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Introduction

Dynamic modeling of manipulators
Direct and inverse dynamics
Euler-Lagrange formulation
Newton-Euler formulation
properties of the dynamic model
identification of dynamic parameters
iInclusion of flexibility at the joints
Inclusion of geometric constraints

all on fixed-base
robot manipulators




Dynamic model

Dynamic model

provides the relation between
generalized forces u(t) acting on the robot

robot motion, I.e.,
assumed configurations g(t) overtime

Ujoints (t) Ucartesian (t)

a system of 274 order
differential equations

N Cp(q'q' q) — U




direct relation

)

Un

Initial state att =0
experimental solution

apply torques/forces with motors and measure joint variables with encoders
(with control sampling step T.)

solution by simulation <——— given @(q,q,4) = u
use dynamic model and integrate numerically the differential equations
(with simulation sampling step T; < T,)




Inverse Dynamics

Inverse relation

4a(t), (), 4a(t) ) .o

desired motion required input
fort € |0, T]

fort € [0, T]

experimental solution

repeated motion trials of direct dynamics using u,(t), with iterative learning of
nominal torques updated on trial k + 1 based on the error in [0, T] measured In

trial k: limg, o up(t) = uy(t)

analytic solution <—— qgiven @(q,9,9) = u
use dynamic model and compute algebraically the values u,(t) at every time

Instant t




g}

Euler-Lagrange method ~._ Newton-Euler method
(energy-based approach) << (balance of forces/torques)

. dynamic equations in - dynamic equations in
symbolic/closed form numeric/recursive form
best for study of dynamic . best for implementation of
properties and analysis of control schemes (inverse
control schemes dynamics in real time)

many other formal methods based on basic principles in mechanics
are available for the derivation of the robot dynamic model:

principle of d'Alembert, of Hamilton, of virtual works, ...
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Euler-Lagrange Method

energy-based approach

basic assumption: the N links In motion are considered as rigid bodies, e.qg., typical industrial arm
(+ nowadays, Include also concentrated elasticity at the joints, e.g., KUKA liwa collaborative arm)

generalized coordinates (e.g., joint variables, but not only!)

Lagrangian N . 0 rinciple of least action of Hamilton
7 : L(q’ Q) o T(q’ Q) - U(q) . Erincigle of virtual works

Kinetic energy — potential energy

Euler-Lagrange d dL
equations dt 0q;

non-conservative (external or dissipative) generalized forces
performing work on g;




Euler-Lagrange Method

Dynamic of an actuated pendulum
(a first example)

b,
viscous friction \m \ Img 6, =n.0 # 0. =n.0+ 6,
- d Tml m —
l n.=1 T=1rlm )
b, ),
q=60  (orq=0y)
«;{H‘m motor " (... around the Il axis
fransmission T=T,+T, through its base)
(with reduction gear) l
7,0 1 - 1 :
Ty, ==1.05 T) = =(I; + md*)6*
2 2
Il FT T T
motor inertia (around link inertia
MYo ItS spinning axis) (around the z-axis through its
center of mass...)
o 1 , TR S
kinetic energy T==U,+md*+ [, ,n>)0°==1I0

2 2




Euler-Lagrange Method

Dynamics of an actuated pendulum (cont)

y Tm;gm
U = Uy — mgod cos potential energy
1 .,
L =T—U=§IH + mgyd cosf — U,
aL_m. daL_m. L Jsin
00 dt 9 a9~ Jo%

px = lsin:H Dy = [cosO -6 :]xg

u=n,t, —b0 —n.b,0,, +JLF. =n,t,, — (b, + b,,n?)6 + L cos 6 F,

applied or dissipated torques equivalent joint torque due sum” of
on motor side are multiplied by n, o force F, applied to the tip ~ NON-conservative
when moved to the link side at point p, torques




Euler-Lagrange Method

Dynamics of an actuated pendulum (cont)

dividing by n, and substituting 8 = 6,,,/n,

0, bl [
—9 + godsm—:’rm 5>+ by 6, + —cos— - E,

n, nr n, n,

dynamic model ing = 6,,




Direct & Inverse Dynamics

10 + mgyd sin@ = n,t,, — (b; + b,,n2)6 + lcos O - F,

. direct relation | . Inverse relation
(™ N m— (0 - Y 4a(6).4a(®). da(t) R - 0
u(t) 0
Un

required input

i i desired motion
resulting motion fort € [0, T]

input for t € [0,T] == q(0),4(0) fort € [0, T]

initial state att =0




Kinetic Energy

Kinetic energy of a rigid body

mass density

mass m = f (x,y,z)dxdydz = f dm
B

position of center of ]

mass (CoM) T m ram

when all vectors are referred to a body frame RF.
attached to the CoM, then

rC=O:>frdm=O
B

. 1
Kinetic energy T — Ef vT (x,y,z)v(x,y,z)dm
B

(fundamental) kinematic

relation for a rigid body V =Vc+ @ X1 =v,+S5(w)r
t
skew-symmetric matrix




Kinetic Energy

Kinetic energy of a rigid body (cont)

1
— _ T sum of elements on
T = ZL(VC + S(w)r)’ (v, + S(w)r)dm the diagonal of a
1 1 matrix
= Ef vl v.dm + f vl S(w)rdm + EfrT T'w)S(w)rdm
i l g 7 «—— a!'b = trace{ab’}
= 1mvTv 1
g e = Ef trace{S(w)rr’ ST (w)}dm
B

=vlS f dm =0 1 f “

veS(@) Br m = —trace{S(w) frerm ST (w)¢

. L 2 L B )

translational kinetic 1
energy ((I';JO:\;:; mass = Etrace{S (w)].ST(w)}
at Co .
N - N _
o — —wTl.w Euler matrix
Konig theorem | 2~ ¢
rotational
kinetic energy (of body inertia matrix

(around the CoM)

the whole body)




Inertia Matrices

Examples of body inertia matrices
(homogeneous bodies of mass m, with axes of symmetry)

1 2 2 \
Em(b +c?) parallelepiped
1 with sides
= —m(a? + c?) a (length/height),
I, 12 1 b and c (base)
- 2 2
\ 1 2m(a + b*) /
1
Em(az + b*) \ empty cylinder
1 I =1 with length A, and
—m(3(a? + b?) + h?) 2z VY externallinternal
12 radius a and b
IZZ
2
Z Z o= h (parallel) axis ... Its generalization:
zz = lzz TM 2 translation theorem changes on body inertia
matrix due to a pure
Steiner theorem translation r of
. I =1.+ m(rir - Eayz — rrl) = I. + mST(r)S(r) the reference frame
a.k.a. parallel axis theorem A '

body inertia matrix relative to the CoM identity matrix




Robot Kinetic Energy

Robot kinetic energy

N
T — ET" 4= N rigid bodies (+ fixed base)
=1

l

T; =T(q;,q;;j <i) <=M open kinematic chain

Konig theorem
1 T 1 T
li = 5mMiveiVei + 5 0 Leio;

o

apsolute velocity of apsolute angular
the center of mass velocity of whole

i — th link (body) CoM
of the robot ( ) nocy




Robot Kinetic Energy

Kinetic energy of a robot link
1 T 1 T
li = 5mMiveiVei + 5 0 Lei0;

w;, [; should be expressed in the same reference frame,
but the product w,’I;w;is Invariant w.r.t. any chosen frame

In frame RF . attached to (the center of mass of) link i

j(y2 + z%)dm —fxydm —fxzdm

. = j(x2 + z%)dm — jy zdm

1

constant!




Robot Kinetic Energy

Dependence of T from q and g

v .
W; Wi cl
linki — 1
an
link N
.
10 0
Vci=]Li(CI)5I=(1 -+ 10 0]g, 3Trows
0 0
y,
(partial) Jacobians
typically expresse in RF, ) ) .
a)i=]Ai(q)c'1=(1 e | 0 O)C[ > BrOWS
0 0




Robot Kinetic Energy

Final expression of T

N
1
I = Ei(mchTchi + wiTlciwi)
i=1

N
=" Zlmu[xq)m(q)+1£i<q>@1m<q> g

L constant If w; IS

expressed in RF; else

°I.:(q) = °Ri(q)'1;"R] (q)

robot (generalized) inertia matrix
=Ssymmetric
=positive definite, Vg = always invertible




Robot Potential Energy

Robot potential energy

assumption: GRAVITY contribution only
N
u=Yu,  4=m N rigid bodies (+ fixed base)

U; =U;(q;;j <i) 4=m  open kinematic chain
—

_ T
Ui =—m;g 1y

7\ _
’ typically

_[ gravity acceleration position of the center |

vector of mass of link i | expressed In

dependence on g RF
TO,Ci - | . |
( 1 ) —0 Al(ql)lAZ(qZ) oul 1Ai(qi) @ constant In RF;

NOTE: need to work with homogeneous coordinates




Summarizing

1 1
et eneray T = 24"M(@)q =5 ) my; (@)dd;
i,j positive definite
guadratic form
potential energy U = U(q)
Lagrangian L=T(q,q)—U(q)
Euler-Lagrange a ol oL =1
) ETCY — u =1,..,N
equations dtdq, 0qy &

|

non-conservative (active/dissipative) generalized forces
performing work on g, coordinate




Applying

Applying Euler-Lagrange equations
(the scalar derivation-see Appendix for vector format)

L(q,q) = 2’"” (9)q:q; — U(q)
d oL
8qk kaf 9j dt 0, ‘qf Z.‘

'

(dependences of
elements on g aCIk
are not shown)

LINEAR terms in ACCELERATION g

RS

‘



Applying
= k-th dynamic equation ..
d dL  oJL
dt 0qy aClk_uk
My q; z > qi4; — Ug
,- — 2 0qy dq,
exchanging

‘mute” indices i, j
Omij
dq,

)Qﬂj+”'

Christoffel symbols

Crij = Ckji of the first kind




Applying

. and interpretation of dynamic terms

k=1,..,N
INERTIAL CENTRIFUGAL (i =) GRAVITY
terms and CORIOLIS (i # j) terms terms gx(q)

m,(g) = Inertia at joint k when joint k accelerates (m,, > 0!!)

my;(q) = Inertia “seen” at joint k when joint j accelerates

cr::(q) = coefficient of the centrifugal force at joint kK when joint i Is moving (ciii = 0, Vi)
crij(q) =coefficient of the Coriolis force at joint k when joint i and joint j are both moving




Robot Dynamic Model

Robot dynamic model
(in vector formats)

1. M(@q)q+c(q,q)+g(Qq)=u

c(q,q) = q'CL(q)q k — th component
of vector ¢
k — th column 1 [ OM, OM, g oM
of matrix M(q) | Cr(q) = = | ( ) \ symmetric
2\ 0q 0q 0qp r>:1atrix!
2.
NOTE: the model M(q)4 +5(q,.9)q +9(q) =u
IS In the form /
®(q,9,4) =u NOT a o
as expected symmetric matrix Ckij (9)4; b:/asc tic;rlnzsttlcarr]] i(;fuce!

In general




An Example — PR Robot

Dynamic model of a PR robot

U =constant = g(g) = 0

Y F=h+1 (on horizontal plane)

q1 — dcl
Pc1 = ( 0 ) - chﬂlz — Iéglljcl — CI%
0

1
1 . 1 . Ty = Emlq%
Iy = 5 M2Vc2Ve2 + 5 W2 [cr07

g1 — d¢y Sing, g 0

— dc2 COS g3 g Wo = O

0 q>
T _ 1 .2 dz .2 . Zd . . . 11 .2
2 = =my(q1 +dgq5 c2 SN gy G1q;) + c2,zz492

2




An Example — PR Robot

Dynamic model of a PR robot (cont)

M(q) _ ‘ m1 + mz _mzdcz Sin qZ - (q q)
—myd; Sin q; Ieo 57 + mzdgz c(q,q) = (C; (q' é[))
M, M . . .
.o ck(9,9) = 4" Ce(q)q
1({0M, | oM, oM
where Ck(q) = 2\"ag " \aq qr

1(/0 0 0 0 0 O
C1(q) = 2 ((O —Myd, COS qz) T (0 —My A, COS Clz) - (0 0)>
c1(q,q) = —madc; cos qz G5

(O —m,d ., COS qz) +( 0 0)
0 0 —Mydcp COSqy 0

1
C2(q) = 2 0 —m,d,, COS qz) =0

- (—mzdcz COS g5 0

c2(q,9) =0




An Example — PR Robot

Dynamic model of a PR robot (cont)

M(q)q +c(q,q9) = u
: g

MMy mMade sing (ql) . (—mzdcz cos q; c‘z%) _ (“1)
—Mydcp Singy  Iep 4, ‘;‘ mydz, ) \q2 0 U
NOTE: the m.. element (here, for N = 2) of M(q) Is always constant!

Q1: why does variable g, not appear in M(q)? ... this Is a general property!
Q2: why Coriolis terms are not present?
Q3: when applying a force u;, does the second joint accelerate? ... always?

Q4: what Is the expression of a factorization matrix S? ...Is It unique here?
Q5: which Is the configuration with “maximum inertia™?
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