ENGG5402 Spring 2023

Fei Chen

Topics:
o Differential Kinematics

Readings:
e Siciliano: Sec. 3




Differential Kinematics
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relations between motion (velocity) In joint space and
motion (linear/angular velocity) In task space (e.qg.,
Cartesian space)

Instantaneous velocity mappings can be obtained through
time differentiation of the direct kinematics or in a geometric

way, directly at the differential level
different treatments arise for rotational quantities
establish the relation between angular velocity and

time derivative of a rotation matrix
time derivative of the angles in a minimal representation

of orientation




Angular Velocity of Rigid Body

“rigidity” constraint on distances among points:

. ||| = constant
Vp1 mm) v, — vp;0rthogonal to 7;
1 Upy — VUpyp = W1 X T2
2 Upz — Upy = W1 XT3
Up3 3 Upz — Upy = W3 X T3
vV P;, P,, P3

2-1=3 ) W] = Wy =W
aka, “(fundamental) .
kinematic equation” of Vpi = Up; + @ X 1;; = vp; + S(w)1y; @& 7;=wXr;
rigid bodies
* the angular velocity w is associated to the whole body (not to a point)
* if3P, P, vp, =vp, =0 = pure rotation (circular motion of all P; ¢ line P,P,)
 w = 0 = pure translation (all points have the same velocity v;)

A“ﬁ' D~ 0 3




w; = Zj_10; " [R p
alternative definitions of I' = oT 1

the direct kinematics of .
the end-effector r=(p, o)

v and w are “vectors”, namely are elements of vector spaces
they can be obtained as the sum of single contributions (in any order)
such contributions will be given by the single (linear or angular) joint velocities

on the other hand, ¢ (and ¢) is not an element of a vector space

a minimal representation of a sequence of two rotations is not obtained summing the
corresponding minimal representations (accordingly, for their time derivatives)

in general, w # ¢
X K %
. ersityo"




Translations

Finite and infinitesimal translations

finite Ax, Ay, Az or infinitesimal dx, dy, dz translations (linear displacements)
always commute

same final

Az Ay .
position

X K #
Iversity




Translations

Finite rotations do not commute (example)

note: finite rotations
still commute when

yA
z made around the
initial same fixed axis
orientation — 90°
y oy =90 y

mathematical fact: w is NOT

an exact differential form (the b, =90°
integral of w over time

depends on the integration path!)

¢z =90

different final
orientations!




Infinitesimal Rotations

Infinitesimal rotations commute!

infinitesimal rotations d¢y, d¢y, d¢, around x, y, z axes

1 0 0 1 0 0
Ry(py) = lO cos py — sin qul > Ry(doy) = 8 d1 —dl<l5x
0 singy cos @y Px
cos¢y, 0 singy 1 0 doy
R,(p,)=| 0 1 0 > Ry(dpy)= 0 1 0
Y —singy 0 cos ¢y —d¢y 0 1
cos¢p, —sing, 0 1 —-d¢, 0
R,(¢,) = Isin ¢, cosq, O] Rz(d¢z) = |d¢, 1 0
0 0 1 0 0 1
1 —d¢; dey
R(d¢) = R(doy,ddy,dep,) = | do; 1 —d oy neglecting second- and
1‘ —dpy doy 1 ¢ third-order (infinitesimal)
=]+ S(d¢) terms

in any order




Time Derivative of R

» let R = R(t) be a rotation matrix, given as a function of time
* since I = R(t)RT(t) taking the time derivative of both sides yields

_ d(R(RT (1)) _ (dR(t)) RT(5) + R(E) (dRT(t))

) dt dt dt

B dR(t)
_( dt

 thus (diit)

« letp(t) = R(t)p’ a vector (with constant norm) rotated over time
tooompaning - p(¢) = (dR()/de)p’ = S(OR(P' = S(H)P(L)
p(t) = w(t) X p(t) = S(w(t))p(t)

)RT(t) + ((dR(t)/dO)RT ()"

)RT (t) = S(t) Is a skew-symmetric matrix

« wegetsS = S(w)

R =S(w)R | &= S(w)=RRT




Time Derivative of R

“%xample (Time derivative of an elementary rotation matrix)

1 0 0
Ry (d(t)) = lO cosp (t) —sing (t)
0 sing (t) coso (L)

0 0 0 O
Ry (p)RY () = ¢ IO —sing —cos qbl l COS qb sin qbl 0 0 —¢|= S(w)
0 cos¢p —sing —sing cos ¢ 0 ¢ O

LN

more In general, for the axis/angle rotation matrix

R(r, H(t)) — R(r,0)RT (r,0) = S(w)




RPY Angles and w

Time derivative of RPY angles and w
RRPY(“XJ ﬁY} Vz) — RZY’X” (VZJ ﬁY’ aX) — RZ()/)RY’ (ﬁ)RX” (a)

Z

Trpy (B,7)
the three contributions ' - '
vZ,BY', @X"to w are cbcy —sy Offa
simply summed as % w=|cfsy cy O]|p
vectors ; y' -sp 0 1|]y
' CE G/
; too
1t col in 2nd col in
X RZ (V) RYI (,8) RZ ()/)
Yx, .

similar treatment for the
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Jacobian
4\

> J
=, Robot Jacobian matrices

analytical Jacobian (obtained by time differentiation)

— (Z) = Jr(q) ‘ "= (Z) = é)fg;q) q =7r(q)q

geometric or basic Jacobian (no derivatives)

(@)= () =12

In both cases, the Jacobian matrix depends on the (current) configuration of
the robot




. Analytical Jacobian of Planar 2R Robot

%

Equivalent interpretations of a rotation matrix
direct kinematics
Py = licosqq + 1, cos(qy + q2)
py = lysing, + 1, sin(q; + q2)
® =q1+q;
Px = —1151G1 — 13512(q1 + q2) _1151 _ 12512 _12512

=) J-(q) = £1_C_1 _‘|‘_ l_z_Clz_ o _lgfl_zl

Py = lic1qr + 12¢12(q1 + ¢2)




Geometric Jacobian

Geometric Jacobian
always a 6 X n matrix

end-eftector (UE) (jL(q)) . (]Ll(q) ]Ln(q)) T

iInstantaneous velocity —

WE Ja(q) Jar1(q@) - Jan(q) a,
€< ~N
Ve = J11 (@)1 + + Jin(@)dn wp = Ja1(@)q1 + "+ Jan(@)dn
contribution to the linear contribution to the angular
e-e velocity due to g, e-e velocity due to g,

L X %
- Miwo'_

g9



Prismatic Joint

Contribution of a prismatic joint

note: joints beyond the i-th one are considered to be “frozen”, so that : 7.) — d . 7 d
the distal part of the robot is a single rigid body ]qu (CIL) 1“1—1"1

prismatic
i-th joint

J1:9(q;) Zi_1d,

J4iq(q;) 0




Revolute Joint

Contribution of a revolute joint
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J1iq(q;)

J4iq(4:) = z;_16;

prismatic
i-th joint

(zj—1 X Pi—1,E)9i

DE
why not use the minimum
distance vector DE ?
J1i9(q;)
J4iq(q;)

Zi—10;




Geometric Jacobian

Expression of geometric Jacobian

' q
()= () = (1)a= (o Jm)(?)

dn
prismatic revolute
i-th joint i-th joint
JLiq Zi_1 Zi—1 X Pi-1,E
Jaiq 0 Zi_1

. . 0
¥ Zijq1 = OR1(CI1) S Ri—1(¢1i—1)l_1zi—1 e~ (0)

1 all vectors should be expressed
* Di—1,eg = Po,e(q1, " qn) — Po,i-1(q1,***» Gi—1) <«—— in the same reference frame
complete kinematics partial kinematics (here, the base frame RF)

for e-e position forO;_4position




Geometric Jacobian

= Geometric Jacobian of planar 2R arm
X1
y _ (Zo XDPoe Z1 X P1,E)
E ](q) - ( Zo Z1
[
q> 0
V1 x« Zo=Z1 =Z =0
[ @ - 1
Yo ‘ g4 *  P1,e = Po,e — Po,1
. xo C1 _Sl O llC]_
. S C 0 |l;s Po,1
Denavit-Hartenberg table °4, = 1 ! 1o |
J 1 0 0 1 0
joint | « d; a; 0, 0 00 1
1 0 0 [4 d1 C1o —S19 0 C1C1 + l2C1
y 0 0 L | gy 04, = S12. €12 0 1151 + 13517 por
0 0 1 0
0 1




Geometric Jacobian

Geometric Jacobian of planar 2R arm

X1

Y2 4 =151 — 1812 Izsy
licr — ez Legy

1(q) = (Zo XPoe Z1 X pl,E) _ 0 0

B Z Z1 0 0

q> O O

Y1 1 1

A1 compare rows 1, 2, and 6 with the analytical
L, ( Jacobian in previous slide.

l1c1 + 13¢5 [,C12

A LLEEEEEE 1o

Yo ‘ d1 —l151 — 12512 _12512
J-(q) =

note: the Jacobian is here a 6 X 2 mat —) at most 2 components of the linear/angular end-
_thus its maximum rank is 2 effector velocity can be independently assigned




Summary

Summary of differential relations

¢ 2w W= Wy TWG T WG = a1 + az(P1) 92 + az(p1, P2)P3 = T($)¢
1\ T T Trey(B,Y)
if the task vector 7 is (moving) axes of definition for the ;ch sy Ox g
sequence of rotations ¢;,i = 1,2,3 w=|cBsy cy O||p
-sp 0 1f|y

=) W h@=( rip)@ @ J@=() )@

singularity of the specific minima

I'(¢) has always a singularity < representation of orientation




Primer on Linear Algebra

given a matrix /J: m X n (m rows, n columns)
rank p(J) = max # of rows or columns that are linearly independent

p(J) < min(m,n) < if equality holds, J has full rank
if m = nand J has full rank, J is nonsingular and the inverse J~1! exists

p(J) = dimension of the largest nonsingular square submatrix of |
range space R(J) =subspace of all linear combinations of the columns of ]

R(J) ={veR™ I €R",v=J¢} «_ also called image of
dm R(J) = p(J)

null space NV (J) = subspace of all vectors that are zeroed by matrix |
N(J) =1 eR":J§=0€eR"}
dim M ())=n — p(J) &— also called kernel of J

R(DH+NJH =Rmand RJY) + N(J) = R™ (sum of vector subspaces)




Robot Jacobian Bruno: page 122

T T T T TS :
Robot Jacobian (decomposition in linear subspaces and duality)

/ﬁ Given]\ space of task

(Cartesian)
velocities

space of joint
velocities

RUT) + N (J) = R" R +N(J") =R™

Jh
; [ @

T
space of joint %] e space of task

(Cartesian)
torques forces

saoeds |enp

dual spaces

(in a given configuration q)




Robot Jacobian Bruno: page 122

4 —_—m—m :
Robot Jacobian (decomposition in linear subspaces and duality)

- Given | —mm—

space of task
(Cartesian)
velocities

space of joint
velocities

2ds |enp

N
QO
O
©
O

RUJD+N(J) =R" R() +N(JT) = R™




Mobility Analysis

Mobility analysis in the task space

- p(D=p(U@),RD=RJ@),NJ") =N(JT(q)) , etc. are locally defined, i.e., they
depend on the current configuration g
. R (J(q)) is the is the subspace of all “generalized” velocities (with linear and/or

angular components) that can be instantaneously realized by the robot end-effector
when varying the joint velocities g at the current g

if p(J(q)) = m at q (J(q) has max rank, with m < n), the end-effector can be moved in
any direction of the task space R™

if p(J(q)) < m, there are directions in R™ in which the end-effector cannot move (at
least, not instantaneously!)
. these directions € N (J'(q)) , the complement of R(J(q)) to task space R™, which
Is of dimension m — p(J(q))
if N(](q)) + {0}, there are non-zero joint velocities g  that produce zero end-effector
velocity (“self motions™)
. this happens always for m < n, I.e., when the robot is redundant for the task




Mobility Analysis

Mobility analysis for a planar 3R robot

v L=1 ® i WS, = {p € R%||p|]| < 3} c R?
12 i WS, = {p € R%: |p|| < 1} € R?

p = (C1 T C1p T C123) o
51 T S12 T 5123 n R

' qBEP L=0L=0=1 n=3 m=.2

q1 X /

O ' . (TS1 T 912 T 9123 TS12 T 9123 T 9123) .

% Px vePE ( C1 +Ci2 T Ci23  C12 T €123 €123 )q
=J(q)q

case 1) case 2)
q = (0,m/2,1/2) q = (n/2,0,m)

=3 5 %) 1=Co o o




Mobility Analysis

Mobility analysis for a planar 3R robot

-1 0
case 1) ] = (—1 -1 0 ) JT = (_1 _1)
qg = (0,m/2,1/2) \0 -1 -1 0 -1

p(]) =2 =m p(]T) = ,0(]) = 7 full rank, non-singular case

7 je(/)={[(1)],[(1)]}=1@2 N(/)=“—11H dim N(J)=1=n-p())=n-m

ST e

7Z

} N(]T)—() dlmfR(]T)ZZZm

R(D)+N(JH) = R?
RJ") +N(J) =R?

If null space



Mobility Analysis

J
Q
TN\
i \ !

iy
= Mobility analysis for a planar 3R robot
case 2) -1 0
-1 0 1 e
q = (n/2,0,m) = J (O O)
1=(% o o 1 0

p(ND=1<m p(J") =p(J) =1

01 |1 :
_ (1 _ dim R(J) =1 = p(J)
Fo=lolt - M0 Hé M} dim N()) =2=n—p()
~1 dim R(J") =1=m—p(J))
R(") = {l 0 ” vy ={[1]} dim M) =1 =n-p()
1

\ 4

R(J)+N(J") = R?
RUH+N() =R3




Kinematic Singularities

= configurations where the Jacobian loses rank

— loss of instantaneous mobility of the robot end-effector

for m = n, they correspond to Cartesian poses at which the number of solutions of the
inverse kinematics problem differs from the generic case

{3 7

IN” a singular configuration, we cannot find any joint velocity that realizes a desired end-
effector velocity in some directions of the task space

“close” to a singularity, large joint velocities may be needed to realize even a small velocity of
the end-effector in some directions of the task space

finding and analyzing in advance the mobility of a robot helps in singularity avoidance during
trajectory planning and motion control
when m = n: find the configurations g such that det/(g) = 0
when m < n: find the configurations g such that all m X m minors of J(q) are singular (or,
equivalently, such that det(J(q)/"(q)) = 0)

finding all singular configurations of a robot with a large number of joints, or the actual
“distance” from a singularity, is a complex computational task




Kinematic Singularities

Singularities on planar 2R robot

direct kinematics

P
o I J Pr = licy + lxcqz
: i det/(q) = l,1,s, py = US1 + LS
VAL : analytical Jacobian
[ ( | I
| . (1151 — 1581 —12512) . -
‘h I; X P = ( licy + ¢ Lrcq 1=7J(a)q

sSingularities: robot arm Is stretched (g, = 0) or folded (g, = m)

mSingular configurations correspond here to Cartesian points that are on the
boundary of the primary workspace

mhere, and In many cases, singularities separate configuration space regions with
distinct inverse kinematic solutions (e.g., elbow “up” or “down”)
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