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Motivation and Approach

• need of adaptation in robot motion control laws

• large uncertainty on the robot dynamic parameters

• poor knowledge of the inertial payload

• characteristics of direct adaptive control

• direct aim is to bring to zero the state trajectory error, i.e.,  

position and velocity errors

• no need to estimate on line the true values of the dynamic  

coefficients of the robot (as opposed to indirect adaptive control)

• main tool and methodology

• linear parametrization of robot dynamics

• nonlinear control law of the dynamic type (the controller has its  

own ‘states’)
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Summary of Robot Parameters

• parameters assumed to be known

• kinematic description based, e.g., on Denavit-Hartenberg parameters  

({𝛼𝑖, 𝑑𝑖, 𝑎𝑖 , 𝑖 = 1, … , N} in case of all revolute joints), including link lengths 

(kinematic calibration)

• uncertain parameters that can be identified off line ⇒ 𝑝 ≪ 10 × 𝑁

• masses 𝑚𝑖, positions 𝑟𝑐𝑖 of CoMs, and inertia matrices 𝐼𝑖 of each link,

• appearing in combinations (dynamic coefficients)

• parameters that are (slowly) varying during operation

• viscous 𝐹𝑉𝑖, dry 𝐹𝐷𝑖 , and stiction 𝐹𝑆𝑖 friction at each joint ⇒ 1 − 3 × 𝑁

• unknown and abruptly changing parameters

• mass, CoM, inertia matrix of the payload w.r.t. the tool center point

when a payload is firmly attached to the robot E-E, only the 10 parameters of the  

last link are modified, influencing however most part of the robot dynamics
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Goal of Adaptive Control

• given a twice-differentiable desired joint trajectory 𝑞𝑑(𝑡)

• with known desired velocity ሶ𝑞𝑑(𝑡) and acceleration ሷ𝑞𝑑(𝑡)

• possibly obtained by kinematic inversion + joint interpolation

• execute this trajectory under large dynamic uncertainties

• with a trajectory tracking error vanishing asymptotically

• guaranteeing global stability, no matter how far are the initial  estimates 

of the unknown/uncertain parameters from their true  values and how 

large is the initial trajectory error

• identification is not of particular concern: in general, the estimates of  

dynamic coefficients will not to converge to the true ones!

• if this convergence is a specific extra requirement, then one should  use 

(more complex) indirect adaptive schemes

𝑒 = 𝑞𝑑 − 𝑞 → 0 ሶ𝑒 = ሶ𝑞𝑑 − ሶ𝑞 → 0
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Linear Parameterization

• there exists always a (𝑝-dimensional) vector 𝑎 of dynamic  

coefficients, so that the robot model takes the linear form

• vector 𝑎 contains only unknown or uncertain coefficients

• each component of 𝑎 is in general a combination of the  robot 

physical parameters (not necessarily all of them)

• the model regression matrix 𝑌 depends linearly on ሷ𝑞, quadratically on 

𝑞ሶ (for the terms related to kinetic energy),  and nonlinearly 

(trigonometrically) on 𝑞

𝑀(𝑞) ሷ𝑞 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞 + 𝑔(𝑞) + 𝐹𝑉 ሶ𝑞 = 𝑢

𝑌(𝑞, ሶ𝑞, ሷ𝑞)𝑎 = 𝑢
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Controllers
Tr a j e c t o r y  c o n t r o l l e r s  ( b a s e d  o n  m o d e l  e s t i m a t e s )

• inverse dynamics feedforward (FFW) + PD (linear) control

• (nonlinear) control based on feedback linearization (FBL)

• approximate estimates of dynamic coefficients may lead to  

instability with FBL due to temporary ’non-positive’ PD gains  

(e.g., ෠𝑀(𝑞)𝐾𝑃 < 0!)

• not easy to turn these laws in adaptive schemes: inertia  

inversion/use of acceleration (FBL); bounds on PD gains (FFW)

𝑢 = ෡𝑀 𝑞𝑑 ሷ𝑞𝑑 + መ𝑆 𝑞𝑑 , ሶ𝑞𝑑 ሶ𝑞𝑑 + ො𝑔 𝑞𝑑 + ෠𝐹𝑉 ሶ𝑞𝑑 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒

ො𝑢𝑑

𝑢 = ෡𝑀(𝑞) ሷ𝑞𝑑 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒 + መ𝑆(𝑞, ሶ𝑞) ሶ𝑞 + ො𝑔(𝑞) + ෠𝐹𝑉 ሶ𝑞

෡𝑀, መ𝑆, ො𝑔, ෠𝐹𝑉 ⇔ estimate ො𝑎
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Controllers
A  c o n t r o l  l a w  e a s i l y  m a d e  ‘ a d a p t i v e ’

• nonlinear trajectory tracking control (without cancellations)  

having global asymptotic stabilization properties

• a natural adaptive version would require ...

• without extra assumptions, it can be shown only that joint 

velocities  become eventually “clamped” to those of the desired 

trajectory  (zero velocity error), but a permanent residual 

position error is left

• idea: on-line modification with a reference velocity

designing a suitable update law

(in continuous time)

typically Λ = 𝐾𝐷
−1𝐾𝑃 (all matrices will be chosen diagonal)

𝑢 = ෡𝑀(𝑞) ሷ𝑞𝑑 + መ𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑑 + ො𝑔(𝑞) + ෠𝐹𝑉 ሶ𝑞𝑑 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒

ሶො𝑎 =

ሶ𝑞𝑑 → ሶ𝑞𝑟 = ሶ𝑞𝑑 + Λ 𝑞𝑑 − 𝑞 Λ > 0
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Intuitive Interpretation of ሶ𝒒𝒓

• elementary case

• a mass ‘lagging behind’ its mobile reference (𝑒 > 0) on a linear rail

‘enhanced’ velocity error 𝑠 = ሶ𝑞𝑟− ሶ𝑞 > ሶ𝑞𝑑 − ሶ𝑞 = ሶ𝑒

• a mass ‘leading in front’ of its mobile reference (𝑒 < 0)

in a symmetric way, a ‘reduced’ velocity error will appear (𝑠 < ሶ𝑒)

𝑢

mobile  

reference

controlled  

mass

ሶ𝑞

ሶ𝑞𝑟 = ሶ𝑞𝑑 + Λ𝑒

ሶ𝑞𝑑

𝑞 𝑞𝑑(𝑡)

𝑢 = 𝐾𝐷𝑠 = 𝐾𝐷 ሶ𝑞𝑟 − ሶ𝑞 = 𝐾𝐷 ሶ𝑞𝑑 + Λ𝑒 − ሶ𝑞 = 𝐾𝐷 ሶ𝑒 +ถ𝐾𝐷Λ
𝐾𝑃

𝑒

𝑒 < 0
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Adaptive Control Law Design

• substituting ሶ𝑞𝑟 = ሶ𝑞𝑑 + Λ𝑒, ሷ𝑞𝑟 = ሷ𝑞𝑑 + Λ ሶ𝑒 in the previous nonlinear  

controller for trajectory tracking

• update law for the estimates of the dynamic coefficients ( Ƹ𝑎 becomes  the 

𝑝-dimensional state of the dynamic controller)

dynamic parameterization of

the control law using current estimates

(note here the 4 arguments in 𝑌(∙) !)

PD stabilization

(diagonal matrices, > 0)

estimation gains

(variation rate of estimates)

(diagonal)

‘modified’ velocity error

𝑢 = ෡𝑀(𝑞) ሷ𝑞𝑟 + መ𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑟 + ො𝑔(𝑞) + ෠𝐹𝑉 ሶ𝑞𝑟 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒
= 𝑌 𝑞, ሶ𝑞, ሶ𝑞𝑟 , ሷ𝑞𝑟 ො𝑎 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒

ሶො𝑎 = Γ𝑌𝑇 𝑞, ሶ𝑞, ሶ𝑞𝑟 , ሷ𝑞𝑟 ሶ𝑞𝑟 − ሶ𝑞
𝜞 > 0

𝒔
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Proof
A s y m p t o t i c  s t a b i l i t y  o f  t r a j e c t o r y  e r r o r

Theorem

• a Lyapunov candidate for the closed-loop system (robot +  dynamic 

controller) is given by

Proof

𝑉 =
1

2
𝑠𝑇𝑀(𝑞)𝑠 +

1

2
𝑒𝑇𝑅𝑒 +

1

2
෤𝑎𝑇Γ−1 ෤𝑎 ≥ 0

modified velocity error

𝑠 = ሶ𝑞𝑟 − ሶ𝑞(= ሶ𝑒 + Λ𝑒)

constant matrix  (to be 

specified later)

𝑅 > 0
error in parametric  

estimation

෤𝑎 = 𝑎 − ො𝑎

𝑉 = 0 ⇔ ො𝑎 = 𝑎, 𝑞 = 𝑞𝑑 , 𝑠 = 0 ⇒ ሶ𝑞 = ሶ𝑞𝑑

The introduced adaptive controller makes the tracking error along  the 

desired trajectory globally asymptotically stable

𝑒 = 𝑞𝑑 − 𝑞 → 0, ሶ𝑒 = ሶ𝑞𝑑 − ሶ𝑞 → 0
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Proof

• the time derivative of V is

since ሶ෤𝑎 = − ሶො𝑎 ( ሶ𝑎 = 0)

subtracting the two sides from 𝑀(𝑞) ሷ𝑞𝑟 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑟 + 𝑔(𝑞) + 𝐹𝑉 ሶ𝑞𝑟 leads to

ሶ𝑉 =
1

2
𝑠𝑇 ሶ𝑀(𝑞)𝑠 + 𝑠𝑇𝑀(𝑞) ሶ𝑠 + 𝑒𝑇𝑅 ሶ𝑒 − ෤𝑎𝑇Γ−1 ሶො𝑎

𝑀(𝑞) ሷ𝑞 + 𝑆(𝑞, ሶ𝑞) ሶ𝑞 + 𝑔(𝑞) + 𝐹𝑉 ሶ𝑞
= ෡𝑀(𝑞) ሷ𝑞𝑟 + መ𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑟 + ො𝑔(𝑞) + ෠𝐹𝑉 ሶ𝑞𝑟 + 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒

𝑀 𝑞 ሶ𝑠 + 𝑆 𝑞, ሶ𝑞 + 𝐹𝑉 𝑠 = ෩𝑀(𝑞) ሷ𝑞𝑟 + ሚ𝑆(𝑞, ሶ𝑞) ሶ𝑞𝑟 + ෤𝑔(𝑞) + ෨𝐹𝑉 ሶ𝑞𝑟 − 𝐾𝑃𝑒 − 𝐾𝐷 ሶ𝑒

with ෩𝑀 = 𝑀 − ෡𝑀, ሚ𝑆 = 𝑆 − መ𝑆, ෤𝑔 = 𝑔 − ො𝑔, ෨𝐹𝑉 = 𝐹𝑉 − ෠𝐹𝑉

• the closed-loop dynamics is given by
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Proof

• from the property of linearity in the dynamic coefficients, it follows

• substituting in ሶ𝑉 , together with ሶො𝑎 = Γ𝑌𝑇𝑠, and using the skew- symmetry 

of matrix ሶ𝑀 − 2𝑆 we obtain

• replacing 𝑠 = ሶ𝑒 + Λ𝑒 and being 𝐹𝑉 = 𝐹𝑉
𝑇 (diagonal)

quadratic form  in 𝑒, ሶ𝑒!

𝑀(𝑞) ሶ𝑠 + 𝑆(𝑞, ሶ𝑞) + 𝐹𝑉 𝑠 = 𝑌 𝑞, ሶ𝑞, ሶ𝑞𝑟 , ሷ𝑞𝑟 ෤𝑎 − 𝐾𝑃𝑒 − 𝐾𝐷 ሶ𝑒

ሶ𝑉 =
1

2
𝑠𝑇[ ሶ𝑀(𝑞) − 2𝑆(𝑞, ሶ𝑞)]𝑠 − 𝑠𝑇𝐹𝑉𝑠 + 𝑠𝑇𝑌 ෤𝑎 − 𝑠𝑇 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒

+𝑒𝑇𝑅 ሶ𝑒 − ෤𝑎𝑇𝑌𝑇𝑠 = −𝑠𝑇𝐹𝑉𝑠 − 𝑠𝑇 𝐾𝑃𝑒 + 𝐾𝐷 ሶ𝑒 + 𝑒𝑇𝑅 ሶ𝑒

ሶ𝑉 = −𝑒𝑇 Λ𝑇𝐹𝑉Λ + Λ𝑇𝐾𝑃 𝑒 − 𝑒𝑇൫2Λ𝑇𝐹𝑉 + Λ𝑇𝐾𝐷 + 𝐾𝑃 − 𝑅) ሶ𝑒 − ሶ𝑒𝑇 𝐹𝑉 + 𝐾𝐷 ሶ𝑒
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Proof

• defining now (all matrices are diagonal!) 

leads to

and thus

the thesis follows from Barbalat lemma + LaSalle theorem

the set of states of convergence has zero trajectory error and  a 

constant value for ො𝑎, not necessarily the true one ( ෤𝑎 ≠ 0)

Λ = 𝐾𝐷
−1𝐾𝑃 > 0 𝑅 = 2𝐾𝑃 𝐼 + 𝐾𝐷

−1𝐹𝑉 > 0

ሶ𝑉 = −𝑒𝑇Λ𝑇 𝐹𝑉 + 𝐾𝐷 Λ𝑒 − ሶ𝑒𝑇 𝐹𝑉 + 𝐾𝐷 ሶ𝑒
= −𝑒𝑇𝐾𝑃𝐾𝐷

−1 𝐹𝑉 + 𝐾𝐷 𝐾𝐷
−1𝐾𝑃𝑒 − ሶ𝑒𝑇 𝐹𝑉 + 𝐾𝐷 ሶ𝑒 ≤ 0

ሶ𝑉 = 0 ⇔ 𝑒 = ሶ𝑒 = 0



14

Comments

• if the desired trajectory 𝑞𝑑(𝑡) is persistently exciting, then also the  estimates of 

the dynamic coefficients converge to their true values

• condition of persistent excitation

• for linear systems: # of frequency components in the desired trajectory should be at 

least twice as large as # of unknown coefficients

• for nonlinear systems: the condition can be checked only a posteriori (a certain 

motion integral should be permanently lower bounded)

• in case of known absence of (viscous) friction (𝐹𝑉 ≡ 0), the same  proof applies (a bit 

easier in the final part)

• the adaptive controller does not require the inverse of the inertia  matrix (true or 

estimated), nor the actual robot acceleration (only the  desired acceleration), nor further 

lower bounds on 𝐾𝑃 > 0,𝐾𝐷 > 0

• adaptation can be also used only for a subset of dynamic coefficients, the remaining 

being known (𝑌𝑎 = 𝑌𝑎𝑑𝑎𝑝𝑡 ො𝑎𝑎𝑑𝑎𝑝𝑡+𝑌𝑘𝑛𝑜𝑤𝑛𝑎𝑘𝑛𝑜𝑤𝑛)

• the non-adaptive version (using accurate estimates) is a static tracking controller based 

on the passivity property of robot dynamics
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Case Study
C a s e  s t u d y :  S i n g l e - l i n k  u n d e r  g r a v i t y

model 

linear parameterization

adaptive controller

𝑢 𝑑

𝑚

𝜃

𝐼 ሷ𝜃 + 𝑚𝑔𝑑 sin 𝜃 + 𝑓𝑉 ሶ𝜃 = 𝑢

𝑌(𝜃, ሶ𝜃, ሷ𝜃)𝑎 = ሷ𝜃 sin 𝜃 ሶ𝜃

𝐼
𝑚𝑔𝑑
𝑓𝑉

= 𝑢

𝑒 = 𝜃𝑑 − 𝜃

ሶ𝜃𝑟 = ሶ𝜃𝑑 +
𝑘𝑃
𝑘𝐷

𝑒

𝛾𝑖 > 0, 𝑖 = 1,2,3

𝑢 = መ𝐼 ሷ𝜃𝑟 + ෣𝑚𝑔𝑑 sin 𝜃 + መ𝑓𝑉 ሶ𝜃 + 𝑘𝑃𝑒 + 𝑘𝐷 ሶ𝑒

ሶො𝑎 =

መ𝐼

𝑚𝑔𝑑

መ𝑓𝑉

.
=

𝛾1 ሷ𝜃𝑟
𝛾2 sin 𝜃

𝛾3 ሶ𝜃𝑟

ሶ𝜃𝑟 − ሶ𝜃

(with friction)

Λ > 0
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Case Study
S i m u l a t i o n  d a t a

• real dynamic coefficients

• initial estimates

• control parameters

• test trajectories (starting with 𝜃(0) = 0, ሶ𝜃 = 0)

• first

𝐼 = 7.5, 𝑚𝑔𝑑 = 6, 𝑓𝑉 = 1

መ𝐼 = 5, ෣𝑚𝑔𝑑 = 5, ෡𝑓𝑉 = 2

𝑘𝑃 = 25, 𝑘𝐷 = 10, 𝛾𝑖 = 5, 𝑖 = 1,2,3

𝜃𝑑(𝑡) = − sin 𝑡
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Case Study
R e s u l t s

note the nonlinear system dynamics  (no sinusoidal 

regime at steady state!)

position and velocity errors control torque

ሶ𝑒

𝑒

𝜃𝑑(𝑡) = − sin 𝑡
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Case Study
E s t i m a t e s  o f  d y n a m i c  c o e f fi c i e n t s

only the estimate of the viscous  

friction coefficient converges

to the true value

𝑚𝑔𝑑 −෣𝑚𝑔𝑑

𝐼 − መ𝐼

𝑓𝑉 − መ𝑓𝑉

errors ෤𝑎 = 𝑎 − ො𝑎
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