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Inverse Dynamics Control

given the robot dynamic model

M(q)q +n(q,q) =u
f__
c(q,q) + g(q) + friction model

and a twice-differentiable desired trajectory fort € [0, T]

qat) = 4a(t), Gq(t)
applying the feedforward torque in nominal conditions

ug = M(qq)dq + n(qa, qq)

yields exact reproduction of the desired motion, provided that
qg(0) = g4(0),g(0) = qg4(0) (initial matched state)




In Practice ...

/\\J

a number of differences from the nominal condition

. Initial state 1s "not matched” to the desired trajectory g, (t)
. disturbances on the actuators, truncation errors on data, ...

. Inaccurate knowledge of robot dynamic parameters (link
masses, Inertias, center of mass positions)

. unknown value of the carried payload

. presence of unmodeled dynamics (complex friction
phenomena, transmission elasticity, ...)




Introducing Feedback

" = . " : With M, i estimates of terms
u; =M + n(qg,, C L . .
a (9a)4a (44, 4a) (or coefficients) in the dynamic model

note: i, can be computed off line [e.g., by NE,(qg4, 44, Gq)]

feedback Is introduced to make the control scheme more robust

different possible implementations depending on
amount of computational load share

= OFF LINE 4= (open loop)
= ON LINE = (closed loop)

two-step control design:
1.compensation (feedforward) or cancellation (feedback) of nonlinearities
2.synthesis of a linear control law stabilizing the trajectory error to zero




@ A Series of Trajectory Controllers

>

1. Inverse dynamics compensation (FFW) + PD typically, only local
u=1,+Kp(qgs —q) + Kp(gg — q) stabilization of
2. inverse dynamics compensation (FFW) + variable PD trajectory error

— e(t) =q4(t) —q(t
u =1ig +M(qq)Kp(qa —q) + Kp(ga — )] (1) = qa(t) —q(®
3. feedback linearization (FBL) + [PD+FFW] = "“COMPUTED TORQUEFE"

u=M(q)lGa + Kp(qa — @) + Kp(Ga — §]1 + 1(q, 4)
4. feedback linearization (FBL) + [PID+FFW]

u = M(q) +7A(q, §)

Ga + Kp(qq — q) + Kp(qq — q) + K f(CId —q)dt

more robust to uncertainties, but also more complex to implement in real time




Feedback Linearization Control

q .+ Knc —+ N + u 4 ~ q q q
_ n B
n(q,q)

symmetric and
positive definite
matrices K p, Kp

In nominal :
conditions q=4a
(M = M, = n)
nonlinear robot dynamics nonlinear control law linear and
global asymptotic decoupled

stabilization a = Gaq + Kp(da — q) + Kp(qa — ) system




Interpretation in the Linear Domain

da + Kpqq + Kpqq

]

> (0, diagonal

under feedback linearization control, the robot has a dynamic behavior
that Is Invariant, linear and decoupled in its whole workspace (V(q, g))

linearity
error transients e; = g4; — g; = 0 exponentially, prescribed by Kp;, Kp; choice

decoupling
each joint coordinate g; evolves independently from the others, forced by a;

é+KDé+KPe=O®éi+KDiéi+KPiei=O




[(Qd_Q)dT € =(qq —q

(?)eizqdi—qi(iz]_’_",]v) 3éi+KDiéi+Kpiei+KpiJei dt =0
, 1 =(6)
Lle;(t)] 3 (S + Kpis + Kp; + Kj; ;) ei(s) =0 exponential stability | Self-study
; , conditions by Routh
SX= (s°+ Kp;js® + Kp;s + K;i)ei(s) =0 =

criterion

(4) (5)
X R ¥ |

ersity o




Remarks

desired joint trajectory can be generated from Cartesian data Pg(t), pq(0), p4(0)

qq(0) Cld(lo) q4(0) = f~ (pq(0))
) G4 (t) qa(0) = J7(qa(0))P4(0)
1alt) — [ [ —2a® 4,0 = ] G [Fa(®) — ) (Ga)da]

real-time computation by Newton-Euler algo: urg; = NE,(q, 4, a)

imulation of f K linearization control
simulation of feedbac earization contro true parameters

Ga(t),qq(t), qqa(t) teedback robot 1
liInearization q

estimated parameters 7

Hint: there Is no use In simulating this control law in ideal case (& = m); robot behavior will be
identical to the linear and decoupled case of stabilized double integrators!!




Further Comments

choice of the diagonal elements of Kp, Kp(and K;)
for shaping the error transients, with an eye to motor saturations...

e(t) = qa(t) = (D) \an
critically damped transient

parametric identification

to be done in advance, using the property of linearity in the dynamic coefficients of
the robot dynamic model
choice of the sampling time of a digital implementation

compromise between computational time and tracking accuracy, typically T. = 0.5
~ 10 ms

exact linearization by (state) feedback is a general technique of nonlinear control theory
can be used for robots with elastic joints, wheeled mobile robots, ...
non-robotics applications: satellites, induction motors, helicopters, ...




Another Example

Another example of feedback linearization design

dynamic model of robots with elastic joints
g = link position } 2N generalized
6 = motor position (after reduction gears) coordinates (g, 6)
B,, = diagonal matrix (> 0) of inertia of the (balanced) motors
K = diagonal matrix (> 0) of (finite) stiffness of the joints

AN state variables [ M(q)4d +c(q,9) +g(q) +K(q—0) =0
x=(4,0,9,0) B0 +K( —q)=u

IS there a control law that achieves exact linearization via feedback?

u=ua(q0,q0)+L(q0,460)a linearanddecoupled
system: N chains of 4

d4qi Integrators (to be
dt4 =aq;, 1=1,..,N stabilized by linear

control design)
Hint: differentiate (1) w.r.t. ime until motor acceleration 6 appears;
substitute this from (2), choose u so as to cancel all nonlineatrities ...

YES and it yields




Alternative Controller

u=M(@q)qq+50q,9)q9q +9(q) + Fyqq + Kpe + Kpeé
1 1 1

SPECIAL factorization such that _ . -
M — 25 is skew-symmetric symmetric and positive definite
matrices

. global asymptotic stability of (e ¢é) = (0 0) (trajectory tracking)
proven by Lyapunov+Barbalat+LaSalle
. does not produce a complete cancellation of nonlinearities

. the g and g that appear linearly in the model are evaluated on the desired
trajectory

. does not induce a linear and decoupled behavior of the trajectory error e(t)
= q,4(t) — q(t) in the closed-loop system
lends itself more easily to an adaptive version

. cannot be computed directly by the standard NE algorithm...




Analysis

Analysis of asymptotic stability
(of the trajectory error - 1)

M(q)§ +5S(q,9)q +g(q) + F,qg=u robot dynamics (including friction)
control law  u=M(q)q4a +5(q,9)qa + 9(q) + Fyqq + Kpe + Kpé
Lyapunov candidate and its time derivative

1, 1 R ) .

V==e'M(@)e + EeTKPe >0V = EeTM(q)e +etM(g)é + e'Kpeé
the Closed-%oop system equations yield
M(q)é = —=5(q,q)é — (Kp + Fy)é — Kpe

substituting and using the skew-symmetric property

Since the SyStem iS tlme—varylng (d ue to qd(t))y direCt applying ) forgeneraltirp:]e:-\f;(r?irt]i;:syj;gc:n::(?g.,:ibnvrgxb’;t)tr:ajzg;yirzgkingcontrol)

x=f(x,1t)
Barbalat Lemma

LaSalle theorem is NOT allowed = use Barbalat lemma...

then = 3 lim V (x, 1) (but this does not imply that lim V(x,t) =0)

if in addition iii) V(x, t) is bounded
then = tlim V(x,t) =0
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% Stability of Dynamical Systems
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q=qqa(t) —e,q=qqt)—e=>V="V(et)=V(xt)
‘_'_’ Corczpzr{yapunov candidate V (x, t) satisfies Barbalat Lemma along the

t t trajectories of x = f(x,t) ,then the conclusions of LaSalle Theorem hold




Analysis

Analysis of asymptotic stability
(of the trajectory error - 2)

since i) V is lower bounded and ii) V < 0 ,we can check condition
i) in order to apply Barbalat lemma

V =—-26T(K, + F,)é - isthis bounded?
from 1) + 1), V is bounded = e and é are bounded
assume that the desired trajectory has bounded velocity q

using the following two properties of dynamic model terms

=qIs
bounded

O<m<|IM I sM<o [|S(q)I < asllq]

then also é will be bounded (in norm) since & Stability of Dynamical Systems

S

,f{

i
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= previous results are also valid for periodic time-varying systems
x=fxt)=f(x,t+T,)=>V(xt)=V(xt+T,)

é — = M 1 (q) [S (ql q.) é + K P e + (K D + F V) é] - for general time-varying syster;s =(e;( ;Cn :))bot trajectory tracking control)

Barbalat Lemma

i) a function V(x, t) is lower bounded
i) V(ix,t) <0
° then = 3 lim V (x, 1) (but this does not imply that lim V(x,t) = 0)
. : l - V t —_— O if in addition i) V(x, t) is bounded
bounded in din 1m — bon» 7.0 =

bounde F—>00
NOIrM by M norm by aS ‘ | q' ‘ | P E— bO un d e d _— if a Lyapunov candidate  (x, t) satisfies Barbalat Lemma along the

trajectories of & = f(x, t) ,then the conclusions of LaSalle Theorem hold




Analysis

Analysis of asymptotic stability
(of the trajectory error — end of proof)

we can now conclude by proceeding as in LaSalle theorem
V=0cé=0

the closed-loop dynamics in this situation is
M(CI)@ — —er

= é=0oe=0 mp (e¢é)=(0,0)

is the largest invariant setin V =0

= (global) asymptotic tracking will be achieved 4




Comments

Regulation as a special case

what happens to the control laws designed for trajectory tracking
when g, Is constant? are there simplifications?

feedback linearization
u=M(q)|Kp(qqs —q) — Kpql +c(q,q) + g(q)
no special simplifications

however, this Is a solution to the regulation problem with
exponential stability (and decoupled transients at each joint!)

alternative global controller
u=Kp(qqa —q) — Kpq +9(q)
we recover the PD + gravity cancellation control law!!




Without a model

Trajectory execution without a model

IS It possible to accurately reproduce a desired smooth joint - space
reference trajectory with reduced or no information on the robot dynamic
model?

this is feasible in case of repetitive motion tasks over a finite interval of
time
trials are performed iteratively, storing the trajectory error information of

the current execution [k-th iteration] and processing it off line before
the next trial [(k + 1) —iteration] starts

the robot should be reinitialized in the same initial position at the
beginning of each trial

the control law is made of a non-model based part (typically, a
decentralized PD law) + a time-varying feedforward which is updated
at every trial

this scheme is called iterative trajectory learning
h

‘ ttps://ieeexplore.ieee.org/document/240467 /authors#authors
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