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2

Inverse Dynamics Control
given the robot dynamic model

yields exact reproduction of the desired motion, provided  that 

𝑞(0) = 𝑞𝑑(0), ሶ𝑞(0) = ሶ𝑞𝑑(0) (initial matched state)

𝑐(𝑞, ሶ𝑞) + 𝑔(𝑞) + friction model

𝑀(𝑞) ሷ𝑞 + 𝑛(𝑞, ሶ𝑞) = 𝑢

𝑢𝑑 = 𝑀 𝑞𝑑 ሷ𝑞𝑑 + 𝑛 𝑞𝑑 , ሶ𝑞𝑑

and a twice-differentiable desired trajectory for 𝑡 ∈ [0, 𝑇]

𝑞𝑑 𝑡 → ሶ𝑞𝑑 𝑡 , ሷ𝑞𝑑(𝑡)

applying the feedforward torque in nominal conditions
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In Practice …

• initial state is “not matched” to the desired trajectory 𝑞𝑑(𝑡)

• disturbances on the actuators, truncation errors on data, …

• inaccurate knowledge of robot dynamic parameters (link  

masses, inertias, center of mass positions)

• unknown value of the carried payload

• presence of unmodeled dynamics (complex friction  

phenomena, transmission elasticity, …)

a number of differences from the nominal condition
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Introducing Feedback

different possible implementations depending on  

amount of computational load share

▪ OFF LINE (open loop) 

▪ ON LINE (closed loop)

feedback is introduced to make the control scheme more robust

two-step control design:

1.compensation (feedforward) or cancellation (feedback) of nonlinearities

2.synthesis of a linear control law stabilizing the trajectory error to zero

With ෡𝑀, ො𝑛 estimates of terms

(or coefficients) in the dynamic model

note: ො𝑢𝑑 can be computed off line [e.g., by ෢𝑁𝐸𝛼(𝑞𝑑 , ሶ𝑞𝑑 , ሷ𝑞𝑑)]

ො𝑢𝑑 = ෡𝑀 𝑞𝑑 ሷ𝑞𝑑 + ො𝑛 𝑞𝑑 , ሶ𝑞𝑑
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A Series of Trajectory Controllers

typically, only local  

stabilization of  

trajectory error

𝑒 𝑡 = 𝑞𝑑 𝑡 − 𝑞(𝑡)

1. inverse dynamics compensation (FFW) + PD

2. inverse dynamics compensation (FFW) + variable PD

3. feedback linearization (FBL) + [PD+FFW] = “COMPUTED TORQUE”

4. feedback linearization (FBL) + [PID+FFW]

more robust to uncertainties, but also more complex to implement in real time

𝑢 = ො𝑢𝑑 + 𝐾𝑃 𝑞𝑑 − 𝑞 + 𝐾𝐷 ሶ𝑞𝑑 − ሶ𝑞

𝑢 = ො𝑢𝑑 + ෡𝑀 𝑞𝑑 𝐾𝑃 𝑞𝑑 − 𝑞 + 𝐾𝐷 ሶ𝑞𝑑 − ሶ𝑞

𝑢 = ෡𝑀(𝑞) ሷ𝑞𝑑 + 𝐾𝑃 𝑞𝑑 − 𝑞 + 𝐾𝐷 ሶ𝑞𝑑 − ሶ𝑞 + ො𝑛(𝑞, ሶ𝑞)

𝑢 = ෡𝑀(𝑞) ሷ𝑞𝑑 + 𝐾𝑃 𝑞𝑑 − 𝑞 + 𝐾𝐷 ሶ𝑞𝑑 − ሶ𝑞 + 𝐾𝐼න 𝑞𝑑 − 𝑞 𝑑𝑡 + ො𝑛(𝑞, ሶ𝑞)
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Feedback Linearization Control

symmetric and  

positive definite  

matrices𝐾𝑃, 𝐾𝐷

+

_

ROBOT (or its DYNAMIC MODEL)

+
_

+ +

in nominal  

conditions

(෡𝑀 = 𝑀, ො𝑛 = 𝑛)

nonlinear robot dynamics nonlinear control law linear and  

decoupled  

system

global asymptotic  

stabilization

ሷ𝑞𝑑 + 𝐾𝐷 ሶ𝑞𝑑
+𝐾𝑃𝑞𝑑

෡𝑀(𝑞) 𝑀−1(𝑞)

𝑛(𝑞, ሶ𝑞)

ො𝑛(𝑞, ሶ𝑞)
𝐾𝐷

𝐾𝑃

ሷ𝑞 ሶ𝑞 𝑞

𝑀(𝑞) ሷ𝑞 + 𝑛(𝑞, ሶ𝑞) = 𝑢 = 𝑀(𝑞)𝑎 + 𝑛(𝑞, ሶ𝑞)

𝑎 = ሷ𝑞𝑑 + 𝐾𝐷 ሶ𝑞𝑑 − ሶ𝑞 + 𝐾𝑃 𝑞𝑑 − 𝑞

ሷ𝑞 = 𝑎

𝑢
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Interpretation in the Linear Domain

under feedback linearization control, the robot has a dynamic behavior 

that is  invariant, linear and decoupled in its whole workspace (∀(𝑞, ሶ𝑞))

+

> 0, diagonal

_

ሷ𝑒 + 𝐾𝐷 ሶ𝑒 + 𝐾𝑃𝑒 = 0 ⇔ ሷ𝑒𝑖 + 𝐾𝐷𝑖 ሶ𝑒𝑖 + 𝐾𝑃𝑖𝑒𝑖 = 0

ሷ𝑞𝑑 + 𝐾𝐷 ሶ𝑞𝑑 + 𝐾𝑃𝑞𝑑 𝑎 = ሷ𝑞 ሶ𝑞 𝑞

𝐾𝐷
𝐾𝑃

error transients 𝑒𝑖 = 𝑞𝑑𝑖 − 𝑞𝑖 → 0 exponentially, prescribed by 𝐾𝑃𝐼, 𝐾𝐷𝐼 choice
linearity

each joint coordinate 𝑞𝑖 evolves independently from the others, forced by 𝑎𝑖
decoupling
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If PID

+

_

+

+_

> 0,

diagonal

+

ሷ𝑞𝑑 + 𝐾𝐷 ሶ𝑞𝑑 + 𝐾𝑃𝑞𝑑
𝑎 = ሷ𝑞

⇒ 𝐾𝑃𝑖 > 0,𝐾𝐷𝑖 > 0,
0 < 𝐾𝐼𝑖 < 𝐾𝑃𝑖𝐾𝐷𝑖

𝐾𝐷
𝐾𝑃

ሶ𝑞 𝑞
𝐾𝐼

exponential  stability  

conditions by Routh

criterion

ሷ𝑞 = 𝑎 = ሷ𝑞𝑑 + 𝐾𝐷 ሶ𝑞𝑑 − ሶ𝑞 + 𝐾𝑃 𝑞𝑑 − 𝑞 + 𝐾𝐼න 𝑞𝑑 − 𝑞 𝑑𝜏 𝑒 = 𝑞𝑑 − 𝑞

⇒
(𝟏)

𝑒𝑖 = 𝑞𝑑𝑖 − 𝑞𝑖(𝑖 = 1,… , 𝑁) ⇒
(𝟐)

ሷ𝑒𝑖 + 𝐾𝐷𝑖 ሶ𝑒𝑖 + 𝐾𝑃𝑖𝑒𝑖 + 𝐾𝑃𝑖න𝑒𝑖 𝑑𝜏 = 0

ℒ 𝑒𝑖(𝑡) ⇒
(𝟑)

𝑠2 + 𝐾𝐷𝑖𝑠 + 𝐾𝑃𝑖 + 𝐾𝐼𝑖
1

𝑠
𝑒𝑖(𝑠) = 0

𝑠 ×⇒
(𝟒)

𝑠3 + 𝐾𝐷𝑖𝑠
2 + 𝐾𝑃𝑖𝑠 + 𝐾𝐼𝑖 𝑒𝑖(𝑠) = 0

3 1 𝐾𝑃𝑖
2 𝐾𝐷𝑖 𝐾𝐼𝑖
1 𝐾𝐷𝑖𝐾𝑃𝑖 − 𝐾𝐼𝑖 /𝐾𝐷𝑖
0 𝐾𝐼𝑖

⇒(6)

⇒
(𝟓)

Self-study
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Remarks

• desired joint trajectory can be generated from Cartesian data

• real-time computation by Newton-Euler algo: 

• simulation of feedback linearization control

Hint: there is no use in simulating this control law in ideal case ( Ƹ𝜋 = 𝜋); robot behavior  will be 

identical to the linear and decoupled case of stabilized double integrators!!

ሷ𝑝𝑑(𝑡), ሶ𝑝𝑑(0), 𝑝𝑑(0)

𝑢𝐹𝐵𝐿 = ෢𝑁𝐸𝛼(𝑞, ሶ𝑞, 𝑎)

𝑞𝑑(0) = 𝑓−1 𝑝𝑑(0)
ሶ𝑞𝑑(0) = 𝐽−1 𝑞𝑑(0) ሶ𝑝𝑑(0)

ሷ𝑞𝑑(𝑡) = 𝐽−1 𝑞𝑑 ሷ𝑝𝑑(𝑡) − ሶ𝐽 𝑞𝑑 ሶ𝑞𝑑

true parameters 𝜋

𝑞feedback 

linearization
robot

estimated parameters ො𝜋
ሶ𝑞

𝑞𝑑(0)ሶ𝑞𝑑(0)

ሶ𝑞𝑑(𝑡)ሷ𝑞𝑑(𝑡) 𝑞𝑑(𝑡)

ሷ𝑞𝑑 𝑡 , ሶ𝑞𝑑 𝑡 , 𝑞𝑑(𝑡)



10

Further Comments

• choice of the diagonal elements of 𝐾P, 𝐾𝐷(and 𝐾𝐼)

• for shaping the error transients, with an eye to motor saturations...

• parametric identification

• to be done in advance, using the property of linearity in the dynamic  coefficients of 

the robot dynamic model

• choice of the sampling time of a digital implementation

• compromise between computational time and tracking accuracy,  typically 𝑇𝑐 = 0.5
÷ 10 ms

• exact linearization by (state) feedback is a general technique  of nonlinear control theory

• can be used for robots with elastic joints, wheeled mobile robots, ...

• non-robotics applications: satellites, induction motors, helicopters, ...

critically damped transient

𝑒(0)𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡)
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Another Example 
A n o t h e r  e x a m p l e  o f  f e e d b a c k  l i n e a r i z a t i o n  d e s i g n

• dynamic model of robots with elastic joints

• 𝑞 = link position

• 𝜃 = motor position (after reduction gears)

• 𝐵𝑚 = diagonal matrix (> 0) of inertia of the (balanced) motors

• 𝐾 = diagonal matrix (> 0) of (finite) stiffness of the joints

• is there a control law that achieves exact linearization via feedback?

2𝑁 generalized  

coordinates (𝑞, 𝜃)

YES

linear and decoupled 

system:  𝑁 chains of 4 

integrators  (to be 

stabilized by linear

control design)

4N state variables

𝑥 = (𝑞, 𝜃, ሶ𝑞 , ሶ𝜃)

Hint: differentiate (1) w.r.t. time until motor acceleration 𝜃 ̈ appears;

substitute this from (2); choose 𝑢 so as to cancel all nonlinearities …

and it yields

𝑀(𝑞) ሷ𝑞 + 𝑐(𝑞, ሶ𝑞) + 𝑔(𝑞) + 𝐾(𝑞 − 𝜃) = 0

𝐵𝑚 ሷ𝜃 + 𝐾(𝜃 − 𝑞) = 𝑢

𝑢 = 𝛼(𝑞, 𝜃, ሶ𝑞, ሶ𝜃) + 𝛽(𝑞, 𝜃, ሶ𝑞, ሶ𝜃)𝑎

𝑑4𝑞𝑖
𝑑𝑡4

= 𝑎𝑖 , 𝑖 = 1,… , 𝑁
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Alternative Controller

• global asymptotic stability of 𝑒 ሶ𝑒 = (0 0) (trajectory tracking)

• proven by Lyapunov+Barbalat+LaSalle

• does not produce a complete cancellation of nonlinearities

• the ሶ𝑞 and ሷ𝑞 that appear linearly in the model are evaluated on the  desired

trajectory

• does not induce a linear and decoupled behavior of the  trajectory error 𝑒 𝑡
= 𝑞𝑑 𝑡 − 𝑞(𝑡) in the closed-loop system

• lends itself more easily to an adaptive version

• cannot be computed directly by the standard NE algorithm...

SPECIAL factorization such that
ሶ𝑀 − 2𝑆 is skew-symmetric

symmetric and  positive definite

matrices

𝑢 = 𝑀(𝑞) ሷ𝑞𝑑 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑑 + 𝑔(𝑞) + 𝐹𝑉 ሶ𝑞𝑑 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒
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Analysis
A n a l y s i s  o f  a s y m p t o t i c  s t a b i l i t y

( o f  t h e  t r a j e c t o r y  e r r o r  - 1 )

control law

error state 𝑥

• Lyapunov candidate and its time derivative

• the closed-loop system equations yield

• substituting and using the skew-symmetric property

• since the system is time-varying (due to 𝑞𝑑(𝑡)), direct applying 

LaSalle theorem is NOT allowed ⇒ use Barbalat lemma…

robot dynamics (including friction)𝑀(𝑞) ሷ𝑞 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞 + 𝑔(𝑞) + 𝐹𝑉 ሶ𝑞 = 𝑢

𝑢 = 𝑀(𝑞) ሷ𝑞𝑑 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑑 + 𝑔(𝑞) + 𝐹𝑉 ሶ𝑞𝑑 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒

𝑉 =
1

2
ሶ𝑒𝑇𝑀(𝑞) ሶ𝑒 +

1

2
𝑒𝑇𝐾𝑃𝑒 ≥ 0 ⇒ ሶ𝑉 =

1

2
ሶ𝑒𝑇 ሶ𝑀(𝑞) ሶ𝑒 + ሶ𝑒𝑇𝑀(𝑞) ሷ𝑒 + 𝑒𝑇𝐾𝑃 ሶ𝑒

𝑀(𝑞) ሷ𝑒 = −𝑆(𝑞, ሶ𝑞) ሶ𝑒 − 𝐾𝐷 + 𝐹𝑉 ሶ𝑒 − 𝐾𝑃𝑒

ሶ𝑉 = − ሶ𝑒𝑇 𝐾𝐷 + 𝐹𝑉 ሶ𝑒 ≤ 0 ሶ𝑉 = 0 ⇔ ሶ𝑒 = 0

𝑞 = 𝑞𝑑(𝑡) − 𝑒, ሶ𝑞 = ሶ𝑞𝑑(𝑡) − ሶ𝑒 ⇒ 𝑉 = 𝑉(𝑒, ሶ𝑒, 𝑡) = 𝑉(𝑥, 𝑡)
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A n a l y s i s  o f  a s y m p t o t i c  s t a b i l i t y
( o f  t h e  t r a j e c t o r y  e r r o r  - 2 )

• since i) 𝑉 is lower bounded and ii) ሶ𝑉 ≤ 0 ,we can check condition 

iii)  in order to apply Barbalat lemma

... is this bounded?

• from i) + ii), 𝑉 is bounded ⇒ 𝑒 and ሶ𝑒 are bounded

• assume that the desired trajectory has bounded velocity ሶ𝑞 ,
• using the following two properties of dynamic model terms

⇒ ሶ𝑞 is  

bounded

bounded in 

norm by 𝑀 bounded

then also ሷ𝑒will be bounded (in norm) since

ሷ𝑉 = −2 ሶ𝑒𝑇 𝐾𝐷 + 𝐹𝑉 ሷ𝑒

0 < 𝑚 ≤ 𝑀−1(𝑞) ≤ 𝑀 < ∞ ‖𝑆(𝑞, ሶ𝑞)‖ ≤ 𝛼𝑆‖ ሶ𝑞‖

ሷ𝑒 = −𝑀−1(𝑞) 𝑆(𝑞, ሶ𝑞) ሶ𝑒 + 𝐾𝑃𝑒 + 𝐾𝐷 + 𝐹𝑉 ሶ𝑒

⇒ ሶlim
𝑡→∞

𝑉 (𝑡) = 0
bounded in 

norm by 𝛼𝑠 ሶ𝑞

Analysis
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Analysis
A n a l y s i s  o f  a s y m p t o t i c  s t a b i l i t y

( o f  t h e  t r a j e c t o r y  e r r o r  – e n d  o f  p r o o f )

• we can now conclude by proceeding as in LaSalle theorem
ሶ𝑉 = 0 ⇔ ሶ𝑒 = 0

• the closed-loop dynamics in this situation is

𝑀(𝑞) ሷ𝑒 = −𝐾𝑃𝑒

(𝑒, ሶ𝑒) = (0, 0)⟹ ሷ𝑒 = 0 ⇔ 𝑒 = 0

is the largest  invariant set in ሶ𝑉 = 0

(global) asymptotic tracking  will be achieved
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Comments
R e g u l a t i o n  a s  a  s p e c i a l  c a s e

• what happens to the control laws designed for trajectory tracking 

when 𝑞𝑑 is constant? are there simplifications?

• feedback linearization

𝑢 = 𝑀 𝑞 𝐾𝑃 𝑞𝑑 − 𝑞 − 𝐾𝐷 ሶ𝑞 + 𝑐 𝑞, ሶ𝑞 + 𝑔(𝑞)

• no special simplifications

• however, this is a solution to the regulation problem with  

exponential stability (and decoupled transients at each joint!)

• alternative global controller

𝑢 = 𝐾𝑃(𝑞𝑑 − 𝑞) − 𝐾𝐷 ሶ𝑞 + 𝑔(𝑞)

• we recover the PD + gravity cancellation control law!!
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Without a model
T r a j e c t o r y  e x e c u t i o n  w i t h o u t  a  m o d e l

• is it possible to accurately reproduce a desired smooth joint - space

reference trajectory with reduced or no information on the robot dynamic

model?

• this is feasible in case of repetitive motion tasks over a finite interval of

time

• trials are performed iteratively, storing the trajectory error  information of 

the current execution [𝑘-th iteration] and  processing it off line before 

the next trial [(𝑘 + 1) −iteration] starts

• the robot should be reinitialized in the same initial position at the  

beginning of each trial

• the control law is made of a non-model based part (typically, a  

decentralized PD law) + a time-varying feedforward which is  updated 

at every trial

• this scheme is called iterative trajectory learning
https://ieeexplore.ieee.org/document/240467/authors#authors



Q&A
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