

Advanced Robotics

ENGG5402 Spring 2023

Fei Chen

Topics:

Differential Kinematics

Readings:

• Siciliano: Sec. 3

Differential Kinematics

- relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space)
- instantaneous velocity mappings can be obtained through time differentiation of the direct kinematics or in a geometric way, directly at the differential level
 - different treatments arise for rotational quantities
 - establish the relation between angular velocity and
 - time derivative of a rotation matrix
 - time derivative of the angles in a minimal representation of orientation

Angular Velocity of Rigid Body

aka, "(fundamental) kinematic equation" of rigid bodies "rigidity" constraint on distances among points:

$$||r_{ij}|| = constant$$

 $v_{Pi} - v_{Pj}$ orthogonal to r_{ij}

$$v_{P2} - v_{P1} = \omega_1 \times r_{12}$$

$$v_{P3} - v_{P1} = \omega_1 \times r_{13}$$

$$v_{P3} - v_{P2} = \omega_2 \times r_{23}$$

$$2-1=3 \qquad \qquad \omega_1=\omega_2=\omega$$

$$v_{Pj} = v_{Pi} + \omega \times r_{ij} = v_{Pi} + S(\omega)r_{ij}$$

$$\dot{r}_{ij} = \omega \times r_{ij}$$

- the angular velocity ω is associated to the whole body (**not** to a point)
- if $\exists P_1, P_2 : v_{P1} = v_{P2} = 0 \Rightarrow \text{pure rotation}$ (circular motion of all $P_j \notin \text{line } P_1 P_2$)
- $\omega = 0 \Rightarrow$ pure translation (all points have the same velocity v_P)

Velocity of End-Effector

Linear and angular velocity of the robot end-effector

$$T = \begin{bmatrix} R & p \\ 0^T & 1 \end{bmatrix}$$
$$r = (p, \phi)$$

- v and ω are "vectors", namely are elements of vector spaces
- they can be obtained as the sum of single contributions (in any order)
- such contributions will be given by the single (linear or angular) joint velocities
- on the other hand, ϕ (and $\dot{\phi}$) is not an element of a vector space
 - a minimal representation of a sequence of two rotations is not obtained summing the corresponding minimal representations (accordingly, for their time derivatives)

in general, $\omega \neq \dot{\phi}$

Translations

Finite and infinitesimal translations

• finite Δx , Δy , Δz or infinitesimal dx, dy, dz translations (linear displacements)

Translations

Finite rotations do not commute (example)

initial orientation y

mathematical fact: ω is NOT an exact differential form (the integral of ω over time depends on the integration path!)

note: finite rotations still commute when made around the same fixed axis

 $\phi_Z = 90^{\circ}$

Infinitesimal Rotations

Infinitesimal rotations commute!

infinitesimal rotations $d\phi_X$, $d\phi_Y$, $d\phi_Z$ around x, y, z axes

$$R_X(\phi_X) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_X & -\sin \phi_X \\ 0 & \sin \phi_X & \cos \phi_X \end{bmatrix}$$

$$R_X(d\phi_X) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\phi_X \\ 0 & d\phi_X & 1 \end{bmatrix}$$

$$R_X(d\phi_X) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\phi_X \\ 0 & d\phi_X & 1 \end{vmatrix}$$

$$R_{y}(\phi_{y}) = \begin{bmatrix} \cos \phi_{y} & 0 & \sin \phi_{y} \\ 0 & 1 & 0 \\ -\sin \phi_{y} & 0 & \cos \phi_{y} \end{bmatrix}$$

$$R_Y(d\phi_Y) = egin{bmatrix} 1 & 0 & d\phi_Y \ 0 & 1 & 0 \ -d\phi_Y & 0 & 1 \end{bmatrix}$$

$$R_z(\phi_z) = \begin{bmatrix} \cos \phi_z & -\sin \phi_z & 0 \\ \sin \phi_z & \cos \phi_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_Z(d\phi_Z) = \begin{bmatrix} 1 & -d\phi_Z & 0 \\ d\phi_Z & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R(d\phi) = R(d\phi_X, d\phi_Y, d\phi_Z) = \begin{bmatrix} 1 & -d\phi_Z & d\phi_Y \\ d\phi_Z & 1 & -d\phi_X \\ -d\phi_Y & d\phi_X & 1 \end{bmatrix} \longleftarrow \begin{array}{c} \text{neglecting second- and} \\ \text{third-order (infinitesimal)} \\ \text{terms} \end{array}$$

terms

Time Derivative of R

- let R = R(t) be a rotation matrix, given as a function of time
- since $I = R(t)R^{T}(t)$ taking the time derivative of both sides yields

$$0 = \frac{d(R(t)R^{T}(t))}{dt} = \left(\frac{dR(t)}{dt}\right)R^{T}(t) + R(t)\left(\frac{dR^{T}(t)}{dt}\right)$$
$$= \left(\frac{dR(t)}{dt}\right)R^{T}(t) + ((dR(t)/dt)R^{T}(t))^{T}$$

- thus $\left(\frac{dR(t)}{dt}\right)R^{T}(t) = S(t)$ is a skew-symmetric matrix
- let p(t) = R(t)p' a vector (with constant norm) rotated over time
- comparing $\dot{p}(t) = (dR(t)/dt)p' = S(t)R(t)p' = S(t)p(t)$ $\dot{p}(t) = \omega(t) \times p(t) = S(\omega(t))p(t)$
- we get $S = S(\omega)$

$$\dot{R} = S(\omega)R$$
 \longleftrightarrow $S(\omega) = \dot{R}R^T$

Time Derivative of R

Example (Time derivative of an elementary rotation matrix)

$$R_X(\phi(t)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi(t) & -\sin\phi(t) \\ 0 & \sin\phi(t) & \cos\phi(t) \end{bmatrix}$$

$$\dot{R}_{X}(\phi)R_{X}^{T}(\phi) = \dot{\phi}\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -\sin\phi & -\cos\phi \\ 0 & \cos\phi & -\sin\phi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\dot{\phi} \\ 0 & \dot{\phi} & 0 \end{bmatrix} = S(\omega)$$

$$\omega = \omega_{X} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix}$$

more in general, for the axis/angle rotation matrix

RPY Angles and w

Time derivative of RPY angles and ω $R_{RPY}(\alpha_X, \beta_Y, \gamma_Z) = R_{ZY'X''}(\gamma_Z, \beta_Y, \alpha_X) = R_Z(\gamma)R_{Y'}(\beta)R_{X''}(\alpha)$

the three contributions $\dot{\gamma}Z$, $\dot{\beta}Y'$, $\dot{\alpha}X''$ to ω are simply summed as vectors

similar treatment for the other 11 minimal representations...

Jacobian

Robot Jacobian matrices

analytical Jacobian (obtained by time differentiation)

$$\dot{r} = \begin{pmatrix} p \\ \dot{\phi} \end{pmatrix} = f_r(q) \qquad \dot{\dot{r}} = \begin{pmatrix} \dot{p} \\ \dot{\phi} \end{pmatrix} = \frac{\partial f_r(q)}{\partial q} \dot{q} = J_r(q) \dot{q}$$

geometric or basic Jacobian (no derivatives)

$$\begin{pmatrix} v \\ \omega \end{pmatrix} = \begin{pmatrix} J_L(q) \\ J_A(q) \end{pmatrix} \dot{q} = J(q) \dot{q}$$

 in both cases, the Jacobian matrix depends on the (current) configuration of the robot

Analytical Jacobian of Planar 2R Robot

Equivalent interpretations of a rotation matrix

direct kinematics

$$p_x = l_1 \cos q_1 + l_2 \cos(q_1 + q_2)$$

$$p_y = l_1 \sin q_1 + l_2 \sin(q_1 + q_2)$$

$$\phi = q_1 + q_2$$

$$\dot{p}_x = -l_1 s_1 \dot{q}_1 - l_2 s_{12} (\dot{q}_1 + \dot{q}_2)$$

$$\dot{p}_y = l_1 c_1 \dot{q}_1 + l_2 c_{12} (\dot{q}_1 + \dot{q}_2)$$

$$\dot{\phi} = \omega_z = \dot{q}_1 + \dot{q}_2$$

$$J_r(q) = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \\ \hline 1 & 1 \end{pmatrix}$$

given r, this is a 3×2 matrix

here, all rotations occur around the same fixed axis z (normal to the plane of motion)

Geometric Jacobian

always a $6 \times n$ matrix

end-effector instantaneous velocity

$$\begin{pmatrix} v_E \\ \omega_E \end{pmatrix} = \begin{pmatrix} J_L(q) \\ J_A(q) \end{pmatrix} \dot{q} = \begin{pmatrix} J_{L1}(q) & \cdots & J_{Ln}(q) \\ J_{A1}(q) & \cdots & J_{An}(q) \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \vdots \\ \dot{q}_n \end{pmatrix}$$

superposition of effects

$$v_E = J_{L1}(q)\dot{q}_1 + \cdots + J_{Ln}(q)\dot{q}_n$$

contribution to the linear e-e velocity due to \dot{q}_1

$$\omega_E = J_{A1}(q)\dot{q}_1 + \dots + J_{An}(q)\dot{q}_n$$

contribution to the angular e-e velocity due to \dot{q}_1

linear and angular velocity belong to (linear) vector spaces in \mathbb{R}^3

Prismatic Joint

Contribution of a prismatic joint

	prismatic <i>i</i> -th joint
$J_{Li}q(\dot{q}_i)$	$z_{i-1}\dot{d}_i$
$J_{Ai}q(\dot{q}_i)$	0

Revolute Joint

		distance vector \overrightarrow{DE} ?		<i>i</i> -th joint
^			$J_{Li}q(\dot{q}_i)$	$(z_{i-1} \times p_{i-1,E})\dot{\theta}_i$
	`,		$J_{Ai}q(\dot{q}_i)$	$z_{i-1}\dot{ heta}_i$
\longrightarrow				

Expression of geometric Jacobian

$$\begin{pmatrix} \dot{p}_{0,E} \\ \omega_E \end{pmatrix} = \begin{pmatrix} v_E \\ \omega_E \end{pmatrix} = \begin{pmatrix} J_L(q) \\ J_A(q) \end{pmatrix} \dot{q} = \begin{pmatrix} J_{L1}(q) & \cdots & J_{Ln}(q) \\ J_{A1}(q) & \cdots & J_{An}(q) \end{pmatrix} \begin{pmatrix} q_1 \\ \vdots \\ \dot{q}_n \end{pmatrix}$$

	prismatic	revolute	
	<i>i</i> -th joint	<i>i</i> -th joint	
$J_{Li}q$	z_{i-1}	$z_{i-1} \times p_{i-1,E}$	
$J_{Ai}q$	0	z_{i-1}	

*
$$z_{i-1} = {}^{0}R_1(q_1) \cdots^{i-2}R_{i-1}(q_{i-1})^{i-1}z_{i-1} \leftarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

*
$$p_{i-1,E} = p_{0,E}(q_1, \dots, q_n) - p_{0,i-1}(q_1, \dots, q_{i-1})$$

complete kinematics for e-e position

partial kinematics for O_{i-1} position

all vectors should be expressed in the same reference frame (here, the base frame RF_0)

Geometric Jacobian of planar 2R arm

Denavit-Hartenberg table

joint	$lpha_i$	d_i	a_i	$ heta_i$
1	0	0	l_1	q_1
2	0	0	l_2	q_2

$$J(q) = \begin{pmatrix} z_0 \times p_{0,E} & z_1 \times p_{1,E} \\ z_0 & z_1 \end{pmatrix}$$

$$* z_0 = z_1 = z_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

*
$$p_{1,E} = p_{0,E} - p_{0,1}$$

$${}^{0}A_{1} = \begin{pmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad p_{0,1}$$

$${}^{0}A_{2} = \begin{pmatrix} c_{12} & -s_{12} & 0 & c_{1}c_{1} + l_{2}c_{12} \\ s_{12} & c_{12} & 0 & l_{1}s_{1} + l_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad p_{0,E}$$

Geometric Jacobian of planar 2R arm

$$J(q) = \begin{pmatrix} z_0 \times p_{0,E} & z_1 \times p_{1,E} \\ z_0 & z_1 \end{pmatrix} = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & l_2 s_{12} \\ l_1 c_1 - l_2 c_{12} & l_2 c_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
compare rows 1.2, and 6, with the analytical

compare rows 1, 2, and 6 with the analytical Jacobian in previous slide.

$$J_{r}(q) = \begin{pmatrix} -l_{1}s_{1} - l_{2}s_{12} & -l_{2}s_{12} \\ l_{1}c_{1} + l_{2}c_{12} & l_{2}c_{12} \\ \hline 1 & 1 \end{pmatrix}$$

note: the Jacobian is here a 6×2 mat thus its maximum rank is 2

at most 2 components of the linear/angular endeffector velocity can be independently assigned

Summary

Summary of differential relations

$$\dot{p} \rightleftarrows v$$

$$\dot{p} = v$$

$$\dot{R} \rightleftharpoons \omega$$

$$\dot{R} \rightleftharpoons \omega$$
 $\dot{R} = S(\omega)R$
 $S(\omega) = \dot{R}R^T$

for each (unit) column r_i of R (a frame): $\dot{r_i} = \omega \times r_i$

$$\dot{\phi} \rightleftarrows \omega$$

$$\omega = \omega_{\dot{\phi}_1} + \omega_{\dot{\phi}_2} + \omega_{\dot{\phi}_2} = a_1 \dot{\phi}_1 + a_2(\phi_1) \dot{\phi}_2 + a_3(\phi_1, \phi_2) \dot{\phi}_3 = T(\phi) \dot{\phi}$$

if the task vector r is

(moving) axes of definition for the sequence of rotations
$$\phi_i$$
, $i=1,2,3$
$$\omega = \begin{bmatrix} c\beta c\gamma & -s\gamma & 0 \\ c\beta s\gamma & c\gamma & 0 \\ -s\beta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix}$$

$$\omega = \begin{bmatrix} c\beta c\gamma & -s\gamma & 0 \\ c\beta s\gamma & c\gamma & 0 \\ -s\beta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix}$$

$$r = \binom{p}{\phi}$$

$$r = \begin{pmatrix} p \\ \phi \end{pmatrix} \qquad \qquad J_r(q) = \begin{pmatrix} I & 0 \\ 0 & T^{-1}(\phi) \end{pmatrix} J(q) \qquad \qquad J(q) = \begin{pmatrix} I & 0 \\ 0 & T(\phi) \end{pmatrix} J_r(q)$$

$$J(q) = \begin{pmatrix} I & 0 \\ 0 & T(\phi) \end{pmatrix} J_{\mathbf{r}}(q)$$

 $T(\phi)$ has always a singularity \iff

singularity of the specific minima representation of orientation

Primer on Linear Algebra

given a matrix $J: m \times n \ (m \text{ rows}, n \text{ columns})$

- rank $\rho(J) = \max \#$ of rows or columns that are linearly independent
 - $\rho(J) \leq \min(m, n) \Leftarrow \text{if equality holds}, J \text{ has full rank}$
 - if m = n and J has full rank, J is nonsingular and the inverse J^{-1} exists
 - $\rho(J)$ = dimension of the largest nonsingular square submatrix of J
- range space $\Re(J)$ =subspace of all linear combinations of the columns of J

$$\mathcal{R}(J) = \{ v \in \mathbb{R}^m : \exists \xi \in \mathbb{R}^n, v = J\xi \} \longleftarrow \text{also called image of } J$$

- dim $\mathcal{R}(J) = \rho(J)$
- null space $\mathcal{N}(J) = \text{subspace of all vectors that are zeroed by matrix } J$ $\mathcal{N}(J) = \{ \xi \in \mathbb{R}^n : J\xi = 0 \in \mathbb{R}^m \}$
 - dim $\mathcal{N}(J) = n \rho(J)$

- also called kernel of J
- $\mathcal{R}(J) + \mathcal{N}(J^T) = \mathbb{R}^m$ and $\mathcal{R}(J^T) + \mathcal{N}(J) = \mathbb{R}^n$ (sum of vector subspaces)

Robot Jacobian

Bruno: page 122

Robot Jacobian (decomposition in linear subspaces and duality)

Robot Jacobian

Bruno: page 122

Robot Jacobian (decomposition in linear subspaces and duality)

Mobility analysis in the task space

- $\rho(J) = \rho(J(q)), \mathcal{R}(J) = \mathcal{R}(J(q)), \mathcal{N}(J^T) = \mathcal{N}(J^T(q))$, etc. are locally defined, i.e., they depend on the current configuration q
- $\mathcal{R}(J(q))$ is the is the subspace of all "generalized" velocities (with linear and/or angular components) that can be instantaneously realized by the robot end-effector when varying the joint velocities \dot{q} at the current q
- if $\rho(J(q)) = m$ at q(J(q)) has max rank, with $m \le n$, the end-effector can be moved in any direction of the task space \mathbb{R}^m
- if $\rho(J(q)) < m$, there are directions in \mathbb{R}^m in which the end-effector cannot move (at least, not instantaneously!)
 - these directions $\in \mathcal{N}(J^T(q))$, the complement of $\mathcal{R}(J(q))$ to task space \mathbb{R}^m , which is of dimension $m \rho(J(q))$
- if $\mathcal{N}(J(q)) \neq \{0\}$, there are non-zero joint velocities q that produce zero end-effector velocity ("self motions")
 - this happens always for m < n, i.e., when the robot is redundant for the task

Mobility analysis for a planar 3R robot

$$l_1 = l_2 = l_3 = 1$$
 $n = 3$, $m = 2$

$$n = 3$$
, $m = 2$

$$WS_1 = \{ p \in \mathbb{R}^2 \colon ||p|| \le 3 \} \subset \mathbb{R}^2$$

$$WS_2 = \{ p \in \mathbb{R}^2 \colon ||p|| \le 1 \} \subset \mathbb{R}^2$$

$$p = \begin{pmatrix} c_1 + c_{12} + c_{123} \\ s_1 + s_{12} + s_{123} \end{pmatrix}$$

in
$$\mathbb{R}^3$$

$$-s_{12} - s_{123}$$

 $c_{12} + c_{123}$

$$-s_{123} \choose c_{123} \dot{q}$$

case 1)

$$q = (0, \pi/2, \pi/2)$$

$$I = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

case 2)

 $= J(q)\dot{q}$

$$q = (\pi/2, 0, \pi)$$

$$J = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Mobility analysis for a planar 3R robot

**中文大學

The Chinese University of Hong Kong

If null space

$$q = (0, \pi/2, \pi/2)$$

$$J=egin{pmatrix} -1 & -1 & 0 \ 0 & -1 & -1 \end{pmatrix}$$
 $J^T=egin{pmatrix} -1 & -1 \ 0 & -1 \end{pmatrix}$ $ho(J)=2=m$ $ho(J^T)=
ho(J)=2$ full rank, non-singular case

case 1)
$$q = (0, \pi/2, \pi/2)$$

$$J = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

$$J^{T} = \begin{pmatrix} -1 & 0 \\ -1 & -1 \\ 0 & -1 \end{pmatrix}$$

$$\mathcal{R}(J) = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \mathbb{R}^2$$

$$\mathcal{N}(J) = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

$$\mathcal{R}(J) = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \mathbb{R}^2 \qquad \mathcal{N}(J) = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \qquad \dim \ \mathcal{N}(J) = 1 = n - \rho(J) = n - m$$

$$\mathcal{R}(J^T) = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\} \qquad \mathcal{N}(J^T) = 0 \qquad \text{dim } \mathcal{R}(J^T) = 2 = m$$

$$\mathcal{N}(J^T)=0$$

$$\dim \mathcal{R}(J^T) = 2 = m$$

$$\mathcal{R}(J) + \mathcal{N}(J^T) = \mathbb{R}^2$$
$$\mathcal{R}(J^T) + \mathcal{N}(J) = \mathbb{R}^3$$

Mobility analysis for a planar 3R robot

case 2)

$$q = (\pi/2,0,\pi)$$

$$J = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad J^{T} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$\rho(J) = 1 < m \qquad \rho(J^{T}) = \rho(J) = 1$$

$$J^{T} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\rho(J^{T}) = \rho(J) = 1$$

$$\mathcal{R}(J) = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

$$\mathcal{N}(J) = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

dim
$$\mathcal{R}(J) = 1 = \rho(J)$$

dim $\mathcal{N}(J) = 2 = n - \rho(J)$

$$\mathcal{R}(J^T) = \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$

$$\mathcal{N}(J^T) = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\dim \mathcal{R}(J^T) = 1 = m - \rho(J)$$
$$\dim \mathcal{N}(J^T) = 1 = n - \rho(J)$$

$$\mathcal{R}(J) + \mathcal{N}(J^T) = \mathbb{R}^2$$

 $\mathcal{R}(J^T) + \mathcal{N}(J) = \mathbb{R}^3$

Kinematic Singularities

configurations where the Jacobian loses rank

- for m = n, they correspond to Cartesian poses at which the number of solutions of the inverse kinematics problem differs from the generic case
- "in" a singular configuration, we cannot find any joint velocity that realizes a desired endeffector velocity in some directions of the task space
- "close" to a singularity, large joint velocities may be needed to realize even a small velocity of the end-effector in some directions of the task space
- finding and analyzing in advance the mobility of a robot helps in singularity avoidance during trajectory planning and motion control
 - when m = n: find the configurations q such that $\det J(q) = 0$
 - when m < n: find the configurations q such that all $m \times m$ minors of J(q) are singular (or, equivalently, such that $\det(J(q)J^T(q)) = 0$)
- finding all singular configurations of a robot with a large number of joints, or the actual "distance" from a singularity, is a complex computational task

Kinematic Singularities

Singularities on planar 2R robot

direct kinematics

$$p_{x} = l_{1}c_{1} + l_{2}c_{12}$$
$$p_{y} = l_{1}s_{1} + l_{2}s_{12}$$

analytical Jacobian

$$\dot{p} = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \end{pmatrix} \dot{q} = J(q) \dot{q}$$

- ■singularities: robot arm is stretched $(q_2 = 0)$ or folded $(q_2 = \pi)$
- singular configurations correspond here to Cartesian points that are on the boundary of the primary workspace
- here, and in many cases, singularities separate configuration space regions with distinct inverse kinematic solutions (e.g., elbow "up" or "down")

QSA