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Topics:
• Direct kinematics

Readings:
• Siciliano: Sec. 2.8
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Kinematics of Robot Manipulators

• Study of…

geometric and timing aspects of robot motion, 

without reference to the causes producing it

• Robot seen as…

an (open) kinematic chain of rigid bodies 

interconnected by (revolute or prismatic) joints
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Motivations

• Functional aspects

• Definition of robot workspace

• Calibration (not covered in ENGG5402)

• Operational aspects

task execution  

(actuation by motors)

task definition and  

performance

two different “spaces” related by kinematic (and dynamic) maps

• trajectory planning

• programming

• motion control

Task SpaceJoint-Actuator Space
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Kinematics
K i n e m a t i c s  ( f o r m u l a t i o n  a n d  p a r a m e t e r i z a t i o n s )

• choice of parameterization 𝑞

• unambiguous and minimal characterization of robot configuration

• 𝑛 = # degrees of freedom (𝐷𝑂𝐹) = # robot joints (rotational or  translational)

• choice of parameterization 𝑟

• compact description of position and/or orientation (pose) variables  of interest to the 

required task

• usually, 𝑚 ≤ 𝑛 and 𝑚 ≤ 6 (but none of these is strictly necessary)

JOINT

space

TASK

(Cartesian)  

space

DIRECT  

INVERSE

𝑟 = 𝑓(𝑞)

𝑞 = 𝑞1, … , 𝑞𝑛 𝑞 = 𝑓−1(𝑟) 𝑟 = 𝑟1, … , 𝑟𝑚
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Open Kinematic Chains

• 𝑚 = 2

• pointing in space

• positioning in the plane

• 𝑚 = 3

• orientation in space

• positioning and orientation in the plane

• 𝑚 = 5

• positioning and pointing in space  (like for spot welding)

• 𝑚 = 6

• positioning and orientation in space

• positioning of two points in space  (e.g., end-effector and elbow)

e.g., the relative angle  

between a link and the  

following one

𝑞1
𝑞2

𝑞3

𝑞4
𝑅𝐹𝐸

e.g., it describes the  

pose of frame 𝑅𝐹𝐸

𝑟 = (𝑟1, … , 𝑟2)
𝑞𝑛
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Classification
C l a s s i f i c a t i o n  b y  k i n e m a t i c  t y p e  ( f i r s t  3  d o f s o n l y )

Cartesian or  

gantry  (PPP)

cylindric  

(RPP)

SCARA  

(RRP)

polar or  

spherical  

(RRP)

articulated or  

anthropomorph

ic  (RRR)

𝑅 = 1 − 𝑑𝑜𝑓 rotational (revolute) joint

𝑃 = 1 − 𝑑𝑜𝑓 translational (prismatic) joint
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Direct Kinematic Map

• The structure of the direct kinematics function  depends 

on the chosen 𝑟

• Methods for computing 𝑓r(𝑞)

• geometric/by inspection

• systematic: assigning frames attached to the robot  

links and using homogeneous transformation matrices

𝑟 = 𝑓𝑟(𝑞)
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Direct Kinematic Map
D i r e c t  k i n e m a t i c s  o f  2 R  p l a n a r  r o b o t  ( j u s t  u s i n g  i n s p e c t i o n … )

𝑞 =
𝑞1
𝑞2

𝑛 = 2

𝑟 =

𝑝𝑥
𝑝𝑦
𝜙

𝑚 = 3

𝑝𝑥 = 𝑙1 cos 𝑞1 + 𝑙2 cos 𝑞1 + 𝑞2
𝑝𝑦 = 𝑙1 sin 𝑞1 + 𝑙2 sin 𝑞1 + 𝑞2
𝜙 = 𝑞1 + 𝑞2

for more general cases, 

we need a ‘method’!

𝑃

∙

𝑞2

𝑞1

𝑙1

𝑙2

𝑝𝑦

𝑝𝑥 𝑥

𝑦
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Direct Kinematic Map
N u m b e r i n g  l i n k s  a n d  j o i n t s

revolute prismatic

icon representation of joint types  

for the manipulator skeleton

link 0

(base)

link 1

joint 2

joint 𝑖 − 1
joint 𝑖

joint 𝑖 + 1
link 𝑖 − 1

link 𝑖 link 𝑛

(end effector)

joint 1

joint 𝑛

J. Denavit and R.S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” Trans. ASME J. Applied Mechanics, 23: 215–221, 1955
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S p a t i a l  r e l a t i o n  b e t w e e n  j o i n t  a x e s

𝑎i = displacement 𝐴𝐵 between joint axes (always well defined)

𝛼𝑖 = twist angle between joint axes

— projected on a plane 𝜋 orthogonal to the link axis

common normal  (axis 

of link 𝑖)

axis of joint 𝑖 + 1axis of joint 𝑖

90°

90°

𝐴

𝐵

𝛼𝑖

𝜋

with sign  

(pos/neg)!

Denavit-Hartenberg (DH) Layout
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S p a t i a l  r e l a t i o n  b e t w e e n  l i n k  a x e s

𝑑i = displacement 𝐶𝐷 (a variable if joint 𝑖 is prismatic)

𝜃𝑖 = angle between link axes (a variable if joint 𝑖 is revolute)

— projected on a plane 𝜎 orthogonal to the joint axis

with sign  

(pos/neg)!

𝜃𝑖
𝜎

link 𝑖

link 𝑖 − 1

axis of link 𝑖
axis of link 𝑖 − 1 𝐶

𝐷

axis of joint 𝑖

Denavit-Hartenberg (DH) Layout
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D e n a v i t - H a r t e n b e r g ( D H )  f r a m e

axis of link 𝑖
as common normal to

joint axes 𝑖 and 𝑖 + 1
axis of joint 𝑖 around 

which link 𝑖 rotates  or 

along which link 𝑖 slides

joint axis
𝑖 − 1

joint axis 𝑖

joint axis
𝑖 + 1

link 𝑖 − 1
link 𝑖

frame R𝐹𝑖 is

attached to link 𝑖

link 𝑖 − 1 is moved by 

joint 𝑖 − 1

𝑎𝑖𝑑𝑖

𝛼𝑖

𝑧𝑖

𝑥𝑖𝑂𝑖

𝑧𝑖−1

𝑂𝑖−1

𝑥𝑖−1
𝜃𝑖

Denavit-Hartenberg (DH) Layout
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D e f i n i t i o n  o f  D H  p a r a m e t e r s

• unit vector 𝑧𝑖 along axis of joint 𝑖 + 1

• unit vector 𝑥𝑖 along the common normal to joint 𝑖 and 𝑖 + 1 axes (𝑖 → 𝑖 + 1)

• 𝑎i = distance 𝐷𝑂𝑖, + if oriented as 𝑥i, always constant (= ‘length’ of link 𝑖)

• 𝑑i = distance 𝑂𝑖−1𝐷 , + if oriented as 𝑧𝑖−1 . , variable if joint 𝑖 is PRISMATIC

• 𝛼𝑖 = twist angle from𝑧𝑖−1 to 𝑧𝑖 around 𝑥𝑖 , + if CCW, always constant

• 𝜃𝑖 = angle from 𝑥𝑖−1 to 𝑥𝑖 around 𝑧𝑖−1 , + if CCW, variable if joint 𝑖 is REVOLUTE

joint axis
𝑖 − 1

joint axis
𝑖 + 1

link 𝑖 − 1

𝑎i

𝜃𝑖

𝛼𝑖

𝐷
•

𝑂𝑖

𝑧𝑖

𝑥𝑖

𝑧𝑖−1

𝑥𝑖−1

𝑑𝑖

joint axis 𝑖 link 𝑖

Denavit-Hartenberg (DH) Layout
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Denavit-Hartenberg (DH) Layout
D H  l a y o u t  m a d e  s i m p l e  ( a  p o p u l a r  3 - m i n u t e  i l l u s t r a t i o n )

• note: the author of this video uses 𝑟 in place of 𝑎, and does not add subscripts!

https://www.youtube.com/watch?v=rA9tm0gTln8

http://www.youtube.com/watch?v=rA9tm0gTln8
http://www.youtube.com/watch?v=rA9tm0gTln8
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Ambiguities in Defining DH Frames
• frame 0 : origin and 𝑥0 axis are arbitrary

• frame 𝑛 : 𝑧𝑛 axis is not specified

• however, 𝑥𝑛 must intersect and be chosen orthogonal to 𝑧𝑛−1
• positive direction of 𝑧𝑖−1 (up/down on axis of joint 𝑖) is arbitrary

• choose one, and try to ‘avoid flipping over’ to the next one

• positive direction of 𝑥𝑖 (back/forth on axis of link 𝑖) is arbitrary

• if successive joint axes are incident, we often take 𝑥𝑖 = 𝑧𝑖−1 × 𝑧𝑖
• when natural, follow the direction ‘from base to tip’

• if 𝑧𝑖 and 𝑧𝑖−1 are parallel (common normal not uniquely defined)

• 𝑂𝑖 chosen arbitrarily along 𝑧𝑖, still trying to ‘zero out’ parameters

• if 𝑧𝑖−1 and 𝑧𝑖 are coincident, normal 𝑥𝑖 axis can be chosen at will

• this case occurs only if the two joints are of different kind (𝑃/𝑅 or 𝑅/𝑃)

• again, try using ‘simple values’ (e.g., 0 or ±𝜋/2) for constant angles
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Homogeneous Transformation 
H o m o g e n e o u s  t r a n s f o r m a t i o n  ( b e t w e e n  s u c c e s s i v e  D H  f r a m e s )

( f r o m  i - 1  t o  f r a m e  i )

𝑖−1𝐴𝑖′ 𝑞i =

cos 𝜃𝑖 −sin 𝜃𝑖 0 0
sin 𝜃𝑖 cos 𝜃𝑖 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 𝑑i
0 0 0 1

=

cos 𝜃𝑖 −sin 𝜃𝑖 0 0
sin 𝜃𝑖 cos 𝜃𝑖 0 0
0 0 1 𝑑𝑖
0 0 0 1

• roto-translation (screw motion) around and along 𝑥𝑖

rotational joint ⇒ 𝑞𝑖 = 𝜃𝑖 prismatic joint ⇒ 𝑞𝑖 = 𝑑i

always a  

constant matrix

the product of these two matrices commutes!

𝑖−1𝐴𝑖 =

1 0 0 𝑎i
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 cos 𝛼𝑖 −sin 𝛼𝑖 0
0 sin 𝛼𝑖 cos 𝛼𝑖 0
0 0 0 1

=

1 0 0 𝑎𝑖
0 cos 𝛼𝑖 −sin𝛼𝑖 0
0 sin 𝛼𝑖 cos 𝛼𝑖 0
0 0 0 1

• roto-translation (screw motion) around and along 𝑧𝑖−1
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D e n a v i t - H a r t e n b e r g m a t r i x

J. Denavit and R.S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,”
Trans. ASME J. Applied Mechanics, 23: 215–221, 1955

𝑖−1𝐴𝑖 𝑞𝑖 = 𝑖−1𝐴𝑖′ 𝑞𝑖
𝑖′𝐴𝑖 =

cos 𝜃𝑖 −cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 sin 𝜃𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝛼𝑖 cos 𝜃𝑖 −sin 𝛼𝑖 cos 𝜃𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

compact notation:                              𝑐 = 𝑐os, 𝑠 = sin
super-compact notation (if feasible): 𝑐𝑖 = cos 𝑞i , 𝑠i = sin 𝑞𝑖

𝑐𝑖𝑗 = cos 𝑞𝑖 + 𝑞𝑗 , 𝑠𝑖𝑗 = sin 𝑞𝑖 + 𝑞𝑗
…

Homogeneous Transformation 
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Direct Kinematics
D i r e c t  k i n e m a t i c s  o f  r o b o t  m a n i p u l a t o r s

alternative representations of the direct kinematics

𝑤𝑇𝐸 = 𝑤 𝑇0
0𝐴1 𝑞1

1𝐴2 𝑞2 ⋯𝑛−1 𝐴𝑛 𝑞𝑛
𝑛𝑇𝐸

𝑟 = 𝑓𝑟(𝑞)
• 𝑤𝑇𝐸 =

𝑤𝑅𝐸
𝑤𝑝𝑤𝐸

0𝑇 1

• 𝑟 = 𝑟1, … , 𝑟𝑚

slide 𝑠

approach 𝑎

description ‘internal’  

to the robot using •𝑞 = (𝑞1, … , 𝑞𝑛)

•product of DH matrices

normal 𝑛

𝑅𝐹𝑤 𝑥0

𝑦0

𝑅𝐹0

𝑧0

𝑥𝐸

𝑧𝐸

𝑦𝐸
𝑅𝐹𝐸

0𝐴1 𝑞1
1𝐴2 𝑞2 ⋯𝑛−1 𝐴𝑛 𝑞𝑛

description ‘external’  to 

the robot using
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D i r e c t  k i n e m a t i c s  o f  2 R  p l a n a r  r o b o t  ( u s i n g  D H  f r a m e  a s s i g n m e n t … )

𝑧0, 𝑧1, 𝑧2 outgoing from plane

𝑖 𝛼𝑖 𝑎𝑖 𝑑𝑖 𝜃𝑖

1 0 𝑙𝑖 0 𝑞𝑖

2 0 𝑙2 0 𝑞2

0𝐴1(𝜃1) =

𝑐𝜃1 −𝑠𝜃1 0 𝑙1𝑐𝜃1
𝑠𝜃1 𝑐𝜃1 0 𝑙1𝑠𝜃1
0 0 1 0
0 0 0 1

1𝐴2(𝜃2) =

𝑐𝜃2 −𝑠𝜃2 0 𝑙2𝑐𝜃2
𝑠𝜃2 𝑐𝜃2 0 𝑙2𝑠𝜃2
0 0 1 0
0 0 0 1

𝐴2(𝑞) =

𝑐12 −𝑠12 0 𝑙1𝑐1 + 𝑙2𝑐12
𝑠12 𝑐12 0 𝑙1𝑠1 + 𝑙2𝑠12
0 0 1 0
0 0 0 1

𝑝
1

=

𝑝𝑥
𝑝𝑦
0
1

= 0𝐴2(𝑞)

0
0
0
1

=

𝑙1𝑐1 + 𝑙2𝑐12
𝑙1𝑆1 + 𝑙2𝑆12

0
1

𝜙 = 𝑞1 + 𝑞2 (extracted from 0𝑅2(𝑞))

•

𝑃 𝜙

𝑥2𝑦2

𝑎1 = 𝑙1

𝑦1

𝑝𝑦

𝑦0

𝑥1

𝑥0𝑝𝑥

𝑎2 = 𝑙2

𝑗𝑜𝑖𝑛𝑡 2

𝑙𝑖𝑛𝑘 2

𝑙𝑖𝑛𝑘 1
𝜃1 = 𝑞1

𝜃2 = 𝑞2

𝑗𝑜𝑖𝑛𝑡 1

𝑙𝑖𝑛𝑘 0

Direct Kinematics
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D i r e c t  k i n e m a t i c s  o f  2 R  p l a n a r  r o b o t  ( T C P  l o c a t i o n  o n  t h e  r o b o t  e n d  e f f e c t o r )

•

Tool Center Point 𝑇𝐶𝑃 and associated end-effector frame R𝐹𝐸

0𝐴2(𝑞) =

𝑐12 −𝑠12 0 𝑙1𝑐1 + 𝑙2𝑐12
𝑠12 𝑐12 0 𝑙1𝑠1 + 𝑙2𝑠12
0 0 1 0
0 0 0 1

2𝑇𝐸 =

0 1 0 2𝑇𝐶𝑃𝑥
0 0 −1 2𝑇𝐶𝑃𝑦
−1 0 0 0
0 0 0 1

0𝑇𝐶𝑃(𝑞)
1

=

0𝑇𝐶𝑃𝑥 𝑞
0𝑇𝐶𝑃𝑦 𝑞

0
1

= 0𝐴2 𝑞

2𝑇𝐶𝑃𝑥
2𝑇𝐶𝑃𝑦
0
1

= 0𝐴2 𝑞

0
0
0
1

= 0𝐴2(𝑞)
2𝑇𝐸

𝑃
𝑥2𝑦2

𝑙1

𝑦1

𝑦0

𝑥1

𝑥0

𝑙2

𝑞1

𝑞2
𝑇𝐶𝑃

•
𝑦𝐸

𝑧𝐸

𝑖 𝛼𝑖 𝑎𝑖 𝑑𝑖 𝜃𝑖

1 0 𝑙𝑖 0 𝑞𝑖

2 0 𝑙2 0 𝑞2

Direct Kinematics (2R PR)
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D H  a s s i g n m e n t  f o r  a  S C A R A  r o b o t

Sankyo SCARA 8438 Sankyo SCARA SR 8447

𝑞1
𝑞3

𝑞2

𝑞4

Direct Kinematics (SCARA)
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S t e p  1 :  j o i n t  a x e s

all parallel  

(or coincident)

twist angles

𝛼𝑖 = 0 or 𝜋

J1 shoulder

J2 elbow

J3 prismatic

≡
J4 revolute

Direct Kinematics (SCARA)

j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 1 j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 2
j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 3,4
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S t e p  2 :  l i n k  a x e s

the vertical ‘heights’  of 

the link axes

are arbitrary

(for the time being)

𝑎1 𝑎2 𝑎3 = 0

Direct Kinematics (SCARA)

j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 1 j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 2
j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 3,4
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S t e p  3 :  f r a m e s

axes 𝒚𝒊 for 𝑖 > 0
are not shown

(nor needed; they form  

right-handed frames)

= 𝒂 axis

(approach)

𝑥0
𝑦0

𝑧0

𝑥1

𝑧1
𝑧2 = 𝑧3

𝑥2

𝑥3

𝑥4

𝑧4

Direct Kinematics (SCARA)

j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 1 j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 2
j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 3,4
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S t e p  4 :  D H  t a b l e  o f  p a r a m e t e r s

note that

•𝑑1 and 𝑑4 could be set = 0

•𝑑4 < 0 (opposite to 𝒛3)

•also, 𝑞3 < 0 in this configuration

𝑖 𝛼𝑖 𝑎𝑖 𝑑𝑖 𝜃𝑖

1 0 𝑎1 𝑑1 𝑞1

2 0 𝑎2 0 𝑞2

3 0 0 𝑞3 0

4 𝜋 0 𝑑4 𝑞4

𝑥0 𝑦0

𝑧0

𝑥1

𝑧1
𝑧2 = 𝑧3

𝑥2

𝑥3𝑥4
𝑧4

𝑞3
𝑑4

𝑎2

𝑎1

𝑑1

Direct Kinematics (SCARA)

j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 1 j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 2
j𝑜𝑖𝑛𝑡 𝑎𝑥𝑖𝑠 3,4
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S t e p  5 :  D H  t r a n s f o r m a t i o n  m a t r i c e s

0𝐴1 𝑞1 =

𝑐𝜃1 −𝑠𝜃1 0 𝑎1𝑐𝜃1
𝑠𝜃1 𝑐𝜃1 0 𝑎1𝑠𝜃1
0 0 1 𝑑1
0 0 0 1

1𝐴2 𝑞2 =

𝑐𝜃2 −𝑠𝜃2 0 𝑎2𝑐𝜃2
𝑠𝜃2 𝑐𝜃2 0 𝑎2𝑠𝜃2
0 0 1 0
0 0 0 1

2𝐴3 𝑞3 =

1 0 0 0
0 1 0 0
0 0 1 𝑑3
0 0 0 1

𝑞 = 𝑞1, 𝑞2, 𝑞3, 𝑞4 = 𝜃1, 𝜃2, 𝑑3, 𝜃4

3𝐴4 𝑞4 =

𝑐𝜃4 𝑠𝜃4 0 0
𝑠𝜃4 −𝑐𝜃4 0 0
0 0 −1 𝑑4
0 0 0 1

Direct Kinematics (SCARA)
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S t e p  6 a :  d i r e c t  k i n e m a t i c s  ( h o m o g e n e o u s  m a t r i x  𝒘𝑻 𝑬 a s  
p r o d u c t  o f  t h e  𝒊 −𝟏𝑨 𝒊 ( 𝒒 𝒊 )

′ 𝒔 )

0𝐴2 𝑞1, 𝑞2 =

𝑐12 −𝑠12 0 𝑎1𝑐1 + 𝑎2𝑐12
𝑠12 𝑐12 0 𝑎1𝑠1 + 𝑎2𝑠12
0 0 1 𝑑1
0 0 0 1

0𝐴3 𝑞1, 𝑞2, 𝑞3 =

𝑐12 −𝑠12 0 𝑎1𝑐1 + 𝑎2𝑐12
𝑠12 𝑐12 0 𝑎1𝑠1 + 𝑎2𝑠12
0 0 1 𝑑1 + 𝑞3
0 0 0 1

𝑅 𝑞1, 𝑞2, 𝑞4 = 𝑛 𝑠 𝑎 𝑝 = 𝑝 𝑞1, 𝑞2, 𝑞3

𝑤𝑇0 =
4 𝑇𝐸 = 𝐼

𝑤𝑇𝐸 = 0𝐴4 𝑞1, 𝑞2, 𝑞3, 𝑞4 =

𝑐124 𝑠124 0 𝑎1𝑐1 + 𝑎2𝑐12
𝑠124 −𝑐124 0 𝑎1𝑠1 + 𝑎2𝑠12
0 0 −1 𝑑1 + 𝑞3 + 𝑑4
0 0 0 1

Direct Kinematics (SCARA)
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S t e p  6 b :  d i r e c t  k i n e m a t i c s  ( a s  t a s k  v e c t o r  𝒓 )

𝑟 =

𝑝𝑥
𝑝𝑦
𝑝𝑧
𝛼𝑧

= 𝑓𝑟(𝑞) =

𝑎1𝑐1 + 𝑎2𝑐12
𝑎1𝑠1 + 𝑎2𝑠12
𝑑1 + 𝑞3 + 𝑑4
𝑞1 + 𝑞2 + 𝑞4

∈ ℝ4

take 𝑝 ∈ ℝ4 as such from

𝑝(𝑞1, 𝑞2, 𝑞3)

extract 𝛼𝑧
from 𝑅(𝑞1, 𝑞2, 𝑞4)

𝑤𝑇𝐸 = 0𝐴4 𝑞1, 𝑞2, 𝑞3, 𝑞4 =

𝑐124 𝑠124 0 𝑎1𝑐1 + 𝑎2𝑐12
𝑠124 −𝑐124 0 𝑎1𝑠1 + 𝑎2𝑠12
0 0 −1 𝑑1 + 𝑞3 + 𝑑4
0 0 0 1

Direct Kinematics (SCARA)
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S t a n f o r d  m a n i p u l a t o r
• 6-dof: 2R-1P-3R (spherical wrist)

• robot with shoulder offset

• ‘one possible’ DH assignment of  frames is

shown

• determine the associated

• table of DH parameters

• homogeneous transformation  matrices

• direct kinematics

• write a program for computing  the direct

kinematics

• numerically (Matlab), given a 𝒒

• symbolically (Mathematica,  Maple, 

Symbolic Manipulation  Toolbox of 

Matlab, …)

Direct Kinematics (Stanford)
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D H  t a b l e  f o r  S t a n f o r d  m a n i p u l a t o r
• 6-dof: 2R-1P-3R (spherical wrist)

joint variables are in red, while their values  

in the robot configuration shown are in blue

𝑖 𝛼𝑖 𝑎𝑖 𝑑𝑖 𝜃𝑖

1 −𝜋/2 0 𝑑1 > 0 𝑞1 = 0

2 𝜋/2 0 𝑑2 > 0 𝑞2 = 0

3 0 0 𝑞3 > 0 −𝜋/2

4 −𝜋/2 0 0 𝑞4 = 0

5 𝜋/2 0 0 𝑞5 = −𝜋/2

6 0 0 𝑑6 > 0 𝑞6 = 0

Direct Kinematics (Stanford)
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Modified DH

• Both are used in textbooks.

• We use Standard DH in ENGG5402 to keep the consistence.

D o  n o t  b e  c o n f u s e d !
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Modified DH 
• a modified version introduced in J. Craig’s book “Introduction to Robotics”  (1986) and 

aligned for the indexing by Khalil and Kleinfinger (ICRA, 1986)

• has 𝑧𝑖 axis on joint 𝑖

• 𝑎𝑖&𝛼𝑖 =distance & twist angle from 𝑧𝑖−1 to 𝑧𝑖, measured along & about 𝑥𝑖−1
• 𝑑𝑖&𝜃𝑖 = distance & angle from 𝑥𝑖−1 to 𝑥𝑖 , measured along & about 𝑧𝑖
• source of much confusion... if you are not aware of it (or don’t mention it!)

• convenient with link flexibility: a rigid frame at the base, another at the tip...

modified DH tends to place frames  ‘at 

the base’ of each link

planar 2R  

example
classical  

(or distal)

modified  

(or proximal)

𝑖−1𝐴𝑖 =

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖 𝑎𝑖𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖 𝑎𝑖𝑠𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖
0 0 0 1

𝑖−1𝐴𝑖
𝑚𝑜𝑑 =

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖
𝑐𝛼𝑖𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖 −𝑑𝑖𝑠𝛼𝑖
𝑠𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑐𝜃𝑖 𝑐𝛼𝑖 𝑑𝑖𝑐𝛼𝑖
0 0 0 1

𝑦0

𝑥0

𝑥1

𝑦1

𝑥2𝑦2

𝑦0

𝑥0

𝑥1
𝑦1

𝑥2

𝑦2
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Robot Introduction for Projects
The robot model is Mintasca’s GLUON-6L3

GLUON-6L3
Specification Maximum range of 

motion (mm)
425

Degree of Freedom 6
Workspace Joint Limits Joint 1 (°) -140~140

Joint 2 (°) -90~90
Joint 3 (°) -140~140
Joint 4 (°) -140~140
Joint 5 (°) -140~140
Joint 6 (°) -360~360

Maximum Joint Speed Joint 1 (°/𝒔) 302
Joint 2 (°/𝒔) 302
Joint 3 (°/𝒔) 302
Joint 4 (°/𝒔) 302
Joint 5 (°/𝒔) 302
Joint 6 (°/𝒔) 302

Working Environment Voltage (V) 42
Watt (W) Around 120

Working Heat (°C) 10 - 50
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Preparation

Note that the frame i, is located on joint i+1 The robot arm model diagram
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Create Standard DH Table

The method

• Choose axis 𝑧𝑖 along the axis of Joint i + 1. 

Certain Cases

• For Frame 0, only the direction of axis 𝑧0 is 
arbitrarily chosen as upwards; then 𝑂0 and 𝑥0
can be arbitrarily chosen. 

• For Frame n, since there is no Joint n+ 1, 𝑧𝑛 is 
not uniquely defined while 𝑥𝑛 has to be normal 
to axis 𝑧𝑛−1 . Typically, Joint n is revolute, and 
thus 𝑧𝑛 can be aligned with the direction of 𝑧𝑛−1
. The common normal between two lines is the 
line containing the minimum distance segment 
between the two lines.

• When two consecutive axes are parallel, the 
common normal between them is not uniquely 
defined. 

• When two consecutive axes intersect, the 
positive direction of 𝑥𝑖 is arbitrary.

• When Joint i is prismatic, only the direction of 
𝑧𝑖−1 is specified.

𝑧0

𝑧4

𝑧2

𝑧3

𝑧5

𝑧1
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The method

• Choose axis 𝑧𝑖 along the axis of Joint i + 1. 

• Find the origin 𝑂𝑖 at the intersection of axis 𝑧𝑖
with the common normal to axes 𝑧𝑖−1 and 𝑧𝑖 . 

Certain Cases

• For Frame 0, only the direction of axis 𝑧0 is 
arbitrarily chosen as upwards; then 𝑂0 and 𝑥0
can be arbitrarily chosen. 

• For Frame n, since there is no Joint n+ 1, 𝑧𝑛 is 
not uniquely defined while 𝑥𝑛 has to be normal 
to axis 𝑧𝑛−1 . Typically, Joint n is revolute, and 
thus 𝑧𝑛 can be aligned with the direction of 𝑧𝑛−1
. The common normal between two lines is the 
line containing the minimum distance segment 
between the two lines.

• When two consecutive axes are parallel, the 
common normal between them is not uniquely 
defined. 

• When two consecutive axes intersect, the 
positive direction of 𝑥𝑖 is arbitrary.

• When Joint i is prismatic, only the direction of 
𝑧𝑖−1 is specified.

𝑧0

𝑧4

𝑧2

𝑧3

𝑧5

𝑂5

𝑂4𝑂3

𝑂2

𝑂1
𝑂0

Create Standard DH Table
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The method

• Choose axis 𝑧𝑖 along the axis of Joint i + 1. 

• Find the origin 𝑂𝑖 at the intersection of axis 𝑧𝑖
with the common normal to axes 𝑧𝑖−1 and 𝑧𝑖 . 
Additionally, locate 𝑂𝑖′ at the intersection of the 
common normal with axis 𝑧𝑖−1. 

• Choose axis 𝑥𝑖 along the common normal to axis 
𝑧𝑖−1 and 𝑧𝑖 with positive direction pointing 
towards Joint i + 1 from joint i. 

Certain Cases

• For Frame 0, only the direction of axis 𝑧0 is 
arbitrarily chosen as upwards; then 𝑂0 and 𝑥0
can be arbitrarily chosen. 

• For Frame n, since there is no Joint n+ 1, 𝑧𝑛 is 
not uniquely defined while 𝑥𝑛 has to be normal 
to axis 𝑧𝑛−1 . Typically, Joint n is revolute, and 
thus 𝑧𝑛 can be aligned with the direction of 𝑧𝑛−1
. The common normal between two lines is the 
line containing the minimum distance segment 
between the two lines.

• When two consecutive axes are parallel, the 
common normal between them is not uniquely 
defined. 

• When two consecutive axes intersect, the 
positive direction of 𝑥𝑖 is arbitrary.

• When Joint i is prismatic, only the direction of 
𝑧𝑖−1 is specified.

𝑧0

𝑧4

𝑧2

𝑧3
𝑂4𝑂3

𝑂1
𝑂0 𝑥0

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

Create Standard DH Table
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The method

• Choose axis 𝑧𝑖 along the axis of Joint i + 1. 

• Find the origin 𝑂𝑖 at the intersection of axis 𝑧𝑖
with the common normal to axes 𝑧𝑖−1 and 𝑧𝑖 . 
Additionally, locate 𝑂𝑖′ at the intersection of the 
common normal with axis 𝑧𝑖−1. 

• Choose axis 𝑥𝑖 along the common normal to axis 
𝑧𝑖−1 and 𝑧𝑖 with positive direction pointing 
towards Joint i + 1 from joint i. 

• Axis 𝑧𝑖 will be fixed as to complete a right-
handed frame.

Certain Cases

• For Frame 0, only the direction of axis 𝑧0 is 
arbitrarily chosen as upwards; then 𝑂0 and 𝑥0
can be arbitrarily chosen. 

• For Frame n, since there is no Joint n+ 1, 𝑧𝑛 is 
not uniquely defined while 𝑥𝑛 has to be normal 
to axis 𝑧𝑛−1 . Typically, Joint n is revolute, and 
thus 𝑧𝑛 can be aligned with the direction of 𝑧𝑛−1
. The common normal between two lines is the 
line containing the minimum distance segment 
between the two lines.

• When two consecutive axes are parallel, the 
common normal between them is not uniquely 
defined. 

• When two consecutive axes intersect, the 
positive direction of 𝑥𝑖 is arbitrary.

• When Joint i is prismatic, only the direction of 
𝑧𝑖−1 is specified.

𝑧0

𝑧4

𝑧2

𝑧3
𝑂4𝑂3

𝑂1
𝑂0 𝑥0

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

Create Standard DH Table
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Constructing the kinematics graph

The kinematics graph of the Gluon EduBot arm should look like this. The 
parameters of the DH parameters are as follows:

• 𝑑𝑖 , coordinate of 𝑂𝑖
′ along 𝑧𝑖−1

• 𝜃𝑖 , angle between axes 𝑥𝑖−1 and 𝑥𝑖 about axis 𝑧𝑖−1 to be taken positive 
when rotation is made counter-clockwise

• 𝑎𝑖 , distance between 𝑂𝑖 and 𝑂𝑖
′

• 𝛼𝑖, angle between axes 𝑧𝑖−1 and 𝑧𝑖 about axis 𝑥𝑖 to be taken positive when 
rotation is made counter-clockwise

The DH table

Joints 𝒅 (m) 𝜽 (𝒓𝒂𝒅) 𝒂 (m) 𝜶(𝒓𝒂𝒅)

1 0.1015 𝜋/2 0 𝜋/2

2 0.0 𝜋/2 0.173 0
3 0.0 0 0.173 𝜋

4 -0.07920 𝜋/2 0 𝜋/2

5 0.07920 0 0 𝜋/2

6 0 0 0 0

𝑧0

𝑧4

𝑧2

𝑧3
𝑂4𝑂3

𝑂1
𝑂0 𝑥0

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

Create Standard DH Table
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Demonstration

To visualize the forward kinematics, input a simple array of 𝜃 values with a known 
pose value in space.  

Pose Value =

0.08011
−0.2545
0.2795
−1.5708
−1.2250
−1.7708

𝜃 = 0, 0, 𝜋
2
, 0, 0,

𝜋

2

This function then gives a homogeneous transformation matrix of:

This 𝜃 value shows a 90° rotation on joint 3 
and 6, hence the Edubot arm should bend 

into the paper with half of its height aligned 
with negative y-axis
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Demonstration
To further visualize and understand the forward kinematics derived from the DH 

parameters, a simulation can be run to check the values of 𝜃



Q&A
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