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“lnversion of Differential Kinematics

L1

. find the joint velocity vector that realizes a desired task/
end-effector velocity ("generalized” = linear and/or angular)

generalized velocity J square and

\) non-singular at g

. problems
near a singularity of the Jacobian matrix (too high g)
. for redundant robots (no standard “inverse” of a rectangular matrix)

INn these cases, more robust inversion methods are needed




Incremental Solution
d;

= Incremental solution (to inverse kinematics problems)

joint velocity inversion can be used also to solve on-line and incrementally a
“sequence” of inverse kinematics problems

each problem differs by a small amount dr from previous one

0
r= (@) ir =22 2 g = ()

direct kinematics differential kinematics

(here with a square, analytic Jacobian)
r+dr=f,(q) wmp q = fY(r +dr)
first, Increment the

desired task variables then, solve the inverse kinematics

r — 1 + d?" problem
dq = J;* (q)dr™= 1 — q+dg

first, solve the inverse differential
kKinematics problem

then, Increment the
original joint variables




gularity

qg=]"(Qv

Boundary of
workspace

problems arise only when commanding joint

| \ motion by inversion of a given Cartesian
< s motion task
ol [ cgetant JEJ'f . here, a linear Cartesian trajectory for a planar
j = 2R robot
- . there is a sudden increase of the
g 20 displacement/velocity of the first joint near 6,
T K — —1 (end- effector close to the origin),

despite the required Cartesian displacement is
small




Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

actual Cartesian path
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a line from right to left, at « = 170° angle with x-axis,
executed at constant speed v =0.6m/sforT =6 s




path ata = 170°
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Simulation

Simulation results

evolution of joint angles
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Simulation

Simulation results
_C'I =]‘1(q)v (planar 2R robot in straight line Cartesian motion)

actual Cartesian path 2r R o o o S A o _

T

close to
singular case 1

OB5F NN

S 0

stroboscopic  ™°
view .

a line from right to left, at « = 178° angle with x-axis,
executed at constant speed v =0.6m/sforT =6 s




Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

evolution of joint velocities

evolution of joint angles 600
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Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

close to singular case with joint velocity
actual Cartesianpath saturation at V/; = 300°/s

stroboscopic
view

a line from right to left, at « = 178° angle with x-axis,
executed at constant speed v =0.6m/sforT =6 s




Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

evolution of joint velocities

evolution of joint angles
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#\Damped Least Squares Method

Bruno: 3.5.1

. A o 2 1 o 2
mlan=§HCIH +§WCI—UH , A=0

q = (/Un +]T])_1]TU — ]T(/Um +]]T)_1v = JpLsV
two equivalent expressions, but the second Is more convenient in redundant robots!

. Inversion of differential kinematics as unconstrained optimization problem

. function H = weighted sum of two objectives (norm of joint velocity and error norm on
achieved end-effector velocity) to be minimized

. Jpiscan be used for both cases: m = n (square) and m < n (redundant)
. 1 = 0 when “far enough” from singularities: Jp;s = JT (JJH)t=J1or J°
. with A > 0, there Is a (vector) error € (= v —Jq) In executing the desired end-effector

velocity v (check that e = A(AL,, + (JJ')~1v), but the joint velocities are always reduced
("damped”)




Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

a comparison of inverse and damped inverse Jacobian
methods even closer to singular case

actual Cartesian path actual Cartesian path
2

q=]"(qQv

some position
error imported.




Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

] path at .
qg=]""(qv a = 179.5° q =Jprs(q)v
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here, a very fast a completely different inverse solution,
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joint ... close to the folded singularity




Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

evolution of joint angles evolution of joint angles
I
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Simulation

Simulation results
(planar 2R robot in straight line Cartesian motion)

q =JpLs(qQ)v
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Pseudoinverse Method

a constrained optimization (minimum norm) problem

| -
min ¢ H = |4

suchthat Jg =v

pseudoinverse of |

|
—
<

solution CI

"if v € R (J), the differential constraint is satisfied (v Is feasible)
"else, /g =]]#v = v+, where @minimizes the error ||Jg — v

!

orthogonal projection of v on R(J)




Pseudoinverse Method

Definition of the pseudoinverse

given J, Is the unique matrix ]# satisfying the four relationships

It =] Tt =]
(") =Jj U*1) =%

. explicit expressions for full rank cases
fp()=m=n:J" =]71
fp()=m<nj =] ()"
Jp(J) =n<m: J =gy

: ] always exists and is computed in general numerically using the
SVD = Singular Value Decomposition of ]

. e.g., with the MATLAB function pinv (which uses in turn svd)




Numerical Example

Jacobian of 2R robot with [1=1,=1at g,=0 (rank p(J) = 1)

feasible velocity direction

R
] = (_251 _Sl) o 1(_251 201) y ) v vt
- 2C1 Cl ] o 5 _Sl C1 -7
V —
JJ* = St —S161 h AT L °
—s.¢,  Cf A 1 X

g = J"v is the minimum norm joint velocity vector that realizes exactly v+
» atg, =m/6:forv=(-05 0)" [%],c'z =J*v = (0.1 0.05)7

catq =m/2: ] =

rad

| = vt =p"v=(-1/8 v378) |5

); now the same v € R(J),g = (0.2 0.1)! = v+ =wv (no error!)

s
=0




General Solution for m<n

Slightly modified constrained optimization problem (“biased” toward the joint velocity ¢,
exploring redundancy, ie, chosen to avoid obstacles, joint limits, etc.)

1
min ; H = E”é[ — &]|% such that Jg = v

ALL solutions of the inverse differential kinematics problem can be written as

g =) +(1-J%))¢ ‘—-

projection matrix of ¢ to N'(J) — aka, "null space method” Bruno: Eqt. 3.54

verification of the actual task velocity that is being obtained
Vactual =J4 =JU*v + (I =J*))¢) = JJ*v + [d—T*])¢ T]]#UW) =Jw =v

ifveR(J)=>v=Jwforsomew e R"
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environment

“‘generalized” vectors: may contain
T; linear and/or angular components
i

convention: generalized forces are
positive when applied on the robot

7
» T = forces/torques exerted by the motors at the robot joints

* F = equivalent forces/torgues exerted by the robot end-effector

« F, =forces/torques exerted by the environment at the end-effector

* principle of action and reaction: F, = —F

reaction from environment is equal and opposite to the robot action on It




environment

INn a given configuration
» what is the transformation between F at robot end-effector and t at joints?
In static equilibrium conditions (I.e., no motion):

» what F will be exerted on environment by a t applied at the robot joints?
» what 7 at the joints will balance a F.(= —F) exerted by the environment?

all equivalent formulations




Infinitesimal dqg (or “virtual® éq, 1.e., satisfying all possible constraints
%4 Imposed on the system) displacements at an equilibrium

‘ » without kinetic energy variation (zero acceleration)
* without dissipative effects (zero velocity)

the virtual work Is the work done by all forces/torgues
acting on the system for a given virtual displacement




Principle of Virtual Work

Principle of virtual work

T,d
T1dqq %-,fh_
Oe ] =< Tldqlx,’ \\—:Fez—F
—= R X R
. T1dqq /
71441 _pr(Ap ) _ _
| - (a)dt) = —FJdq
% the sum of the virtual works done by all orinciple of
7 forces/torques acting on the system =0 virtual work
dp
T, _ T T~ _ T _
tTdq — F (wdt) = 1Tdq — FTJdg =0 [ vdgq

— T =JT (q)F




Duality

Duality between velocity and force

A @ X\

velocity ¢ generalized velocity v(or
(or displacement dq) e-e displacement ( dp )in
wdt

In the joint space .
J P the Cartesian space

forces/torques t generalized forces F
at the joints at the Cartesian e-e

\]TEL/

the singular configurations for the velocity map are
the same as those for the force map P ] = P(] )




;iiijual Subspaces of Velocity and Force
Dgéral subspaces of velocity and force (summary of definitions)
R()={veR™3Aqg € R",Jq = v}
NI ={F e R™:J'F =0}
R(JH)+N(J") =R™

R(JT) = {r € R*:3F € R™,JTF = 1)

N(J)=1{q € R™Jq =0}
RJ") +N(J) =R"




Mobility Analysis

Mobility analysis for a planar 3R robot

-1 0
case 1) ] = (—1 -1 0 ) JT = (_1 _1)
qg = (0,m/2,1/2) \0 -1 -1 0 -1

p(]) =2 =m p(]T) = ,0(]) = 7 full rank, non-singular case

7 je(/)={[(1)],[(1)]}=1@2 N(/)=“—11H dim N(J)=1=n-p())=n-m

I e

7Z

} N(]T)—() dlmfR(]T)ZZZm

R(D)+N(JH) = R?
RJ") +N(J) =R?

If null space



Mobility Analysis

J
Q
TN\
i \ !

s
= Mobility analysis for a planar 3R robot
case 2) -1 0
-1 0 1 e
q = (r/2,0,m) = J (O O)
1=(% o o 1 0

p(ND=1<m p(J") =p(J) =1

01 |1 :
_ (1 _ dim R(J) =1 = p(J)
Fo=lolt - M0 Hé M} dim N()) =2=n—p()
~1 dim R(J") =1=m—p(J))
R(") = {l 0 ” vy ={[1]} dim M) =1 =n-p()
1

\ 4

R(J)+N(J") = R?
RUH+N() =R3




Velocity Manipulability

In a given configuration, evaluate how effective is the transformation between joint

and end-effector velocities
“how easily” can the end-effector be moved in various directions of the task space

equivalently, "how far” is the robot from a singular condition
. we consider all end-effector velocities that can be obtained by choosing joint velocity

vectors of unit norm

g qg=1 m
\ if o(J) = m, full rank

task velocity = gy
manipulability ellipsoid —
p y p £[]T) 1

note: the “core” matrix of the ellipsoid equation vTA~1v = I is the matrix A!




. Velocity Manipulability

Manipulability ellipsoid (in velocity)
planar 2R arm with unitary links

length of principal (semi-) axes
1 singular values gjof J (in its SVD)
scale of

i ellpsoi g;(]) = \/m

In a singularity, the ellipsoid loses a

dimension
for m = 2, It becomes a segment

2 L .
’ direction of principal axes
eigenvectors associated to A,

manipulability ellipsoid

proportional to the volume of the
- g ellipsoid (for m = 2, to Its area)




Manipulability Measure

Manipulability measure

2

planar 2R arm (with [, = [, = 1): Jdet(JJT) = /det()) - det(JT) = | det] | = Hai

=1

manipulability (L1 = L2 =1)

manipulability as a function of radial distance (L, =L, =1)
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singular values of J as a function of radial distance (L, =L, =1)
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Force Manipulability

In a given configuration, evaluate how effective Is the transformation between joint
torques and end-effector forces

"how easily” can the end-effector apply generalized forces (or balance applied ones)
INn the various directions of the task space

INn singular configurations, there are directions In the task space where external forces
are balanced without the need of any joint torque

we consider all end-effector forces that can be applied (or balanced) by choosing joint
torque vectors of unit norm

tlt =1 ) FTJITF =1

same directions of the principal
axes of the velocity ellipsoid, but

task force

with semi-axes of inverse lengths manipulability ellipsoid




“Velocity and Force Manipulability

if
= Velocity and force manipulability
(dual comparison of actuation vs. control)

planar 2R arm with unitary links

note: velocity and

force ellipsoids have velocity manipulability ellipsoid force manipulability ellipsoid
a different scale for 2| area « det(J") =o01()) -0z () | area « det(JT) 1
3 better view LSE sslo o 01U) 02U)
0 SUUSTUUUU SO UUUU S UUUU SUUUU UURSSUUUOE SUUUU UUUUROUNY T S
056 o5l
E pf T ol ok
O5L ........... >_05 ________________________________
Y IO OO L O O S i SJooo
B S S R TS ERE —— -
ol ol
2 15 1 05 [6] 05 1 15 2 > 15 1 05 0 05 1 15 2
x [m x [m]

Cartesian actuation task (joint-to-task high transformation ratio): preferred velocity
(or force) directions are those where the ellipsoid stretches

Cartesian control task (low transformation ratio = high resolution): preferred velocity (or

force) directions are those where the ellipsoid shrinks
‘




Velocity and force transformations

same reasoning made for relating end-effector to joint forces/torques (virtual work
principle + static equilibrium) used also transforming forces and torques applied at
different places of a rigid body and/or expressed In different reference frames

transformation among generalized velocities

li:‘l _ ARp _ARBS(BrBA)] [121;1);] :]BA[IZUBI

0 ARB W
B
l B{il — ]gA

= =
o, A
Am|  |-ST(Brg)BR, EBR,||4m

transformation among generalized forces

for skew-symmetric matrices, itis: —S'r = S(r)




Example 1

Example: 6D force/torque sensor

frame of measure for the
forces/torques (attached to the
Wrist sensor)

RFA Ton

BA m RFB

frame of Interest for evaluating
forces/torques In a task with
environment contact




Example 2

Example: Gear reduction at joints

transmission element
- with motion reduction ratio N,: 1

link

U
U v,

torque at torque at
motor side link side

one of the simplest applications of the
principle of virtual work:

P = umém — 1yl = P ém = N, here, ] = JT = N, (a scalar!)
u=N,u,
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