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Fei Chen

Topics:
• Dynamic model of robots: Newton-Euler approach

Readings:
• Siciliano: Sec. 7.5
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Comparison of Two Methods
A p p r o a c h e s  t o  d y n a m i c  m o d e l i n g  ( r e p r i s e )

• multi-body robot seen as a whole

• constraint (internal) reaction 

forces  between the links are 

automatically  eliminated: in fact, 

they do not  perform work

• closed-form (symbolic) 

equations  are directly obtained

• best suited for study of dynamic  

properties and analysis of 

control  schemes

• dynamic equations written  separately for 

each link/body

• inverse dynamics in real time

• equations are evaluated in a numeric and 

recursive way

• best for synthesis (=implementation) of 

model-based control schemes

• by elimination of reaction forces and back-

substitution of expressions, we still get closed-

form dynamic equations (identical to those of 

Euler-Lagrange!)

energy-based approach  

(Euler-Lagrange)
Newton-Euler method  (balance of

forces/torques)
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Vector in Moving Frame
D e r i v a t i v e  o f  a  v e c t o r  i n  a  m o v i n g  f r a m e

… from velocity to acceleration

0𝑣𝑖 =
0𝑅𝑖

𝑖𝑣𝑖
0 ሶ𝑅𝑖 = 𝑆 0𝜔𝑖

0𝑅𝑖

0 ሶ𝑣𝑖 =
0 𝑎𝑖 =

0𝑅𝑖
𝑖𝑎𝑖 =

0𝑅𝑖
𝑖 ሶ𝑣𝑖 +

0 ሶ𝑅𝑖
𝑖𝑣𝑖

= 0𝑅𝑖
𝑖 ሶ𝑣𝑖 +

0𝜔𝑖 ×
0𝑅𝑖

𝑖𝑣𝑖 =
0𝑅𝑖

𝑖 ሶ𝑣𝑖 +
𝑖𝜔𝑖 ×

𝑖 𝑣𝑖

𝑖𝑎𝑖 =
𝑖 ሶ𝑣𝑖 +

𝑖𝜔𝑖 ×
𝑖 𝑣𝑖

derivative of “unit” vector

𝑑𝑒𝑖
𝑑𝑡

= 𝜔𝑖 × 𝑒𝑖

𝜔𝑖

𝑒𝑖
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Dynamics of a Rigid Body
D y n a m i c s  o f  a  r i g i d  b o d y

• Newton dynamic equation

• balance: sum of forces = variation of linear momentum

• Euler dynamic equation

• balance: sum of torques = variation of angular momentum

• principle of action and reaction

• forces/torques: applied by body 𝑖 to body 𝑖 + 1

= − applied by body 𝑖 + 1 to body 𝑖

෍𝑓𝑖 =
𝑑

𝑑𝑡
𝑚𝑣𝑐 = 𝑚 ሶ𝑣𝑐

෍𝜇𝑖 =
𝑑

𝑑𝑡
(𝐼𝜔) = 𝐼 ሶ𝜔 +

𝑑

𝑑𝑡
𝑅 ሜ𝐼𝑅𝑇 𝜔 = 𝐼 ሶ𝜔 + ሶ𝑅 ሜ𝐼𝑅𝑇 + 𝑅 ሜ𝐼 ሶ𝑅𝑇 𝜔

= 𝐼 ሶ𝜔 + 𝑆(𝜔)𝑅 ሜ𝐼𝑅𝑇𝜔 + 𝑅 ሜ𝐼𝑅𝑇𝑆𝑇(𝜔)𝜔 = 𝐼 ሶ𝜔 + 𝜔 × 𝐼𝜔
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Newton-Euler Equations 

link 𝑖

𝑓𝑖 force applied  from 

link 𝑖 − 1 on link 𝑖

𝑓𝑖+1 force applied from 

link 𝑖 on link 𝑖 + 1

Newton equation

𝑚𝑖𝑔 gravity force

FORCES

N

linear acceleration of 𝐶𝑖

all vectors expressed in the same 𝑅𝐹
(better RF𝑖)

𝑓𝑖 − 𝑓𝑖−1 +𝑚𝑖𝑔 = 𝑚𝑖𝑎𝑐𝑖

axis 𝑖
(𝑞𝑖)

.

𝑚𝑖𝑔

Center of

mass

𝑓𝑖
axis 𝑖 + 1
(𝑞𝑖=1)

𝑪𝒊

𝑉𝑐𝒊

𝑂𝑖−1
𝑂𝑖

𝑧𝑖

𝑓𝑖
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Newton-Euler Equations 

link 𝑖

• 𝜏𝑖 torque applied from link (𝑖 − 1) on link 𝑖

• 𝜏𝑖+1torque applied  from link 𝑖 on link (𝑖 + 1)

Euler equation

TORQUES

gravity force gives  

no torque at 𝐶𝑖

angular acceleration of body 𝑖

E

all vectors expressed in  

the same 𝑅𝐹 (RF𝑖 !!)

axis 𝑖
(𝑞𝑖)

𝑓𝑖
axis 𝑖 + 1
(𝑞𝑖=1)

𝑪𝒊𝑂𝑖−1 𝑂𝑖

𝑧𝑖

𝜔𝑖

𝜏𝑖
𝜏𝑖+1

𝑟𝑖,𝑐𝑖𝑟𝑖−1,𝑐𝑖

𝑧𝑖−1

𝑓𝑖+1

𝜏𝑖 − 𝜏𝑖+1 + 𝑓𝑖 × 𝑟𝑖−1,𝑐𝑖 − 𝑓𝑖+1 × 𝑟𝑖,𝑐𝑖 = 𝐼𝑖 ሶ𝜔𝑖 +𝜔𝑖 × 𝐼𝑖𝜔𝑖

• 𝑓𝑖 × 𝑟𝑖−1,𝑐𝑖 torque due to 𝑓𝑖 w.r.t. 𝐶𝑖

• −𝑓𝑖+1 × 𝑟𝑖,𝑐𝑖 torque due to −𝑓𝑖+1 w.r.t. 𝐶𝑖
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Forward Recursion
F o r w a r d  r e c u r s i o n  ( Co m p u t i n g  v e l o c i t i e s  a n d  a c c e l e r a t i o n s )

• “moving frames” algorithm (as for velocities in Lagrange)

• wherever there is no leading superscript, it is the same as the subscript

• for simplicity, only revolute joints

(see textbook for the more general treatment)

the gravity force term can be skipped in Newton equation, if added here

initializations

𝜔𝑖 =
𝑖−1𝑅𝑖

𝑇 𝜔𝑖−1 + ሶ𝑞𝑖𝑧𝑖−1

ሶ𝜔𝑖 =
𝑖−1𝑅𝑖

𝑇 ሶ𝜔𝑖−1 + ሷ𝑞𝑖𝑧𝑖−1 − ሶ𝑞𝑖𝑧𝑖−1 × 𝜔𝑖−1 + ሶ𝑞𝑖𝑧𝑖−1

𝑎𝑖 =
𝑖−1𝑅𝑖

𝑇𝑎𝑖−1 + ሶ𝜔𝑖 ×
𝑖 𝑟𝑖−1,𝑖 + 𝜔𝑖 × 𝜔𝑖 ×

𝑖 𝑟𝑖−1,𝑖

𝑎𝑐𝑖 = 𝑎𝑖 + ሶ𝜔𝑖 × 𝑟𝑖,𝑐𝑖 + 𝜔𝑖 × 𝜔𝑖 × 𝑟𝑖,𝑐𝑖

= 𝑖−1𝑅𝑖
𝑇 ሶ𝜔𝑖−1 + ሷ𝑞𝑖𝑧𝑖−1 + ሶ𝑞𝑖𝜔𝑖−1 × 𝑧𝑖−1

AR

𝜔0

ሶ𝜔0

𝑎0 −
0𝑔

𝜔𝑖 =
𝑖𝜔𝑖
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Backward Recursion 
B a c k w a r d  r e c u r s i o n ( Co m p u t i n g  f o r c e s  a n d  t o r q u e s )

at each step of this recursion, we have two vector equations (𝑁𝑖 + 𝐸𝑖) at the  joint 

providing 𝑓𝑖 and 𝜏𝑖: these contain ALSO the reaction forces/torques

at the joint axis ⇒ they should be “projected” next along/around this axis

from 𝑁𝑖
to 𝑁𝑖−1

from 𝐸𝑖 to 𝐸𝑖−1

eliminated, if inserted  in 

forward recursion (𝑖 = 0)

generalized forces

(in rhs of Euler-Lagrange eqs)

for prismatic joint

for revolute joint

N scalar  

equations

at the end

FP

initializations

add here dissipative terms  (here 

viscous friction only)

𝑓𝑖 = 𝑓𝑖+1 +𝑚𝑖 𝑎𝑐𝑖 −
𝑖𝑔

𝜏𝑖 = 𝜏𝑖+1 − 𝑓𝑖 × 𝑟𝑖−1,𝑖 + 𝑟𝑖,𝑐𝑖 + 𝑓𝑖+1 × 𝑟𝑖,𝑐𝑖 + 𝐼𝑖 ሶ𝜔𝑖 + 𝜔𝑖 × 𝐼𝑖𝜔𝑖

𝑢𝑖 = ൝
𝑓𝑖
𝑇𝑖𝑧𝑖−1 + 𝜂𝑖 ሶ𝑞𝑖

𝜏𝑖
𝑇𝑖𝑧𝑖−1 + 𝜂𝑖 ሶ𝑞𝑖

𝑓𝑁+1
𝜏𝑁+1

F/TR
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Comments
C o m m e n t s  o n  N e w t o n - E u l e r  m e t h o d

• the previous forward/backward recursive formulas can  be evaluated in 

symbolic or numeric form

• symbolic

• substituting expressions in a recursive way

• at the end, a closed-form dynamic model is obtained, which  is identical 

to the one obtained using Euler-Lagrange (or any  other) method

• there is no special convenience in using N-E in this way

• numeric

• substituting numeric values (numbers!) at each step

• computational complexity of each step remains constant ⇒
grows in a linear fashion with the number 𝑁 of joints (𝑂(𝑁))

• strongly recommended for real-time use, especially when the  number 𝑁
of joints is large
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Newton-Euler Algorithm
N e w t o n - E u l e r  a l g o r i t h m

( e f fi c i e n t  c o m p u t a t i o n a l  s c h e m e  f o r  i n v e r s e  d y n a m i c s )

AR

AR

F/TR

F/TR

FP

FP

inputs outputs

(force/torque exchange  
environment/E-E)

(at robot base) numeric steps  
at every instant 𝑡

𝜔0, ሶ𝜔0, 𝑎0 −
0 𝑔

𝑞1
ሶ𝑞1
ሷ𝑞1

𝜔1, ሶ𝜔1, 𝑎1, 𝑎𝑐1

𝑓1, 𝜏1 𝑢1

𝑓2, 𝜏2

𝜔𝑁−1, ሶ𝜔𝑁−1, 𝑎𝑁−1, 𝑎𝑐𝑁−1

𝑞𝑁
ሶ𝑞𝑁
ሷ𝑞𝑁

𝜔𝑁, ሶ𝜔𝑁, 𝑎𝑁, 𝑎𝑐𝑁

𝑓𝑁, 𝜏𝑁 𝑢𝑁

𝑓𝑁+1, 𝜏𝑁+1
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Coding
M a t l a b ( o r  C ,  P y t h o n )  s c r i p t

general routine 𝑁𝐸𝛼(arg1, arg2, arg3)

• data file (of a specific robot)

• number 𝑁 and types 𝜎 = {0,1}𝑁 of joints (revolute/prismatic)

• table of DH kinematic parameters

• list of ALL dynamic parameters of the links (and of the motors)

• input

• vector parameter 𝛼 = { 0𝑔, 0} (presence or absence of gravity)

• three ordered vector arguments

• typically, samples of joint position, velocity, acceleration  taken 

from a desired trajectory

• output

• generalized force 𝑢 for the complete inverse dynamics

• … or single terms of the dynamic model
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Output
E x a m p l e s  o f  o u t p u t

• complete inverse dynamics

• gravity terms

• centrifugal and Coriolis terms

• 𝑖-th column of the inertia matrix

• generalized momentum

𝑒𝑖 = 𝑖 − 𝑡ℎ column of 

identity matrix

𝑢 = 𝑁𝐸 0𝑔 𝑞𝑑 , ሶ𝑞𝑑 , ሷ𝑞𝑑 = 𝑀 𝑞𝑑 ሷ𝑞𝑑 + 𝑐 𝑞𝑑 , ሶ𝑞𝑑 + 𝑔 𝑞𝑑 = 𝑢𝑑

𝑢 = 𝑁𝐸 0𝑔 𝑞, 0,0 = 𝑔 𝑞

𝑢 = 𝑁𝐸0(𝑞, ሶ𝑞, 0) = 𝑐(𝑞, ሶ𝑞)

𝑢 = 𝑁𝐸0 𝑞, 0, 𝑒𝑖 = 𝑀𝑖(𝑞)

𝑢 = 𝑁𝐸0(𝑞, 0, ሶ𝑞) = 𝑀(𝑞) ሶ𝑞 = 𝑝
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Example
I n v e r s e  d y n a m i c s  o f  a  2 R  p l a n a r  r o b o t

desired (smooth) joint motion:  quintic 

polynomials for 𝑞1, 𝑞2 with  zero 

vel/acc boundary conditions from 

(90
𝑜
, −180

𝑜
) to (0

𝑜
, 90

𝑜
) in 𝑇 = 1 𝑠

⇔
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Example
I n v e r s e  d y n a m i c s  o f  a  2 R  p l a n a r  r o b o t

motion in vertical plane (under gravity)

both links are thin rods of uniform mass 𝑚1 = 10 𝑘𝑔,𝑚2 = 5 𝑘𝑔

zero  initial 

torques = free

equilibrium

configuration

+
zero initial  

accelerations

final torques

𝑢1 ≠ 0, 𝑢2 = 0
balance  link

weights

in final (0
𝑜
, 90

𝑜
)  

configuration
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Example
I n v e r s e  d y n a m i c s  o f  a  2 R  p l a n a r  r o b o t

torque contributions at the two joints for the desired motion

= total,

= Coriolis/centrifugal,

= inertial

= gravitational



Q&A
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