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Topics:
 Dynamic model of robots: Newton-Euler approach

Readings:
 Siciliano: Sec. /.5




energy-based approach N
(Euler-Lagrange) ~—

multi-body robot seen as a whole

constraint (internal) reaction
forces between the links are
automatically eliminated: in fact,
they do not perform work

closed-form (symbolic)
equations are directly obtained

best suited for study of dynamic
properties and analysis of
control schemes

Approaches to dynamic modeling (reprise)

Newton-Euler method (balance of
forces/torques)

dynamic equations written separately for
each link/body

iInverse dynamics in real time

eguations are evaluated in a numeric and
recursive way

best for synthesis (=implementation) of
model-based control schemes

by elimination of reaction forces and back-
substitution of expressions, we still get closed-
form dynamic equations (identical to those of
Euler-Lagrange!)




Vector in Moving Frame

Derivative of a vector in a moving frame

... from velocity to acceleration
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01.71' — Oai — ORi lai — ORi lf]i + ORi ‘vi
— ORi lf]l- + Oa)l- X ORi lvi — ORi( lfﬂi + la)l- X lvi) derivative of “unit” vector
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Dynamics of a Rigid Body

Dynamics of a rigid body

Newton dynamic equation
balance: sum of forces = variation of linear momentum

> fi= —(mva = mi,

Euler dynamic equation
balance: sum of torques = variation of angular momentum

d . - _
2 Ui = (Ia)) =lo+— (RIRT)a) =I& + (RIRT + RIRT)w

=lw + S(w)RIRTa) + RIRTSTy()w =Jlw+ w X [w
principle of action and reaction
forces/torques: applied by body i to body i + 1

= — applied by body i + 1 to body i




Newton-Euler Equations

FORCES
Center of
mass . ! .
\ VC ) fi force applied from
N I g, ink i — 1 on link

f;+1 force applied from

Q}é@ link i on link i + 1

fi \ / :
R . m;g gravity force
/ e l
axiSi m;g 1 XIS 1

@) N & 1 (gi=1) all vectors expressed in the same RF
(better RF,)

linear acceleration of C;




Newton-Euler Equations

link i
TORQUES

» ; torque applied from link (i — 1) on link i (3
» T1;..torque applied fromlinkionlink (i + 1)

* fi XTi_1; torque due to f; w.r.t. C;

» —fiiq1 X174 tOrque due to —f;,1 W.I.t. C;
| Ji axis i | !
‘\ () \\ jaxisi+ 1
| | 1i \ ! (qi=1)
- | gravity force gives
Euler equation no torque at C;

all vectors expressed in
Ty — Tiv1 T fi X Tim1ci = fivr X Tiei = Lio; + 0 X ([jw;) the same RF (RF; )

angular acceleration of body i




Forward Recursion

Forward recursion (Computing velocities and accelerations)

* “moving frames” algorithm (as for velocities in Lagrange)

- wherever there is no leading superscript, it is the same as the subscript w; = ' w;
» for simplicity, only revolute joints

(see textbook for the more general treatment) initializations

_ i-1pT :
W; = R; [wi—1 T CIiZi—1] « Wy

w; = "R w1 + G§iziiq1 — §izi—1 X (Wi + §iZi_1)]
AR

i—1 pTr.- . ‘ .
R lwi—1 + Gizi1 + qiwi—1 X 2—4] | W
_ i-1pT - ] i
a; = Ria,_q1+w; X "1ri_1;+ w; X (a)i X 7"i—1,i) —  a, _




Backward Recursion

Backward recursion (Computing forces and torques)

from N. —_— to N;_; eliminated, if inserted in ; iiarizati
| forward recursion (i = 0)

- fi = fir1 tmiag —'g) fyvat TNfl

T = Tipq — fi X (Fiq + ri,ci) + fiv1 X T, + Lw; + w; X ([;w;)

from E; — 0 E;_4

at each step of this recursion, we have two vector equations (N; + E;) at the joint
providing f; and t;: these contain ALSO the reaction forces/torques
at the joint axis = they should be “projected” next along/around this axis

. = fi'*zioy + M4 for prismatic joint N scalar

I = - : _

‘ T 'zi—1 + 0id; for revolute joint equations
generalized forces at the end

add here dissipative terms (here

(in rhs of Euler-Lagrange eqs) viscous friction only)




Comments

Comments on Newton-Euler method

the previous forward/backward recursive formulas can be evaluated In
symbolic or numeric form
symbolic
substituting expressions In a recursive way
at the end, a closed-form dynamic model is obtained, which Is identical
to the one obtained using Euler-Lagrange (or any other) method
there is no special convenience in using N-E In this way
numeric
substituting numeric values (numbers!) at each step
computational complexity of each step remains constant =
grows In a linear fashion with the number N of joints (O (N))

strongly recommended for real-time use, especially when the number N
of joints Is large




Newton-Euler Algorithm

Newton-Euler algorithm
(efficient computational scheme for inverse dynamics)

Wo, Wo, Ag —° g -
- g (at robot base) numeric steps
H at every instant t
< 1 _) l fl;Tl U }
! )
1
w1, (1)1, al; A-1 - h }
INputs < ! fz»Tz : outputs
?(UN 1 WN—1, AN-1) AcN—1 }
- 1 1
C.IN —_— AR fN’ N _)._) }

Wy, Wy, Ay, Acn

< dn
o — h
T

(force/torque exchange
environment/E-E)

fN+1 TN+1




Coding

Matlab (or C, Python) script

general routine NE ,(arg,, arg,, args)

. data file (of a specific robot)
number N and types o = {0,1}¥ of joints (revolute/prismatic)
. table of DH kinematic parameters
list of ALL dynamic parameters of the links (and of the motors)
iInput
. vector parameter a = { °g, 0} (presence or absence of gravity)
. three ordered vector arguments
. typically, samples of joint position, velocity, acceleration taken
from a desired trajectory
. output
. generalized force u for the complete inverse dynamics
... or single terms of the dynamic model




Output

Examples of output

complete inverse dynamics

u=NEo,(qa,9a,4a) = M(qa)Ga + ¢c(qa,4a) + 9(qa) = ugq

gravity terms
u=NEo,(q,0,0) = g(q)

centrifugal and Coriolis terms
U = NEO(CI, q' O) — C(q' CI)

i-th column of the inertia matrix
e; = i — th column of

u = NEy(q,0,e;) =Mi(q)  jdentity matrix
generalized momentum

u :NEO(q,O,é[) — M(CI)C[ — D




Example

Inverse dynamics of a 2R planar robot

quintic rest-to-rest polynomial for joint 1 quintic rest-to-rest polynomial for joint 2
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Example

Inverse dynamics of a 2R planar robot

total torques for joints 1 and 2

200
o 100
zero Initial .
torques = free £ 0 final torques
e i} | | | . . | . . . ui #0,u, =0
equilibrium T~ b;Iance 2Iink
Configuration 200001 02 05 04 05 06 07 08 09 1 .
+ time (s) WelghtS

zero Initial
accelerations 50 |

00— in final (0°,90°)
i U configuration

Nm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s)

motion In vertical plane (under gravity)
both links are thin rods of uniform mass m; = 10 kg, m, = 5 kg

50 L




Example

Inverse dynamics of a 2R planar robot

total torque and contributions for joint 1 total torque and contributions for joint 2
150 T 80 > = S
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time (s) time (s)
torque contributions at the two joints for the desired motion
=total, @ @ ~-—---- = Inertial
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