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Abstract
The current boom in soft robotics development has spurred extensive research into these
flexible, deformable, and adaptive robotic systems. However, the unique characteristics of soft
materials, such as non-linearity and hysteresis, present challenges in modeling, calibration, and
control, laying the foundation for a compelling exploration based on finite element analysis
(FEA), machine learning (ML), and digital twins (DT). Therefore, in this review paper, we
present a comprehensive exploration of the evolving field of soft robots, tracing their historical
origins and current status. We explore the transformative potential of FEA and ML in the field
of soft robotics, covering material selection, structural design, sensing, control, and actuation. In
addition, we introduce the concept of DT for soft robots and discuss its technical approaches
and integration in remote operation, training, predictive maintenance, and health monitoring.
We address the challenges facing the field, map out future directions, and finally conclude the
important role that FEA, ML, and DT play in shaping the future of soft robots.

Keywords: soft robots, finite element analysis, machine learning, digital twins,
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1. Introduction

Soft robot (SR) is an attractive and rapidly emerging field
that focuses on the development of robots with flexible and
deformable structures [1–5]. These soft robots are designed
to mimic the characteristics and capabilities of soft-bodied
organisms found in nature [6], such as worms [7–12],
octopuses [13–17], caterpillars [18–21], and fish [22–28].
Their unique features include flexibility [29–32], compliance
[33–36], safe interaction [37–40], adaptability [41–45], and
versatility [46–49]. Soft robots are made from materials like
elastomers [50–58], polymers [59–65], and hydrogels [66–
71], allowing them to deform and change shape and mak-
ing them well-suited for tasks that involve navigating through
complex and confined spaces [72]. Soft robots have broad

applications in different area, including medical devices [73–
75], search and rescue operations [76–79], assistive devices
and wearable robotics [80–82], space missions [83–85],
agriculture [86–89], and underwater exploration [90–94].

Recent advancements in big data, finite elements analysis
(FEA), machine learning (ML), and digital twin (DT) techno-
logies have significantly contributed to the development and
potential of SRs [95–102]. The integration of these cutting-
edge technologies has revolutionized the way soft robots are
designed, controlled, and optimized, unleashing unpreceden-
ted levels of performance and intelligence. The use of big data
analytics in SRs provides valuable insights into robot behavior
and performance, supporting data-driven decision-making and
enhancing their capabilities. ML empowers soft robots to learn
from experience, adapt to changing conditions, and autonom-
ously optimize their actions, enabling them to process com-
plex sensory data and continuously improve their performance
through iterative learning [103–113]. DT technology plays a
pivotal role in the development and operation of soft robots
by creating virtual replicas of physical systems. This techno-
logy facilitates real-time monitoring, predictive analysis, and
scenario simulations, enabling remote diagnostics, predictive
maintenance, and performance optimization for soft robots
[114–116]. The goal of applying big data, FEA, ML, and DT
technologies to soft robots is to optimize their performance,
enhance their adaptability, and revolutionize their capabilities
in various applications.

There has been a lot of research focusing on the applica-
tion of these technologies in the field of soft robots, and there
are also some review articles related to these topics. (1) For
FEA and ML, Pinskier and Howard [117] reviewed the state
of autonomous SR design, spanning from parametric optimiz-
ations to evolutionary algorithms (EAs). They highlighted the
need for advanced simulators and manufacturing processes to
explore the intricate landscape of soft robot design, combining
simulation and experimental data. Wang and Sun [118] con-
ducted a review focusing on the integration of ML in SRs.
The review highlighted the challenges posed by the elasto-
meric nature of soft robots in perception, control, and sig-
nal processing. They explored the use of hydrogels and ML
as promising solutions. The review assessed hydrogel-based
sensing and actuation methods and outlined mechanisms of
perception. Additionally, they evaluated recent achievements
in ML for processing soft robots’ sensing data and optimiz-
ing their performance, listing strategies for implementing ML
models. Yang and Wu [119] conducted a review focusing on
ML applications in soft robot sensors. The study emphasized
the use of compliant and soft sensors for closed-loop feed-
back control in soft robots. The review highlighted advance-
ments in strain sensor-integrated SR design, including sensor
materials optimization, signal analysis, and in-sensor com-
puting, all driven by ML techniques. Wang et al [120] con-
ducted a review focusing on ML applications in the con-
trol of soft continuum robots. They discussed the trade-off
between flexibility and controllability and emphasized the
use of data-driven modeling strategies with ML algorithms.
The review covered current kinematic/dynamic model-free
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Figure 1. Interconnected landscape: finite element analysis, machine learning, and digital twin for soft robots.

control schemes, highlighting learning-based approaches, and
explored their similarities and differences. Kim et al [121]
reviewedML techniques in SRs, categorized their applications
in soft sensors, actuators, and wearable robots, and analyzed
trends in different ML approaches for various soft robots. It
also identified research limitations and summarized existing
machine-learning methods for soft robots. Bhagat et al [103]
reviewed the fusion of deep reinforcement learning (RL) with
soft bio-inspired robots, emphasizing different kinds of deep
reinforcement algorithms. (2) For DTs, Mazumder et al [122]
reviewed trends of DT-incorporated robotics in both high and
low research-saturated robotic domains. Zhang et al [123]
reviewed the sensing technology for the DT of soft robots.
These are the only two reviews that include the DTs for soft
robots. However, most review papers focus on a sub-topic,
some only discuss ML for soft robots, and some only study
DTs for soft robots, but these three technologies are inter-
connected and promote each other, which is demonstrated in
figure 1. Therefore, in our review paper, we will explore the
application of these technologies in the field of soft robots and
underscore their interplay and significance.

This paper aims to provide an overview of the recent
advances and potential prospects in the field of SRs, with a
particular focus on the transformative impact of big data, FEA,
ML, and DT technologies. By analyzing various optimization
methods, we aim to show how these techniques can improve
the performance, efficiency, and adaptability of soft robots in
different application areas.

The remainder of this essay is organized as follows. In
section 2, we will lay the groundwork by exploring the basic
concepts that are foundational to the fields of big data, FEA,
ML, and DTs, which collectively contribute to the evolving
landscape of SRs. Additionally, we will delve into the cur-
rent research status within the realm of soft robots to provide
a comprehensive understanding of ongoing developments. In
section 4, we will focus on the integration of FEA and ML in
the context of soft robots. This section will provide an over-
view of both FEA and ML and their relevance to the research
domain of SRs. We will explore how these technologies are
leveraged in material selection and characterization, structural
design and analysis, and the critical aspects of sensing, con-
trol, and actuation in SR systems. Each subsection within this
section will shed light on the current research status in its
respective domain, providing insights into the cutting-edge
advancements. Moving forward to section 5, we will turn our
attention to DTs and their application in the realm of SRs. We
will delve into the technical approaches employed in design-
ing, prototyping, behavior modeling, simulation, performance
optimization, remote operation, training, predictive mainten-
ance, and health monitoring of soft robots through the lens
of DTs. Additionally, we will offer a glimpse into the cur-
rent research status within this domain. In section 6, we will
confront the challenges that persist in the field of SRs and
chart potential future directions. Finally, in section 7, we will
draw conclusions based on the insights gained in the previous
sections and present a comprehensive overview of the current
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status and bright prospects of SRs in the era of advanced
technology.

2. Basic concepts and current status

In this section, wewill explore the basic concepts in the field of
FEA, ML, and DTs for SRs and delve into the current research
status. Subsequently, we will survey the current research status
of SRs and examine the latest developments and trends in this
dynamic field.

2.1. Basic concepts

2.1.1. Big data. In the digital age, the sheer volume, speed,
and diversity of data have given rise to a phenomenon known
as big data. At its core, big data comprises vast and intric-
ate datasets that defy traditional data processing tools and
techniques [124]. It’s a multifaceted concept characterized by
three defining attributes:

• Volume: big data is synonymous with vast quantities of
information, often measured in terabytes, petabytes, or
more. This staggering volume dwarfs conventional data
repositories.

• Velocity: in the age of real-time information, data streams
into systems at breakneck speeds. The velocity of big data
is marked by the rapid generation, transmission, and pro-
cessing of data.

• Variety: big data is a diverse ecosystem of information. It
encompasses structured data found in databases and spread-
sheets, as well as unstructured data like text, images, and
videos. The variety of data types and sources adds complex-
ity to the big data landscape [125].

However, big data is more than just numbers and bytes—it rep-
resents a transformative force that touches various facets of our
digital world. It encompasses social phenomena, information
assets, data sets, analytical techniques, storage technologies,
processes, and infrastructures. Microsoft aptly describes it as
the application of ‘serious computing power’ to the colossal
ocean of information, while the National Institute of Standards
and Technology (NIST) underscores the need for a ‘scalable
architecture for efficient storage, manipulation, and analysis’
[126].

Key aspects of big data include:

• Volume, velocity, and variety: these dimensions encapsulate
the essence of big data. They emphasize the massive scale,
rapid flow, and diverse nature of the data involved.

• Specialized technology and analytical methods: effectively
harnessing big data necessitates unique technologies and
analytical methods tailored to its intricacies and challenges.

• Transformation into insights and economic value: the true
power of big data lies in its capacity to extract valuable
insights, fueling innovation, and creating economic value.
By applying advanced analytics, organizations can uncover
meaningful patterns and trends within the data, empowering
informed decision-making.

In essence, big data represents a paradigm shift in the world of
data. It calls for scalable technologies, advanced analytics, and
the potential to unlock valuable insights and economic bene-
fits. As we navigate the big data landscape, we find ourselves
in an era where data is not just abundant—it is transformative.

2.1.2. ML. ML is a specialized domain dedicated to devel-
oping and understanding methods that enable machines to
enhance their performance on specific tasks through data-
driven learning [127, 128]. As a subfield of artificial intel-
ligence, it focuses on creating algorithms and models cap-
able of learning, predicting, and making decisions autonom-
ously, without explicit programming [129–131]. ML involves
building computer systems that can analyze vast amounts
of data, identify patterns, and extract meaningful insights
to continuously improve their performance over time [132–
134]. Different ML tasks are categorized based on learning
approaches (supervised/unsupervised), learning models (clas-
sification, regression, clustering, dimensionality reduction), or
specific algorithms utilized for a particular task.

ML models come in various types (figure 2), depending on
their learning algorithms, objectives, and underlying mathem-
atical techniques. Some commonly used ML models include:

• Supervised learning models: linear regression, logistic
regression, support vector machines, random forest,
decision trees, neural networks (NNs) (e.g. Multi-layer
Perceptron), gradient boosting models (e.g. XGBoost,
LightGBM).

• Unsupervised learning models: K-means algorithm, hier-
archical clustering, self-organizing maps (SOM), prin-
cipal component analysis (PCA), Gaussian mixture models
(GMM), autoencoders.

• Deep learning models: convolutional NNs (CNN), recurrent
NNs (RNN), generative adversarial networks (GAN), long
short-term memory (LSTM), transformers.

• RL models: deep Q-networks (DQN), Q-learning, Monte
Carlo tree search (MCTS), policy gradient methods, actor-
critic methods.

• Bayesian models: Bayesian networks, naive Bayes,
Gaussian processes, hidden Markov models (HMM).

• Dimensionality reduction models: t-distributed stochastic
neighbor embedding (t-SNE), principal component analysis
(PCA), linear discriminant analysis (LDA).

• Ensemble learning models: boosting (e.g. AdaBoost,
Gradient Boosting), bagging (Bootstrap Aggregating),
stacking, voting.

• Recommender systems models: content-based filtering, col-
laborative filtering, hybrid approaches.

These models represent a diverse range of techniques used
in ML, each possessing unique strengths and applications.
Researchers and practitioners select themost appropriatemod-
els based on the specific problem they are addressing and the
characteristics of their data.
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Figure 2. Machine learning methods used for soft robots.

2.1.3. DTs. A DT is a virtual representation of a physical
object or system that spans its entire lifecycle. What sets DTs
apart is their dynamic nature—they are continuously updated
with real-time data and enriched through simulations, ML, and
reasoning processes. This fusion of real-world data and digital
modeling enables organizations to make informed decisions
and gain unparalleled insights.

The roots of the DT concept delve deep into the annals
of technological evolution, tracing back to pivotal moments
that have shaped its trajectory. The recognition of the DT
concept materialized in the year 2002, catalyzed by a present-
ation hosted by Challenge Advisory at the University of
Michigan [135]. This presentation featured Michael Grieves
and centered around the development of a product lifecycle
management center. Within this pioneering presentation lay
the foundational elements that would define DTs—an amal-
gamation of real and virtual spaces, along with the seamless
flow of data and information between these domains. Although
terminologies may have evolved over time, the core essence of
uniting digital and physical counterparts into a singular entity
has remained consistent since its inception.

Yet, the narrative of DTs extends beyond the early 2000s.
Remarkably, the concept’s origins can be traced back to the
1960s [136], a period when NASA employed rudimentary
twinning ideas for space programming. During this era, phys-
ical duplicates of systems were painstakingly recreated on
the ground to mirror those operating in the far reaches of
space. This methodology found its pinnacle during the ill-
fated Apollo 13 mission in April 1970 [137]. As unfore-
seen technical challenges emerged 200 000 miles away from
Earth, NASA’s DT model of the spacecraft became instru-
mental in devising life-saving solutions. This landmark event
highlighted the critical role that DT technology could play,

ultimately sowing the seeds for the DTs that dominate mod-
ern innovation.

Interestingly, the term ‘digital twin’ itself appeared in an
unconventional context. In 1998, a digital replica of actor
Alan Alda’s voice was used to refer to the term in ‘Alan
Alda meets Alan Alda 2.0 [138].’ However, the true conver-
gence of the historical roots and its contemporary significance
of DT occurred in the early 2000s, when it became recog-
nized as a key strategic technology trend. The convergence
was driven by the emergence of the Internet of Things (IoT),
which rendered DTs more accessible and cost-effective. With
the sensors and connectivity of IoT, the symbiotic relation-
ship between physical systems and their digital counterparts
became key to innovation.

2.2. Research status of soft robots

The current status of research in soft robots reflects the
advancements and growing interest across various fields of
robotics and engineering. Significant advances have been
made inmaterials science [139–141], robot control [142–144],
and computer technology [145], leading to breakthroughs in
soft robot design [146–149], sensing [150–154], and actuation
[155–161]. The integration of sensor technologies and con-
trol algorithms has enhanced the adaptability and versatility of
soft robots. In addition, the development of novel soft mater-
ials and manufacturing techniques has expanded the capab-
ilities of these robots. Soft robots have found applications
in various fields, including healthcare [162–165], human-
robot interaction [166–168], biomedical applications [169–
173], extreme environments [174–179], and more. The integ-
ration of artificial intelligence and autonomy into soft robots
holds promising potential for their operation in unstructured

5



Smart Mater. Struct. 34 (2025) 033002 Topical Review

and dynamic environments. This section will explore the his-
tory and current status of research in soft robots in more detail,
highlighting their design, sensing, control, material science,
human–robot interaction, biomedical applications, autonomy,
and extreme environment capabilities.

• Design and morphology: researchers are actively explor-
ing novel design approaches and morphologies for soft
robots [180]. These include bio-inspired designs [181–183],
origami-based structures [31, 184], and soft actuators that
mimic natural movements [185–189]. The goal is to create
robots capable of complex and versatile motions, leading to
applications in exploration, medical devices, and human–
robot interactions.

• Sensing and perception: soft robots often require advanced
sensing and perception capabilities to effectively interact
with their surroundings. Researchers are integrating innov-
ative sensor technologies, such as stretchable and flex-
ible sensors [190–194], to provide real-time feedback and
enable soft robots to autonomously adapt to changes in their
environment.

• Control and actuation: achieving precise and efficient con-
trol of soft robots is a challenging yet crucial aspect of
research. Advancements in actuation techniques, such as
pneumatics [78, 195–197], hydraulics [198–201], and shape
memory materials [202], are being combined with sophist-
icated control algorithms, includingmodel-based [203–206]
and learning-based [120, 207, 208] methods, to enable pre-
cise manipulation and locomotion of soft robots.

• Material science and manufacturing: the development of
new soft materials, such as elastomers [54, 56, 209–211] and
hydrogels [68–71, 212–214], is expanding the capabilities of
soft robots. Manufacturing techniques, such as 3D printing
and soft lithography [215–222], are also evolving to create
intricate and customized soft robot structures, enabling rapid
prototyping and cost-effective production.

• Human–robot interaction: soft robots offer the potential for
safe and seamless interactions with humans. Research in
this area focuses on creating SR prosthetics [223–229],
exoskeletons [230–235], and wearable devices [236–239]
that enhance human capabilities and support rehabilitation
and assistance for people with disabilities.

• SRs in biomedical applications: soft robots are increas-
ingly being explored for biomedical applications, including
surgery [240–245], drug delivery [246–251], and wearable
health monitoring devices [252–255]. The inherent compli-
ance and biocompatibility of soft materials make them well-
suited for integrating with biological systems.

• Autonomy and artificial intelligence: integrating autonomy
and artificial intelligence into soft robots enables them to
perform tasks in unstructured and dynamic environments.
ML algorithms and DT technologies play a crucial role in
enhancing the adaptability and decision-making capabilities
of soft robots [100, 115, 121, 122, 256, 257].

• Soft robots in extreme environments: soft robots have the
potential to operate in challenging environments where tra-
ditional rigid robots may be limited [258]. Research is
being conducted to explore applications in space exploration

[259–261], underwater exploration [27, 262–264], and dis-
aster response scenarios [265–269].

In this subsection, we have explored the history and current
research status of soft robots. The current research status of
soft robots reveals remarkable progress and increasing interest
in the field of robotics and engineering. Soft robots have
emerged as a prominent branch of robotics, attracting signi-
ficant attention and extensive research efforts.

3. FEA enabled soft robots

FEA has emerged as a powerful numerical tool for model-
ing and simulating the mechanical behavior of soft robots.
FEA enables researchers to accurately predict the deforma-
tion and stress distribution of soft robot structures under vari-
ous loading conditions [270–272]. It allows for the analysis of
complex geometries and nonlinear material properties, essen-
tial for capturing the intricate behavior of soft robots [95,
273–275]. FEA-based simulations aid in virtual prototyping,
enabling researchers to explore and refine multiple soft robot
designs without the need for costly physical prototypes [276].
By providing detailed insights into structural integrity and per-
formance, FEA facilitates the optimization of soft robot con-
figurations to achieve better functionalities and adaptability in
real-world applications.

In material selection and characterization, FEA is a power-
ful tool used to virtually test and simulate the behavior of
soft materials under different conditions, helping researchers
identify materials that offer the required elasticity, compli-
ance, and viscoelasticity. Structural design and analysis also
rely on FEA to model and analyze the mechanical behavior
of soft robot structures under various loads and deformations.
FEA plays a crucial role in modeling kinematics and con-
trol optimization as well, where understanding the kinematic
behavior of soft robot actuators and components is crucial for
developing sophisticated control strategies.

The design process of soft robots demands meticulous con-
sideration of material selection. FEA provides a numerical
technique to simulate the mechanical behavior of soft robots
under different loading conditions, helping in the assessment
of material suitability and guiding design improvements [277].
For sensing and actuation optimization, integrating sensors
within soft robot structures requires careful consideration, and
FEA plays a vital role in evaluating sensor placement and
performance.

FEA has established itself as a reliable tool in modeling
linear systems and solving multiphysics problems, thanks to
its detailed, physics-based approach. Its application in SRs
has enabled researchers to simulate the deformation and stress
distribution of complex geometries with nonlinear materials,
which are crucial to capturing the intricate behavior of soft
robots. However, when applied to nonlinear elastic materi-
als, FEA can encounter convergence issues, where the com-
putational schemes must be adapted to stabilize the solution
[278]. In these cases, problem-specific modifications to the
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FEA model may be necessary, or alternative numerical meth-
ods, such as finite difference approaches, might be preferred
to achieve stable and accurate results. The performance of
FEA in nonlinear contexts is often influenced by the spe-
cific material properties and structural dynamics of the soft
robots, and overcoming convergence issues remains a primary
challenge when working with highly flexible, elastic struc-
tures. Moreover, SR structures frequently experience mechan-
ical instabilities such as wrinkling, snap-through, and limit-
point instabilities. These phenomena, while critical to the
design and functionality of soft robots, present additional dif-
ficulties for FEA, requiring specialized mathematical adjust-
ments or even entirely different modeling approaches to accur-
ately capture these behaviors and to design against unwanted
deformations.

While FEA is a core method in the classical continuum
approach, it is only one among various numerical tech-
niques available for addressing the complexities of SRs. Other
methods—finite difference, finite volume, and smoothed
particle hydrodynamics (SPH), for example—provide altern-
ative frameworks that can complement or substitute for FEA,
especially in scenarios where FEA is less effective. For
instance, finite volume and SPH methods are often more suit-
able for fluid dynamics, which is crucial when modeling flu-
idic actuators frequently used in soft robots. FEA, while highly
capable in solid mechanics, is generally less adaptable to flu-
idic behaviors, making computational fluid dynamics (CFD)
methodsmore applicable for fluid-based actuators. In this way,
the continuum approach to SRs modeling incorporates a suite
of methods beyond FEA, allowing researchers to select the
most effective tools based on the specific mechanical or flu-
idic behavior in question, ultimately enhancing the accuracy
and reliability of SR simulations.

4. ML powered soft robots

The application of ML in the field of SRs holds immense
promise and is rapidly advancing the capabilities and under-
standing of these highly deformable and adaptive systems
[279–284]. Soft robots, with their flexible and compliant struc-
tures, offer unique advantages in various applications, includ-
ing human–robot interaction, biomedical devices, and explor-
ation in complex environments. FEA and ML complement
each other, providing valuable insights and solutions to the
challenges faced in soft robot design, analysis, control, and
optimization.

The integration of FEA and ML in SRs opens up new
possibilities to create more capable and autonomous systems.
Combining FEA-based simulations with ML algorithms can
automatically optimize SR designs. This approach leads to
the discovery of innovative and efficient soft robot archi-
tectures that can adapt to different tasks and environments.
Using ML techniques, soft robots become more environment-
aware, self-correcting, and capable of learning from experi-
ence, making them highly adaptive and versatile in real-world
scenarios.

4.1. Overview

The application of ML to soft robots encompasses four funda-
mental domains that play a crucial role in the advancement
of this field: material selection and characterization, struc-
tural design and analysis, kinematics and control optimiz-
ation, and sensing and drive optimization, which are illus-
trated in figure 3. ML offers powerful capabilities that com-
plement traditional FEA methods, particularly in enabling
soft robots to adapt to changing environments and learn from
data [285–287]. With RL, soft robots can autonomously learn
optimal control strategies for locomotion and manipulation,
considering their inherently complex and nonlinear kinematics
[103, 288–290]. Supervised and unsupervised ML techniques
further enhance sensing and perception capabilities, sup-
porting tasks like environment perception, object recogni-
tion, and human–robot interaction, crucial for advanced SR
applications.

In material selection, ML techniques support material char-
acterization by enabling the optimization of material proper-
ties for specific applications, such as elasticity or compliance,
which expands the possibilities for soft robots [291]. By lever-
aging large datasets, ML can also uncover novel material com-
binations and configurations, accelerating the material discov-
ery process.

For structural design, ML algorithms enhance the gen-
eration of optimized soft robot morphologies by learning
from data and simulations. This approach enables the creation
of structures that better meet performance and adaptability
requirements, often leading to innovative robot architectures
that can self-correct and adapt in dynamic environments.

In kinematics and control, ML-driven approaches provide
adaptive control by optimizing parameters based on real-time
data, enhancing precision and stability in soft robot motion
[292]. This is especially valuable in dynamic and unpredict-
able settings, where robots must adjust to new conditions on
the fly.

Lastly, in sensing and actuation, ML-based techniques, par-
ticularly sensor fusion, help soft robots process and inter-
pret sensory data efficiently, enabling advanced perception
and adaptability in challenging environments. By leveraging
ML to interpret sensor data, soft robots gain a higher level of
autonomy, further contributing to their effectiveness in real-
world scenarios.

4.2. Material selection and characterization

The selection of materials is one of the keys to designing soft
robots. The materials should be soft, have good plasticity and
high elasticity [293]. These material properties enable soft
robots to deform under the action of external forces, facil-
itating adaptation to complex environments and diverse task
requirements.

The selection of materials is one of the keys to design-
ing soft robots. The materials must be soft, have good plas-
ticity and high elasticity. These material properties enable
soft robots to deform under the action of external forces,
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Figure 3. Research domain of machine learning powered soft robots.

thereby adapting to complex environments and diverse task
requirements.

Recently, the concept of AI scientists has gained popularity,
leading to the development of a robotic chemist that embod-
ies intelligent chemistry. Traditional chemical research faces
challenges with complex and high-dimensional objects, rely-
ing on exhaustive trial and error methods that often get stuck
in local optima. In response to this, Zhu et al [294] created
a machine chemist platform that performs the entire chem-
ical synthesis, characterization, and testing process under the
influence of big data and intelligent models. This platform
surpasses similar devices in Europe and the United States
both in software and hardware capabilities, boasting stronger
chemical intelligence and extensive development capabilities.
These techniques of data-driven material discovery and ML
can also be applied to the material selection and characteriza-
tion of soft robots.

In the current landscape of SRs, several materials have
garnered attention for their suitability in constructing these
robots. Silicone elastomers [295–310], urethanes [311–320],
hydrogels [321–328], braided fabrics [329–344], hydraulic
fluids [198, 345–354], and gasses [355–358] have emerged
as the primary choices for manufacturing soft robots. The
selection of these materials allows for the creation of robots
that are inherently compliant, allowing them to interact safely
with humans and adapt to dynamic surroundings. The design
process of soft robots demands meticulous consideration of

material selection. Elastomers, gels, and other flexible mater-
ials offer a wide range of properties that directly influence the
performance and capabilities of the robot. For instance, cer-
tainmaterials like hydrogels and elastomers excel in high com-
pliance, granting enhanced flexibility, but might exhibit lower
strength. In contrast, other materials including shape memory
polymers (SMP) and alloys possess remarkable strength while
compromising compliance. This trade-off in material proper-
ties necessitates a thoughtful approach to selecting the optimal
material based on the specific application requirements of the
robot.

The application of FEA and ML is an effective way to
address the complexity involved in material selection and
design optimization. FEA provides a powerful numerical tech-
nique to simulate the mechanical behavior of soft robots under
different loading conditions. By using FEA, how soft robots
composed of different materials respond to external forces
can be analyzed, helping in the assessment of material suit-
ability and guiding design improvements [277]. In addition,
ML algorithms have been utilized to assist in the selection
of suitable materials for soft robots. These algorithms can
analyze datasets containingmaterial properties, environmental
conditions, and performance criteria to identify patterns and
correlations [359]. By applying ML, more informed decisions
about material choices can be made, the design process can be
optimized, and the overall performance of soft robots can be
improved.
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In this subsection, we will delve into the fields of apply-
ing FEA andML to material selection and characterization for
soft robots. Our exploration will focus on two crucial aspects:
material discovery and material property prediction, as well as
material analysis and simulation.

4.2.1. Material discovery and property prediction.

4.2.1.1. Material discovery. The application ofML tomater-
ial discovery for soft robots has revolutionized the design pro-
cess, especially when dealingwith the complexities inherent in
soft materials. Data-driven material discovery methods, based
on advanced ML algorithms, have emerged as a promising
approach for both material and morphological structure dis-
covery in the soft materials [360–364].

Data-driven material discovery using ML is a powerful
approach that leverages existing materials data to identify
and propose new materials with specific properties suited for
soft robot applications [365]. Traditionally, material discov-
ery involved time-consuming and expensive trial-and-error
methods, where researchers would synthesize and test numer-
ous materials to find the desired properties [366]. However,
with the advent of ML, data-driven approaches have become
increasingly popular due to their ability to expedite the discov-
ery process and enhance the efficiency of materials research
[367].

In data-driven material discovery for soft robots, the first
step is to compile a comprehensive database of materials and
their associated properties. The database can include experi-
mental data from material testing, simulation results, and lit-
erature data. The collected information coversmaterial proper-
ties that are relevant to soft robot performance, such as mech-
anical properties, thermal behavior, and more. Once the data is
prepared, ML algorithms are trained on the dataset to learn the
relationships between material composition, designed struc-
ture, and overall properties. ML algorithms can use the pat-
terns and correlations present in the data to generate predict-
ive models that can estimate the properties of materials based
on their characteristics. After the models are trained and valid-
ated, they can be applied to explore the more space of potential
materials for soft robots. By inputting specific requirements
and constraints for the soft robot’s intended application, the
ML models can output candidate materials with the desired
properties. The ML-enabled process can significantly reduce
the time and resources required to identify promisingmaterials
[368].

Moreover, ML can explore unconventional and novel
materials that traditional methods may overlook. By analyz-
ing the data holistically, ML models can identify previously
undiscovered correlations and patterns, suggesting innovat-
ive materials with unique combinations of properties. Data-
driven material discovery cannot only accelerate the search for
suitable materials but also enable a more informed decision-
making process. The ML models can provide insights into
the relationships between different material properties, mak-
ing it possible to weigh trade-offs and optimize materials for
specific SR applications [369]. Although data-driven material

discovery is effective, it is important to note that the quality
and size of the initial materials dataset play a crucial role in
the accuracy and reliability of the predictions [359]. Efforts
are ongoing to expand and improve materials databases and
integrate data from various sources to enhance the perform-
ance of ML models further.

In this subsection, we will explore four kinds of ML-
integrated methods for the material discovery of soft robots:
virtual screening, variational autoencoders (VAEs), generative
adversarial networks, and RL techniques.

In the context of soft robots, ML-driven material discov-
ery has enabled researchers to identify and optimize high-
performance soft materials with specific functionalities. One
notable application is the use of high-throughput virtual
screening [370–372], where ML algorithms are employed
to rapidly analyze vast databases of potential materials and
identify promising candidates for specific SR applications.
This approach has significantly accelerated the process of
discovering materials with desired properties, leading to the
development of soft robots that are more efficient and effect-
ive. Pinskier and Howard [117] reviewed existing manual
and automated designs, highlighting the need for novel high-
fidelity simulators and high-throughput manufacturing and
testing processes to explore the complex soft material, mor-
phology, and control landscape. Omar et al [373] conduc-
ted a review focusing on high-throughput virtual screen-
ing for organic electronics materials. The analysis of high-
throughput virtual screening extended beyond identifying
top candidates, often revealing new patterns and structure-
property relations. The field is dynamic, continuously adapt-
ing to match the evolving landscape of applications, meth-
odologies, and datasets. Dhasmana et al [374] focused on
reviewing high-throughput virtual screening methods for
material discovery of soft robots. They discussed widely
used techniques, tools, and databases for the virtual screen-
ing of natural compounds and computational methods for
absorption, distribution, metabolism, excretion, and toxicity
prediction.

VAEs have also played a crucial role in the material discov-
ery process for soft robots [375–377]. By converting discrete
molecular representations into continuous latent spaces, VAEs
allow for efficient exploration and optimization of material
properties. This has opened up new avenues for designing soft
materials with tailored functionalities, such as self-healing,
shape memory, and adaptive behavior. Anantharanga et al
[378] linked the material structure to its thermal, dielectric,
and mechanical properties through semi-supervised learning
of structure-property links in the VAE network. They used
physically meaningful microstructural descriptors as design
parameters and trained the ML model on a generated data-
set of descriptors and property quantities. In-silico Design of
the Experiment was performed using the Sobol sequence to
sample the design space and generate a comprehensive dataset
of 3Dmicrostructure realizations. The VAE encoder acted as a
surrogate for numerical solvers of multifunctional homogen-
izations, and its decoder was used for material design. Milazzo
and Buehler [379] developed a method using VAE for material
discovery in SRs inspired by fire. They used fire interactions to
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sonify flames, creating audible representations and generating
novel flame images. The VAEs were utilized to generate con-
tinuous 3D geometries from image stacks, which were then
3D printed to create nature-inspired materials derived from
fire.

Moreover, generative adversarial networks have been util-
ized to guide the structural evolution of organic compounds,
enabling the creation of soft materials optimized for specific
SR applications [380]. Zhao et al [381] developed CubicGAN,
a generative adversarial network-based deep NN model, for
the large-scale generative design of novel cubic materials in
high-throughput screening. Trained on 375 749 ternary mater-
ials from the open quantum materials database, the model
effectively rediscovered known cubic materials and gener-
ated hypothetical materials with new structure prototypes.
Matsuda et al [382] developed an alternative approach for
discovering porous materials using a conditional generative
adversarial network (CGAN). They configured amaterials dis-
covery design space based on key porousmaterials and hybrid-
ized them structurally using the CGAN. The CGAN was con-
trolled by a vector design variable that represented the intens-
ity of each key porous material. By varying the vector latent
variable input, multiple similar hybrid porous materials could
be generated.

RL also greatly enhances the development of material
discovery for soft robots by guiding the search process
toward materials with desired characteristics. Volk et al [383]
developed AlphaFlow, a self-driven fluidic lab that utilizes
RL for autonomous material discovery in complex, multi-
step chemistries. AlphaFlow integrates a modular micro-
droplet reactor capable of performing various reaction steps
with in-situ spectral monitoring. The system was applied
to discover and optimize synthetic routes for shell growth
of core–shell semiconductor nanoparticles. Sui et al [384]
employed deep RL (DRL) to automate the design process of
digital materials without prior designer knowledge. The DRL
scheme utilized a collaborative deep Q network architecture
with two cooperative agents for element-level modification
operations.

To further advance generative design in SRs, challenges
related to graph isomorphism and generation need to be
addressed [385]. By effectively combining emerging graph-
based feature representations with generative algorithms,
researchers can unlock even more possibilities for creating
novel soft materials with unique properties.

In the domain of soft matter applications, designing
condensed-phase and multi-material properties, like self-
assembly and self-healing, presents both challenges and
opportunities [386]. ML predictions, combined with genetic
algorithms, have shown promise in designing new polymeric
repeat units with desired properties for soft robots [387].
Additionally, the creation of databases containing computed
and experimental polymer properties facilitates the future
design of polymeric materials with specific functionalities.

In summary, the application of ML to material discovery
for soft robots, especially through generative design methods,
has transformed the field by expediting the identification and
optimization of soft materials with tailored properties.

4.2.1.2. Material property prediction. The application of
ML to material property prediction for soft robots has revo-
lutionized the field of soft materials modeling, particularly in
the context of predicting physical observables based solely on
a material’s chemical structure. Three approaches have been
explored: the first-principles method, the empirical method,
and the semi-empirical method. Although all approaches have
been adopted in the soft material community, they face limit-
ations related to accuracy and computational cost.

Recent breakthroughs in featurization approaches and ML
algorithms have shown great promise in enabling the statist-
ical learning of first-principles-derived physical properties at
a significantly reduced computational cost. To achieve suc-
cessful material property predictions, effective representation
of material as inputs to ML algorithms is crucial. Cartesian
coordinates alone are inadequate due to their lack of appro-
priate invariances to translation, rotation, and permutation of
like atoms. Therefore, various featurization approaches, such
as density functional theory [388–391], quantumMonte Carlo
[392–397], and ab initio molecular dynamics [398–401], are
employed to encode structural and chemical properties. Jha
et al [402] utilized density functional theory in combination
with deep transfer learning to build a highly accurate pre-
dictive model for material property prediction of soft robots.
Conradie [403] developed a methodology that combined gen-
erative design approaches, accurate finite element modeling,
and quantum Monte Carlo simulations to design SR actuat-
ors. The approach involved exploring a 2D design space using
pattern-generating methods and generative design algorithms.
Finite element modeling was used to simulate unit properties
and behaviors, and the results showed the validity of the design
methodology, with physical models closely matching the sim-
ulated results.

Empirical methods play a significant role in predicting
material properties for soft robots, offering practical and com-
putationally efficient approaches [404]. One common empir-
ical method used is the Lennard–Jones potential [405–408],
which describes van der Waals interactions between atoms
or molecules, making it suitable for modeling interactions in
soft materials. For instance, in molecular dynamics simula-
tions, the Lennard–Jones potential can be applied to study
the behavior of SR materials at the atomic level, such as the
interaction between soft polymer chains. Another empirical
approach widely utilized is the ReaxFF (Reactive Force Field)
[409–412], which enables the study of chemical reactions in
condensed-phase systems. For soft robots, this method could
be used to investigate the reaction mechanisms involved in the
synthesis of soft and flexible materials used in their construc-
tion. Overall, empirical methods offer valuable tools for mater-
ial property prediction in SRs, enhancing the understanding
and design of innovative soft robot components and materials.
Marechal et al [413] compiled a unified database of mater-
ial constitutive models and experimental characterizations for
seventeen elastomers commonly used in SRs. Using nonlin-
ear least-squares methods, they derived parameters for hyper-
elastic material models from the tensile test data. The res-
ulting material properties were shared on the SRs Materials
Database GitHub repository, providing valuable information
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for the SRs community to optimize the design and simulation
of soft-bodied robots.

Semi-empirical methods also play a important role in
predicting material properties and understanding the beha-
vior of complex molecules. Three notable examples of semi-
empirical methods are PM3, MNDO, and AM1. PM3 approx-
imates the electronic structure of molecules using parameter-
ized Hamiltonians, making it computationally efficient for cal-
culations of molecular properties [414–416]. MNDO, on the
other hand, is particularly suitable for studying large molecu-
lar systems, making it valuable for molecular structure optim-
izations and electronic structure calculations in soft robot
materials [417–419]. AM1, an enhancement of MNDO with
improved atomic parameters, is well-suited for investigating
larger molecules and transition states of chemical reactions
relevant to soft robot material design. By leveraging these
semi-empirical methods, researchers in SRs can efficiently
predict material properties, optimize molecular structures, and
gain valuable insights into the behavior of materials used in
soft robot components [420–422].

Therefore, the application of ML to material property pre-
diction for soft robots has opened up exciting opportunities for
predicting and optimizing soft materials’ physical properties.
As the field continues to grow, advancements in featurization
techniques, algorithm development, and access to high-quality
data will undoubtedly drive further progress, leading to the
design of novel soft materials that are critical for constructing
advanced and efficient SR systems.

4.2.2. Material analysis and simulation. The simulation
of soft matter is a challenging problem in materials science
and computational physics. The difficulty to simulate proper-
ties and behaviors of soft matter arise from the complex and
often nonlinear interactions between its constituent particles
or components [423]. One of the main challenges in sim-
ulating soft matter is the large number of degrees of free-
dom and the highly dynamic nature of soft matter systems
[424, 425]. Soft matter materials can undergo conformational
changes, phase transitions, and self-assembly, which require
accurate and efficient simulation techniques to capture internal
behavior. Traditional simulation methods, such as molecu-
lar dynamics and Monte Carlo simulations, may struggle to
handle the large length and board time scales associated with
soft matter phenomena. Another challenge is the accurate rep-
resentation of the interactions between particles or molecules
in soft matter systems [426]. Empirical force fields, which rely
on analytical functions to describe particle interactions, cannot
be able to capture the full complexity of soft matter behavior.
Developing accurate and transferable force fields for soft mat-
ter materials remains an active area of research. Some research
about the material analysis and simulation using ML are illus-
trated in figure 4.

The combination of ML and finite element methods is
of utmost importance for advancing material analysis and
simulating soft robots. Accurately representing the intricate
energetic interactions within soft materials is crucial for pre-
dictive modeling and successful design efforts. Traditional

particle-based simulations, relying on specific analytical func-
tions from electronic-structure calculations, have limitations
in accuracy and transferability. In this context, machine-
learning force fields (MLFFs) offer a promising alternative,
accurately predicting material properties with reduced compu-
tational cost [429–433]. MLFFs have proven effective across
various systems, encompassing small molecules to electrolyte
solutions. They enable a comprehensive description of com-
plex effects, including reactivity and polarizability [434], mak-
ing them versatile tools for soft matter research. Challenges
persist, especially with systems of rich chemical complexity,
but researchers are addressing these issues by devising novel
feature descriptors and incorporating long-range physics in
MLFFs, leading to improved efficiency and accuracy [435]. In
soft matter research, coarse-grained modeling is fundamental,
and ML can significantly enhance its accuracy, efficiency, and
transferability [436]. However, developing MLFFs for coarse-
grained simulation may require more data, which is addressed
by exploring hierarchical system representations and lever-
aging symmetries to reduce data requirements.

Enhanced sampling techniques, when combined with ML,
offer powerful tools to overcome the limitations of traditional
simulation methods in exploring the conformational space and
free energy landscapes of soft mattermaterials [437]. Soft mat-
ter systems often exhibit complex and rare events, such as
phase transitions, conformational changes, and self-assembly,
which occur on long timescales and are challenging to capture
using standard simulation methods. One of the main advant-
ages of enhanced sampling techniques is their ability to accel-
erate the exploration of rare events [438]. These methods use
biasing potentials or reweighting schemes to encourage the
system to visit states that are energetically unfavorable or
occur with low probability in unbiased simulations. By effect-
ively enhancing the sampling of these rare events, research-
ers can obtain more comprehensive and accurate representa-
tions of the soft matter system’s behavior. ML models play
a crucial role in enhanced sampling techniques by learning
from the biased simulation data and providing an unbiased
estimate of the system’s free energy landscape. The ML mod-
els can correct for the introduced biases and extract essen-
tial information about the system’s thermodynamics and kin-
etics. This allows researchers to obtain more accurate estim-
ates of free energy differences between different states, such
as transition states and metastable states, which are crucial
for understanding the underlying mechanisms of soft matter
behavior. Moreover, enhanced sampling techniques combined
withML enable the exploration ofmultiple collective variables
that characterize the soft matter system’s complex behavior
[439]. Collective variables are quantities that describe the sys-
tem’s macroscopic properties and can provide insights into
the underlying physics and mechanisms of soft matter mater-
ials. ML models can efficiently identify and track these col-
lective variables, making it possible to study the correlations
and transitions between different states in the conformational
space. These enhanced sampling techniques are particularly
valuable for studying phase transitions and critical phenomena
in soft matter materials. For example, in the study of liquid-
to-crystal transitions or protein folding, enhanced sampling
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Figure 4. Research status for material selection and characterization of soft robots using finite element analysis and machine learning. (a)
Automatic design of fiber-reinforced soft actuators for trajectory matching. Reproduced from [427]. CC BY 4.0. (b) High-performance
electrically responsive artificial muscle materials for soft robot actuation. Reprinted from [161], Copyright (2024), with permission from
Elsevier. (c) Material optimization for the gradient distribution. From [355]. Reprinted with permission from AAAS. (d) Transformation of
the common plastic substrate into graphene material with excellent electrical properties using laser-induced graphite technology. [428] John
Wiley & Sons. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

methods can efficiently sample the high-dimensional energy
landscapes, leading to a more accurate characterization of the
thermodynamic properties and transition pathways [440].

4.2.3. Current research status. The current research status
of the application of FEA and ML in material selection and
characterization of soft robots is promising, with a strong focus
on self-healing materials, graphene-based materials, dielec-
tric elastomers, liquid-crystalline elastomers (LCEs), ionic
polymer-metal composites, and ferromagnetic materials. The

integration of these methodologies holds significant potential
for creating more robust, resilient, and functional soft robots
that can adapt to complex and unpredictable environments.
As research progresses, the continuous exploration of these
advanced materials and techniques is expected to push the
boundaries of what soft robots can achieve in various real-
world applications.

Soft robots, with their unique ability to undergo free-
form changes and operate in complex and harsh environ-
ments, necessitate materials with self-healing capabilities to
ensure sustained functionality and resilience. The study of
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self-healing materials has emerged as a hot area of research,
addressing the critical need to enhance the durability and
longevity of flexible robots. Researchers are exploring innov-
ative approaches to embed self-healing mechanisms into flex-
ible robot components, such as microcapsules of healing
agents or reversible chemical bonds, enabling autonomous
repair of damage sustained during operation. Finite element
modeling has played a crucial role in designing and char-
acterizing self-healing soft materials for SRs. Terryn et al
[441] demonstrated the impressive healing capabilities of self-
healing elastomers in soft pneumatic actuators (SPAs) like
grippers, hands, and artificial muscles through mild heat treat-
ment. FEA enhanced the practical application of these mater-
ials, ensuring robustness in uncertain and dynamic environ-
ments. Similarly, Markvicka et al [442] developed a self-
healing liquid metal-elastomer composite using Galinstan,
which repairs itself when subjected to mechanical shear,
exhibiting high toughness and elasticity, making it suitable for
flexible electronic devices.

Graphene has also proven to be an excellent material for
fabricating soft actuators and robots. Ling et al [428] util-
ized laser-induced graphite technology to transform common
plastic substrate into graphene material with excellent elec-
trical properties, reducing production costs and improving effi-
ciency. The team employed FEA to quantitatively optimize
laser power and irradiation time, resulting in better graphene
quality and higher electrical conductivity. This approach facil-
itated the fabrication of three-dimensional assemblies with
electrothermal control and mechanical guidance, allowing for
the design of a flexible human actuator with fast response
characteristics, high tensile performance, and repeatability.
Stacked graphene has shown promise as an elastic-plastic
material with excellent mechanical properties and deformation
ability, making it valuable for soft robot applications. Wang
et al [443] designed and prepared soft robots by adjusting the
stacking of graphene layers to achieve asymmetry in different
parts to expand their morphology and functionality. By apply-
ing genetic algorithms, they optimized soft robots capable of
achieving desired deformations with enhanced performance
and adaptability.

Dielectric elastomers are an attractive actuator technology
for SRs due to their flexibility, pliability, and low energy con-
sumption. Li et al [444] proposed a dielectric elastomer actu-
ator with optimized shape and dimensions through FEA sim-
ulations. They explored the effects of different shapes, sizes,
and material parameters on performance metrics, resulting in
an actuator with higher mechanical flexibility and electrical
capacity for improved functionality.

LCEs represent another promising material for soft actu-
ators and robotics due to their unique combination of elasti-
city and anisotropic properties, which enable them to undergo
large, reversible deformations in response to various stimuli,
such as heat, light, or electrical fields [445–447]. The liquid-
crystalline phase within the elastomer matrix allows for pro-
grammable shape changes, making LCEs highly adaptable
for complex tasks in SRs. He et al [448–451] demonstrated
the use of LCEs in creating soft actuators capable of precise,

controlled movements by harnessing the alignment of liquid-
crystal molecules under thermal activation. Their research
employed FEA to optimize the material’s structural proper-
ties, resulting in enhanced actuation performance and faster
response times.

Soft ionic polymer-metal composites have also been invest-
igated for soft actuator design. Carrico et al [452] used 3D
printing to fabricate custom actuators with integrated control
circuits and electrodes, simplifying production and increas-
ing productivity. The introduction of a machine-learning
algorithm optimized the control of the actuator, achieving
accurate motion control, essential for precise application scen-
arios. The least square proximal algorithm, based on optim-
ization theory, effectively improved the control accuracy and
stability of the actuator motion.

Furthermore, ferromagnetic soft body robots, designed
using the level-set multiphysics field topology optimization
principle, can deform autonomously and be controlled by an
external magnetic field. Tian et al [453] utilized the level-
set method to optimize the robot’s shape parametrically,
achieving superior flexibility and efficiency. The combination
of FEA simulation and topology optimization automatically
adjusted the robot’s shape and internal structure for optimal
kinematic performance and adaptability.

4.2.4. Section conclusion. The material selection and char-
acterization for soft robots is a critical aspect that directly
influences the performance, adaptability, and safety of these
robots. Selecting appropriate materials with softness, plasti-
city, and high elasticity allows soft robots to effectively deform
and interact with their surroundings. The field of soft robots
has made significant progress with the integration of FEA and
ML in material discovery, property prediction, analysis, and
simulation. Overall, the application of FEA and ML in mater-
ial selection and characterization for soft robots has revolu-
tionized the field of soft robots. It has facilitated the discovery
of novel soft materials, accurate prediction material proper-
ties, and improvement for the simulation and analysis of soft
matter behavior.

4.3. Structural design and analysis

Structural design and analysis play an important role in optim-
izing the performances and functionality of soft robots. The
combination of FEA and ML techniques opens up excit-
ing possibilities for exploring innovative shapes, optimizing
material distribution, and improving overall structural integ-
rity. This section highlights three key areas where FEA and
ML are making significant contributions to the structural
design and analysis of soft robots, including shape explora-
tion for soft robot morphology, 4D-printed soft robots, and the
development of metamaterials.

4.3.1. Shape exploration for soft robot morphology. Shape
exploration is a fundamental aspect of soft robot design, as the
morphology of a robot directly influences its capabilities and
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adaptability. FEA, combined with ML algorithms, can explore
a wide range of potential SR shapes and configurations. By
iterativelymodifying the robot’s geometry and boundary using
geometric primitives or parametric curves, the robot’s deform-
ation and functionality can be optimized. This approach can
discover novel soft robot designs to maximize performance
metrics and adapt to specific tasks and environments.

Moreover, shape exploration enables the design of soft
robots for diverse applications, such asmedical devices, search
and rescue operations, or exploration in challenging terrains.
ML algorithms can be trained on a dataset of performance
metric datasets to identify correlations between shape para-
meters and desired outcomes, leading to data-driven shape
optimization. In this section, we will explore four methods
of shape exploration: nature-inspired design, model-based
design optimization, geometric optimization, and generative
and evolutionary design. Figure 5 lists some studies on shape
exploration of SR morphology.

4.3.1.1. Nature-inspired design. Nature-inspired design of
soft robots draws inspiration from biological systems to cre-
ate innovative and efficient robotic solutions. These designs
mimic the remarkable capabilities of living organisms, res-
ulting in soft robots that can navigate complex environ-
ments, adapt to various tasks, and interact delicately with their
surroundings.

Biomimicry is a core concept in nature-inspired design
[457–459]. Soft robots can replicate the movements, struc-
tures, and behaviors of animals, plants, and even microorgan-
isms. Nature’s solutions have evolved over millions of years,
making them efficient and adaptable. By harnessing nature-
exist principles, the nature-inspired designs of soft robots can
enhance their functionality, efficiency, and versatility, contrib-
uting to advancements in fields such as healthcare, explor-
ation, and disaster relief. For example, soft robot tentacles
can replicate the flexibility and dexterity of an octopus arm
[460], allowing them to manipulate objects in confined spaces.
Bird-inspired wing-like structures can enable soft robots to
achieve efficient aerial locomotion [461, 462]. This approach
also integrates bio-inspired materials that replicate the compli-
ance and elasticity of natural tissues. Soft robots equippedwith
these materials can achieve better interaction with the envir-
onment, providing safer human–robot interactions, enhanced
adaptability, and resilience. In addition, sensing systems
inspired by biological counterparts enable soft robots to sense
and respond to their surroundings like animals, which can give
soft robots enhanced perception capabilities, making them
more flexible in a variety of applications.

4.3.1.2. Model-based design optimization. Design optim-
ization of soft robots, particularly in a model-based approach,
involves several key components that collectively drive the
process towards finding the best-performing designs [463].
These components, including design parameters, dynamics
of the system, objective function, constraints, and lower and
upper boundaries, work together to shape the optimization pro-
cess and achieve optimal soft robot designs.

1. Design parameters: design parameters encompass the vari-
ables that define the structural and behavioral characterist-
ics of a soft robot, which can include material properties
(such as elasticity, stiffness, and density), geometric dimen-
sions (lengths, diameters, angles), actuation mechanisms
(pneumatic chambers, cables), and other relevant paramet-
ers. These parameters are manipulated during optimization
to explore a wide design space and find configurations that
fulfill performance requirements.

2. Dynamics of the system: understanding the dynamic beha-
vior of a soft robot is fundamental for optimization. This
involves comprehending how the robot’s shape, motion,
and interaction with its environment change over time.
Dynamic models, often based on physics principles and
mathematical equations, describe the robot’s responses to
different inputs. FEA plays a crucial role in simulating these
dynamics and predicting how design parameter variations
impact the robot’s behavior.

3. Objective function: the objective function quantifies the
goal of the design optimization. It encapsulates the desired
performance criteria that the soft robot should achieve.
These criteria could be diverse, ranging from maximiz-
ing bending capabilities, achieving specific locomotion pat-
terns, to minimizing energy consumption. The objective
function serves as a metric to evaluate and compare differ-
ent design iterations, allowing the optimization algorithm
to search for designs that optimize the functionality.

4. Constraints: constraints are the limitations or conditions
that a design need to adhere to. They can be physical, engin-
eering, or safety-related. For instance, constraints might
include ensuring that stresses and strains within the soft
robot’s materials remain within acceptable limits, or that
certain motion trajectories are achieved without violating
mechanical limitations. Constraints guide the optimization
process towards feasible solutions.

5. Lower and upper boundaries: design parameters often
have limits beyond which they might lead to impractical
or non-functional designs. Lower and upper boundaries
define these limits. For example, the length of a pneumatic
chamber will have a lower boundary to ensure it is not
too short to function effectively, and an upper boundary
to prevent it from becoming too bulky. Boundaries con-
strain the optimization process to physically meaningful
solutions.

The integration of these components in a model-based
design optimization process for soft robots results in a sys-
tematic approach to creating robots that meet specific per-
formance objectives. FEA simulations, complemented by ML
techniques, facilitate efficient exploration of the design space.
The dynamics of the system, defined by mathematical mod-
els, guide the optimization process to ensure that solutions
align with the desired robot behavior. Objective functions,
constraints, and boundaries collectively shape the optimiza-
tion process, enabling the discovery of soft robot designs that
excel in their intended tasks while adhering to practical limit-
ations and requirements.
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Figure 5. Shape exploration for soft robot morphology. (a) Machine-learning-accelerated design of functional structural components in
deep-sea soft robots. Reprinted from [111], Copyright (2022), with permission from Elsevier. (b) Optimal soft composites for
under-actuated soft robots. [454] John Wiley & Sons. © 2021 The Authors. Advanced Materials Technologies published by Wiley-VCH
GmbH. (c) Design optimization of a pneumatic SR actuator using model-based optimization and deep reinforcement learning. Reproduced
from [455]. CC BY 4.0. (d) The surface topography of inflated baromorph structures for bio-inspired pneumatic shape-morphing
elastomers. Reproduced from [456], with permission from Springer Nature.

Researchers are exploring various techniques andmethodo-
logies to optimize the design of soft robots using models, sim-
ulations, and computational tools. For example, Nikolov et al
[464] presented an analytical model for soft fiber-reinforced
bending actuators featuring an elastomeric air chamber with
inextensible fiber reinforcement. This model connected input

pressure to the bending angle and contact force. The out-
comes indicated that optimized actuators demanded around
48% less input pressure for a given bending angle, in com-
parison to non-optimized actuators. Additionally, the optim-
ized actuators produced about 18% stronger contact force
with external obstacles compared to uniform wall thickness
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actuators. Raeisinezhad et al [455] presented two frame-
works for optimizing the mechanical performance of a multi-
chamber pneumatic-driven soft actuator. The optimization
involved shaping and arranging air chambers using the fire-
fly algorithm and deep RL. FEA and model-based formula-
tions were integrated into the optimization process. The optim-
ized design, achieved through the deep RL approach, effect-
ively decoupled motions while meeting the intended applica-
tion’s displacement requirements. Yang et al [465] focused on
optimizing the design of SPAs for enhanced grasping force in
soft grippers. The researchers introduced an efficient design
methodology by approximating the complex SPA structure
with a cantilever beam. The relationship between input pres-
sure and output torque was established through mechanical
analysis. This model-based optimization approach was used
to determine optimal design parameters.

4.3.1.3. Geometric optimization. Geometric optimization
plays an important role for soft robots and covers three aspects:
size, shape, and topology optimization. Size optimization
involves the careful adjustment of specific parameters like
length, width, and height, which directly influence the over-
all behavior of soft robots. Shape optimization focuses on
the complex manipulation of contours and shapes to achieve
desired movements and functionalities. The iterative pro-
cess often results in complex and customized shape designs
tailored to specific tasks. Topology optimization, meanwhile,
addresses the fundamental arrangement and connectivity of
SR components [466, 467]. Topology optimization aims to
discover the optimal distribution of material within the design
space, often yielding complex structures that might chal-
lenge traditional manufacturing methods. Topology optimiz-
ation involves minimizing weight, maximizing stiffness or
toughness, and reducing stress concentrations under defined
constraints. Although the concept of optimizing structures for
optimal performance dates back centuries, formal topology
optimization emerged in the 1980s [468] and 1990s [469].
This multidimensional approach to geometric optimization
empowers soft robots to achieve enhanced adaptability, com-
plex functionalities, and even entirely novel forms in diverse
applications.

FEA and ML play pivotal roles in advancing the geometric
optimization of soft robots, amplifying their design capabil-
ities and ensuring practical feasibility. FEA enables accurate
simulations of complex mechanical behaviors in soft mater-
ials, providing insights into deformation, stress distribution,
and overall performance. This aids in fine-tuning geometric
parameters during size and shape optimization, resulting in
designs that are both functional and structurally sound.ML, on
the other hand, brings efficiency and innovation to this optim-
ization process. By learning from vast datasets of simula-
tions and designs, ML algorithms can quickly identify patterns
and correlations, enabling the prediction of optimal design
configurations. This not only expedites the optimization pro-
cess but also opens avenues for unconventional and novel
shapes that might otherwise be overlooked. Additionally, ML
can assist in multi-objective optimization, where soft robots

need to fulfill diverse performance criteria. The fusion of
FEA and ML thus transforms geometric optimization from a
time-intensive and intuition-driven endeavor to a data-guided,
efficient, and creative process. This synergy ultimately pro-
pels the frontier of soft robot design, leading to more adapt-
able, functional, and diverse robotic systems. Zolfagharian
et al [470] leveraged the synergy between topology optim-
ization, 3D bioprinting, FEA, and ML to enhance the per-
formance of soft actuators. These soft structures, construc-
ted using stimuli-responsive polymers, exhibited improved
flexibility and shape recovery. By employing multi-material
topology optimization and electrolytic stimulation, the bend-
ing performance of bioprinted soft actuators was enhanced
and controlled. Yuhn et al [471] extended density-based topo-
logy optimization into the realm of dynamic soft robots, a
field previously dominated by static structures. This innova-
tion, termed ‘4D topology optimization,’ harnessed finite ele-
ment simulations and ML. It enabled simultaneous optimiz-
ation of SR structure and self-actuation over time, address-
ing challenges related to deformations and intricate interac-
tions. The approach employed multi-indexed density vari-
ables, efficiently optimized through gradient-based methods.
By leveraging forward and backward simulations using the
material point method, the team successfully designed self-
actuating soft bodies for locomotion, posture control, and rota-
tion tasks. By treating the mechanical design of a soft cable-
driven gripper as a topology optimization problem, Chen et al
[472] applied FEA to synthesize the gripper’s structure. They
improved on previous compliant mechanism optimization by
incorporating practical interactions involving pressure load-
ings and friction tractions with objects. The effects of interac-
tion uncertainties were also examined by varying contact loc-
ations and areas.

4.3.1.4. Generative and evolutionary design. The applica-
tion of FEA and ML in the generative and evolutionary design
of soft robots has transformed the field. Generative design
leverages ML algorithms to analyze existing designs and sim-
ulations, extracting patterns for informed creation. FEA sim-
ulates soft robot behaviors under different conditions, guiding
design choices for optimal performance and safety. Integrating
ML and FEA, EAs refine designs iteratively. These algorithms
learn from FEA simulations, suggesting design changes that
enhance performance. This synergy accelerates design cycles,
fosters innovation, and facilitates the creation of complex soft
robots. The approach enables the emergence of EAs that con-
sider both structure and functionality, driving the development
of soft robots capable of intricate and biomimetic movements.
Venter et al [473] employed a generative and evolutionary
design approach to tackle the challenges of SRs. Utilizing FEA
and ML, they devised a practical process that combined vari-
ous techniques to streamline design. By integrating reduced-
order models, L-systems, MCMC, curve matching, and optim-
ization, they achieved rapid creation of functional 2D articu-
lating soft robot designs in under 1 s. This marked a signific-
ant time reduction compared to traditional methods.Moreover,
the approach was extended to develop intricate 3D robots like

16



Smart Mater. Struct. 34 (2025) 033002 Topical Review

an articulating tentacle with multiple grippers, highlighting its
potential for complex designs.

Various simulators have been explored for the generat-
ive and evolutionary designs of soft robots. VoxCAD [474–
476], a widely used simulator, employs a mass-spring-based
particle approach tomodel the nonlinear dynamics of soft bod-
ies efficiently. While it sacrifices some accuracy compared
to FEA, it can handle contact, gravity, and friction model-
ing. However, its limitations in bridging the gap between sim-
ulation and physical reality are evident, as physical behavi-
ors often do not match simulated results. Alternative simu-
lators include formal grammars for robot growth [477] or the
use of gene regulatory networks (GRNs) for evolving cell-by-
cell soft robots [478, 479]. Another simulator, SOFA [480–
482], integrates finite element modeling to simulate deform-
able objects and has potential in soft robot optimization.
One notable research made by Schegg et al [483] presented
SofaGym, an open-source software to create OpenAI Gym
interfaces. These simulators, along with VoxCAD, provide
platforms for exploring the complexities of soft robot design,
incorporating elements of evolutionary and generative design
techniques.

4.3.2. 4D printed soft robots. In recent years, the emer-
gence of 4D printed soft robots has promoted the develop-
ment of the field of robotics [484–489]. Unlike rigid robots,
4D printed soft robots not only have the extraordinary abil-
ity to deform and morph into various shapes when external
stimuli are applied [222], but also can do so autonomously
over time. The 4D printing effect is achieved by combining
advanced additive manufacturing technology and the integra-
tion of responsive materials [490–492].

The term ‘4D printing’ adds an extra dimension to the
concept of 3D printing, introducing the temporal aspect that
underscores the dynamic behavior of soft robots. The fourth
dimension refers to time, indicating that the printed struc-
tures can undergo programmed changes in shape, structure,
or functionality over a certain period of time [493–496]. This
paradigm shift opens up new horizons in soft robots, enabling
the creation of robots that can adapt, camouflage, grasp, or
perform specific tasks based on their interactions with the
environment.

The fabrication process of 4D-printed soft robots involves
the use of materials that can respond to environmental cues
such as temperature variations [497–500], humidity levels
[501, 502], light exposure [503–505], and electric [506,
507]/magnetic [508–514] fields. Through precise design and
material selection, these robots can self-transform or adapt
in predefined ways, offering a new level of versatility in
their potential applications. Such applications span a wide
spectrum, including microelectronics [515], biomedical [516–
518], tissue engineering [519, 520], and automotive [521].

The burgeoning field of 4D-printed soft robots not only
underscores the impressive strides made in materials science
and manufacturing technologies but also presents interdiscip-
linary opportunities at the intersection of robotics, engineer-
ing, and materials research. Researchers are actively exploring

novel design strategies, material innovations, and computa-
tional modeling techniques to unlock the full potential of these
dynamic robots.

Therefore, it is crucial to develop accurate models for pre-
dicting the behavior of 4D printed soft robots. Such models
will not only help in the design and optimization of 4D prin-
ted soft robots, but also elucidate the underlying principles that
govern their dynamic responses.

4.3.2.1. Modeling. Modeling 4D printed soft robots is chal-
lenging due to the complex and dynamic nature of their beha-
vior, that is, 4D printed soft robots are designed to undergo
controlled shape changes over time in response to environ-
mental stimuli like temperature, light, or moisture. To accur-
ately predict shape morphing, advanced modeling techniques
are essential to guide the design, optimize performance, and
provide better control of 4D printed soft robots.

One of the primary challenges in modeling 4D printed soft
robots is accurately capturing the behavior of their materials.
These robots are often composed of elastic materials with non-
linear, time-dependent mechanical properties. These proper-
ties can change based on factors such as strain rate, temperat-
ure, or process parameters in 3D printing. Therefore, it is crit-
ical to develop constitutive models—mathematical descrip-
tions of material behavior—based on experimental data to
ensure accurate predictions.

FEA plays a crucial role in simulating the behavior of these
robots. By discretizing their geometries and material proper-
ties, FEA allows for precise predictions of how soft robots
will deform and interact with their environment. However,
modeling 4D printed soft robots introduces additional com-
plexity. Their behavior is influenced by a complex inter-
play betweenmaterial characteristics, structural geometry, and
external stimuli, all of which need to be accounted for in the
simulation.

Another critical aspect of 4D printed soft robot modeling is
incorporating the time-dependent response. The ‘4D’ aspect of
4D printed soft robots refers to their ability to change shape in
response to specific stimuli over time. Thus, modeling must
account not only for the initial configuration of soft robots
but also for how its shape evolves as it reacts to stimuli. This
requires integrating time-dependent material properties and
environmental factors into the simulation.

To address these complexities, several modeling
approaches are utilized. Hyperelastic material models can
be used to accurately represent the deformation behavior of
the material. Hyperelastic models can handle the large strains
common in soft robots, providing a more accurate description
of the material’s behavior under deformation.

Data-driven approaches have gained importance in SRs
modeling, especially for time-dependent response. ML tech-
niques are being used to predict soft robot behavior from
experimental data, enabling more efficient and precise for-
ward prediction. These approaches can capture complex beha-
viors that may be difficult to describe using traditional meth-
ods alone, offering a complementary tool for improving model
efficiency.
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Successfully modeling 4D printed soft robots requires
integrating advanced material models, computational methods
like FEA, and ML based data-driven approaches. These mod-
els provide crucial insights into the behavior of 4D printed soft
robot, helping refine designs and improve their performance in
practical applications. This section will explore both analyt-
ical and FEM-based approaches to modeling 4D printed soft
robots, highlighting the challenges and solutions in this emer-
ging field.

4.3.2.1.1. Analytical model of soft robots. An analytical model
for 4D-printed soft robots can be conceptualized by integ-
rating principles of material behavior, structural mechanics,
and dynamic response. The model aims to predict the intric-
ate shape-changing mechanisms of these robots in response
to external stimuli. The analytical approach proposed by Alici
et al [522] served as a means to predict the bending angle of
an actuator based on specific input parameters. This method
was rooted in the concept that a disparity between the cen-
ter of pressure within the actuator and the centroid of its
cross-sectional area induces bending towards the lower part
of the section. The application of pressure generates tensile
forces, initiating a bending moment that results in deflection.
However, it is important to acknowledge that this method
employs a constant modulus of elasticity for the sake of gener-
ality, although in reality, this modulus varies, thereby introdu-
cing a certain degree of result inaccuracy. To address this lim-
itation, Alici et al [522] introduced an effective modulus, cal-
culated using empirical stress–strain data. The resultant ana-
lytical expression, which describes the steady-state bending
angle of the actuator, becomes the pivotal tool for quantifying
the extent of actuator bending in response to given conditions.
An analytical expression for the steady-state bending angle of
the actuator is

θ (P) =
LiA2e

AwE
2I︸ ︷︷ ︸

C

P2 +
LiAe
EI︸ ︷︷ ︸
D

P= CP2 +DP (1)

where I is the moment of inertia, the center of pressure,
denoted as P, is positioned at the centroid of the air chamber’s
cross-section. The variable e represents the distance from the
actuator cross-section’s centroid to the center of pressure. Li
signifies the initial length, A stands for the cross-sectional area
of the chamber, and Aw represents the cross-sectional area of
the actuator.

4.3.2.1.2. FEM modeling of soft robot for large deformation.
Modeling the complex behavior of 4D-printed soft robots
under large deformations is a fundamental challenge. The
finite element method has emerged as a powerful tool to sim-
ulate and analyze the mechanical responses of soft robots. In
this context, the Neo–Hookean and Mooney–Rivlin models,
which are formulated in terms of the invariants of the right
Cauchy–Green tensor [523–525], play pivotal roles in captur-
ing the complex material behavior of elastomeric structures.

The Neo–Hookean model, a foundational hyperelastic
material model, forms the cornerstone of FEM simulations for

soft robots [526]. Rooted in the strain energy density func-
tion, this model assumes isotropic behavior and offers a quad-
ratic relationship between stress and strain. Its simplicity and
computational efficiency make it suitable for small to mod-
erate deformations. The Neo–Hookean model requires only
one material parameter—the shear modulus—simplifying the
material characterization process [527]. While effective in
many scenarios, its accuracy diminishes as deformations
become more pronounced. The strain energy density func-
tion for an incompressible Neo–Hookean material in a three-
dimensional description is

W= C1 (I1 − 3) (2)

where C1 is a material constant. I1 symbolizes the first strain
invariant, which is a measure of the volumetric strain in the
material. It is calculated based on the deformation gradient
tensor and is often used in the formulation of hyperelastic
material models to describe the strain energy density function.
The calculation of strain invariants is shown in equation (3).
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For incompressible material, λ1λ2λ3 = 1. Therefore,
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(4)

For a compressible Neo–Hookean material the strain energy
density function is given by

W= C1 (I1 − 3− 2lnJ)+D1 (J− 1)2 . (5)

The Neo–Hookean material model does not anticipate a rise in
modulus under significant strains and usually holds accuracy
solely for strains below 20% [528]. Moreover, this model is
insufficient for biaxial stress conditions and has been replaced
by the Mooney–Rivlin model.

For soft robots undergoing large deformations, the
Mooney–Rivlin model emerges as a valuable alternative
within the FEM framework [529, 530]. As an extension of
the Neo–Hookean model, the Mooney–Rivlin model intro-
duces additional material parameters to capture higher-order
deformation effects. This enhanced complexity allows the
Mooney–Rivlin model to better represent the nonlinear
behavior of elastomeric materials under significant strains.
Consequently, it provides a more accurate depiction of the
intricate mechanics governing soft robots subjected to sub-
stantial deformation. The Mooney–Rivlin class of models
expresses the mechanical strain energy as a sum of the invari-
ants as follows [529, 530].

W=
∑
i

∑
j

Cij (I1 − 3)i (I2 − 3)j+D(J− 1)2 . (6)
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Note that the series is not a function of I3 since it remains
a constant value, 1. The coefficients, Cij and D, are derived by
fitting actual stress–strain curves to the equation’s derivative.
The quantity of terms in the series expansion is determined by
the precision demands of the specific application. For instance,
the initial terms of the sequence are as follows:

W= C10 (I1 − 3)+C01 (I2 − 3)+C11 (I1 − 3)(I2 − 3)

+C20 (I1 − 3)2 + · · ·+D (J− 1)2 . (7)

Each principal Cauchy stress is related to the derivative of
the above equation with respect to the corresponding λ. For
example, the 1st principal Cauchy stress corresponds to deriv-
atives of W with respect to the first stretch ratio, λ1.

σ1 = λ1
∂W
∂λ1

= λ1

(
∂W
∂I1

∂I1
∂λ1

+
∂W
∂I2

∂I2
∂λ1

+
∂W
∂J

∂J
∂λ1

)
. (8)

The derivatives of the strain energy with respect to the invari-
ants, and J, are

∂W
∂I1

= C10 +C11 (I2 − 3)+ 2C20 (I1 − 3)+ · · ·

∂W
∂I2

= C01 +C11 (I1 − 3)+ · · · (9)

∂W
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= 2D(J− 1) . (10)

And the derivatives of the invariants, and J, with respect to λ1

are
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∂I2
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∂J
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= λ2λ3.

(11)

All of these terms can be combined to give polynomials relat-
ing stretch ratios to principal stresses, with coefficients such as
C10, C01, C11, and C20 that are determined from curve-fitting
these equations to experimental data.

4.3.2.2. ML enabled inverse design of 4D printed soft robots.
The convergence of additive manufacturing’s remarkable pro-
gress and the breakthroughs in active materials has ushered
in a new frontier in material science—the realm of active
composites [531–534]. These ingenious combinations involve
smart materials that can undergo tailored transformations in
response to specific stimuli, paired with inert counterparts.
From SMPs [535–540] and shape memory alloys [541–545] to
liquid crystal elastomers [546–554] and hydrogels [555–568],
this class of materials has ignited a revolution in design possib-
ilities and functionalities. The interaction of these active and
passive components gives rise to an exciting array of potential
applications, particularly when harnessed within the context
of 4D printing.

4D printing’s fusion of additive manufacturing with
responsive materials has fueled an explosion of research
interest [572–579]. It’s a domain where digital design inter-
faces with physical reality, offering the ability to craft struc-
tures that can dynamically change shape and properties over

time in response to environmental cues. A cornerstone of this
innovation lies in the concept of topology optimization, which
guides the spatial distribution of materials within these 4D-
printed structures.

At its core, topology optimization is about optimizing
material distribution to achieve desired structural behavior
[580–583]. Different from topology optimization for single-
material soft robots that only deals with the distribution
of one material, topology optimization for the 4D-printed
soft robots focuses on the material distributions of at least
two materials. By strategically embedding smart materials
within passive materials, complex shape changes can be dic-
tated by stimuli. This dynamic interplay between materials
unlocks design potential that was previously unattainable. The
topology optimization for 4D-printed soft robots can create
highly customized soft robots with hierarchical architectures
to meet the needs of specific applications. 4D-printed soft
robots advance the frontiers of SRs, allowing for the devel-
opment of soft robots with unprecedented functionalities and
adaptability.

The incorporation of ML into the topology optimization of
4D-printed soft robots holds immense significance, offering
a transformative approach to addressing the complex design
challenges posed by active composites. In the design of active
composites, the challenge lies in orchestrating precise shape
changes that respond predictably to external stimuli. This
intricate design process involves a demanding inverse prob-
lem: determining the optimal spatial distribution of materi-
als to achieve a desired displacement field or shape change.
Conventional approaches, including topology optimization
methods, have been limited by the multiphysics nature of
active materials, which introduce nonlinearities that hinder
gradient-based optimization strategies. Moreover, the discrete
nature of voxel-based 3D printing methods complicates tra-
ditional optimization methods. ML is a powerful solution to
these challenges, providing a data-driven approach that com-
plements the complexity of active composites and 4D print-
ing. ML algorithms can learn from historical data to create
accurate predictive models for the responses of active mater-
ials. ML has the potential to navigate the multifaceted design
space of active composites due to its ability to quickly process
large amounts of data and predict the deformation perform-
ance of 4D-printed soft robots. This approach helps predict
material behavior under different stimuli and helps determine
the optimal material distribution for desired shape changes.
Importantly, ML’s ability to handle diverse and nonlinear
multi-physics interactions is well aligned with the behavior of
active materials. By leveraging the strengths ofML, the design
of 4D-printed soft robots can move beyond traditional limita-
tions and explore complex designs that achieve new actuation
responses.

Several research works have been devoted to integrat-
ing ML and finite element-based topology optimization tech-
niques to enhance the performance of 4D printed active com-
posites. Hamel et al [584] enhanced active composite devel-
opment using multi-material 4D printing. To achieve desired
shape changes, they employed a ML approach, combining
FEAwith an EA. By optimizing the distribution of passive and
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active materials in voxel units, they successfully designed act-
ive composite structures that realized specific shape-shifting
responses. Similarly, Athinarayanarao et al [569] focused on
advancing 4D printing through smart material arrangement
and energy stimulus as shown in figure 6(a). Their innovat-
ive approach combined FEA and an EA to optimize mater-
ial properties distribution within voxelized structures. This
approach effectively addressed the inverse design challenge of
achieving desired shape changes in 4D-printed active compos-
ites by incorporating void voxels. Sun et al [570] employed
a ML and evolutionary algorithm (EA) framework, anchored
in a RNN model trained on finite element simulations for
forward shape-change predictions as shown in figure 6(b).
They harnessedML-empowered EA to tackle the inverse prob-
lem of optimal design. Demonstrating efficacy across diverse
target shapes, this ML-EA approach showcased remarkable
efficiency. Moreover, coupling ML-EA with computer vision
introduced a streamlined paradigm, exemplified by transform-
ing active beams from hand-drawn lines to 4D-printed profiles.
Compared with Hamel et al [584]’s work, Sun et al [570]’s
method can accomplish the same task in thousands of times
less time. Jin et al [571, 585] developed the residual NN-
based-forward prediction method and evolutionary algorithm-
based inverse optimization method for inverse design of 4D
printed hierarchical architecture with non-rectangular shape.
The proposed method can be applied to inverse design the soft
gripper as shown in figure 6(e).

4.3.3. Development of metamaterials. The development of
metamaterials for soft robots has gained significant attention
in recent years, offering new insights into the design of SR
systems [586, 587]. Metamaterials are materials designed at
microscopic or mesoscopic scales to exhibit unique physical
properties not commonly found in natural materials. These
properties are derived not only from the base material but also
from the featured structures at the microscopic scale, includ-
ing shape, orientation, and arrangement. In the context of soft
robots, metamaterials offer unprecedented opportunities for
enhancing structural performance and achieving unconven-
tional behaviors as shown in figure 7.

The use of metamaterials in soft robots offers a multi-
tude of significant advantages, rendering them highly attract-
ive for various applications at the forefront of modern robot-
ics and engineering. (1) One key advantage lies in their abil-
ity to exhibit unconventional mechanical properties that are
rarely found in natural materials. Metamaterials can be engin-
eered to possess characteristics such as negative Poisson’s
ratio (auxetic behavior), extreme flexibility, high stretchab-
ility, tunable stiffness, and directional deformation. These
extraordinary properties empower soft robots to achieve com-
plex and adaptive motions, elevating their capabilities beyond
what is attainable with conventional materials [31, 590–597].
(2) Another compelling advantage of employing metamateri-
als in soft robots is the opportunity for tailored functionality.
These materials can be meticulously designed and construc-
ted at the microscopic or mesoscopic scale, allowing for the
precise encoding of specific functionalities within the robot’s

structure. By controlling the microstructure and composition
with precision, soft robots can be equipped with highly cus-
tomized behaviors, such as shape memory, self-healing, self-
adaptation, or even programmable responses to external stim-
uli. This level of customization opens up new avenues for
innovative applications across industries and research domains
[117, 598–605]. (3) Metamaterials also offer the advantage
of being lightweight and compact, a crucial factor in SRs.
The materials’ ability to achieve remarkable mechanical per-
formance while maintaining a compact form factor is particu-
larly advantageous for soft robots that need to interact delic-
ately with humans or operate in confined spaces. Their reduced
weight and size make them less cumbersome and more port-
able, facilitating smoother and safer human–robot interac-
tions, as well as enhancing the robot’s mobility in constrained
environments [589, 593, 604, 606–618]. (4) Furthermore,
metamaterials significantly enhance the load-bearing capabil-
ities of soft robots, a crucial advantage with vast implications.
By integrating metamaterials into their design, soft robots
gain the ability to carry or manipulate objects of substantial
weight relative to their own size. This newfound strength and
robustness open up a myriad of possibilities for applications in
industrial automation, logistics, healthcare, and beyond [619].
Soft robots with enhanced load-bearing capacities can perform
tasks that were previously deemed challenging or impossible,
revolutionizing industries where precision and strength are
essential [589, 593, 603, 620–623].

4.3.3.1. Metamaterial categories. Metamaterials have
emerged as a promising avenue for enhancing soft robots with
unique mechanical properties and functionalities, enabling
them to perform tasks otherwise unattainable with conven-
tional materials. The wide variety of metamaterial options
offers designers an array of choices to tailor soft robots for
specific applications. The common used metamaterials for
soft robots can be divided into five categories: anisotropic
textile fabrics, origami and kirigami structures, auxetic struc-
tures, elastic beam elements, and active magneto-mechanical
metamaterials [624].

Anisotropic textile fabrics represent one of the intriguing
metamaterial choices for soft robots. By carefully designing
patterns within the fabric, anisotropic properties are achieved,
allowing soft robots to execute programmed motions in mul-
tiple directions. This capability finds applications in wear-
able robotic devices for hand, ankle, and foot rehabilita-
tion, where the fabric’s anisotropy contributes to conformable
monolithic systems [625–630]. Connolly et al [631] fabricated
and mechanically characterized a new type of bending tex-
tile actuator using a lamination and layering process, eliminat-
ing the need for complex cut-and-sew procedures. Films were
used to create air-impermeable textile composites, allowing
for complex deformation patterns. Bhat et al [632] explored
the use of anisotropic textile fabrics in SRs, specifically for
developing bending and torsional actuators. They combined
silicone polymer-based bladders with reconfigurable fabric
skins to create actuators with unique mechanical properties.
The fabric skin acted as a constraint, allowing for complex
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Figure 6. Topology optimization of 4D printed active composite structure. (a), (b) Computational design for 4D printing of topology
optimized multi-material active composites. Reproduced from [569]. CC BY 4.0. (a) Schematic illustration of the random crossover. Every
voxel has a 50–50 chance of inheriting the properties from either parent, and single point crossover where two children are produced from
two parents with genome splicing at one point (represented by the grey voxel here). (b) The mutations are applied to the genome created
from random crossover in (a). (c), (d) Schematic illustration of the proposed solution for the design of a 4D-printed active composite beam.
[570] John Wiley & Sons. © 2021 Wiley-VCH GmbH. (c). Actuation of the active composite due to property mismatches, which can
involve bilayer structures or more complex property distributions. Properties are represented as ‘1’ and ‘0’. (d) The complete design process
includes generating a dataset through finite element simulations, predicting shape changes using machine learning, and designing material
distributions using machine learning-integrated EAs. The volumetric expansion mismatch simulates a general eigenstrain mismatch caused
by various mechanisms. The initial undeformed cantilever composite beam has a voxel-based material/property distribution digitally
encoded as a 2D number array, serving as input for the machine learning model. The resulting actuated beam shape is parameterized as
coordinate data for sampling points and is the output of the machine learning model. (e) Machine learning-enabled inverse design of
4D-printed soft gripper. Reprinted from [571], Copyright (2024), with permission from Elsevier.
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Figure 7. Metamaterials for soft robots. (a) Programming soft robots with flexible mechanical metamaterials. From [31]. Reprinted with
permission from AAAS. (b) Tensegrity metamaterials for soft robotics. From [588]. Reprinted with permission from AAAS. (c) 3D-printed
programmable tensegrity for soft robots. From [589]. Reprinted with permission from AAAS.

motions and achieving large twists in torsional actuators. The
absence of inextensible fabrics reduced actuator stiffness and
lowered actuation pressures. Multilayer designs demonstrated
high-force capabilities suitable for wearable assistive devices.
Ge et al [633] designed, modeled and evaluated soft fabric-
based pneumatic actuators (SFPAs) for soft wearable assistive
gloves. They explored various woven and rib-weft-knitted fab-
ric structures to create SFPAs that could assist thumb abduc-
tion and finger flexion and extension motions. Mathematical
models were developed to analyze the influence of geometric
parameters on the actuators’ performance, which was verified
through experiments. Hu et al [634] devised helical-artificial
fibrous muscle structured tubular soft actuators (HAFMS-
TSAs) using anisotropic textile fabrics. These actuators could

be endowed with 11 different morphing modes through pro-
grammable regulation of their 3D helical fibrous architec-
tures. TheHAFMS-TSAs demonstrated diverse photorespons-
ive behaviors, enabling adaptive omnidirectional reorienta-
tion, resembling morphing intelligence of living plants.

Origami and kirigami structures provide soft robots with
programmable morphing and folding abilities. These metama-
terials, inspired by the art of paper folding, impart flexib-
ility and versatility to soft robots, enabling them to manip-
ulate objects delicately and navigate complex environments
with ease [635–647]. Zhang et al [648] created and pre-
cisely controlled a pneumatic-driven, origami-based deforma-
tion unit for soft robots. This unit offered all-purpose deform-
ation modes, including three basic motion types and their
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combinations, resulting in seven distinct motion modes in
total. The origami modules could be assembled as needed,
enabling plug-and-play characteristics and providing unpre-
cedented opportunities for soft robots to perform complex
tasks. Ze et al [649] developed a magnetically actuated small-
scale origami crawler for SRs. The origami assembly allowed
in-plane contraction and crawling motions, facilitated by mag-
netic actuation. The crawler demonstrated untethered move-
ment, steering capabilities, and the ability to navigate con-
fined spaces. Kaufmann et al [650] employed Kresling ori-
gami modules for a biology-inspired approach to SR arm
design. The origami modules exhibited predictable bistability,
allowing the robotic arm to switch between flexible joints and
stiff links without continuous power. Guo et al [651] intro-
duced a novel SPA inspired by Kirigami techniques for ver-
satile SR applications. Kirigami-inspired cuts in the actuator
design enabled multiple deformation modes, including bend-
ing, stretching, contraction, and combinations thereof. He et al
[652] presented an electronics-free approach using Kirigami
techniques to achieve autonomous control in soft robots.
Responsive materials, like liquid crystal elastomers, regulated
modular control units, enabling the robot to autonomously
sense and respond to external stimuli (light, heat, solvents),
resulting in trajectory changes.

For simplifying the locomotion of soft robots, auxetic struc-
tures are employed. Metamaterials with negative Poisson’s
ratio, known as auxetic behavior, demonstrate the capacity
to undergo unique deformations when subjected to external
forces. Soft robots equipped with such metamaterials can
achieve locomotion with just one actuator, streamlining their
design and enhancing efficiency [653–659]. Alapan et al
[660] developed a high-throughput magnetic programming
method for soft robots, focusing on auxetic structures. By
heating magnetic soft materials above the Curie temperat-
ure of ferromagnetic particles and applying magnetic fields
during cooling, they achieved reprogrammable, discrete, and
three-dimensional magnetization with high spatial resolution.
This approach enabled various applications, including recon-
figurable mechanical behavior in auxetic structures, tunable
locomotion of soft robots, and adaptive grasping with a soft
gripper. Kaarthik et al [661] employed 3D printing to cre-
ate motorized SR actuators using cylindrical handed shearing
auxetics (HSAs) made from polyurethane resins. Mechanical
tests confirmed the auxetic behavior of individual HSAs, and
assembled HSA pairs formed multi-degree-of-freedom legs
for untethered quadrupeds.

Elastic beam elements present yet another metamaterial
option for soft robots. When subjected to axial compressions,
these elements buckle and produce reversible pattern trans-
formations. This simple yet powerful mechanism enables soft
robots to perform various motions with a single negative pres-
sure, improving structural stiffness and enhancing grasping
force [662–664]. Yang et al [665] investigated the use of
elastomeric beams in SRs, specifically focusing on a buck-
ling actuator design. The actuator utilized negative pressure
(vacuum) for actuation, which induced buckling and torsional
motion in the elastomeric structure. By assembling multiple
units, they achieved parallel and sequential actuation. Chen

et al [666] developed an untethered soft swimming robot using
elastic beams that exploit temperature-triggered bistable ele-
ments for propulsion. SMP muscles power the bistable ele-
ments to actuate the robot’s fins, enabling preprogrammed dir-
ectional movement without the need for a battery or onboard
electronics. Zhang et al [667] proposed a systemic framework
for designing and fabricating multimaterial soft robots with
integrated soft actuators and a rigid body. The framework util-
ized topology optimization to simultaneously determine struc-
ture and material distribution. They focused on a pneumatic
soft finger as a compliant mechanism, optimizing it for max-
imum bending deflection and adapting it for applications in
grippers, rehabilitation, and artificial hands.

Active magneto-mechanical metamaterials leverage
magneto-mechanical actuation to achieve untethered, fast,
and reversible shape configurations. Soft robots incorporat-
ing these metamaterials benefit from their dynamic shape-
changing capabilities, allowing them to adapt rapidly to chan-
ging environmental conditions and perform tasks efficiently
[668–671]. Zou et al [672] successfully developed a magneto-
thermomechanical method for creating active magneto-
mechanical metamaterials. This approach enabled untethered,
reversible, low-powered reprogrammable deformations and
shape locking using a single material system. By combin-
ing magnetic control and thermomechanical behavior of
shape-memory polymers, they achieved versatile and effi-
cient transformations without the need for new materials
or high-energy methods. Zhao and Zhang [673] demon-
strated an optimization-based approach to design active
magneto-mechanical metamaterials and structures that can
be reprogrammed by toggling external magnetic fields. This
innovation allowed for versatile behaviors, including multi-
functional actuation, adaptable snap-buckling, switchable
deformation, and tunable bistability. Han et al [674] designed
and fabricated magneto-mechanical metamaterial unit cells
using 3D printing technology. These metamaterials demon-
strated unique deformations under external magnetic fields,
achieving substantial reversible deformations of up to 85%
and rapid shape recovery upon magnetic field removal. They
also showcased the application potential of these metama-
terials in a biomimetic blood vessel, demonstrating remote
controllable particle transport.

4.3.3.2. Research directions of metamaterial development.
The integration of FEA and ML in the development
of metamaterials for soft robots is a crucial and powerful
approach, bringing about numerous benefits that contribute to
the advancement of SRs and metamaterial engineering.

One of the primary challenges in working with metama-
terials is their complex mechanical behavior, which often
defies simple analytical prediction. Here, FEA steps in as
a valuable tool, providing a robust numerical simulation
method to study the mechanical response of these materials
under various loading conditions. Through FEA, research-
ers gain valuable insights into how metamaterials deform,
bend, twist, and interact with their environment, thus facilit-
ating the optimization of their design and ensuring they fulfill
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their intended functionalities [675, 676]. Vanneste et al [677]
proposed the use of new 3D-printed mesostructured materi-
als to build soft robots, targeting specific mechanical prop-
erties like heterogeneous stiffness and anisotropic behavior.
To support the design and control of soft robots with these
mesostructured materials, they developed a modeling method
based on numerical homogenization and the FEM to cap-
ture anisotropic deformations. The method was tested on a 3-
axis parallel soft robot initially made of silicone, showing the
change in kinematics when built with mesostructured mater-
ials and comparing the behavior with modeling results. Tao
et al [678] investigated a shape-reconfigurable, mechanically
adjustable, and reusable intelligent multi-stable metamaterial
for soft robots. The metamaterial demonstrated reconfigur-
able and self-expandable properties, and the FEM helped ana-
lyze its behavior during compression tests. Wang et al [679]
developed a design framework combining experiments, hier-
archical theoretical models, and finite element simulations to
program the mechanical behaviors of fractal metamaterials
for soft robots. They used a digital design tool for 3D print-
ing and achieved large stretchability (approximately 360%),
bionic stress–strain curve matching, and imperfection insens-
itivity by tuning the geometric parameters.

Metamaterials offer an expansive and intricate design
space, encompassing a wide array of possibilities for micro-
structures and compositions. However, physically testing each
design iteration is impractical in terms of time and cost. FEA
efficiently fills this void by allowing virtual simulations and
evaluations of an extensive range of metamaterial designs.
This capability expedites the exploration of different config-
urations, enabling researchers to identify and select those with
desired properties, significantly accelerating the metamaterial
development process [680, 681]. Mao et al [682] developed
an experience-free and systematic approach using generat-
ive adversarial networks for designing complex architectured
materials for soft robots. They trained the networks with sim-
ulation data from millions of randomly generated architec-
tures and demonstrated modeling and experimental results
of over 400 two-dimensional architectures that approached
the Hashin–Shtrikman upper bounds on isotropic elastic stiff-
ness. Khajehtourian and Kochmann [683] explored the design
of soft robots using FEA to investigate substrate-free recon-
figurable structures composed of multistable unit cells. The
study focused on utilizing structural instabilities and bistable
actuators to achieve locomotion and morphing surfaces. They
provided general guidelines for unit cell selection and pre-
dicted the behavior of the resulting structure for various geo-
metric and material properties using a continuum description.
Zhong et al [684] developed phase-transforming mechanical
metamaterials (PMMs) for applications in SRs and flexible
electronics. They utilized a theoretical model and finite ele-
ment simulations to guide the design process and created vari-
ous PMMs suitable for different applications, such as recon-
figurable antennas, soft lenses, biomimetic hands, and self-
contained soft grippers.

ML plays a pivotal role in predicting the mechanical prop-
erties of metamaterials and inverse design tasks based on
their design characteristics. By leveraging existing data and

training ML models, accurate estimations of the mechanical
properties of new metamaterial designs become achievable.
This integration of ML expedites the material development
process further, reducing the reliance on laborious simula-
tions or physical testing. Consequently, researchers can make
informed decisions about the viability of specific metama-
terial designs for SR applications [685, 686]. On the other
hand, inverse design involves defining desired material beha-
viors, and ML models efficiently identify the corresponding
metamaterial designs that can bring those behaviors to life
[687, 688]. This synergy between FEA and ML empowers
researchers with powerful tools to drive innovation and discov-
ery inmetamaterial engineering for soft robots. Tian et al [689]
utilized efficient and prior knowledge-free ML algorithms
to predict the dynamic characteristics of Poisson’s ratio in
2D metamaterials. They employed molecular dynamics sim-
ulations to generate a large dataset for training/validation
and used CNN and Cycle-GAN ML algorithms for predic-
tion and inverse design. Ma et al [690] developed an inverse
design framework using a deep residual network to predict
the mechanical properties of magneto-mechanical metama-
terials. This approach allowed them to create metamateri-
als with predetermined global strains under magnetic actu-
ations. The framework was validated through direct-ink-
writing printing of magnetic soft materials to fabricate the
designed complex metamaterials. Deng et al [691] used mech-
anical metamaterials based on hinged quadrilaterals to achieve
target nonlinear mechanical responses. They introduced a
NN to establish a computationally inexpensive relationship
between geometry parameters and stress–strain response. By
combining the NN with an evolution strategy, they effi-
ciently identified geometries resulting in various target non-
linear mechanical responses, enabling the design of optim-
ized energy-absorbing systems, soft robots, and morphing
structures.

Moreover, the combination of FEA andML opens up excit-
ing opportunities for optimization. Researchers can employ
optimization algorithms to search for the optimal combination
of microstructures and composition, achieving specific mech-
anical properties tailored to the needs of soft robots [692].
Dong and Wang [693] developed a digital design and optim-
ization method for lattice metamaterials in flexible electron-
ics and SRs. They used ML to accurately predict mechanical
behaviors based on finite-element simulations. The method
considered both material distributions and structural design,
allowing the researchers to quickly find optimal designs that
match multiple targets. Fernández et al [694] presented a ML-
based constitutive model for optimizing parametric metama-
terials, specifically elastic beam lattices with cubic anisotropy.
They used microstructure simulations to determine relevant
material and topology parameters, generating training data
with homogenized stress-deformation responses. The artifi-
cial NN constitutive model was calibrated with the simulation
data and proved to represent and predict the effective behavior
of parametric lattices accurately. Garland et al [695] demon-
strated how ML was used to optimize metamaterials for soft
robots. They employed the AI approach to discover new unit
cells that were Pareto optimal for multiple objectives, such as
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maximizing elastic stiffness and minimizing wave speed dur-
ing an impact event.

In summary, the combination of FEA and ML in the devel-
opment of metamaterials for SRs offers a powerful and innov-
ative approach to address key challenges in this field. FEA
provides a way to study the mechanical behavior of metama-
terials, helping to optimize design and achieve functionality.
The combination of FEA and ML can accelerate metamaterial
development by virtually simulating various designs, effect-
ively identifying the best configuration and making informed
decisions. The combination of FEA and ML can also enable
predictive modeling and reverse design, helping to accurately
estimate mechanical properties and achieve desired behavior.

4.4. Sensing, control, and actuation optimization

In this subsection, we will explore the key aspects of optimiz-
ing sensing, control, and actuation in SRs. These elements are
critical in enhancing the overall performance and capabilities
of SR systems. We will also address the role of ML in advan-
cing soft robot sensing, kinematics, and control, with a focus
on both internal and external sensing mechanisms and control
optimization. Figure 8 shows some related research.

4.4.1. ML driven soft robot sensing. In the domain of soft
robot sensing, ML serves a pivotal role in processing and
interpreting the data garnered from sensors to extract critical
information about the soft robot’s characteristics, including
its pose [699, 700]. This application of ML entails the ana-
lysis of sensor data streams, often containing complex and
dynamic information due to the inherent flexibility of soft
robots. By employing advanced ML algorithms, these data
streams are scrutinized, and patterns are extracted to deduce
the soft robot’s configuration and pose in real-time or near
real-time. This analytical process enables the soft robot to per-
ceive its own state and spatial orientation within its envir-
onment, even amidst intricate deformations. ML algorithms,
through continuous learning and adaptation, improve their
accuracy in estimating the soft robot’s information from sensor
data, enhancing the robot’s awareness and enabling it to make
informed decisions based on its surroundings. This synergy
betweenML and sensor data has substantially elevated the per-
ceptual capabilities of soft robots, enabling them to navigate
and interact more intelligently and effectively [701, 702].

This capability of ML can be classified into two different
categories based on the source of data: embedded sensor data
(internal sensing) and external sensor data (external sensing).
In this section, we will delve into the role of ML in these two
kinds of sensing for soft robots.

4.4.1.1. Internal sensing. In internal sensing, soft robots are
equipped with built-in sensors that can capture various phys-
ical quantities, such as strain, pressure, or deformation. These
sensors are strategically integrated into the structure of the
soft robot, allowing them to sense internal changes caused
by movements or interactions. The captured data is then fed
into ML to learn the relationship between sensory data and

soft robot state, and a ML model can be built that can inter-
pret these sensor readings and infer the current state of the
robot. This approach provides soft robots with a level of self-
awareness, enabling them to navigate and respond to its envir-
onment without relying on external sensory inputs.

4.4.1.1.1. Mechanism. ML significantly augments the
internal sensing capabilities of soft robots by harnessing data
generated by embedded sensors strategically placed through-
out the robot’s structure. These sensors encompass a range
of technologies, including strain gauges, pressure sensors,
capacitive sensors, and more, each chosen for its suitability
in capturing specific deformations and interactions [698, 703,
704]. The real innovation lies in the synergy between these
sensors and ML algorithms.

To enable a soft robot to sense itself and its environment,
ML models are employed to decipher the complex sensor data
[705]. These models are meticulously designed and trained to
decipher patterns, correlations, and relationships in the data.
During the training phase, the model learns to associate sensor
readings with corresponding physical states and parameters of
the robot. This process involves a comprehensive dataset of
sensor inputs and corresponding ground truth values, usually
generated through controlled experiments or simulations.

The trained ML model becomes a versatile interpreter that
can convert raw sensor data into meaningful information.
For example, strain gauges embedded within the soft robot
structure can convey information about deformation patterns,
and pressure sensors can provide data on the contact forces
between the soft robot and the external environment. The pre-
dictions of theMLmodel can cove various critical information
such as deformation magnitude, shape change, and applied
force. The fusion of sensor data readings and ML-based ana-
lysis enables the soft robot to dynamically understand its own
state and better interact with the environment.

4.4.1.1.2. Data acquisition and preprocessing. The founda-
tion for effective internal sensing in soft robots depends on
the data acquisition strategy. Sensor data acquisition involves
collecting information about the soft robot’s morphological
changes, deformations, and interactions in real-time. These
dynamic changes are continuously monitored and fed into a
machine-learning framework for accurate predictive model-
ing. However, data acquired from sensors is often affected by
external noise and artifacts, resulting in fluctuations, incon-
sistencies, and anomalies in the collected raw sensor data that
can distort the final predictions if not addressed. This requires
a preprocessing step to ensure the reliability and accuracy
of subsequent ML analysis. Therefore, noise reduction is a
crucial initial step in preprocessing, which involves filtering
out irrelevant signals and minimizing random fluctuations in
the data. Noise reduction can be achieved through techniques
such as low-pass filtering, which attenuates high-frequency
noise while retaining essential information. However, filtering
alone may not be sufficient for optimal analysis. Therefore,
the subsequent step involves normalization, which is scaling
the sensor readings to a common range or unit. This process
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Figure 8. Machine learning assisted sensing, control, and actuation of soft robots. (a) Machine-learning assisted electronic skins capable of
proprioception and exteroception in soft robotics. [696] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (b) Closed-loop soft robot control
frameworks with coordinated policies based on reinforcement learning and proprioceptive self-sensing. [697] John Wiley & Sons. © 2023
Wiley-VCH GmbH. (c) Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Reproduced from [698].
CC BY 4.0. (d) Machine learning-based controller for an advanced soft robotic system for in-situ 3D bioprinting and endoscopic surgery.
Reproduced from [241]. CC BY 4.0.

ensures that the MLmodel is not biased by sensors with inher-
ently different measurement scales. Normalization is followed
by feature extraction, which extracts relevant features from

the data. These features are the basis for the predictions of
the ML model. For example, in the case of a pressure sensor,
the spatial distribution of pressure may be a key feature for
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understanding the interaction of the robot with its surround-
ings. Therefore, data acquisition and preprocessing ensure
that ML models operate on clean, meaningful data, thereby
improving the accuracy and reliability of subsequent internal
sensing mechanisms.

There has been a significant amount of research focused
on the application of ML techniques to enhance the internal-
sensing capabilities of soft robots. These research can be cat-
egorized as follows:

1. Internal-sensor embedding: Buso et al [706] introduced a
SR module designed to sense and control contact forces.
Optical sensors and a pneumatic bellow encapsulating a
foam spring were integrated into the module. The shape
changes in the module were captured through variations
in light reflectivity. These shape measurements, along with
air pressure data, were used in a ML model to predict con-
tact forces. This module was suited for pressure distribution
control in support devices. Jin et al [257] presented a smart
SR gripper utilizing triboelectric nanogenerator sensors.
The gripper captured continuous motion and tactile inform-
ation, allowing accurate identification of diverse objects
through a ML-based approach. The gripper’s real-time
operation was mirrored in a virtual environment for applic-
ations like assembly lines and unmanned warehouses. Loo
et al [707] addressed the challenge of sensor integration
into soft robots. An indirect sensing approach was proposed
using an estimation scheme based on robot dynamics and
available measurements. A RNN-based adaptive unscen-
ted Kalman filter (RNN-AUKF) architecture was presen-
ted for indirect sensing in soft robots. Pang et al [252]
presented a textile-based tactile sensor that mimics human
skin capabilities for perceiving various stimuli. The sensor
employed triboelectric and piezoresistive sensing layers to
achieve multifunctional sensing. The sensor can recognize
voice, monitor physiological signals, perceive surface tex-
tures, and control SRmovements. Schaff et al [708] focused
on real-time proprioception for soft robots. The proposed
method integratedmultiple low-cost sensors into pneumatic
actuators and used ML to predict 3D deformation. The
framework enabled accurate reconstruction of soft robot
shape and can be applied to various SR designs. Truby et al
[110] presented a framework for predicting the 3D config-
uration of soft robots using a proprioceptive sensor skin
and deep learning. The methodology involved rapid sens-
orization using kirigami, kinematic descriptions, and NN
designs.

2. Integrated guiding and multimodal cognition: Ang and
Yeow [702] explored the integration of self-sensing capab-
ilities into soft actuators using 3D printing techniques. ML
was used to characterize nonlinear behavior in soft sensors.
The proposed approach eliminated the need for implanting
sensing elements, ensuring consistent sensing performance.
The methodology estimated bending curvature and external
forces applied to soft actuators in real time, showing poten-
tial for multimodal sensing applications. Ding et al [105]
focused on addressing uncertainty in soft robot sensing due
to mechanical compliance. A framework based on deep

learning was presented to estimate predictive uncertainty in
soft robot multimodal sensing. The framework quantified
uncertainty to enhance the confidence associated with pre-
dictions during inference, contributing to safe learning and
model interpretability in SRs. Shi et al [709] introduced an
intelligent SR gripper integrating ultrasonic and triboelec-
tric sensors. The gripper combined noncontact ultrasonic
distance sensing with tactile sensing for object manipula-
tion. A deep-learning NN analyzedmultimodal information
to achieve high accuracy in classifying objects. Shi et al
[710] also presented a SR perception system integrating
ultrasonic and triboelectric sensors. The ultrasonic sensor
detected object shape and distance, aiding robotic posi-
tioning. Multimodal sensory information, including object
properties, was fused using a deep-learning framework,
enabling effective object identification and manipulation.

3. Nonlinear behavior prediction: Chin et al [100] outlined
the progress of ML methods in SRs for sensing and con-
trol. Data-driven methods addressed complex dynamics
and nonlinearity, offering solutions for contemporary SRs
challenges. Supervised and RL showed promising res-
ults for various SR systems. Wang et al [286] developed
a bioinspired approach, mirroring human proprioception.
Unlike traditional smart material sensors, a synthetic ana-
log using soft pneumatic chambers as receptors was
created. Redundant receptors were employed, and deep
learning generated kinematic models from pressure data.
This enabled proprioception in a three-degree-of-freedom
continuum joint. Failure responses and solutions were
explored. This innovative method offers proprioception for
closed-loop control, enhancing soft robot interaction.

4. Soft sensor layout optimization: Wall et al [711] proposed
a method for sensorizing soft actuators using an iterative
process to find an effective sensor layout. The approach
involved using off-the-shelf materials, a kinematic descrip-
tion, and ML to predict actuator deformation.

4.4.1.2. External sensing. Soft robots can also utilize
external sensors, like cameras, to gather information about
themselves and their surroundings. Visual data captured by
cameras can be processed using ML techniques such as com-
puter vision. These algorithms analyze the images or videos to
identify landmarks, objects, or markers that can help determ-
ine the soft robot’s pose and spatial orientation. This method
allows the robot to interact with the environment based on
real-time visual feedback. The integration of ML with cam-
era data provides soft robots with enhanced perception capab-
ilities, enabling them to respond intelligently to dynamic and
complex scenarios.

External sensors offer a multitude of advantages, promin-
ently starting with their unparalleled versatility and adaptab-
ility. Particularly exemplified by cameras and other external
vision systems, these sensors establish themselves as an all-
encompassing solution for the intricate task of sensing within
the realm of SRs. Their ability to seamlessly function across
diverse environments and scenarios eliminates the necessity
for tailored modifications to the robot’s physical structure.
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This adaptability renders external sensors indispensable tools
in domains where soft robots are expected to navigate and per-
form across a spectrum of settings, from structured laborator-
ies to complex and unstructured real-world environments.

One of the paramount merits of external sensing lies in its
non-intrusive nature. Unlike internal sensors, which demand
integration within the very fabric of the soft robot, external
sensors are observers from a distance. This unique attribute
circumvents any need for structural alterations or modifica-
tions that internal sensors might necessitate. Consequently, the
fundamental design and functional integrity of the soft robot
remain intact. Avoiding invasive interventions not only sim-
plifies the robot development process, but also improves the
overall durability and performance of the robot, marking a key
advancement in the field of SRs.

Moreover, external sensing offers the remarkable poten-
tial for multi-modal perception. It presents a complex sensor
fusion structure where external sensors can be seamlessly
integrated with multiple sensing modalities. For example,
cameras, as primary external sensors, can synergistically
collaborate with depth sensors, lidar technology, and even
thermal sensors to form a robust sensory network. This com-
plex interplay of sensor types gives the robot a comprehens-
ive understanding of its surroundings. The integration of mul-
tiple sensing modalities caters to a higher level of perception,
enabling the soft robot to interpret complex environmental
cues and make well-informed decisions in real-time.

The research conducted by the team led by Charlie
C L Wang, particularly highlighted in the articles [712, 713],
significantly advances the field of external sensing for soft
robots. Scharff et al [712] introduced an ingenious approach
for sensing bending deformations in soft robots by lever-
aging multicolor 3D printing. By utilizing compact color
sensors, they detected deformationwhich is visualized through
changes in color ratios. The researchers presented two novel
designs, termed external and internal signal generators, to pro-
duce color signals on 3D-printed objects. They also developed
signal processing and calibration methods to transform raw
RGB data into meaningful deformation metrics. Scharff et al
[713] also proposed an innovative proprioception method for
soft actuators during real-time interactions with previously
unknown objects. Their approach involves a two-step pro-
cess. Firstly, they designed a color-based sensing structure
that translated the inflation of a bellow into changes in color.
This color change was subsequently detected by a miniatur-
ized color sensor. This sensor could be easily integrated into
SPAs to capture local deformations. Secondly, the team util-
ized a feedforward NN to reconstruct a multivariate global
shape deformation based on these local color signals. Their
experimental results demonstrated that this method accur-
ately reconstructs deformations during interactions, includ-
ing complex sigmoid-like shapes. This advancement in accur-
ate shape sensing represented a significant stride towards
enabling closed-loop control of soft robots in unstructured
environments.

Thuruthel et al [404, 714] also did some research on the
external sensing of soft robots. Thuruthel et al [404] developed

a synthetic system inspired by human perception of soft robots.
By combining a vision-based motion capture system and a
general ML approach, they successfully modeled previously
unknown soft-actuated systems in real-time. The approach
was robust against sensor nonlinearities and drift. Notably,
this system estimated applied forces during interactions with
external objects. This innovative approach enabled the cre-
ation of force and deformation models for SRs, with potential
applications in human–robot interaction, soft orthotics, and
wearable robotics. By combining diverse sensorimotor data,
Thuruthel and Iida [714] also employed end-to-end deep learn-
ing, bypassing the need for intermediary sensor processing.
The approach was demonstrated on a soft anthropomorphic
finger embedded with soft sensors. The research also high-
lighted its extension to advanced cognitive functions, includ-
ing recognizing the self, the environment, andmastering object
manipulation.

4.4.2. Kinematics and control optimization. SRs have been
extensively researched due to their flexibility, compliance, and
adaptability to the surrounding environments. To unleash their
full potential across various research fields, how to efficiently
design a control system for the soft robot to achieve satis-
factory performance becomes another critical issue. However,
due to the continuum nature and increasing complexity of
functions of soft robots, it is indeed a complex endeavor to
model the kinematics and design the required manipulation
acting on these robots. Conventional control schemes used
for rigid-bodied robots are not possible due to the assumption
that discrete joints are positioned along a chain of rigid links.
Recently, learning-based techniques could have addressed dif-
ferent levels of the control pipeline in the lack of existing
analytical or numerical models for the underlying dynamics
[100, 120, 144, 715–719]. There are three common tactics
used to handle soft robot control in the field: NN model-
ing, data-driven order reduction, and RL as demonstrated in
figure 9.

ML plays an increasingly prominent role in SRs, par-
ticularly for modeling nonlinear systems where traditional
analytical methods often fall short. By harnessing data-
driven approaches, ML enables the creation of adaptive con-
trol and sensing models that are highly responsive to the
unique challenges posed by soft robots. These robots often
operate in dynamic, unpredictable environments, with com-
plex deformation behaviors that make traditional methods
cumbersome and insufficiently flexible [603, 720]. ML’s
adaptability to non-linearities allows for real-time adjust-
ments, giving soft robots a level of responsiveness and
adaptability that classical methods struggle to match. This
is particularly valuable in tasks requiring precise, flex-
ible movement and sensing capabilities, such as navigat-
ing complex terrains, human–robot interaction, or biomedical
applications.

However, ML also faces inherent limitations that can
hinder its effectiveness in SRs. One primary constraint is
the need for large, high-quality datasets to train models
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Figure 9. (a) Learning inverse kinematics requires training data composed of matched pairs of robot sequential pose and actuator
configuration caused the transition. A neural network model encodes the relationship between sampled data to generalize to an arbitrary
desired pose. (b) Reinforcement learning framework by iteratively evaluating the performance of the resultant trajectory with respect to
some cost function and updating parameters to increase that performance during the optimization.

effectively. Without robust datasets that capture the full
range of environmental and operational variability, ML mod-
els risk overfitting, where they may perform well in spe-
cific contexts but fail to generalize across different condi-
tions. This issue poses a significant challenge for soft robots,
which often need to adapt to entirely new tasks and settings.
Furthermore, ML-based models lack the interpretability of
classical analytical and numerical approaches, making it dif-
ficult to predict exactly how a model will respond to unseen
conditions or to troubleshoot unexpected behavior. This opa-
city stands in contrast to deterministic methods like FEA,
where the mechanics of each calculation are well-defined and
transparent.

In practice, ML and classical methods often complement
each other in SRs applications. While ML excels in managing
the complexities and inherent variability of nonlinear sys-
tems, deterministic approaches provide a stable, robust frame-
work with greater interpretability. Classical methods, such as
FEA, offer insights into underlying mechanical principles and
allow for validation through first-principle analysis, whichML
lacks. This dual approach, combining ML’s adaptability with
the rigorous, structured insights of analytical and numerical

methods, creates a more holistic framework for tackling the
unique challenges in SRs, balancing predictive adaptability
with model reliability and interpretability.

4.4.2.1. NNsmodeling. As themost commonly used regres-
sionmodel to approximate themapping between the task space
and actuation, NNs have demonstrated their effectiveness in
solving various nonlinear problems across the soft robot field.
Artificial neurons, inspired by the NNs found in biological
systems, play a vital role as the foundational units of arti-
ficial NNs. Similar to their biological counterparts, artificial
neurons transmit numerical signals to other neurons and each
neuron computes its output by applying a non-linear com-
bination of its inputs. In the context of SRs applications, the
input and output layers of NNs typically correspond to actu-
ation variables and robot outputs, respectively. The learn-
ing process involves optimizing the network weights using
back-propagation, which leverages the chain rule. This pro-
cess includes performing a forward pass through the net-
work, followed by a backward pass to compute the network
Jacobian and adjust the model’s weights accordingly. The
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weight metrics associated with these connections are updated
to improve the performance via optimization. A high dimen-
sional set of nested functions of a NN is represented as:

y= fN (WN, . . . , f2 (W2, f1 (W1,x)) . . .) (12)

where the values of the input node states are denoted as x,
while the network’s edge weights are represented by Wi. fi
denote the activation functions, and y represent the values of
the output nodes.

4.4.2.1.1. Inverse kinematics (IKs) learning. As the kinemat-
ics of soft robots are usually highly nonlinear, the NNs have
offered a promising alternative in approximating the kin-
ematic and dynamic characteristics. Soft robot modeling can
be viewed as a function that relates actuation and sensing sig-
nals as independent variables to robot outputs as dependent
variables. Conversely, soft robot control represents the inverse
process, with desired robot outputs and sensing signals act-
ing as the independent variables, and actuation serving as the
dependent variable.

The first work of implementation of NNs in the soft robot
field was presented by Braganza et al [721]. This work pro-
posed a controller for continuum robots utilizing a feed-
forward NN (FNN) component to compensate for the dynamic
uncertainties of the system, in an attempt to reduce the uncer-
tainty bound. In one other paper with the same FNN approach,
an experimental validation was done by Giorelli et al [722] for
learning the IK of the cable-driven soft manipulator moving
in 3D space. For the 2D control of a multi-segment extensible
soft arm, a two-level approach that combines gradient descent
with a NN is employed for solving the IKs [723]. Recently,
Khoshkho et al proposed a nonlinear optimal control tech-
nique presented based on the state-dependent Riccati equation
and the consideration of the dynamics of the continuum robot
[724]. The present work uses a distilled neural technique to
implement the controller and optimally control the challenging
dynamics of a continuum robot. Almanzor et al [725] proposed
IKs formulation in the image space with deep convolutional
NN for accurate shape control that is robust to feedback noise
and mechanical changes in the continuum arm. There are sev-
eral key issues to consider in NN applications:

1. Training data collection: when training offline models, the
collection and selection of training data are paramount
for achieving high accuracy. To achieve this objective,
the samples should fulfill two requirements: cover the
entire workspace of the robot end-effector and be evenly
distributed in the task space to ensure consistent estim-
ation performance across all areas. An efficient explor-
ation algorithm for generating training data samples to
learn the IK formulation is performing a random walk
within the actuation space on the physical hardware. This
approach, known as continuous motor babbling, has been
employed to learn directly the mapping from the task
space to actuator space in various types of manipulat-
ors, including cable-driven continuum manipulators [203],

pneumatic continuum manipulators [726], as well as sim-
ulated manipulators [271]. To tackle the significant chal-
lenges associated with IK modeling of a bionic trunk, such
as high dimensionality and nonstationary system behavior,
online goal babbling has been implemented with bootstrap-
ping and adapting the IKs on the fly [727]. The inverse
model is tasked with estimating the appropriate posture
necessary to move the effector to each vertex, and the train-
ing process continues until the distance between the target
and actual positions for each vertex is minimized. To fully
unleash the advantage of the learning-based method, filter-
ing and normalizations were usually required to conduct
for obtaining abstract high-quality samples. Besides, filter-
ing and regularization are also required operations to obtain
high-quality samples before feeding into the network.

2. Redundant mapping: in IK learning control, redundancy
is another issue that can lead to generating inconsistent
samples even when the robot pose remains the same, but the
actuation commands differ. The existence of this multiple-
to-single mapping will deteriorate the performance of the
learning-based controller. To solve the problem of redund-
ant mapping, two particular methods are outlined for care-
ful elaboration on pre-training data: (1) For single-segment
manipulator control, the approach is the manual adjustment
of original training data distribution in a uniform pattern
within the workspace, such as using sample pair filtering
in [728]. (2) For kinematically redundant manipulators, the
alternative method is to introduce a reward/cost function to
draw the system to a desired solution, such as constrained
optimization in [729].

4.4.2.1.2. Fusion of analytical model and learning-based com-
ponent. Systems do not need to be purely data-driven forML
to be helpful. The fusion of the analytical model and learning-
based component allows the leveraging of existing knowledge
so only the most intractable system components need to be
learned. The strengths of the analytical dynamics/kinematics
model and learning-based approaches can reinforce each other
to accomplish robust control performance. Hybrid approaches
allow the leveraging of existing knowledge so only the most
intractable system components need to be learned. Learning
the parameters of an analytical dynamics model, similar to tra-
ditional adaptive control methods, has been shown to be fast
and effective if such a model can be constructed with enough
fidelity.

Tang et al [204] proposed a control architecture integrating
model predictive control (MPC) and iterative learning control
(ILC) that simultaneously achieves model learning and refer-
ence trajectory-tracking of a wearable SR glove. The integra-
tion of the kinematic model and the ML-trained model was
also validated, and most of the learning-based parts acted as
error compensators of the analytical model. It is also possible
to decompose control of multiactuator systems into analytic
kinematic targets, where each actuator achieves the final shape
through a system-level controller or individual actuator-level
controllers [726]. Utilizing the fused pose feedback from the
visual information and FBGs helically wrapped on the soft
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manipulator, Wang et al [730] proposed a hybrid controller
incorporating kinematics and data-driven algorithms for reli-
able closed-loop control. In particular, even under full occlu-
sion of the tracked features or complete darkness, an improved
extreme learning machine algorithm with selective training
data updates is implemented to solve pose estimation failures.

4.4.2.2. Data-driven order reduction. Some modeling tools
employ different forms of data-driven order reduction to effi-
ciently approximate the physical model. The Koopman oper-
ator linearizes the nonlinear dynamics of soft robots for mod-
eling and simulation. The Koopman operator theory provides a
data-driven approach that avoids physical simplifying assump-
tions but also yields explicit control-oriented models. By
leveraging the linear structure of the Koopman operator, this
approach can construct linear models of nonlinear controlled
dynamical systems from input-output data and control them
using established linear control methods. Wang et al [730]
represented a dynamic system as ẋ(t) = F(x(t)) in an infinite-
dimensional function space F, which is composed of all con-
tinuous real-valued functions with the compact domain. The
flow of the system is characterized by the set of Koopman
operators Ut, which define the transformation of the observ-
ables f ∈ F along the trajectories of the system according to
the following definition:

Utf = f ◦Tt (13)

where ◦ indicates the composition operation, while Tt is
the flow (or dynamic) map of the system. In this way, the
Koopman operator lifts the dynamics of the system from the
state space to the space of the observables.

4.4.2.3. RL architecture. RL refers to a family of learning-
based algorithms where the agent autonomously learns to deal
with new tasks during the interaction with its environment.
Compared to supervised learning where the model learns from
the ‘answer key’ in training data, RL enables the model to dis-
cover the optimal behavior policy from experience. Nowadays,
RL applied in the control of soft robots has been attracting lots
of interest and developing fast since it could avoid prior know-
ledge of robot configuration.

Learning kinematic or dynamic models for a soft robot
means that, while part of the control pipeline relies on empir-
ically learnt models, the controller itself is still engineered. RL
is a ML strategy that allows the controller itself to be created
through learning from sequential environmental interactions,
rather than from previously collected exogenous data. RL is
regarded as a Markov decision process (MDP), represented
using a tuple. In the agent’s interaction with the environment,
S is the set of the agent’s possible states, where s is the cur-
rent state and s′ is the next state after the agent transition. A
presents the set of the agent’s actions, where a is the action.
p(s ′|s,a) is the state transition probability of the agent transit-
ing from the current state s to the future states’ after the imple-
mentation of action a. r(s,a) represents the immediate reward
of one transition and R is the accumulated reward or expec-
ted return of the whole trajectory. R(τ) =

∑∞
t=0 | γt · r(st,at).

Policy π(a|s) is the mapping from the states to the action a,
namely, given the current state, it could suggest the next step
to obtain an optimal reward. The value function could evaluate
the quality of the policy, offering the quantitative metric for the
behavior decision maker, which can be divided as state–value
function Vπ(s) and action–value function:

Vπ (s) = Ea∼π [R(τ) |st = s]

Qπ (s) = Ea∼π [R(τ) |st = s,at = a] .
(14)

When considering in robot control, the goal of RL is to figure
out a control strategy that could generate optimal instruc-
tion for robot action in order to accomplish the specified
task effectively. The reward function is manually designed
to train the robot with certain features, for example, pen-
alizing the times of transition to enable the robot to reach
the target in as few movements as possible. Xu et al [731]
explored the development of an innovative roboticmotion con-
trol technique that employs a broad learning system (BLS).
This approach streamlined the design of the controller and
the process of parameter adjustment, providing a more effect-
ive means of managing robotic motion. The control strategy
revolved around a BLS for point-reaching motion, and its
implementation was examined through the convergence of the
artificial magnetic fishmovement towards the target area while
successfully circumventing obstacles.

To navigate the soft robots under a dynamic environ-
ment, Cai et al [732] presented a deep RL framework-based
approach for controlling the flow rate rejection of soft mag-
netic miniature robots. This research presented the develop-
ment and implementation of the deep RL framework, which
aims to improve the performance and adaptability of these
robots in various fluid environments.

Policy gradient-based RL converges to a locally optimal
controller without an analytical model of the robot dynamics
but requires much more time and data for training than super-
vised learning. This is due to the need to evaluate the full tra-
jectory produced by following a controller from a specific state
before making updates to the model at a given optimization
step. A common robotics solution is learning in simulation for
many trials, and several physical simulators have good predic-
tion and optimization results for robot control and planning
algorithms:

1. To address the shortcomings of soft-body simulation meth-
ods in solving inverse problems such as optimal control
and motion planning, Hu et al [733] designed ChainQueen,
a real-time microphysical simulator based on the moving
least squares material point method. The simulator is able
to predict the motion and shape of soft structures and their
response to external forces at the millisecond level.

2. At the same time, ChainQueen provides a differentiable
interface that can be integrated with deep learning control-
lers for more efficient and intelligent control. For optimiza-
tion, they used an SDG (stochastic gradient descent) based
optimization algorithm to train the deep NN controller to
make the most of ChainQueen’s physical model. They used
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a loss function to measure the difference between the pre-
dicted output and the target state and a backpropagation
algorithm to compute the gradient. Then, they used SGD
to update the controller’s parameters to minimize the loss
function. They also introduced a new regularization tech-
nique called ‘balanced regularization,’ which helps con-
trol overfitting and improves generalization performance.
In addition, applications of other optimization methods,
such as model-based predictive control and gradient des-
cent optimization, are also explored in their paper. All these
methods aim to improve the control accuracy and real-time
performance of ChainQueen. Finally, they also validated
the performance and accuracy of ChainQueen through a
series of experiments.

3. Naughton et al [36] discussed the development of a com-
putational framework called Elastica, which was designed
to simulate and control SR systems. This framework aims
to address the challenges faced in SRs, such as the com-
plex interactions between the robot body and its surround-
ings, and the nonlinear and highly deformable nature of
soft materials. Elastica provides a platform to develop and
test new control strategies for soft robots, thereby exploring
of their capabilities and potential applications. The frame-
work is designed to be flexible and modular, allowing for
the integration of variousmodels and algorithms to improve
the performance of SR systems.

4. Bhatia et al [734] from Massachusetts Institute of
Technology introduced a benchmarking platform called
Evolution Gym, which was designed to facilitate the optim-
ization and evolution of SR systems. The platform consists
of a simulation environment, a set of predefined tasks, and
a suite of optimization algorithms, which aims to address
challenges in SRs by providing a modular and extens-
ible framework to evaluate and compare various soft robot
designs, optimization techniques, and control strategies.
They presented benchmark tasks that covered locomotion
and manipulation challenges, discussed the optimization
algorithms included in the platform, and shared exper-
imental results that demonstrated the effectiveness of
Evolution Gym in optimizing soft robot designs and control
strategies.

5. DTs enabled soft robots

In the realm of technological innovation, the convergence of
virtual and physical realities has birthed a concept that bridges
the gap between the tangible and the digital with remarkable
potential: the DT. A DT refers to a virtual counterpart that
replicates the behavior, characteristics, and interactions of a
physical entity, offering a real-time simulation that enables
analysis, optimization, and enhanced understanding [735].
Simultaneously, the domain of robotics has seen a remarkable
evolution with the advent of soft robots—dynamic machines
constructed fromflexiblematerials that replicate the adaptabil-
ity and grace of natural organisms. This section embarks on an

exploration of the dynamic synergy between these two ground-
breaking concepts, investigating the manifold applications of
DTs in the realm of SRs.With the convergence of DTs and soft
robots, a new horizon of possibilities emerges, promising to
revolutionize design, performance optimization, remote oper-
ation, and more as shown in figure 10.

It is within the dynamic domain of SRs that DTs find their
contemporary and transformative vocation. The attributes of
soft robots, characterized by their malleability, adaptability,
and emulation of biological paradigms, instigate an amalgam-
ation of innovation and intricacy. Within this context, DTs
offer a salient proposition by facilitating the creation of virtual
surrogates that faithfully replicate the intricate dynamics of
their tangible counterparts. This emulation forms the linchpin
of an emergent epoch in SRs—a paradigm distinguished by
expeditious developmental trajectories, iterative experimenta-
tion, and heightened exploratory veracity.

This section is organized as follows. First, we begin by
exploring the transformative applications of DTs in the field
of SRs. This exploration of the uncharted territory of innov-
ation reveals the potential to redefine the boundaries of SRs
through the DTs. Next, we delve into the complex techniques
employed in the development of DTs for soft robots. This seg-
ment serves as a backstage pass into the art of translating phys-
ical dynamics into virtual simulations, highlighting the found-
ational methods for the fusion of reality and virtuality. Finally,
we will examine the current research landscape of DTs for soft
robots.

5.1. Technical approach

In this section, we will embark on an exploration of the pro-
found implications that the integration of DTs holds for the
evolution of SRs. This exploration will encompass a compre-
hensive exploration through five pivotal aspects: design and
prototyping, behavior modeling and simulation, performance
optimization, remote operation and training, and predictive
maintenance and health monitoring, each contributing to the
overarching narrative of the transformative power of DTs in
reshaping the landscape of soft robot development.

5.1.1. Design and prototyping. For soft robot, the trans-
ition from concept to functional physical prototype is often a
complex and iterative process. Traditional design approaches
require the creation of multiple physical iterations, which
increases time costs and leads to material waste. However,
DTs revolutionize this process by acting as virtual laborator-
ies, enabling the exploration of a wide range of design pos-
sibilities in a virtual environment [736]. By accurately rep-
licating the behavior and characteristics of soft robots, DTs
can be meticulously simulated and tested before any phys-
ical construction begins. This virtual experimentation capab-
ility makes it possible to identify potential defects, optimize
designs, and fine-tune performance parameters while avoiding
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Figure 10. Components and principles of digital twins for soft robots.

the time-consuming and resource-intensive physical prototyp-
ing phase.

One of the pivotal advantages of utilizing DTs in the design
and prototyping of soft robots is the acceleration of the design
iteration process [737]. The virtual realm allows for rapid
modifications and refinements to be seamlessly applied, fos-
tering a dynamic design process that expedites the creation
of more sophisticated and efficient prototypes. This iterative
approach not only enhances the quality of the final product but
also significantly reduces the time required for development.

Moreover, the cost-effectiveness inherent in DT-based
design cannot be overstated [738]. Traditional prototyping
involves the fabrication of numerous physical models, each
with associated expenses in terms of materials, labor, and
equipment. In contrast, DTs drastically cut down on these
costs by allowing for multiple design variations to be tested
virtually, without the need for physical materials. This res-
ults in substantial financial savings, making innovative design
experimentation feasible for a broader range of researchers
and designers.

To construct the geometric model of the soft robot, vari-
ous pathways are available. One option is to employ user-
friendly 3D tools such as 3DMAX, Maya, Unity3D, and
unreal engine (UE) [739], which seamlessly integrate mod-
eling, animation, and rendering capabilities. Alternatively,
3D design software like UG (Siemens NX), AutoCAD,
Revit, Bentley Systems, and building information model-
ing (BIM) software can ensure precision, collaboration, and
seamless integration through geometry engines and constraint
solvers.

For highly accurate modeling, laser point cloud models
generated through laser scanning can be processed using tools
like RapidForm and Geomatics software [740]. Additionally,
the conversion of physical objects into 3D models can be
achieved through photo-to-3D modeling using software like

3DSOM Pro and Autodesk 123D Catch. To create semantic-
ally meaningful DTs, data fusion, segmentation, and recog-
nition from diverse sources, including point clouds, images,
satellite imagery, and drone data, can be performed with tools
such as Google.

Key technologies in this domain include model light-
weighting through compression, multiple instances, hierarch-
ical detailing (Level of Detail or LOD), and parametrization.
Cloud rendering engines further enhance the visualization of
DTs. To bring the DT to life, various simulation and visual-
ization engines can be utilized. Game engines like Unity 3D
and UE provide immersive simulation capabilities, while spe-
cialized 3D tools and engines, such as Uniview and 51world,
focus on rendering and presentation to ensure a realistic and
informative representation of the soft robot’s DT. These design
and prototyping techniques collectively enable the creation of
a robust and accurate DT for SR systems.

In the development of DT models, the concept of model
lightweighting emerges as a pivotal and noteworthy research
domain [741–746]. DTs, serving as virtual replicas of physical
assets, systems, or processes, often necessitate intricate and
comprehensive models to faithfully replicate their real-world
counterparts. However, handling highly detailed models can
be computationally demanding and resource-intensive, partic-
ularly when dealing with extensive systems and simulations.
Model lightweighting is designed to address this challenge,
employing techniques aimed at crafting simplified yet efficient
DT models. These streamlined models preserve vital features
and essential data required for accurate simulations and ana-
lysis, while concurrently reducing memory and computational
requirements. By optimizing the DT’s model, it becomes more
manageable to work with extensive datasets, process real-time
data, and achieve enhanced performance during simulations.
Several common techniques for model lightweighting are out-
lined here:
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• LOD models [747–750]: these entail creating various ver-
sions of the model, each offering varying levels of detail. For
example, a high-level LOD model may encompass only the
core features, while a low-level LOD model contains fewer
intricacies, enabling faster processing.

• Decimation [751–753]: this technique involves selectively
removing certain elements or vertices from the 3D model,
thereby diminishing its polygon count while preserving its
overall shape.

• Feature suppression [754–756]: in this approach, specific
features, annotations, or metadata that are deemed non-
essential for the current analysis or simulation are tempor-
arily hidden or simplified.

• Subdivision surfaces [752, 757, 758]: complex surfaces are
represented using a reduced number of control points, res-
ulting in a more lightweight model.

• Parameterization [759–761]: mathematical parameteriza-
tion techniques are employed to represent complex shapes
with simpler equations, enhancing model simplicity.

• Simplified physics models [762]: reduced or approximated
physics models are utilized for simulations, albeit at the cost
of some accuracy, in exchange for quicker computations.

• Data aggregation [763–765]: data points are grouped based
on similarity, or statistical methods are applied to decrease
the overall data volume.

The advantages of model lightweighting in DT development
are multifaceted. First, it enables real-time or near real-time
simulation, facilitating agile and responsive monitoring and
control of physical assets and processes. Accurate and fast
simulations are essential for optimizing design and produc-
tion processes. In addition, model lightweighting simplifies
the integration of DTs with other systems and technolo-
gies, streamlining data exchange and facilitating collaboration.
Research efforts in model lightweighting focus on improving
advanced algorithms, compression techniques, and data reduc-
tion methods, with the overall goal of efficiently representing
complex physical systems without compromising accuracy.

In essence, integrating DTs during the design and prototyp-
ing phases of soft robots marks a paradigm shift in traditional
engineering approaches. It provides unprecedented flexibility
to fine-tune designs, troubleshoot potential issues, and optim-
ize performance attributes with remarkable efficiency.

5.1.2. Behavior modeling and simulation. Soft robots have
flexible and adaptable structures that exhibit rich and complex
nonlinear behaviors that distinguish them from rigid robots
[766]. These behaviors are often characterized by complex
interactions with the environment, presenting unique chal-
lenges and opportunities. The inherent flexibility of SR mater-
ials makes their behaviors challenging to predict and control
by traditional means [122]. However, entering the field of DTs,
the combination of virtual replication and real-time simulation
reveals a transformative approach to understand, model, and
ultimately master the behaviors of soft robots. DTs provide a
valuable way to accurately model and simulate these behavi-
ors. By carefully replicating the physical properties, material

responses, and environmental interactions of soft robots, DTs
provide a virtual testing ground to explore a variety of scen-
arios without the constraints of the physical domain. This level
of fidelity enables in-depth studies of the precise simulation of
soft robot behaviors, revealing the interactions between shape
changes, forces, and external stimuli.

Behavioral modeling and simulation capabilities are a typ-
ical direction that reflects the DT empowerment of soft robots.
Soft robots mimic the graceful undulations of aquatic organ-
isms or the sinuous movements of snakes, and their gaits are
often challenging to predict using traditional analytical meth-
ods alone. DTs can simulate these gaits in detail by adjusting
parameters in real time to observe the resulting behavior. This
dynamic exploration not only enhances the understanding of
the principles of motion, but also provides insights into how
different environments affect the robot’s performance. In addi-
tion, the ability to simulate behavior helps develop advanced
control strategies. By observing how the soft robot responds
to various inputs and stimuli in the digital domain, control
algorithms can be fine-tuned for optimal performance. For
example, the manipulation of SR arms in delicate surgeries
can be improved by considering simulations of human tissue
interactions, the mechanical properties of the soft robot, and
surgeon input [245].

There are several techniques for behavior modeling and
simulation. Some of them are listed below:

1. Simulation of diverse physical phenomena: to accurately
replicate physical phenomena such as vibrations, colli-
sions, noise, and explosions, a suite of simulation tools is
available. Notably, industry leaders like Siemens, ANSYS,
and ZWSOFT offer comprehensive solutions. Siemens
provides a robust platform that excels in simulating com-
plex physical interactions, making it suitable for scen-
arios involving vibrations, collisions, and even explosive
events. ANSYS, renowned for its versatility, empowers to
model various physical phenomena, including vibrations
and explosions, enabling precise simulation. ZWSOFT spe-
cializes in simulation software designed to effectively rep-
licate physical events like collisions and vibrations, provid-
ing valuable insights into the dynamic behavior of soft
robots.

2. Material mechanics, elasticity, and dynamics simulation:
understanding material behavior, elasticity, and dynamics
is critical for simulating soft robot motion and predict-
ing fatigue. In this domain, Comsol offers a versatile plat-
form for material mechanics, elasticity, and dynamic simu-
lations, enabling in-depth analyses of how soft robot mater-
ials respond to various forces and loads. This capability is
crucial for designing soft robots to obtain optimal perform-
ance and durability.

3. Simulation of manufacturing processes: the development
of soft robots requires consideration of their manufacturing
processes, such as molding, casting, bending, and printing.
Dassault Systèmes, through its comprehensive simulation
solutions, assists in simulating these processes. Dassault’s
software ensures that soft robot components are designed
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with the specific manufacturing processes in mind, redu-
cing potential defects and optimizing production efficiency.

4. Simulation of production lines, factory layout, logist-
ics, and human factors: beyond the behavior of the soft
robot itself, a holistic approach to DT development neces-
sitates the simulation of the broader production envir-
onment, encompassing equipment layout, logistics, and
human factors. Factory IO specializes in this aspect, offer-
ing tools to simulate production lines, factory layouts, and
logistics. Furthermore, it allows for the consideration of
human factors in the production process. This comprehens-
ive view facilitates the seamless integration of soft robots
within manufacturing environments, optimizing efficiency
and safety.

In summary, DTs advance the field of SRs by providing a
high-fidelity, low-risk arena for exploring complex behaviors.
These digital replicas provide a path for experimentation, ana-
lysis, and control beyond what the physical world can offer. As
soft robots enter the virtual realm, the complexity of soft robot
behavior can be unraveled, opening up a new realm of possib-
ilities, from improving locomotion to redefining our approach
to automation in complex environments.

5.1.3. Performance optimization. DTs can be used in the
field of soft robot performance optimization. The combination
of virtual replication and real-time simulation can enhance the
performance of soft robots in a range of tasks and environ-
ments, bringing benefits that go beyond the limitations of tra-
ditional methods. At the core of soft robot performance optim-
ization is the meticulous testing and improvement of control
algorithms and strategies. In the field of robotics, the interac-
tion between flexible and dynamic soft robots and their envir-
onment can be complex, so predicting and optimizing per-
formance is a daunting challenge. However, DTs provide a
valuable platform for exploring the consequences of various
control inputs and strategies, ensuring that the robot’s beha-
vior is consistent with the expected results.

The key advantage of utilizing DTs in performance optim-
ization lies in the availability of real-time data feedback [767].
Sensors embedded in the physical robot collect information
about its interactions, forces, and responses. This data is seam-
lessly integrated into the DT, providing a dynamic feedback
loop that refines the accuracy of simulations and enhances the
predictability of outcomes. This real-time alignment between
the virtual and physical realms enables researchers to iterat-
ively fine-tune control strategies based on actual, rather than
theoretical, performance.

Beyond controlled laboratory environments, the integration
of DTs in real-world environments is where they can really
advance the development of SRs. When soft robots are used
in unstructured and unpredictable environments, such as dis-
aster response or space exploration, virtual testing and tun-
ing of soft robots before deployment can help optimize their
performance in challenging scenarios [768]. DTs can minim-
ize risk, increase mission success, and ensure that the robot’s
behavior adapts to the complexity of the target environment.

Performance optimization techniques are instrumental in
enhancing the capabilities of a DT for a soft robot. These tech-
niques encompass a range of strategies aimed at refining the
robot’s behavior and efficiency. Simulation-based optimiza-
tion stands as a cornerstone, leveraging advanced tools for iter-
ative simulations and analysis to fine-tune the robot’s design
and control algorithms [769–771]. Multi-objective optimiza-
tion takes a holistic approach, considering multiple perform-
ance criteria, such as speed, accuracy, energy efficiency, and
safety, to achieve a balanced solution [772–777].

Parameter tuning involves adjusting the DT model, includ-
ing control algorithms, material properties, and mechanical
parameters, to optimize its response to various inputs and
scenarios [778]. ML and artificial intelligence enable the
DT to adjust its behavior based on real-world data and
sensor feedback, thereby promoting continuous performance
improvements.

Efficiency analysis can reduce energy waste and improve
mechanical efficiency, driving design changes and control
enhancements. Real-time monitoring and adaptive control
continuously evaluate performance and dynamically adjust
as conditions change. Sensitivity analysis evaluates how
changes affect performance, enhancing robustness and reli-
ability. Collaborative optimization considers the interactions
between multiple soft robots or components to optimize sys-
tem performance, while cost-benefit analysis guides decisions
by weighing the optimization costs against the expected per-
formance gains. Together, these different techniques improve
the performance of soft robots and ensure efficiency, reliabil-
ity, and adaptability for a variety of applications.

In conclusion, the convergence of DTs and soft robots
transforms the landscape of performance optimization. It
empowers to navigate the intricate interplay of control
strategies and environmental factors within a dynamic vir-
tual environment. As real-time data feeds into simulations,
the chasm between theory and practice narrows, leading to
enhanced soft robot performance that is finely tuned, adapt-
able, and aligned with real-world demands.

5.1.4. Remote operation and training. The integration of
DTs with soft robots extends its transformative influence bey-
ond the realm of design and optimization, delving into the
domain of remote operation and training [779]. The conver-
gence of virtual replication and real-time simulation opens up
avenues for remote control, operation, and training, revolu-
tionizing the way soft robots are deployed and harnessed in
challenging, hazardous, or intricate environments.

Robotic systems, especially those with complex and adapt-
ive behaviors such as soft robots, often require a high level
of human involvement to control their behavior. DTs break
geographical barriers and enable remote control of soft robots
from a distance. This is particularly important in scenarios
that are dangerous or challenging for human presence, such as
disaster-stricken areas or confined spaces, where direct human
intervention may be impractical or risky. Furthermore, DTs
can provide virtual training to improve skills without physical
proximity to the robot. The DT can interact, familiarize itself
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with the robot’s behavior, test different control strategies, and
train its decision-making capabilities in a controlled and risk-
free environment. This virtual training not only accelerates the
learning process but also enables the exploration of innovative
technologies and approaches without endangering the phys-
ical robot. Furthermore, the integration of DTs in teleopera-
tion promotes a seamless human–robot interaction paradigm.
The actions and responses of the soft robot can be perceived
through the simulation of the DT, effectively bridging the
gap between physical distance and operational understanding.
This enhanced interaction not only improves the quality of
remote control but also enhances the potential for collabor-
ation between human and robotic agents.

Augmented reality (AR) and virtual reality (VR) stand
out as transformative tools for remote operation and training
techniques of DTs for soft robots [780–793]. AR seamlessly
merges digital information with the real world, making it pos-
sible to wear an AR headset or use an AR-equipped device
to interact with the DT of a soft robot in its physical environ-
ment. This facilitates precise control, real-time feedback, and
enhanced teleoperation capabilities while reducing the risk of
collisions [123, 794, 795]. Conversely, VR takes training and
simulation to a whole new level. It immerses trainees in a vir-
tual environment that mirrors the behavior of the DT, allowing
them to practice interactions with the soft robot safely. VR
training encompasses a wide range of scenarios, from basic
operations to complex maintenance tasks, enabling users to
become proficient without physical access to the robot [796–
798]. Interactive 3D modeling tools, often integrated with AR
andVR, empower remote teams to collaboratively design, test,
and optimize soft robots within the DT environment, fostering
innovation and speeding up development. Specialized teleop-
eration interfaces facilitate intuitive and immersive control of
soft robots through AR or VR systems.

These technologies are also adept at simulating a variety
of real-world scenarios, from navigating tight spaces to hand-
ling delicate objects and dealing with unexpected obstacles,
allowing for effective responses to a variety of situations.
In addition, AR and VR provide real-time data visualization
and sensor feedback that can make informed decisions dur-
ing remote operations and training. These technologies facilit-
ate remote collaboration by allowing multiple users to inter-
act with DTs simultaneously. This is valuable for remote
troubleshooting and expert guidance, as real-time assistance
can be provided, improving efficiency and minimizing down-
time. AR and VR technologies integrated into soft robot DTs
span physical distances, providing an immersive, interactive
experience that can significantly improve remote operation
capabilities, simplify training, and ensure effective collabor-
ation between geographically dispersed teams.

In summary, the fusion of DTs and soft robots transcends
the boundaries of physical presence, paving theway for remote
operations and training with far-reaching implications. DT
technology enables remote control in hazardous environments
and virtual training to improve the skills of the system, revo-
lutionizing the landscape of human–robot interaction. As we
move toward a future where robots explore unknown territory,

the virtual companionship provided by DTs will become an
indispensable tool for opening up new frontiers.

5.1.5. Predictive maintenance and health monitoring. The
convergence of virtual replication and real-time data utiliza-
tion introduces a proactive approach to maintaining and mon-
itoring the health of soft robots, elevating their reliability, min-
imizing downtime, and contributing to significant cost sav-
ings. In the world of robotics, where mechanical wear, envir-
onmental factors, and external interactions can lead to gradual
degradation, the concept of predictive maintenance emerges as
a game-changer [799]. By modeling the physical robot’s beha-
vior and comparing it with the expected norms stored in the
DT, researchers can anticipate deviations, anomalies, or signs
of wear that might signal the need for maintenance or repairs.

The synergy between real-time data from sensors on the
physical robot and the virtual counterpart enhances the preci-
sion of predictive maintenance. As the soft robot operates in its
real-world environment, sensors capture data on factors such
as temperature, force, strain, and movement [800]. This data is
then fed back into the DT, updating its condition in real time.
This dynamic feedback loop enables to observe any dispar-
ities between the virtual and physical behaviors, thereby fine-
tuning the DT’s predictive capabilities and ensuring that main-
tenance decisions are based on accurate information [801].

The implications of predictive maintenance are profound,
particularly in industries where downtime can translate to sub-
stantial financial losses or compromised safety [802]. Consider
a soft robot deployed in an industrial setting, performing crit-
ical tasks in intricate machinery. A failure or malfunction
in such an environment could lead to production halts and
substantial economic repercussions. Predictive maintenance,
facilitated by the DT’s real-time monitoring, has the potential
to preemptively detect anomalies, allowing to intervene before
a catastrophic failure occurs.

In addition to reducing costs, predictive maintenance can
also help improve reliability and operational continuity. For
soft robots operating in fields such as healthcare, accuracy and
reliability are critical, and DTs can predict possible defects
and perform proactive maintenance [803]. The seamless integ-
ration of DTs enables a more systematic and data-driven
approach to ensure that these robots always meet perform-
ance expectations. Therefore, the combination of DTs and soft
robots ushers in an era of predictive maintenance and health
monitoring, going beyond traditional passive approaches. By
closely monitoring behavior, leveraging real-time data, and
pre-determining maintenance needs, the reliability and cost-
effectiveness of soft robot deployments are improved. As the
field of robotics develops, the concept of predictive mainten-
ance demonstrates the transformative potential that DTs bring
to the field of SRs.

5.2. Research status

The current landscape of DT research in the realm of SRs is
in its nascent stages. While DT concepts have gained trac-
tion in robotics at large—encompassing domains like space,
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medical, rehabilitation, human–robot interaction, and indus-
trial applications—the exploration of DTs specifically for soft
robots remains relatively limited. Among the existing literat-
ure, only a couple of review papers have incorporated DT dis-
cussions within this context. Notably, Mazumder et al [122]
delved into trends of DT-integrated robotics across diverse
research-saturated domains, while Zhang et al [123] undertook
an exploration of sensing technology for DT implementation
in soft robots.

In terms of specific research endeavors, a pivotal contribu-
tion comes from Jin et al [257], who developed a smart soft-
robotic gripper system. This innovation harnessed triboelec-
tric nanogenerator sensors to capture motion and tactile data,
leveraging distributed electrodes for contact position and area
perception. Complementing this, a gear-based length sensor
detected elongation, and ML achieved a 98.1% accuracy in
object classification. Notably, this system’s triboelectric data
breathed life into a DT, facilitating virtual object identifica-
tion and manipulation mirroring real-time soft-robotic gripper
actions. This virtual emulation found its applications in scen-
arios like virtual assembly lines and unmanned warehouses.

Another notable study by Schegg et al [483] focused on DT
simulation. The integration of OpenAI Gym and the physics-
based SOFA engine led to the creation of SofaGym—a plat-
form generating RL environments from DTs of soft robots.
This amalgamation addressed the intricate challenges at the
intersection of RL and SRs, paving the way for policy transfer
and the exploration of complex interactions. The study show-
cased 11 diverse environments, encapsulating a range of soft
robots and applications. This convergence not only enriched
traditional control strategies but also introduced RL and plan-
ning solutions, thereby fostering a collaborative platform ripe
for further research inquiries.

Sun et al [115]’s work ventured into DT applications for
soft robots, designing a smart SR manipulator. This creation
incorporated triboelectric nanogenerator tactile and length
sensors, alongside a pyroelectric temperature sensor. By util-
izing ML, sensor data fusion achieved a 97.143% accuracy in
the automatic recognition of objects with varying shapes. The
integration of IoT andAI analytics propelled the establishment
of a digital-twin-based virtual shop—an immersive platform
that enhanced user experiences. This innovative system show-
cased its prowess as an advanced human-machine interface,
particularly within unmanned working spaces.

Although the prospect of DTs of soft robots is promising,
there is still plenty of room for exploration. There are only
a few pioneering studies in this field, and further research
and innovation are needed, indicating that the future is full of
untapped potential.

6. Challenges and future directions

In this section, we explore the challenges encountered when
applying FEA, ML, and DTs in the field of soft robots and
draw insights from our previous explorations. We also outline
potential directions for future developments in this area.

Although artificial intelligence is now very mature,
especially large language models such as ChatGPT. However,
both in the field of ML and DTs, they currently face many
challenges when applied to the field of soft robots.

The first challenge is modeling the complex behaviors of
soft robots. Soft robots exhibit nonlinearities and are diffi-
cult to predict. Besides, the behaviors of soft robots can be
affected by material properties, environmental conditions, and
external stimuli. Accurately capturing and modeling complex
behaviors of soft robots is a key requirement for achieving
the desired performance, which needs to address some issues,
including how soft robots respond to different levels of loading
force, how soft robots adapt to different environmental condi-
tions, and how they interact with other objects around them. It
is challenging to develop mathematical models, simulations,
or ML algorithms that can encompass these complexities and
provide actionable solutions. In addition, soft robots are often
designed for use in dynamic and real-world applications, such
as healthcare, where precise and adaptable motion is critical.
Models must not only accurately represent the behavior of soft
robots, but must also facilitate real-time decision making and
control. This interconnection between modeling and real-time
performance presents a complex challenge,

The requirement for data-intensive training in the con-
text of SRs is another significant challenge. ML algorithms
require large amounts of data to train and learn the relation-
ship between the input and output. Gathering the required
amount of high-quality data is a time-consuming and resource-
intensive endeavor. First, soft robots integrate a wide variety of
sensors, including tactile sensors, force sensors, and cameras.
These sensors generate vast datasets, and effectively integ-
rating and synchronizing data from these various sources is
a non-trivial task. Furthermore, labeling this data for super-
vised learning, which is often necessary for ML algorithms,
adds an additional layer of complexity, as manual labeling
can be labor-intensive and error-prone. For example, for topo-
logy optimization of active composite structures, Hamel et al
[584], Athinarayanarao et al [569], and Sun et al [570] all used
FEM-generated data as train data. If they want to make their
algorithms more precise and use printed parts as train data,
a lot of labor needs to be involved. Additionally, the collec-
tion of data for soft robots operating in real-world scenarios
presents challenges. Environmental conditions may vary, and
unforeseen circumstances can lead to unpredictable data pat-
terns. Ensuring that the training data is representative of the
full spectrum of potential scenarios and conditions is essential
for robust model performance.

Real-time processing is a primary requirement in many soft
robot applications, such as teleoperation, autonomous con-
trol, and human–robot interaction. Achieving low-latency per-
formance while dealing with the computational demands of
complex models is a central challenge. ML algorithms and
DT models need to operate efficiently and swiftly to facil-
itate responsive control and decision-making. This entails
optimizing algorithms, hardware, and software architectures
to minimize processing delays. Balancing the need for high
computational accuracy with real-time responsiveness is a
delicate trade-off that researchers must navigate. Moreover,
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real-time processing in SRs is not solely about speed; it also
involves ensuring the safety and reliability of the robot’s
actions. Developing mechanisms for graceful degradation and
fault tolerance is critical to handle unexpected scenarios and
ensure user safety.

Besides, because the development of DTs in SRs is not
quite mature, there is a long way to go in this direction. The
future directions for DT-assisted SRs encompass a multifa-
ceted approach aimed at harnessing advancements across vari-
ous domains to maximize their potential impact on the field.
To fully unlock the capabilities of DTs in SRs, several critical
areas need concerted attention and research focus:

1. Behavior modeling enhancement: the future of DTs in SRs
hinges on refining behavior modeling. Advancements are
needed to deepen the integration of surrogate modeling
techniques within the DT hierarchy. This entails improving
multi-physics validation and enhancing the performance
of surrogate models through the utilization of larger data-
sets and emerging machine-learning methods. Moreover,
the integration of sensing and actuation systems plays a
pivotal role in advancing soft touch capabilities within DTs
of soft robots. By enabling real-time, human-like tactile
feedback, soft touch allows these systems to perceive and
respond to delicate objects and varying environments. Such
an integration enhances the DT’s ability to simulate and
predict accurate behaviors, supporting real-time decision-
making and control. These enhancements will enable DTs
to provide more accurate insights into soft robot behaviors
and responses.

2. Unified ontology development: the SRs field requires stand-
ardized frameworks for DT development. Bridging the gap
between low-level digital design and the high demand for
DT technology is vital. This involves creating mathemat-
ical and simulation models that facilitate the seamless con-
struction and integration of DTs across various stakehold-
ers. Additionally, blockchain technology can be leveraged
to ensure secure data access while safeguarding intellectual
property.

3. Comprehensive data integration: building effective DTs for
soft robots demands the integration of diverse manufac-
turing data from various sources. This includes capturing
and processing 5M1E data, encompassing factors such as
Manpower, Machine, Material, Method, Measurement, and
Environment. A comprehensive understanding of SR sys-
tems necessitates considering complex manufacturing sys-
tem phenomena, including external influences like orders
and supply chains, as well as internal factors such as
machine health and workers’ skills.

4. Lifecycle integration: DTs for soft robots should be seam-
lessly integrated across the entire product lifecycle. This
entails connecting DTs with physical counterparts and
accommodating the decentralized nature of SR products.
Data integration from different stakeholders and various
lifecycle phases will be instrumental in realizing predict-
ive maintenance, fault detection, and comprehensive dia-
gnostics for soft robots.

5. Global collaboration and roadmap: to expedite the adop-
tion of DTs in the realm of SRs, international collabor-
ation and partnership formation are suggested. Such col-
laborations can address key challenges, including soft-
ware and hardware complexities in multiscale-multiphysics
modeling, standardization efforts, uncertainty quantifica-
tion, verification and validation protocols, and the utiliza-
tion of ML for creating surrogate models that enable real-
time queries by DTs. Establishing a high-level roadmap for
these endeavors will facilitate systematic progress in the
field.

In conclusion, these challenges—complex behavior mod-
eling, data-intensive training, real-time processing, and imma-
turity of DTs—are at the forefront of the endeavors to advance
the capabilities of soft robots. Addressing these challenges
requires multidisciplinary collaboration, innovative research,
and the development of cutting-edge technologies to unlock
the full potential of SRs in various practical applications.

7. Conclusion

In this paper, we have reviewed the interaction between FEA,
ML, and DTs and explored how their synergy drives advance-
ments for soft robots. We examined the impact of ML and
FEA on material discovery and property prediction, structural
design optimization, inverse optimization of 4D printed soft
robots, and development of metamaterials. Besides, we dis-
cussed the importance of ML in enhancing sensing, control,
and actuation performance. In addition, we have also explored
the role of DTs in enhancing real-time monitoring, predictive
maintenance, and remote operation of soft robots. We can con-
clude that the integration of FEA, ML, and DTs is critical to
shaping the future of soft robots and expanding their capabil-
ities across various applications.
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