DEPARTMENT OF MECHANICAL AND AUTOMATION ENGINEERING 香港中 文大學

THE CHINESE UNIVERSITY OF HONG KONG

機械與自動化工程學系

SHATIN \cdot NT \cdot HONG KON	(i	: (852) 3943 8337 : (852) 2603 6002	Email Website	: dept@mae. : www.mae.c		香港・新界・沙田
MAEG40	50 Modern (Control System	ms Analysis a	and Desigr	1 (2 nd Term 20)22-23)
		Cou	rse Syllabus			
Instructor	Tel.: 3943	y William M. W. 8476 mae.cuhk.edu.h		ring Buildin	ng	
Tutors						
	Tutors		@link.cuhk	.edu.hk		
	CHENG Hao	shu	1155154	4225		
	JIN Liuchao		1155184	4008		
	PENG Cheng		1155180	6652		
	ZHAO Zuoqu	ian	1155170	0426		
Lectures	Tuesday Thursday	2:30pm – 4:15 10:30am – 11:	-	ERB 404 MMW 703	3	
Tutorial	TBA					
Office hours	Monday 4:30p	om-5:30pm@E	RB315B, or by	v appointme	ent	
Textbook	Feedback Cor	trol of Dynami	c Systems, 6ed	, Gene F. F	ranklin, Prentice	e Hall, 2010.
References	See on the las	t slide of lecture	e notes (if any)			
Homepage	https://blackbo	oard.cuhk.edu.h	<u>ık/ultra/stream</u>			
	_					

Course Objectives

- Understanding the linear time-invariant system
- Familiarization of the mathematical process and techniques from modeling to analysis to design ٠
- Application of relevant knowledge to design a control system with given performance specifications

Learning outcomes

Upon completion of the course, students should have achieved the following outcomes:

- 1. be able to derive a state-space model for a given physical system;
- 2. be able to perform stability analysis and computer simulation of time responses of the model:
- 3. be able to perform various feedback controller design methods such as pole placement, observer design, feedforward design, internal model design, LQR method for fulfilling different design specifications;
- 4. be able to analyze and design a discrete-time control system in both frequency domain and time domain.

Support to Programme Outcomes

The following table lists the support of the Course Learning Outcomes 1 to 4 to the MAEG Programme Outcomes:

Course	Programme Outcomes											
Learning Outcomes	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12
1	Х				Х							х
2	Х				Х							х
3	Х				Х							х
4	Х				Х							Х

- **Programme Outcome M1:** Acquired basic science and engineering knowledge, including physics, mathematics, mechanics, thermodynamics, heat transfer, power electronics, material science, chemistry, biology, and environmental science.
- Programme Outcome M5: An ability to identify, formulate, and solve engineering problems.
- **Programme Outcome M12:** Acquired the ability to use the computer/IT tools relevant to the discipline along with an understanding of their processes and limitations.

Selected Programme Outcome to Assess: M1 and M12.

Contents

- State space representation
- Realizability; Stability; Controllability; Observability
- Linear control design methods (Pole placement; Observer; Asymptotic tracking and disturbance rejection; Internal model design; Feedforward design)
- Digital control (Discrete-time system and difference equation; Z-transform; State space representation of DT systems; Stability of discrete time systems; Controllability and observability analysis; Controller design)
- Case studies

Grading

Your overall score for the course will be computed based on the weighting scheme below:

Homework	25%
Midterm Test	30%
Final Exam	45%
Bonus (Class activities, if any)	< 5%

Assessment Criteria

- **Homework** You will be given FIVE problem sets during the semester. The due day for the problem set will be specified. It will carry a 30% penalty if handed in late. No credit will be given to a problem set that is late for more than three days.
- Midterm Test If for any reason you are unable to attend midterm test, you must seek approval of absence from the course teacher directly before the test. Your request should be supported by valid documents, such as medical certificate issued by a registered medical practitioner. Absence from the test without prior approval of absence would result in ZERO score. (See Undergraduate Student Handbook Regulations and Rules: Absence from examinations).
- **Final Exam** For students who are absent from the final exam with approval from RES, a makeup exam (and only one) will be arranged and scheduled as soon as possible. It is the responsibility for those who request for a make-up exam to ensure their availability.

Please note that the course teacher has the final discretion on all arrangements of the make-up exam.

Grading Disputes

Please check the grades of homework assignments, midterm test and final exam as

soon as they are released. Any discrepancy should be reported to TAs <u>within one</u> <u>week from the date of releasing your score</u>. Late complaints will NOT be accommodated.

Academic Honesty

Attention is drawn to University policy and regulations on honesty in academic work, and to the disciplinary guidelines and procedures applicable to breaches of such policy and regulations. Details may be found at http://www.cuhk.edu.hk/policy/academichonesty/.

Teaching and Learning Expectations from Students/Faculty Members

The classroom is a special environment in which students and instructor come together to promote learning and communication. Any successful learning experience requires mutual respect on the part of the student and the instructor. Neither instructor nor student should be subject to others' behavior that is rude, disruptive, intimidating, or demeaning.

You are expected to be punctual for both lectures and tutorials. You are welcome to bring your laptop or other devices to lectures for learning purposes. Respect the others in class and do not disturb others with side conversation, Internet surfing, emails-checking or instant-messaging during class time.

Details can be found from the "Student/Faculty Expectations on Teaching and Learning, Faculty of Engineering, CUHK" posted on the course website.

Date	Week	Chapter	Topics	
10/01	1	1, 2	Course outline; Introduction; Mathematical modeling; State space	
12/01			representation of continuous systems: From the higher order ODEs	
17/01	2	2	State space representation of continuous systems: From the higher	
19/01			order ODEs (ditto); From transfer function	
	3		Chinese Lunar New Year (No class)	
31/01	4	2	Solution to state equation; Discussion and exercise	
02/02			Solution to state equation, Discussion and exercise	
07/02	5	3	BIBO Stability; Stability concept for state equation;	
09/02			Lyapunov stability	
14/02	6	4	Controllability analysis	
16/02			Controllability analysis	
21/02	7	4,5	Observability analysis;	
23/02			State space design: basic concepts	
28/02	8	5	State space design: eigenvalue placement problem	
02/03			Asymptotic tracking feed-forward design; Estimator design	
	9		Reading week	
14/03	10		Midterm Exam	
16/03		5	Compensator design: combined control law and estimator	
21/03	11	6	Digital control: Introduction; Discrete-time systems and difference	
23/03			equations, Z-transform	
28/03	12	6	Digital control: State Space Representation of DT systems;	
30/03			Stability of discrete systems; Controllability/Observability Analysis	

Course Schedule (Tentative, subject to revision)

04/04	13	6	Digital control: Emulation and discrete design; Tustin's method	
06/04			Digital control. Emulation and discrete design, rustin's method	
11/04	14	6	Digital control: Matched pole-zero (MPZ) method; State space design	
13/04			Digital control. Matched pole-zero (IM Z) method, State space design	
18/04	15	7	Case studies; Revision	
20/04			Case studies, Revision	