

Fei Chen

Topics:

Euler and roll-pitch-yaw angles

Readings:

• Siciliano: Sec. 2.1-2.6, 2.10

Outline

Euler and roll-pitch-yaw angles

Basic Definitions

"Minimal" representation

rotation matrices:

- 9 elements
- 3 orthogonality relationships
- 3 unitary relationships
- = 3 independent variables
- sequence of 3 rotations w.r.t. independent axes
 - by angles α_i , i = 1,2,3, around fixed (a_i) or moving/current (a_i') axes
 - generically called Roll-Pitch-Yaw (fixed axes) or Euler (moving axes) angles
 - 12+12 possible different sequences (e.g., XYX)
 - without contiguous repetitions of axes (e.g., no XXZ nor YZ'Z')
 - actually, only 12 sequences are different since we shall see that

$$\{(a_1, \alpha_1), (a_2, \alpha_2), (a_3, \alpha_3)\} \equiv \{(a_3', \alpha_3), (a_2', \alpha_2), (a_1', \alpha_1)\}$$

ZX'Z'' Euler angles

$$R_Z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{X'}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

3

$$R_{Z''}(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ZX'Z'' Euler angles

• direct problem: given ϕ , θ , ψ , find R

$$R_{ZX'Z''}(\phi,\theta,\psi) = R_Z(\phi)R_{X'}(\theta)R_{Z''}(\psi)$$
 order of definition in concatenation
$$= \begin{bmatrix} c\phi c\psi - s\phi c\theta s\psi & -c\phi s\psi - s\phi c\theta c\psi & s\phi s\theta \\ s\phi c\psi + c\phi c\theta s\psi & -s\phi s\psi + c\phi c\theta c\psi & -c\phi s\theta \\ s\theta s\psi & s\theta c\psi & c\theta \end{bmatrix}$$

• given a vector v''' = (x''', y''', z''') expressed in RF'', its expression in the coordinates of RF is

$$v = R_{ZX'Z''}(\phi, \theta, \psi)v'''$$

• the orientation of RF is the same that would be obtained with the sequence of rotations

 ψ around z, θ around x (fixed), ϕ around z (fixed)

ZX'Z'' Euler angles

• inverse problem: given $R = \{r_{ij}\}$, find ϕ, θ, ψ

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c\phi c\psi - s\phi c\theta s\psi & -c\phi s\psi - s\phi c\theta c\psi & s\phi s\theta \\ s\phi c\psi + c\phi c\theta s\psi & -s\phi s\psi + c\phi c\theta c\psi & -c\phi s\theta \\ s\theta s\psi & s\theta c\psi & c\theta \end{bmatrix}$$

- if $r_{13}^2 + r_{23}^2 = s^2\theta$, $r_{33} = c\theta \Rightarrow \theta = a \tan 2 \left\{ \pm \sqrt{r_{13}^2 + r_{23}^2, r_{33}} \right\}$
- if $r_{13}^2 + r_{23}^2 \neq 0$ (i.e., $s\theta \neq 0$) $r_{31}/s\theta = s\psi, r_{32}/s\theta = c\psi \Rightarrow$
- similarly...

$$\theta = \operatorname{atan} 2 \left\{ \underbrace{\pm}_{r_{13}} + r_{23}^2, r_{33} \right\}$$
 two values differing just for the sign

$$\phi = \text{atan 2} \{r_{13}/s\theta, -r_{23}/s\theta\}$$

$$\psi = \text{atan 2} \{r_{31}/s\theta, r_{32}/s\theta\}$$

- there is always a pair of solutions in the regular case
- there are always singularities (here $\theta = 0$ or $\pm \pi$) \Rightarrow only the sum ϕ $+\,\psi$ or the difference $\phi-\psi$ can be determined

Roll-Pitch-Yaw angles(fixed XYZ)

$$R_X(\psi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{bmatrix}$$

 $C_2R_Z(\phi)C_2^T$

$$\cos \phi - \sin \phi$$

YAW

$$C_2 R_Z(\phi) C_2^I$$
with $R_Z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Roll-Pitch-Yaw angles (fixed XYZ)

• direct problem: given ϕ, θ, ψ , find R

$$R_{RPY}(\psi,\theta,\phi) = R_Z(\phi)R_Y(\theta)R_X(\psi) \Leftarrow \text{ note the order of products!}$$
order of definition
$$= \begin{bmatrix} c\phi c\theta & c\phi s\theta s\psi - s\phi c\psi & c\phi s\theta c\psi + s\phi s\psi \\ s\phi c\theta & s\phi s\theta s\psi + c\phi c\psi & s\phi s\theta c\psi - c\phi s\psi \\ -s\theta & c\theta s\psi & c\theta c\psi \end{bmatrix}$$

• inverse problem: given $R = \{r_{ii}\}$, find ϕ, θ, ψ

•
$$r_{32}^2 + r_{33}^2 = c^2 \theta$$
, $r_{31} = -s\theta \Rightarrow$

• if
$$r_{32}^2 + r_{33}^2 \neq 0$$
 (i.e., $c\theta \neq 0$)
 $r_{31}/s\theta = s\psi, r_{32}/s\theta = c\psi \Rightarrow$

• similarly...

•
$$r_{32}^2 + r_{33}^2 = c^2\theta$$
, $r_{31} = -s\theta \Rightarrow \theta = a \tan 2\left\{-r_{31}, \pm \sqrt{r_{32}^2 + r_{33}^2}\right\}$

for $r_{31} < 0$, two symmetric values w.r.t. $\pi/2$

$$\psi = \text{atan 2} \{r_{32}/c\theta, r_{33}/c\theta\}$$

$$\phi = \text{atan 2} \{r_{21}/c\theta, -r_{11}/c\theta\}$$

• singularities for $\theta = \pm \pi/2 \Rightarrow$ only $\phi + \psi$ or $\phi - \psi$ are defined

... why this order in the product

$$R_{RPY}(\psi,\theta,\phi) = R_Z(\phi)R_Y(\theta)R_X(\psi)$$

order of definition

"reverse" order in the product

(pre-multiplication...)

- need to refer each rotation in the sequence to one of the original fixed axes
 - use the angle/axis technique for each rotation in the sequence: $CR(\alpha)C^T$, with C being the rotation matrix reverting the previously made rotations (= "go back" to the original axes)

concatenating three rotations: [][][](post-multiplication...)

$$R_{RPY}(\psi, \theta, \phi)$$

$$= [R_X(\psi)][R_X^T(\psi)R_Y(\theta)R_X(\psi)][R_X^T(\psi)R_Y^T(\theta)R_Z(\phi)R_Y(\theta)R_X(\psi)]$$

$$= R_Z(\phi)R_Y(\theta)R_X(\psi)$$

Homogeneous transformations

Use of homogeneous transformation \emph{T}

- describes the relation between two reference frames (relative pose = position & orientation)
- transforms the representation of a position vector (applied vector starting from the origin of the frame) from one frame to another frame
- it is a roto-translation operator on vectors in the threedimensional space
- it is always invertible $({}^AT_B)^{-1} = ({}^BT_A)$

Inverse of a homogeneous transformation

$$\begin{bmatrix} A_{R_B} & A_{p_{AB}} \\ 0 & 0 & 1 \end{bmatrix}$$

$$^{A}T_{B}$$

$$\begin{bmatrix} BR_A \\ 0 \end{bmatrix} \begin{bmatrix} B\mathbf{p}_{BA} \\ 1 \end{bmatrix}$$

$$^{B}T_{A}$$

$$\begin{bmatrix} A_{R_B} & A_{P_{AB}} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{P_{AB}} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{R_B} & A_{P_{AB}} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A_{R_B} & A_{P_{AB}} \\ 0 & 0 & 1 \end{bmatrix}$$

$$(^{A}T_{B})^{-1}$$

Defining a robotic task

solve for q (inverse kinematics)

$$^{B}T_{E}(q) = ^{W}T_{B}^{-1} {^{W}T_{T}}^{E}T_{T}^{-1} = constant$$

Example of task definition

Q: where is the EE frame w.r.t. the table frame?

with
$${}^TT_E = \begin{bmatrix} {}^TR_E & {}^Tp_{TE} \\ 0^T & 1 \end{bmatrix} = {}^ET_T^{-1}$$

$${}^TR_E = ({}^ER_T)^T = {}^ER_T$$

with
$$\mathbf{r} = \mathbf{r} = \mathbf{$$

- the robot carries a depth camera (e.g., a Kinect) on the endeffector
- the end-effector should go to a pose above the point P on the table, pointing its approach axis z_E downward and being aligned with the table sides

• point P is known in the table frame RF_T

the robot proceeds by centering point **P** in its camera image until it senses a depth h from the table (in RF_E)

$${}^{E}p = \begin{bmatrix} 0 \\ 0 \\ h \end{bmatrix}$$

Remarks on homogeneous matrices

- the main tool used for computing the direct kinematics of robot manipulators
- relevant in many other applications (in robotics and beyond)
 - in positioning/orienting a vision camera (matrix ${}^bT_{\mathcal{C}}$ with extrinsic parameters of the camera pose
 - in computer graphics, for the real-time visualization of 3D solid objects when changing the observation point

all zero in robotics

always unitary in robotics

QSA