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Motivation and Approach

need of adaptation in robot motion control laws
large uncertainty on the robot dynamic parameters
poor knowledge of the inertial payload
. characteristics of direct adaptive control

direct aim Is to bring to zero the state trajectory error, I.e.,
position and velocity errors

no need to estimate on line the true values of the dynamic
coefficients of the robot (as opposed to indirect adaptive control)

main tool and methodology
linear parametrization of robot dynamics

nonlinear control law of the dynamic type (the controller has its
own ‘states’)




W\ Summary of Robot Parameters

parameters assumed to be known

kKinematic description based, e.g., on Denavit-Hartenberg parameters
({ai, d;,a;,1 = 1,... ,N} In case of all revolute joints), including link lengths
(kinematic calibration)

uncertain parameters that can be identified off line = p < 10 X N
masses m;, positions r.; of CoMs, and inertia matrices I; of each link,
appearing in combinations (dynamic coefficients)

parameters that are (slowly) varying during operation
viscous Fy;, dry Fp;, and stiction Fg; friction ateach joint =1 —-3 X N

unknown and abruptly changing parameters
mass, CoM, Inertia matrix of the payload w.r.t. the tool center point

when a payload Is firmly attached to the robot E-E, only the 10 parameters of the
last link are modified, influencing however most part of the robot dynamics




Goal of Adaptive Control

given a twice-differentiable desired joint trajectory g, (t)
with known desired velocity g4(t) and acceleration g4(t)
possibly obtained by kinematic inversion + joint interpolation
execute this trajectory under large dynamic uncertainties
with a trajectory tracking error vanishing asymptotically

e=qg—q—>0 e=q;—q—0

guaranteeing global stablility, no matter how far are the initial estimates
of the unknown/uncertain parameters from their true values and how
large is the initial trajectory error

identification is not of particular concern: in general, the estimates of
dynamic coefficients will not to converge to the true ones!

If this convergence is a specific extra requirement, then one should use
(more complex) indirect adaptive schemes




¥ Linear Parameterization
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M(q)q +5(q,9)q+9@q) + Fyg=u

there exists always a (p-dimensional) vector a of dynamic
coefficients, so that the robot model takes the linear form

Y(q,9,q)a=u

vector a contains only unknown or uncertain coefficients

each component of a is in general a combination of the robot
physical parameters (not necessarily all of them)

the model regression matrix Y depends linearly on g, quadratically on
g (for the terms related to kinetic energy), and nonlinearly
(trigonometrically) on g




Controllers

"Trajectory controllers (based on model estimates)

inverse dynamics feedforward (FFW) + PD (linear) control

U = \M(Qd)éid +5(q4,4a)da + §(qq) + ﬁv%l + Kpe + Kpe
|
Ug
(nonlinear) control based on feedback linearization (FBL)
u=M(q)({aq + Kpe + Kpé) +S(q,)q + §(q) + Fyq

M,S, g, E, & estimate @
approximate estimates of dynamic coefficients may lead to
instability with FBL due to temporary 'non-positive’ PD gains
(e.g., M(@)Kp < 01
not easy to turn these laws in adaptive schemes: inertia
inversion/use of acceleration (FBL); bounds on PD gains (FFW)




Controllers

A control law easily made ‘adaptive’

nonlinear trajectory tracking control (without cancellations)
having global asymptotic stabilization properties

u=M(Q)ia+5(q4)qq + §(q@) + Fyqq + Kpe + Kpé
a natural adaptive version would require ...

a = designing a suitable update law
(In continuous time)

without extra assumptions, it can be shown only that joint
velocities become eventually “clamped” to those of the desired

trajectory (zero velocity error), but a permanent residual
position error is left

idea: on-line modification with a reference velocity

da — qr = 4gq +A(qq — q) A>0

typically A = K;, *Kp (all matrices will be chosen diagonal)




Intuitive Interpretation of q.

elementary case
a mass ‘lagging behind’ its mobile reference (e > 0) on a linear ralil

controlled mobile . |
mass reference qr = qq T e
u q ,
—_— — da
1 e <0 qa(t)

mm) cnhanced velocityerrors=q,—q>qs—q=2¢

u=Kps =Kp(qr —q) = Kp(qq + Ae — q) = Kpé + KpAe
Kp
a mass ‘leading In front’ of its mobile reference (e < 0)

=) in a symmetric way, a ‘reduced’ velocity error will appear (s < é)




substituting g, = g4 + Ae, G, = g4 + Aé In the previous nonlinear
controller for trajectory tracking

u=M(q)d + 50,94 + §(q) + Fyq, + Kpe + Kpé
— Y(q' C.I; C?TJ CIT)a + er + KDe

dynamic parameterization of
the control law using current estimates
(note here the 4 arguments in Y(:) !)

PD stabilization
(diagonal matrices, > 0)

update law for the estimates of the dynamic coefficients (G becomes the
p-dimensional state of the dynamic controller)

R T | r>o0 (diagonal)
a — FYT(CI, q, 4r, qr)(QT T q)

Y estimation gains
‘modified’ velocity error S (variation rate of estimates)
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Proof

- Asymptotic stability of trajectory error
Theorem

The introduced adaptive controller makes the tracking error along the
desired trajectory globally asymptotically stable

e=qg—q—>0,e=q3—q—>0
Proof

a Lyapunov candidate for the closed-loop system (robot + dynamic
controller) is given by

1 T 1 T 1 ~Tr—15
V==s'M(g)s+—=e ' Re+=a'I'""a=0
2 2 2
s =(qr—q(= e+ Ae) R>0 d=a—a
modified velocity error constant matrix (to be error in parametric
specified later) estimation

V=0 & dad=a qg=qg, s=0 (>q=q,)




Proof

the time derivative of V is

.1 . .
V = ESTM(C[)S +sM(q)s + e'Re —a'T'1a

since @ = —a (a = 0)
the closed-loop dynamics is given by

M(q)q +5(q,.9)qg +9(q) + Fyq
— M(Q)qr + S(q' CI)CIT + g(Q) + FVéIr + er + KDé

subtracting the two sides from M(q)q, + S(q,q9)q, + g(q) + F,q, leads to

M(q)$ + (S(q, @) + Fy)s = M(q)Gr +5(q, 9)dr + §(q) + Fyqr — Kpe — Kpé
with - M=M-M,S=5-S, gG=g-§ FK=F-F




Proof

from the property of linearity in the dynamic coefficients, it follows

M(C[)S + (S(q' Q) + FV)S — Y(C[, é[, éIT’ (*Ir)& T er o KDe

substituting in V7, together with @ = T'YTs, and using the skew- symmetry
of matrix M — 2S5 we obtain

.1 :

V = EST[M(q)xZQ(q, q)]s — s'Fys +>T\1Q6i — s (Kpe + Kpé)

+elReé — NS = —s'F,s —sT(Kpe + Kpé) + e’ Ré
replacing s = é + Ae and being F, = F;} (diagonal)

V — _eT(ATFvA ~+ ATKP)e — eT(ZATFV + ATKD ~+ Kp —@e — éT(FV + KD)e

/7

quadratic form in e, é!




Proof

defining now (all matrices are diagonal!)

A=Kp'Kp >0 ®= 2Kp(I + K5 1F)) > 0
leads to
V=—eTAT(F, + Kp)Ae — éT(F, + Kp)é
= —e'Kp Ky ' (Fy + Kp)Ky ' Kpe — eT(Fy + Kp)ée < 0
and thus
V=0e=¢=0
the thesis follows from Barbalat lemma + LaSalle theorem 4

the set of states of convergence has zero trajectory error and a
constant value for a, not necessarily the true one (a + 0)




Comments

if the desired trajectory g4 (t) is persistently exciting, then also the estimates of
the dynamic coefficients converge to their true values
condition of persistent excitation
for linear systems: # of frequency components in the desired trajectory should be at
least twice as large as # of unknown coefficients
for nonlinear systems: the condition can be checked only a posteriori (a certain
motion integral should be permanently lower bounded)
In case of known absence of (viscous) friction (Fy, = 0), the same proof applies (a bit
easier in the final part)
the adaptive controller does not require the inverse of the inertia matrix (true or
estimated), nor the actual robot acceleration (only the desired acceleration), nor further
lower bounds on Kp > 0,Kp > 0
adaptation can be also used only for a subset of dynamic coefficients, the remaining
being known (Ya — Yadaptaadapt'l'Yknownaknown)

the non-adaptive version (using accurate estimates) is a static tracking controller based
on the passivity property of robot dynamics




Case Study

Case study: Single-link under gravity

model 18 + mgdsin® + f,0 =u  (with friction)

linear parameterization

Y (0, 0, 9)“ =16 sin6 6l lmgd] = Uu

adaptive controller

A0 u=10,+mgdsin6 + f,0 + kpe + kpé

e = d_k y a=| mgd |=|y,sind (0,,—9)
. . P . .
6.=0;+—e 3 Y30
r d kD fV 3Yr

]/i>0,i_123




Case Study

Simulation data

real dynamic coefficients
I=75  mgd=6 f =1

initial estimates R . -
I=5 mgd=5 fy=2

control parameters
kp =25, kp=10, y; =5 i1=1,2,3
test trajectories (starting with 6(0) = 0,6 = 0)

first 6,(t) = —sint




Case Study

Results

note the nonlinear system dynamics (no sinusoidal
regime at steady state!)
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Case Study

Estimates of dynamic coefficients

3 I I I | I

| mgd —mgd _____________

estimation errors

0 é 1I0 1I5 2I0 2I5 30
time (s)
only the estimate of the viscous
friction coefficient converges
to the true value

errorsad =a —a
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