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Topics:
• Inverse differential kinematics Statics and force transformations

Readings:
• Siciliano: Sec. 3.5, 3.7-3.9
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Inversion of Differential Kinematics

• problems

• near a singularity of the Jacobian matrix (too high ሶ𝑞)

• for redundant robots (no standard “inverse” of a rectangular matrix)

in these cases, more robust inversion methods are needed

• find the joint velocity vector that realizes a desired task/  

end-effector velocity (“generalized” = linear and/or angular)

𝐽 square and

non-singular at 𝑞

ሶ𝑞 = 𝐽−1(𝑞)𝑣

generalized velocity

𝑣 = 𝐽(𝑞) ሶ𝑞
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Incremental Solution
I n c r e m e n t a l  s o l u t i o n  ( t o  i n v e r s e  k i n e m a t i c s  p r o b l e m s )

• joint velocity inversion can be used also to solve on-line and incrementally a 

“sequence” of inverse kinematics problems

• each problem differs by a small amount 𝑑𝑟 from previous one

direct kinematics

𝑟 = 𝑓𝑟(𝑞)

differential kinematics

(here with a square, analytic Jacobian)

𝑑𝑟 =
𝜕𝑓𝑟(𝑞)

𝜕𝑞
𝑑𝑞 = 𝐽𝑟(𝑞)𝑑𝑞

𝑟 ⟶ 𝑟 + 𝑑𝑟
then, solve the inverse  kinematics

problem

𝑞 = 𝑓𝑟
−1(𝑟 + 𝑑𝑟)𝑟 + 𝑑𝑟 = 𝑓𝑟(𝑞)

first, increment the  

desired task variables

𝑞 ⟶ 𝑞 + 𝑑𝑞
then, increment the  

original joint variables

first, solve the inverse  differential 

kinematics problem

𝑑𝑞 = 𝐽𝑟
−1(𝑞)𝑑𝑟
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Behavior Near a Singularity

• problems arise only when commanding joint 

motion by inversion of a given Cartesian  

motion task

• here, a linear Cartesian trajectory for a planar 

2R robot

• there is a sudden increase of the 

displacement/velocity of the first joint near 𝜃2
= −𝜋 (end- effector close to the origin),  

despite the required Cartesian displacement is

small
motion  

start

𝑣
constant

ሶ𝑞 = 𝐽−1 𝑞 𝑣
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Simulation
S i m u l a t i o n  r e s u l t s

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

a line from right to left, at 𝛼 = 170° angle with 𝑥-axis,  

executed at constant speed 𝑣 = 0.6 𝑚/𝑠 for 𝑇 = 6 𝑠

start

end regular case

stroboscopic  

view

ሶ𝑞 = 𝐽−1 𝑞 𝑣
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Simulation
S i m u l a t i o n  r e s u l t s

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

error due  only 

to  numerical  

integration  

(10−10)

distance to  

singularity by  

the minimum  

singular value 

𝜎𝑚𝑖𝑛 = 𝜎2 > 0
of Jacobian 𝐽

𝑞1

𝑞2

path at α = 170°

regular case
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Simulation
S i m u l a t i o n  r e s u l t s

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

a line from right to left, at 𝛼 = 178° angle with 𝑥-axis,  

executed at constant speed 𝑣 = 0.6 𝑚/𝑠 for 𝑇 = 6 𝑠

close to 

singular case

stroboscopic  

view

ሶ𝑞 = 𝐽−1 𝑞 𝑣

start

end
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

path at

𝛼 = 178°

close to  

singular  

case

𝑞1

𝑞
2

still very  small, 

but  increased  

numerical  

integration  

error(2×10−9)

large

peak

of ሶ𝑞1
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

start
end

a line from right to left, at 𝛼 = 178° angle with 𝑥-axis,  

executed at constant speed 𝑣 = 0.6 𝑚/𝑠 for 𝑇 = 6 𝑠

close to singular case with joint velocity 

saturation at 𝑉𝑖 = 300°/𝑠

stroboscopic  

view

ሶ𝑞 = 𝐽−1 𝑞 𝑣
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

path at

𝛼 = 178°

close to  

singular  

case

𝑞1

𝑞2

actual  position  

error!!  (6 cm)

saturated  value  

of 𝑞1
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Damped Least Squares Method

• inversion of differential kinematics as unconstrained optimization problem

• function 𝐻 = weighted sum of two objectives (norm of joint velocity and error norm on 

achieved end-effector velocity) to be minimized

• 𝐽𝐷𝐿𝑆can be used for both cases: 𝑚 = 𝑛 (square) and 𝑚 < 𝑛 (redundant)

• 𝜆 = 0 when “far enough” from singularities: 𝐽𝐷𝐿𝑆 = 𝐽T (𝐽𝐽T)−1= 𝐽−1 or 𝐽#

• with 𝜆 > 0, there is a (vector) 𝑒𝑟𝑟𝑜𝑟 𝜖 (= 𝑣 − 𝐽 ሶ𝑞) in executing the desired end-effector 

velocity 𝑣 (check that 𝜖 = 𝜆(𝜆𝐼𝑚 + (𝐽𝐽𝑇)−1𝑣), but the joint velocities are always reduced

(“damped”)

two equivalent expressions, but the second is more convenient in redundant robots!

min ሶ𝑞 𝐻 =
𝜆

2
‖ ሶ𝑞‖2 +

1

2
‖𝐽 ሶ𝑞 − 𝑣‖2, 𝜆 ≥ 0

ሶ𝑞 = 𝜆𝐼𝑛 + 𝐽𝑇𝐽 −1𝐽𝑇𝑣 = 𝐽𝑇 𝜆𝐼𝑚 + 𝐽𝐽𝑇 −1𝑣 = 𝐽𝐷𝐿𝑆𝑣

Bruno: 3.5.1
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )
a comparison of inverse and damped inverse Jacobian 

methods even closer to singular case

startend

a line from right to left, at 𝛼 = 179.5° angle with 𝑥-axis,  

executed at constant speed 𝑣 = 0.6 𝑚/𝑠 for 𝑇 = 6 𝑠

some position  

error imported.

startend

ሶ𝑞 = 𝐽−1 𝑞 𝑣
ሶ𝑞 = 𝐽𝐷𝐿𝑆 𝑞 𝑣
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

here, a very fast  

reconfiguration of  first 

joint ...

a completely different inverse solution,  

around/after crossing the region

close to the folded singularity

path at

𝛼 = 179.5°

stroboscopic 

views

ሶ𝑞 = 𝐽−1 𝑞 𝑣 ሶ𝑞 = 𝐽𝐷𝐿𝑆 𝑞 𝑣
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

extremely large  

peak velocity  

of first joint!!

smoother  

joint motion  

with limited

joint velocities!

ሶ𝑞 = 𝐽−1 𝑞 𝑣 ሶ𝑞 = 𝐽𝐷𝐿𝑆 𝑞 𝑣
𝑞1

𝑞2
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Simulation
S i m u l a t i o n  r e s u l t s  

( p l a n a r  2 R  r o b o t  i n  s t r a i g h t  l i n e  C a r t e s i a n  m o t i o n )

minimum  singular 

value of𝐽𝐽𝑇and

𝜆𝐼 + 𝐽𝐽𝑇

error (25 mm)  when 

crossing  the 

singularity,  later 

recovered by  a 

feedback action  (𝑣
⇒ 𝑣 + 𝐾𝑝𝑒𝑝

with 𝑒𝑝 = 𝑝𝑑 − 𝑝(𝑞))

increased  

numerical  

integration  error

(3 × 10−8)

they differ only  

when damping  

factor is non-zero

damping factor

𝜆 is chosen  non-zero  

only close to  singularity!

ሶ𝑞 = 𝐽−1 𝑞 𝑣 ሶ𝑞 = 𝐽𝐷𝐿𝑆 𝑞 𝑣
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Pseudoinverse Method
a constrained optimization (minimum norm) problem

solution
pseudoinverse of 𝐽

▪if 𝑣 ∈ ℛ (𝐽) , the differential constraint is satisfied (𝑣 is feasible)

▪else, 𝐽 ሶ𝑞 = 𝐽𝐽
#
𝑣 = 𝑣⊥, where 𝑣 ⊥minimizes the error 𝐽 ሶ𝑞 − 𝑣

orthogonal projection of 𝑣 on ℛ(𝐽)

ሶ𝑞 = 𝐽#𝜈

min ሶ𝑞 𝐻 =
1

2
‖ ሶ𝑞‖2

𝐽 ሶ𝑞 = 𝑣such that
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Pseudoinverse Method
D e f i n i t i o n  o f  t h e  p s e u d o i n v e r s e

• explicit expressions for full rank cases

• if 𝜌(𝐽) = 𝑚 = 𝑛: 𝐽# = 𝐽−1

• if 𝜌 𝐽 = 𝑚 < 𝑛: 𝐽
#
= 𝐽T (𝐽𝐽𝑇)−1

• if 𝜌 𝐽 = 𝑛 < 𝑚: 𝐽
#
= (𝐽𝑇𝐽)−1𝐽T

• 𝐽
#

always exists and is computed in general numerically  using the 

SVD = Singular Value Decomposition of 𝐽

• e.g., with the MATLAB function pinv (which uses in turn svd)

given 𝐽, is the unique matrix 𝐽
#

satisfying the four relationships

𝐽𝐽#𝐽 = 𝐽 𝐽#𝐽𝐽# = 𝐽#

𝐽𝐽#
𝑇
= 𝐽𝐽# 𝐽#𝐽

𝑇
= 𝐽#𝐽
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Numerical Example

Jacobian of 2R robot with 𝑙1 = 𝑙2 = 1 at 𝑞2 = 0 (rank 𝜌(𝐽) = 1)

• at 𝑞1 = 𝜋/6: for 𝑣 = −0.5 0 𝑇 𝑚

𝑠
, ሶ𝑞 = 𝐽#𝑣 = 0.1 0.05 𝑇 𝑟𝑎𝑑

𝑠
⇒ 𝑣⊥ = 𝐽𝐽

#
𝑣 = −1/8 3/8

𝑇 𝑚

𝑠

• at 𝑞1 = 𝜋/2: 𝐽 =
−2 1
0 0

⇒
−0.4 0
−0.2 0

; now the same 𝑣 ∈ ℛ 𝐽 , ሶ𝑞 = 0.2 0.1 𝑇 ⇒ 𝑣⊥ = 𝑣 (no error!)

ሶ𝑞 = 𝐽
#
𝑣 is the minimum norm joint velocity vector that realizes exactly 𝑣 ⊥

𝐽 =
−2𝑠1 −𝑠1
2𝑐1 𝑐1

𝐽# =
1

5

−2𝑠1 2𝑐1
−𝑠1 𝑐1

𝐽𝐽# =
𝑠1
2 −𝑠1𝑐1

−𝑠1𝑐1 𝑐1
2 𝑥

𝑦

𝑙1 𝑙2
𝑞1

𝒩(𝐽𝑇)
ℛ(𝐽)

𝑣 ⊥

Forbidden velocity
direction

feasible velocity direction

𝑣
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General Solution for 𝒎<𝒏

ALL solutions of the inverse differential kinematics problem can be written as

Slightly modified constrained optimization problem (“biased” toward the joint velocity 𝜉, 
exploring redundancy, ie, chosen to avoid obstacles, joint limits, etc.)

verification of the actual task velocity that is being obtained

projection matrix of 𝜉 to 𝒩(𝐽) – aka, “null space method”

any joint  

velocity...
ሶ𝑞 = 𝐽#𝑣 + 𝐼 − 𝐽#𝐽 𝜉

min ሶ𝑞 𝐻 =
1

2
‖ ሶ𝑞 − 𝜉‖2 such that 𝐽 ሶ𝑞 = 𝑣

𝑣actual = 𝐽 ሶ𝑞 = 𝐽 𝐽#𝑣 + 𝐼 − 𝐽#𝐽 𝜉 = 𝐽𝐽#𝑣 + 𝐽(𝐼 − 𝐽#𝐽)𝜉 = 𝐽𝐽#(𝐽𝑤) = 𝐽𝑤 = 𝑣

if 𝑣 ∈ ℛ (𝐽) ⇒ 𝑣 = 𝐽𝑤 for some 𝑤 ∈ ℝ𝑛

Bruno: Eqt. 3.54
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Generalized Forces and Torques

• 𝜏 = forces/torques exerted by the motors at the robot joints

• 𝐹 = equivalent forces/torques exerted by the robot end-effector

• 𝐹𝑒 = forces/torques exerted by the environment at the end-effector

• principle of action and reaction: 𝐹𝑒 = −𝐹

reaction from environment is equal and opposite to the robot action on it

𝐹
•

𝜏𝑖

𝜏2

𝜏3
𝜏1

𝐹𝑒

𝜏𝑛

“generalized” vectors: may contain  

linear and/or angular components

convention: generalized forces are

positive when applied on the robot

environment
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Transformation of Forces 
T r a n s f o r m a t i o n  o f  f o r c e s  - S t a t i c s

𝐹
•

𝜏𝑖

𝜏2

𝜏3
𝜏1

𝐹𝑒

𝜏𝑛
environment

• what is the transformation between 𝐹 at robot end-effector and 𝜏 at joints?

in static equilibrium conditions (i.e., no motion):

• what 𝐹 will be exerted on environment by a 𝜏 applied at the robot joints?

• what 𝜏 at the joints will balance a 𝐹𝑒(= −𝐹) exerted by the environment?

in a given configuration

all equivalent formulations
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Virtual Displacements and Works
V i r t u a l  d i s p l a c e m e n t s  a n d  w o r k s

the virtual work is the work done by all forces/torques  

acting on the system for a given virtual displacement

• without kinetic energy variation (zero acceleration)

• without dissipative effects (zero velocity)

𝑑𝑞

𝑑𝑞2
𝑑𝑞3 𝑑𝑞𝑖

𝑑𝑞𝑛
𝑑𝑝
𝜔𝑑𝑡

= 𝐽𝑑𝑞

infinitesimal 𝑑𝑞 (or “virtual” 𝛿𝑞, i.e., satisfying  all possible constraints 

imposed on the system)  displacements at an equilibrium
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Principle of Virtual Work
P r i n c i p l e  o f  v i r t u a l  w o r k

the sum of the virtual works done by all  

forces/torques acting on the system = 0

principle of  

virtual work

𝜏 = 𝐽T (𝑞)𝐹

𝜏1𝑑𝑞1

𝐹𝑒 = −𝐹

𝜏1𝑑𝑞1
𝜏1𝑑𝑞1

𝜏1𝑑𝑞1

𝜏1𝑑𝑞1

−𝐹𝑇
𝑑𝑝
𝜔𝑑𝑡

= −𝐹𝑇𝐽𝑑𝑞

𝜏𝑇𝑑𝑞 − 𝐹𝑇
𝑑𝑝
𝜔𝑑𝑡

= 𝜏𝑇𝑑𝑞 − 𝐹𝑇𝐽𝑑𝑞 = 0 ∀𝑑𝑞
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Duality
D u a l i t y  b e t w e e n  v e l o c i t y  a n d  f o r c e

velocity 𝑞
(or displacement 𝑑𝑞)  

in the joint space

generalized velocity 𝑣(or 

e-e displacement 
𝑑𝑝
𝜔𝑑𝑡

in 

the Cartesian space

generalized forces 𝐹
at the Cartesian e-e

forces/torques 𝜏
at the joints

𝐽T(𝑞)

the singular configurations  for the velocity map are 

the same as those for the force map 𝜌 𝐽 = 𝜌(𝐽 )

𝐽(𝑞)
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Dual Subspaces of Velocity and Force 
D u a l  s u b s p a c e s  o f  v e l o c i t y  a n d  f o r c e  ( s u m m a r y  o f  d e fi n i t i o n s )

ℛ(𝐽) = 𝑣 ∈ ℝ𝑚: ∃ ሶ𝑞 ∈ ℝ𝑛, 𝐽 ሶ𝑞 = 𝑣

𝒩 𝐽𝑇 = 𝐹 ∈ ℝ𝑚: 𝐽𝑇𝐹 = 0

ℛ(𝐽) +𝒩 𝐽𝑇 = ℝ𝑚

ℛ 𝐽𝑇 = 𝜏 ∈ ℝ𝑛: ∃𝐹 ∈ ℝ𝑚, 𝐽𝑇𝐹 = 𝜏

𝒩(𝐽) = ሶ𝑞 ∈ ℝ𝑛: 𝐽 ሶ𝑞 = 0

ℛ 𝐽𝑇 +𝒩(𝐽) = ℝ𝑛
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Mobility Analysis 

case 1)
𝐽 =

−1 −1 0
0 −1 −1

𝐽𝑇 =
−1 0
−1 −1
0 −1

𝜌(𝐽) = 2 = 𝑚 𝜌 𝐽𝑇 = 𝜌(𝐽) = 2

ℛ(𝐽) =
1
0
,
0
1

= ℝ2 𝒩(𝐽) =
1
−1
1

dim 𝒩(𝐽) = 1 = 𝑛 − 𝜌(𝐽) = 𝑛 −𝑚

ℛ(𝐽) +𝒩 𝐽𝑇 = ℝ2

ℛ 𝐽𝑇 +𝒩(𝐽) = ℝ3

ℛ 𝐽𝑇 =
1
−1
0

,
0
−1
1

dim ℛ 𝐽𝑇 = 2 = 𝑚𝒩 𝐽𝑇 = 0

𝑞 = (0, 𝜋/2, 𝜋/2)

M o b i l i t y  a n a l y s i s  f o r  a  p l a n a r  3 R  r o b o t

If full rank

If null space

full rank, non-singular case
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Mobility Analysis 
case 2)

forbidden!

ℛ(𝐽) =
1
0

𝐽𝑇 =
−1 0
0 0
1 0

𝑞 = (𝜋/2,0, 𝜋)

dim ℛ(𝐽) = 1 = 𝜌(𝐽)

ℛ 𝐽𝑇 =
−1
0
1

𝜌(𝐽) = 1 < 𝑚

𝐽 =
−1 0 1
0 0 0

𝜌 𝐽𝑇 = 𝜌(𝐽) = 1

𝒩 𝐽𝑇 =
0
1

dim 𝒩(𝐽) = 2 = 𝑛 − 𝜌(𝐽)

ℛ(𝐽) +𝒩 𝐽𝑇 = ℝ2

ℛ 𝐽𝑇 +𝒩(𝐽) = ℝ3

dim ℛ 𝐽𝑇 = 1 = 𝑚 − 𝜌(𝐽)

𝒩(𝐽) =
0
1
0
,
1
0
1

dim 𝒩 𝐽𝑇 = 1 = 𝑛 − 𝜌(𝐽)

M o b i l i t y  a n a l y s i s  f o r  a  p l a n a r  3 R  r o b o t
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Velocity Manipulability
V e l o c i t y  m a n i p u l a b i l i t y

• in a given configuration, evaluate how effective is the transformation between joint 

and end-effector velocities

• “how easily” can the end-effector be moved in various directions of the task space

• equivalently, “how far” is the robot from a singular condition

• we consider all end-effector velocities that can be obtained by choosing joint velocity 

vectors of unit norm

task velocity  

manipulability ellipsoid

note: the “core” matrix of the ellipsoid  equation 𝑣T𝐴−1 𝑣 = 𝐼 is the matrix 𝐴!

𝑣T𝐽
#T𝐽

#
𝑣 = 1ሶ𝑞𝑇 ሶ𝑞 = 1

(𝐽𝐽𝑇)−1

if 𝜌 𝐽 = 𝑚, full rank  

𝐽
#
= 𝐽T (𝐽𝐽𝑇)−1
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Velocity Manipulability
M a n i p u l a b i l i t y  e l l i p s o i d  ( i n  v e l o c i t y )

direction of principal axes

eigenvectors associated to 𝜆i

in a singularity, the ellipsoid loses a

dimension

(for 𝑚 = 2, it becomes a segment)

planar 2R arm with unitary links

proportional to the volume of the  

ellipsoid (for 𝑚 = 2, to its area)

length of principal (semi-) axes

singular values 𝜎i of 𝐽 (in its SVD)

manipulability ellipsoid

manipulability measure

scale of

ellipsoid
10

1 20

1

1

10 2

0

0

𝜎𝑖(𝐽) = 𝜆𝑖 𝐽𝐽
𝑇

𝑤 = det 𝐽𝐽𝑇 =ෑ

𝑖=1

𝑚

𝜎𝑖 ≥ 0
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Manipulability Measure
M a n i p u l a b i l i t y  m e a s u r e

planar 2R arm (with 𝑙1 = 𝑙2 = 1):

𝜃2 𝑟 𝑟

max at 𝜃2 = 𝜋/2 max at 𝑟 = 2

𝜎1(𝐽)

𝜎2(𝐽)

no full isotropy here,  since it 

is always 𝜎1 ≠ 𝜎2

best posture for manipulation  

(similar to a human arm!)

det 𝐽𝐽𝑇 = det( 𝐽) ⋅ det 𝐽𝑇 = | det 𝐽 | =ෑ

𝑖=1

2

𝜎𝑖
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Force Manipulability

• in a given configuration, evaluate how effective is the  transformation between joint 

torques and end-effector forces

• “how easily” can the end-effector apply generalized forces (or balance  applied ones) 

in the various directions of the task space

• in singular configurations, there are directions in the task space where  external forces 

are balanced without the need of any joint torque

• we consider all end-effector forces that can be applied (or balanced) by choosing joint 

torque vectors of unit norm

task force  

manipulability ellipsoid

same directions of the principal  

axes of the velocity ellipsoid, but  

with semi-axes of inverse lengths

𝜏𝑇𝜏 = 1 𝐹𝑇𝐽𝐽𝑇𝐹 = 1
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Velocity and Force Manipulability
Ve l o c i t y  a n d  f o r c e  m a n i p u l a b i l i t y

( d u a l  c o m p a r i s o n  o f  a c t u a t i o n  v s .  c o n t r o l )
planar 2R arm with unitary links

note:  velocity and

force ellipsoids have  

a different scale  for 

a better view

Cartesian actuation task (joint-to-task high transformation ratio):  preferred velocity

(or force) directions are those where the ellipsoid stretches

Cartesian control task (low transformation ratio = high resolution): preferred velocity (or 

force) directions are those where the ellipsoid shrinks

𝑎𝑟𝑒𝑎 ∝ det 𝐽𝐽𝑇 = 𝜎1(𝐽) ∙ 𝜎2(𝐽) 𝑎𝑟𝑒𝑎 ∝ det 𝐽𝐽𝑇 −1 =
1

𝜎1(𝐽)
∙

1

𝜎2(𝐽)
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Velocity and Force Transformations
V e l o c i t y  a n d  f o r c e  t r a n s f o r m a t i o n s

• same reasoning made for relating end-effector to joint forces/torques (virtual work

principle + static equilibrium) used also transforming forces and torques applied at

different places of a rigid body and/or expressed in different reference frames

transformation among generalized velocities

for skew-symmetric matrices, it is: −𝑆T 𝑟 = 𝑆(𝑟)

transformation among generalized forces

𝐴𝑣𝐴
𝐴𝜔

=
𝐴𝑅𝐵 − 𝐴𝑅𝐵𝑆

𝐵r𝐵𝐴
0 𝐴𝑅𝐵

𝐵𝑣𝐵
𝐵𝜔

= 𝐽𝐵𝐴
𝐵𝑣𝐵
𝐵𝜔

𝐵𝑓𝐵
𝐵𝑚

= 𝐽𝐵𝐴
𝑇

𝐴𝑓𝐴
𝐴𝑚

=
𝐵𝑅𝐴 0

−𝑆𝑇 𝐵𝑟𝐵𝐴
𝐵𝑅𝐴

𝐵𝑅𝐴

𝐴𝑓𝐴
𝐴𝑚



34

Example 1
E x a m p l e :  6 D  f o r c e / t o r q u e  s e n s o r

frame of measure for the

forces/torques  (attached to the 

wrist sensor)

frame of interest for evaluating  

forces/torques in a task  with 

environment contact

R𝐹𝐵

R𝐹𝐴

𝑓

𝑚𝐽𝐵𝐴
𝑇

𝐽𝐵𝐴
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Example 2
E x a m p l e :  G e a r  r e d u c t i o n  a t  j o i n t s

one of the simplest applications of the 

principle of virtual work:

𝑃𝑚 = 𝑢𝑚
ሶ𝜃𝑚 = 𝑢 ሶ𝜃 = 𝑃 here, 𝐽 = 𝐽T = 𝑁𝑟 (a scalar!)ሶ𝜃𝑚 = 𝑁𝑟

ሶ𝜃
𝑢 = 𝑁𝑟𝑢𝑚

transmission element

with motion reduction ratio 𝑁𝑟: 1

motor

torque at

motor side

torque at  

link side

𝑢𝑚
ሶ𝜃𝑚 𝑢ሶ𝜃

link
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