

Advanced Robotics

ENGG5402 Spring 2023

Fei Chen

Topics:

• Dynamic model of robots: Newton-Euler approach

Readings:

• Siciliano: Sec. 7.5

Comparison of Two Methods

Approaches to dynamic modeling (reprise)

energy-based approach (Euler-Lagrange)

- multi-body robot seen as a whole
- constraint (internal) reaction forces between the links are automatically eliminated: in fact, they do not perform work
- closed-form (symbolic)
 equations are directly obtained
- best suited for study of dynamic properties and analysis of control schemes

Newton-Euler method (balance of forces/torques)

- dynamic equations written separately for each link/body
- inverse dynamics in real time
 - equations are evaluated in a numeric and recursive way
 - best for synthesis (=implementation) of model-based control schemes
- by elimination of reaction forces and backsubstitution of expressions, we still get closedform dynamic equations (identical to those of Euler-Lagrange!)

Vector in Moving Frame

Derivative of a vector in a moving frame

... from velocity to acceleration

$$^{0}v_{i} = ^{0}R_{i}^{i}v_{i}$$

$${}^{0}\dot{R}_{i} = S({}^{0}\omega_{i}){}^{0}R_{i}$$

$${}^{0}\dot{v}_{i} = {}^{0}a_{i} = {}^{0}R_{i}{}^{i}a_{i} = {}^{0}R_{i}{}^{i}\dot{v}_{i} + {}^{0}\dot{R}_{i}{}^{i}v_{i}$$

$$= {}^{0}R_{i}{}^{i}\dot{v}_{i} + {}^{0}\omega_{i} \times {}^{0}R_{i}{}^{i}v_{i} = {}^{0}R_{i}({}^{i}\dot{v}_{i} + {}^{i}\omega_{i} \times {}^{i}v_{i})$$

$${}^{i}a_{i} = {}^{i}\dot{v}_{i} + {}^{i}\omega_{i} \times {}^{i}v_{i}$$

Dynamics of a Rigid Body

Dynamics of a rigid body

- Newton dynamic equation
 - balance: sum of forces = variation of linear momentum

$$\sum f_i = \frac{d}{dt}(mv_c) = m\dot{v}_c$$

- Euler dynamic equation
 - balance: sum of torques = variation of angular momentum

$$\sum \mu_{i} = \frac{d}{dt}(I\omega) = I\dot{\omega} + \frac{d}{dt}(R\bar{I}R^{T})\omega = I\dot{\omega} + (\dot{R}\bar{I}R^{T} + R\bar{I}\dot{R}^{T})\omega$$

$$= I\dot{\omega} + S(\omega)R\bar{I}R^{T}\omega + R\bar{I}R^{T}S^{T}(\omega)\omega = I\dot{\omega} + \omega \times I\omega$$

- principle of action and reaction
 - forces/torques: applied by body i to body i + 1= - applied by body i + 1 to body i

Newton-Euler Equations

link i

Center of mass Vc_i C_i C_i Q_i axis i q_i q_i q_{i-1} q_{i-1}

FORCES

 f_i force applied from link i-1 on link i

 f_{i+1} force applied from link i on link i+1

 $m_i g$ gravity force

all vectors expressed in the same RF (better RF_i)

N Newton equation

$$f_i - f_{i-1} + m_i g = m_i a_{ci}$$

linear acceleration of C_i

Newton-Euler Equations

link i

TORQUES

- τ_i torque applied from link (i-1) on link i
- τ_{i+1} torque applied from link i on link (i + 1)
- $f_i \times r_{i-1,ci}$ torque due to f_i w.r.t. C_i
- $-f_{i+1} \times r_{i,ci}$ torque due to $-f_{i+1}$ w.r.t. C_i

gravity force gives no torque at C_i

Euler equation

$$\tau_i - \tau_{i+1} + f_i \times r_{i-1,ci} - f_{i+1} \times r_{i,ci} = I_i \dot{\omega}_i + \omega_i \times (I_i \omega_i)$$

all vectors expressed in the same RF (RF_i!!)

 $r_{i,ci}$

 Z_{i}

i axis i+1

 $(q_{i=1})$

 τ_{i+1}

 f_{i+1}

 ω_i

 $r_{i-1,ci}$

 z_{i-1}

axis i

 (q_i)

 au_i

angular acceleration of body i

Forward Recursion

Forward recursion (Computing velocities and accelerations)

- "moving frames" algorithm (as for velocities in Lagrange)
- wherever there is no leading superscript, it is the same as the subscript $\omega_i = {}^i \omega_i$
- for simplicity, only revolute joints (see textbook for the more general treatment)

<u>initializations</u>

$$\omega_{i} = {}^{i-1}R_{i}^{T}[\omega_{i-1} + \dot{q}_{i}z_{i-1}] \qquad \qquad \omega_{0}$$

$$\dot{\omega}_{i} = {}^{i-1}R_{i}^{T}[\dot{\omega}_{i-1} + \ddot{q}_{i}z_{i-1} - \dot{q}_{i}z_{i-1} \times (\omega_{i-1} + \dot{q}_{i}z_{i-1})]$$

$$= {}^{i-1}R_{i}^{T}[\dot{\omega}_{i-1} + \ddot{q}_{i}z_{i-1} + \dot{q}_{i}\omega_{i-1} \times z_{i-1}] \qquad \dot{\omega}_{0}$$

$$a_{i} = {}^{i-1}R_{i}^{T}a_{i-1} + \dot{\omega}_{i} \times {}^{i}r_{i-1,i} + \omega_{i} \times (\omega_{i} \times {}^{i}r_{i-1,i}) \qquad a_{0} - {}^{0}g$$

$$a_{ci} = a_{i} + \dot{\omega}_{i} \times r_{i,ci} + \omega_{i} \times (\omega_{i} \times r_{i,ci})$$

the gravity force term can be skipped in Newton equation, if added here

Backward Recursion

Backward recursion (Computing forces and torques)

from
$$N_i$$
 \longrightarrow to N_{i-1} eliminated, if inserted in forward recursion $(i=0)$

$$f_i = f_{i+1} + m_i (a_{ci} - ig) \qquad \longleftarrow f_{N+1} \qquad \downarrow \qquad \qquad \downarrow$$

$$\tau_i = \tau_{i+1} - f_i \times (r_{i-1,i} + r_{i,c_i}) + f_{i+1} \times r_{i,c_i} + I_i \dot{\omega}_i + \omega_i \times (I_i \omega_i)$$
from E_i to E_{i-1}

at each step of this recursion, we have two vector equations $(N_i + E_i)$ at the joint providing f_i and τ_i : these contain ALSO the reaction forces/torques at the joint axis ⇒ they should be "projected" next along/around this axis

$$u_i = \begin{cases} f_i^{Ti} z_{i-1} + \eta_i \dot{q}_i \\ \tau_i^{Ti} z_{i-1} + \eta_i \dot{q}_i \end{cases}$$
 for prismatic joint for revolute joint add here dissipative terms (here the prismatic point)

add here dissipative terms (here viscous friction only)

N scalar equations at the end

Comments

Comments on Newton-Euler method

- the previous forward/backward recursive formulas can be evaluated in symbolic or numeric form
 - symbolic
 - substituting expressions in a recursive way
 - at the end, a closed-form dynamic model is obtained, which is identical to the one obtained using Euler-Lagrange (or any other) method
 - there is no special convenience in using N-E in this way
 - numeric
 - substituting numeric values (numbers!) at each step
 - computational complexity of each step remains constant \Rightarrow grows in a linear fashion with the number N of joints (O(N))
 - strongly recommended for real-time use, especially when the number N
 of joints is large

Newton-Euler Algorithm

Newton-Euler algorithm

(efficient computational scheme for inverse dynamics)

Coding

Matlab (or C, Python) script

general routine $NE_{\alpha}(arg_1, arg_2, arg_3)$

- data file (of a specific robot)
 - number N and types $\sigma = \{0,1\}^N$ of joints (revolute/prismatic)
 - table of DH kinematic parameters
 - list of ALL dynamic parameters of the links (and of the motors)
- input
 - vector parameter $\alpha = \{ {}^0g, 0 \}$ (presence or absence of gravity)
 - three ordered vector arguments
 - typically, samples of joint position, velocity, acceleration taken from a desired trajectory
- output
 - generalized force u for the complete inverse dynamics
 - · ... or single terms of the dynamic model

Output

Examples of output

complete inverse dynamics

$$u = NE_{0g}(q_d, \dot{q}_d, \ddot{q}_d) = M(q_d)\ddot{q}_d + c(q_d, \dot{q}_d) + g(q_d) = u_d$$

gravity terms

$$u = NE \circ_g (q, 0, 0) = g(q)$$

centrifugal and Coriolis terms

$$u = NE_0(q, \dot{q}, 0) = c(q, \dot{q})$$

• i-th column of the inertia matrix

$$u = NE_0(q, 0, e_i) = M_i(q)$$

generalized momentum

$$u = NE_0(q, 0, \dot{q}) = M(q)\dot{q} = p$$

 $e_i = i - th$ column of identity matrix

Example

Inverse dynamics of a 2R planar robot

desired (smooth) joint motion: quintic polynomials for q_1 , q_2 with zero vel/acc boundary conditions from $(90^\circ, -180^\circ)$ to $(0^\circ, 90^\circ)$ in T = 1 s

0.9

Example

Inverse dynamics of a 2R planar robot

motion in vertical plane (under gravity)

both links are thin rods of uniform mass $m_1 = 10 \, kg$, $m_2 = 5 \, kg$

Example

Inverse dynamics of a 2R planar robot

torque contributions at the two joints for the desired motion

QSA