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Foreword 

Have you already spent dozens or hundreds of hours on clicking in Abaqus CAE to build up your model, 

noticing how unpractical that is? And hoping in discussions and meetings that nobody asks you for 

changing the model because you know that will take at least two days of clicking? 

My name is Martin Pletz, and I’ve been using Simulia Abaqus© since 2007. Over the years, I found it 

more and more annoying to build up every model manually in Abaqus CAE. For my Master’s thesis, I 

started using ANSYS and its scripting language APDL. Since then, nearly every FEA model that I build, 

I build in a fully scripted way. I mostly use Abaqus CAE with the scripting language Python. As far as 

I know, there are no good resources for starting to script Abaqus models: The Abaqus Documentation 

is ok, but there are some tricks they do not tell you there and that I had to find out from internet forums, 

colleagues and by trying stuff in Abaqus.  

This course is me trying to provide a brief and clear introduction into scripting Abaqus, defining a 

workflow for building your model scripts, and explaining the parts of the scripting that are not so 

intuitive.  

This course is also held as a seminar at the Montanuniversitaet Leoben, starting in October 2021. If 

you have any comments or suggestions, please send me an email (martin.pletz@unileoben.ac.at). This 

script is a short version of the online script you can find at www.martinpletz.com/fe-scripting. 

  

https://online.unileoben.ac.at/mu_online/pl/ui/$ctx;design=pl;header=max;lang=de/wbLv.wbShowLVDetail?pStpSpNr=3206599
mailto:martin.pletz@unileoben.ac.at
file:///C:/Users/p1340760/iCloudDrive/_KKV/_Lehren/Skripten/www.martinpletz.com/fe-scripting
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1) Introduction 

Wouldn’t it be nice to have an Abaqus model that does not have to be build again (including hundreds 

of clicks and dozens of swear-words) when some parameters have to be changed? Including solving and 

evaluating the model? Here, you will learn how to do that. On the way, we will discuss how to set up 

models on paper because a good plan and a structured approach is at least as important as being able to 

automize the model setup and evaluation. 

1.1) Prerequesites 

You should already be familiar with the Abaqus CAE interface. If not, you can find some introductory 

Abaqus CAE videos in the youtube chanel AbaqusPython. You should also know the syntax of the 

scripting language Python which you can learn with SoloLearn or a huge number of other online 

resources. Everything we do in this course can be done with the Abaqus Student Edition, which is freely 

available to students but is limited to 1000 nodes. For playing with Python, I recommend getting 

Anaconda, which is a Python installation that comes with the most important Python modules and 

Jupyter Notebooks, which I recommend using when you start with Python. 

1.2) Scripting Abaqus 

Abaqus consists of the Computer-Aided Engineering (CAE) and Viewer interface (for setting up models 

and visualizing Output Database (odb) files) and the solver. The model is sent to the solver in plain-text 

formatted input (inp) files that contain the full model definition with all the nodes, elements, boundaries, 

loads, etc. In the 90s, you would write those input files by hand. Today, you would rather use Abaqus 

CAE or other software to build your model and get the inp file. In the input file, you can also request 

node and element output written to a dat file. That gives us two basic options for automizing the model 

generation and evaluation: 

1. inp-file: Manipulating an existing input file and reading results from the dat-file using a 

programming language. This is fast but limited to simple changes of material or loads but not 

changes in geometry (because the geometry would have to be re-meshed) 

2. Abaqus CAE: Using Abaqus-specific Python commands to automize everything that can be done 

in the CAE and viewer interface. Anything goes, but you have to deal with the way this is 

implemented in Abaqus CAE, which can be horrible– I mean tricky at times. 

In this course, we will only mainly with the second option: Scripting Abaqus CAE using Python. 

 

https://www.youtube.com/user/AbaqusPython
http://www.python.org/
https://www.sololearn.com/
https://edu.3ds.com/en/software/abaqus-student-edition
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
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1.3) Further chapters 

In chapter 2, we will look at how scripting the Abaqus CAE interface with Python works and what you 

need to understand before you can build your scripted models. A big part of that chapter will deal with 

selecting things like edges in Abaqus because this is the most complicated part of scripting Abaqus CAE 

models. 

Chapter 3 will deal with evaluating Abaqus models in Abaqus CAE or the Abaqus Viewer to 

automatically generate png images and text files that contain the result data we are interested in. 

All tools from chapter 3 and 4 will be applied to the example model in chapter 4, creating a Python 

script that completely builds, runs and evaluates a model from a set of geometry, material and load 

parameters. 

Finally, chapter 5 will give some advice on keeping order with all the automatically created models, 

which means deleting unwanted result files and creating a folder structure for the job files and result 

files. A small introduction into plotting diagrams using Python (the matplotlib module) is also given. 

1.3) Exercises 

1. Set up Abaqus: Install the Abaqus student version or get access to a computer with Abaqus 

installed. 

2. Set up Anaconda: Download and install it. We will need that at the end for creating diagrams in 

Python. 

3. If you are not already familiar with the Python syntax, learn that online using SoloLearn or 

something similar. If you do not know much about Abaqus CAE, you can find lots of 

introduction videos on youtube. 
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2) Abaqus CAE 

Now let’s look at how to script a model in Abaqus CAE, where we have all the options like 

changing geometry and remeshing at our fingertips. All your clicks in Abaqus CAE are 

regarded as Python commands in the background. You can also write such commands yourself 

and run them in Abaqus CAE, building up your model automatically. 

 

We can obtain those Python commands from the reference guide in the Abaqus documentation. 

Since we already know how to use CAE and do not know how Abaqus calls all its Python 

commands, it is more convenient to record commands of what we are doing in Abaqus CAE. 

And then look into their detailed options up in the documentation to use them to build up our 

scripted Abaqus model. 

2.1) Recording and Running Python Commands 

How to record Python commands from clicking in Abaqus CAE and how to run Python 

commands in Abaqus?  

2.1.1) Recording Python commands from Abaqus CAE 

When clicking in Abaqus CAE, the corresponding Python commands are automatically written 

to the abaqus.rpy file in the active directory. Everything is recorded in this file, even if you 

scroll or zoom into the model or do evaluations.  

At the time you save your Abaqus model, two files are saved: First, the actual CAE (.cae) file 

that you can open with Abaqus CAE, and second, the journal file (.jnl) where commands 

crucial to the model generation are recorded. So, actions like zooming and evaluations in the 

Viewer are not recorded. 

Furthermore, you can start recording a macro in Abaqus with File/Macro Manager >> create, 

Directory=work. This starts writing commands to the abaqusMacros.py file until you click 

Stop Recording. 

http://130.149.89.49:2080/v2016/books/ker/default.htm
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In the Student Edition of Abaqus, both the rpy and the jnl recording are disabled, which leaves you 

with the Macro Manager. If you have a full version of Abaqus, I suggest using the jnl file for building 

the model and the rpy file for the evaluation. 

2.1.2) Running Python code in Abaqus CAE 

How can we now run Python commands in Abaqus CAE? The first option is clicking on 

File/Run Script. There, you have to select a python file to be run in Abaqus. 

The second option to run Python commands in Abaqus is the so-called Kernel Command Line 

Interface. This is the frame at the bottom of the CAE window that you can reach by clicking on 

the >>>-symbol. Here, you can run single commands or multiple lines of Python code. It is best 

for testing new commands and playing with Python. This command line also helps you with 

writing code: If you press the UP key, you get to the last executed command and pressing the 

TAB key auto-completes your commands.  

The third option is starting Abaqus CAE from the Windows or Linux command line and stating 

a Python script that is then run in CAE. This can be done either by opening the Abaqus CAE 

window (script=...) or just opening CAE in the background (noGUI=...): 

abaqus cae script=model.py 

abaqus cae noGUI=model.py 

From recorded commands a script for the model can be developed. In many cases, you can just 

copy your model together from those commands, but for some of them, you can’t. The trickiest 

commands concern selecting entities such as edges, faces, and cells. For such selections, the 

most convenient commands are not recorded. Also, they make it necessary to understand how 

the Abaqus Python commands are organized, so we look into that now. 

2.2) Python in Abaqus CAE 

As already mentioned, Abaqus CAE has a Python-kernel running in the background, with 

Abaqus objects similar to the modules you already know from Abaqus CAE (models, parts, 

materials, etc.). To work with those Abaqus objects, you have to import them: 

from abaqus import * 

from abaqusConstants import * 

from caeModules import * 

There is a hierarchy of Abaqus objects: Everything builds on the two repositories mdb (Model 

Database) and session (CAE window and view). You have imported mdb and session by 

writing from abaqus import *. The model database mdb has the sub-object models, that itself 

contains the parts, materials, etc. which itself contain geometry, nodes, and so on. 
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Let’s look at the object models. You can create a new model with the command mdb.Model(). 

Such commands for creating models, parts, etc. are called constructors and are written with a 

capital letter. In the brackets of a constructor, you can pass along more information, in this case, 

the name of the new model: 

mdb.Model(name='test-model') 

This constructor creates an instance of the class models with the name test-model. We can 

access this instance by writing: 

mdb.models['test-model'] 

 

When writing commands in the Abaqus Command Line, you can use TAB to auto-complete your 

lines. If you have already written mdb.models[ and you press TAB, Abaqus suggests a model name. 

If you press TAB again, it suggests the next option. Also if you write mdb.Model( and then TAB, 

you get the options of this function. 

When creating a model, you can write m = mdb.Model['test-model'] to use the variable m 

instead of writing mdb.models['test-model'] each time you need it. The command 

mdb.models also works as a Python dictionary, so you can use the .keys() and .values() 

functions to see what models exist: 

>>> mdb.models.keys() 

['Model-1', 'test-model'] 

Then you can create a part in this model and then a reference point in this part and so on. To 

list all the methods of your model m, mdb, session, or an instance, you can use the dir-

command: 

>>> dir(mdb) 

I do not list the output here, because it is too long. Look for yourself in Abaqus! These methods 

can change the object or create a new instance. There are not only constructors and sub-classes, 

but also functions that do something. For mdb, there is the function saveAs() that saves your 

model under the path that you state in the brackets: 

>>> mdb.saveAs('test.cae') 
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Now you know that there is a hierarchy of objects in Abaqus Python code, and those objects 

are parts, surfaces and so on. This will help us now, when we look into creating sets and surfaces 

that contain such objects. 

2.3) Sets and Surfaces 

For a nice and clean Abaqus CAE model, it is important to create sets and surfaces first using 

meaningful names and then apply constraints, boundary conditions, and loads on those. 

Sets can contain anything (vertices, edges, faces, cells, datums, referencePoints, nodes or 

elements) 

Surfaces can contain edges in 2D models and faces in 3D models. They are used to define 

contact and surface-based loads or constraints. 

 

So let’s look at how we can create sets and surfaces in a scripted way. First, we look into edges 

to understand the basic principles of automated selection. Then, we see how that can be 

extended to faces, cells and other entities. 

There are boolean operations (union, difference, intersection) for existing sets that are handy: With 

p defined as a part we can write (replace the keyword UNION by DIFFERENCE or 

INTERSECTION for the other operations): p.SetByBoolean(name='Set3', 
sets=(p.sets['Set1'],p.sets['Set2'],), operation=UNION) 

2.3.1) Selecting Edges 

We first look at how to handle edges in Abaqus CAE using Python commands and then look at 

differences to selecting other geometry, model, or mesh entities like vertices, faces, cells, 

datums, referencePoints, nodes, and elements. In the figure below, we see that there are two 

data types for edges: A single edge (Edge) or edges (Sequence of Edges). Every edge has an 

index and every edge is also uniquely identified by a point on it (pointOn). 
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Recording commands for edge selection 

If you have a part in Abaqus CAE and you record the commands for creating a set that contains 

one edge of the part, you get a line like that: 

p.Set(edges=p.edges.getSequenceFromMask(('[#400]',),), 

      name='Set-1') 

So we create a set from edges that we provide during the set creation. More details on what the 

set needs are stated in the Abaqus Documentation. The edges are provided in a weird way with 

a mask command and a certain number which is 400 in this case: 

p.edges.getSequenceFromMask(('[#400]',),) 

That does not help us much for our automated model: We do not know what the number 400 

means and by using this number we might select something different of the model once we 

scripted the model. 

Selecting edges using findAt 

There is also no easy way for knowing what number to use for what edge. This is why we 

already had a certain command in the model.py template, where we adapted the 

journalOptions of Abaqus CAE: 

session.journalOptions.setValues(replayGeometry=COORDINATE, 

                          recoverGeometry=COORDINATE) 

After running that command, recording set creation in Abaqus CAE will give something like 

this for the edges: 

p.edges.findAt(((20.0, 10.0, 5.0), )) 

Now that looks better for scripting! We obviously just need to write a coordinate that lies on 

the edge in three brackets. Just make sure that the coordinate does not have multiple edges on 

it because then you will just get one of them, and you do not know which one upfront. Multiple 

edges work similarly: 

http://130.149.89.49:2080/v2016/books/ker/pt01ch45pyo04.html#ker-set-set-pyc
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p.edges.findAt(((20.0,3.4375,20.0),), ((20.0,-16.25,5.0),), 

               ((20.0,-9.6875,0.0),), ((20.0,10.0,5.0), )) 

Do we need three brackets or would two also work? Well, for that question, we need to look at 

the data types in Abaqus. When we write a findAt command like above, we get a sequence of 

edges (that we can also get by using a range of indices in square brackets) and not just a single 

edge. Ans in a set or surface we do need a Sequence of edges: 

# multiple edges 

>>> type(part.edges[1:5) 

<type 'Sequence'> 

# one single edge 

>>> type(part.edges[0]) 

<type 'Edge'> 

 
Writing p.edges gives you all the edges in the part in a sequence. 

If you have a list of coordinates that you want to use in findAt, you need to pass the list as 

coordinates: 

list_edge_pos = [[20.0, 3.4375, 20.0], [20.0, -16.25, 5.0], 

                 [20.0, -9.6875, 0.0], [20.0, 10.0, 5.0]] 

 

p.edges.findAt(coordinates=list_edge_pos) 

A list like that could have been created automatically from positions of edges that you know 

from your model parameters, so this command could be something to use in a scripted model. 

Selecting edges using getByBoundingBox 

Sometimes we want to create sets from multiple edges that lie at specific coordinate ranges in 

the model. If we have a symmetry plane it thus would be nice to just select all edges that lie in 

this plane, no matter how many of them there are. This can be done with the function 

getByBoundingBox(). You can use xMin, xMax, yMin, etc. to specify a region. All edges that 

completely lie in this region are selected. Due to the tolerances in Abaqus, using xMax=0 might 

not give you all edges that lie at x=0, so you should define a very small tolerance value and use 

that: 

TOL = 1e-5 

 

# all edges that lie at x=10 

p.edges.getByBoundingBox(xMin=10.-TOL, xMax=10.+TOL) 

 

# all edges that lie at x=0 (no edges at x < 0) 

p.edges.getByBundingBox(xMax=TOL) 

Now that is much more elegant than findAt, isn’t it? I use it for all simple selections and in 

most cases, the combination of getByBoundingBox and boolean set operations is sufficient. 

There are similar functions that use a cylinder or a sphere instead of the box for selection. You 

can check them out in the Reference Guide of the Abaqus Documentation. 

Selecting edges by edge properties 

For some edges, it would be rather complicated to calculate a coordinate that lies on the edge. 

With defining a bounding box, we often would also select other edges that we do not want. So 

it would be nice to select an edge by other properties. In the above figure, we saw that each 
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edge has a featureName(a string that defines how it was created) and functions like getSize 

and getRadius. Maybe you have some edges that you know exactly the size of but not where 

they are: So let’s look at how to select those! You can check out all the properties of single 

edges by looking at one edge in your part: 

>>> dir(p.edges[0]) 

There is no direct way of creating edge sequences we need for sets by edge properties. We can, 

however, get the edges we want by those features, then create a list of edge positions (with the 

function pointOn for each edge), and use those positions in a findAt command. If you use a 

for loop, that could look like that: 

edge_coord = [] 

 

for edge in p.edges: 

    if edge.getSize() > 5.-TOL and edge.getSize() < 20.+TOL: 

        edge_coord.append(edge.pointOn) 

 

p.Set(name='e1', edges=p.edges.findAt(coordinates=edge_coord)) 

Or if you use list comprehension like me, you can write the selection in one line. See which one 

you prefer and then stick to it: 

edge_coord = [edge.pointOn for edge in p.edges if 

              edge.getSize()>5.-TOL and edge.getSize()>20.+TOL] 

 

p.Set(name='e1', edges=p.edges.findAt(coordinates=edge_coord)) 

By all means, do not call your edge sets e1, this is just to not make the code to long in these 

blocks. Use meaningful names, it will save you a lot of worries! 

2.3.2) Selecting other model entities 

Everything that we have seen for selecting edges also works for vertices, faces, cells, nodes, 

and elements. Just note that the properties would be different: A vertice, for example, wouldn’t 

have a size! So use findAt and getByBoundingBox, and if you want to select something by its 

properties, take one of those and use dir() to see the properties. 

For datums (planes, axes, coordinate systems, etc.) and referencePoints, it actually is different. 

When you pass a referencePoint to a set, Abaqus wants you to use the following syntax: 

# create referencePoint in part at coordinate (0,0,0) 

p.ReferencePoint(point=(0,0,0)) 

 

# create set out of referencePoint 

p.Set(name='RP', referencePoints=(p.referencePoints[3],)) 

with 3 being the id of the reference Point that might also change when we change our model 

in the script. There might be some reasons why this has to be so complicated that I not get, but 

this is that rather inconvenient way you have to use referencePoints in sets: 

# create referencePoint in part at coordinate (0,0,0) 

rp = p.ReferencePoint(point=(0,0,0)) 

 

# create set out of referencePoint 

p.Set(name='RP', referencePoints=(p.referencePoints[rp.id],)) 
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A typical application of a datum is using a datum plane to cut a geometry. This would look like 

that: 

# create a datum plane at x=5 

plane = p.DatumPlaneByPrincipalPlane(offset=5, principalPlane=YZPLANE) 

 

# partition all faces by the datum plane 

p.PartitionFaceByDatumPlane(faces=p.faces[:], 

                            datumPlane=p.datums[plane.id) 

2.4) Exercises 

1. Create a small model that contains a 2D part by hand in Abaqus CAE and look at all the 

functions the model and the part have. 

2. Try all the ways for selecting edges that were described above. See for yourself what happens 

when you select an edge with findAt by giving a coordinate that belongs to two edges! 

3. Create a reference point in your part and make a set out of it. Look at the recorded Python 

commands and see what id your referencePoint was. 
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3) Abaqus Viewer 

As we looked into scripting the model in the last section, we now deal with the evaluation of 

the model in a scripted way. This can be done in the Abaqus Viewer, which is also included in 

Abaqus CAE. Everything starts now with the session repository. We can get the recorded 

commands from either the .rpy file or the abaqusMacors.py file. 

There are two kinds of output in Abaqus: 

1. Field Output (result fields like displacement or stress)  

2. History Output (lists of result values like total strain energy for all time frames) 

 

3.1) Stuff we want to evaluate 

We would like to use the field output to export the data, view the result fields to write images, 

and look for maximum or mean result values in the model. We need the history output to export 

the data and create time-output curves. 

Furthermore, in the Abaqus Viewer, you can create a path and evaluate field output along this 

path. The path points can be nodes selected by the user or coordinates that might or might not 

lie on the mesh. If you use a coordinate-based path, Abaqus has to interpolate the field output 

and returns nothing for points that lie outside the mesh.  

There is some default output that is generated in each CAE model. If you need something that 

is not in the default output, you can define that in your model by creating an additional field or 

history output in the step module of Abaqus CAE (with the model defined as m) 

# additional field output 

m.FieldOutputRequest(name='F-Output-2', 

       createStepName='Step-1',variables=('IVOL',)) 

 

# additional history output: U1 for nodes in set 
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m.HistoryOutputRequest(name='H-Output-2', 

 createStepName='Step-1', variables=('U1', ), 

 region=inst.sets['Set-1']) 

To plot field output outside Abaqus, you need the coordinates of the nodes (node-based results 

like displacement) or the integration points (integration-point based results like stress). The 

easiest way to get those coordinates is defining coordinates as an additional field output 

(COORD). For the nodes, this can be done in Abaqus CAE and thus directly with Python; for 

the integration points, this has to written to the inp file, which can be done in Abaqus CAE 

using the following commands (we also output the integration point volumes and node 

coordinates): 

model.keywordBlock.synchVersions() 

block_list = model.keywordBlock.sieBlocks 

pos_i = [i for i, j in enumerate(block_list) 

         if 'Output, field' in j] 

# coordinates of IP (COORD) & volume of IP (IVOL) 

str_out = "**\n*Element Output, directions=YES\n\ 

           COORD,IVOL,\n**\n*Node Output\nCOORD," 

# insert the str_out string 

model.keywordBlock.insert(pos_i[0], str_out) 

 
Writing lines to the input file in Abaqus CAE is something you should do last before submitting the 

job because changing something in your model later usually messes up your model. 

The first decision to make for the evaluation is whether to use Abaqus CAE or the Abaqus 

Viewer, which can be opened separately. I suggest to take Abaqus CAE as well, and if you 

build, run and evaluate your model in the same script, you need to do that anyway. With our 

usual import statements from the model, we have everything imported that we need for 

evaluation in Abaqus CAE.  

Our first command is for loading the odb that we can view or get data from: 

# open the odb with the odb_name 

odb = session.openOdb(name=odb_name+'.odb') 

Note that having many odb files open at the same time is not a good idea, so after you finished 

your evaluation, you should close the odb: 

# close the odb 

odb.close() 

Usually, you would open an odb file and look at filed outputs and maybe create some rather 

ugly-looking diagrams from history output. We now look into how to access field and history 

output with Python commands. Only some of it can be done by recording commands from 

Abaqus, so we need to take a closer look: 

3.2) Obtaining field ouptut data 

Let‘s access field output data: In a frame, there are fieldOutputs with their values that you 

can access by its index like frame.fieldOutputs.values. Those values have a node or 

element number, other information, and most importantly, our result data as a list. Here we take 

the last step and the last frame of it (an index of -1 returns the last element of a list) and get the 

stress for this last frame: 
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# last frame 

frame_end = odb.steps.values()[0].frames[-1]  

field_out = frame_end.fieldOutputs['S'] 

 

# getting field output directly (slow, but robust) 

s_out = np.array([i.data for i in field_out.values]) 

There is also the possibility of using so-called BulkDataBlocks to access the result data. This 

method is very fast but has some bugs. Different kinds of elements are output in different data 

blocks. So for a simple evaluation, especially if you do not care about how long reading the 

data needs, I do not suggest to use BulkDataBlocks The command np.copy() is needed there 

because of a bug: 

# getting field output with BulkDataBlocks (fast, but with some bugs) 

s_bulk = field_out.bulkDataBlocks 

s_out = np.concatenate([np.copy(i.data) for i in s_bulk]) 

The evaluation of field output data seems rather complicated: We do not directly know what 

node or element is behind values, but we know that all kinds of output will be in there (node- 

and integration point data, different element types, etc.). Usually, it is sufficient to have the 

coordinates of the output points and the output data, so we just need to make sure we get the 

same kinds of coordinates (nodes or integration points) as we have in our other field output. 

This can be done with the getSubset function applied to a fieldOutput: 

field_out = frame_end.fieldOutputs['COORD'] 

 

# position can be NODAL or INTEGRATION_POINT 

field_out = field_out.getSubset(position=NODAL) 

We can get the nodal and integration point coordinates separately. Displacements are nodal 

results; stress and strain are integration point results — We can write one of those NumPy 

arrays to a text file like that:  

# write to .dat file 

np.savetxt(odb_name+'_s.dat', s_out) 

 
Using the name of the odb file in the result files and keeping a similar syntax (‘_s_out’ for stress, 

‘u_out’ for displacement, etc.) is a good idea! If you do not want to have too many separate files for 

your output, you can think about merging the arrays that you get for nodal coordinates and 

displacements using NumPy array operations.  

3.3) Printing field output images 

One of the first things you probably do after an Abaqus job is finished is opening the odb file 

and looking at the von Mises stress field. There are many options for displaying the filed output: 

Different kinds of field output, zoom or rotate the view, cut your model, change the legend and 

so on. Once you have your view ready, you can print an image from Abaqus (using File/Print), 

where png images work best (they even have a transparent background). Let’s look at how to 

automate that, assuming you already know at what angle you want to view what result. 

When we want to print nice-looking images, we face two problems in Abaqus: First, depending 

on the Abaqus window, the aspect ratio of the image will change and second, the legend is 

usually too small and there is lots of text in the window that we do not want to have in our 

image: 

https://www.datacamp.com/community/tutorials/python-numpy-tutorial
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3.3.1) Saving the view 

So, what can we do concerning the changing aspect ratios of the view window? We give the 

view window a fixed width and height that we will work with. Run those commands and run 

them in Abaqus: 

vp = session.viewports['Viewport: 1'] 

 

# Change size of viewport (e.g. 300x200 pixel) 

vp.restore() 

# position of the viwport 

vp.setValues(origin=(50,-100)) 

vp.setValues(width=300, height=200) 

Now you have a window with a fixed size and thus aspect ratio. Start recording a macro or use 

the rpy file in the following: Load your odb and display the results in the way you want. Zoom, 

drag and rotate your model in the viewport. Once you are happy with what you see, go to 

View/Save and save your view e.g. as ‘User-1’ with the option Save current.  

Now look into your macro or rpy file and copy the commands for loading your odb, showing 

the results, and saving your view. Since all information about your view is now in the ‘User-1’ 

view, you can delete all zooming, rotating and dragging commands. Also, add a line for loading 

the saved view by vp.view.setValues(). After cleaning the code up and adding this line, it 

should look something like that: 

# load the odb 

odb = session.openOdb(odb_name+'.odb') 

 

# display the results 

vp.setValues(displayedObject=odb) 

# show field output (INVARIANT/COMPONENT) 

vp.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,)) 

vp.odbDisplay.setPrimaryVariable(variableLabel='S', 

     outputPosition=INTEGRATION_POINT, 

     refinement=(INVARIANT, 'Max. Principal'),) 

 

# save view 'User-1' 

session.View(name='User-1', nearPlane=150,farPlane=240,width=63, 

    height=40,projection=PERSPECTIVE,cameraPosition=(15,0,20), 
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    cameraUpVector=(0,1,0),cameraTarget=(15,0,0), 

    viewOffsetX=-3.5, viewOffsetY=0.02, autoFit=OFF) 

 

# load the defined view 

vp.view.setValues(session.views['User-1']) 

If the size of your model geometry can change a lot, using a fixed view is not such a good idea: 

Then, you can use the default view, save your view with the option Auto-fit (Abaqus 

automatically zooms so that the hole geometry is in the window) or just use one of the main 

views like that (access them with View/Toolbars/Views): 

vp.view.setValues(session.views['Front']) 

3.3.2) Formatting the legend and hiding text boxes 

In Abaqus, you can go to Viewport/Viewport Annotation Options to change the legend 

formatting and also select what kinds of text boxes and coordinate systems should be viewed 

in the viewport. Just do that in Abaqus and record it. My favourite formatting looks like that 

(hide everything except the legend, white legend background and bigger font size): 

# change the legend and what is displayed 

vp.viewportAnnotationOptions.setValues(legendFont= 

       '-*-verdana-medium-r-normal-*-*-140-*-*-p-*-*-*') 

vp.viewportAnnotationOptions.setValues(triad=OFF, state=OFF, 

    legendBackgroundStyle=MATCH,annotations=OFF,compass=OFF, 

    title=OFF) 

You might need to adapt the view of your model because the legend became bigger. Just do it 

and copy the new command for saving the view to your script. Finally, we create a png image 

of the viewport. You can go to File/Print, set everything as you like, record the commands, and 

copy them to your script. After cleaning them up they might look something like that: 

# output image 

session.printOptions.setValues(reduceColors=False, vpDecorations=OFF) 

# set a bigger image size: 3000 x 2000 pixels 

session.pngOptions.setValues(imageSize=(3000, 2000)) 

session.printToFile(fileName=odb_name+'_max_princ',  

    format=PNG, canvasObjects=(vp,)) 

This way, you automatically export an image like that. And can do so also for hundreds of 

different load cases in the model. Even with this model, you could think about how to export 

an image for each frame to see how the stresses become more and more uniform with plastic 

deformation. 

A common error for saving images is that you set the size of the viewport bigger than the screen 

resolution. So rather take a smaller size of the window but then use imageSize in the pngOptions to 

increase the image size. 
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3.4) Getting history output data 

History output is part of the step object. Between the step and the history output, there is 

something called historyRegion, which defines what the history output is for (the whole 

assembly, a contact definition, single nodes, etc.). Let’s look at how to access history output 

and deal with those regions in more detail. 

 

Once you know the history region where your desired histroyOutput is in, you can get the 

time/result list as I do it here for the whole strain energy of the model ALLSE, which is in the 

history region with the name ‘Assembly ASSEMBLY’: 

step1 = odb.steps['load'] 

 

# get time/ALLAE list 

ae_data = np.array(step1.historyRegions['Assembly ASSEMBLY']. 

     historyOutputs['ALLSE'].data) 

You can then save your NumPy array containing the history output as we saw it for the filed 

output. 

To evaluate multiple steps, you have to obtain the history output for each step separately and then 

merge them. 

But how do we get history output that is not just the default energy of the hole model but for 

example the displacement of a single node? Writing your step and then .historyRegions[, 

and pressing TAB, you can browse through your historyRegions. In one of my models, I find a 

node that I used for history output: 
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>>> step.historyRegions['Node PLATE-1.7814'] 

Maybe you ask yourself: “How do I know what number my history output node has?”. You 

don’t, at least not directly! However, you can access the node sets of your instances and find 

out the node label n_hr in this way: 

>>> inst = odb.rootAssembly.instances['PLATE-1'] 

>>> n_hr = inst.nodeSets['RP'].nodes[0].label 

You can then create a string str_hr_node for the historyRegion: 

# put together a string to select history region 

str_hr_node = 'Node '+inst.name+'.'+str(n_hr) 

 

# get the history region for the node 

hr = step.historyRegions 

If you know that there is only one node in the history regions, you can also select this history 

region by its name like that (using the so-called list comprehension of Python): 

hr_node = [hr for hr in step.historyRegions 

           if 'Node' in hr.name][0] 

3.5) Evaluating results along a path 

Sometimes, we want to evaluate field output along a path. Abaqus lets us create paths in the 

Viewer with Tools/Path/… and can evaluate results along those paths. The basic option is using 

a list of nodes to define the path. 

 

However, it is also possible to define coordinate-based paths. This, for example, creates a path 

with three points from the point coordinates: 

# create path from coordinates 

pth = session.Path(name='Path-1', type=POINT_LIST,  

          expression=((0,0,0), (20,0,0), (50,0,0))) 

For the path evaluation, you first have to display the desired field output variable before 

extracting path results. The first column of the path output can be set by the statement 

labelType: It can be the distance along the path (TRUE_DISTANCE), the distance projected onto 

an axis (X_DISTANCE for x-axis) or a coordinate (e.g. X_COORDINATE): 
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# field output to be evaluated along path 

vp.odbDisplay.setPrimaryVariable(variableLabel='S',  

    outputPosition=INTEGRATION_POINT,refinement=(COMPONENT, 'S22')) 

 

# output for 20 eqiuidistant points over path 

# shape: path over DEFORMED or UNDEFORMED geometry 

 

xy = session.XYDataFromPath(name='XYData-1', path=pth, 

    includeIntersections=False, shape=DEFORMED, 

    projectOntoMesh=False, pathStyle=UNIFORM_SPACING, 

    numIntervals=20, projectionTolerance=0,  

    labelType=TRUE_DISTANCE) 

Then you can save your path results xy in a a text file. 

Abaqus needs to interpolate result fields if you evaluate paths: You get a value for any coordinate or 

nothing if the coordinate lies outside your elements. However, this interpolation is rather slow. 

3.6) Exercises 

1. Run the model script from appendix A and copy the odb file to a separate folder. 

2. Evaluate the field Output of the displacement U and the coordinates COORD for all model nodes 

and write them to separate dat files. You will need to use the above getSubset for the 

coordinates. 

3. Write a script that automatically creates a nice-looking png image of the vertical stress. 

4. Evaluate the history output of the vertical reaction force RF2 and vertical displacement U2 of 

the reference point and write those two columns into a dat file. 

5. Create a path that goes from the notch tip to the right and evaluate the vertical stress S22 over 

the x-coordinate: a) for undeformed geometry and b) for deformed geometry. 

6. Load and plot all the dat files in the program of your choice (Origin, Excel, MatLab, Python, 

etc.). How do the results correspond to the expectations and analytical calculations in chapter 

2? 
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4) Example Model 

4.1) Developing a scripted model 

Now you know how to record and run Python commands in Abaqus and what commands you 

can directly adapt from the recordings. You also have learned how to create sets and surfaces, 

and do evaluations that could not be directly taken from the recorded commands. So you are 

prepared to use these skills to build a complete Abaqus model that is scripted in Python. 

You could just sit down and start developing your code. However, there is a workflow that 

evolved for me over the years that I will state in the following. Some of it is based on my 

personal preferences so once you get a hang of it, of course, you can and should adopt it. But 

for starting to script Abaqus, I advise you to use the following workflow, particularly so you 

do not forget about some necessary steps that cause you troubles later. Also, be aware that you 

will spend dozens of hours on developing models like that, most of it looking for errors and 

correcting them: So if you work as structured and clean as possible, this saves you a lot of time 

(and worries). 

As you record commands and build the scripted model (which we will call model.py), have an 

Abaqus CAE window open and a text editor (I prefer editors that support syntax highlighting 

like VisualStudio Code or PyCharm) open side by side. If you use the student version, you can 

only obtain the Python commands using the Macro manager. Otherwise, you can also look at 

the jnl file for Abaqus CAE commands and the rpy file for viewer commands. In this setup, we 

will create the model feature by feature in Abaqus CAE, and stop after each step to copy the 

new Python code to out model.py, adapt them, test them by running execfile('model.py') 

in the Abaqus command window (>>>), and continue. 

 

Development environments like Visual Studio Code or PyCharm help you a lot while 

developing your Python code: They can do code completion, highlight possible errors and so 

on. They do, however, not know all the Abaqus-Python commands. Tools like kite, however, 

can learn the Abaqus commands, so once you typed an Abaqus-Python command, it will 

suggest it in the future when you use code completion.  

https://www.kite.com/
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In the following figure, the important steps of the workflow for developing your model.py file 

are listed. You start from a template that already has al the necessary import statements. As the 

first step, you define all your model parameters and run some sanity checks on them, so you 

won’t spend hours looking for an error in your scripted model until you find out that your 

parameters didn’t make sense. The second step is actually building up your model, which you 

should do step by step: a) add one or two features in Abaqus CAE, b) copy the recorded lines 

into your model.py file, c) clean up those lines, and d) insert your model parameters. Then you 

run your new model.py file in Abaqus CAE either by writing execfile('model.py') in the 

Abaqus command window (>>>) or by clicking File/Run Script. If everything runs ok, you can 

continue, otherwise, you have to look for errors in your code, try correcting them, rerun the 

model and so on. 

Once you have completed scripting the model comes the third step: Group all commands in 

functions to make your code easier to read and more structured. I even suggest having one 

function in the end that builds, runs, and evaluates your hole model. 

 

Now we look into these steps in more detail, starting from the model header. It contains all 

necessary import statements (so you can ignore the import statements in the recorded files). We 

need the TOL variable and the journalOptions command for selecting stuff as stated in chapter 

4. Having our working directory defined as DIR0 will help us in the next chapter. Do not forget 

to describe your model in the first line comment. I also like to add a date, and when I might 

share it with somebody, my initials MP. 

# insert meaningful definition of the model, MP, 09-2020 

from abaqus import * 

from abaqusConstants import * 

from caeModules import * 

import os 

import numpy as np 

session.journalOptions.setValues(replayGeometry=COORDINATE, 

                   recoverGeometry=COORDINATE) 

TOL = 1e-6 

DIR0 = os.path.abspath('') 

4.1.1) Define and check parameters 

When you got this far, you should already have a sketch of your model with all its parameters 

defined. At this point, you write them into your model.py file. o not forget to state the dimension 

system you are in (e.g. N-mm-s) and add comments for all the variables. This is so you can be 

sure that when you continue developing your code, you do not have to deal with errors you 

made here, because you mixed up variables or stated some of them in cm and others in mm. 
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# parameters for geometry, material, load and mesh (N-mm-s) 

# ------------------------------------------------------ 

b = 10.               # width of the plate (mm) 

h = 20.               # height of the plate (mm) 

# ... 

Because we really don’t want to look for problems later that had to do with parameters that did 

not make sense, I suggest adding some sanity checks to your model script after the parameter 

definitions. Particularly for geometric parameters, I suggest doing so! You can choose for 

yourself how detailed you want to do that: Everybody knows, for example, that a Young’s 

modulus needs to be positive: So that would be an error you could directly see when you look 

at your parameters. This is the syntax for checking a variable and raising an error: 

if b < 0: 

    raise ValueError('width b must be positive') 

4.1.2) Script the model 

Now everything is ready to build the model. Take these lines to reset the model and defining 

the main model as model. 

# create the model 

# ------------------------------------------------------- 

Mdb()                 # reset the model 

model = mdb.models['Model-1'] 

Run the existing Python model in Abaqus CAE with execfile('model.py') in the Python 

command line. Add one or two features in the Abaqus CAE window. Copy the relevant lines 

from the rpy, jnl or macro file to your model.py file. Check if this runs. For drawing a rectangle 

in a sketch, this might look like that: 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', 

    sheetSize=200.0) 

mdb.models['Model-1'].sketches['__profile__'].rectangle( 

    point1=(0.0, 0.0), point2=(35.0, 25.0)) 

A big part of the recorded commands are the import statements. After importing everything 

from abaqus, abaqusConstants and caeModules, as done in the above header, you do not 

need those individual import statements. 

Introduce shorter variables for the model, sketch, etc. and replace numbers by your variables. 

Add comments to the code: 

# create a sketch 

s = model.ConstrainedSketch(name='plate', sheetSize=200.0) 

# draw a rectangle 

s.rectangle(point1=(0,0), point2=(b,h)) 

Run the whole script that now contains some new lines. Does it work? Does it do as it should? 

You will spend most of your time at this step, looking for errors. Abaqus usually tells you where 

the error occurred. In this case, for example, the sketch was not defined before drawing a 

rectangle in it: 

>>> execfile('model.py') 

A new model database has been created. 

The model "Model-1" has been created. 

File "model_plate.py", line 38, in <module> 
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    s.rectangle(point1=(0.0, 0.0), point2=(35.0, 25.0)) 

NameError: name 's' is not defined 

If you do not instantly get what is wrong with your code, go back to the last running version 

and then continue in very small steps (adding and running the script) to find out where exactly 

the problem was. 

Once your newest commands work, continue building your model by recording the next steps 

of your model creation, job creation and model evaluation. 

To create, run, and evaluate a model in one script, Python should wait for the job to complete 

before doing the evaluation of the odb. This can be done by job.waitForCompletion() if the 

job has been defined as job.  

4.1.3) Group commands in functions 

Once you made sure that parts of the code really work, you can start collecting them in 

functions. Think of all the variables that you have to pass to the function and what the function 

should return. In most cases, you will pass the model and some other parameters to the functions 

that will change the model. You do not need to return the changed model. 

def draw_sketch(model,b,h): 

    # create a sketch 

    s = model.ConstrainedSketch(name='plate', sheetSize=200.0) 

    # draw a rectangle 

    s.rectangle(point1=(0,0), point2=(b,h)) 

    return 

Introduce one function that builds, runs and evaluates your hole model by calling all the other 

functions. If you want, you can keep some order by grouping parameters that belong together 

in the function arguments (geometry, material, load, etc.): 

# function for the whole model 

def make_model((b,h),(E,nu),u_y,mesh_size): 

    # reset model 

    Mdb() 

    model = mdb.models['Model-1'] 

    # call other functions to build the model 

    # ... 

    return 

This might seem unnecessary to you, and introducing lots of arguments of functions where we 

input variables that we defined in a fixed way above seems useless. But keep in mind what we 

want to do ultimately: Varying some of our parameters in an automated way, and this is much 

easier once we have to call one function of the model and not make a loop over more than 

hundred lines of code. 

4.2) Scripting the example model 

The figure below shows the model we introduced in chapter 2. All the parameters except the 

plate thickness T are stated in the figure. The boundary conditions look good (no rigid body 

motion expected) so we can start scripting the model. We start by creating an Abaqus Model 

by clicking in Abaqus CAE. This is the time to look if the model runs, not during scripting. 

Once everything is working (as in this cae file), you can start building your scripted model. 
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4.2.1) Header and variables 

We take the header of the script from above and insert a meaningful name, my initials and a 

date: 

# Plate with hole model for Abaqus/Python course, MP, 10-2020 

 

from abaqus import * 

from abaqusConstants import * 

from caeModules import * 

import os 

import numpy as np 

session.journalOptions.setValues(replayGeometry=COORDINATE, 

                recoverGeometry=COORDINATE) 

DIR0 = os.path.abspath('') 

TOL = 1e-6 

We state that the parameters are given in the N-mm-s system and define all of them. Taking 

time to write comments for all those parameters and writing down their dimensions helps you 

avoid errors. In this case, we check if the hole is really inside the plate: If not, we return an 

error. 

# parameters for geometry, material, load and mesh (N-mm-s) 

# ------------------------------------------------------ 

b = 16.               # width of the plate (mm) 

h = 20.               # height of the plate (mm) 

radius = 4.5          # radius of the hole (mm) 

uy = 0.08             # vertical displacement of the top (mm) 

E_steel = 210000.     # Young's modulus of steel (MPa) 

nu_steel = 0.3        # Poisson's ratio of steel (1) 

sy_steel = 500.       # yield stress of steel (MPa) 

mesh_size = 0.3       # edge length of the mesh (mm) 

 

if radius >= b/2: 

    raise ValueError('width b too small for the hole radius') 

if radius >= h/2: 

    raise ValueError('height h too small for the hole radius') 

Already structuring the code by grouping commands and writing headers makes it easier to find 

problems in your code and later helps you for creating functions.  

4.2.2) Model setup 
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We next take the template for resetting and redefining the model as model and add it to the 

model.py script: 

# create the model 

# ------------------------------------------------------- 

Mdb()                 # reset the model 

 

model = mdb.models['Model-1'] 

Now its time for recording commands in Abaqus CAE and copying them into the model.py file. 

I created a sketch and drew the geometry of the plate in it, which consisted of four lines and 

one arc. After cleaning up the code and removing lots of unnecessary constraint commands, the 

sketch can be built like this: 

# draw the sketch 

s = model.ConstrainedSketch(name='plate', sheetSize=200.0) 

s.ArcByCenterEnds(center=(0,0), point1=(0,radius), 

                  point2=(radius,0), direction=CLOCKWISE) 

s.Line(point1=(radius,0), point2=(b/2.,0)) 

s.Line(point1=(b/2.,0), point2=(b/2.,h/2.)) 

s.Line(point1=(b/2.,h/2.), point2=(0,h/2.)) 

s.Line(point1=(0,radius), point2=(0,h/2.)) 

As described above, this yielded from iteratively changing and running the code and checking 

what it did in Abaqus CAE. Creating the part is fairly simple, and was adapted to those lines: 

# create the part 

p = model.Part(name='plate', dimensionality=TWO_D_PLANAR, 

               type=DEFORMABLE_BODY) 

p.BaseShell(sketch=s) 

As we discussed in chapter 3, the trickiest part of scripting the model is creating sets and 

surfaces. I did not record any commands for that but used the commands that were introduced 

in chapter 3 for selecting all faces, edges by their bounding box, and a reference point in this 

weird (but necessary) syntax: 

# create sets, surfaces, and reference point 

p.Set(name='all', faces=p.faces[:]) 

p.Set(name='x_sym', edges=p.edges.getByBoundingBox(xMax=TOL)) 

p.Set(name='y_sym', edges=p.edges.getByBoundingBox(yMax=TOL)) 

p.Set(name='top',edges=p.edges.getByBoundingBox( 

      yMin=h/2.-TOL)) 

 

rp = p.ReferencePoint(point=(0,h/2,0)) 

p.Set(name='RP', referencePoints=(p.referencePoints[rp.id],)) 

The commands for creating materials, creating sections and assigning sections is straight-

forward again. Just record the commands and clean them up. 

In the recorded commands, you will have lots of additional options like the thickness in 

HomogeneousSolidSection: You can just keep all of them, which makes your code bulky and 

confusing — Or you try removing some that seem irrelevant and check if your script still works. 

# create material, create and assign sketchOptions 

mat = model.Material(name='steel') 

mat.Elastic(table=((E_steel, nu_steel), )) 

mat.Plastic(table=((sy_steel, 0.0), )) 

 

model.HomogeneousSolidSection(name='steel', material='steel', 
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                              thickness=None) 

 

p.SectionAssignment(region=p.sets['all'], sectionName='steel', 

                    thicknessAssignment=FROM_SECTION) 

The next step is defining the assembly as a and creating an instance of your part: 

# assembly 

a = model.rootAssembly 

inst = a.Instance(name='plate-1', part=p, dependent=ON) 

Then we record and adapt the commands for creating a static load step and create a history 

output for the reference point. For the history output, as for boundary conditions and loads, we 

have to use the instance and not the part (inst.sets): 

# step and hostory output 

model.StaticStep(name='pull', previous='Initial',  

    maxNumInc=1000, initialInc=0.1, minInc=1e-08, maxInc=0.1, 

    nlgeom=ON) 

 

model.HistoryOutputRequest(name='H-Output-2', 

    createStepName='pull', variables=('U2', 'RF2'),      

    region=inst.sets['RP']) 

In the interaction module of Abaqus CAE, we defined a coupling of the upperr nodes and the 

reference point, which corresponds to this recorded command: 

# constraint 

model.Coupling(name='couple_top', couplingType=KINEMATIC,  

    controlPoint=inst.sets['RP'], surface=inst.sets['top'], 

    influenceRadius=WHOLE_SURFACE, u1=OFF, u2=ON, ur3=OFF) 

We need three boundary conditions in the model: Two symmetries and one vertical 

displacement at the top. You can record creating one of these boundary conditions, and adapt 

it for the three of them. Just adapt the createStepName, the region and what displacements are 

constrained: 

# boundaries and load 

model.DisplacementBC(name='x_sym', createStepName='Initial', 

                     region=inst.sets['x_sym'], u1=0) 

model.DisplacementBC(name='y_sym', createStepName='Initial', 

                     region=inst.sets['y_sym'], u2=0) 

model.DisplacementBC(name='pull', createStepName='pull', 

               region=inst.sets['RP'], u1=0, u2=uy, ur3=0) 

For creating boundary conditions in Abaqus CAE, you can use the option 

Symmetry/Antisymmetry/Encastre: This yields separate commands for each type of boundary 

condition. I suggest to always use Displacement/Rotation and then set relevant displacements 

to zero. This always uses the same command model.DisplacementBC() and is thus easier for 

scripting the model. 

Creating a mesh can get quite complicated. In this case, however, we only want to seed the 

whole part with a edge length of size and generate the mesh of the plate. For using edge-based 

seeds or changing the element types (plane stress is default for 2D elements), you can record 

and insert additinal commands: 

# meshing 

p.seedPart(size=mesh_size) 
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p.generateMesh() 

So the model is completed! For running it, we create and run a job. If we want to evaluate the 

results in the same model, we can use the waitForCompletion function so the script waits 

until the job finishes before it continues: 

job_name = 'pull-plate' 

 

# create and run job 

job = mdb.Job(name=job_name, model='Model-1', type=ANALYSIS, 

              resultsFormat=ODB) 

job.submit(consistencyChecking=OFF) 

job.waitForCompletion() 

Before submitting the job, you can save the model using mdb.saveAs('model-name.cae') . 

If the job crashes, you then have the latest cae file to check for errors. 

4.2.3) Model evaluation 

Evaluating the model using Python commands is usually quite different from what you get 

when you click in the Abaqus Viewer and record commands. Scripting those evaluations is 

described in chapter 4. We now apply those scripts to the plate model, starting with a small 

header that loads our odb file, defines the viewport as vp and displays the odb file: 

# open the odb 

odb = session.openOdb(job_name+'.odb') 

 

vp = session.viewports['Viewport: 1'] 

vp.setValues(displayedObject=odb) 

4.2.3.1) Print field output to an image 

In the plate model, we do not want to output the full stress, strain and displacement fields. 

Otherwise, we would have needed to define additional field output of the coordinates like 

described in chapter 4. We want, however, create images of the stress fields. For that, we add 

the commands for setting the size of the viewport to the model script, run it and then rotate, 

zoom, and drag until we like the view of the model.  

# print a field output image 

# ------------------------------------------------------ 

 

# Change size of viewport (e.g. 300x200 pixel) 

vp.restore() 

# position of the viwport 

vp.setValues(origin=(50,-50)) 

vp.setValues(width=150, height=200) 

Then, we save the view using View/Save with the option Save current. The recording of this 

command is then added to our script. We only need to use the command vp.view.setValues 

to load this saved view and we are good to go. If we intend to change the geometry of our model 

a lot, this fixed view might be ok for some of the options but not for the others. Then, you can 

set the view to one of the default views (in the code below, it is the Front view) or use the 

option Auto-fit when saving the view. 

# set up in Abaqus Viewer and copied here 

session.View(name='User-1', nearPlane=24.242, farPlane=39.003,  

    width=7.2278, height=9.3665, projection=PERSPECTIVE,   
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    cameraPosition=(2.5, 5, 31.623), cameraUpVector=(0, 1, 0), 

    cameraTarget=(2.5, 5, 0), viewOffsetX=-1.3504, 

    viewOffsetY=0.25069, autoFit=OFF) 

 

# load the defined view 

vp.view.setValues(session.views['User-1']) 

 

# for a varied plate size, take an automatic front view 

# vp.view.setValues(session.views) 

Then, we need to define what kind of field output we want to display and for what frame we 

want to display the results. Those commands can be recorded and copied into the model script. 

# view the right field output 

vp.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF, )) 

vp.odbDisplay.setPrimaryVariable(variableLabel='S', 

     outputPosition=INTEGRATION_POINT, 

     refinement=(INVARIANT, 'Mises'),) 

# set the displayed frame 

vp.odbDisplay.setFrame(step=0,frame=-1) 

There are some view options regarding state blocks and the legend that I like to set. If you 

would like to keep some of the elements or prefer a different font in the legend, record similar 

commands as described in chapter 4: 

# change the legend and what is displayed 

vp.viewportAnnotationOptions.setValues(legendFont= 

       '-*-verdana-medium-r-normal-*-*-140-*-*-p-*-*-*') 

vp.viewportAnnotationOptions.setValues(triad=OFF, state=OFF, 

    legendBackgroundStyle=MATCH,annotations=OFF,compass=OFF, 

    title=OFF) 

Finally, we can print the view of the field output to a png file. With the imageSize argument, 

you can change the resolution of the picture. Here, we create a png image that uses the model 

name with the ending _mises: 

# print viewport to png file 

session.printOptions.setValues(reduceColors=False, vpDecorations=OFF) 

session.pngOptions.setValues(imageSize=(1500, 2000)) 

session.printToFile(fileName=job_name+'_mises', format=PNG, 

      canvasObjects=(vp,)) 

4.2.3.2) Evaluating history output 

Following the description in chapter 4 on evaluation history output, we here obtain the history 

region by its name (must contain the string ‘Node‘): 

# evaluate the history output 

# ------------------------------------------------------ 

step = odb.steps['pull'] 

 

# select the history region: name starts with 'Node ' 

hr_rp = [hr for hr in step.historyRegions  

         if 'Node' in hr.name][0] 

The history region then contains the history output, that we access here. We get the data for the 

vertical displacement (U2) and the vertical reaction force (RF2). Using the syntax of NumPy 

arrays, we obtain the second column of both displacement and reaction force with the index 

and stack those two columns into a new array res_u_f, that we save in a dat file: 
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# get vertical dispacement and reaction force data 

# ((t,u),...), ((t,rf),...) 

res_u = np.array(hr_rp.historyOutputs['U2'].data) 

res_rf = np.array(hr_rp.historyOutputs['RF2'].data) 

 

# only take the second colum of data and stack those columns 

res_u_f = np.column_stack((res_u,res_rf)) 

 

# write u-rf data to file 

np.savetxt(job_name+'_res_u_f.dat',res_u_f) 

4.2.3.3) Evaluating field output along a path 

Furthermore, we are interested in the stress distribution in the remaining cross-section of the 

plate. As described in chapter 4, we create a coordinate-based path: 

# evaluate the stresses along path (y=0) 

# ------------------------------------------------------ 

 

# create path from coordinates 

pth = session.Path(name='Path-1', type=POINT_LIST, 

                   expression=((radius,0,0), (b/2.,0,0))) 

To evaluate field output along a path, we must first display the desired field output and set the 

frame for which we want to get the results: 

# field output to be evaluated along path 

vp.odbDisplay.setPrimaryVariable(variableLabel='S', 

    outputPosition=INTEGRATION_POINT,refinement=(COMPONENT, 'S22')) 

 

# setting the frame for path evaluation 

vp.odbDisplay.setFrame(step=0,frame=-1) 

And we evaluate the vertical stresses along 20 equidistant points over this path. This means that 

Abaqus interpolates the stress fields. Stating shape=UNDEFORMED and 

labelType=X_COORDINATE returns a list of undeformed x-coordinates / vertical stress pairs 

that we save to a dat file: 

# output for 20 eqiuidistant points over path 

# shape: path over DEFORMED or UNDEFORMED geometry 

 

n_points = 20 

 

# get vertical stress S22 over X_COORDINATE 

xy = session.XYDataFromPath(name='XYData-1', path=pth, 

    includeIntersections=False, shape=UNDEFORMED, 

    projectOntoMesh=False, pathStyle=UNIFORM_SPACING, 

    numIntervals=n_points, projectionTolerance=0, 

    labelType=X_COORDINATE) 

 

# write results to file 

np.savetxt(job_name+'_res_s22_path.dat',xy.data) 

4.2.4) Organizing the model using functions 

Once you have your model fully scripted and tested some parameter options, it is time to tidy 

the script up! Collect all the commands that belong together in a function to get a function for 

geometry, sections, the assembly, boundaries, running the model and your evaluations. Think 

about what is needed as an argument in each function: The geometry function, for example, 
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would need the model and the geometry parameters as arguments. When a function creates 

something (like a part) that is needed in later functions, return this variable. 

Create one function for the whole model creation, run, and evaluation that calls all the other 

functions. Check the model parameters in this function (or write a separate function for 

checking model parameters and call that function). This function could look like that: 

# one funtion for the whole plate model(create, run, evaluate) 

 

def plate_model(job_name,(b,h,radius),(E,nu,sy),uy,mesh_size): 

    # check parameters for errors 

    if radius >= b/2: 

        raise ValueError('width b too small for hole radius') 

    if radius >= h/2: 

        raise ValueError('height h too small for hole radius') 

    # reset model 

    Mdb() 

    model = mdb.models 

    # make the parts, mesh it and return it 

    p = make_geometry(model,(b,h,radius),mesh_size) 

    # make materials and sections 

    make_sections(model,(E,nu,sy)) 

    # make the assembly & constraint 

    inst = make_assembly(model,p) 

    # create step and boundaries 

    make_boundaries(model,inst,uy) 

    # save the model 

    mdb.saveAs(job_name) 

    # run the model 

    run_model(model,job_name) 

    # evaluate: create image 

    evaluate_image(job_name) 

    # evaluate: history output and path 

    evaluate_ho_path(job_name) 

    return model 

Note that by writing inst = make_assembly(model,p) you take the returned argument from 

the function and pass it to the variable inst to be used later. The individual functions are not 

listed here but can be found in the Appendix. 

You might ask yourself why we do not define the set and step names as variables: For a simple 

script like that, this would only complicate things. Just make sure that you have all your sets 

and surfaces defined in the geometry function that you will need in the other functions. 

You can call the model function just by stating values or variables for the parameters: 

# call the model function 

plate_model('small-plate',(20.,15.,7.),(1200.,0.3,40),0.05,1.) 

If you want to do that for 3 different parameter combinations, just write multiple function calls. 

If you want to vary a parameter in a certain rage and look at model results, you can write a for 

loop that does that (note that in some way you should remember what job name corresponds to 

what parameters: Here, we just write the height h into the job name): 

# define a list for the height 

h_list =  

 

# a for loop to vary the height in the model 

for h in h_list: 

    # writing the h value into the job name 

    job_name = 'plate-h-'+str(int(h)) 
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    plate_model(job_name,(20.,h,7.),(1200.,0.3,40),0.05,1.) 

Now, this is what we all have been waiting for! You have all the parameters at your fingertips 

and can vary whatever you want. The sky computation time is the limit!  

4.3) Exercises 

Now the time has come to script your own model. As you have pracitced in the last two chapters 

on small model details, you will now do for your whole model. 

1. Collect all parameters of your model and write the part of your model script where you define 

all those parameters and do some sanity checks. 

2. Build up your scripted model feature by feature as described above. Test this after each step. 

3. Build up your evaluation as described above and with help from the previous chapter. Test some 

different kinds of parameter sets and look at the results. Did you expect that?  
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5) Tidying up 

You now know how to build up a scripted Abaqus model and automatically evaluate its results. 

You might already have noticed that your very valuable Python file gets lost between all the 

result files. In this chapter, you learn to create a neat folder structure for your result files and 

delete result files that you do not need anymore. For your day-to-day work, this will be at least 

as important as being able to script your models. 

Between all the copying of Abaqus commands, writing into a Python file, testing the script, and 

looking at results, one could get quite confused. Confused enough to delete the model file or to 

make some changes that break the model file: To stay safe, I advise you to look into version 

control, which can be done with Git. An introduction to this is given here, and you can also 

synch your model with the GitLab server of the University of Leoben (if you are either studying 

at or employed by the Montanuniversitaet) or sites like BitBucket or GitHub. 

5.1) Run models in sub-folders 

Changing the working directory of Abaqus (where your models are run and the rpy file is saved) 

is quite simple: You can just write os.chdir() and state the new path for the working directory 

in the brackets. This lets you work in a more structured way: Change into a results directory 

where you run your model and where you can delete files without worrying too much. So why 

didn’t we introduce this command two chapters ago? Because as you build your model, you 

will have lots of errors to deal with, as you are in your subfolder: Then, you would have to 

manually change back to your initial folder to make the execfile('model.py') command 

work again. 

This is how a neat folder structure could look like. There is a resuls folder, containing a folders 

for each load case. Furthermore, we start running the Abaqus model by running a batch file (if 

you use Windows). 

 

As shown in the figure, it is a good idea to introduce a parameter file model_par.py that contains 

the parameter definition of your model and is loaded into the model Python script by: 

execfile('model_par.py') 

https://git-scm.com/
https://www.datacamp.com/courses/introduction-to-git-for-data-science?tap_a=5644-dce66f&tap_s=260442-87c34e
https://git.unileoben.ac.at/users/sign_in
https://bitbucket.org/
https://github.com/
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This parameter file can then be copied in the folder where the script is run, so you can later look 

up what parameters you used in that model. In Python, copying files is pretty easy, and if you 

are already in your results folder, you can copy the parameter file to the results folder in the 

following way: 

import shutil 

# copy files from 2 folders up (../../) to current folder 

shutil.copyfile('../../model_par.py', 'model.par.py') 

For your model, I suggest setting up a function that first clears the folder you want to work in 

(or create it), then changes into it, then does all your building and evaluating the model stuff, 

and then returns back to your initial directory: 

import os, shutil 

 

# absolut working path 

DIR0 = os.path.abspath('') 

 

# insert more parameters after run_folder 

def create_model(run_folder): 

    # delete folder if it exists 

    if os.path.exists(dir_name): 

        shutil.rmtree(dir_name) 

    shutil.copyfile('../../model_par.py', 'model.par.py') 

    # create folder 

    os.mkdir(dir_name) 

    # go into folder 

    os.chdir(dir_name) 

    # model setup, run and evaluation 

    # ... 

    # go back to initial folder 

    os.chdir(DIR0) 

    return 

You can adapt this function to build up, run and evaluate your model, but do so in a sub-folder 

that you can pass to the function as run_folder. 

Note that directories in Python can be denoted by either \\ or / in Windows, but if you use /, 

this works both for Windows and Linux. So in the above example, you might pass the string 

'results/load_case_a' as the run_folder. 

5.2) Deleting unwanted result files 

With os.remove(), you can delete a file that you state in the brackets. For us, it can be 

interesting to delete files that have certain extensions like .stt and .mdl after the job has finished. 

We can use a for loop to find all the files with such endings and delete them. This is already a 

function with a default list of file types type_list:  

def remove_files(dir0,type_list=('com','sim','prt','msg', 

                                 'reg')): 

    # get all files and folders in dir0 

    file_list = os.listdir(dir0) 

    # go through the files and delete some of them 

    for file in file_list: 

        if file.split('.')[-1] in type_list: 

            try: 

                os.remove(dir0+'/'+file) 

            except: 

                print('file '+file+' could not be deleted!') 

    return 
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You can directly copy this function into your model file. But be careful: os.remove() can be 

rather dangerous and delete stuff that you would like to keep. If you want to remove a folder 

and all its content, os.remove() does not work. For that, there is the rmtree function in the 

shutil module. If you try to delete a folder in that way, this will raise an error. So it is best to 

first check if the path exists with the command os.path.exists(): 

import shutil, os 

 

# create folder (delete existing folder) 

if os.path.exists(dir_name): 

    shutil.rmtree(dir_name) 

5.3) Exporting and Importing Data 

If you work with data science and Python, you use the module NumPy a lot. Numpy also has 

some neat functions for loading and saving NumPy-arrays (those arrays need to have the same 

data type — string, float, integer, etc. — in all entries) with some very simple functions: 

import numpy as np 

 

# write the numpy array f_u_arr to a .dat ASCI file 

np.savetxt('output.dat',f_u_arr) 

 

# load a numpy array from a ASCI .dat file 

f_u_arr_loaded = np.loadtxt('output.dat') 

These savetxt() and loadtxt() commands use ASCI files that can also be opened with a text 

editor. If you only want to store the data, not look at it directly and load it again with Python, 

you can use save() and load() instead of those commands to write to and read from binary 

files. 

 

In some cases, it would be good to write something more complex than an array of similar 

strings, floats, or integers to a file. Maybe you have created a dictionary with all the step names 

as keys, and the maximum occurring stresses as the values. You can write this dictionary to a 

file or read a dictionary from such a file with the json module (note that such a dictionary cannot 

contain NumPy arrays): 

import json 

 

# write dictionary to dat-file 

with file('output_dict.json','w') as f: 

    json.dump(result_dict,f) 

 

# read a dictionary from a json-formatted dat-file 

with file('output_dict.json','r') as f: 

    result_dict_loaded = json.load(f) 

https://de.wikipedia.org/wiki/JavaScript_Object_Notation
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Exercises 

1. Use your model from chapter 4 and adapt it so that it is run in a subfolder and all the unwanted 

Abaqus files like .prt, .msg, etc. are deleted afterwards. 

2. Create a separate Python file, Jupyter Notebook, or plotting sofware of your choice to plot the 

model results. Create plots that compare different sets of load parameters. 

 

Appendix A: model_plate.py 

Get the file here: www.martinpletz.com/fe-scripting-8 

# Plate with hole model for Abaqus/Python course, MP, 09-2020 

 

from abaqus import * 

from abaqusConstants import * 

from caeModules import * 

import os 

import numpy as np 

session.journalOptions.setValues(replayGeometry=COORDINATE, 

                                 recoverGeometry=COORDINATE) 

DIR0 = os.path.abspath('') 

TOL = 1e-6 

 

# Model functions 

# ------------------------------------------------------ 

 

def make_geometry(model,(b,h,radius),mesh_size): 

    # draw the sketch 

    s = model.ConstrainedSketch(name='plate', sheetSize=200.0) 

    s.ArcByCenterEnds(center=(0,0), point1=(0,radius), 

                      point2=(radius,0), direction=CLOCKWISE) 

    s.Line(point1=(radius,0), point2=(b/2.,0)) 

    s.Line(point1=(b/2.,0), point2=(b/2.,h/2.)) 

    s.Line(point1=(b/2.,h/2.), point2=(0,h/2.)) 

    s.Line(point1=(0,radius), point2=(0,h/2.)) 

 

    # create the part 

    p = model.Part(name='plate', dimensionality=TWO_D_PLANAR,  

                   type=DEFORMABLE_BODY) 

    p.BaseShell(sketch=s) 

 

    # create sets, surfaces, and reference point 

    p.Set(name='all', faces=p.faces[:]) 

    p.Set(name='x_sym',   

          edges=p.edges.getByBoundingBox(xMax=TOL)) 

    p.Set(name='y_sym',  

          edges=p.edges.getByBoundingBox(yMax=TOL)) 

    p.Set(name='top',  

          edges=p.edges.getByBoundingBox(yMin=h/2.-TOL)) 

 

    rp = p.ReferencePoint(point=(0,h/2,0)) 

    p.Set(name='RP', 

          referencePoints=(p.referencePoints[rp.id],)) 

    # meshing 

    p.seedPart(size=mesh_size) 

    p.generateMesh() 

    return p 

 

def make_sections(model, p, (E,nu,sy)): 

    # create material, create and assign sketchOptions 

    mat = model.Material(name='steel') 

www.martinpletz.com/fe-scripting-8
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    mat.Elastic(table=((E_steel, nu_steel), )) 

    mat.Plastic(table=((sy_steel, 0.0), )) 

 

    model.HomogeneousSolidSection(name='steel', 

        material='steel', thickness=None) 

 

    p.SectionAssignment(region=p.sets['all'],  

        sectionName='steel',thicknessAssignment=FROM_SECTION) 

    return 

 

def make_assembly(model,p): 

    # assembly 

    a = model.rootAssembly 

    inst = a.Instance(name='plate-1', part=p, dependent=ON) 

    # constraint 

    model.Coupling(name='couple_top',surface=inst.sets['top'], 

        controlPoint=inst.sets['RP'], couplingType=KINEMATIC,     

        influenceRadius=WHOLE_SURFACE, u1=OFF, u2=ON, ur3=OFF) 

    return inst 

 

def make_boundaries(model,inst,uy): 

    # step and hostory output 

    step = model.StaticStep(name='pull', previous='Initial',  

               maxNumInc=1000, initialInc=0.1, minInc=1e-08,  

               maxInc=0.1, nlgeom=ON) 

 

    model.HistoryOutputRequest(name='H-Output-2',  

        createStepName='pull', variables=('U2', 'RF2'),  

        region=inst.sets['RP']) 

 

    # boundaries and load 

    model.DisplacementBC(name='x_sym', u1=0, 

        createStepName='Initial', region=inst.sets['x_sym']) 

    model.DisplacementBC(name='y_sym', u2=0, 

        createStepName='Initial', region=inst.sets['y_sym']) 

    model.DisplacementBC(name='pull', createStepName='pull', 

        region=inst.sets['RP'], u1=0, u2=uy, ur3=0) 

    return 

 

def run_model(model,job_name): 

    # create and run job 

    job = mdb.Job(name=job_name, model='Model-1', 

              type=ANALYSIS, 

                resultsFormat=ODB) 

    job.submit(consistencyChecking=OFF) 

    job.waitForCompletion() 

    return 

 

def evaluate_image(job_name): 

    # open the odb 

    odb = session.openOdb(job_name+'.odb') 

    vp = session.viewports['Viewport: 1'] 

    vp.setValues(displayedObject=odb) 

    # Change size of viewport (e.g. 300x200 pixel) 

    vp.restore() 

    # position of the viwport 

    vp.setValues(origin=(50,-50)) 

    vp.setValues(width=150, height=200) 

    # set up in Abaqus Viewer, recorded, and copied here 

    """ 

    session.View(name='User-1', nearPlane=24.242,  

        farPlane=39.003, width=7.2278, height=9.3665,  

        projection=PERSPECTIVE, cameraUpVector=(0, 1, 0), 

        cameraPosition=(2.5, 5, 31.623), 

        cameraTarget=(2.5, 5, 0), viewOffsetX=-1.3504, 

        viewOffsetY=0.25069, autoFit=OFF) 

    # load the defined view 

    vp.view.setValues(session.views['User-1']) 

    """ 
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    # for a changing plate size, take an automatic front view 

    vp.view.setValues(session.views['Front']) 

    # view the right field output 

    vp.odbDisplay.display.setValues(plotState= 

        (CONTOURS_ON_DEF, )) 

    vp.odbDisplay.setPrimaryVariable(variableLabel='S', 

        outputPosition=INTEGRATION_POINT, 

        refinement=(INVARIANT, 'Mises'),) 

    # change the legend and what is displayed 

    vp.viewportAnnotationOptions.setValues(legendFont= 

        '-*-verdana-medium-r-normal-*-*-140-*-*-p-*-*-*') 

    vp.viewportAnnotationOptions.setValues(triad=OFF,  

        state=OFF, legendBackgroundStyle=MATCH,  

        annotations=OFF, compass=OFF, title=OFF) 

    # print viewport to png file 

    session.printOptions.setValues(reduceColors=False, 

        vpDecorations=OFF) 

    session.pngOptions.setValues(imageSize=(1500, 2000)) 

    session.printToFile(fileName=job_name+'_mises', format=PNG, 

                canvasObjects=(vp,)) 

    odb.close() 

    return 

 

def evaluate_ho_path(job_name): 

    # open the odb 

    odb = session.openOdb(job_name+'.odb') 

    vp = session.viewports['Viewport: 1'] 

    vp.setValues(displayedObject=odb) 

    # evaluate the history output 

    # ------------------------------------------------------ 

    step = odb.steps['pull'] 

    # select the history region: starts with 'Node ' 

    hr_rp = [i for i in step.historyRegions.values() 

            if i.name.startswith('Node ')][0] 

    # get vertical dispacement and reaction force data 

    # ((t,u),...), ((t,rf),...) 

    res_u = np.array(hr_rp.historyOutputs['U2'].data) 

    res_rf = np.array(hr_rp.historyOutputs['RF2'].data) 

    # stack second columns 

    res_u_f = np.column_stack((res_u[:,1],res_rf[:,1])) 

    # write u-rf data to file 

    np.savetxt(job_name+'_res_u_f.dat',res_u_f) 

    # evaluate the stresses along path (y=0) 

    # ------------------------------------------------------ 

    # create path from coordinates 

    pth = session.Path(name='Path-1', type=POINT_LIST, 

                    expression=((radius,0,0), (b/2.,0,0))) 

    # field output to be evaluated along path 

    vp.odbDisplay.setPrimaryVariable(variableLabel='S', 

        outputPosition=INTEGRATION_POINT, 

        refinement=(COMPONENT, 'S22')) 

    # output for 20 eqiuidistant points over path 

    # shape: path over DEFORMED or UNDEFORMED geometry 

    n_points = 20 

    # get vertical stress S22 over X_COORDINATE 

    xy = session.XYDataFromPath(name='XYData-1', path=pth, 

        includeIntersections=False, shape=UNDEFORMED, 

        projectOntoMesh=False, pathStyle=UNIFORM_SPACING, 

        numIntervals=n_points, projectionTolerance=0, 

        labelType=X_COORDINATE) 

    # write results to file 

    np.savetxt(job_name+'_res_s22_path.dat',xy.data) 

    odb.close() 

    return 

 

# one function for the plate model (create, run, evaluate) 

def plate_model(job_name,(b,h,radius),(E,nu,sy),uy,mesh_size): 

    # check parameters for errors 

    if radius >= b/2: 
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        raise ValueError('width b too small for hole radius') 

    if radius >= h/2: 

        raise ValueError('height h too small for hole radius') 

    # reset model 

    Mdb() 

    model = mdb.models['Model-1'] 

    # make the parts, mesh it and return it 

    p = make_geometry(model,(b,h,radius),mesh_size) 

    # make materials and sections 

    make_sections(model,p,(E,nu,sy)) 

    # make the assembly & constraint 

    inst = make_assembly(model,p) 

    # create step and boundaries 

    make_boundaries(model,inst,uy) 

    # save the model 

    mdb.saveAs(job_name) 

    # run the model 

    run_model(model,job_name) 

    # evaluate: create image 

    evaluate_image(job_name) 

    # evaluate: history output and path 

    evaluate_ho_path(job_name) 

    return model 

 

# parameters for geometry, material, load, and mesh (N-mm-s) 

# ------------------------------------------------------ 

b = 16.               # width of the plate (mm) 

h = 20.               # height of the plate (mm) 

radius = 4.5          # radius of the hole (mm) 

uy = 0.08             # vertical displacement of the top (mm) 

E_steel = 210000.     # Young's modulus of steel (MPa) 

nu_steel = 0.3        # Poisson's ratio of steel (1) 

sy_steel = 500.       # yield stress of steel (MPa) 

mesh_size = 0.3       # edge length of the mesh (mm) 

 

 

# run the model function 

# ------------------------------------------------------ 

 

plate_model('plate-test',(b,h,radius), 

            (E_steel,nu_steel,sy_steel), uy,mesh_size) 
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