

Fei Chen

Topics:

Introduction to robotics

Readings:

• Siciliano: Chpt. 1

Definition of Robots

- A machine that resembles a human and does mechanical, routine tasks on command (www.dictionary.com)
- Mechanical or virtual artificial agent (Simulation), usually an electromechanical machine that is guided by a computer program (from Wikipedia)
- Machine capable of carrying out a desired task semi- or fully- automatically

Basic Components of a Robot

• Mechanical elements to interact with the environment

• Electronics (include sensors, actuator, computing hardware) to sense, actuate and process information

• Software to enable the system to be autonomous

Master-Slave Tele-Manipulator

After World War II (1945),

- The early work leading up to Today's robots began in the development of remotely controlled mechanical manipulators to handle radioactive materials at Argonne Oak Ridge National Laboratories, USA
- They defined the concept of Master-Slave teleoperation system, later on force feedback was also added in 1949
- General Electric and General Mills were also involved in this project
- A complex mechanical mechanism without any programmability
- The technology later on become the foundation of tele-robotic surgery

Question: What was the need or reason that drove this robot development?

Beginning of Modern Robotics

Master-Slave Tele-Manipulator

https://www.youtube.com/watch?v=7YEMMpngZTE

Question: What was the need or reason that drove this robot development?

Computer Numerically Controlled (CNC) machine

A bit later, around early 1950s,

- Started to develop the Computer Numerically Controlled (CNC) machine tools for accurate milling of low volume, high performance aircraft parts
- The first robots, developed by George Devol in 1954, has the programmability of CNC machine tool controller. It was called "programmed articulated transfer device"
- The programmability was the key for the next wave of robotic development...
- The patent rights were bought by Joseph Engelberger, who formed the first robotic company called Unimation in Connecticut, 1956
- Japanese company, Kawasaki started their robot development via an acquisition of a patent from Unimation
- Later on, in 1978, Unimation introduced a robot named the Programmable Universal Machine for Assembly (PUMA)

Video source: https://vimeo.com/23372660

Question: What was the need or reason that drove this robot development?

Academia started to involve actively

The beginning of Modern Robotics started around late 50s and 60s:

- 1959: Artificial Intelligence Laboratory formed at MIT (Founder: Marvin Miskey)
- 1961: Heinrich Ernst develops the MH-1 computer operated hand

Academia started to involve actively

The beginning of Modern Robotics started around late 50s and 60s:

- 1963: Artificial Intelligence Laboratory (SAIL) formed at Stanford (Founder: John McCarthy)
- 1966: Stanford Research Institute creates Shakey, the first mobile robot to reason about its actions
- 1969: Stanford Al Laboratory (SAIL) creates the Stanford Arm, the first computer-controlled arm

In 1970s, people started to use robots in manufacturing extensively...

- 1971: Invention of the microprocessor
- 1973: Kuka built the first six electric motor FAMULUS
- 1973: Wabot-1 first anthropomorphic humanoid robot
- 1974: ABB created the first microcontroller controlled electric industrial robot IRB 6 from
- 1978: Unimation introduced a robot named the PUMA robot
- 1979: Prof. Hiroshi Makino created SCARA robot
- 1979: Robotics Institute at CMU established

The first Kuka robot: Famulus

WABOT-1: First fun-scale anthropomorphic robot

Programmable Universal Machine for Assembly (PUMA)

In 1980s, researchers started to focus more on robot intelligenc.

- 1981: Prof. Asada from MIT created the first direct drive arm
- 1984: Douglas Leant started Cyc, common sense database for Al
- 1984: Wabot-2 is capable of playing the organ
- 1985: LEGO began sponsoring the MIT Media Lab
- 1986: Honda begins its humanoid R&D program (Honda E0)
- 1988: LEGO tc Logo released
- 1989: Chess playing programs defeated chess-masters
- 1989: Hexapod robot Genghis (4 microprocessors, 22 sensors and 12 servo motors)

Wabot-2 playing the keyboard

Genghis robot: a six legged hexapod robot

LEGO tc Logo kit

Honda E0 robot

In 1990s, researchers started to apply robotics beyond manufacturing.

- 1994: Dr. John Adler invented the Cyberknife
- 1993: Honda P1 humanoid robot
- 1996: Prof. Stuart Wilkinson invented Gastrobot
- 1996: Dr. David Barrett built the RoboTuna (fish)
- 1996: Honda P2 humanoid robot
- 1997: Honda P3 humanoid robot
- 1998: LEGO Mindstorms first introduced
- 1999: Sony AIBO dog released

Lego Mindstorm

Cyberknife

RoboTuna

Honda P-series, from P1 (most left), P2, P3 and P4 (most right)

The 2000s saw robotics found other applications...

- 2000: Honda ASIMO humanoid robot
- 2000: FDA approved the Da Vinci Surgical System
- 2001: FDA clears the CyberKnife for tumour removal anywhere in the body
- 2001: iRobot PackBot searches at the US WTC
- 2002: iRobot released the Roomba vacuum cleaner
- 2003: NASA launches the MER-A "Spirit" for Mars, the 1st rover to Mars

iRobot PackBot

Honda ASIMO

Spirit

Da Vinci Surgery Robot

Locomat – Robotic Treadmill

The 2010s/2020s robotics technologies are moving forward rapidly, meeting Al.

- More areas reached: Medical, Service, Manufacturing, Military, Agriculture, Entertainment
- Medical: surgery, rehabilitation, prosthetic hand, etc
- Service: humanoid, mobile robots
- Manufacturing: robot arms, KUKA, UR, Franka Emika
- Military: wearable robotics
- Agriculture: harvesting, weeding, etc
- Entertainment and education: little humanoids, droves, legged robots
- Research: highly dynamic robots, legged robots

Collaborative robot arms

Agility Robotics: Digit

UBTECH: Walker

IIT: Prosthetic hand

Agriculture robots

There are many ways to classify robots, such as:

- By form
- By function

Form refers to the way it looks

Robot arm vs humanoid vs bird vs mobile robot

Function refers to its use/application

Industry vs medical vs agriculture

By Form - Arm and Hands

Kuka LWR (KUKA Lightweight robot)

Universal Robotics UR3

Barrett Hand

Shadow Robotics hand

By Form - Parallel Manipulators

Lufthansa using Stewart platform

ABB FlexPicker delta robot

Laval University Agile Eye

Fraunhofer IPA cable simulator

By Form - Humanoid Robots

Honda ASIMO (Japan)

Devanthro Roboy (Switzerland)

JSK Kojiro (Japan)

RobotCub iCub (EU-IIT-Italy)

AIST HRP-4 (Japan)

TORO (DLR, Germany)

Rollin' Justin (DLR, Germany)

Biped

Mobile

By Form - Bio-Inspired Robots

MIT Cheetah robot

RoboTuna

CMU snake robot

EPFL salamander robot

Harvard

Microfly

By Form - Mobile Robots

Softbank Pepper

iRobot PackBot

Cambridge Unmanned Aerial Vehicle

EPFL Alice swarm robot

TU Eindhoven soccer robots

By Function - Industrial Robots

- Good at addressing the routine (or dangerous) tasks that require precision: painting, assembly, welding, cutting, vision inspection, monitoring
- Are we saturated in this field?
- What are the remaining challenges in this field?

Industrial robots working in car factory

By Function - Agriculture Robots

- Agri-Robots help automate tasks at farms
 - Shoot weeds, monitor and tend crops
- Challenges in environment sensing
 - How to localise and manoeuvre within such a large space
 - How to sense at the farms and react, vision, soil sensors etc.
- Just observed some commercialization activities recently, still have some time to prove their usability...

Australian Centre of Field Robotics: RIPPA

Universidad Politécnica de Madrid (UPM): Rosphere

UAV at vineyards

By Function - Hazardous and Rescue

- Take advantage of robots to operate in environments that humans cannot operate in or are dangerous to
 - Small environments
 - Large spaces
 - Extreme hazardous environments
- Some challenges include:
 - How to design robots to operate in such unstructured environments
 - How to localise effectively in the environment
 - How to operate as a team to improve search efficiency
 - How to manipulate and interact with the environment

RoboCue (Japan)

Battlefield Extraction-Assist Robot (US)

Okayama University Autonomous Underwater Vehicle

Nuclear Plant Inspection Robots (Toshiba, Japan)

By Function - Entertainment Robots

Music playing robots by Toyota

Disney Research: human motion replication using motion capture

By Function - Medical Robots

- An area that has great impact to the society
 - Rehabilitation robotics and prosthetics
 - Surgical robotics
 - Micro/nano manipulation for cell-manipulation

Vanderbilt University: steerable needle

inverted microscope for cell manipulation

MIT Media Lab: bionic ankle-foot

IIT – Rehab Robots

By Function - Military Robots

DARPA Big Dog

Foster-Miller TALON

Raytheon's Sacros XOS 2 military exoskeleton

By Function - Service Robots

- Another very promising field that fits the society's needs
 - Aging population increasing
 - Robots will become more common in the society

UVD-Robots fight covid-19

Fraunhofer IPA: Care-O-bot 4

Advanced Robots The Era of Al!

AlphaGo is a computer program that plays the board game G

Nvidia Isaac Gym Enables Robot to Learn Dexterous Manipulation

https://youtu.be/ReM3IVkcS2w

Autonomous Driving

The most agile running ever?

https://youtu.be/5hwkbdmUijg

https://youtu.be/wE3fmFTtP9g

Animal

V.S.

Robot

The best flip ever?

https://youtu.be/zM5tjn8T9mg

https://youtu.be/fRj34o4hN4l

Human

V.S.

Robot

ATLAS - Boston Dynamics

28 hydraulic joints
1.5 meters per second
1.5 meters height
89 KG weight

Robotics is Advanced Technology Yet Still Hard!

It's Your MISSION!

To Advance the Robotic Technologies

ENG5402

Tend to Offer Necessary Knowledges for Advanced Robotics

Q&A

