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Abstract
Nowadays, additive manufacturing (AM) technologies have been widely used 
in construction, medical, military, aerospace, fashion, etc. The advantages of AM 
(e.g., more design freedom, no restriction on the complexity of parts, and rapid 
prototyping) have attracted a growing number of researchers. Increasing number 
of papers are published each year. Until now, thousands of review papers have 
already been published in the field of AM. It is, therefore, perhaps timely to perform 
a survey on AM review papers so as to provide an overview and guidance for readers 
to choose their interested reviews on some specific topics. This survey gives detailed 
analysis on these reviews, divides these reviews into different groups based on the 
AM techniques and materials used, highlights some important reviews in this area, 
and provides some discussions and insights.

Keywords: Additive manufacturing; 3D printing; Review

1. Introduction
Thirty years into its development, additive manufacturing (AM, also known as 3D 
printing) has become a mainstream manufacturing process. AM fabricates parts by 
adding materials layer-by-layer directly based on a 3D model. It is able to manufacture 
complex parts and allows more freedom of design optimization compared with 
traditional manufacturing techniques[1]. According to ISO/ASTM, AM can be divided 
into seven groups: vat photopolymerization, material jetting, binder jetting, powder 
bed fusion, material extrusion, directed energy deposition, and sheet lamination[2]. AM 
has its distinctive advantages over conventional manufacturing processes, for example, 
reduced product development time, lower cost, and ability to fabricate almost any 
complex shape. Therefore, AM has now been widely used in construction, medical, 
military, aerospace, fashion, etc. Until now, thousands of review papers have already 
been published in the field of AM, let alone the published research papers in this field. 
Figure  1 shows the number of published review papers in AM in each year. As can 
be seen, there are too many AM review papers published in recent years, with huge 
increasing rate. It is, therefore, perhaps timely to conduct a survey on AM review papers 
so as to provide an overview and guidance for readers to choose their interested reviews 
on some specific topics. This survey gives detailed analysis on these reviews, divides 
these reviews into different groups, and highlights some important reviews in this area 
along with discussions.
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2. Additive manufacturing technologies
This section gives a brief introduction on AM technologies. 
According to ISO/ASTM[2], AM can be divided into seven 
categories: (i) Material extrusion, (ii) powder bed fusion, 
(iii) material jetting, (iv) binder jetting, (v) directed 
energy deposition, (vi) vat photopolymerization, and (vii) 
sheet lamination. Each AM technique will be introduced 
briefly before going into the review papers published in 
this area.

2.1. Material extrusion

Material extrusion is an AM process that selectively 
distributes material through nozzles or orifices[3-6]. 
In 1988, Scott Crump, co-founder of Stratasys Ltd., 
developed the AM process, which forms a layer by 
mechanically extruding molten thermoplastic materials 
(e.g., acrylonitrile butadiene styrene (ABS) and polylactic 
acid (PLA)) onto the substrate[7]. This AM process was 
subsequently coined as fused deposition modeling (FDM), 
which requires a high operating temperature to melt the 
material[8]. The manufacturing process of FDM starts from 
a 3D model, which is then translated into gcode data that 
can be read by FDM machines. After the data is sent to the 
machine, the machine can manufacture parts in a point-
by-point and then layer-by-layer manner, from the bottom 
of the part to the top, until the whole part is completed. The 
material (filament) is first melted in the liquefier/extrusion 
head and then deposited carefully through a nozzle to 
platform of the printer. The extrusion head moves along 
the X and Y axes, while the construction platform operates 
up and down on the Z axis. At present, a lot of materials 
have been developed for material extrusion AM, including 
acrylonitrile-butadiene-styrene (ABS), nylon, high impact 
polystyrene (HIPS), polyethylene terephthalate (PET), 
polylactic acid (PLA), polyethylene terephthalate glycol 
(PETG), polyether ether ketone (PEEK), and thermoplastic 

polyester (TPC). In general, support removal and post-
processing may be needed after fabrication[9].

2.2. Powder bed fusion

Powder bed fusion is another AM process. Typically, 
powder bed fusion selectively melts the powder in the tank 
using an energy beam (laser or electron)[10]. After scanning 
and finishing one layer of powder, the rolling mechanism 
helps spread the next layer of the powder. Then, the next 
layer is scanned, melted, and fused, until the entire part 
is completed. In the mid-1980s, Deckard and Beaman 
developed the polymer powder bed fusion technology, which 
is used to process polymer powders[11]. Now, more materials 
can also be used in this technology, such as ceramics or 
metals[12,13]. Selective laser melting (SLM)[14,15], selective laser 
sintering (SLS)[16], direct metal laser sintering (DMLS)[17,18], 
and electron beam melting (EBM)[19] are among the most 
popular metal powder bed fusion technologies. DMLS and 
SLM use focused laser beams as power sources[20-22], while 
EBM uses scanning electron beams (up to 60  kV) as the 
power source[23]. The actual printing process is completed in 
a vacuum or inert environment to avoid powder oxidation.

2.3. Material jetting

Material jetting is similar to inkjet printing. Inkjet printing 
deposits ink droplets onto a substrate drop by drop, while 
material jetting process directly deposits wax and/or 
photopolymer droplets onto the substrate by on-demand 
inkjet[24,25]. Light curing or heating is the driving force of 
the phase change of the sprayed droplets. A lot of research 
has been carried out on material jetting, including direct 
ink jetting of nanoink suspensions of ceramics[26,27], 
semiconductor[28], and metals[29].

2.4. Binder jetting

In binder jetting, a liquid polymer is selectively deposited 
onto a bed of powder[30]. The jetted polymer droplet 
infiltrates the powder surface, leading to a printed powder 
agglomerate primitive. Powder spreading promotes 
recoating, as is done in powder bed fusion processes. The 
finished parts are composed of bound powder, which 
requires infiltration through post-processing to gain enough 
strength. Any powdered material that can be successfully 
spread and wet by the jetted binder can be used in this 
technique. Different materials have been studied using this 
technique, for example, foundry sand[31], metal[32], polymer 
materials[33], and ceramic[34]. The binding mechanism of this 
technique is chemical and/or thermal reaction bonding. 
Depending on the bonding agent, chemical reaction is 
generally the source of activation. After completing the 
fabrication, post-processing may be necessary, including 
removal of loose powder and impregnation/infiltration of 

Figure  1. Number of publications of AM review papers in each 
year (statistics from Scopus database; search keywords: “additive 
manufacturing” in the title, abstract or keywords, then limited to review; 
access date: October 19, 2022).
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suitable liquid material depending on the powder material 
and intended application.

2.5. Directed energy deposition

In directed energy deposition (DED), metallic powder or 
wire is fed directly into the focal point of an energy beam 
to create a molten pool[35]. Laser Engineered Net Shaping 
(LENS), belonging to DED, was first developed at Sandia 
National Laboratories in 1995 and commercialized by 
Optomec[36]. Parts printed by LENS accommodate graded 
multi-materials[37] and allow microstructures with complex 
inner features[38]. DED systems with wire-fed methods 
have been achieved[39], and DED of powder directly has 
also been successful[40,41]. Lasers and electron beams are the 
most commonly used energy source.

2.6. Vat photopolymerization

The definition of Vat photopolymerization is an “additive 
manufacturing process in which liquid photopolymer in a 
vat is selectively cured by light-activated polymerization”[2]. 
Vat photopolymerization uses a (liquid) photopolymer 
resin which is able to cure (solidify) under a light 
source[42,43]. Stereolithography (SLA) and digital light 
processing (DLP) are the most used techniques which 
belong to Vat photopolymerization. The scanning speed of 
vat photopolymerization is relatively high and minimum 
layer thickness is adjustable depending on the curing 
depth[44]. Once finishing the printing, post-processing may 
be needed, for example, support material removal and/or 
post-curing by further UV exposure.

2.7. Sheet lamination

Sheet lamination is an AM process in which sheets of 
material are bonded to form a part[45]. The process works 
by scrubbing each layer together with pressure and/or 
binders continuously. In this technique, the raw material 
typically is paper, metal foil, polymers or composite 
sheets predominately formed of metal, or ceramic powder 
material. Thermal reaction, chemical reaction bonding, 
or ultrasound can be used for binding. The source of 
activation includes localized or large-scale heating, 
chemical reaction, and ultrasonic transducers.

3. Analysis and discussion of AM review 
papers
This section gives the detailed analysis of review papers 
published within the field of AM. Top authors, source 
journals, affiliations of authors, and countries, are 
discussed. Then, the review papers are analyzed and 
discussed based on their different focuses, for example, 
different AM techniques (as briefly introduced in the 
previous section) and materials used. The database used 

is Scopus. Scopus is one of the most used databases, and it 
includes more papers than the Web of science.

3.1. Top 10 authors

As shown in Figure 2, Ramakrishna Seeram from National 
University of Singapore has the most review papers (21) 
published within AM field, followed by Chua Chee Kai 
from Singapore University of Technology and Design, and 
Yeong Wai Yee from Nanyang Technological University. 
It is interesting that all the top three authors are from 
Singapore. Researchers may refer their publications to 
catch up the up-to-date research in the AM field.

3.2. Top ten journals

Looking at the sources of these review papers (Figure 3), most 
of these AM review papers are published in journal Additive 
Manufacturing, followed by Materials and International 
Journal of Advanced Manufacturing Technology. Researchers 
may check these journals’ websites to see the state-of-the-
art developments of AM technologies.

3.3. Top 10 affiliations

As shown in Figure  4, most of the review papers in 
additive manufacturing are from Nanyang Technological 
University, followed by Singapore Centre for 3D Printing.

3.4. Top ten countries

Looking at the countries of the authors from, United 
States has the most review papers in AM, with 756 review 
papers published, followed by China with 617 publications 
(Figure 5).

3.5. Review papers in the seven AM techniques

Dividing these review papers into the seven AM techniques 
as introduced in section 2, it can be found that most review 
papers are about powder bed fusion, and no review paper 
is found in sheet lamination (Figure  6). This is probably 
because powder bed fusion is the most focused research area 
within AM, due to its application potential in aerospace, 
engineering, and biomedicine. While, sheet lamination 
seems a little bit out of focus at this moment. Note that, the 
review papers collected in this subsection only consider 
the broad review in these seven AM techniques, excluding 
the review papers focused on a specific topic (e.g., process 
parameters’ influence, fatigue analysis, and path planning). 
For the broad reviews in these seven AM techniques, the 
most cited papers are listed in Table 1. Readers can check 
these papers based on their interests. Table  2 gives more 
review papers focusing on the specific topics in each AM 
technique. For example, Nohut and Schwentenwein[46] 
focuses on functionally graded materials in vat 
photopolymerization, while Xu et al.[47] focuses on drug 
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delivery and medical device in Vat photopolymerization. In 
terms of powder bed fusion, Luo and Zhao[48] focuses on 
thermal stress, while McCann et al.[49] focuses on process 
monitoring and machine control. More details on the topics 
these review papers focus on are shown in Table 2.

3.6. Review paper categories based on materials

From the point view of materials, there are also various 
review papers in additive manufacturing focusing on 

different materials. In this survey, the materials are 
categorized into ten groups, including metal, ceramic, 
polymer, biomaterial, concrete, fiber, food, smart material, 
glass, and wood for AM. As shown in Figure  7, most 
review papers revolve around polymer and metal. This is 
probably because both polymer and metal are the most 
commonly used materials and have already been studied 
a lot. Table  3 lists the most cited review papers in each 
type of material. Table 4 presents more review papers in 

Figure  2. Top ten authors of AM review papers (statistics from Scopus database; search keywords: “additive manufacturing” in the title, abstract or 
keywords, then limited to review; access date: October 19, 2022).

Figure 3. Top ten journals of AM review papers published in (statistics from Scopus database; search keywords: “additive manufacturing” in the title, 
abstract or keywords, then limited to review; access date: October 19, 2022).

Figure 4. Top ten affiliations of authors of AM review papers (statistics from 
Scopus database; search keywords: “additive manufacturing” in the title, 
abstract or keywords, then limited to review; access date: October 19, 2022).

Figure 5. Top ten countries of authors of AM review papers (statistics from 
Scopus database; search keywords: “additive manufacturing” in the title, 
abstract or keywords, then limited to review; access date: October 19, 2022).



Volume 1 Issue 4 (2022) 5  https://doi.org/10.18063/msam.v1i4.21

Survey of AM reviewsMaterials Science in Additive Manufacturing

Table 1. Top cited review papers in the seven AM categories

Category First author Published year Article title No. of citations References

Material extrusion Wickramasinghe et al. 2020 FDM-Based 3D printing of polymer and 
associated composite: A review on mechanical 
properties, defects and treatments

199 [50]

Dey and Yodo 2019 A systematic survey of FDM process parameter 
optimization and their influence on part 
characteristics

173 [51]

Binder jetting Ziaee and Crane 2019 Binder jetting: A review of process, materials, 
and methods

221 [52]

Vat photopolymerization Pagac et al. 2021 A review of vat photopolymerization technology: 
Materials, applications, challenges, and future 
trends of 3d printing

74 [53]

Material jetting Gülcan et al. 2021 The state of the art of material jetting-a critical 
review

18 [54]

Powder bed fusion Grasso and Colosimo 2017 Process defects and in situ monitoring methods 
in metal powder bed fusion: A review

384 [55]

Directed energy 
deposition

Dass and Moridi 2019 State of the art in directed energy deposition: 
From additive manufacturing to materials design

150 [56]

Ahn 2021 Directed Energy Deposition (DED) Process: 
State of the Art

44 [57]

Statistics from Scopus database; access date: October 19, 2022

Table 2. AM review papers with different topics in each AM technique

Category Keywords Article title First author References

Vat photopolymerization Tissue scaffolds A review on fabricating tissue scaffolds using vat 
photopolymerization

Chartrain et al. [58]

Drug delivery; medical 
device

Vat photopolymerization 3D printing for advanced drug 
delivery and medical device applications

Xu et al. [47]

4D printing 4D printing materials for vat photopolymerization Andreu et al. [59]

Functionally graded 
materials

Vat Photopolymerization Additive Manufacturing of 
Functionally Graded Materials: A Review

Nohut and 
Schwentenwein

[46]

Shape-conformable batteries Toward High Resolution 3D Printing 
of Shape-Conformable Batteries via Vat 
Photopolymerization: Review and Perspective

Maurel et al. [60]

Functional materials A Review of Multi-Material 3D Printing of Functional 
Materials via Vat Photopolymerization

Shaukat et al. [61]

Powder bed fusion Residual stress An overview of residual stresses in metal powder bed fusion Bartlett et al. [62]

Thermal stress A survey of finite element analysis of temperature and 
thermal stress fields in powder bed fusion Additive 
Manufacturing

Luo and Zhao [48]

Process physics; material 
screening

A review of the process physics and material screening 
methods for polymer powder bed fusion additive 
manufacturing

Chatham et al. [63]

Aluminum alloys New aluminum alloys specifically designed for laser 
powder bed fusion: A review

Aversa et al. [64]

Repeatability; 
reproducibility

A review of critical repeatability and reproducibility 
issues in powder bed fusion

Dowling et al. [65]

Formation and impact of 
flaws

Invited Review Article: Review of the formation 
and impact of flaws in powder bed fusion additive 
manufacturing

Snow et al. [66]

(Contd...)
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Table 2. (Continued)

Category Keywords Article title First author References

drug delivery; healthcare Advances in powder bed fusion 3D printing in drug 
delivery and healthcare

Awad et al. [67]

Process monitoring; 
machine control

In-situ sensing, process monitoring and machine control 
in Laser Powder Bed Fusion: A review

McCann et al. [49]

Binder jetting Stainless steel A review on binder jet additive manufacturing of 316L 
stainless steel

Mirzababaei 
and Pasebani

[68]

Material extrusion Process–Structure–
Properties

Process–Structure–Properties in Polymer Additive 
Manufacturing via Material Extrusion: A Review

Goh et al. [69]

Dimensional inaccuracy; 
warpage

Material extrusion-based additive manufacturing 
of polypropylene: A review on how to improve 
dimensional inaccuracy and warpage

Spoerk et al. [70]

Fiber-reinforced polymers Fused filament fabrication of fiber-reinforced polymers: 
A review

Brenken et al. [71]

Plant biopolymers Material extrusion of plant biopolymers: Opportunities 
& challenges for 3D printing

Chaunier et al. [72]

Design methods A survey of design methods for material extrusion 
polymer 3D printing

Huang et al. [73]

Continuous fiber Material extrusion additive manufacturing of 
continuous fiber reinforced polymer matrix composites: 
A review and outlook

Zhuo et al. [5]

Wood; lignocellulosic Material extrusion additive manufacturing of wood and 
lignocellulosic filled composites

Lamm et al. [74]

Process monitoring Process monitoring for material extrusion additive 
manufacturing: a state-of-the-art review

Oleff et al. [75]

Plant protein Plant protein in material extrusion 3D printing: 
Formation, plasticization, prospects, and challenges

Rowat et al. [76]

Directed energy 
deposition

Repair Application of directed energy deposition-based additive 
manufacturing in repair

Saboori et al. [77]

In situ monitoring A review on in situ monitoring technology for directed 
energy deposition of metals

Tang et al. [78]

Slicing A review of slicing methods for directed energy 
deposition based additive manufacturing

Xu et al. [79]

Adaptive control Review on adaptive control of laser-directed energy 
deposition

Wang et al. [80]

High-quality Preventing evaporation products for high-quality metal 
film in directed energy deposition: A review

Kim et al. [81]

Process parameters; Ti Selective laser manufacturing of Ti-based alloys and 
composites: impact of process parameters, application 
trends, and future prospects

Singh et al. [82]

Heat treatments; quality; 
residual stress

A review of heat treatments on improving the quality 
and residual stresses of the Ti–6Al–4V parts produced 
by additive manufacturing

Teixeira et al. [83]

Statistics from Scopus database; access date: October 19, 2022

AM, focusing on different materials. We have concluded 
and listed some of the typical review papers in different 
materials. For the category of materials in Table 4, ABS, 
PLA, and PEEK are listed separately as these three types 
of materials are widely used nowadays and there are a 

lot of published review papers on these three materials. 
Note that not all review papers are listed in this table as 
there are too many papers published nowadays. However, 
Tables 3 and 4 should be enough for readers to obtain the 
essential information.
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Table 3. Top cited review papers in different materials

Category First author Published year Article title No. of citations Reference 

Metal Frazier 2014 Metal additive manufacturing: A review 3289 [84]

Sames et al. 2016 The metallurgy and processing science of metal additive 
manufacturing

1320 [85]

Ceramics Deckers et al. 2014 Additive manufacturing of ceramics: A review 294 [86]

Sing et al. 2017 Direct selective laser sintering and melting of ceramics: 
A review

197 [87]

Polymer Ligon et al. 2017 Polymers for 3D printing and customized additive 
manufacturing

1626 [88]

Stainless steel Kong et al. 2021 About metastable cellular structure in additively 
manufactured austenitic stainless steels

92 [89]

Jin et al. 2020 Wire arc additive manufacturing of stainless steels: A 
review

83 [90]

Ni-based alloys Attallah et al. 2016 Additive manufacturing of Ni-based super alloys: The 
outstanding issues

130 [91]

Ti-based alloys Shipley et al. 2018 Optimization of process parameters to address 
fundamental challenges during selective laser melting of 
Ti-6Al-4V: A review

273 [92]

Biomaterial Murphy and Atala 2014 3D bioprinting of tissues and organs 3847 [93]

Concrete Buswell et al. 2018 3D printing using concrete extrusion: A roadmap for 
research

557 [94]

Fibre Parandoush and Lin 2017 A review on additive manufacturing of polymer-fiber 
composites

581 [95]

Kabir et al. 2020 A critical review on 3D printed continuous 
fiber-reinforced composites: History, mechanism, 
materials and properties

176 [4]

Multi-material Bandyopadhyay and 
Heer

2018 Additive manufacturing of multi-material structures 349 [96]

ABS Torrado Perez et al. 2014 Fracture surface analysis of 3D-printed tensile specimens 
of novel ABS-based materials

285 [97]

PLA Ilyas et al. 2021 Polylactic acid (Pla) biocomposite: Processing, additive 
manufacturing and advanced applications

73 [98]

PEEK Zanjanijam et al. 2020 Fused filament fabrication of peek: A review of 
process-structure-property relationships

54 [99]

Aluminium 
alloys

Aboulkhair et al. 2019 3D printing of aluminum alloys: Additive Manufacturing 
of aluminum alloys using selective laser melting

507 [100]

Copper Tran et al. 2019 3D printing of highly pure copper 83 [101]

Food Godoi et al. 2016 3d printing technologies applied for food design: Status 
and prospects

424 [102]

Smart Material Mendes-Felipe et al. 2019 State-of-the-art and future challenges of UV curable 
polymer-based smart materials for printing technologies

128 [103]

Glass Zhang et al. 2021 3D printing of glass by additive manufacturing 
techniques: a review

16 [104]

Wood Lamm et al. 2020 Material extrusion additive manufacturing of wood and 
lignocellulosic filled composites

21 [74]

Statistics from Scopus database; access date: October 19, 2022

3.7. Review paper categories based on research area
In this section, AM review papers that focus on key/hottest 
areas (e.g., aerospace, tissue engineering) will be discussed. 
Nowadays, AM is widely used in different fields, including 

aerospace, tissue engineering, construction, drug delivery, 
topology optimization, etc. The most cited review papers 
focused on these areas are provided in this subsection, as 
shown in Table 5.
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Table 4. Typical review papers in different materials

Category Keywords Article title First author Reference

Metal Aerospace A review on metal additive manufacturing for intricately 
shaped aerospace components

Madhavadas et al. [105]

Hybrid FDM Additive manufacturing of metals and ceramics using hybrid 
fused filament fabrication

Ramkumar and Rijwani [106]

Defects Multi-scale defects in powder-based additively manufactured 
metals and alloys

Fu et al. [107]

Symmetry Symmetry and its application in metal additive manufacturing 
(MAM)

Uralde et al. [108]

Properties Influence of powder characteristics on properties of parts 
manufactured by metal additive manufacturing

Muthuswamy [109]

Digital twin A digital twin hierarchy for metal additive manufacturing Phua et al. [110]

Modeling; simulation Modeling and simulation of metal selective laser melting 
process: A critical review

Zhou et al. [111]

Hybrid AM Metal hybrid additive manufacturing: state-of-the-art Sefene et al. [112]

Functionally Graded 
Materials

Review of additive manufacturing techniques for large-scale 
metal functionally graded materials

Zhang et al. [113]

Electro polishing Review-electro polishing of additive manufactured metal parts Chaghazardi and Wüthrich [114]

Defects; anomalies Defects and anomalies in powder bed fusion metal additive 
manufacturing

Mostafaei et al. [115]

Fatigue Ultrasonic fatigue of laser beam powder bed fused metals: A 
state-of-the-art review

Avateffazeli and 
Haghshenas

[116]

Machine learning; 
defect detection

Machine learning algorithms for defect detection in metal 
laser-based additive manufacturing: A review

Fu et al. [117]

Microstructure Additive manufacturing of metals: Microstructure evolution 
and multistage control

Liu et al. [118]

Electrical Machines Metal additive manufacturing for electrical machines: 
Technology review and latest advancements

Selema et al. [119]

Surface characteristics Surface characteristics improvement methods for metal 
additively manufactured parts: A review

Hashmi et al. [120]

Load-Bearing Implants Metal additive manufacturing for load-bearing implants Bandyopadhyay and Heer [121]

Mirror Design and fabrication technology of metal mirrors based on 
additive manufacturing: A review

Zhang et al. [122]

In situ monitoring In-situ measurement and monitoring methods for metal 
powder bed fusion: An updated review

Grasso and Colosimo [123]

Fracture; fatigue Fracture and fatigue in additively manufactured metals Becker et al. [124]

AI; machine learning Applications of artificial intelligence and machine learning in 
metal additive manufacturing

Ladani [125]

Digital twin The case for digital twins in metal additive manufacturing Gunasegaram et al. [126]

Surface finish; 
porosity; residual 
stresses; fatigue

Effects of post-processing on the surface finish, porosity, 
residual stresses, and fatigue performance of additive 
manufactured metals: A review

Ye et al. [127]

Biomedical Biomedical applications of metal 3D printing Velásquez-García and 
Kornbluth

[128]

Renewable energy 3D printing of metal-based materials for renewable energy 
applications

Mooraj et al. [129]

Liquid metal Current status of liquid metal printing Ansell [130]

Machine learning Perspectives of using machine learning in laser powder bed 
fusion for metal additive manufacturing

Sing et al. [131]

(Contd...)
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Table 4. (Continued)

Category Keywords Article title First author Reference

Ceramic Dental Additive manufacturing of ceramics for dental applications: 
A review

Galante et al. [132]

Bone tissue 3D printing of ceramic-based scaffolds for bone tissue 
engineering: An overview

Du et al. [133]

SiC ceramic Progress and challenges toward additive manufacturing of SiC 
ceramic

He et al. [134]

Graphene Direct ink writing technology (3d printing) of graphene-based 
ceramic nanocomposites: A review

Pinargote et al. [135]

Ceramic membrane A comprehensive review of recent developments in 3D 
printing technique for ceramic membrane fabrication for 
water purification

Dommati et al. [136]

Cellular ceramic Cellular ceramic architectures produced by hybrid additive 
manufacturing: A review on the evolution of their design

Pelanconi et al. [137]

Polymer Mechanical Mechanical characterization of 3D-printed polymers Dizon et al. [138]

Polymer-fiber A review on additive manufacturing of polymer-fiber composites Parandoush and Lin [95]

Nanocomposites High performance polymer nanocomposites for additive 
manufacturing applications

De Leon et al. [139]

3D printing of polymer nanocomposites via stereolithography Manapat et al. [140]

Natural fiber Additive manufacturing of natural fiber reinforced polymer 
composites: Processing and prospects

Balla et al. [141]

Gradient scaffolds 3D printing for the design and fabrication of polymer-based 
gradient scaffolds

Bracaglia et al. [142]

Stainless steel Corrosion Corrosion performance of additively manufactured stainless 
steel parts: A review

Ettefagh et al. [143]

The corrosion of stainless steel made by additive 
manufacturing: A review

Ko et al. [144]

Mechanical; thermal Mechanical and thermal properties of stainless steel parts, 
manufactured by various technologies, in relation to their 
microstructure

Eshkabilov et al. [145]

Surface tension Surface tension measurements of liquid pure iron and 304L 
stainless steel under different gas mixtures

Klapczynski et al. [146]

Mechanical; 
microstructure

Mechanical properties and microstructure of 316 
stainless steel processed by pulsed micro-plasma additive 
manufacturing

Yuan et al. [147]

Pitting Corrosion Pitting corrosion in 316L stainless steel fabricated by laser powder 
bed fusion additive manufacturing: A review and perspective

Voisin et al. [148]

Powder Reuse The influence of powder reuse on the properties of laser 
powder bed-fused stainless steel 316L: A review

Douglas et al. [149]

Solidification Solidification behaviour of austenitic stainless steels during 
welding and directed energy deposition

Hossein Nedjad et al. [150]

Ni-based alloys Fatigue Overview: Additive manufacturing enabled accelerated design 
of Ni-based alloys for improved fatigue life

Shao et al. [151]

Microstructural 
constituent

Powder bed fusion additive manufacturing of Ni-based super 
alloys: A review of the main microstructural constituents and 
characterization techniques

Haines et al. [152]

Cracking resistance Applications of alloy design to cracking resistance of additively 
manufactured Ni-based alloys

Markanday [153]

Residual stress; crack Additive manufacturing of Ni-based super alloys: Residual 
stress, mechanisms of crack formation and strategies for crack 
inhibition

Guo et al. [154]

(Contd...)



Volume 1 Issue 4 (2022) 10  https://doi.org/10.18063/msam.v1i4.21

Survey of AM reviewsMaterials Science in Additive Manufacturing

Table 4. (Continued)

Category Keywords Article title First author Reference

Ti-based alloys Mechanical Additive manufacturing and post-processing of Ti-6Al-4V for 
superior mechanical properties

Qian et al. [155]

Fatigue A review of the as-built SLM Ti-6Al-4V mechanical properties 
towards achieving fatigue resistant designs

Agius et al. [156]

Biomedical A review of powdered additive manufacturing techniques for 
Ti-6al-4v biomedical applications

Harun et al. [157]

Chemical polishing Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by 
additive manufacturing

Lyczkowska et al. [158]

Mechanical Mechanical properties of titanium-based Ti–6Al–4V alloys 
manufactured by powder bed additive manufacture

Tong et al. [159]

Process parameters Selective laser manufacturing of Ti-based alloys and 
composites: impact of process parameters, application trends, 
and future prospects

Singh et al. [82]

Heat treatment A review of heat treatments on improving the quality and 
residual stresses of the Ti–6Al–4V parts produced by additive 
manufacturing

Teixeira et al. [83]

Surface roughness A review on the influence of process variables on the surface 
roughness of Ti-6Al-4V by electron beam powder bed fusion

de Campos Carolo and 
Ordoñez

[160]

Biomaterial Bioink Bioink properties before, during and after 3D bioprinting Hölzl et al. [161]

Biomedical; tissue 3D bioprinting for biomedical devices and tissue engineering: 
A review of recent trends and advances

Derakhshanfar et al. [162]

Printability Printability and Shape Fidelity of Bioinks in 3D Bioprinting Schwab et al. [163]

Cell-Hydrogels Design and printing strategies in 3D bioprinting of 
cell-hydrogels: A review

Lee et al. [164]

Skin 3D bioprinting of skin: A state-of-the-art review on modeling, 
materials, and processes

Vijayavenkataraman et al. [165]

Hydrogel 3D bioprinting of photo crosslinkable hydrogel constructs Pereira et al. [166]

Cardiac tissue; cell 3D Bioprinting of cardiac tissue and cardiac stem cell therapy Alonzo et al. [167]

Machine learning A perspective on using machine learning in 3D bioprinting Yu et al. [168]

Organ The emergence of 3D bioprinting in organ-on-chip systems Fetah et al. [169]

Liver transplantation Bioprinting for liver transplantation Kryou et al. [170]

Process parameters Effects of processing parameters of 3D bioprinting on the 
cellular activity of bioinks

Adhikari et al. [171]

Concrete Simulation Numerical simulations of concrete processing: From standard 
formative casting to additive manufacturing

Roussel et al. [172]

Extrusion-based Extrusion-based additive manufacturing of concrete products: 
Revolutionizing and remodeling the construction industry

Valente et al. [173]

Biomimicry Biomimicry for 3D concrete printing: A review and perspective du Plessis et al. [174]

Functionally graded 
concrete

On-demand additive manufacturing of functionally graded 
concrete

Ahmed et al. [175]

Fiber Carbon fiber Additively manufactured carbon fiber-reinforced composites: 
State of the art and perspective

van de Werken et al. [176]

Natural fiber Recent advancements of plant-based natural fiber–reinforced 
composites and their applications

Li et al. [177]

Mechanical The mechanical testing and performance analysis of polymer-fiber 
composites prepared through the additive manufacturing

Shanmugam et al. [178]

FDM A review on fiber reinforced composite printing via FFF Ferreira et al. [179]

Continuous fiber Material extrusion additive manufacturing of continuous fiber 
reinforced polymer matrix composites: A review and outlook

Zhuo et al. [5]

(Contd...)
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Table 4. (Continued)

Category Keywords Article title First author Reference

Process parameter Influence of process parameters on the properties of additively 
manufactured fiber-reinforced polymer composite materials: 
A review

Ramesh et al. [180]

Multi-material Electronics 3D printing of multilayered and multimaterial electronics: A 
review

Goh et al. [181]

Powder bed fusion Multimaterial powder bed fusion techniques Mehrpouya et al. [182]

Direct ink writing Direct ink writing advances in multi-material structures for a 
sustainable future

Rocha et al. [183]

Architecture; 
construction

Multi-material additive manufacturing in architecture and 
construction: A review

Pajonk et al. [184]

Polymer Advances in polymers based multi-material 
additive-manufacturing techniques: State-of-art review on 
properties and applications

García-Collado et al. [185]

Functional material A review of multi-material 3D printing of functional materials 
through vat photopolymerization

Shaukat et al. [61]

ABS Fracture surface Fracture surface analysis of 3D-printed tensile specimens of 
novel ABS-based materials

Torrado Perez [97]

FDM Review of acrylonitrile butadiene styrene in fused filament 
fabrication: A plastics engineering-focused perspective

Peterson [186]

PLA Biocomposite Polylactic acid (Pla) biocomposite: Processing, additive 
manufacturing and advanced applications

Ilyas et al. [98]

Bone repair Recent progress on 3D-printed polylactic acid and its 
applications in bone repair

Chen et al. [187]

4D printing 4D printing of shape memory polylactic acid (PLA) Mehrpouya et al. [188]

Process Parameter; 
Mechanical

The influence of the process parameters on the mechanical 
properties of PLA specimens produced by fused filament 
fabrication—A review

Cojocaru et al. [189]

PEEK Process parameter An overview on the influence of process parameters through 
the characteristic of 3D-printed PEEK and PEI parts

El Magri et al. [190]

FDM Applications of 3D-printed peek via fused filament fabrication: 
A systematic review

Dua et al. [191]

Aluminum 
alloys

Microstructure; 
mechanical

Microstructure and mechanical property considerations in 
additive manufacturing of aluminum alloys

Ding et al. [192]

Mechanical Mechanical properties of SLM-printed aluminium alloys: A review Ponnusamy et al. [193]

Heat treatment Heat treatment of aluminium alloys produced by laser powder 
bed fusion: A review

Fiocchi et al. [194]

WAAM Challenges associated with the wire arc additive 
manufacturing (WAAM) of aluminium alloys

Thapliyal [195]

Corrosion Corrosion and corrosion protection of additively 
manufactured aluminium alloys—a critical review

Revilla et al. [196]

Copper Pure copper A review on additive manufacturing of pure copper Jiang et al. [197]

Food Functional Toward the design of functional foods and biobased products 
by 3D printing: A review

Portanguen et al. [198]

Plant-based 3D food printing: Applications of plant-based materials in 
extrusion-based food printing

Wang et al. [199]

Food material A review on 3D printable food materials: types and 
development trends

Li et al. [200]

4D printing 4D printing: a new approach for food printing; effect 
of various stimuli on 4D printed food properties. A 
comprehensive review

Navaf et al. [201]

(Contd...)
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Table 4. (Continued)

Category Keywords Article title First author Reference

Smart materials Manufacturing Significant roles of 4D printing using smart materials in the 
field of manufacturing

Haleem et al. [202]

Wearable application Potentials of additive manufacturing with smart materials for 
chemical biomarkers in wearable applications

Kwon et al. [203]

Glass Crystallization Crystallization in additive manufacturing of metallic glasses: 
A review

Liu et al. [204]

Silica Glass Overview of 3D-printed silica glass Zhang et al. [205]

Wood Wood powders A review on wood powders in 3D printing: processes, 
properties and potential applications

Das et al. [206]

Statistics from Scopus database; access date: October 19, 2022

Table 5. Most cited review papers in key/hottest areas

Area Article title Citation First author References

Machine learning Machine learning in additive manufacturing: State-of-the-art and 
perspectives

153 Wang et al. [207]

Construction 3D printing using concrete extrusion: A roadmap for research 560 Buswell et al. [94]

Biomedical Bioink properties before, during and after 3D bioprinting 567 Hölzl et al. [161]

Tissue engineering 3D bioprinting of tissues and organs 3872 Murphy and Atala [93]

Topology optimization Current and future trends in topology optimization for additive 
manufacturing

383 Liu et al. [208]

Electrochemical 3D-printing technologies for electrochemical applications 554 Ambrosi and Pumera [209]

Smart structures Printing soft matter in three dimensions 838 Truby and Lewis [210]

Food printing 3D printing technologies applied for food design: Status and prospects 428 Godoi et al. [102]

Drug delivery 3D printing pharmaceuticals: Drug development to frontline care 243 Trenfield et al. [211]

Aerospace The present and future of additive manufacturing in the 
aerospace sector: A review of important aspects

279 Uriondo et al. [212]

Statistics from Scopus database; access date: October 19, 2022

Figure 7. Review papers focusing on different materials (statistics from 
Scopus database; access date: October 19, 2022).

Figure 6. Number of review papers in different AM techniques (statistics 
from Scopus database; access date: October 19, 2022).

4. Conclusions
In this work, we conducted a survey on published review 
papers in AM. Analysis and discussion on reviews in 
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seven AM techniques are given (i.e., material extrusion, 
powder bed fusion, material jetting, binder jetting, 
directed energy deposition, vat photopolymerization, 
and sheet lamination). As can be seen, most of the review 
papers are in the categories of powder bed fusion and 
directed energy deposition. No review papers in sheet 
lamination were found. In the future, it is necessary to 
carry out a review on sheet lamination, although it is 
not a famous AM technique. In addition, typical review 
papers are categorized into different groups based on the 
materials these review papers focused on (e.g., metal, 
ceramic, polymer, biomaterial, concrete, fiber, food, 
smart material, glass, and wood). The specific objectives 
of each review paper are listed, as shown in Table 4. For 
example, He et al.[134] focuses on SiC ceramic in AM, and 
readers can refer accordingly based on their interests. The 
aim of this survey paper is to provide a guidance to the 
development of AM review papers, give a comprehensive 
analysis on the current available review papers in this 
field, and hopefully, provide some insights and inspire 
more ideas. As the review papers published in AM are 
increasing; nowadays, the selected review papers in this 
survey are based on the Scopus database, which might 
have some limitations. In addition, this survey only 
considers the most cited papers in each category based 
on the number of citations, while the published time of 
the review papers is not considered.
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