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Topics:
• Position Regulation (with an introduction to stability)

Readings:
• Siciliano: Sec. 8, 8.5



2

Equilibrium
E q u i l i b r i u m  s t a t e s  o f  a  r o b o t

joint torques must balance gravity

at the equilibrium!

all equilibrium states of 

mechanical  systems have 

zero velocity!

𝑀(𝑞) ሷ𝑞 + 𝑐(𝑞, ሶ𝑞) + 𝑔(𝑞) = 𝑢 𝑥 =
𝑥1
𝑥2

=
𝑞
ሶ𝑞

ሶ𝑥 =
ሶ𝑥1
ሶ𝑥2

=
𝑥2

−𝑀−1 𝑥1 𝑐 𝑥1, 𝑥2 + 𝑔 𝑥1
+

0
𝑀−1 𝑥1

𝑢

= 𝑓(𝑥) + 𝐺 𝑥1 𝑢

𝑥𝑒 unforced equilibrium
(𝑢 = 0)

𝑥𝑒 forced equilibrium
(𝑢 = 𝑢(𝑥))

𝑓 𝑥𝑒 = 0 ቊ
𝑥𝑒2 = 0

𝑔 𝑥𝑒1 = 0

𝑓 𝑥𝑒 + 𝐺 𝑥𝑒1 𝑢 𝑥𝑒 = 0 ቊ
𝑥𝑒2 = 0

𝑢 𝑥𝑒 = 𝑔 𝑥𝑒1
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Stability of Dynamical Systems 

𝑥𝑒 equilibrium: 𝑓(𝑥𝑒) = 0

(sometimes we consider as equilibrium state

𝑥𝑒 = 0, e.g., when using errors as variables)

asymptotic stability may become global (∀𝛿 > 0, finite)

e.g., a closed-loop system  

(under feedback control)

note: these are definitions of stability “in the sense of Lyapunov”

ሶ𝑥 = 𝑓(𝑥)

stability of 𝑥𝑒

asymptotic stability of 𝑥𝑒

∀𝜀 > 0, ∃𝛿𝜀 > 0: 𝑥 𝑡0 − 𝑥𝑒 < 𝛿𝜀 ⇒ 𝑥(𝑡) − 𝑥𝑒 < 𝜀, ∀𝑡 ≥ 𝑡0

∃𝛿 > 0: 𝑥 𝑡0 − 𝑥𝑒 < 𝛿 ⇒ 𝑥(𝑡) − 𝑥𝑒 → 0, for 𝑡 → ∞

stability +
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Stability vs. Asymptotic Stability 

equilibrium state 𝑥𝑒 is stable

+

equilibrium state 𝑥𝑒 is asymptotically stable

𝜀

𝑥𝑒 𝑥𝑒 𝑥𝑒 𝑥𝑒

𝑥𝑒𝑥𝑒𝑥𝑒

𝛿

𝛿𝜀
𝑥(𝑡0)

𝑥(𝑡0)

𝑥(𝑡0)

𝑥(𝑡0)

∀𝜀 > 0 ∃𝛿𝜀 > 0 𝑥 𝑡0 − 𝑥𝑒 < 𝛿𝜀 𝑥 𝑡 − 𝑥𝑒 < 𝜀, ∀𝑡 ≥ 𝑡0

∃𝛿 > 0 𝑥 𝑡0 − 𝑥𝑒 < 𝛿 𝑥 𝑡 − 𝑥𝑒 → 0, for 𝑡 → ∞
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Stability of Dynamical Systems 

⇒ trajectories 𝑥(𝑡) are “ultimately uniformly bounded” (use in robust control)

• allows to estimate the time needed to ”approximately” converge: for 𝑐 = 1,

in 𝑡 − 𝑡0 = 3 × the time constant 𝜏 = 1/𝜆, the initial error is reduced to 5%
• typically, this is a local property only (within some maximum finite radius 𝛿)

⇒ such “domain of attraction” is hard to be estimated accurately

exponential stability of 𝑥𝑒
exponential rate 𝜆

∃𝛿, 𝑐, 𝜆 > 0: 𝑥 𝑡0 − 𝑥𝑒 < 𝛿 ⇒ 𝑥(𝑡) − 𝑥𝑒 ≤ 𝑐𝑒−𝜆 𝑡−𝑡0 𝑥 𝑡0 − 𝑥𝑒

“practical” stability of a set 𝑆

a finite time

∃𝑇 𝑥 𝑡0 , 𝑆 ∈ ℝ: 𝑥(𝑡) ∈ 𝑆, ∀𝑡 ≥ 𝑡0 + 𝑇 𝑥 𝑡0 , 𝑆

also known as u.u.b. stability
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Analysis and Criteria 

rather, we may be able to just look at  the time evolution 

of a scalar function 𝑉, evaluated analytically along the 

state trajectories of the system (even in ℝ𝑛 !)

to assess (asymptotic) stability [or not] of equilibria, 

do we need to compute  all system trajectories, 

starting from all  possible initial states 𝑥(𝑡0)?

-1.5
-1

-0.5 0 0.5 1

𝑥1

-1

-0.5

0

0.5

1

𝑥(𝑡0)

𝑥(𝑡>)

asymptotically stable 𝑥

1.5

unstable 𝑥𝑒′′

a nonlinear system ሶ𝑥 = 𝑓 𝑥 in ℝ2 two equilibria 𝑓 𝑥𝑒 = 0

൝
ሶ𝑥1 = 1 − 𝑥1

3

ሶ𝑥2 = 𝑥1 − 𝑥2
2

𝑥𝑒
′ = (1,1), 𝑥𝑒

′′ = (1,−1)
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Lyapunov Theory

Lyapunov candidate
positive  definite  function

typically quadratic (e.g., 
1

2
𝑥 − 𝑥𝑒

𝑇𝑃 𝑥 − 𝑥𝑒 with level surfaces = ellipsoids) may also be a local 

candidate only ∀𝑥 ≠ 𝑥𝑒: 𝑥 − 𝑥𝑒 < 𝛿

negative  semi-

definite  

function

∃𝑉 candidate: ሶ𝑉 𝑥 < 0, along the trajectories of ሶ𝑥 = 𝑓(𝑥)

negative  

definite  

function

sufficient condition of instability

∃𝑉 candidate: ሶ𝑉 𝑥 > 0 ,along the trajectories of ሶ𝑥 = 𝑓(𝑥)

∃𝑉 candidate: ሶ𝑉(𝑥) ≤ 0 ,along the trajectories of ሶ𝑥 = 𝑓(𝑥)

sufficient condition of stability

sufficient condition of asymptotic stability

𝑉(𝑥): ℝ𝑛 → ℝ such that

𝑉 𝑥𝑒 = 0, 𝑉(𝑥) > 0, ∀𝑥 ≠ 𝑥𝑒
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Lyapunov Theory

LaSalle Theorem

if ∃𝑉 candidate: ሶ𝑉(𝑥) ≤ 0 along the trajectories of ሶ𝑥 = 𝑓(𝑥)

then system trajectories asymptotically converge to the  largest 

invariant set ℳ ⊆ 𝑆 = {𝑥 ∈ ℝ𝑛: ሶ𝑉(𝑥) = 0}

ℳ is invariant if 𝑥(𝑡0) ∈ ℳ ⟹ 𝑥(𝑡) ∈ ℳ, ∀𝑡 ≥ 𝑡0
Corollary

asymptotic stability

sufficient condition of u.u.b. stability of a set 𝑆

∃𝑉 candidate: i) 𝑆 is a level set of 𝑉 for a given 𝑐0
𝑆 = 𝑆 𝑐0 = {𝑥 ∈ ℝ𝑛: 𝑉(𝑥) ≤ 𝑐0}

ii) ሶ𝑉(𝑥) < 0 along trajectories of ሶ𝑥 = 𝑓(𝑥), 𝑥 ∉ 𝑆

ℳ ≡ 𝑥𝑒
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Lyapunov Analysis
a mass 𝑚 at the end of an unforced (passive) pendulum of length 𝑙

⇒ use LaSalle

⇒ local asymptotic stability

phase  

plane

⇒

stability of equilibrium 𝑥𝑒 = 0 (… at least!)

level  

sets of 𝑉

lower equilibrium at 𝜃 = 0

𝑚𝑙2 ሷ𝜃 + 𝑏 ሶ𝜃 +𝑚𝑙𝑔0 sin 𝜃 = 0
𝑥 = 𝑥1, 𝑥2 = (𝜃, ሶ𝜃) ∈ ℝ2 ⇒ ൞

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −
𝑔0
𝑙

sin 𝑥1 −
𝑏

𝑚𝑙2
𝑥2

𝑉 = 𝐸 =
1

2
𝑚𝑙2 ሶ𝜃2 +𝑚𝑙𝑔0(1 − cos 𝜃) ≥ 0 𝑉 = 0 ⇔ 𝑥𝑒 = 𝜃𝑒 , ሶ𝜃𝑒 = (0,0)

( )2 2

0lg sin 0V ml m b   = + = −  ⇒

ሶ𝑉 = 0 ⇔ ሶ𝜃 = 0 ⇒ ሷ𝜃 = −
𝑔0
𝑙

sin 𝜃 ≠ 0 unless 𝜃 = 𝜃𝑒 = 0( or 𝜋!)

𝑥1

𝑥2

𝑥1

𝑥2
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Stability of Dynamical Systems 

Barbalat Lemma

Corollary

ሶ𝑥 = 𝑓(𝑥, 𝑡)

• previous results are also valid for periodic time-varying systems

ሶ𝑥 = 𝑓(𝑥, 𝑡) = 𝑓(𝑥, 𝑡 + 𝑇𝑝) ⇒ 𝑉(𝑥, 𝑡) = 𝑉(𝑥, 𝑡 + 𝑇𝑝)

• for general time-varying systems (e.g., in robot trajectory tracking control)

i) a function 𝑉 𝑥, 𝑡 is lower bounded

ii) ሶ𝑉(𝑥, 𝑡) ≤ 0

then ⇒ ∃ lim
𝑡→∞

𝑉(𝑥, 𝑡) (but this does not imply that lim lim
𝑡→∞

ሶ𝑉 𝑥, 𝑡 = 0)

if in addition iii) ሷ𝑉 𝑥, 𝑡 is bounded

then ⇒ lim lim
𝑡→∞

ሶ𝑉 𝑥, 𝑡 = 0

if a Lyapunov candidate 𝑉(𝑥, 𝑡) satisfies Barbalat Lemma along the  

trajectories of ሶ𝑥 = 𝑓(𝑥, 𝑡) ,then the conclusions of LaSalle Theorem hold
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Regulation PD Control 
P D  c o n t r o l  ( p r o p o r t i o n a l  +  d e r i v a t i v e  a c t i o n  o n  t h e  e r r o r )

robot

goal: asymptotic stabilization (= regulation)  of the 

closed-loop equilibrium state

control law

𝐾𝑃 > 0,𝐾D > 0 (positive definite), symmetric

𝑢 = 𝐾𝑃(𝑞𝑑 − 𝑞) − 𝐾D ሶ𝑞

𝑞 = 𝑞𝑑 , ሶ𝑞 = 0

possibly obtained from kinematic inversion: 𝑞𝑑 = 𝑓−1(𝑟𝑑)

𝑀 𝑞 ሷ𝑞 + 𝑐 𝑞, ሶ𝑞 + 𝑔 𝑞 = 𝑢
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Regulation PD Control 
A s y m p t o t i c  s t a b i l i t y  w i t h  P D  c o n t r o l

Theorem 1

= 0, due to energy conservation (check appendix slides, also check equation 8.49 in Bruno’s book)

Proof
let (𝑞𝑑 constant)

Lyapunov candidate 𝑉 = 0 ⇔ 𝑒 = ሶ𝑒 = 0

up to here, we proved  

stability only

(𝐾D > 0, symmetric)

continues ...ሶ𝑉 = 0 ⇔ ሶ𝑞 = 0but

In the absence of gravity (𝑔(𝑞) = 0), the robot state (𝑞𝑑 , 0) under  

the given 𝑃𝐷 joint control law is globally asymptotically stable

𝑒 = 𝑞𝑑 − 𝑞

𝑉 =
1

2
ሶ𝑞𝑇𝑀(𝑞) ሶ𝑞 +

1

2
𝑒𝑇𝐾𝑃𝑒 ≥ 0

ሶ𝑉 = ሶ𝑞𝑇𝑀 ሷ𝑞 +
1

2
ሶ𝑞𝑇 ሶ𝑀 ሶ𝑞 − 𝑒𝑇𝐾𝑃 ሶ𝑞 = ሶ𝑞𝑇 𝑢 − 𝑆 ሶ𝑞 +

1

2
ሶ𝑀 ሶ𝑞 − 𝑒𝑇𝐾𝑃 ሶ𝑞

= ሶ𝑞𝑇𝐾𝑃
′𝑒 − ሶ𝑞𝑇𝐾𝐷 ሶ𝑞 − 𝑒𝑇𝐾𝑃

′ ሶ𝑞 = − ሶ𝑞𝑇𝐾𝐷 ሶ𝑞 ≤ 0
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Regulation PD Control 
A s y m p t o t i c  s t a b i l i t y  w i t h  P D  c o n t r o l

note: typically, 𝐾𝑃 = 𝑑𝑖𝑎𝑔{𝑘𝐷𝑖} , 𝐾D = 𝑑𝑖𝑎𝑔{𝑘D𝑖},

decentralized linear control (local to each joint)

ሶ𝑉 = 0 ⇔ ሶ𝑞 = 0

the only invariant state in ሶ𝑉 = 0 is given by 𝑞 = 𝑞𝑑 , ሶ𝑞 = 0

ሶ𝑞 = 0, ሷ𝑞 = 0 ⇔ 𝑒 = 0

closed-loop dynamics

ሷ𝑞 = 𝑀−1(𝑞)𝐾𝑃𝑒ሶ𝑞 = 0

system trajectories converge to the largest 

invariant set of states ℳ where ሶ𝑞 ≡ 0 that 

is ሶ𝑞 = ሷ𝑞 = 0)

LaSalle

invertible

𝑀 𝑞 ሷ𝑞 = 𝐾𝑝𝑒
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Mechanical Interpretation

• for diagonal positive definite gain matrices 𝐾𝑃 and 𝐾𝐷 (thus, with

positive diagonal elements), such values correspond to stiffness of  “virtual” 

springs and viscosity of “virtual” dampers placed at the joints

desired  

configuration 𝑞𝑑

stiffness 𝑘𝑃𝑖 > 0

viscosity 𝑘𝐷𝑖 > 0

current  

configuration 𝑞

𝑞𝑑 (single components  

are defined relative  

to the previous link!!)
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Plot of the Lyapunov Function 𝑽

• time evolution of the Lyapunov candidate

𝑡

𝑉

𝑉(0)

(isolated) instants of global “motion inversion”  （ ሶ𝑞 = 0, 𝑏𝑢𝑡 ሷ𝑞 ≠ 0!（

0

ሶ𝑉 = 0

𝑉(0) = ½𝑒𝑇(0)𝐾𝑃𝑒(0)
if the robot starts from rest
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Comments on PD Control

• choice of control gains affects robot evolution during transients and

practical settling times

• hard to define values that are “optimal” in the whole workspace

• “full” 𝐾𝑃 and 𝐾𝐷 gain matrices allow to assign desired eigenvalues

to the linear approximation of the robot dynamics around the final

desired state (𝑞𝑑 , 0)

• when (joint) viscous friction is present, the derivative term in the

control law is not strictly necessary

• −𝐹𝑉 ሶ𝑞 in the robot model acts similarly to −𝐾𝐷 ሶ𝑞 in the control law,

but the latter can be modulated at will

• in the absence of tachometers, the actual realization of the derivative  

term in the feedback law requires some processing of joint position  

data measured by digital encoders (or analog

resolvers/potentiometers)
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Inclusion of Gravity

• in the presence of gravity, the same previous arguments  (and proof) show 

that the control law

will make the equilibrium state (𝑞𝑑 , 0) globally  asymptotically stable 

(nonlinear cancellation of gravity)

it is 𝑞 → 𝑞 ∗≠ 𝑞𝑑 , ሶ𝑞 → 0, with steady-state position error

• 𝑞∗is not unique in general, except when 𝐾𝑃 is chosen large enough

• explanation in terms of linear systems: there is no integral action 

before  the point of access of the constant “disturbance” acting on 

the system

𝑢 = 𝐾𝑃 𝑞𝑑 − 𝑞 − 𝐾𝐷 ሶ𝑞 + 𝑔(𝑞) 𝐾𝑃 > 0,𝐾𝐷 > 0

𝑢 = 𝐾𝑃 𝑞𝑑 − 𝑞 − 𝐾𝐷 ሶ𝑞 + ො𝑔(𝑞) ො𝑔(𝑞) ≠ 𝑔(𝑞)

• if gravity is not cancelled or only approximately cancelled
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Inclusion of Gravity
P D  c o n t r o l  +  c o n s t a n t  g r a v i t y  c o m p e n s a t i o n

since 𝑔(𝑞) contains only trigonometric and/or linear terms in 𝑞,  

the following structural property holds

finite

consequence

𝐾𝑃, 𝐾D > 0
symmetric

linear feedback + constant feedforward

Induced norm of

a matrix
note:

∃𝛼 > 0:
𝜕2𝑈

𝜕𝑞2
=

𝜕𝑔

𝜕𝑞
≤ 𝛼, ∀𝑞

𝑔(𝑞) − 𝑔 𝑞𝑑 ≤ 𝛼 𝑞 − 𝑞𝑑

‖𝐴‖ = 𝜆 𝐴𝑇𝐴 max ≜ 𝐴𝑀 ≥ 𝐴𝑚 ≜ 𝜆𝑚𝑖𝑛(𝐴
𝑇𝐴)

𝑢 = 𝐾𝑃 𝑞𝑑 − 𝑞 − 𝐾𝐷 ሶ𝑞 + 𝑔 𝑞𝑑

LINEAR CONTROL law
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Inclusion of Gravity
P D  c o n t r o l  +  c o n s t a n t  g r a v i t y  c o m p e n s a t i o n  ( s t a b i l i t y  a n a l y s i s )

Theorem 2

If 𝐾𝑃,𝑚 > 𝛼, the state (𝑞𝑑 , 0) of the robot under joint-space PD control

+ constant gravity compensation at 𝑞 | is globally asymptotically stable

1. (𝑞𝑑 , 0) is the unique closed-loop equilibrium state

in fact, for ሶ𝑞 = 0 and ሷ𝑞 = 0, it is 𝐾𝑃𝑒 = 𝑔(𝑞) − 𝑔(𝑞𝑑)

which can hold only for 𝑞 = 𝑞𝑑 , because when 𝑞 ≠ 𝑞𝑑

Proof

𝐾𝑃𝑒 ≥ 𝐾𝑃,𝑚‖𝑒‖ > 𝛼‖𝑒‖ ≥ 𝑔(𝑞) − 𝑔 𝑞𝑑
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Inclusion of Gravity
P D  c o n t r o l  +  c o n s t a n t  g r a v i t y  c o m p e n s a t i o n  ( s t a b i l i t y  a n a l y s i s )

with 𝑒 = 𝑞𝑑 − 𝑞, 𝑔 𝑞 =
𝜕𝑈

𝜕𝑞

𝑇
consider as Lyapunov candidate

(𝑞𝑑 , 0) is a  

global minimum  

of 𝑉 ≥ 0

2. 𝑉 is convex in ሶ𝑞 and 𝑒, and zero only for 𝑒 = ሶ𝑞 = 0

𝑉 =
1

2
ሶ𝑞𝑇𝑀(𝑞) ሶ𝑞 +

1

2
𝑒𝑇𝐾𝑃𝑒 + 𝑈(𝑞) − 𝑈 𝑞𝑑 + 𝑒𝑇𝑔 𝑞𝑑

𝜕𝑉

𝜕 ሶ𝑞

𝑇

= 𝑀(𝑞) ሶ𝑞 = 0 only for  ሶ𝑞 = 0

𝜕2𝑉

𝜕 ሶ𝑞2
= 𝑀(𝑞) > 0

𝜕𝑉∣ ሶ𝑞=0

𝜕𝑒

𝑇

= 𝐾𝑃𝑒 −
𝜕𝑈

𝜕𝑞

𝑇

+ 𝑔 𝑞𝑑 = 𝐾𝑃𝑒 + 𝑔 𝑞𝑑 − 𝑔(𝑞) = 0

𝜕2𝑉∣ ሶ𝑞=0

𝜕𝑒2
= 𝐾𝑃 +

𝜕2𝑈

𝜕𝑞2
> 0, since 𝐾𝑃 = 𝐾𝑃,𝑀 ≥ 𝐾𝑃,𝑚 > 𝛼

𝜕𝑒/𝜕𝑞 = −𝐼
only for  𝑞 = 𝑞𝑑
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Inclusion of Gravity
P D  c o n t r o l  +  c o n s t a n t  g r a v i t y  c o m p e n s a t i o n  ( s t a b i l i t y  a n a l y s i s )

differentiating

by LaSalle Theorem, the thesis follows

𝑉 =
1

2
ሶ𝑞𝑇𝑀(𝑞) ሶ𝑞 +

1

2
𝑒𝑇𝐾𝑃𝑒 + 𝑈(𝑞) − 𝑈 𝑞𝑑 + 𝑒𝑇𝑔 𝑞𝑑

ሶ𝑉 = ሶ𝑞𝑇 𝑀(𝑞) ሷ𝑞 +
1

2
ሶ𝑀(𝑞) ሶ𝑞 − 𝑒𝑇𝐾𝑃 ሶ𝑞 +

𝜕𝑈(𝑞)

𝜕𝑞
ሶ𝑞 − ሶ𝑞𝑇𝑔 𝑞𝑑

= ሶ𝑞𝑇 𝑢 − 𝑆(𝑞, ሶ𝑞) ሶ𝑞 +
1

2
ሶ𝑀(𝑞) ሶ𝑞 − 𝑔(𝑞) − 𝑒𝑇𝐾𝑃 ሶ𝑞 + ሶ𝑞𝑇 𝑔(𝑞) − 𝑔 𝑞𝑑

= ሶ𝑞𝑇𝐾𝑃𝑒 − ሶ𝑞𝑇𝐾𝐷 ሶ𝑞 + ሶ𝑞𝑇 𝑔 𝑞𝑑 − 𝑔(𝑞) − 𝑒𝑇𝐾𝑃 ሶ𝑞 + ሶ𝑞𝑇 𝑔(𝑞) − 𝑔 𝑞𝑑

= − ሶ𝑞𝑇𝐾𝐷 ሶ𝑞 ≤ 0

𝑀(𝑞) ሷ𝑞 + 𝑔(𝑞) = 𝐾𝑃𝑒 + 𝑔 𝑞𝑑 ሷ𝑞 = 𝑀−1(𝑞) 𝐾𝑃𝑒 + 𝑔 𝑞𝑑 − 𝑔(𝑞) = 0 ⇔ 𝑒 = 0

for ሶ𝑉 = 0(⇔ ሶ𝑞 = 0), we have in the closed-loop system

= 0
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Example
E x a m p l e  o f  a  s i n g l e - l i n k  r o b o t  ( s t a b i l i t y  a n a l y s i s )

task: regulate the link position to the upward equilibrium

𝜃𝑑 = 𝜋 → 𝑔(𝜃𝑑) = 0

PD control + constant gravity compensation (here, zero!)

𝑢 = 𝑘𝑃 (𝜋 − 𝜃) − 𝑘𝐷 ሶ𝜃

by Theorem 2, it is sufficient (here, also necessary*) to choose

𝑘𝑃 > 𝛼 = 𝑚𝑔0𝑑, 𝑘𝐷 > 0

𝐼 ሷ𝜃 + 𝑚𝑔0𝑑sin 𝜃 = 𝑢

two local minima

plots of 𝑉(𝜃) (for ሶ𝜃 = 0)

single  

minimum  in 

𝜃𝑑 = 𝜋

ra

d

* by a local analysis of the  

linear approximation at 𝜋

𝐾𝑃/𝑚𝑔0𝑑 = 1𝐾𝑃/𝑚𝑔0𝑑 = 0.5 𝐾𝑃/𝑚𝑔0𝑑 = 0.5
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Example
P D  c o n t r o l  +  c o n s t a n t  g r a v i t y  c o m p e n s a t i o n

( s i m u l a t i o n s  w i t h  d a t a :  𝑰 = 𝟎 . 𝟗 𝟑𝟑𝟑 , 𝒎𝒈 𝟎𝒅 = 𝟏𝟗 . 𝟔𝟐 ( =𝜶 ) )

p
o
s
it
io

n
v
e

lo
c
it
y

e
rr

o
r

c
o
n

tr
o
l

zero final error

large initial torque

no residual error!

even smaller initial torque

60
𝑜

residual error

small initial torque

sufficient P gain: 𝑘𝑃 = 36, 𝑘𝐷 = 12 low P gain: 𝑘𝑃 = 16, 𝑘𝐷 = 8 low P gain: 𝑘𝑃 = 16, 𝑘𝐷 = 8

𝜃𝑑 = 180° → 𝑔 𝜃𝑑 = 0 𝜃𝑑 = 90° → 𝑔 𝜃𝑑 = 𝑚𝑔0𝑑
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Inclusion of Gravity
A p p r o x i m a t e g r a v i t y  c o m p e n s a t i o n

the approximate control law

• leads, under similar hypotheses, to a closed-loop equilibrium 𝑞∗

• its uniqueness is not guaranteed (unless 𝐾É is large enough)

• for 𝐾𝑃 → ∞, one has 𝑞∗ → 𝑞𝑑

Conclusion: In the presence of gravity, the previous regulation control laws  

require an accurate knowledge of the gravity term in the dynamic model

in order to guarantee the zeroing of the position error

(since we can only use “finite” control gains ⇒ in practice, not too large)

𝑢 = 𝐾𝑃 𝑞𝑑 − 𝑞 − 𝐾𝐷 ሶ𝑞 + ො𝑔 𝑞𝑑
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PID Control

• in linear systems, the addition of an integral control action is used  to 

eliminate a constant error in the step response at steady state

• in robots, a PID may be used to recover such a position error due  to 

an incomplete (or absent) gravity compensation/cancellation

the control law

• is independent from any robot dynamic model term

• if the desired closed-loop equilibrium is asymptotically stable under  PID control, 

the integral term is “loaded” at steady state to the value

• however, one can show only local asymptotic stability of this law, i.e.,  for 𝑞(0)
∈ Δ(𝑞𝑑), under complex conditions on 𝐾𝑃 , 𝐾𝐼 ,𝐾D and 𝑒(0)

𝑢(𝑡) = 𝐾𝑃 𝑞𝑑 − 𝑞(𝑡) + 𝐾𝐼න
0

𝑡

𝑞𝑑 − 𝑞(𝜏) 𝑑𝜏 − 𝐾𝐷 ሶ𝑞(𝑡)

𝐾𝐼න
0

∞

𝑞𝑑 − 𝑞(𝜏) 𝑑𝜏 = 𝑔 𝑞𝑑
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PID Control
L i n e a r  e x a m p l e  w i t h  P I D  c o n t r o l

(no friction)

(PD + gravity cancellation ⇒ regulation ∀𝑘𝑃 > 0, 𝑘𝐷 > 0)

(PD ⇒ steady-state error 𝑒 = 𝑞𝑑 − ത𝑞, with ത𝑞 = 𝑞𝑑 −
𝑚𝑔0

𝑘𝑃

(PID ⇒ regulation ∀𝑘𝐼 > 0, 𝑘𝐷 > 0, 𝑘𝑃 >
𝑚𝑘𝐼

𝑘𝐷
> 0)

with global  

exponential  

stability!

𝐹 = 𝑘𝑃 𝑞𝑑 − 𝑞 − 𝑘𝐷 ሶ𝑞 + 𝑘𝐼න
0

𝑡

𝑞𝑑 − 𝑞(𝜏) 𝑑𝜏

𝐹 = 𝑘𝑃 𝑞𝑑 − 𝑞 − 𝑘𝐷 ሶ𝑞 + 𝑚𝑔0

𝑚 ሷ𝑞 + 𝑚𝑔0 = 𝐹
𝑒(𝑡) = 𝑞𝑑 − 𝑞(𝑡)
ሶ𝑒(𝑡) = − ሶ𝑞(𝑡)

𝐹 = 𝑘𝑃 𝑞𝑑 − 𝑞 − 𝑘𝐷 ሶ𝑞

𝑚𝑔0 > 0

𝐹

𝑞
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PID Control
S a t u r a t e d  P I D  c o n t r o l

• more in general, one can prove global asymptotic stability of (𝑞𝑑 , 0),
under lower bound limitations for 𝐾𝑃, 𝐾𝐼,𝐾𝐷 (depending on suitable  

“bounds” on the terms in the dynamic model), for a nonlinear PID law

where Φ(𝑞𝑑 − 𝑞) is a saturation-type function, such as

See paper by R. Kelly, IEEE TAC, 1998:

Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Transactions on Automatic 

Control, 43 (7) (1998), pp. 934-938

𝑢(𝑡) = 𝐾𝑃 𝑞𝑑 − 𝑞(𝑡) + 𝐾𝐼න
0

𝑡

Φ 𝑞𝑑 − 𝑞(𝜏) 𝑑𝜏 − 𝐾𝐷 ሶ𝑞

Φ(𝑥) = ቐ

sin 𝑥 , |𝑥| ≤ 𝜋/2
1, 𝑥 > 𝜋/2
−1, 𝑥 < −𝜋/2

Φ(𝑥) = tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥



28

Limits Discussion
L i m i t s  o f  r o b o t  r e g u l a t i o n  c o n t r o l l e r s

• response times needed for reaching the desired steady state are not  

easily predictable in advance

• depend heavily on robot dynamics, on PD/PID gains, on the required total 

displacement, and on the interested area of robot workspace

• integral term (when present) needs some time to “unload” itself from the 

error history accumulated during transients

• large initial errors are stored in the integral term

• anti-windup schemes stop the integration when commands saturate

• … an intuitive explanation for the success of “saturated” PID law

• control efforts in the few first instants of motion typically exceed by far those 

required at steady state

• especially for high positional gains

• may lead to saturation (hard nonlinearity) of robot actuators
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Limits Discussion
R e g u l a t i o n  i n  i n d u s t r i a l  r o b o t s

• in industrial robots, the planner generates a reference trajectory 𝑞𝑟(𝑡)
even when the task requires only positioning/regulation of the robot

• “smooth” enough, with a user-defined transfer time 𝑇

• reference trajectory interpolates initial and final desired position

• 𝑞𝑟(𝑡) is used within a control law of the form

e.g., PD with  

gravity  cancellation

• in this way, the position error is initially zero

• robot motion stays only “in the vicinity” of the reference trajectory  until 𝑡 = 𝑇, 

typically with small position errors (gains can be larger!)

• final regulation is only a “local” problem (𝑒(𝑇) = 𝑞𝑑 − 𝑞(𝑇) is small)

𝑞𝑟(0) = 𝑞(0) 𝑞𝑟(𝑡 ≥ 𝑇) = 𝑞𝑑

𝑢 = 𝐾𝑃 𝑞𝑟(𝑡) − 𝑞 + 𝐾𝐷 ሶ𝑞𝑟(𝑡) − ሶ𝑞 + 𝑔(𝑞)

often neglected
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Limits Discussion
Q u a l i t a t i v e  c o m p a r i s o n

• no saturation of commands: in principle, much larger gains can be used

• better prediction of settling times: local exponential convergence (designed  on 

the linear approximation of the robot dynamics around (𝑞𝑑 , 0))

• “fine tuning” of control gains is easier, but still a tedious and delicate task

𝑞(0)

𝑞𝑑

𝑢(0)

𝑢𝑑 = 𝑔(𝑞𝑑)

time-

varying  

position  

reference

𝑞𝑟(𝑡)

𝑇 = planned  final time

𝑞(0)

𝑞𝑑 𝑢(0)

𝑢 = 𝑔(𝑞𝑑)

control commandsjoint variables

step  

variation  

of desired  

position
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Robot Dynamic Model
A p p e n d i x :  R o b o t  d y n a m i c  m o d e l

( i n  v e c t o r  f o r m a t s )

𝑘 − 𝑡ℎ column  

of matrix 𝑀(𝑞)

NOTE: the model 

is in the form

𝛷 𝑞, ሶ𝑞, ሷ𝑞 = 𝑢
as expected

NOT a

symmetric  matrix

in general

factorization of 𝑐
by 𝑆 is not unique!

symmetric  

matrix!

𝑀(𝑞) ሷ𝑞 + 𝑐(𝑞, ሶ𝑞) + 𝑔(𝑞) = 𝑢

𝑘 − 𝑡ℎ component 

of vector 𝑐
𝑐𝑘(𝑞, ሶ𝑞) = ሶ𝑞𝑇𝐶𝑘(𝑞) ሶ𝑞

𝑀(𝑞) ሷ𝑞 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞 + 𝑔(𝑞) = 𝑢
2.

1.

𝐶𝑘(𝑞) =
1

2

𝜕𝑀𝑘

𝜕𝑞
+

𝜕𝑀𝑘

𝜕𝑞

𝑇

−
𝜕𝑀

𝜕𝑞𝑘

𝑠𝑘𝑗 𝑞, ሶ𝑞 =෍

𝑖

𝑐𝑘𝑖𝑗(𝑞) ሶ𝑞𝑖
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Structural Property
A p p e n d i x :  A  s t r u c t u r a l  p r o p e r t y

Matrix ሶ𝑀 − 2𝑆 is skew-symmetric

(when using Christoffel symbols to define matrix 𝑆)

using the  

symmetry of 𝑀

ሶ𝑚𝑘𝑗 =෍

𝑖

𝜕𝑚𝑘𝑗

𝜕𝑞𝑖
ሶ𝑞𝑖 2𝑠𝑘𝑗 =෍

𝑖

2 𝑐𝑘𝑖𝑗 ሶ𝑞𝑖 =෍

𝑖

𝜕𝑚𝑘𝑗

𝜕𝑞𝑖
+
𝜕𝑚𝑘𝑖

𝜕𝑞𝑗
−
𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
ሶ𝑞𝑖

ሶ𝑚𝑘𝑗 − 2𝑠𝑘𝑗 =෍

𝑖

𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
−
𝜕𝑚𝑘𝑖

𝜕𝑞𝑗
ሶ𝑞𝑖 = 𝑛𝑘𝑗

𝑛𝑗𝑘 = ሶ𝑚𝑗𝑘 − 2𝑠𝑗𝑘 =෍

𝑖

𝜕𝑚𝑖𝑘

𝜕𝑞𝑗
−
𝜕𝑚𝑗𝑖

𝜕𝑞𝑘
ሶ𝑞𝑖 = −𝑛𝑘𝑗

𝑥𝑇( ሶ𝑀 − 2𝑆)𝑥 = 0, ∀𝑥

Proof
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Structural Property
A p p e n d i x :  E n e r g y  c o n s e r v a t i o n

• total robot energy

• if 𝑢 ≡ 0, total energy is constant (no dissipation or increase)

here, any 

factorization of 

vector 𝑐 by a 

matrix 𝑆 can be 

used

weaker property than skew-symmetry, as  the external 

vector in the quadratic form  is the same velocity ሶ𝑞 that 

appears also  inside the two internal matrices ሶ𝑀 also 𝑆

• its evolution over time (using the dynamic model)

in general, the variation  of the total energy is  

equal to the work of  non-conservative forces

𝐸 = 𝑇 + 𝑈 =
1

2
ሶ𝑞𝑇𝑀(𝑞) ሶ𝑞 + 𝑈(𝑞)

ሶ𝐸 = ሶ𝑞𝑇𝑀(𝑞) ሷ𝑞 +
1

2
ሶ𝑞𝑇 ሶ𝑀(𝑞) ሶ𝑞 +

𝜕𝑈

𝜕𝑞
ሶ𝑞

= ሶ𝑞𝑇(𝑢 − 𝑆(𝑞, ሶ𝑞) ሶ𝑞 − 𝑔(𝑞)) +
1

2
ሶ𝑞𝑇 ሶ𝑀(𝑞) ሶ𝑞 + ሶ𝑞𝑇𝑔(𝑞)

= ሶ𝑞𝑇𝑢 +
1

2
ሶ𝑞𝑇( ሶ𝑀(𝑞) − 2𝑆(𝑞, ሶ𝑞)) ሶ𝑞

ሶ𝐸 = 0 ሶ𝑞𝑇( ሶ𝑀(𝑞) − 2𝑆(𝑞, ሶ𝑞)) ሶ𝑞 = 0, ∀𝑞, ሶ𝑞 ሶ𝐸 = ሶ𝑞𝑇𝑢
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