location within the structure can be allocated as no
material, active material, or passive material. This scenario resembles
topology optimization, where the goal is to determine the optimal dis-
tribution of material throughout the entire structure. The evolutionary
algorithm is employed to explore the design space and find the optimal
material distribution that achieves the desired deformation or shape
change. This scenario offers a higher degree of design freedom, as
each location can be assigned a specific material allocation based on
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Fig. 4. Inverse optimization model constructed by EA to optimize material allocation based on the predefined deformation.
Fig. 5. Two scenarios for inverse design of 4D printed hierarchical architecture with arbitrary shapes.
certain constraints and objectives. The algorithm iteratively evaluates
and evolves the population of material distributions, aiming to con-
verge towards the optimal or near-optimal solution that maximizes the
desired deformation while satisfying the given constraints.

5.1. Fixed design domain

To demonstrate the effectiveness of the forward prediction and
inverse optimization approach for 4D-printed hierarchical architectures
7

with arbitrary shapes in fixed design domain, we will present two
examples.

In the first example, we consider a non-rectangular beam composed
of two opposite triangles. The objective is to design the material
allocation within the beam structure so that it deforms to a prede-
fined parabolic curve when subjected to the appropriate stimuli. To
achieve this, we utilize a ResNet (Residual Neural Network) for forward
prediction, which can accurately predict the deformation behavior of
the beam for different material allocations. We generate a dataset of
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Fig. 6. The results for the inverse design of 4D-printed hierarchical architecture with arbitrary shape (parabola case). (a). Optimized results obtained from the evolutionary
algorithms and corresponding simulation results of the parts with the optimized material allocation. (b). The training loss and the validation loss for the forward prediction model.
(c). The fitness for the best individual in each generation. (d). The comparison between the target deformation and simulated deformation.
20,000 instances, each consisting of a different material allocation and
the corresponding resulting deformation. This dataset is used to train
the ResNet model.

Once the ResNet model is trained, we employ an evolutionary
algorithm for inverse optimization. The EA explores the design space
of material allocations within the non-rectangular beam to find the op-
timal or near-optimal solution that deforms the beam to the predefined
parabolic curve. The EA iteratively evaluates and evolves the popu-
lation of material allocations, utilizing the fitness function based on
the RMSE between the predicted and target parabolic curves. Through
the iterative process of selection, crossover, and mutation, the EA
converges towards an optimized material allocation that achieves the
desired deformation behavior.

The desired curve for this case is that the irregular-shaped beam will
deform into a parabola with an end displacement of −100 mm. The
results for the parabola curve are shown in Fig. 6. Fig. 6(a) displays
the optimized results obtained from the evolutionary algorithms and
the corresponding simulation results of the parts with the optimized
material allocation, which met our expectations and requirements. In
Fig. 6(b), the training loss and the validation loss for the forward
prediction model are depicted, indicating that the forward prediction
model can predict the deformation based on the digital material alloca-
tion very accurately. Fig. 6(c) shows the fitness for the best individual
in each generation, demonstrating that the evolutionary algorithms
can optimize material allocation to achieve the desired configuration.
Lastly, Fig. 6(d) presents the comparison between the target deforma-
tion and the simulated deformation, indicating that the inverse design
we developed for 4D printed hierarchical architecture has performed
well.

In the second example, we aim to achieve the closing and opening
motion of a complex non-rectangular hand shape using 4D printing.
Similar to the previous example, we utilize a ResNet for forward
prediction to predict the resulting deformation of the hand shape for
different material allocations. A dataset of 20,000 instances is gener-
ated, consisting of different material allocations and the corresponding
hand-shape deformations.
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The results for the hand shape are shown in Fig. 7. In Fig. 7(a),
the training loss and the validation loss for the forward prediction
model are depicted, indicating that the forward prediction model can
establish a robust relationship between the material allocation and
behavior, with loss reaching below 10−2. Fig. 7(b) shows the fitness
for the best individual in each generation, demonstrating the good
performance of our forward prediction and inverse optimization model.
Fig. 7(c) displays the optimized results obtained from the evolutionary
algorithms and Fig. 7(d) illustrates corresponding simulation results of
the parts with the optimized material allocation. Fig. 7(e) and (g) give
a real hand demonstration of close and open hand movements. Finally,
the results are validated by experiment as shown in Fig. 7(f) and (h).
The simulation results and experimental results align with the target
shape, showing that the optimized result can replicate the movements
demonstrated by the real hand.

From the above two examples, it is evident that our design method
exhibits good universality for 4D-printed hierarchical architecture with
irregular shapes, where the design domain is fixed. By employing
the method of utilizing 0, 1, and 2 to represent different material
allocations, we have effectively overcome the previous limitation where
only rectangular structures could be optimized using 1 and 2. This
expansion of the application of machine learning in forward prediction
and inverse optimization has been successful in achieving satisfactory
results.

5.2. Random design domain

In this subsection, we delve into the inverse design of 4D-printed
hierarchical architecture with random design domains. Despite the ran-
domness of these design domains, certain restrictions must be adhered
to ensure the structural integrity and functionality of the printed parts,
which is explored in Fig. 8. Firstly, we enforce the constraint that there
cannot be any ‘‘isolated islands’’ within the structure, where an area is
surrounded entirely by empty space, which is circled with blue boxes
in Fig. 8. Such isolated regions serve no purpose and can compromise
the overall structural integrity. Secondly, we prohibit the existence of
‘‘diagonal lands’’, characterized by a 2 × 2 matrix where one diagonal
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Fig. 7. The results for the inverse design of 4D-printed hierarchical architecture with arbitrary shape (hand shape). (a). The training loss and the validation loss for the forward
prediction model. (b). The fitness for the best individual in each generation. (c). Optimized results obtained from the evolutionary algorithms. (d). Corresponding simulation results
of the part with the optimized material allocation. (e). Demonstration of closed hand. (f). Printed part using two-nozzle FDM machine. (g). Demonstration of open hand. (h). Shape
morphing after heating.
Fig. 8. The constraints of material allocation for the random design domain.
contains material while the other diagonal does not. This constraint is
circled with yellow boxes in the picture. This configuration introduces
unpredictability and instability into the system, rendering it unsuitable
for practical applications. Finally, along the direction of the optimized
curve, it is essential to have a continuous ‘‘continent’’ connecting one
end of the curve to the other, which is illustrated by the green line in
Fig. 8. The green line represents the break between these two "conti-
nents". This constraint ensures the coherence of the part and prevents
it from being fragmented into disjointed segments, maintaining its
functionality and usability. By adhering to these constraints, we aim
to optimize the design of 4D-printed hierarchical architectures with
random design domains, ensuring their reliability and effectiveness in
real-world applications.

In order to verify the optimization process for 4D-printed hierarchi-
cal architectures with random irregular design domains, we conduct the
following example. Firstly, for each column in the design domain, we
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randomly select a number between 1 and 4 to determine the quantity
of materials to be filled. Starting from the centerline of the column,
we then distribute the selected number of materials evenly in both
upward and downward directions. By repeating this process for each
column, we ensure that the three aforementioned constraints are not vi-
olated. Indeed, while the method described provides a straightforward
approach to address the constraints, there are numerous alternative
strategies that can be explored.

Based on this method, we conducted optimization of the 4D-printed
hierarchical architecture with random design domains. Our task is to
distribute the materials, represented by 0, 1, and 2, within the design
domain of 8 by 64 using the aforementioned method. The objective is
to design a component that, upon receiving external stimulation, will
deform into a parabolic shape with an end displacement of 80 mm.
The outcomes are depicted in Fig. 9. Fig. 9(a) showcases the op-
timized results obtained from the genetic algorithms alongside the
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Fig. 9. The results for the inverse design of 4D-printed hierarchical architecture with arbitrary shape for random design domain. (a). Optimized results obtained from the
evolutionary algorithms and corresponding simulation results of the parts with the optimized material allocation. (b). The training loss and the validation loss for the forward
prediction model. (c). The fitness for the best individual in each generation. (d). The comparison between the target deformation and simulated deformation.
corresponding simulation outcomes of the parts with the optimized
material allocation. The optimized results obtained from the genetic
algorithms reveal a precisely tailored material allocation within the
4D-printed hierarchical architecture. This allocation demonstrates a
seamless integration of passive and active materials, resulting in a
structure that exhibits the desired shape-shifting behavior. The corre-
sponding simulation results validate the effectiveness of the optimized
material distribution, showcasing the accurate realization of the in-
tended design. Fig. 9(b) illustrates the training loss and validation loss
for the forward prediction model. The training loss and validation loss
for the forward prediction model depict a robust learning process, with
both losses converging to low values. This convergence indicates that
the forward prediction model has successfully captured the complex
relationship between material allocation and structural behavior. The
consistently low losses affirm the model’s ability to accurately predict
deformations based on digital material inputs. Fig. 9(c) represents the
fitness for the best individual in each generation. The fitness plot for
the best individual in each generation showcases the evolutionary algo-
rithm’s iterative optimization process. With each generation, the RMSE
steadily decreases, indicating progressive refinement of the material
allocation strategy. Fig. 9(d) provides a comparison between the target
deformation and simulated deformation. The comparison between the
target deformation and simulated deformation highlights the efficacy
of the inverse design methodology. The simulated deformation closely
matches the target deformation, demonstrating the accuracy and relia-
bility of the designed hierarchical architecture. This alignment between
the desired and simulated outcomes validates the effectiveness of the
proposed approach in achieving the intended structural behavior.

Compared with the fixed design domain, the random design domain
not only has a higher degree of freedom, but can also include the
fixed design domain. For instance, consider the two opposing triangles
illustrated in Fig. 6. If optimization is required for these triangles, the
initial population in the evolutionary algorithm can be set to comprise
these two opposing triangles. Subsequently, these triangles can be
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inputted into the random design domain’s forward prediction model
for evaluation. The evaluations obtained are then used for selection,
crossover, and mutation operations. Over successive generations, the
shapes of each generation of offspring will be two opposing triangles.
In other words, for random design domain algorithms, any shape within
the design boundaries can be forward predicted and inverse optimized.

5.3. Discussion

The hierarchical structure studied in our research presents a design
space smaller than 1000 units, which is modest compared to many
topology optimization (TO) problems in the literature that involve sig-
nificantly larger design spaces, often exceeding 100 by 100 dimensions.
The primary challenge in such large-scale optimization problems is
the computational intensity and the time required for each inverse
optimization process. However, our method is designed to be scalable.
The hierarchical approach we use allows us to break down the larger
problem into smaller, more manageable sub-problems. This decompo-
sition not only simplifies the complexity of each optimization task but
also enables parallel processing, which significantly enhances computa-
tional efficiency. By distributing the computational load across multiple
CPU cores, we can perform numerous simulations concurrently, thereby
reducing the overall time required for optimization.

The optimization outcomes presented in Figs. 6, 7, and 9 demon-
strate that the shapes activated through our approach closely align
with the intended target shapes at a macroscopic level. However, a
closer inspection at the microscopic level reveals that the surfaces of
the deformed materials do not exhibit the same smoothness as the
target shapes. This discrepancy primarily arises due to the size of the
pixels used in the design. Larger pixels can result in less smooth curves,
giving the surface a rough appearance. This issue could potentially
pose a problem in practical applications where surface smoothness is
critical. To address the observed unsmoothness, we propose a couple of
strategies. First, by decreasing the size of the pixels used in the design,
we can achieve finer resolution and smoother curves. This approach

involves increasing the computational resolution of the design process,
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which, although computationally more intensive, would result in a
more accurate representation of the target shapes. Smaller pixels allow
for more detailed and precise control over the material distribution,
thereby enhancing the smoothness of the deformed surfaces. Addi-
tionally, the surface quality can also be enhanced by optimizing the
parameters of the FDM printing process. Adjustments such as layer
height, extrusion width, and print speed can significantly impact the
surface finish. For instance, reducing the layer height can lead to
finer layers being deposited, which smoothens the surface. Similarly,
optimizing the extrusion width and print speed can help in achieving
better layer adhesion and reducing surface roughness. By fine-tuning
these parameters, it is possible to produce smoother surfaces even with
the existing design resolutions.

6. Conclusions and future works

In this paper, we have presented a novel approach for forward
prediction and inverse design tailored to 4D printed hierarchical ar-
chitecture with arbitrary shapes. By integrating machine learning tech-
niques, specifically Residual Networks for forward prediction and evo-
lutionary algorithms for inverse design, our methodology addresses
the challenges posed by non-rectangular shapes in traditional design
workflows. Our approach enables the prediction of complex hierarchi-
cal structures’ behavior and the optimization of material allocation to
achieve desired shape transformations efficiently. Through empirical
validation and case studies, we have demonstrated the effectiveness
and versatility of our proposed framework in accurately predicting and
designing 4D printed structures with arbitrary shapes, paving the way
for advancements in 4D printing technology.

This research contributes to the broader field of 4D printing de-
sign optimization by offering a data-driven approach that leverages
machine learning to streamline the design process. By encoding non-
rectangular shapes with unique identifiers and employing ResNet for
forward prediction, our methodology overcomes the limitations of
traditional design methods and enhances the efficiency and accuracy
of shape prediction. Furthermore, the use of evolutionary algorithms
for inverse design enables the optimization of material allocation for
achieving predefined performance criteria, facilitating the creation of
adaptive and functional structures. Overall, our work underscores the
potential of machine learning-driven approaches in advancing the ca-
pabilities of 4D printing technology, opening new avenues for design-
ing complex and dynamic structures for various applications across
industries.

The future work would be to extend the design and optimization
methods from 2D surfaces to 3D plates or objects. While the current
focus has been on optimizing material allocation for 2D surfaces, mov-
ing towards 3D structures would introduce additional challenges and
complexities. Designing 3D plates or objects with specific deformation
behaviors requires considering not only the material allocation in the
surface plane but also the material distribution in the depth dimension.
This would involve optimizing the material properties and arrangement
in three dimensions to achieve desired deformation characteristics.
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