
Luigi Villani, Giuseppe Oriolo, Bruno Siciliano

Solution Manual for

Robotics
Modelling, Planning and Control

February 6, 2009

Springer

Preface

This manual presents the solutions to all the end-of-chapter problems con-
tained in the textbook Robotics: Modelling, Planning and Control
(ISBN 978-1-84628-641-4, e-ISBN 978-1-84628-642-1) by Bruno Siciliano,
Lorenzo Sciavicco, Luigi Villani and Giuseppe Oriolo, Springer-Verlag, Lon-
don, 2009.

Solutions to analytical problems are developed by emphasizing the crucial
steps towards the solution. Some problems may be solved in different ways; the
solution reported in the manual is believed to be the most straightforward. The
solutions to several problems contain useful analytical developments which are
complementary to the theoretical derivation in the textbook.

Solutions to programming problems are accompanied by results of com-
puter implementations in Matlab R©(version 7.4) with Simulink R©.1 The
code (downloadable from www.springer.com/978-1-84628-641-4) is avail-
able free of charge to those adopting this volume as a text for courses.

The software is not aimed at providing a complete toolbox, but only at
solving the end-of-chapter problems. Nonetheless, the code has been developed
in a modular fashion which should allow direct expansion to more complex
problems as well as ease of changing the problems data.

For the problems solved in Matlab, the solution is contained in a file with
.m extension, where the first letter is an s, followed by the problem number,
e.g., s4 1.m is the file to execute for solving Problem 4.1.

The problems requiring simulation of a dynamic system have been solved
in Simulink and the solution is contained in a file with .mdl extension, e.g.,
s3 21.mdl is the file to execute for solving Problem 3.21. Each problem of
this kind requires the initialization of certain variables before starting the
simulation. This is performed in a file where the first letter is an i, followed
by the problem number, e.g., i3 21.m is the initialization file for Problem
3.21.

1 Matlab and Simulink are registered trademarks of The MathWorks, Inc.

vi Preface

For both Matlab- and Simulink-based problems, the output plots of
relevant variables are obtained by executing a file where the first letter is
a p, followed by the problem number, e.g., p3 21.m is the file for plotting the
output variables of Problem 3.21.

Variable initialization and plot can be activated by double clicking respec-
tively on the upper-left block and the lower-right block in the Simulink block
diagrams.

For problems requiring the simulation of two different systems, two files
have been created where letters a and b have been used to distinguish them,
e.g., s3 22a.mdl and s3 22b.mdl are the files for solving Problem 3.22 with
two different algorithms; accordingly, the files for plotting output variables
have been named p3 22a.m and p3 22b.m.

The above files are supplemented by other function and script files which
are needed to solve the programming problems.

All the files used to solve a given problem are collected into a folder with
the same label of the problem, e.g. Folder 3 21 contains the files of Problem
3.21.

Helpful comments are added to each file to describe its contents and func-
tions. A readme.txt file is also provided.

Finally, the authors wish to thank Luigi Freda for his contributions to the
software developed for the solution of some problems of Chapter 12.

Naples and Rome Luigi Villani
February 2009 Giuseppe Oriolo

Bruno Siciliano

Contents

2 Kinematics . 1

3 Differential Kinematics and Statics . 19

4 Trajectory Planning . 39

5 Actuators and Sensors . 51

6 Control Architecture . 59

7 Dynamics . 65

8 Motion Control . 79

9 Force Control . 101

10 Visual servoing . 111

11 Mobile Robots . 127

12 Motion Planning . 143

2

Kinematics

Solution to Problem 2.1

Composition of rotation matrices with respect to the current frame gives

R(φ) = Rz(ϕ)Rx′(ϑ)Rz′′(ψ).

Using the expressions of elementary rotation matrices in (2.6) and (2.8):

Rz(ϕ) =

⎡⎣ cϕ −sϕ 0
sϕ cϕ 0
0 0 1

⎤⎦
Rx′(ϑ) =

⎡⎣ 1 0 0
0 cϑ −sϑ
0 sϑ cϑ

⎤⎦
Rz′′(ϕ) =

⎡⎣ cψ −sψ 0
sψ cψ 0
0 0 1

⎤⎦
and taking the products gives

R(φ) =

⎡⎣ cϕcψ − sϕcϑsψ −cϕsψ − sϕcϑcψ sϕsϑ
sϕcψ + cϕcϑsψ −sϕsψ + cϕcϑcψ −cϕsϑ

sϑsψ sϑcψ cϑ

⎤⎦ .

As for the inverse problem, given a rotation matrix

R =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ ,

2 2 Kinematics

the set of Euler angles ZXZ is given by

ϕ = Atan2(r13,−r23)
ϑ = Atan2

(√
r231 + r232, r33

)
ψ = Atan2(r31, r32)

when ϑ ∈ (0, π). Otherwise, if ϑ ∈ (−π, 0) then the solution is

ϕ = Atan2(−r13, r23)
ϑ = Atan2

(
−
√
r231 + r232, r33

)
ψ = Atan2(−r31,−r32).

Solution to Problem 2.2

In the case sϑ = 0, the rotation matrix in (2.18) becomes

R(φ) =

⎡⎣ cϕ+ψ −sϕ+ψ 0
sϕ+ψ cϕ+ψ 0

0 0 1

⎤⎦
when ϑ = 0. Otherwise, if ϑ = π, then the matrix is

R(φ) =

⎡⎣−cϕ−ψ −sϕ−ψ 0
−sϕ−ψ cϕ−ψ 0

0 0 −1

⎤⎦ .

From the elements [1, 2] and [2, 2] it is possible to compute only the sum or
difference of angles ϕ and ψ, i.e.,

ϕ± ψ = Atan2(−r12, r22)
where the positive sign holds for ϑ = 0 and the negative sign holds for ϑ = π.

Solution to Problem 2.3

In the case cϑ = 0, the rotation matrix in (2.21) becomes

R(φ) =

⎡⎣ 0 sψ−ϕ cψ−ϕ
0 cψ−ϕ −sψ−ϕ
−1 0 0

⎤⎦
when ϑ = π/2. Otherwise, if ϑ = −π/2, then the matrix is

R(φ) =

⎡⎣ 0 −sψ+ϕ −cψ+ϕ

0 cψ+ϕ −sψ+ϕ

1 0 0

⎤⎦ .

2 Kinematics 3

From the elements [2, 2] and [2, 3] it is possible to compute only the sum or
difference of angles ψ and ϕ, i.e.,

ψ ± ϕ = Atan2(−r23, r22)
where the positive sign holds for ϑ = −π/2 and the negative sign holds for
ϑ = π/2.

Solution to Problem 2.4

The rotation matrix can be obtained as in (2.24)

R(ϑ, r) = Rz(α)Ry(β)Rz(ϑ)Ry(−β)Rz(−α),

where the elementary rotation matrices are given as in (2.6) and (2.7):

Rz(α) =

⎡⎣ cα −sα 0
sα cα 0
0 0 1

⎤⎦
Ry(β) =

⎡⎣ cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤⎦
Rz(ϑ) =

⎡⎣ cϑ −sϑ 0
sϑ cϑ 0
0 0 1

⎤⎦ .

Taking the first product gives

Rz(α)Ry(β) =

⎡⎣ cαcβ −sα cαsβ
sαcβ cα sαsβ
−sβ 0 cβ

⎤⎦ .

The next product gives

Rz(α)Ry(β)Rz(ϑ) =

⎡⎣ cαcβcϑ − sαsϑ −cαcβsϑ − sαcϑ cαsβ
sαcβcϑ + cαsϑ −sαcβsϑ + cαcϑ sαsβ

−sβcϑ sβsϑ cβ

⎤⎦ .

Then, by observing that

Ry(−β)Rz(−α) = (Rz(α)Ry(β))T ,

the overall rotation matrix is

R(ϑ, r) =

⎡⎣ (s2α + c2αc
2
β)cθ + c2αs

2
β sαcαs

2
β(1 − cϑ) − cβsϑ

sαcαs
2
β(1 − cϑ) + cβsϑ (s2αc

2
β + c2α)cθ + s2αs

2
β

cαsβcβ(1 − cϑ) − sαsβsϑ sαsβcβ(1 − cϑ) + cαsβsϑ

cαsβcβ(1 − cϑ) + sαsβsϑ

sαsβcβ(1 − cϑ) − cαsβsϑ

s2βcϑ + c2β

⎤⎦ .

4 2 Kinematics

Recalling the relations

sα =
ry√
r2x + r2y

cα =
rx√
r2x + r2y

sβ =
√
r2x + r2y cβ = rz

r2x + r2y + r2z = 1

and using the following identities:

s2α + c2αc
2
β = 1 − r2x

s2αc
2
β + c2α = 1 − r2y

leads to expression (2.25).

Solution to Problem 2.5

From the expression of R(ϑ, r) in (2.25), summing the elements on the diag-
onal gives

r11 + r22 + r33 = 1 + 2 cosϑ

from which the angle is

ϑ = cos−1

(
r11 + r22 + r33 − 1

2

)
.

Then, taking suitable differences between the off-diagonal elements gives

r32 − r23 = 2rxsinϑ
r13 − r31 = 2rysinϑ
r21 − r12 = 2rzsinϑ

and thus

r =
1

2 sinϑ

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ .

In the case sinϑ = 0, if r11 + r22 + r33 = 3, then ϑ = 0; this means that no
rotation has occurred and r is arbitrary. Instead, if r11 + r22 + r33 = −1, then
ϑ = π and the expression of the rotation matrix becomes

R(π, r) =

⎡⎣ 2r2x − 1 2rxry 2rxrz
2rxry 2r2y − 1 2ryrz
2rxrz 2ryrz 2r2z − 1

⎤⎦ .

2 Kinematics 5

The three components of the unit vector can be computed by taking any row
or column; for instance, from the first column it is

rx = ±
√
r11 + 1

2

ry =
r12
2rx

rz =
r13
2rx

.

However, if rx ≈ 0, then the computation of ry and rz is ill-conditioned. In
that case, it is better to use another column to compute either ry or rz , and
so forth.

Solution to Problem 2.6

With reference to (2.25), the quantities cϑ, risϑ and rirj(1 − cϑ) for i, j =
x, y, z can be respectively expressed as

cϑ = 2cos 2(ϑ/2) − 1
= 2η2 − 1

risϑ = 2risin (ϑ/2)cos (ϑ/2)
= 2ηεi

rirj(1 − cϑ) = 2rirjsin 2(ϑ/2)
= 2εiεj

where (2.30) and (2.31) have been used. Hence, (2.33) follows.

Solution to Problem 2.7

Start observing that
R(ϑ, r)r = RT (ϑ, r)r = r

since r is the axis of the rotation described by R. Then, since ε and r are
aligned, the result

R(η, ε)ε = RT (η, ε)ε = ε

follows directly.

Solution to Problem 2.8

By taking the expressions of the diagonal elements of the matrix in (2.33),
the following equality holds:

1
2
√
r11 + r22 + r33 + 1 = 6η2 + 2(ε2x + ε2y + ε2z) − 2,

6 2 Kinematics

and thus using the constraint in (2.32) gives (2.34).
By taking the expressions of the elements [2, 3] and [3, 2] of the matrix

in (2.33), together with the diagonal elements, the following equality holds:

1
2
sgn (r32−r23)

√
r11 − r22 − r33 + 1 =

1
2
sgn (4ηεx)

√
2(ε2x − ε2y − ε2z − η2 + 1),

and thus using again the constraint in (2.32) gives

1
2
sgn (r32 − r23)

√
r11 − r22 − r33 + 1 = sgn (4ηεx)|εx| = εx

where the assumption η ≥ 0 has been exploited. A similar argument can be
worked out to derive the expressions of εy and εz in (2.35).

Solution to Problem 2.9

Using the expression of the rotation matrix as a function of the unit quaternion
in (2.33), the productR1R2 gives rise to a rotation matrix which is a function
of {η1, ε1} and {η2, ε2}. The diagonal elements of such matrix are

r11 =
(
2(η2

1 + ε21x) − 1
) (

2(η2
2 + ε22x) − 1

)
+4(ε1xε1y − η1ε1z)(ε2xε2y + η2ε2z) + 4(ε1xε1z + η1ε1y)(ε2xε2z − η2ε2y)

r22 =
(
2(η2

1 + ε21y) − 1
) (

2(η2
2 + ε22y) − 1

)
+4(ε1yε1z − η1ε1x)(ε2yε2z + η2ε2x) + 4(ε1xε1y + η1ε1z)(ε2xε2y − η2ε2z)

r33 =
(
2(η2

1 + ε21z) − 1
) (

2(η2
2 + ε22z) − 1

)
+4(ε1xε1z − η1ε1y)(ε2xε2z + η2ε2y) + 4(ε1yε1z + η1ε1x)(ε2yε2z − η2ε2x).

Then, compose these terms as follows:

r11 + r22 + r33 + 1 = 4
(
ε21xε

2
2x + ε21yε

2
2y + ε21zε

2
2z

+2ε1xε2xε1yε2y + 2ε1xε2xε1zε2z + 2ε1yε2yε1zε2z)
−8η1η2(ε1xε2x + ε1yε2y + ε1zε2z)
+(4η2

1 − 2)
(
ε22x + ε22y + ε22z

)
+ (4η2

2 − 2)
(
ε21x + ε21y + ε21z

)
+12η2

1η
2
2 − 6η2

1 − 6η2
2 + 4.

Using the constraint in (2.32) yields

1
4
(r11 + r22 + r33 + 1) = (η1η2 − εT1 ε2)2

which, in view of (2.34), coincides with the square of the scalar part of the
quaternion product in (2.37).

A similar argument can be pursued to show the equivalence between the
vector part of the quaternion that can be extracted from the product R1R2

using (2.33) and the vector part of the quaternion product in (2.37).

2 Kinematics 7

Fig. S2.1. Four-link closed-chain planar arm with frame assignment

Solution to Problem 2.10

The matrix

A0
1 =

⎡⎢⎣ R0
1 o0

1

0T 1

⎤⎥⎦
can be inverted as a block-partitioned matrix. In fact, by recalling that[

A D
O B

]−1

=
[
A−1 −A−1DB−1

O B−1

]
,

expression (2.45) follows by observing that (R0
1)−1 = R1

0.

Solution to Problem 2.11

Joint 4 was selected as the cut joint. The link frames can be assigned as in
Fig. S2.1. With this choice, the Denavit-Hartenberg parameters are specified
in Table S2.1.

Table S2.1. DH parameters for the four-link closed-chain planar arm

Link ai αi di ϑi

1′ a1′ 0 0 ϑ1′

2′ a2′ 0 0 ϑ2′

3′ 0 π/2 0 ϑ3′

1′′ a1′′ −π/2 0 ϑ1′′

4 0 0 d4 0

Notice that the parameters for Link 4 are all constant. For the first two revo-
lute joints, the homogeneous transformation matrix defined in (2.52) has the

8 2 Kinematics

same structure as in (2.62), while for the third revolute joint, the homogeneous
transformation matrix is

A2′
3′(ϑ3′) =

⎡⎢⎣
c3′ 0 s3′ 0
s3′ 0 −c3′ 0
0 1 0 0
0 0 0 1

⎤⎥⎦ .
Therefore, the coordinate transformations for the two branches of the tree are
respectively:

A0
3′(q′) = A0

1′A1′
2′A2′

3′ =

⎡⎢⎣
c1′2′3′ 0 s1′2′3′ a1′c1′ + a2′c1′2′

s1′2′3′ 0 −c1′2′3′ a1′s1′ + a2′s1′2′

0 1 0 0
0 0 0 1

⎤⎥⎦
where q′ = [ϑ1′ ϑ2′ ϑ3′]T , and

A0
1′′(q′′) =

⎡⎢⎣
c1′′ 0 −s1′′ a1′′c1′′

s1′′ 0 c1′′ a1′′s1′′

0 −1 0 0
0 0 0 1

⎤⎥⎦
where q′′ = ϑ1′′ . To complete, the constant homogeneous transformation for
the last link is

A3′
4 =

⎡⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d4

0 0 0 1

⎤⎥⎦ .

With reference to (2.60), the orientation constraints are (ϑ3′1′′ = π)

z0
3′(q′) = z0

1′′(q′′)
x0T

3′ (q′)x0
1′′(q′′) = −1

which give

s1′2′3′ = −s1′′

c1′2′3′ = −c1′′

and thus
ϑ2′ + ϑ3′ = π − ϑ1′ + ϑ1′′ . (S2.1)

On the other hand, the position constraints are[
x0T

3′ (q′)
y0T

3′ (q′)

] (
p0

3′(q′) − p0
1′′(q′′)

)
=
[

0
0

]
which give

a1′cos (ϑ2′ + ϑ3′) + a2′cosϑ3′ − a1′′cos (ϑ1′ + ϑ2′ + ϑ3′ − ϑ1′′) = 0

2 Kinematics 9

Fig. S2.2. Cylindrical arm with frame assignment

Table S2.2. DH parameters for the cylindrical arm

Link ai αi di ϑi

1 0 0 0 ϑ1

2 0 −π/2 d2 0
3 0 0 d3 0

and, in view of (S2.1), it is

cosϑ3′ =
−a1′′ + a1′cos (ϑ1′′ − ϑ1′)

a2′
. (S2.2)

The solution to (S2.2) exists for any ϑ1′ and ϑ1′′ provided that

a1′ + a1′′ ≤ a2′ .

Further, it is

s3′ = ±
√

1 − c23′

with c3′ as in (S2.2). Therefore, it is

ϑ3′ = Atan2(s3′ , c3′)
ϑ2′ = π − ϑ1′ + ϑ1′′ − ϑ3′ .

It follows that the vector of joint variables is q = [ϑ1′ ϑ1′′]T . These joints
are natural candidates to be the actuated joints. The arm direct kinematics
can be computed as T 0

4(q) = A0
3′(q)A3′

4 where the expressions of ϑ2′ and ϑ3′

have to be substituted into the homogeneous transformation A0
3′ .

10 2 Kinematics

Fig. S2.3. SCARA manipulator with frame assignment

Solution to Problem 2.12

The link frames can be assigned as in Fig. S2.2. With this choice, the Denavit-
Hartenberg parameters are specified in Table S2.2.

The homogeneous transformation matrices (2.52) for the three joints are:

A0
1(ϑ1) =

⎡⎢⎣
c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ A1
2(d2) =

⎡⎢⎣
1 0 0 0
0 0 1 0
0 −1 0 d2

0 0 0 1

⎤⎥⎦

A2
3(d3) =

⎡⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

⎤⎥⎦ ,

and thus the arm direct kinematics is

T 0
3(q) = A0

1A
1
2A

2
3 =

⎡⎢⎣
c1 0 −s1 −d3s1
s1 0 c1 d3c1
0 −1 0 d2

0 0 0 1

⎤⎥⎦
where q = [ϑ1 d2 d3]T .

Solution to Problem 2.13

The link frames can be assigned as in Fig. S2.3. Since the typical approach
to an object is from the top, it is reasonable to choose all the joint axes
pointing downwards. With this choice, the Denavit-Hartenberg parameters
are specified in Table S2.3.

2 Kinematics 11

Table S2.3. DH parameters for the SCARA manipulator

Link ai αi di ϑi

1 a1 0 0 ϑ1

2 a2 0 0 ϑ2

3 0 0 d3 0
4 0 0 0 ϑ4

The homogeneous transformation matrices (2.52) for the four joints are:

Ai−1
i (ϑi) =

⎡⎢⎣
ci −si 0 aici
si ci 0 aisi
0 0 1 0
0 0 0 1

⎤⎥⎦ i = 1, 2

A2
3(d3) =

⎡⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

⎤⎥⎦ A3
4(ϑ4) =

⎡⎢⎣
c4 −s4 0 0
s4 c4 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ ,

and thus the manipulator direct kinematics is

T 0
4(q) = A0

1A
1
2A

2
3A

3
4 =

⎡⎢⎣
c124 −s124 0 a1c1 + a2c12
s124 c124 0 a1s1 + a2s12
0 0 1 d3

0 0 0 1

⎤⎥⎦ (S2.3)

where q = [ϑ1 ϑ2 d3 ϑ4]T . It is worth noticing that the direct kinematics
of this structure can be conceptually derived from that of a three-link planar
arm in which a3 = 0, ϑ3 is replaced by ϑ4, and the z coordinate is d3.

Solution to Problem 2.14

The torso can be modelled as an anthropomorphic arm, corresponding to the
first three DOFs. Therefore T 0

3 in (2.78) and (2.79) has the expression (2.66).
The constant matrices T tl and T tr can be computed in terms of the angle

β and of the lengths dl and dr of segments OtOl and OtOr , being Ot, Ol and
Or the origins of frames t, l and r, respectively. In detail:

T tl =
[
Rt
l ott,l

0T 1

]
T tr =

[
Rt
r ott,r

0T 1

]
,

where

ott,l =

⎡⎣ dlcβ0
dlsβ

⎤⎦ ott,r =

⎡⎣ drcβ
0

−drsβ

⎤⎦

12 2 Kinematics

are the positions of the origins of frames l and r with respect to frame t and

Rt
l =

⎡⎣ 0 −sβ cβ
1 0 0
0 cβ sβ

⎤⎦ Rt
r =

⎡⎣ 0 sβ cβ
1 0 0
0 cβ −sβ

⎤⎦
are the corresponding rotation matrices.

Finally, matrices T rrh = T llh can be computed using (2.72) with (2.77) in
place of (2.73).

Solution to Problem 2.15

Consider two sets of Euler angles ZYZ:

φ1 =

⎡⎣ π/2π/2
0

⎤⎦ φ2 =

⎡⎣−π/2−π/2
0

⎤⎦ .
The corresponding rotation matrices are

R(φ1) =

⎡⎣ 0 −1 0
0 0 1
−1 0 0

⎤⎦ R(φ2) =

⎡⎣ 0 1 0
0 0 1
1 0 0

⎤⎦ .

Composition of rotations with respect to the current frame gives

R(φ1)R(φ2) =

⎡⎣ 0 0 −1
1 0 0
0 −1 0

⎤⎦
to which the following two sets of Euler angles correspond as for (2.19) and
(2.20):

φa =

⎡⎣ π
π/2
−π/2

⎤⎦ φb =

⎡⎣ 0
−π/2
π/2

⎤⎦ .

On the other hand, composition of rotations with respect to the fixed frame
gives

R(φ2)R(φ1) =

⎡⎣ 0 0 1
−1 0 0
0 −1 0

⎤⎦
to which the following two sets of Euler angles correspond as for (2.19) and
(2.20):

φa =

⎡⎣ 0
π/2
−π/2

⎤⎦ φb =

⎡⎣ π
−π/2
π/2

⎤⎦ .

2 Kinematics 13

It is evident that the two results differ, and then it is not possible to commute
the order of rotations. Notice, also, that the rotation matrix resulting from
direct sum of the two given sets of angles is

R(φ1 + φ2) = I

to which the set of Euler angles φ = [0 0 0]T corresponds.

Solution to Problem 2.16

In view of the approximations cos (dφ) ≈ 1 and sin (dφ) ≈ dφ, the elementary
rotation matrices for infinitesimal angles can be written as:

Rx(dφx) =

⎡⎣ 1 0 0
0 cos (dφx) −sin (dφx)
0 sin (dφx) cos (dφx)

⎤⎦ ≈
⎡⎣ 1 0 0

0 1 −dφx
0 dφx 1

⎤⎦
Ry(dφy) =

⎡⎣ cos (dφy) 0 sin (dφy)
0 1 0

−sin (dφy) 0 cos (dφy)

⎤⎦ ≈
⎡⎣ 1 0 dφy

0 1 0
−dφy 0 1

⎤⎦
Rz(dφz) =

⎡⎣ cos (dφz) −sin (dφz) 0
sin (dφz) cos (dφz) 0

0 0 1

⎤⎦ ≈
⎡⎣ 1 −dφz 0
dφz 1 0
0 0 1

⎤⎦ .

Multiplying the first two matrices gives

Rx(dφx)Ry(dφy) ≈
⎡⎣ 1 0 dφy

0 1 −dφx
−dφy dφx 1

⎤⎦
where higher order terms have been neglected. Reversing the order of multi-
plication gives

Ry(dφy)Rx(dφx) ≈
⎡⎣ 1 0 dφy

0 1 −dφx
−dφy dφx 1

⎤⎦ ,

which shows that the rotation resulting from any two elementary rotations is
independent of the order of rotations when the angles of rotation are infinites-
imal.

Constructing the matrix of the three elementary rotations about coordi-
nate axes for infinitesimal angles gives

R(dφx, dφy, dφz) =

⎡⎣ 1 −dφz dφy
dφz 1 −dφx
−dφy dφx 1

⎤⎦ .

14 2 Kinematics

For another set of infinitesimal angles, the rotation matrix can be formally
written as

R(dφ′x, dφ
′
y, dφ

′
z) =

⎡⎣ 1 −dφ′z dφ′y
dφ′z 1 −dφ′x
−dφ′y dφ′x 1

⎤⎦ .

Multiplying these two rotation matrices and neglecting higher order terms
gives

R(dφx, dφy, dφz)R(dφ′x, dφ
′
y, dφ

′
z) =⎡⎣ 1 −(dφz + dφ′z) dφy + dφ′y
dφz + dφ′z 1 −(dφx + dφ′x)

−(dφy + dφ′y) dφx + dφ′x 1

⎤⎦
= R(dφx + dφ′x, dφy + dφ′y, dφz + dφ′z).

Solution to Problem 2.17

In order to find the arm reachable workspace, it is worth considering all the
joint configurations giving a loss of mobility. These are the 23 = 8 configura-
tions for the joint limits:

qA =

⎡⎣ −π/3
−2π/3
−π/2

⎤⎦ qB =

⎡⎣ −π/3
−2π/3
π/2

⎤⎦ qC =

⎡⎣−π/32π/3
−π/2

⎤⎦ qD =

⎡⎣−π/32π/3
π/2

⎤⎦
qE =

⎡⎣ π/3
−2π/3
−π/2

⎤⎦ qF =

⎡⎣ π/3
−2π/3
π/2

⎤⎦ qG =

⎡⎣ π/3
2π/3
−π/2

⎤⎦ qH =

⎡⎣ π/3
2π/3
π/2

⎤⎦ ,

the 4 configurations for ϑ2 = 0:

qI =

⎡⎣−π/30
−π/2

⎤⎦ qJ =

⎡⎣−π/30
π/2

⎤⎦ qK =

⎡⎣ π/3
0

−π/2

⎤⎦ qL =

⎡⎣π/30
π/2

⎤⎦ ,

the 4 configurations for ϑ3 = 0:

qM =

⎡⎣ −π/3
−2π/3

0

⎤⎦ qN =

⎡⎣−π/32π/3
0

⎤⎦ qO =

⎡⎣ π/3
−2π/3

0

⎤⎦ qP =

⎡⎣ π/3
2π/3

0

⎤⎦ ,

and the 2 configurations for both ϑ2 = 0 and ϑ3 = 0:

qQ =

⎡⎣−π/30
0

⎤⎦ qR =

⎡⎣π/30
0

⎤⎦ .

2 Kinematics 15

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

[m]

[m
]

D

H

P

R

Q

M

A

E

Fig. S2.4. Reachable workspace for a three-link planar arm

Starting from point A in Cartesian space corresponding to qA, it is necessary
to draw all the arcs connecting such point to all other points corresponding
to configurations that differ only for one component, i.e., points B, C, E, I,
M . Repeating the procedure for each point leads to obtaining all the portions
of the requested workspace. It can be recognized that the external contour of
the area AMQRPHEDA delimits the reachable workspace, as illustrated in
Fig. S2.4.

Solution to Problem 2.18

When s3 = 0, the two cases c3 = 1 and c3 = −1 have to be considered.
In the case c3 = 1, the arm is outstretched with ϑ3 = 0. From (2.105)–

(2.108), it is

ϑ2,I = ϑ2,III = Atan2
(
pWz ,

√
p2
Wx + p2

Wy

)
(S2.4)

ϑ2,II = ϑ2,IV = Atan2
(
pWz,−

√
p2
Wx + p2

Wy

)
. (S2.5)

Hence, if
√
p2
Wx + p2

Wy > 0, two different solutions exist for ϑ2. The corre-

sponding values of ϑ1 are those in (2.109) or (2.110). On the other hand, if√
p2
Wx + p2

Wy = 0, i.e., pWx = pWy = 0, the admissibility of the solution re-
quires that pWz = ±(a2 + a3). Hence, from (S2.4) and (S2.5) it is ϑ2 = ±π/2.
Moreover, in view of (2.109) and (2.110), an infinity of solutions exists for ϑ1.

In the case c3 = −1, the arm is retracted with ϑ3 = ±π. From (2.105)–
(2.108), it is

ϑ2,I = ϑ2,III = Atan2
(
(a2 − a3)pWz , (a2 − a3)

√
p2
Wx + p2

Wy

)
(S2.6)

ϑ2,II = ϑ2,IV = Atan2
(
(a2 − a3)pWz ,−(a2 − a3)

√
p2
Wx + p2

Wy

)
. (S2.7)

Hence, assuming that a2 �= a3, if
√
p2
Wx + p2

Wy > 0, two different solutions
exist for ϑ2. The corresponding values of ϑ1 are those in (2.109) or (2.110). On

16 2 Kinematics

the other hand, if
√
p2
Wx + p2

Wy = 0, i.e., pWx = pWy = 0, the admissibility

of the solution requires that pWz = ±|a2−a3|. Hence, from (S2.6) and (S2.7),
it is ϑ2 = ±π/2. As in previous case, in view of (2.109), (2.110), an infinity
of solutions exists for ϑ1. Notice that, if a2 = a3, it is pWx = pWy = pWz = 0
necessarily. Therefore, an infinity of solutions exists both for ϑ1 and ϑ2.

Solution to Problem 2.19

From the direct kinematics as in Problem 2.12, the end-effector position is
given by

px = −d3s1

py = d3c1

pz = d2.

The first joint variable can be computed from the first two equations as

ϑ1 = Atan2(−px, py).

Then, the third joint variable can be computed by squaring and summing
those same two equations leading to

d3 =
√
p2
x + p2

y.

Finally, the second joint variables is

d2 = pz.

Solution to Problem 2.20

From the direct kinematics as in Problem 2.13, the end-effector position is
given by

px = a1c1 + a2c12

py = a1s1 + a2s12

pz = d3.

The first two equations are the same as (2.91) and (2.92) for a three-link
planar arm. Then it is

c2 =
p2
x + p2

y − a2
1 − a2

2

2a1a2

with −1 ≤ c2 ≤ 1 and

s2 = ±
√

1 − c22

2 Kinematics 17

where the positive sign corresponds to ϑ2 ∈ (0, π) and the negative sign cor-
responds to ϑ2 ∈ (−π, 0). The second joint variable is

ϑ2 = Atan2(s2, c2).

The first joint variable can be computed from

s1 =
(a1 + a2c2)py − a2s2px

p2
x + p2

y

c1 =
(a1 + a2c2)px + a2s2py

p2
x + p2

y

and thus
ϑ1 = Atan2(s1, c1).

The end-effector orientation can be expressed as

φ = ϑ1 + ϑ2 + ϑ4,

from which the fourth joint variable is

ϑ4 = φ− ϑ1 − ϑ2.

Finally, the third joint variable is

d3 = pz.

3

Differential Kinematics and Statics

Solution to Problem 3.1

Let
R = [x y z]T

where the unit vector triplet (x,y, z) forms a right-handed frame. Then, the
product RS(ω)RT can be written as

RS(ω)RT =

⎡⎣xTyT
zT

⎤⎦S(ω) [x y z]

=

⎡⎣xTS(ω)x xTS(ω)y xTS(ω)z
yTS(ω)x yTS(ω)y yTS(ω)z
zTS(ω)x zTS(ω)y zTS(ω)z

⎤⎦
=

⎡⎣xT (ω × x) xT (ω × y) xT (ω × z)
yT (ω × x) yT (ω × y) yT (ω × z)
zT (ω × x) zT (ω × y) zT (ω × z)

⎤⎦ .

In view of the properties of scalar triple products, this matrix is skew-
symmetric and then

RS(ω)RT = S(ω′) =

⎡⎣ 0 −ω′
z ω′

y

ω′
z 0 −ω′

x

−ω′
y ω′

x 0

⎤⎦ (S3.1)

where the elements of the previous matrix can be written as

ω′
x = zT (ω × y) = ωT (y × z) = ωTx

ω′
y = xT (ω × z) = ωT (z × x) = ωTy

ω′
z = yT (ω × x) = ωT (x× y) = ωTz.

20 3 Differential Kinematics and Statics

Hence, it is

ω′ = [ω′
x ω′

y ω′
z]T

=
[
ωT [x y z]

]T
= Rω.

Substituting ω′ in (S3.1) leads to conclude

RS(ω)RT = S(Rω).

Solution to Problem 3.2

For the cylindrical arm in Fig. 2.35, the Jacobian is

J(q) =
[
z0 × (p− p0) z1 z2

z0 0 0

]
where the various vectors can be computed from arm direct kinematics

p0 =

⎡⎣ 0
0
0

⎤⎦ p =

⎡⎣−d3s1
d3c1
d2

⎤⎦

z0 = z1 =

⎡⎣ 0
0
1

⎤⎦ z2 =

⎡⎣−s1c1
0

⎤⎦ .

Then, the expression of the geometric Jacobian is

J =

⎡⎢⎢⎢⎢⎢⎣
−d3c1 0 −s1
−d3s1 0 c1

0 1 0
0 0 0
0 0 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦ (S3.2)

which reveals that it is inherently impossible to rotate about axes x and y.

Solution to Problem 3.3

For the SCARA manipulator in Fig. 2.36, the Jacobian is

J(q) =
[
z0 × (p− p0) z1 × (p− p1) z2 z3 × (p− p3)

z0 z1 0 z3

]

3 Differential Kinematics and Statics 21

where the various vectors can be computed from manipulator direct kinemat-
ics

p0 =

⎡⎣ 0
0
0

⎤⎦ p1 =

⎡⎣ a1c1
a1s1

0

⎤⎦ p3 =

⎡⎣ a1c1 + a2c12
a1s1 + a2s12

d3

⎤⎦ p =

⎡⎣ a1c1 + a2c12
a1s1 + a2s12

d3

⎤⎦

z0 = z1 = z2 = z3 =

⎡⎣ 0
0
1

⎤⎦ .

Then, the expression of the geometric Jacobian is

J =

⎡⎢⎢⎢⎢⎢⎣
−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 1 0
0 0 0 0
0 0 0 0
1 1 0 1

⎤⎥⎥⎥⎥⎥⎦
which reveals that it is inherently impossible to rotate about axes x and y.
In view of this, if a four-dimensional operational space (r = 4) is of concern,
then the (4 × 4) analytical Jacobian can be extracted from J by eliminating
rows 4 and 5, i.e.,

JA =

⎡⎢⎣
−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 1 0
1 1 0 1

⎤⎥⎦ . (S3.3)

Solution to Problem 3.4

From the expression of the geometric Jacobian in (3.35), it is possible to
extract the analytical Jacobian by eliminating the three null rows, i.e.,

JA =

⎡⎣−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123
a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

1 1 1

⎤⎦ .

In order to compute its determinant, it is worth subtracting the second column
from the first one and the third column from the second one, respectively,
giving

J ′
A =

⎡⎣−a1s1 −a2s12 −a3s123
a1c1 a2c12 a3c123

0 0 1

⎤⎦
whose determinant is

det(J ′
A) = a1a2s2.

22 3 Differential Kinematics and Statics

It follows that, for a1, a2 �= 0, the determinant vanishes whenever

ϑ2 = 0 ϑ2 = π,

that are the same singularities of the two-link planar arm. It may be verified
that the rank of the Jacobian does not further decrease, and thus the arm has
no other singularities.

Solution to Problem 3.5

For the spherical arm in Fig. 2.22, the Jacobian is

J(q) =
[
z0 × (p− p0) z1 × (p− p1) z2

z0 z1 0

]
where the various vectors can be computed from arm direct kinematics

p0 = p1 =

⎡⎣ 0
0
0

⎤⎦ p =

⎡⎣ c1s2d3 − s1d2

s1s2d3 + c1d2

c2d3

⎤⎦

z0 =

⎡⎣ 0
0
1

⎤⎦ z1 =

⎡⎣−s1c1
0

⎤⎦ z2 =

⎡⎣ c1s2s1s2
c2

⎤⎦ .

Then, the expression of the geometric Jacobian is

J =

⎡⎢⎢⎢⎢⎢⎣
−s1s2d3 − c1d2 c1c2d3 c1s2
c1s2d3 − s1d2 s1c2d3 s1s2

0 −s2d3 c2
0 −s1 0
0 c1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦ .

With three DOFs, it is worth considering end-effector linear velocity only,
corresponding to the first three rows of the Jacobian, i.e.,

JP =

⎡⎣−s1s2d3 − c1d2 c1c2d3 c1s2
c1s2d3 − s1d2 s1c2d3 s1s2

0 −s2d3 c2

⎤⎦
which could have been also obtained by differentiating the vector p above
with respect to the joint variable vector q (analytical Jacobian). In order to
determine singularities of JP , its determinant has to be computed, giving

det(JP) = −d2
3s2.

This vanishes if s2 = 0 and/or d3 = 0. The first situation occurs whenever

ϑ2 = 0 ϑ2 = π,

3 Differential Kinematics and Statics 23

whereas the second situation occurs whenever

d3 = 0,

i.e., when Frame 3 coincides with Frame 2 and thus Joint 2 velocity does not
contribute to end-effector linear velocity. Finally, it is worth observing that
both types of singularities are internal singularities.

Solution to Problem 3.6

From the geometric Jacobian in (S3.2), the Jacobian relative to end-effector
linear velocity can be extracted by considering only the first three rows, i.e.,

JP =

⎡⎣−d3c1 0 −s1
−d3s1 0 c1

0 1 0

⎤⎦ .

Its determinant is
det(JP) = d3

which vanishes at the singularity

d3 = 0.

This occurs when the end effector is located along Joint 1 axis, and thus this
singularity is conceptually similar to the shoulder singularity of an anthropo-
morphic arm.

Solution to Problem 3.7

With reference to the analytical Jacobian in (S3.3), it is worth subtracting
the second column from the first one. The modified Jacobian becomes

J ′
A =

⎡⎢⎣
−a1s1 −a2s12 0 0
a1c1 a2c12 0 0

0 0 1 0
0 0 0 1

⎤⎥⎦ ,

whose determinant is
det(J ′

A) = a1a2s2.

For a1, a2 �= 0, the determinant vanishes whenever

ϑ2 = 0 ϑ2 = π

which are the same singularities of the two-link and three-link planar arms.
In other words, the addition of a prismatic joint to a three-link planar arm
—which makes it become a SCARA manipulator— does not introduce further
singularities.

24 3 Differential Kinematics and Statics

Solution to Problem 3.8

The singular values of J are defined as the square roots of the eigenvalues of
the matrix JJT . On the other hand, the determinant of a matrix is given by
the product of its eigenvalues, and thus the manipulability measure in (3.56)
is given by the product of the singular values of the Jacobian matrix.

Solution to Problem 3.9

Let R be the radius of the circular object. The expression of the minimum
distance of the arm from the obstacle can be written as

d = min
di

(di −R) i = 1, 2, 3, (S3.4)

where di denotes the minimum distance of Link i from the centre o of the
obstacle. Let then pi = [pix piy]T denote the position vector of the point
along Link i which is closest to o. Link i lies along a line, whose equation can
be written in the parametric form

pix = xi−1 + si(xi − xi−1) (S3.5)
piy = yi−1 + si(yi − yi−1) (S3.6)

where (xi−1, yi−1) and (xi, yi) are the coordinates of the origins of Link i− 1
and Link i frames, respectively; obviously, the parameter si varies in the
range (0, 1). Therefore, computation of the minimum distance is given by the
solution to a minimization problem as a function of si, i.e.,

min
si

(
(pix − xo)2 + (piy − yo)2

)
0 ≤ si ≤ 1

where (xo, yo) are the coordinates of o. Using (S3.5) and (S3.6), and taking
the derivative with respect to si of the above function leads to the solution

s�i = − (xi−1 − xo)(xi − xi−1) + (yi−1 − yo)(yi − yi−1)
a2
i

(S3.7)

where a2
i = (xi − xi−1)2 + (yi − yi−1)2. For the point pi to belong to Link i,

the parameter shall be subject to the constraint

si = max
{
0,min{1, s�i }

}
, (S3.8)

which then allows computing pix and piy as in (S3.5), (S3.6). In sum, the
following operating procedure can be established.

Execute steps a and b for i = 1, 2, 3:
a. Compute s�i as in (S3.7) and si as in (S3.8).

b. Compute pi as in (S3.5), and

di =
√

(pix − xo)2 + (piy − yo)2.

3 Differential Kinematics and Statics 25

To complete, compute d as in (S3.4).

Solution to Problem 3.10

The problem is that to invert differential kinematics ve = Jq̇ by tolerating a
finite error ε, i.e.,

ve − Jq̇ = ε.

The solution can be obtained by minimizing the cost functional

g′′(q̇, ε) =
1
2
k2q̇T q̇ +

1
2
εT ε.

To cast the problem as a classic constrained optimization problem, let

w =
[
q̇
ε

]
A = [J I] .

With these positions, the above differential kinematics constraint can be
rewritten as

ve −Aw = 0,

while the cost functional becomes

g′′(w) =
1
2
wTQw

where

Q =
[
k2I O
O I

]
is a positive definite weighting matrix. By using the method of Lagrangian
multipliers, the modified cost functional can be written as

g′′(w,λ) =
1
2
wTQw + λT (ve −Aw)

where λ is an (r × 1) vector. The optimal solution is conceptually similar
to (3.50), i.e.,

w = Q−1AT (AQ−1AT)−1ve.

In view of the above expressions of w, A and Q, the solution can be formally
written after simple algebraic manipulation as[

q̇
ε

]
=
[
JT

k2I

](
JJT + k2I

)−1

ve.

It follows that the joint velocity is given by

q̇ = JT
(
JJT + k2I

)−1

ve

26 3 Differential Kinematics and Statics

where
J� = JT (JJT + k2I)−1

is the damped least-squares inverse of J , whereas the error is given by

ε = k2
(
JJT + k2I

)−1

ve.

The damping factor k establishes the relative weight between the kinematic
constraint ve = Jq̇ and the minimum norm joint velocity requirement. In
the neighbourhood of a singularity, k is to be chosen large enough so as to
render differential kinematics inversion well conditioned, whereas far from
singularities, k can be chosen small (even k = 0) so as to guarantee accurate
differential kinematics inversion.

Solution to Problem 3.11

From (3.6), it is
S(ω) = Ṙ(φ)RT (φ)

with R(φ) as in (2.18). Taking the required derivatives gives

S(ω) = Ṙz(ϕ)Ry′(ϑ)Rz′′(ψ)RT
z′′(ψ)RT

y′(ϑ)RT
z (ϕ)

+Rz(ϕ)Ṙy′(ϑ)Rz′′(ψ)RT
z′′(ψ)RT

y′(ϑ)RT
z (ϕ)

+Rz(ϕ)Ry′(ϑ)Ṙz′′(ψ)RT
z′′(ψ)RT

y′(ϑ)RT
z (ϕ).

Then, in view of (2.4), (3.8), (3.11), the previous expression can be simplified
into

S(ω) = S(ϕ̇z)
+Rz(ϕ)S(ϑ̇y′)RT

z (ϕ)
+Rz(ϕ)Ry′(ϑ)S(ψ̇z′′)RT

y′(ϑ)RT
z (ϕ)

= S(ϕ̇z) + S(ϑ̇Rz(ϕ)y′) + S(ψ̇Rz(ϕ)Ry′(ϑ)z′′)

and then

ω = [z Rz(ϕ)y′ Rz(ϕ)Ry′(ϑ)z′′] φ̇

=

⎡⎣ 0 −sϕ cϕsϑ
0 cϕ sϕsϑ
1 0 cϑ

⎤⎦ φ̇.

Solution to Problem 3.12

From (2.21), the contributions to the angular velocity of the derivatives of the
three Roll–Pitch–Yaw angles can be written as:

ϕ̇ = ϕ̇

⎡⎣ 0
0
1

⎤⎦ ϑ̇
′
= ϑ̇

⎡⎣ 0
1
0

⎤⎦ ψ̇
′′

= ψ̇

⎡⎣ 1
0
0

⎤⎦ ,

3 Differential Kinematics and Statics 27

where the superscripts indicate that rotations occur about axes of current
frames. Then, expressing the last two vectors with respect to the reference
frame gives

ϑ̇ = Rz(ϕ)ϑ̇
′
= ϑ̇

⎡⎣−sϕcϕ
0

⎤⎦
ψ̇ = Rz(ϕ)Ry(ϑ)ψ̇

′′
= ψ̇

⎡⎣ cϕcϑsϕcϑ
−sϑ

⎤⎦ .

Summing the three contributions leads to

ω = ϕ̇+ ϑ̇+ ψ̇

=

⎡⎣ 0 −sϕ cϕcϑ
0 cϕ sϕcϑ
1 0 −sϑ

⎤⎦ φ̇,

from which it is

T (φ) =

⎡⎣ 0 −sϕ cϕcϑ
0 cϕ sϕcϑ
1 0 −sϑ

⎤⎦ .

The determinant of matrix T is −cϑ, which implies that the relationship
cannot be inverted for ϑ = −π/2, π/2. These are representation singularities of
φ; notice also that solutions (2.22) and (2.23) degenerate at such singularities.

Solution to Problem 3.13

The contributions to the angular velocity of the derivatives of the three Euler
angles can be written as:

ϕ̇ = ϕ̇eϕ ϑ̇
′
= ϑ̇e′ϑ ψ̇

′′
= ψ̇e′′ψ,

where eϕ, e′ϑ and e′′ψ are the constant unit vectors of the axes of the current
frames, which depend on the particular triplet of Euler angles. The super-
scripts indicate that vectors are expressed in the current frames. In the case
ϕ = ϑ = ψ = 0 the current frames coincide and the three contributions can
be added, i.e.,

ω = ϕ̇+ ϑ̇
′
+ ψ̇

′′
= T (0)φ̇

with T (0) = [eϕ e′ϑ e′′ψ]. Therefore, with the choice

eϕ =

⎡⎣ 1
0
0

⎤⎦ e′ϑ =

⎡⎣ 0
1
0

⎤⎦ e′′ψ =

⎡⎣ 0
0
1

⎤⎦ ,

i.e., for XYZ angles, it is T (0) = I.

28 3 Differential Kinematics and Statics

Fig. S3.1. Block scheme of the inverse kinematics algorithm for arm position

Solution to Problem 3.14

With reference to a 6-DOFs manipulator having a spherical wrist, let qP =
[q1 q2 q3]T denote the vector of joint variables determining arm position
and qO = [ϑ4 ϑ5 ϑ6]T the vector of joint variables determining wrist ori-
entation. For such manipulator, it is possible to solve inverse kinematics in
two stages; namely, first solve for qP , and then solve for qO.

Let pd(t) and Rd(t) = [nd(t) sd(t) ad(t)] be the desired time history
of end-effector position and orientation. From (2.93), it is possible to compute
the desired time behaviour of wrist position as

pWd = pd − d6ad.

Taking time derivative of both sides gives

ṗWd = ṗd − d6ωd × ad
where the time derivative of the unit vector ad (constant norm) has been
expressed as ȧd = ωd × ad.

By using the block-partitioned form of the Jacobian in (3.42) with p =
pW , the differential kinematics equation for arm linear velocity is

ṗW = JPP (qP)q̇P

where JPP formally coincides with J11 evaluated for p = pW . In view of this,
the joint velocity solution of kind (3.70) can be written as

q̇P = J−1
PP (qP)(ṗWd +KPePW)

where ePW = pWd − pW and KP is a positive definite matrix. The resulting
block scheme is shown in Fig. S3.1.

Once the time behaviour of qP and q̇P has been computed in the first
stage, the differential kinematics equation for wrist angular velocity is

ω = JOP (qP)q̇P + JOO(qP , qO)q̇O

3 Differential Kinematics and Statics 29

Fig. S3.2. Block scheme of the inverse kinematics algorithm for wrist orientation

where JOP and JOO respectively denote the Jacobians J21 and J22 in (3.42)
evaluated for p = pW . In view of this, the joint velocity solution of kind (3.70)
can be written as

q̇O = J−1
OO(qP , qO)

(
ωd − JOP (qP)q̇P +KOeO

)
where eO is the orientation error in (3.85) andKO is a positive definite matrix.
The resulting block scheme for the second stage is shown in Fig. S3.2.

It is anticipated that the two-stage algorithm leads to a computational
savings with respect to the algorithm based on the inverse of the full Jacobian.

Solution to Problem 3.15

In the case ẋd �= 0, the time derivative of the Lyapunov function is given as
in (3.77)

V̇ (e) = eTKẋd − eTKJA(q)JTA(q)Ke

where the sign of the first term is indefinite, and the second term is less than
or equal to zero. This function can be upper bounded as

V̇ (e) ≤ |eTKẋd| − ‖JTAKe‖2.

In the worst case, it is necessary to take the largest value of the first term and
the smallest value of the second term, leading to

V̇ (e) ≤ ‖e‖λmax(K)‖ẋd‖max − σ2
r (JA)λ2

min(K)‖e‖2,

where λmax(K) (λmin(K)) denotes the maximum (minimum) eigenvalue of K,
‖ẋd‖max denotes the maximum end-effector velocity, and σr(JA) denotes the
minimum singular value of JA. The quadratic term in the error prevails over
the linear term as long as

‖e‖ ≥ ‖ẋd‖maxλmax(K)
σ2
r(JA)λ2

min(K)

30 3 Differential Kinematics and Statics

and V̇ (e) ≤ 0. It follows that an upper bound on the error is given by

‖e‖max =
‖ẋd‖max

kσ2
r (JA)

where K has been conveniently chosen as a diagonal matrix K = kI.

Solution to Problem 3.16

The matrix product RdR
T gives

RdR
T =⎡⎣ndxnx + sdxsx + adxax ndxny + sdxsy + adxay ndxnz + sdxsz + adxaz

ndynx + sdysx + adyax ndyny + sdysy + adyay ndynz + sdysz + adyaz
ndznx + sdzsx + adzax ndzny + sdzsy + adzay ndznz + sdzsz + adzaz

⎤⎦ .

In view of (3.84), subtracting the element [1, 2] from the element [2, 1] and
equating the difference to 2rzsϑ as in (2.28) gives

2rzsϑ = (ndynx − ndxny) + (sdysx − sdxsy) + (adyax − adxay),

and thus
rzsϑ =

1
2
(
(n× nd)z + (s× sd)z + (a× ad)z

)
where the subscripts z denote the z-components of the relevant vectors. In a
similar way, subtracting the elements [3, 1] from the respective elements [1, 3]
and equating the difference to 2rysϑ gives

rysϑ =
1
2
(
(n× nd)y + (s× sd)y + (a× ad)y

)
.

Yet, subtracting the elements [2, 3] from the respective elements [3, 2] and
equating the difference to 2rxsϑ gives

rxsϑ =
1
2
(
(n× nd)x + (s× sd)x + (a× ad)x

)
.

In turn, grouping the previous three expressions leads to

r sinϑ =
1
2

(n× nd + s× sd + a× ad)

and, in view of the definition of orientation error as in (3.83), the result in
(3.85) follows.

Solution to Problem 3.17

The expression of the orientation error from (3.85) is

eO =
1
2

(n× nd + s× sd + a× ad) .

3 Differential Kinematics and Statics 31

Taking the time derivative of the first term on the right-hand side gives

d

dt
(n× nd) = ṅ× nd + n× ṅd

= −S(nd)ṅ+ S(n)ṅd.

Expressing the time derivatives of the unit vectors as

ṅ = ω × n = −S(n)ω
ṅd = ωd × nd = −S(nd)ωd

leads to
d

dt
(n× nd) = S(nd)S(n)ω − S(n)S(nd)ωd.

Proceeding in a similar way for the other two terms on the right-hand side of
(3.85) yields

d

dt
(s× sd) = S(sd)S(s)ω − S(s)S(sd)ωd

d

dt
(a× ad) = S(ad)S(a)ω − S(a)S(ad)ωd.

In turn, grouping the previous three contributions to the time derivative of
the orientation error gives

ėO = −1
2
(
S(n)S(nd) + S(s)S(sd) + S(a)S(ad)

)
ωd

+
1
2
(
S(nd)S(n) + S(sd)S(s) + S(ad)S(a)

)
ω

and, in view of the position (3.87), the result in (3.86) follows.

Solution to Problem 3.18

It is not difficult to see that, by using the skew-symmetric operator S(·), (2.33)
can be rewritten in compact form as

R(η, ε) = (2η2 − 1)I + 2εεT + 2ηS(ε). (S3.9)

Computing the time derivative of (S3.9) gives

Ṙ(η, ε) = 4η̇ηI + 2ε̇εT + 2εε̇T + 2η̇S(ε) + 2ηS(ε̇). (S3.10)

Substituting (S3.9) and (S3.10) into (3.6) gives:

S(ω) = ṘRT

= 4η̇η(2η2 − 1)I + 8η̇ηεεT − 8η̇η2S(ε)
+2(2η2 − 1)ε̇εT + 4ε̇εT εεT − 4ηε̇εTS(ε)
+2(2η2 − 1)εε̇T + 4εε̇T εεT − 4ηεε̇TS(ε) (S3.11)
+2η̇(2η2 − 1)S(ε) + 4η̇S(ε)εεT − 4η̇ηS(ε)S(ε)
+2η̇(2η2 − 1)S(ε̇) + 4ηS(ε̇)εεT − 4η2S(ε̇)S(ε).

32 3 Differential Kinematics and Statics

q

plot

dag(J_p(q))dp + P(q)dq_0

Jacobian pseudo-inverse
with constraint

cs(q)

sinusoidal
 functions

dq_0

constraint
velocity

dqe_p

k_p(q)

direct
kinematics

K_p

[T,dp_d]

time

0.001z

z-1

unconstrained
solution

constrained
solution

+

-

[T,p_d] +

+

Fig. S3.3. Simulink block diagram of closed-loop Jacobian pseudo-inverse algo-
rithm with constraint

Next, taking the time derivative of the constraint in (2.32) gives

εT ε̇ = ε̇T ε = −ηη̇. (S3.12)

Then, using (2.32), (S3.12) and the property S(x)S(y) = yxT −xTyI yields
the following equalities:

ε̇εT εεT = (1 − η2)ε̇εT

εε̇T εεT = −η̇ηεεT
S(ε)S(ε) = εεT − (1 − η2)I
S(ε̇)S(ε) = εε̇T + η̇ηI

εε̇TS(ε) = (S(ε̇)S(ε) − η̇ηI)S(ε)
S(ε̇)εεT = S(ε̇)(S(ε)S(ε) + (1 − η2)I).

By virtue of the above equalities and observing that S(ε)ε = 0, (S3.11) be-
comes

S(ω) = 2(ε̇εT − εε̇T) + 2ηS(ε̇) − 2η̇S(ε)

which, in view of the property S(S(x)y) = yxT −xyT , can be written in the
form

S(ω) = 2S(S(ε)ε̇) + 2ηS(ε̇) − 2η̇S(ε).

Finally, the angular velocity can be computed as

ω = 2S(ε)ε̇+ 2ηε̇− 2η̇ε. (S3.13)

3 Differential Kinematics and Statics 33

0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

[s]

[r
ad

]

joint pos

1

2

3

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

1

23

[s]

[r
ad

/s
]

joint vel

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10

−6

[s]

[m
]

pos error norm

0 0.5 1 1.5 2 2.5

−0.1

−0.05

0

0.05

0.1

0.15

[s]

[m
]

distance

Fig. S3.4. Time history of the joint positions and velocities, of the norm of end-
effector position error, and of the distance from the obstacle in the unconstrained
case

Solution to Problem 3.19

Multiplying both sides of (S3.13) by εT and using (S3.12), (2.32) yields

εTω = 2ηεT ε̇− 2η̇εT ε = −2η̇

and thus
η̇ = −1

2
εTω.

Multiplying both sides of (S3.13) by S(ε) yields

S(ε)ω = 2S(ε)S(ε)ε̇+ 2ηS(ε)ε̇,

which, by virtue of (S3.12), (2.32), (S3.13) and the property S(x)S(y) =
yxT − xTyI, can be rewritten in the form

S(ε)ω = −2η̇ηε− 2(1 − η2)ε̇+ η(ω − 2ηε̇+ 2η̇ε)
= −2ε̇+ ηω

and thus
ε̇ =

1
2

(ηI − S(ε))ω.

34 3 Differential Kinematics and Statics

0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

[s]

[r
ad

]

joint pos

1

2

3

0 0.5 1 1.5 2 2.5
−5

0

5

1
2

3

[s]

[r
ad

/s
]

joint vel

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10

−6

[s]

[m
]

pos error norm

0 0.5 1 1.5 2 2.5

−0.1

−0.05

0

0.05

0.1

0.15

[s]

[m
]

distance

Fig. S3.5. Time history of the joint positions and velocities, of the norm of end-
effector position error, and of the distance from the obstacle in the constrained case

Solution to Problem 3.20

Differentiating (3.96) with respect to time gives

V̇ = 2(ηd − η)(η̇d − η̇) + 2(εd − ε)T (ε̇d − ε̇)
=
(
ηεTd − ηdε

T − S(εd)ε
)
(ωd − ω)

where the quaternion propagation in (3.94), (3.95), and the property S(ε)ε =
0 have been exploited. The result in (3.97) follows by using (3.91) and (3.93).

Solution to Problem 3.21

From the given pd(0), the initial posture of the arm q(0) is computed
according to the formulæ in Sect. 2.12.1 (elbow-up) with an arbitrary value
of φ, e.g., φ = π/4. The desired trajectory regards the vertical component of
end-effector position and is chosen as

pdy(t) = pdy(0) + 0.5
(
1 − cos (0.5πt)

)(
pdy(2) − pdy(0)

)
0 ≤ t ≤ 2

with pdy(0) = 0.2 and pdy(2) = −0.2. The desired velocity is found by differ-
entiation of the above trajectory. As for the constraint, the minimum distance
of the arm from the obstacle (3.58) is computed according to the solution to

3 Differential Kinematics and Statics 35

variables
 initialization

[T,dx_d]

+

-

[T,x_d]
K

e

inv(J_a(q))dx

Jacobian
inverse

+

+

k(q)

direct
kinematics

time

dq

0.001z

z-1
q

plot

cs(q)

sinusoidal
functions

Fig. S3.6. Simulink block diagram of closed-loop Jacobian inverse algorithm

Problem 3.11. Its gradient is found by numerical differentiation with a step of
10−6.

The inverse kinematics algorithm based on (3.72) is used, with the matrix
gain K = diag{500, 500} and q̇0 as in (3.55) with k0 = 35. The resulting
Simulink block diagram is shown in Fig. S3.3, where both the unconstrained
case (k0 = 0) and the constrained case can be run.

The files with the solution can be found in Folder 3 21.
The resulting joint positions and velocities, as well as the norm of end-

effector position error and the distance from the obstacle, in the two cases,
are shown in Figs. S3.4 and S3.5, respectively.

It can be recognized that the position error is small along the trajectory
and tends to zero at steady state in both cases. In the unconstrained case, the
arm is seen to collide with the obstacle (negative distance). On the other hand,
in the constrained case, large initial values of joint velocities occur which are
needed to move the arm away from the obstacle.

Solution to Problem 3.22

From the given xd(0), the initial posture of the manipulator q(0) is computed
according to the formulæ in the solution to Problem 2.20 (elbow-up). The
desired trajectory for the end-effector position is chosen as

xd(t) = xd(0) + 0.5
(
1 − cos (0.5πt)

)(
xdy(2) − xdy(0)

)
0 ≤ t ≤ 2

36 3 Differential Kinematics and Statics

0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

1

2

3

4

[s]

[r
ad

]

joint pos

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

1

2

3

4

[s]

[r
ad

/s
]

joint vel

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2
x 10

−6

[s]

[m
]

pos error norm

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−5

[s]

[r
ad

]

orien error

Fig. S3.7. Time history of the joint positions and velocities, of the norm of end-
effector position error, and of the end-effector orientation error with closed-loop
Jacobian inverse algorithm

with xd(0) = [0.7 0 0 0]T and xd(2) = [0 0.8 0.5 π/2]T . The de-
sired velocity is found by differentiation of the above trajectory.

First, the inverse kinematics algorithm based on (3.70) is used where the
analytical Jacobian is given in (S3.3). The matrix gain is chosen as K =
diag{500, 500, 500, 100}. The resulting Simulink block diagram is shown in
Fig. S3.6.

The files with the solution can be found in Folder 3 22.
The resulting joint positions and velocities, as well as the norm of end-

effector position error and the end-effector orientation error, are shown in
Fig. S3.7. The tracking performance is satisfactory and the errors vanish at
steady state.

Next, the inverse kinematics algorithm based on (3.76) is used with the
same matrix gain as above. The resulting Simulink block diagram is shown
in Fig. S3.8.

The resulting joint positions and velocities, as well as the norm of end-
effector position error and the end-effector orientation error, are shown in
Fig. S3.9. It can be recognized that tracking errors slightly increase, but
steady-state performance remains satisfactory.

3 Differential Kinematics and Statics 37

variables
 initialization

+

-

dqe

[T,x_d]

k(q)

direct
kinematics

time

plot

K
tr(J_a(q))Ke

Jacobian
transpose

cs(q)

sinusoidal
functions

0.001z

z-1
q

Fig. S3.8. Simulink block diagram of closed-loop Jacobian transpose algorithm

Solution to Problem 3.23

The core of the quadratic form defining the velocity manipulability ellipsoid
in (3.123) is given by the inverse of the core of the quadratic form defining
the force manipulability ellipsoid in (3.126). Let A = JJT denote such core.
The eigenvalues λi and the eigenvectors ui of A satisfy the equation

Aui = λiui.

Premultiplying both sides by A−1 and dividing by λi gives

A−1ui =
1
λi
ui,

which demonstrates the notable result that the directions of the principal axes
(eigenvectors) of the force and velocity manipulability ellipsoids coincide while
their dimensions (eigenvalues) are in inverse proportion.

38 3 Differential Kinematics and Statics

0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

1

2

3

4

[s]

[r
ad

]

joint pos

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

1

2

3

4

[s]

[r
ad

/s
]

joint vel

0 0.5 1 1.5 2 2.5
0

0.002

0.004

0.006

0.008

0.01

[s]

[m
]

pos error norm

0 0.5 1 1.5 2 2.5
−6

−4

−2

0

2

4

6
x 10

−3

[s]
[r

ad
]

orien error

Fig. S3.9. Time history of the joint positions and velocities, of the norm of end-
effector position error, and of the end-effector orientation error with closed-loop
Jacobian transpose algorithm

4

Trajectory Planning

Solution to Problem 4.1

In order to satisfy initial and final constraints on position, velocity and accel-
eration, a fifth-order polynomial is needed

q(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0.

The coefficients can be determined by solving the following system of linear
equations:

a0 = qi

a1 = q̇i

2a2 = q̈i

a5t
5
f + a4t

4
f + a3t

3
f + a2t

2
f + a1tf + a0 = qf

5a5t
4
f + 4a4t

3
f + 3a3t

2
f + 2a2tf + a1 = q̇f

20a5t
3
f + 12a4t

2
f + 6a3tf + 2a2 = q̈f .

With the given data, the files used to compute the coefficients and to generate
the time behaviour of position, velocity and acceleration can be found in Folder
4 1.

The coefficients are:

a0 = 1 a1 = 0 a2 = 0 a3 =
15
4

a4 = −45
16

a5 =
9
16

and the resulting trajectory is illustrated in Fig. S4.1.

Solution to Problem 4.2

Imposing velocity constraints yields

q̇i = 0
q̇f = k(1 − cos (atf)).

40 4 Trajectory Planning

0 0.5 1 1.5 2

1

2

3

4

pos

[s]

[r
ad

]

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

vel

[s]

[r
ad

/s
]

0 0.5 1 1.5 2
−5

0

5
acc

[s]

[r
ad

/s
^2

]

Fig. S4.1. Time history of position, velocity and acceleration with a fifth-order
polynomial timing law

The second equation implies that

0 ≤ q̇f
k

≤ 2

which is satisfied for all k as long as q̇f = 0. In that case, it is a = 2π/tf .
Then, integrating the given velocity profile gives

q(t) = k1 + k

(
t− tf

2π
sin
(

2πt
tf

))
,

and imposing position constraints yields the two coefficients

k1 = qi

4 Trajectory Planning 41

0 0.5 1 1.5 2

0

1

2

3

pos

[s]

[r
ad

]

0 0.5 1 1.5 2

0

1

2

3

vel

[s]

[r
ad

/s
]

0 0.5 1 1.5 2
−5

0

5
acc

[s]

[r
ad

/s
^2

]

Fig. S4.2. Time history of position, velocity and acceleration with a raised cosine
timing law

k =
qf − qi
tf

.

With the given data, the files used to compute the two coefficients and to
generate the time behaviour of position, velocity and acceleration can be found
in Folder 4 2.

The coefficients are:
k = 1.5 k1 = 0

and the resulting trajectory is illustrated in Fig. S4.2.

42 4 Trajectory Planning

0 1 2 3 4

0

1

2

3

pos

[s]

[r
ad

]

0 1 2 3 4
−0.5

0

0.5

1

1.5

2
vel

[s]

[r
ad

/s
]

0 1 2 3 4
−3

−2

−1

0

1

2

3
acc

[s]

[r
ad

/s
^2

]

Fig. S4.3. Time history of position, velocity and acceleration with two fifth-order
interpolating polynomials

Solution to Problem 4.3

It is required to satisfy initial and final constraints on position, velocity and
acceleration (6 equations), intermediate position constraints (2 equations),
and continuity of velocity and acceleration at the intermediate point (2 equa-
tions). Therefore, with two fifth-order interpolating polynomials it is possible
to specify also velocity and acceleration at the intermediate point.

Let qm denote the intermediate point at time tm. A viable choice is to
compute the mean velocities in the two intervals

q̇a =
qm − qi
tm − ti

q̇b =
qf − qm
tf − tm

,

4 Trajectory Planning 43

and then to choose velocity at the intermediate point as

q̇m =
q̇a + q̇b

2
.

Likewise, for acceleration it is

q̈a =
q̇m − q̇i
tm − ti

q̈b =
q̇f − q̇m
tf − tm

and then
q̈m =

q̈a + q̈b
2

.

With the given data and null initial and final velocities and accelerations, the
files used to generate the time behaviour of position, velocity and acceleration
can be found in the Folder 4 3.

The resulting trajectory is illustrated in Fig. S4.3.

Solution to Problem 4.4

By using (4.13), (4.14), (4.23), (4.16), (4.25), the time derivative of Πk(t) in
(4.27) can be written as

Π̇k(t) = − Π̈k(tk)
2Δtk

(tk+1 − t)2 +
Π̈k+1(tk+1)

2Δtk
(t− tk)2 (S4.1)

+
qk+1 − qk
Δtk

+
Δtk
6

(
Π̈k(tk) − Π̈k+1(tk+1)

)
k = 1, . . . , N + 1

where q2 and qN+1 are unknown. Then, using (4.15), (4.24) leads to

Δtk
6
Π̈k(tk) +

Δtk +Δtk+1

3
Π̈k+1(tk+1) +

Δtk+1

6
Π̈k+2(tk+2) (S4.2)

=
qk
Δtk

−
(

1
Δtk+1

+
1
Δtk

)
qk+1 +

qk+2

Δtk+1
k = 1, . . . , N

where Π̈1(t1) = q̈i as in (4.19) and Π̈N+2(tN+2) = q̈f as in (4.22).
Evaluating (S4.1) for k = 1 at t = t1 and applying (4.17), (4.18) yields

q2 = qi + q̇iΔt1 + q̈i
Δt21
3

+ Π̈2(t2)
Δt21
6

. (S4.3)

Likewise, evaluating (S4.1) for k = N + 1 at t = tN+2 and applying (4.20),
(4.21) yields

qN+1 = qf − q̇fΔtN+1 + q̈f
Δt2N+1

3
+ Π̈N+1(tN+1)

Δt2N+1

6
. (S4.4)

In the case N > 3, substituting (S4.3) into (S4.2) for k = 1, 2 and (S4.4) into
(S4.2) for k = N −1, N leads to writing the linear system of N equations into
N unknowns given in (4.28).

44 4 Trajectory Planning

The coefficient matrix takes on the tridiagonal band structure

A =

⎡⎢⎢⎢⎢⎣
a11 a12 . . . 0 0
a21 a22 . . . 0 0
...

...
. . .

...
...

0 0 . . . aN−1,N−1 aN−1,N

0 0 . . . aN,N−1 aNN

⎤⎥⎥⎥⎥⎦
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 =
Δt1
2

+
Δt2
3

+
Δt21
6Δt2

akk =
Δtk +Δtk+1

3
k = 2, . . . , N − 1

aNN =
ΔtN

3
+
ΔtN+1

2
+
Δt2N+1

6ΔtN

a21 =
Δt2
6

− Δt21
6Δt2

ak,k−1 =
Δtk
6

k = 3, . . . , N

ak,k+1 =
Δtk+1

6
k = 1, . . . , N − 2

aN−1,N =
ΔtN

6
− Δt2N+1

6ΔtN
which depend only on the given time intervals Δtk, k = 1, . . . , N + 1.

Further, the components of the vector b of known terms in (4.28) are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
q3 − qi
Δt2

−
(

1
Δt2

+
1
Δt1

)(
q̇iΔt1 + q̈i

Δt21
3

)
− q̈i

Δt1
6

b2 =
1
Δt2

(
qi + q̇iΔt1 + q̈i

Δt21
3

)
−
(

1
Δt3

+
1
Δt2

)
q3 +

q4
Δt3

bk =
qk
Δtk

−
(

1
Δtk+1

+
1
Δtk

)
qk+1 +

qk+2

Δtk+1
k = 3, . . . , N − 2

bN−1=
qN−1

ΔtN−1
−
(

1
ΔtN

+
1

ΔtN−1

)
qN+

1
ΔtN

(
qf − q̇fΔtN+1 + q̈f

Δt2N+1

3

)
bN =

qN − qf
ΔtN

−
(

1
ΔtN+1

+
1

ΔtN

)(
−q̇fΔtN+1 + q̈f

Δt2N+1

3

)
− q̈f

ΔtN+1

6

where the values qk are given for k = 1, 3, . . . , N,N + 2.

4 Trajectory Planning 45

On the other hand, in the case N = 3, the same expressions for the a’s
can be used; for the b’s, instead, b1 and b3 can be computed as above and b2
takes on the expression

b2 =
1
Δt2

(
qi + q̇iΔt1 + q̈i

Δt21
3

)
−
(

1
Δt3

+
1
Δt2

)
q3

+
1
Δt3

(
qf − q̇fΔt4 + q̈f

Δt24
3

)
.

Solution to Problem 4.5

The time instants of the two virtual points are chosen as t1 = 1 and t4 =
3. With the given data, the files used to compute the matrix A and the
vector b in (4.28), and to generate the time behaviour of position, velocity
and acceleration can be found in the Folder 4 5.

The matrix of coefficients is

A =

⎡⎣ 1 1/6 0
0 2/3 0
0 1/6 1

⎤⎦ b =

⎡⎣ 2
−1
−1

⎤⎦ ,

and the resulting trajectory is illustrated in Fig. S4.4.

Solution to Problem 4.6

The interpolating trajectory given by a sequence of linear polynomials with
parabolic blends can be analytically described as

q(t) =

⎧⎪⎪⎨⎪⎪⎩
ak1(t− tk) + ak0 tk +

Δt′k
2

≤ t < tk+1 −
Δt′k+1

2

bk2(t− tk)2 + bk1(t− tk) + bk0 tk − Δt′k
2

≤ t < tk +
Δt′k
2

.

The velocity in the linear segments is

q̇k−1,k =

⎧⎪⎪⎨⎪⎪⎩
q̇i k = 1
qk − qk−1

Δtk−1
k = 2, . . . , N

q̇f k = N + 1,

and then the coefficients of the linear polynomials are

ak0 = qk ak1 = q̇k,k+1 k = 1, . . . , N − 1.

Imposing continuity of velocity between the linear and parabolic polynomials
at time instants (tk−Δt′k/2) and (tk+Δt′k/2) allows computing the coefficients

bk1 =
q̇k,k+1 + q̇k−1,k

2
bk2 =

q̇k,k+1 − q̇k−1,k

2Δt′k
k = 1, . . . , N .

46 4 Trajectory Planning

0 1 2 3 4

0

1

2

3

pos

[s]

[r
ad

]

0 1 2 3 4
−0.5

0

0.5

1

1.5

2
vel

[s]

[r
ad

/s
]

0 1 2 3 4
−3

−2

−1

0

1

2

3
acc

[s]

[r
ad

/s
^2

]

Fig. S4.4. Time history of position, velocity and acceleration with a cubic spline
timing law

Then, imposing continuity of position at (tk +Δt′k/2) yields

bk0 = qk + (q̇k,k+1 − q̇k−1,k)
Δt′k
8

k = 1, . . . , N ;

it can be verified that this choice guarantees continuity of position also at
(tk −Δt′k/2).

The duration of the blend times is chosen as Δt′k = 0.2 for k = 1, 2, 3.
With the given data, the files used to compute the above coefficients, and
to generate the time behaviour of position, velocity and acceleration can be
found in Folder 4 6.

4 Trajectory Planning 47

0 1 2 3 4

0

1

2

3

pos

[s]

[r
ad

]

0 1 2 3 4
−0.5

0

0.5

1

1.5

2
vel

[s]

[r
ad

/s
]

0 1 2 3 4
−6

−4

−2

0

2

4

6
acc

[s]

[r
ad

/s
^2

]

Fig. S4.5. Time history of position, velocity and acceleration with a timing law of
interpolating linear polynomials with parabolic blends

The coefficients are:

a10 = 0 a11 = 1 a20 = 2 a21 = 0.5

b10 = 0.025 b11 = 0.5 b12 = 2.5

b20 = 1.9875 b21 = 0.75 b22 = −1.25

b30 = 2.9875 b31 = 0.25 b32 = −1.25,

and the resulting trajectory is illustrated in Fig. S4.5.

48 4 Trajectory Planning

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

x−pos

[s]

[m
]

0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6
y−pos

[s]

[m
]

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
x−vel

[s]

[m
/s

]

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
y−vel

[s]

[m
/s

]

0 0.5 1 1.5 2
−2

−1

0

1

2
x−acc

[s]

[m
/s

^2
]

0 0.5 1 1.5 2
−2

−1

0

1

2
y−acc

[s]

[m
/s

^2
]

Fig. S4.6. Time history of position, velocity and acceleration of x- and y-
components along a straight path with a trapezoidal velocity profile timing law

Solution to Problem 4.7

A trapezoidal velocity profile for the path coordinate s is assigned according
to (4.8) with maximum velocity ṡc = 1. The timing law for p(t) and its
derivatives is generated via (4.34) and (4.42).

With the given data, the files used to generate the time behaviour of
position, velocity and acceleration can be found in Folder 4 7.

The resulting trajectories for the x- and y-components are illustrated in
Fig. S4.6.

4 Trajectory Planning 49

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
y−pos

[s]

[m
]

0 0.5 1 1.5 2
0

0.5

1

1.5
z−pos

[s]

[m
]

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

y−vel

[s]

[m
/s

]

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

z−vel

[s]

[m
/s

]

0 0.5 1 1.5 2
−2

−1

0

1

2
y−acc

[s]

[m
/s

^2
]

0 0.5 1 1.5 2
−2

−1

0

1

2
z−acc

[s]

[m
/s

^2
]

Fig. S4.7. Time history of position, velocity and acceleration of x- and y-
components along a circular path with a trapezoidal velocity profile timing law

Solution to Problem 4.8

The unit vectors of the axes of the reference frame for the circle are chosen as

x′ = y y′ = −z z′ = −x;

notice that the choice z′ = −x ensures that the path is executed clockwise
about axis x. From (4.39), the path representation is

p(s) =

⎡⎣ 0
0.5 cos (2s)

1 − 0.5 sin (2s)

⎤⎦ .

50 4 Trajectory Planning

Since it is required to execute half a circle with tf = 2, the final value of the
path coordinate is sf = s(2) = π/2. Then, a trapezoidal velocity profile for
the path coordinate s is assigned according to (4.8) with maximum velocity
ṡc = 1. The timing law for p(t) and its derivatives is generated via (4.39),
(4.44).

With the given data, the files used to generate the time behaviour of
position, velocity and acceleration can be found in Folder 4 8.

The resulting trajectories for the y- and z-components are illustrated in
Fig. S4.7.

5

Actuators and Sensors

Solution to Problem 5.1

At steady state, (5.1)–(5.4) can be written in the time domain as

va = Raia + vg (S5.1)
vg = kvωm (S5.2)
cm = Fmωm + cr (S5.3)
cm = ktia (S5.4)

where
va = Ci(0)Gv(v′c − kiia). (S5.5)

Combining (S5.1), (S5.2), (S5.5) with ki = 0 and K = Ci(0)Gv gives

Kv′c = Raia + kvωm

and yet, using (S5.3) and (S5.4) with cr = 0, it is

Kv′c =
(
FmRa
kt

+ kv

)
ωm.

If Fm
 kvkt/Ra, then

ωm ≈ K

kv
v′c.

If instead ki �= 0, on reduction of (S5.1)–(S5.5), it is

Kv′c =
(
Ra +Kki

kt

)
cm + kvωm.

If Kki � Ra, then

cm ≈ kt
ki

(
v′c −

kv
K
ωm

)
.

52 5 Actuators and Sensors

variables
initialization

C_i

V'_c

G_v

T_v.s+1

k_v

+

-

-

k_t +

-

curr

omega

F_m

plot

time

1

L_a.s
1

I_m.s

R_a

Fig. S5.1. Simulink block diagram of electric servomotor

From the block scheme in Fig. 5.3, the output can be computed via the closed-
loop transfer functions; namely, the input/output and disturbance/output
transfer functions, i.e.,

Ωm =

Kkt
Ra(sIm + Fm)

1 +
kvkt

Ra(sIm + Fm)

V ′
c −

1
sIm + Fm

1 +
kvkt

Ra(sIm + Fm)

Cr.

If Fm
 kvkt/Ra, then

Ωm =

K

kv

1 + s
RaIm
kvkt

V ′
c −

Ra
kvkt

1 + s
RaIm
kvkt

Cr .

Finally, from the block scheme in Fig. 5.4, it is straightforward to compute
the output as

Ωm =

kt
kiFm

1 + s
Im
Fm

V ′
c −

1
Fm

1 + s
Im
Fm

Cr.

Solution to Problem 5.2

With reference to the scheme in Fig. 5.2 (ki = 0 and Cr = 0) and the given
data, the resulting Simulink block diagram is shown in Fig. S5.1. The servo-

5 Actuators and Sensors 53

0 0.05 0.1 0.15
−0.5

0

0.5

1

1.5

2

2.5

[s]

[A
]

current

0 0.05 0.1 0.15
0

1

2

3

4

5

6

[s]

[r
ad

/s
]

velocity

Fig. S5.2. Time history of current and velocity step response for an electric servo-
motor

motor is simulated as a continuous-time system using a variable-step integra-
tion method with a maximum step size of 1ms. Notice that the amplifier time
constant is too small to produce appreciable effects at this sampling time.

The files with the solution can be found in Folder 5 2.
The resulting current and velocity responses to a unit step voltage input V ′

c

are shown in Fig. S5.2. It can be seen that the steady-state velocity slightly
deviates from the value of 5 rad/s as in (5.7), because of the presence of
mechanical friction (Fm). This also implies that the steady-state current is
different from zero.

Solution to Problem 5.3

By closing a current loop with large loop gain, the current response is expected
to become much faster than the velocity response. Velocity plays the role of a
disturbance for the voltage-to-current closed-loop system. Hence, it is worth
choosing a PI control structure for Ci(s) in order to obtain a null steady-state
error, i.e.,

Ci(s) = KI
1 + sTI

s
.

With the given data, by setting Ωm = 0, the closed-loop input/output transfer
function (Tv ≈ 0) is

Ia
V ′
c

=
1 + sTI

1 + s
0.2 +KITI

KI
+ s2

0.002
KI

.

Since the settling time within 1% is given by

ts =
4.6
ζωn

,

either the damping ratio or the natural frequency can be imposed. Choosing
ζ = 0.7 with ts = 2 ms yields

KI = 21592 TI = 0.000416.

54 5 Actuators and Sensors

+

-

k_t

+

-

-

k_v

velocitycurrent

curr

G_v

T_v.s+1 1

L_a.s

R_a

k_i

C_i(s)

V'_c

-

+

plot

F_m

omega
1

I_m.s

time

Fig. S5.3. Simulink block diagram of electric servomotor with current feedback
loop and PI control

0 1 2 3 4 5

x 10
−3

0

0.5

1

1.5

2

[s]

[A
]

current

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

[s]

[r
ad

/s
]

velocity

Fig. S5.4. Time history of current and velocity step response for an electric servo-
motor with current feedback loop and PI control

The resulting Simulink block diagram is shown in Fig. S5.3. The servomotor
is simulated as a continuous-time system using a variable-step integration
method. Since the current dynamics is much faster than the velocity dynamics,
the maximum step size has been chosen much smaller than in Problem 5.2, i.e.,
0.05ms. Further, in order to make a comparison between the velocity response
in this case and the case of Problem 5.2, the block diagram in Fig. S5.3 features
a separate execution with a longer final time and a sampling time of 1ms.

The files with the solution can be found in Folder 5 3.
The resulting current and velocity are shown in Fig. S5.4. The current

response goes as expected, while the velocity response is slowed down with
respect to the response in Fig. S5.2 because it is dominated by the time
constant Im/Tm.

5 Actuators and Sensors 55

Fig. S5.5. Reduction on the block scheme of a hydraulic motor with servovalve and
distributor

Solution to Problem 5.4

From this block scheme, the following relations can be found:

Θm =
1
s
Ωm

Ωm =
Cm − Cr
sIm + Fm

Cm = ktP

P =
1

skc + kl

(
kx
kr

(
X − P

kx

)
− kqΩm

)
=

kxX − krkqΩm
1 + krkl + skrkc

X =
Gs

1 + sTs
Vc.

Substituting (S5.6) into (S5.6), and then (S5.6) into (S5.6), yields(
1 +

ktkrkq
(sIm + Fm)(1 + krkl + skrkc)

)
Ωm =

ktkx
(1 + krkl + skrkc)(sIm + Fm)

X

− 1
sIm + Fm

Cr .

Solving for Ωm, substituting it into (S5.6), and using (S5.6) leads to

Θm =

kxGs
krkq

s(1 + sTs)

(
1 +

Fm
ktkrkq

(
1 + s

Im
Fm

)
(1 + krkl + skrkc)

)Vc

56 5 Actuators and Sensors

−
1 + krkl + skrkc

ktkrkq

s

(
1 +

Fm
ktkrkq

(
1 + s

Im
Fm

)
(1 + krkl + skrkc)

)Cr.

Solution to Problem 5.5

Without loss of generality, the case of 4 bits is considered. The truth table of
the interconversion logic circuit is reported in Table S5.1.

Table S5.1. Truth table of the interconversion logic circuit from Gray-code to
binary code

Gray Code Binary Code
x1x2x3x4 y1 y2 y3 y4

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 1 0 0 1 0
3 0 0 1 0 0 0 1 1
4 0 1 1 0 0 1 0 0
5 0 1 1 1 0 1 0 1
6 0 1 0 1 0 1 1 0
7 0 1 0 0 0 1 1 1
8 1 1 0 0 1 0 0 0
9 1 1 0 1 1 0 0 1
10 1 1 1 1 1 0 1 0
11 1 1 1 0 1 0 1 1
12 1 0 1 0 1 1 0 0
13 1 0 1 1 1 1 0 1
14 1 0 0 1 1 1 1 0
15 1 0 0 0 1 1 1 1

The first columns of the two codes are equal, and thus

y1 = x1.

From the second column at the output, it can be recognized that y2 = 1 when
x1 = 0 and x2 = 1, or else when x1 = 1 and x2 = 0, and thus

y2 = x̄1x2 + x1x̄2 = x1 ⊕ x2 = y1 ⊕ x2

where “⊕” is the symbol for the logical operator XOR. From the third column
at the output, it can be recognized that y3 = 1 when y2 = 0 and x3 = 1, or
else when y2 = 1 and x3 = 0, and thus

y3 = y2 ⊕ x3.

5 Actuators and Sensors 57

Fig. S5.6. Interconversion logic circuit from Gray code to binary code

Finally, from the fourth column it is

y4 = y3 ⊕ x4.

The resulting interconversion logic circuit is illustrated in Fig. S5.6 where the
conventional symbol of XOR is used.

Solution to Problem 5.6

The skew-symmetric operator is

S(rccs) =

⎡⎣ 0 −0.2 0
0.2 0 0.3
0 −0.3 0

⎤⎦ ,

and thus applying (5.32) gives

[
fcc
μcc

]
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0.2 0 0 0 1

0.3 0 0.2 0 −1 0
0 0.3 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
20
0
0
0
6
0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0
0
20
0
0
0

⎤⎥⎥⎥⎥⎥⎦ ,

that is,
fcc = [0 0 20]T N μcc = [0 0 0]T N·m.

As can be seen, there is no resulting moment in the contact frame.

Solution to Problem 5.7

Let the end-effector frame coincide with Frame 4 in Fig. S2.3. Then, with
reference to (S2.3), the homogeneous transformation from the base frame to
the end-effector frame at q = [0 π/4 0.1 0] is

T bc =

⎡⎢⎣
0.707 −0.707 0 0.854
0.707 0.707 0 0.354

0 0 1 0.1
0 0 0 1

⎤⎥⎦ .

58 5 Actuators and Sensors

Using (5.35) gives

p̃c =

⎡⎢⎣
0.066
0.141
0.8
1

⎤⎥⎦
and, in view of (5.41), it is

Ω =

⎡⎣ 633.6 0 250
0 964 250
0 0 1

⎤⎦
and thus from (5.40)

xI = 241.82
yI = 335.92
λ = 0.8.

Hence
XI = 302.27 YI = 419.90.

6

Control Architecture

Solution to Problem 6.1

With reference to the hierarchical control architecture in Fig. 6.1, the solution
can be articulated at the task and action levels as follows.

At the task level, in order to decompose the task into a sequence of ac-
tions, the decision module shall consult the knowledge base available in the
modelling module concerning the manipulator and the environment. If the
environment is scarcely structured, the knowledge base shall be updated with
the information to be presented by the sensor module via the use of heterocep-
tive sensors, e.g., vision. Once the environment is structured, the modelling
module provides the relative location between the manipulator, the object
and the obstacle. Feasibility of the task shall be verified, and a possible se-
quence of actions is generated: approach position A, pick object, move object
while avoiding obstacle, approach position B, place object. The two approach
actions are opportune to ensure smooth pick-and-place of the object.

At the action level, the symbolic commands coming from the task level
are interpreted by the decision module which shall take the resolutions needed
to execute the given sequence of actions, that is, choice of reference frame,
motion in operational space, intermediate path or via points C, D, E, F
(see Fig. S6.1), duration of time intervals, path primitives off the obstacle,
and type of interpolating functions. By doing so, the decision module shall
consult the knowledge base available in the modelling module to verify path
feasibility. As for the approach actions, the decisions imparted to the primitive
level shall regard low values of velocities and vertical orientation of the end
effector, whereas the knowledge base shall be updated with the information
available in the sensor module via the use of range or proximity sensors.

60 6 Control Architecture

Fig. S6.1. Choice of reference frame and intermediate positions for an object pick-
and-place task

Solution to Problem 6.2

With reference to the sequence of points illustrated in Fig. S6.1, the oper-
ational space motion primitives can be determined in the two cases of path
points and via points, respectively, as follows.

In the case of path points, the various points can be connected by seg-
ments. To ensure safe grasp of the object at point C and safe release of the
object at point F , it is advisable to choose null velocity and acceleration at
each of those points. As for the intermediate points D and E, it is sufficient
to impose null velocities. Hence, the timing law along the segments CD and
EF shall be polynomials of at least fourth order, whereas the timing law
along the segment DE shall be either a cubic polynomial or a trajectory with
trapezoidal velocity profile.

In the case of via points, the actual path in the neighbourhood of D and
E is of no concern, as long as it is kept at a safety distance from the obstacle.
The passage in the proximity of the two via points can be obtained by using
the same interpolating functions as for the previous case, on condition that
the generation of the timing laws along the segments DE and EF are suitably
anticipated in time. As above, null initial and final velocity and acceleration
are to be imposed.

Finally, the presence of a redundant DOFs relative to a bidimensional
position task can be exploited to keep end-effector orientation constant along
−y.

Solution to Problem 6.3

Before executing the peg-in-hole task, the end effector shall approach the hole.
It can be argued that it is difficult to guarantee exact positioning of the peg
relative to the hole; this may render the insertion phase quite critical. It is
assumed that the main cause of uncertainty regards only position, that is the
axis of the peg can be considered to be aligned with the axis of the hole during

6 Control Architecture 61

Fig. S6.2. Flow chart for the execution of a peg-in-hole task

the approach to the hole; also, it is assumed that no jamming occurs during
insertion.

Choose a reference frame at the base of the arm, with axis x along the
horizontal direction (positive from the base to the hole) and axis y along the
positive vertical direction. A possible solution is to split the whole task into
three subtasks as follows.

At first, a fast motion towards the position (xH , Δy) shall be executed,
where xH is the estimated x coordinate of the center of the hole and Δy is a
small distance from the estimated height of the hole (y = 0). This is meant
to avoid colliding the surface around the hole during the approach phase. A
pure motion control strategy is needed to accomplish this subtask.

Next, a slow motion along −y shall be executed, still with a pure mo-
tion control strategy. This goes on until y is below the given distance −Δy

62 6 Control Architecture

(when the peg is considered to have entered the hole), unless a contact force
fy is sensed above a threshold ε, due to a collision with the surface. In that
case, before proceeding with insertion, it is necessary to slide along the sur-
face in either positive or negative horizontal direction until a force below the
threshold is sensed; if the x coordinate of end-effector position goes too far
from xH (greater than a distance Δx), then the motion shall be inverted. A
force/position control strategy is needed to accomplish this subtask where po-
sition is controlled along x and force is controlled along y to a desired pushing
force. This goes on until the peg enters the hole.

Finally, the insertion along −y is accomplished by using a force/position
control strategy where position is controlled along y, force is controlled along
x, and moment is controlled about z; moment control is needed to keep the
peg in axis with the hole during insertion.

The flow chart corresponding to the articulation of the whole task into
the above three subtasks is illustrated in Fig. S6.2.

Solution to Problem 6.4

The task can be divided into the following sequence of actions:
• command new object on conveyor,
• fast motion of end effector to a location above object to pick,
• slow motion of end effector towards object,
• pick object from conveyor,
• fast motion of object to a loading location above pallet,
• slow motion of object downwards,
• release object.
At the beginning, the end effector is moved to a home location from which
the task starts. The above sequence is iterated until the pallet is filled, and
then the end effector is taken back to the home location.

Below a PASCAL program is listed to execute the given task.
program FILL PALLET;
type point: array[1..6] of real;
const home: point=(------); {end-effector home location}

object: point=(------); {object location}
pallet: point=(------); {lower-left pallet location}
lift: -.-; {z-offset above object}
length: -.-; {object x-dimension}
width: -.-; {object y-dimension}
fast: -.-; {fast velocity}
slow: -.-; {slow velocity}

var i,j: integer;
current: point; {end-effector current location}

procedure MOVETO(var endpoint:point,velocity:real);
procedure GRASP;
procedure RELEASE;

6 Control Architecture 63

procedure NEW OBJECT;
begin
MOVETO(home,fast);
for i:=0 to 3 do
for j:= 0 to 3 do

begin
NEW OBJECT;
current:=object;
current[3]:=current[3]+lift;
MOVETO(current,fast);
MOVETO(object,slow);
GRASP;
MOVETO(current,slow);
current:=pallet;
current[1]:=current[1]+i*length;
current[2]:=current[2]+j*width;
current[3]:=current[3]+lift;
MOVETO(current,fast);
current[3]:=current[3]-lift;
MOVETO(current,slow);
RELEASE;
current[3]:=current[3]+lift;
MOVETO(current,slow);

end
MOVETO(home,fast);

end

7

Dynamics

Solution to Problem 7.1

Consider the Cartesian arm in Fig. S7.1, for which the vector of generalized
coordinates is q = [d1 d2]T .

Let m	1 , m	2 be the masses of the two links and mm1 , mm2 the masses
of the rotors of the two joint motors. Let also Im1 , Im2 be the moments of
inertia about the axes of the two rotors. It is assumed that pmi

= pi−1 and
zmi = zi−1, for i = 1, 2, i.e., the motors are located on the joint axes with
centres of mass located at the origins of the respective frames.

With the choice of the frames in Fig. S7.1, it is z1 = [1/
√

2 0 1/
√

2]T .
Hence, computation of the Jacobians in (7.16), (7.18) yields

J
(1)
P =

⎡⎣ 0 0
0 0
1 0

⎤⎦ J
(2)
P =

⎡⎣ 0 1/
√

2
0 0
1 1/

√
2

⎤⎦ .

Obviously it is J (1)
O = J

(2)
O = O.

Computation of the Jacobians in (7.25), (7.26), (7.28), (7.29) respectively
yields

J
(m1)
P =

⎡⎣ 0 0
0 0
0 0

⎤⎦ J
(m2)
P =

⎡⎣ 0 0
0 0
1 0

⎤⎦
J

(m1)
O =

⎡⎣ 0 0
0 0
kr1 0

⎤⎦ J
(m2)
O =

⎡⎣ 0 kr2/
√

2
0 0
0 kr2/

√
2

⎤⎦
where kri is the gear reduction ratio of motor i.

From (7.32), the inertia matrix is

B =
[
m	1 +mm2 + k2

r1Im1 +m	2 m	2/
√

2
m	2/

√
2 m	2 + k2

r2Im2

]
.

66 7 Dynamics

Fig. S7.1. Two-link Cartesian arm where Joint 2 axis forms an angle of π/4 with
Joint 1 axis

Notice that B is constant, which implies that C = O. As for the gravitational
terms, with g0 = [0 0 −g]T , (7.39) gives:

g1 = (m	1 +mm2 +m	2)g g2 = m	2g/
√

2.

In the absence of friction and tip contact forces, the resulting equations of
motion are

(m	1 +mm2 + k2
r1Im1 +m	2)d̈1 +

m	2√
2
d̈2 + (m	1 +mm2 +m	2)g = τ1

m	2√
2
d̈1 + (m	2 + k2

r2Im2)d̈2 +
m	2√

2
g = τ2

where τ1 and τ2 denote the forces applied to the two joints. It is worth pointing
out that, differently from the arm in Fig. 7.3, the dynamic model is coupled
(nonnull off-diagonal terms in the inertia matrix) and gravity acts also on the
second joint.

Solution to Problem 7.2

A natural choice for the elements of matrix C satisfying (7.43) with hijk as
in (7.41) is

cij =
n∑
k=1

(
∂bij
∂qk

− 1
2
∂bjk
∂qi

)
q̇k.

For the two-link planar arm of Fig. 7.4, they become

c11 =
2∑

k=1

(
∂b11
∂qk

− 1
2
∂b1k
∂q1

)
q̇k = −2m	2a1�2s2ϑ̇2

7 Dynamics 67

c12 =
2∑

k=1

(
∂b12
∂qk

− 1
2
∂b2k
∂q1

)
q̇k = −m	2a1�2s2ϑ̇2

c21 =
2∑

k=1

(
∂b21
∂qk

− 1
2
∂b1k
∂q2

)
q̇k = m	2a1�2s2ϑ̇1 − 1

2
m	2a1�2s2ϑ̇2

c22 =
2∑

k=1

(
∂b22
∂qk

− 1
2
∂b2k
∂q2

)
q̇k =

1
2
m	2a1�2s2ϑ̇1.

Setting h = −m	2a1�2s2 leads to

C =

[
2hϑ̇2 hϑ̇2

−hϑ̇1 +
h

2
ϑ̇2 −h

2
ϑ̇1

]

while the time derivative of the inertia matrix can be written as

Ḃ =
[

2hϑ̇2 hϑ̇2

hϑ̇2 0

]
.

Therefore, the matrix N(q, q̇) = Ḃ − 2C becomes

N(q, q̇) =
[−2hϑ̇2 −hϑ̇2

2hϑ̇1 hϑ̇1

]
which clearly is not skew-symmetric. Nevertheless, it is easy to show that the
product

q̇TN (q, q̇)q̇ = 0,

confirming that (7.49) holds even for a choice of C so that (7.48) does not
hold.

Solution to Problem 7.3

Consider the SCARA arm in Fig. S7.1, for which the vector of generalized co-
ordinates is q = [ϑ1 ϑ2 d3 ϑ4]T and link frames assigned as in Fig. S2.3.
For the first two links, consider the same kinematics and dynamic parameters
of the two-link planar arm of Exmple 7.2. Moreover, links 3 and 4 can be
considered as a unique rigid body, referred as “last link”, which translates
along axis z2 of the prismatic Joint 3 and rotates about axis z3 of the revolute
Joint 4. Let m	3 denote the mass of the last link. For simplicity, it is assumed
that the centre of mass p	4 of the last link is located on axis z3; let I	4 denote
the element [3, 3] of the inertia tensor of the last link relative to the centre
of mass. Also, assume that the motors of Joints 3 and 4 have negligible mass
and inertia.

Due to the additivity property, the kinetic energy of the SCARA manip-
ulator can be computed by adding the kinetic energy of the last link to the

68 7 Dynamics

kinetic energy of the two-link planar arm. Therefore, from (7.32), the inertia
matrix can be computed as

B(q) = B′(q) +B′′(q)

where B′ is the (4×4) matrix obtained completing the (2×2) inertial matrix
of the two-link planar arm of Sect. 7.3.2 with two null columns and two null
rows, while B′′ is the contribution of the last link, which can be computed as

B′′(q) = m	3J
(4)T
P J

(4)
P + J (4)T

O R4I
i
	iR

T
4 J

(4)
O . (S7.1)

The computation of the Jacobians in (7.16), (7.17) yields

J
(4)
P =

⎡⎣−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 1 0

⎤⎦ J
(4)
O =

⎡⎣ 0 0 0 0
0 0 0 0
1 1 0 1

⎤⎦
Hence, from (S7.1), the nonnull elements of matrix B′′(q) are

b′′11 = m	3(a
2
1 + a2

2 + 2a1a2c2) + I	4

b′′12 = b′′21 = m	3(a
2
2 + a1a2c2) + I	4

b′′14 = b′′41 = I	4

b′′22 = m	3a
2
2 + I	4

b′′24 = b′′42 = I	4

b′′33 = m	3

b′′44 = I	4 .

Therefore, the nonnull elements of the inertia matrix of the SCARA manipu-
lator are:

b11 = I	1 +m	1�
2
1 + k2

r1Im1 + I	2 +m	2(a
2
1 + �22 + 2a1�2c2)

+Im2 +mm2a
2
1 +m	3(a

2
1 + a2

2 + 2a1a2c2) + I	4

b12 = b21 = I	2 +m	2(�
2
2 + a1�2c2) + kr2Im2 +m	3(a

2
2 + a1a2c2) + I	4

b14 = b41 = I	4

b22 = I	2 +m	2�
2
2 + k2

r2Im2 +m	3a
2
2 + I	4

b24 = b42 = I	4

b33 = m	3

b44 = I	4 .

The Christoffel symbols for the SCARA manipulator can be computed as

cijk = c′ijk + c′′ijk

7 Dynamics 69

Fig. S7.2. Two-link planar arm with a prismatic joint and a revolute joint

where c′ijk are the Christoffel symbols of the two-link planar arm of Sect. 7.3.2,
while c′′ijk are those computed from the elements b′′ij of B′′(q) as in (7.45).
The nonnull elements are:

c112 = −m	2a1�2s2 −m	3a1a2s2 = k

c122 = k

c211 = −k,
leading to the matrix

C(q, q̇) =

⎡⎢⎢⎣
kϑ̇2 k(ϑ̇1 + ϑ̇2) 0 0
−kϑ̇1 0 0 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

As for the gravitational terms, it can be easily understood that gravity con-
tributes only to Joint 3 force, which has the expression

g3 = m	3g.

Solution to Problem 7.4

By using the expressions of the parameters in (7.83), the equations of motion
(7.82) can be rewritten as

τ1 =
(
a2
1π1 + 2a1π2 + π3 + k2

r1π4 + (a2
1 + 2a1a2c2 + a2

2)π5

+(2a1c2 + 2a2)π6 + π7 + π8)ϑ̈1

+
(
(a1a2c2 + a2

2)π5 + (a1c2 + 2a2)π6 + π7 + kr2π8

)
ϑ̈2

−(2a1a2s2π5 + 2a1s2π6)ϑ̇1ϑ̇2 − (a1a2s2π5 + a1s2π6)ϑ̇2
2

+(a1π1 + π2 + a1π5)gc1 + (a2π5 + π6)gc12

τ2 = (a2
2π5 + 2a2π6 + π7 + k2

r2π8)ϑ̈2

+
(
(a1a2c2 + a2

2)π5 + (a1c2 + 2a2)π6 + π7 + kr2π8

)
ϑ̈1

+(a1a2s2π5 + a1s2π6)ϑ̇2
1

+(a2π5 + π6)gc12.

70 7 Dynamics

It is then possible to find the following linear combinations between the pa-
rameters which bring the number thereof down to a minimum of 5:

π′
1 = a1π1 + π2 + a1π5 = a1m1 +m1�C1 + a1m2

π′
2 = a1π2 + π3 + k2

r1π4 = a1m1�C1 + Ī1 + k2
r1Im1

π′
3 = a2π5 + π6 = a2m2 +m2�C2 (S7.2)
π′

4 = a2π6 + π7 = a2m2�C2 + Ī2

π′
5 = π8 = Im2 .

Accordingly, the elements of the regressor become

y′11 = a1ϑ̈1 + gc1

y′12 = ϑ̈1

y′13 = (2a1c2 + a2)ϑ̈1 + (a1c2 + a2)ϑ̈2 − 2a1s2ϑ̇1ϑ̇2 − a1s2ϑ̇
2
2 + gc12

y′14 = ϑ̈1 + ϑ̈2

y′15 = ϑ̈1 + kr2ϑ̈2 (S7.3)

y′21 = 0
y′22 = 0
y′23 = a2ϑ̈2 + (a1c2 + a2)ϑ̈1 + a1s2ϑ̇

2
1 + gc12

y′24 = ϑ̈2 + ϑ̈1

y′25 = k2
r2ϑ̈2 + kr2ϑ̈1.

Solution to Problem 7.5

Consider the planar arm in Fig. S7.2, for which the vector of generalized
coordinates is q = [d1 ϑ2]T .

Let m	1 , m	2 be the masses of the two links, �1, �2 the distances of the
centres of mass from the respective joint axes, and mm1 , mm2 the masses of
the rotors of the two joint motors. Let also I	2 be the inertia tensor of Link
2 about Joint 2 axis, and Im1 , Im2 the moments of inertia about the axes of
the two rotors. It is assumed that pmi

= pi−1 and zmi = zi−1, for i = 1, 2,
i.e., the motors are located on the joint axes with centres of mass located at
the origins of the respective frames.

With the choice of the frames in Fig. S7.2, it is z1 = [0 1 0]T ,
p1 = pm2

= [0 0 d1]T , p	2 = [−�2c2 0 d1 + �2s2]T . Computation of
the Jacobians in (7.16), (7.18) yields

J
(1)
P =

⎡⎣ 0 0
0 0
1 0

⎤⎦ J
(2)
P =

⎡⎣ 0 �2s2
0 0
1 �2c2

⎤⎦ ,

7 Dynamics 71

whereas computation of the Jacobians in (7.17), (7.19) yields

J
(1)
O =

⎡⎣ 0 0
0 0
0 0

⎤⎦ J
(2)
O =

⎡⎣ 0 0
0 1
0 0

⎤⎦ .

Computation of the Jacobians in (7.25), (7.26) yields

J
(m1)
P =

⎡⎣ 0 0
0 0
0 0

⎤⎦ J
(m2)
P =

⎡⎣ 0 0
0 0
1 0

⎤⎦ ,

whereas computation of the Jacobians in (7.28), (7.29) yields

J
(m1)
O =

⎡⎣ 0 0
0 0
kr1 0

⎤⎦ J
(m2)
O =

⎡⎣ 0 0
0 kr2
0 0

⎤⎦
where kri is the gear reduction ratio of motor i.

From (7.32), the inertia matrix is

B(q) =
[

b11 b12(ϑ2)
b12(ϑ2) b22

]
b11 = m	1 +mm2 +m	2 + k2

r1Im1

b12 = m	2�2c2

b22 = I	2 +m	2�
2
2 + k2

r2Im2

where I	2 = I	2zz is the constant moment of inertia about Joint 2 axis.
Computation of Christoffel symbols as in (7.45) gives:

c111 = c112 = c121 = c211 = c212 = c221 = c222 = 0

c122 =
∂b12
∂q2

− 1
2
∂b22
∂q1

= −m	2�2s2

leading to the matrix

C(q, q̇) =
[

0 −m	2�2s2ϑ̇2

0 0

]
.

Computing the matrix N in (7.47) gives

N(q, q̇) = Ḃ(q) − 2C(q, q̇)

=
[

0 m	2�2s2ϑ̇2

−m	2�2s2ϑ̇2 0

]
which is skew-symmetric.

72 7 Dynamics

As for the gravitational terms, with g0 = [−g 0 0]T , (7.39) gives:

g1 = 0
g2 = m	2�2gs2.

In the absence of friction and tip contact forces, the resulting equations of
motion are

(m	1 +mm2 +m	2 + k2
r1Im1)d̈1 +m	2�2c2ϑ̈2 −m	2�2s2ϑ̇

2
2 = τ1 (S7.4)

m	2�2c2d̈1 + (I	2 +m	2�
2
2 + k2

r2Im2)ϑ̈2 +m	2�2gs2 = τ2 (S7.5)

where τ1 and τ2 respectively denote the force applied to Joint 1 and the torque
applied to Joint 2.

The presence of a concentrated tip payload of mass mL alters Link 2
parameters as follows:

m′
	2 = m	2 +mL �′2 =

m	2�2 +mLa2

m′
	2

I ′	2 = I	2 +m	2(�
′
2 − �2)2 +mL(a2 − �′2)

2

and the same formal dynamic model can be written as above in terms of the
new parameters.

A minimum parameterization of the dynamic model can be obtained in
terms of the following parameter vector:

π′ = [π′
1 π′

2 π′
3]T

π′
1 = m	1 +mm2 +m′

	2 + k2
r1Im1

π′
2 = m′

	2�
′
2

π′
3 = I ′	2 +m′

	2�
′2
2 + k2

r2Im2 .

Accordingly, the elements of the regressor are

y′11 = d̈1

y′12 = c2ϑ̈2 − s2ϑ̇
2
2

y′13 = 0

y′21 = 0
y′22 = c2d̈1 + gs2

y′23 = ϑ̈2.

Solution to Problem 7.6

Let x1 and x2 denote the absolute angles of the two joints. The relationship
between relative and absolute angles is

x1 = ϑ1 x2 = ϑ1 + ϑ2.

7 Dynamics 73

This can be formally treated as a coordinate transformation from the joint
space to the operational space of absolute angles. The analytical Jacobian
characterizing such transformation at velocity level is then

JA =
[

1 0
1 1

]
,

which is always nonsingular, implying that the absolute angles constitute a
set of generalized coordinates for the system.

Therefore, the terms of the operational space dynamic model can be com-
puted according to (7.134)–(7.136). From (7.134), the inertia matrix is

BA =
[
bA11 bA12

bA12 bA22

]
where, using the expressions of bij in Sect. 7.3.2, the elements in the new
coordinates are

bA11 = b11 + b22 − 2b12
= I	1 +m	1�

2
1 + k2

r1Im1 +m	2a
2
1 + (1 − kr2)2Im2 +mm2a

2
1

bA12 = b12 − b22

= m	2a1�2cos (x2 − x1) + kr2(1 − kr2)Im2

bA22 = b22

= I	2 +m	2�
2
2 + k2

r2Im2 .

Notice that the diagonal elements are configuration-invariant; also, if kr2 = 1
(direct drive), then the effect of motor 2 inertia on both bA12 and bA22 vanishes.

Further, from (7.135), the velocity-dependent term is

CAẋ =
[
c11 − c12 c21 − c22
c21 c22

]
which, using the expressions of cij in Sect. 4.3.2, in the new coordinates be-
comes

CAẋ =
[
hẋ2

2

−hẋ2
1

]
where h = −m	2a1�2 sin (x2 − x1). Interestingly enough, there is no Coriolis
effect; this can be explained by observing that rotation of Link 2 is represented
with reference to Frame 0 and thus is independent of rotation of Link 1.

Finally, from (7.136), the gravity term is

gA =
[
g1 − g2
g2

]
which, using the expressions of gi in Sect. 4.3.2, in the new coordinates be-
comes

gA =
[

(m	1�1 +mm2a1 +m	2a1)g cosx1

m	2�2g cosx2

]
.

74 7 Dynamics

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5
x 10

4

[s]

[N
m

]

joint 1 torque

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5
x 10

4

[s]

[N
m

]

joint 2 torque

Fig. S7.3. Time history of joint torques for the first trajectory of Example 7.2

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5
x 10

4

[s]

[N
m

]

joint 1 torque

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5
x 10

4

[s]

[N
m

]

joint 2 torque

Fig. S7.4. Time history of joint torques for the second trajectory of Example 7.2

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5
x 10

4

[s]

[N
m

]

joint 1 torque

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5
x 10

4

[s]

[N
m

]

joint 2 torque

Fig. S7.5. Time history of joint torques for the third trajectory of Example 7.2

Solution to Problem 7.7

The various terms of the dynamic model are computed by using the mini-
mum parameterization in the solution to Problem 7.4. The tip forces can be
incorporated in the model as in (7.42), i.e., via the Jacobian transpose.

The files with the solution can be found in Folder 7 7.
The resulting torques for the three trajectories of Example 7.2 are illus-

trated in Figs. S7.3, S7.4, S7.5, respectively.

7 Dynamics 75

Solution to Problem 7.8

Start by imposing the initial conditions for the velocities and accelerations:

p̈0
0 − g0

0 = [g 0 0]T ω0
0 = ω̇0

0 = 0.

All quantities shall be referred to the current link frame. With the choice of
the frames as in Fig. S7.2, the following vectors are obtained:

r1
1,C1

=

⎡⎣ 0
�C1

0

⎤⎦ r1
0,1 =

⎡⎣ 0
d1

0

⎤⎦ r2
2,C2

=

⎡⎣ �C2

0
0

⎤⎦ r2
1,2 =

⎡⎣ a2

0
0

⎤⎦
where �C1 and �C2 are both negative quantities. The rotation matrices needed
for vector transformation from one frame to another are:

R0
1 =

⎡⎣−1 0 0
0 0 1
0 1 0

⎤⎦ R1
2 =

⎡⎣ c2 −s2 0
s2 c2 0
0 0 1

⎤⎦ .

Further it is assumed that the axes of rotations of the rotors coincide with
the respective joint axes, i.e., zi−1

mi
= z0 = [0 0 1]T for i = 1, 2.

According to (7.107)–(7.114), the Newton-Euler algorithm requires the
execution of the following steps.
• Forward recursion: Link 1

ω1
1 = 0

ω̇1
1 = 0

p̈1
1 =

⎡⎢⎣−gd̈1

0

⎤⎥⎦

p̈1
C1

=

⎡⎢⎣−gd̈1

0

⎤⎥⎦

ω̇0
m1

=

⎡⎢⎣ 0

0

kr1d̈1

⎤⎥⎦ .

• Forward recursion: Link 2

ω2
2 =

⎡⎢⎣ 0

0

ϑ̇2

⎤⎥⎦

76 7 Dynamics

ω̇2
2 =

⎡⎢⎣ 0

0

ϑ̈2

⎤⎥⎦

p̈2
2 =

⎡⎢⎣ s2d̈1 − a2ϑ̇
2
2 − gc2

c2d̈1 + a2ϑ̈2 + gs2

0

⎤⎥⎦

p̈2
C2

=

⎡⎢⎣ s2d̈1 − (�C2 + a2)ϑ̇2
2 − gc2

c2d̈1 + (�C2 + a2)ϑ̈2 + gs2

0

⎤⎥⎦

ω̇1
m2

=

⎡⎢⎣ 0

0

kr2ϑ̈2

⎤⎥⎦ .

• Backward recursion: Link 2

f2
2 =

⎡⎢⎣m2s2d̈1 −m2(�C2 + a2)ϑ̇2
2 −m2gc2

m2c2d̈1 +m2(�C2 + a2)ϑ̈2 +m2gs2

0

⎤⎥⎦

μ2
2 =

⎡⎢⎣ ∗
∗

m2(�C2+a2)c2d̈1+
(
Ī2zz+m2(�C2 +a2)2

)
ϑ̈2+m2(�C2 +a2)gs2

⎤⎥⎦

τ2 = m2(�C2 + a2)c2d̈1 +
(
Ī2zz +m2(�C2 + a2)2 + k2

r2Im2

)
ϑ̈2

+m2(�C2 + a2)gs2,

where the components marked by the symbol ‘∗’ have not been computed,
since they are not related to the joint torque τ2.

• Backward recursion: Link 1

f1
1 =

⎡⎢⎣−m2(�C2 + a2)s2ϑ̈2 −m2(�C2 + a2)c2ϑ̇2
2 − (m1 +m2)g

(m1 +m2)d̈1 +m2(�C2 + a2)c2ϑ̈2 −m2(�C2 + a2)s2ϑ̇2
2

0

⎤⎥⎦
τ1 = (m1 +m2 + k2

r1Im1)d̈1 +m2(�C2 + a2)c2ϑ̈2 −m2(�C2 + a2)s2ϑ̇2
2.

In view of the following equalities:

m1 = m	1 +mm2 m2 = m	2 �2 = �C2 + a2 Ī2zz = I	2 ,

7 Dynamics 77

the above dynamic model coincides with the model derived in (S7.4), (S7.5),
with Lagrange formulation.

Solution to Problem 7.9

In order to differentiate matrix BA in (7.130) with respect to time, it is worth
recalling the formula for the derivative of the inverse of a matrix A

d

dt
A−1(t) = −A−1(t)Ȧ(t)A−1(t).

Therefore, the time derivative of BA can be expressed as

ḂA = −BA

(
J̇AB

−1JTA − JAB−1ḂB−1JTA + JAB−1J̇
T

A

)
BA.

As regards CA, in view of (3.62), the relation in (7.131) can be written as

CAJAq̇ = BAJAB
−1Cq̇ −BAJ̇Aq̇,

and using a right pseudo-inverse of JA, e.g., the one in (7.138), leads to

CA = BAJAB
−1CJ̄A −BAJ̇AJ̄A.

Hence, the matrix ḂA − 2CA can be expressed as

ḂA − 2CA = J̄
T
A(Ḃ − 2C)J̄A +BAJ̇AJ̄A − J̄TAJ̇

T

ABA.

From the skew-symmetry of Ḃ − 2C it follows that the first term represents
a skew-symmetric matrix. Also, by observing that the second term on the
right-hand side is the transpose of the third term, the matrix resulting from
the difference of those terms is skew-symmetric too. It can be concluded that
the whole matrix ḂA − 2CA is skew-symmetric.

Solution to Problem 7.10

For a given (r × 1) vector of end-effector forces γA, the problem can be for-
mulated as that to find the (n× 1) vector τ that satisfies the linear equation

J̄
T
Aτ = γA, (S7.6)

where J̄A is given in (7.138), and minimize the quadratic cost functional

g(τ) =
1
2
(τ − τa)TB−1(τ − τa),

where τ a is an (n× 1) vector of arbitrary torques.

78 7 Dynamics

This problem can be solved with the method of Lagrangian multipliers.
Consider the modified cost functional

g(τ ,λ) =
1
2
(τ − τa)TB−1(τ − τ a) + λT (γA − J̄TAτ)

where λ is an (r × 1) vector of Lagrangian multipliers. The solution has to
satisfy the necessary conditions:(

∂g

∂τ

)T
= 0

(
∂g

∂λ

)T
= 0.

From the first condition, it is

τ = BJ̄Aλ+ τa, (S7.7)

while the second condition gives the constraint (S7.6). Substituting (S7.7) in
(S7.6) yields

λ = (J̄TABJ̄A)−1(γA − J̄TAτ a).
Then, substituting λ back in (S7.7) gives

τ = BJ̄A(J̄TABJ̄A)−1γA +
(
I −BJ̄A(J̄TABJ̄A)−1J̄

T
A

)
τa.

In view of (7.138) and (7.130), it is

J̄A = B−1JTA(JAB−1JTA)−1,

and thus the above expression can be simplified into

τ = JTA(q)γA +
(
I − JTA(q)J̄TA(q)

)
τ a

which is the sought solution. Notice that JTA is a right pseudo-inverse of J̄TA
weighted by B−1, or else J̄A is a right pseudo-inverse of JA weighted by B.

Solution to Problem 7.11

For a nonredundant manipulator, the core of the dynamic manipulability el-
lipsoid is given as in (7.149) which can be written as

J−T (q)BT (q)B(q)J−1(q) = (J(q)B−1(q)B−T (q)JT (q))−1.

By analogy to the velocity manipulability ellipsoid (3.123), the dynamic ma-
nipulability measure can be defined as

w′(q) =
√

det
(
J(q)B−1(q)B−T (q)JT (q)

)
.

Since J and B are square matrices and det(B) > 0 for all q, then

w′(q) =
|det
(
J(q)

)|
det
(
B(q)

) =
w(q)

det
(
B(q)

)
with w(q) as in (3.56).

8

Motion Control

Solution to Problem 8.1

The transfer function of the forward path of the scheme in Fig. 5.10 is

P (s) = CP (s)M(s) =
kmKP (1 + sTP)
s2(1 + sTm)

,

being CP (s) the transfer function of he PI position controller and

M(s) =
km

s(1 + sTm)
.

The transfer function of the return path is

H(s) = kTP .

It follows that the closed-loop input/output transfer function is

Θm(s)
Θr(s)

=
P (s)

1 + P (s)H(s)
=

1
kTP

1 +
s2(1 + sTm)

kmKPkTP (1 + sTP)

,

while the closed-loop disturbance/output transfer function is

Θm(s)
D(s)

= − M(s)
1 + P (s)H(s)

= −
sRa

ktKPkTP (1 + sTP)

1 +
s2(1 + sTm)

kmKPkTP (1 + sTP)

.

Solution to Problem 8.2

Operating by the rules for block reduction on the scheme in Fig. 5.11, it
is worth moving the input to the block kTV onto Θm and subtracting the

80 8 Motion Control

Fig. S8.1. Reduction on the block scheme of position and velocity feedback control

output to Θr. Then, the reduced block scheme of the system becomes that in
Fig. S8.1.

The transfer function of the forward path is then

P (s) = KPCV (s)M(s) =
kmKPKV (1 + sTV)

s2(1 + sTm)
,

being CV (s) the transfer function of the PI velocity controller and M(s) the
transfer function of the actuator. The transfer function of the return path is

H(s) = kTP

(
1 + s

kTV
KPkTP

)
.

It follows that the closed-loop input/output transfer function with TV = Tm
is

Θm(s)
Θr(s)

=
P (s)

1 + P (s)H(s)
=

1
kTP

1 +
skTV
KPkTP

+
s2

kmKPkTPKV

.

The closed-loop disturbance/output transfer function is

Θ(s)
D(s)

= − M(s)
1 + P (s)H(s)

= −
sRa

ktKPkTPKV (1 + sTm)

1 +
skTV
KPkTP

+
s2

kmKPkTPKV

.

Solution to Problem 8.3

First, it is worth observing that the block scheme of Fig. 8.9 has been obtained
from the scheme of Fig. 8.6 operating by the usual rules for block reduction.
In particular, the input to the block kTA has been moved onto Θ̇m, while the
output to the same block has been moved onto the output of CA(s). Likewise,
the input to the block kTV has been moved onto Θm, while the output to the

8 Motion Control 81

Fig. S8.2. Reduction on the block scheme of position, velocity and acceleration
feedback control

same block has been moved onto the input to KP ; then, the resulting two
blocks in parallel have been summed giving (kTP + skTV /KP). Solving the
inmost feedback loop gives the transfer function

sM(s) =

kt
sRaI

1 +
ktkv
sRaI

=

1
kv

1 +
sRaI

kvkt

=
km

1 + sTm
,

and thus the block scheme of the system becomes that in Fig. S8.2.
Solving the inner feedback loop gives the transfer function

G′(s) =

km
1 + sTm

1 +
kmkTAKA(1 + sTA)

(1 + sTm)

=
km

(1 + kmKAkTA)

⎛⎜⎜⎝1 +
sTm

(
1 + kmKAkTA

TA
Tm

)
(1 + kmKAkTA)

⎞⎟⎟⎠
,

and thus the block scheme of the system becomes that in Fig. S8.3.
The transfer function of the forward path is then

P (s) =
KPKVCA(s)G′(s)

s
=
KPKVKA(1 + sTA)

s2
G′(s).

The transfer function of the return path is

H(s) = kTP

(
1 +

skTV
KPkTP

)
.

82 8 Motion Control

Fig. S8.3. Further reduction on the block scheme of position, velocity and acceler-
ation feedback control

It follows that the closed-loop input/output transfer function with TA = Tm
is

Θm(s)
Θr(s)

=
P (s)

1 + P (s)H(s)
=

1
kTP

1 +
skTV
KPkTP

+
s2(1 + kmKAkTA)
kmKPkTPKVKA

,

while the closed-loop disturbance/output transfer function is

Θm(s)
D(s)

= −
G′(s)
s

1 + P (s)H(s)
= −

sRa
ktKPkTPKVKA(1 + sTA)

1 +
skTV
KPkTP

+
s2(1 + kmKAkTA)
kmKPkTPKVKA

.

Solution to Problem 8.4

With the given data, the condition Fm
 kvkt/Ra is verified and km =
2 rad/(V · s), Tm = 7.2 s, kTP = 1. The closed-loop input/output transfer
function is

W (s) =
(1 + sTP)

1 + sTP +
s2(1 + sTm)
kmKPkTP

.

Choosing TP = 10Tm = 72 s leads to the root locus in Fig. S8.4 as a function
of the gain K ′ = 20KP .

If a damping ratio ζ = 0.4 is desired, the resulting controller gain is
KP = 0.0013. For such value, two complex poles (−0.062,±j0.142) and a real
pole (−0.015) are obtained. Hence, the above transfer function can be written
as

W (s) =
(1 + 72s)

(1 + 5.161s+ 41.62s2)(1 + 66.66s)
.

8 Motion Control 83

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

real axis

im
ag

e
ax

is

Fig. S8.4. Root locus for the position feedback control scheme

Correspondingly, the disturbance rejection factor is XR = 0.0013, while an
estimate of the output recovery time is TR = 72 s. These values reveal the
poor disturbance rejection performance of the closed-loop system under simple
position feedback control.

Solution to Problem 8.5

With the given data, the condition Fm
 kvkt/Ra is verified and km =
2 rad/(V ·s), Tm = 7.2 s, kTP = 1, kTV = 1. Choosing TV = Tm yields the
closed-loop input/output transfer function

W (s) =
1

1 +
s

KP
+

s2

2KPKV

.

With the given specifications for ζ and ωn, the controller gains can be deter-
mined according to (8.30) and (8.31), giving KP = 25 and KV = 8, and thus
the above transfer function becomes

W (s) =
1

1 + 0.04s+ 0.0025s2

which has two complex poles (−8,±j18.33). Correspondingly, the disturbance
rejection factor is XR = 200, while an estimate of the output recovery time is
TR = 7.2 s. These values reveal the good disturbance rejection performance of
the closed-loop system under position and velocity feedback control; however,
it is not possible to further decrease the output recovery time which is limited
by the time constant Tm of the drive system.

84 8 Motion Control

Solution to Problem 8.6

With the given data, the condition Fm
 kvkt/Ra is verified and km =
2 rad/(V ·s), Tm = 7.2 s, kTP = 1, kTV = 1, kTA = 1. Choosing TA = Tm
yields the closed-loop input/output transfer function

W (s) =
1

1 +
s

KP
+
s2(1 + 2KA)
2KPKVKA

.

With the given specifications for ζ, ωn and XR, the controller gains can be
determined according to (8.39), (8.40), (8.41) giving KP = 25, KV = 32,
KA = 0.5, and thus the above transfer function becomes

W (s) =
1

1 + 0.04s+ 0.0025s2

which is the same transfer function of the previous problem. Remarkably,
in the case of position, velocity and acceleration feedback control, the dis-
turbance rejection performance is improved in terms of XR, although the
output recovery time TR is still the same as in the previous case. Finally,
in order to reconstruct acceleration from velocity measurement, a first-order
filter as in Fig. 8.11 can be used. With the given ζ and ωn, the closed-loop
system bandwidth is ω3 = 26.84 rad/s, and then the filter bandwidth shall
be chosen wide enough with respect to the drive system bandwidth, e.g.,
ω3f = kf = 400 rad/s.

Solution to Problem 8.7

As for the block scheme in Fig. 8.12, where the saturation block can be ne-
glected, it is worth moving both the output of the block Tm/km and the
output of the block 1/km onto the input to the block kP (1 + sTP)/s; also the
quantities Θ̇d and Θ̈d can be generated from Θd as sΘd and s2Θd, respectively.
Therefore, the reduced block scheme becomes that in Fig. S8.5.

The relationship between the desired input and the new reference input
is then

Θ′
r(s) =

(
kTP +

(
s2Tm
km

+
s

km

)
s

KP (1 + sTP)

)
Θd(s)

=
(
kTP +

s2(1 + sTm)
kmKP (1 + sTP)

)
Θd(s).

As for the block scheme in Fig. 8.13, where the saturation block can be
neglected, it is worth moving both the output of the block 1/kmKV and
the output of the block kTV onto the input to the block KP ; as above, the
quantities Θ̇d and Θ̈d can be generated from Θd as sΘd and s2Θd, respectively.
Therefore, the reduced block scheme becomes that in Fig. S8.6.

8 Motion Control 85

Fig. S8.5. Reduction on the block scheme of position feedback control with decen-
tralized feedforward compensation

Fig. S8.6. Reduction on the block scheme of position and velocity feedback control
with decentralized feedforward compensation

The relationship between the desired input and the new reference input
is then

Θ′
r(s) =

(
kTP +

skTV
KP

+
s2

kmKPKV

)
Θd(s).

As for the block scheme in Fig. 8.14, where the saturation block can be
neglected, it is worth moving both the output of the block (kTA + 1/kmKA)
and the output of the block kTV onto the input to the block KP ; again, the
quantities Θ̇d and Θ̈d can be generated from Θd as sΘd and s2Θd, respectively.
Therefore, the reduced block scheme becomes that in Fig. S8.7.

86 8 Motion Control

Fig. S8.7. Reduction on the block scheme of position, velocity and acceleration
feedback control with decentralized feedforward compensation

The relationship between the desired input and the new reference input
is then

Θ′
r(s) =

(
kTP +

skTV
KP

+
(1 + kmKAkTA)s2

kmKPKVKA

)
Θd(s).

Solution to Problem 8.8

The block scheme in Fig. 8.15 is clearly equivalent to that in Fig. 8.12, since
the block KP (1 + sTP)/s can be split into two blocks in parallel, i.e., KPTP
and KP /s.

Concerning the block scheme in Fig. 8.28, it is worth considering the input
U and the output Y of the block KV (1 + sTV)/s. By neglecting the effect of
the saturation block and setting E = kTP (Θd −Θm), the input U is given by

U = KPE + kTV (Θ̇d − Θ̇m) +
1

kmKV
Θ̈d

= KP

(
1 +

kTV
KPkTP

s

)
E +

1
kmKV

Θ̈d.

Then the output can be expressed (TV = Tm) as

Y =
KV (1 + sTV)

s

(
KP

(
1 +

kTV
KPkTP

s

)
E +

1
kmKV

Θ̈d

)

= KPKV

(
1
s

+ TV

)(
1 +

kTV
KPkTP

s

)
E +

1
km

(
1
s

+ Tm

)
Θ̈d

=
(
KPKV TV +

KV kTV
kTP

+
KPKV

s
+
KV TV kTV

kTP
s

)
E +

1
km

Θ̇d +
Tm
km

Θ̈d

8 Motion Control 87

corresponding to the block scheme in Fig. 8.16.
In a similar way, concerning the block scheme in Fig. 8.29, it is worth

considering the input U and the output Y of the block KA(1 + sTA)/s. By
neglecting the effect of the saturation blocks and setting E = kTP (Θd −Θm),
the input U is given by

U = KV

(
KPE + kTV (Θ̇d − Θ̇m)

)
+
(
kTA +

1
kmKA

)
Θ̈d − kTAΘ̈m

=
(
KPKV +

KV kTV
kTP

s+
kTA
kTP

s2
)
E +

1
kmKA

Θ̈d.

Then the output can be expressed (TA = Tm) as

Y = KA

(
1
s

+ TA

)((
KPKV +

KV kTV
kTP

s+
kTA
kTP

s2
)
E +

1
kmKA

Θ̈d

)

=

(
KPKVKATA +

KV kTVKA

kTP
+
KPKVKA

s

+
(
KV kTVKATA +KAkTA

kTP

)
s+

KATAkTA
kTP

s2

)
E

+
1
km

Θ̇d +
Tm
km

Θ̈d

corresponding to the block scheme in Fig. 8.17.

Solution to Problem 8.9

From (8.75), the following matrix inequality can be written:

BmI ≤ B−1 ≤ BMI

where all three matrices are positive definite. Setting

B̂ =
2

BM +Bm
I,

which is positive definite, allows writing the matrix inequality

2Bm
BM +Bm

I ≤ B−1B̂ ≤ 2BM
BM +Bm

I.

Subtracting the identity matrix from each term gives

−αI ≤ B−1B̂ − I ≤ αI

where
α =

BM −Bm
BM +Bm

88 8 Motion Control

q_d=[pi/4 -pi/2] timeq_d=[-pi -3pi/4]

K_d

dq

g(q)

gravity
compensation

inv(B(q))(tau-tau')

arm

+

- q

q_d -

+

+

K_p

plot

Fig. S8.8. Simulink block diagram of joint space PD control with gravity compen-
sation

0 0.5 1 1.5 2 2.5
0.6

0.65

0.7

0.75

0.8

[s]

[r
ad

]

joint 1 pos

0 0.5 1 1.5 2 2.5
−1.75

−1.7

−1.65

−1.6

−1.55

−1.5

[s]

[r
ad

]

joint 2 pos

Fig. S8.9. Time history of the joint positions with joint space PD control with
gravity compensation for the first posture

and 0 < α < 1. The matrix in the middle is lower bounded by a negative
definite diagonal matrix and upper bounded by a positive definite diagonal
matrix, where these two matrices have the same norm. Thus, it follows that

‖B−1B̂ − I‖ ≤ α.

8 Motion Control 89

0 0.5 1 1.5 2 2.5
−3.35

−3.3

−3.25

−3.2

−3.15

−3.1

[s]

[r
ad

]

joint 1 pos

0 0.5 1 1.5 2 2.5

−2.5

−2.45

−2.4

−2.35

−2.3

[s]

[r
ad

]

joint 2 pos

Fig. S8.10. Time history of the joint positions with joint space PD control with
gravity compensation for the second posture

Solution to Problem 8.10

The control scheme in Fig. 8.20 is used with the same matrix gains as for case
F in Sect. 8.7, i.e.,

KP = 3750I KD = 750I.

The initial arm postures for the two cases are chosen as q− [0.1 0.1]T . The
various terms of the dynamic model are computed by using the minimum
parameterization in the solution to Problem 7.4.

The resulting Simulink block diagram is shown in Fig. S8.8, where both
desired postures can be assigned. The arm is simulated as a continuous-time
system using a variable-step integration method with a maximum step size of
1ms. All the blocks of the controller are simulated as discrete-time subsystems
with the given sampling time of 1ms.

The with the solution can be found in Folder 8 10.
The resulting joint positions for the two postures are shown in Figs. S8.9

and S8.10, respectively. The dashed line indicates the desired joint position,
while the solid line indicates the actual joint position. It can be seen that both
postures are reached at steady state.

Solution to Problem 8.11

With reference to the dynamic model in the solution to Problem 7.4, the
presence of a payload alters the dynamic parameters of augmented Link 2.
Since the payload is a mass mL concentrated at the tip, the only parameter
that varies is the mass of the augmented link which becomes

m′
2 = m2 +mL;

in fact, both the inertia first moment m2�C2 and inertia moment Ī2 remain
the same because they are evaluated with respect to a frame located at the
tip. Hence, only parameters π′

1 and π′
3 in (S7.2) have to be recomputed with

the modified m′
2.

90 8 Motion Control

K_p = 5
K_v = 10

K_p = 6.25
K_v = 32

+

+PI
M

voltage-controlled
arm

k_fv

k_fa

q
[T,q_d] k_fp +

-

+

+

+

-

[T,ddq_d]

tau_d

computed torque

[T,dq_d]

plot

k_tv

k_tp

K_vK_p

time

dq

Fig. S8.11. Simulink block diagram of joint space computed torque control with
feedforward compensation of the diagonal terms of the inertia matrix and of gravi-
tational terms, and independent joint control with position and velocity feedback

The desired trajectories for the two joints are generated via trapezoidal ve-
locity profiles with maximum velocities q̇c1 = 3π/4 rad/s and q̇c2 = π/3 rad/s,
respectively.

The control scheme in Fig. 8.19 is used with feedforward compensation
of the diagonal terms of the inertia matrix and of gravitational terms. As for
the decentralized controller, the independent joint control with position and
velocity feedback in Fig. 5.11 is adopted.

Initially, the same gains for each joint servo are chosen as for case A in
Sect. 8.7, i.e., (kTP = kTV = 1)

KP = 5 KV = 10,

corresponding to ωn = 5 rad/s and ζ = 0.5, and thus to a closed-loop band-
width ω3 = 6.36 rad/s. This gives a disturbance rejection factor XR = 50.

Then, by observing that the required trajectory is faster than the cor-
responding trajectory in Sect. 8.7, a larger bandwidth is imposed. Setting
ωn = 10 rad/s and ζ = 0.8 gives ω3 = 10.78 rad/s. From (8.30) and (8.31), the
gains become

KP = 6.25 KV = 32

8 Motion Control 91

0 0.5 1 1.5 2 2.5
−4000

−2000

0

2000

4000

[s]

[N
m

]

joint torques

0 0.5 1 1.5 2 2.5
−0.05

0

0.05

[s]

[r
ad

]

joint pos errors

0 0.5 1 1.5 2 2.5
−4000

−2000

0

2000

4000

[s]

[N
m

]

joint torques

0 0.5 1 1.5 2 2.5
−0.05

0

0.05

[s]

[r
ad

]

joint pos errors

Fig. S8.12. Time history of the joint torques and position errors with joint space
computed torque control with feedforward compensation of the diagonal terms of
the inertia matrix and of gravitational terms, and independent joint control with
position and velocity feedback; left—first choice of servo gains, right—second choice
of servo gains

and, from (8.33), it is XR = 200, i.e., a disturbance rejection factor which is
four times as much as the previous one.

The resulting Simulink block diagram is shown in Fig. S8.11, where both
choices of servo gains can be executed. The arm is voltage-controlled as in
the scheme of Fig. 8.3 and is simulated as a continuous-time system using
a variable-step integration method with a maximum step size of 1 ms. All
the blocks of the controller are simulated as discrete-time subsystems with
the given sampling time of 1ms; in particular, the PI block is discretized
assuming a zero-order hold on the inputs.

The files with the solution can be found in Folder 8 11.
The resulting joint torques and position errors are shown in Fig. S8.12.

The solid line refers to Joint 1, while the dashed line refers to Joint 2. It can
be seen that the tracking performance with the second choice of the servo
gains is considerably improved, at the expense of a sharper behaviour of joint
torques, though.

92 8 Motion Control

n(q,dq)

nonlinear
compensation

time

e

B(q)u

inertia

+

+ inv(B(q))(tau-tau')

arm

q

plot

[T,q_d]

[T,ddq_d]

[T,dq_d]

+

+

+

K_d
-

+

K_p
+

-

compensated
load mass

noncompensated
load mass

dq

Fig. S8.13. Simulink block diagram of joint space inverse dynamics control

0 0.5 1 1.5 2 2.5
−0.02

−0.01

0

0.01

0.02

[s]

[r
ad

]

joint pos errors

0 0.5 1 1.5 2 2.5
−5

0

5
x 10

−4

[s]

[r
ad

]

joint pos errors

Fig. S8.14. Time history of the joint position errors with joint space inverse dy-
namics control; left—noncompensated load mass, right—compensated load mass

Solution to Problem 8.12

The modification of the dynamic model to account for the load mass and
the generation of joint trajectories are accomplished as in the solution to
Problem 8.11.

The control scheme in Fig. 8.22 is used where the matrix gains are chosen
as

KP = 100I KD = 16I

corresponding to an error dynamics for both joints characterized by ωni =
10 rad/s and ζi = 0.8 for i = 1, 2.

The resulting Simulink block diagram is shown in Fig. S8.13, where both
the noncompensated load mass case and the compensated load mass case can

8 Motion Control 93

tau

q

B_h

constant
inertia

e

K_d

K_p

UV

robustness

+

+ inv(B(q))(tau-tau')

arm

variables
initialization

time

plot

+

+

+

+

[T,ddq_d]

-

+[T,dq_d]

[T,q_d] +

-
F_vdq+g(q)

friction and gravity
compensation

dq

Fig. S8.15. Simulink block diagram of joint space robust control

0 0.5 1 1.5 2 2.5
−4000

−2000

0

2000

4000

[s]

[N
m

]

joint torques

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

[s]

[r
ad

]

joint pos errors

Fig. S8.16. Time history of the joint torques and position errors with joint space
robust control

be executed. The arm is torque-controlled as in the scheme of Fig. 8.4 and
is simulated as a continuous-time system using a variable-step integration
method with a maximum step size of 0.1ms. All the blocks of the controller
are simulated as discrete-time subsystems with the given sampling time of
1ms.

The files with the solution can be found in Folder 8 12.
The resulting joint position errors in the two cases are shown in Fig. S8.14.

The solid line refers to Joint 1, while the dashed line refers to Joint 2. It
can be seen that the tracking performance is excellent when load mass is
compensated, while it is degraded both during transient and at steady state

94 8 Motion Control

variables
initialization

e

[T,dq_d]

sig

dq_r

ddq_r

+

-

[T,ddq_d]

-

+
Lam Y(.)pi_h

adaptive
control

+

+

+

+
[T,q_d] +

-
Lam

plot

+

+
inv(B(q))(tau-tau')

arm

q

time

K_d

dq

Fig. S8.17. Simulink block diagram of joint space adaptive control

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1
x 10

−3

[s]

[r
ad

]

joint pos errors

0 0.5 1 1.5 2 2.5
0

5

10

15

20

[s]

[k
g]

load mass estimate

Fig. S8.18. Time history of the joint position errors and of the load mass estimate
with joint space adaptive control

when the load mass is not compensated. Also, in the case of noncompensated
load mass, steady-state errors occur.

Solution to Problem 8.13

The modification of the dynamic model to account for the load mass and
the generation of joint trajectories are accomplished as in the solution to
Problem 8.11.

The control scheme in Fig. 8.23 is used with constant inertia (B̂ = B̄)
and compensation of friction and gravity (n̂ = F vq̇ + g). The gains defining
the error dynamics are chosen as in the solution to Problem 8.12, i.e.,

KP = 100I KD = 16I;

8 Motion Control 95

furthermore, the matrix P in (8.81) is chosen as

P = I,

and the gain ρ and the thickness of the boundary layer in (8.89) are respec-
tively chosen as

ρ = 70 ε = 0.001.

The resulting Simulink block diagram is shown in Fig. S8.15. The arm
is simulated as a continuous-time system using a variable step integration
method with a maximum step size of 1ms. All the blocks of the controller are
simulated as discrete-time subsystems with the given sampling time of 1 ms.

The files with the solution can be found in Folder 8 13.
The resulting joint torques and position errors are shown in Fig. S8.16.

The solid line refers to Joint 1, while the dashed line refers to Joint 2. It can be
seen that, in spite of the imperfect dynamic model compensation, the tracking
performance is satisfactory, thanks to the use of the robustness action.

Solution to Problem 8.14

A minimum parameterization of the dynamic model is obtained as in the so-
lution to Problem 7.4, with suitable modification of augmented Link 2 param-
eters as in the solution to Problem 8.11. The generation of joint trajectories
is also accomplished as in the solution to Problem 8.11.

The control scheme in Fig. 8.26 is used. In terms of the new reference
velocity and acceleration vectors in (8.92), the regressor in (S7.3) becomes

y′11 = a1ϑ̈r1 + gc1

y′12 = ϑ̈r1

y′13 = (2a1c2 + a2)ϑ̈r1 + (a1c2 + a2)ϑ̈r2 − a1s2ϑ̇r1ϑ̇2 − a1s2ϑ̇1ϑ̇r2 − a1s2ϑ̇2ϑ̇r2

+gc12
y′14 = ϑ̈r1 + ϑ̈r2

y′15 = ϑ̈r1 + kr2ϑ̈r2

y′21 = 0
y′22 = 0
y′23 = (a1c2 + a2)ϑ̈r1 + a2ϑ̈r2 + a1s2ϑ̇1ϑ̇r1 + gc12

y′24 = ϑ̈r1 + ϑ̈r2

y′25 = kr2ϑ̈r1 + k2
r2ϑ̈r2.

In view of the presence of a concentrated tip load mass, the only variations
occurring on the parameters in (S7.2) are:

Δπ′
1 = a1mL Δπ′

3 = a2mL.

96 8 Motion Control

Hence, the control law in (8.98) can be formally written as

u = Y ′(q, q̇, q̇r, q̈r)π + F vq̇r +mLyL +KDσ

where Y ′ is computed as above and

yL =
[
a1y

′
11 + a2y

′
13

a1y
′
21 + a2y

′
23

]
,

being π = mL the only unknown parameter.
The gains are chosen as

Λ = 10I KD = 10000I kπ = 0.005;

the initial estimate of π is set to 0, and the true value of mL is utilized only
to update the simulated arm model.

The resulting Simulink block diagram is shown in Fig. S8.17. The arm
is simulated as a continuous-time system using a variable-step integration
method with a maximum step size of 1ms. All the blocks of the controller are
simulated as discrete-time subsystems with the given sampling time of 1 ms.

The files with the solution can be found in Folder 8 14.
The resulting joint position errors and load mass estimate are shown in

Fig. S8.18. For the joint position errors, the solid line refers to Joint 1, while
the dashed line refers to Joint 2. It can be seen that the tracking performance
is satisfactory, thanks to the adaptive action on the load mass; in this case,
the parameter estimate converges to the true value.

Solution to Problem 8.15

The modification of the dynamic model to account for the load mass is ac-
complished as in the solution to Problem 8.11.

The control scheme in Fig. 8.29 is used with the same matrix gains as for
case K in Sect. 8.7, i.e.,

KP = 16250I KD = 3250I.

The initial tip positions for the two postures are chosen as p− [0.1 0.1]T .
The resulting Simulink block diagram is shown in Fig. S8.19, where both

desired positions can be assigned. The arm is simulated as a continuous-time
system using a vaiable-step integration method with a maximum step size of
1ms. All the blocks of the controller are simulated as discrete-time subsystems
with the given sampling time of 1ms.

The files with the solution can be found in Folder 8 15.
The resulting components of tip position for the two postures are shown

in Figs. S8.20 and S8.21, respectively. The dashed line indicates the desired
tip coordinate, while the solid line indicates the actual tip coordinate. It can
be seen that both postures are reached at steady state.

8 Motion Control 97

p_d=[0.6 -0.2]p_d=[0.5 0.5]

g(q)

gravity
compensation

+

-

p_d

-

+

J_a(q)

cs(q)

sinusoidal
 functions

tr(J_a(q))

Jacobian
transpose

+

+

dq

inv(B(q))(tau-tau')

arm

K_p

K_d

k(q)

direct
kinematics

time

plot

p

q

Fig. S8.19. Simulink block diagram of operational space PD control with gravity
compensation

0 0.5 1 1.5 2 2.5
0.35

0.4

0.45

0.5

0.55

[s]

[m
]

x−pos

0 0.5 1 1.5 2 2.5
0.35

0.4

0.45

0.5

0.55

[s]

[m
]

y−pos

Fig. S8.20. Time history of the tip position components with operational space PD
control with gravity compensation for the first posture

Solution to Problem 8.16

The modification of the dynamic model to account for the load mass is ac-
complished as in the solution to Problem 8.11. The desired tip trajectory is
generated in terms of the path coordinate s via a trapezoidal velocity profile
with maximum velocity ṡc = 1.5.

The control scheme in Fig. 8.30 is used with the matrix gains:

KP = 100I KD = 16I.

98 8 Motion Control

0 0.5 1 1.5 2 2.5
0.45

0.5

0.55

0.6

0.65

[s]

[m
]

x−pos

0 0.5 1 1.5 2 2.5

−0.3

−0.25

−0.2

−0.15

[s]

[m
]

y−pos

Fig. S8.21. Time history of the tip position components with operational space PD
control with gravity compensation for the second posture

[T,p_d]

[T,ddp_d]

q

dq

inv(B(q))(tau-tau')

arm

+

+

B(q)u

inertia

+

+

+

-

K_p
+

-

K_d
+

-

[T,dp_d]

compensated
load mass

noncompensated
load mass

e n(q,dq)

nonlinear
compensation

inv(J_a(q))

Jacobian
inverse

plot

cs(q)

sinusoidal
 functions

k(q)

direct
kinematics dJ_a(q,dq)

Jacobian
derivative

J_a(q)

analytical
Jacobian

time

Fig. S8.22. Simulink block diagram of operational space inverse dynamics control

The resulting Simulink block diagram is shown in Fig. S8.22, where both
the noncompensated load mass case and the compensated load mass case
can be executed. The arm is simulated as a continuous-time system using a
variable-step integration method with a maximum step size of 1ms. All the
blocks of the controller are simulated as discrete-time subsystems with the
given sampling time of 1 ms.

The files with the solution can be found in Folder 8 16.

8 Motion Control 99

0 0.5 1 1.5 2 2.5
−6

−4

−2

0

2

4

6
x 10

−3

[s]

[m
]

tip pos errors

0 0.5 1 1.5 2 2.5
−4

−2

0

2

4
x 10

−4

[s]

[m
]

tip pos errors

Fig. S8.23. Time history of the components of tip position error with opera-
tional space inverse dynamics control; left—noncompensated load mass, right—
compensated load mass

The resulting components of tip position error in the two cases are shown
in Fig. S8.23. The solid line refers to x component, while the dashed line refers
to y component. It can be seen that the performance is excellent when the
load mass is compensated, while it is degraded both during transient and at
steady state when the load mass is not compensated.

9

Force Control

Solution to Problem 9.1

Computing the time derivative of odd,e = RT
d (oe − od) gives

ȯdd,e = RT
d (ȯe − ȯd) − ṘT

d (oe − od). (S9.1)

In view of (3.10), (3.7) and (3.11) the following equality holds

Ṙ
T

d = −RT
d S(ωd) = −S(RT

dωd)R
T
d = −S(ωdd)R

T
d (S9.2)

which, replaced in (S9.1), gives (9.10).
To derive (9.11), consider the equality

Ṙ
d

e = Ṙ
T

dRe +RT
d Ṙe = −S(ωdd)R

e
d + S(ωde)R

e
d = S(ωdd,e)R

e
d,

where (S9.2), (3.10), and (3.11) have been used. It follows that (3.64) can be
rewritten as

ωdd,e = T (φd,e)φ̇d,e

being φd,e the vector of Euler angles extracted from Rd
e and ωdd,e the angular

velocity corresponding to Ṙ
d

e. Hence, expression (9.11) follows.

Solution to Problem 9.2

Pre-multiplying by K both sides of the equality

dxr,e = dxr,d − dxe,d,

and using (9.21) and (9.20) gives

he = Kdxr,d −KK−1
P he

102 9 Force Control

and thus
(I6 +KK−1

P)he =Kdxr,d,

from which expression (9.22) follows. Equality (9.23) is obtained replac-
ing (9.22) into (9.20).

Solution to Problem 9.3

Similarly to Example 9.2, all the quantities can be referred to a base frame and
control law with force measurement (9.30), (9.31) can be adopted. To compute
the model of the contact force, in view of the geometry of the environment, it
is useful to consider also a rotated base frame with axes parallel to the axes
xc and yc of Fig. 9.16 and with the same origin of the base frame of axes x0

and y0. The corresponding rotation matrix is

Rc =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
.

In the rotated base frame, the environment stiffness matrix has the simple
expression

Kc = diag{0, ky},
corresponding to the absence of interaction forces along the direction of axis
xc (f ce = [0 f cy]T). The elastic force in the rotated base frame has the
expression

fce = Kc(oce − ocr),
being oce the end-effector position and ocr the equilibrium position of the plane
in the rotated base frame. The above expression can be rewritten in the base
frame in the form

fe = K(oe − or),
with

K = RcK
cRT

c = ky

[
1/2 −1/2
−1/2 1/2

]
and or = [1 0]T .

The impedace parameters can be set similarly to Example 9.2, on the
basis of the equations

mdxẍ
c
e + kDxẋ

c
e + kPxx

c
e = kPxx

c
d

mdyÿ
c
e + kDy ẏ

c
e + (kPy + ky)yce = kyy

c
r + kPyy

c
d

referred to the rotated base frame, where the diagonal matrices

M c
d = diag{mdx,mdy} Kc

D = diag{kDx, kDy} Kc
P = diag{kPx, kPy}

define an active impedance in the rotated base frame. The corresponding
impedance matrices referred to the base frame are

Md = RcM
c
dR

T
c KD = RcM

c
dR

T
c KP = RcM

c
dR

T
c .

9 Force Control 103

o_e

do_e

f_e

operational space
decoupled arm

u = ddo_e

environment

K(o_e−o_r)

e

f_e time

plot

variables
initialization

K_d inv(M_d)

K_p

[T,do_d]

[T,ddo_d]

[T,o_d]

Fig. S9.1. SIMULINK block diagram of impedance control.

Notice that, differently from Example 9.2, the interaction occurs along yc.
Therefore, for the unconstrained motion along xc, the behaviour is determined
by

ωnx =

√
kPx
mdx

ζx =
kDx

2
√
mdxkPx

,

while, for the constrained motion along axis yc, the behaviour is determined
by

ωny =

√
kPy + ky
mdy

ζy =
kDy

2
√
mdy(kPy + ky)

.

With the choice

mdx = mdy = 100 kDx = kDy = 1600 kPx = kPy = 5000,

and the given value of environment stiffness ky , the dynamics is characterized
by

ωnx = 7.07 rad/s ζx = 1.13

and
ωny = 10 rad/s ζy = 0.8.

The desired tip trajectory is generated in terms of the path coordinate s
via a trapezoidal velocity profile with maximum velocity ṡc = 0.5.

The resulting Simulink block diagram is shown in Fig. S9.1. The arm is
simulated as a continuous-time system using the a variable-step integration
method with a minimum step size of 1ms. All the blocks of the controller are
simulated as discrete-time subsystems with the given sampling time of 1 ms.

104 9 Force Control

0 0.5 1 1.5 2 2.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

[s]

[m
]

pos error

x

y

0 0.5 1 1.5 2 2.5

−500

0

500

[s]

[N
]

force

x

y

0 0.5 1 1.5 2 2.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

[s]

[m
]

pos error

x
c

y
c

0 0.5 1 1.5 2 2.5

−500

0

500

[s]

[N
]

force

x
c

y
c

Fig. S9.2. Time history of the tip position error and of the contact force with
impedance control. Top: components in the base frame. Bottom: components in the
rotated base frame.

The files with the solution can be found in Folder 9 3.
The resulting tip position error and contact force are shown in Fig. S9.2,

both referred to the base frame (top) and to the rotated base frame (bottom).
It can be verified that the position error keeps small during the task execution,
ensuring a bounded contact force. In particular, it can be observed that the
position error is null along the unconstrained motion direction (axis xc), where
the force is null; on the other hand, the force response along the constrained
motion direction (axis yc) remains bounded and converges to a constant value
which depends on the plane stiffness and undeformed position as well as on
the active compliance.

Solution to Problem 9.4

From the block scheme in Fig. 9.8, at the equilibrium, it is ẋ ≡ 0, ẍ ≡ 0.
Then, the input to the block KP must be null, which implies

xd + xF − xe = 0.

In view of (9.21) and (9.41), it follows that

xd +CF

(
K(xr − xe) + fd

)− xe = 0,

9 Force Control 105

and thus the equilibrium location satisfies the equation

xe = xd +CF

(
K(xr − xe) + fd

)
.

Solution to Problem 9.5

The norm of vector
ε = he − Sfλ

with weighting matrix W is defined as

‖ε‖W =
√
εTWε. (S9.3)

The vector λ which minimizes the norm (S9.3) can computed also as the
solution of a minimization problem for the quadratic cost functional

g(ε) =
1
2
εTWε.

The solution has to satisfy the necessary condition(
∂g

∂λ

)T
= 0

which gives
−STfW (he − Sfλ) = 0,

and thus
λ = (STfWSf)−1STfWhe.

Solution to Problem 9.6

Taking into account that CK = KC = I6, Equation (9.70) can be rewritten
in the form

K′ = Sf (STf CSf)
−1STfCK

which, considering the definition (9.55) of weighted pseudo-inverse with weight
C, can be rewritten as

K ′ = SfS
†
fK = P fK.

Solution to Problem 9.7

Assuming that the screwdriver can move along the slot of the screw, it is worth
choosing the constraint frame attached to the screwdriver as in Fig. S9.3.

Natural constraints can be determined first. Motion constraints describe
the impossibility to generate arbitrary linear velocities along axes yc, zc and

106 9 Force Control

Fig. S9.3. Driving a screw in a hole.

Table S9.1. Natural and artificial constraints for the task of Fig. S9.3.

Natural Artificial
Constraints Constraints

ṗc
y fc

y

ṗc
z fc

z

ωc
x μc

x

ωc
y μc

y

fc
x ṗc

x

μc
z ωc

z

angular velocities about axes xc, yc. Force constraints describe the impossi-
bility to exert arbitrary forces along axis xc and moment about axis zc.

As a consequence, artificial constraints regard the variables not subject to
natural constraints. Hence, with reference to natural velocity constraints along
axes yc, zc and about xc, yc, it is possible to specify artificial constraints for
forces along yc, zc and moments about xc, yc. Also, with reference to natural
generalized force constraints along axis yc and about axis zc, it is possible to
specify artificial constraints for linear velocity along xc and angular velocity
about zc. The set of constraints is summarized in Table S9.1. Notice that, in
the case of a frictionless groove, once ωcz is specified, then ṗcz is determined
according to the pitch of the screw.

Solution to Problem 9.8

The control input (9.77) referred to the constraint frame, in view of the ex-
pressions of Scf , S

c
v and C ′c in Example 9.4, can be computed as

αcx = αν

αcy = c2,2fλ.

9 Force Control 107

Taking into account (9.81), the control input αcy can be expressed as

αcy = −c2,2kDλλ̇+ kPλ(λd − λ),

where a constant desired force λd was considered. In view of the equalities
ȯcy = c2,2λ̇ and λ = f cy , the equation can be rewritten in the form

αcy = −kDλȯcy + kPλ(λd − f cy),

showing that the the control action in the force controlled subspace consists
of a proportional force control with inner velocity loop.

Solution to Problem 9.9

The computation of Sc†f using the compliance matrix

Cc =
[
c1,1 c1,2
c1,2 c2,2

]
as a weighting matrix gives

Sc†f = (ScTf C
cScf)

−1ScTf C
c = [c−1

2,2c1,2 1] .

On the other hand, computing S†
f in the base frame gives

S†
f = (STfCSf)

−1STf C =
1√
2

[
c1,2 − c2,2

c2,2

c1,2 + c2,2
c2,2

]
,

where C = RcC
cRT

c . Notice that S†
f = Sc†f R

T
c and the same transformation

rule holds for S†
v. Also, if f ce = [f cx f cy]T , then

λ = Sc†f f
c
e = S†

ff e =
c1,2
c2,2

f cx + f cy ,

independently from the frame to which S†
f and fe are referred. On the other

hand, if the contact force fce belongs to subspace R(Scf), i.e., fce = [0 f cy]T ,
then it is λ = f cy independently from the particular weighting matrix.

Analogously, the computation of Sc†v using the stiffness matrix

Kc =
[
k1,1 k1,2

k1,2 k2,2

]
as a weighting matrix gives

Sc†v = (ScTv K
cScv)

−1ScTv K
c = [1 k−1

1,1k1,2]

108 9 Force Control

in the constraint frame, and

S†
v =

1√
2

[
k1,1 − k1,2

k1,1

k1,1 + k1,2

k1,1

]
in the base frame.

Solution to Problem 9.10

In view of the results of Example 9.4, the hybrid control law can be designed
by choosing the control inputs αν and fλ according to (9.80) and (9.84),
respectively, with suitable control gains.

In detail, the control gains in (9.80) can be set to

kPν = 16 kIν = 100,

corresponding to ωnν = 10 rad/s and ζν = 0.8 for the dynamics of the velocity
error νd − ν.

The same dynamics can be imposed to the force λ with the choice

kDλ = 16 kPλ = 100,

in the case that the stiffness of the environment is known.
In the case that only an estimate of the stiffness of the environment is

available, the quantity Lf = lf has the value

lf =
ĉ2,2
c2,2

and thus
˙̂
λ = ĉ−1

2,2ȯ
c
y.

Assuming, for example, ĉ−1
2,2 = 4 · 103 N/m, then lf = 1.25, corresponding

to ωnλ = 11.18 rad/s and ζλ = 0.71 for the dynamics of the force.
The initial tip position is chosen on the plane as oe(0) = [1 0]T . The

desired velocity along axis xc is set as in Problem 9.3, while the desired force
along axis yc is set to −50N.

The resulting Simulink block diagram is shown in Fig. S9.4. The arm
is simulated as a continuous-time system using a variable-step integration
method with a minimum step size of 1ms. All the blocks of the controller are
simulated as discrete-time subsystems with the given sampling time of 1 ms.

The files with the solution can be found in Folder 9 10.
The resulting tip velocity error along xc and contact force along yc are

shown in Fig. S9.5. It can be verified that the velocity error keeps small during
task execution; also, the contact force reaches the desired value at steady state.
In Fig. S9.6, the continuous line represents the end-effector path in the base
frame, while the dashed line corresponds to the plane at rest. It can be verified
that the plane complies during the interaction.

9 Force Control 109

do_e

f_eo_e

operational space
decoupled arm

u = ddo_e

environment

K’(o_e−o_r)

e_nu

timelam

o_e

plot

variables
initialization

pS_f

K_Dl

K_Pl
C’S_f

G_f

K_Pnu S_v

R_c

trR_c

pS_v

pS_v

pS_f

trR_c

trR_c

pS_v

K_Inu

[T,v_d]

[T,a_d]

K Ts
z−1

h_d

Fig. S9.4. SIMULINK block diagram of hybrid force/motion control.

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2
x 10

−3

[s]

[m
/s

]

vel error

0 0.5 1 1.5 2 2.5
−60

−50

−40

−30

−20

−10

0

[s]

[N
]

force

Fig. S9.5. Time history of the tip velocity error and of the contact force with hybrid
force/motion control.

Solution to Problem 9.11

In view of equality q̇ = Jρ(r)ṙ and (9.63) the following equality holds

ve = J(q)q̇ = J(q)Jρ(r)ṙ = Sv(q)ṙ.

Hence, pre-multiplying both sides of the above equation by S†
v and using (9.59)

gives
ν = ṙ.

Also, it is ν̇ = r̈. Therefore, control law (9.95) yields the closed-loop equation

r̈ − r̈d +KDr(ṙd − ṙ) +KPr(rd − r) = 0,

showing that tracking of a desired position rd(t) is achieved.

110 9 Force Control

1 1.1 1.2

0

0.05

0.1

0.15

0.2

0.25

[m]

[m
]

Fig. S9.6. Tip’s path in the base frame (continous line) and undeformed contact
plane (dashed line).

10

Visual servoing

Solution to Problem 10.1

The principal moments of the region are the eigenvalues of matrix I which
are

λ =
1
2

(
μ2,0 + μ0,2 +

√
4μ2

1,1 + (μ0,2 − μ2,0)2
)

λ′ =
1
2

(
μ2,0 + μ0,2 −

√
4μ2

1,1 + (μ0,2 − μ2,0)2
)

with λ ≥ λ′ > 0. The principal axis (i.e., the eigenvector of I) corresponding
to λ is aligned to vector

aλ =
[

μ1,1

λ− μ2,0

]
.

Therefore

tα =
1

2μ1,1

(
μ0,2 − μ2,0 +

√
4μ2

1,1 + (μ0,2 − μ2,0)2
)

,

where tα = tanα. Considering that

t2α =
2tα

1 − t2α
=

2μ1,1

μ2,0 − μ0,2
,

Equation (10.2) follows.

Solution to Problem 10.2

The singular value decomposition of the (12 × 9) matrix A is given by

A = UΣV T , (S10.1)

112 10 Visual servoing

where U is a (12 × 12) orthogonal matrix, V is a (9 × 9) orthogonal matrix
and

Σ =
[
D 0
O 0

]
D = diag{σ1, σ2, . . . , σ8}

whith σ1 ≥ σ2 ≥ . . . ≥ σ8 > 0 being the non-null singular values of matrix A,
which is of rank 8. Post-multiplying by V both sides of Eq. (S10.1) gives

AV = UΣ

and thus Avi = σiui, for i = 1, . . . , 8 and Av9 = 0, being vi the i-th
column of V , known as right eigenvector, and ui the i-th column of U , known
as left eigenvector, corresponding to σi. In sum, the right eigenvector v9,
corresponding to the null singular value ofA, is a non-null solution to (10.10).

Solution to Problem 10.3

Notice that equality Tr(RcT
o UΣV

T) = Tr(V TRcT
o UΣ) derives from prop-

erty Tr(AB) = Tr(BA), for square matrices A and B. Also, since V TRcT
o U

is an an orthogonal matrix, all its elements have absolute value lower than or
equal to 1.

The problem of minimizing the Frobenius norm is equivalent to that of
minimizing the quantity

‖Rc
o −Q‖2

F = Tr
(
(Rc

o −Q)T (Rc
o −Q)

)
= 3 + Tr

(
QTQ

)
− 2Tr

(
RcT
o Q

)
,

which is minimum when Tr
(
RcT
o Q

)
is maximum. Consider the singular value

decomposition
Q = UΣV T

where Σ = diag{σ1, σ2, σ3}, σi > 0. The following equality holds

Tr
(
RcT
o UΣV

T
)

= Tr
(
V TRcT

o UΣ
)

=
3∑
i=1

zi,iσi

where zi,i, i = 1, 2, 3 are the diagonal elements of the orthogonal matrix
V TRcT

o U , whose absolute values are lower than or equal to 1. Thus

Tr
(
RcT
o UΣV

T
)
≤

3∑
i=1

σi

and the equality holds when zi,i = 1. Hence the maximum of Tr
(
RcT
o Q

)
is

achieved by choosing Rc as in (10.12), which ensures that V TRcT
o U = I.

10 Visual servoing 113

xh

es

time

sh
plot

variables
 initialization

s(xh)

Jacobian
inverse

inv(J_as)vsK_s
K Ts
z−1

s

Fig. S10.1. Simulink block diagram of the pose estimation algorithm based on the
inverse of image Jacobian. Case of two feature points.

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

[s]

error norm

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
image plane

Fig. S10.2. Time history of the norm of the estimation error and corresponding
paths of the feature points projections on image plane

Solution to Problem 10.4

In view of the results of Example 10.3, the Jacobian JAs , based on the feature
vector of two points, is a square (4 × 4) matrix. Hence, the pose estimation
algorithm based on the inverse of image Jacobian can be adopted.

According to (10.40) and (10.41), the following equality holds

˙̂xc,o = v̂cc,o = Γ (occ,o)L
−1
s Kses,

where Ls is the (4× 4) interaction matrix of points P1 and P2, obtained from
the (4 × 6) interaction matrix of a set of two points by removing the fourth
and fifth column. Also, Γ (occ,o) is the (4 × 4) matrix

Γ (occ,o) =
[−I s3(occ,o)
0T −1

]
,

114 10 Visual servoing

0 0.01 0.02 0.03 0.04
−0.2

0

0.2

0.4

0.6

0.8

z

y

x

[s]

[m
]

pos

0 0.01 0.02 0.03 0.04
−1.5

−1

−0.5

0

[s]

[r
ad

]

orien

Fig. S10.3. Time history of camera pose estimate

xh

es

time

sh
plot

sl(xh)

variables
 initialization

K_s
K Ts
z−1

s

 Jacobian
inverse

inv(J_asl)vs

Fig. S10.4. Simulink block diagram of the pose estimation algorithm based on the
inverse of image Jacobian. Case of two feature points.

being s3(·) is the third column of matrix S(·).
Matrix gain Ks has been chosen as Ks = 160I4. The initial estimate has

been set to x̂c,o(0) = [0 0 0.5 0]. The resulting Simulink block diagram
is shown in Fig. S10.1. The Euler numerical integration method has been
adopted, with sampling time of 1ms.

The files with the solution can be found in Folder 10 4.
The results in Fig. S10.2 show that the norm of the estimation error of

the feature parameters es tends to zero asymptotically with convergence of
exponential type; moreover, due to the fact that matrix gain Ks was chosen
diagonal with equal elements, the paths of the projections of the feature points
on the image plane (between the initial positions marked with crosses and the
final positions marked with circles) are line segments.

The corresponding time histories of the components of vector x̂c,o for
position and orientation are reported in Fig. S10.3. It can be verified that, with
the chosen value ofKs, the algorithm converges in about 0.03 s, corresponding

10 Visual servoing 115

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

1.2

[s]

error norm

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
image plane

Fig. S10.5. Time history of the norm of the estimation error and corresponding
paths of the feature points projections on image plane

0 0.01 0.02 0.03 0.04
−0.2

0

0.2

0.4

0.6

0.8

z

y

x

[s]

[m
]

pos

0 0.01 0.02 0.03 0.04
−1.5

−1

−0.5

0

[s]

[r
ad

]

orien

Fig. S10.6. Time history of camera pose estimate

to 30 iterations. The final value, namely, the estimated relative pose of the
object with respect to the camera, is x̂c,o � [−0.1 0.1 0.6 −π/3]T .

Solution to Problem 10.5

The solution is similar to that of Problem 10.4, but the feature parameters
are defined according to (10.28), and the interaction matrix of a line segment
is used.

Matrix gain Ks has been chosen as Ks = 160I4. The initial estimate has
been set to x̂c,o = [0 0 0.5 0]. The feature vector of the line segment
corresponding to that of Problem 10.4 is

s = [−0.1250 0.0945 0.1668 −1.0470]T .

The resulting Simulink block diagram is shown in Fig. S10.4. The Euler
numerical integration method has been adopted, with sampling time of 1 ms.

The files with the solution can be found in Folder 10 5.
The results in Figs. S10.5 and S10.6 are quite similar to those of Prob-

lem 10.4. Notice that, however, the paths of the projections of the feature
points on the image plane are not perfectly linear, due to the different choice

116 10 Visual servoing

of feature vector. This is reflected also by a different time history of the z
component of the camera position during the transient. Obviously, the same
final value is achieved for the estimated relative pose of the object with respect
to the camera, namely x̂c,o � [−0.1 0.1 0.6 −π/3]T .

Solution to Problem 10.6

In view of the equalities pi = p̄i + p̄ and p′i = p̄′i + p̄′, function (10.55) can
be rewritten as

g(o) =
n∑
i=1

‖pi − o−Rp′i‖2 = n‖p̄− o−Rp̄′‖2 +
n∑
i=1

‖p̄i −Rp̄′i‖2

+2
n∑
i=1

(p̄− o−Rp̄′)T (p̄i −Rp̄′i)

= n‖p̄− o−Rp̄′‖2 +
n∑
i=1

‖p̄i −Rp̄′i‖2,

considering that
∑n

i=1 p̄i =
∑n

i=1 p̄
′
i = 0. Hence, with the choice of o as

in (10.56), function (10.55) is minimum. The same result can be obtained
computing the value of o which satisfies the necessary condition (∂g/∂o)T =
0.

Solution to Problem 10.7

Function (10.57) can be rewritten as

n∑
i=1

‖p̄i −Rp̄′i‖2 =
n∑
i=1

‖p̄i‖2 − 2
n∑
i=1

p̄′Ti R
T p̄i +

n∑
i=1

‖Rp̄′i‖2

which is minimum when the quantity
∑n
i=1 p̄

′T
i R

T p̄i is maximum. This quan-
tity, in view of the property aTb = Tr(ba), can be rewritten as

n∑
i=1

p̄′Ti R
T p̄i =

n∑
i=1

Tr
(
RT p̄ip̄

′T
i

)
= Tr(RTK),

withK =
∑n

i=1 p̄ip̄
′
i
T . Hence, the matrixR which minimizes function (10.57)

is the matrix which maximizes the trace of RTK.

Solution to Problem 10.8

The control scheme in Fig. 10.14 is adopted, with the same matrix gains used
in control scheme A of Sect. 10.9, namely,

KP = diag{500, 500, 10, 10} KD = diag{500, 500, 10, 10}.

10 Visual servoing 117

dq

q

xtilde

sinusoidal
 functions

cs(q)

gravity

g(q)

time

s plot

estimate

J_Aq(q)

variables
 initialization

features

cs x_co

SCARA arm

inv(B(q))(tau−tau’)

Jacobian
transpose

tr(J_Aq(q))

K_p

K_d

x_do

Fig. S10.7. Simulink block diagram of the position-based visual servoing scheme
of PD type with gravity compensation

The initial pose of the camera frame is xc(0) = [1 1 0.5 π/4]T and the
desired pose of the object frame with respect to the camera frame has been set
to xd,o = [−0.1 0.1 0.6 −π/3]T . The various terms of the dynamic model
of the SCARA manipulator are computed as in the solution to Problem 7.3.

The pose estimation algorithm is based on the measurements of the fea-
tures of the line segment P1P2, as in the solution to Problem 10.5, using the
same matrix gain, namely, Ks = 160I4. The initial pose estimate is chosen
as x̂c,o(0) = xd,o.

The resulting Simulink block diagram is shown in Fig. S10.7. The arm
is simulated as a continuous-time system using a variable-step integration
method with a maximum step size of 1ms. All the blocks of the controller are
simulated as discrete-time subsystems with the given sampling time of 4 ms,
while the sampling time of the estimation algorithm has been set to 1 ms.

The files with the solution can be found in Folder 10 8.
The results of Figs. S10.8 and S10.9 (right) are very similar to those of

Figs. 10.18 and 10.19 (right), as expected. In fact, the two control schemes dif-
fer only for the estimation algorithms which, in both cases, have fast dynamics
with negligible effects on the control loop dynamics.

Notice that, in Fig. S10.9 (left), the time history of the feature parameters
of the line segment P1P2 used by the estimation algorithm in Fig. S10.7 is
reported.

118 10 Visual servoing

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

x−pos

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

y−pos

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5

[s]

[m
]

z−pos

0 2 4 6 8
0.5

1

1.5

2

[s]

[r
ad

]

alpha

Fig. S10.8. Time history of camera frame position and orientation with position-
based visual servoing scheme of PD type with gravity compensation

0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

[s]

param

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
image plane

Fig. S10.9. Time history of feature parameters and corresponding path of feature
points projections on image plane with position-based visual servoing scheme of PD
type with gravity compensation

Solution to Problem 10.9

The control scheme in Fig. 10.17 is adopted, with the same matrix gain used
in control scheme B of Sect. 10.9, namely, K = I4.

The initial pose of the camera frame is xc(0) = [1 1 0.5 π/4]T , and
the desired pose of the object frame with respect to the camera frame has
been set to xd,o = [−0.1 0.1 0.6 −π/3]T .

10 Visual servoing 119

qxtilde

sinusoidal
 functions

cs(q)

controlled
manipulator

1
s

time

s plot

estimate

variables
 initialization

features

cs x_co

Jacobian
inverse

inv(J_Aq(q))
K

x_do

Fig. S10.10. Simulink block diagram of the resolved-velocity position-based visual
servoing scheme

The pose estimation algorithm is based on the measurements of the fea-
tures of the line segment P1P2, as in the solution to Problem 10.5, using the
same matrix gain, namely, Ks = 160I4. The initial pose estimate is chosen
as x̂c,o(0) = xd,o.

The resulting Simulink block diagram is shown in Fig. S10.10. Notice
that the dynamics of the controlled robot manipulator is approximated by a
simple integrator. All the blocks of the controller are simulated as discrete-
time subsystems with the given sampling time of 4 ms, while the sampling
time of the estimation algorithm has been set to 1ms.

The files with the solution can be found in Folder 10 9.
The results of Figs. S10.11 and S10.12 (right) are very similar to those

of Figs 10.20 and 10.21 (right), as expected (see also the solution to Prob-
lem 10.8).

Solution to Problem 10.10

The control scheme in Fig. 10.16 is adopted with the matrix gains

KPs = diag{300, 300, 150, 50} KDs = diag{330, 330, 165, 40},
which guarantee a closed-loop dynamics similar to that of control scheme C in
Sect. 10.9. Notice that, in this case, the dynamics of the closed-loop depends
on the type of feature parameters extracted from visual measurements.

The various terms of the dynamic model of the SCARA manipulator are
computed as in the solution to Problem 7.3.

The initial pose of the camera frame is xc(0) = [1 1 0.5 π/4]T , and
the desired value of the feature parameters of the line segment P1P2 has

120 10 Visual servoing

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

x−pos

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

y−pos

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5

[s]

[m
]

z−pos

0 2 4 6 8
0.5

1

1.5

2

[s]

[r
ad

]

alpha

Fig. S10.11. Time history of camera frame position and orientation with resolved-
velocity position-based visual servoing

0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

[s]

param

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
image plane

Fig. S10.12. Time history of feature parameters and corresponding path of fea-
ture points projections on image plane with resolved-velocity position-based visual
servoing

been set to sd = [−0.1250 0.0945 0.1667 −1.0472]T , corresponding to
the desired pose xd,o.

Matrix Ls(s, zc) has been approximated with matrix L̂s = Ls(s, zd),
where zd is the third component of vector xd,o.

The resulting Simulink block diagram is shown in Fig. S10.13. The arm
is simulated as a continuous-time system using a variable-step integration
method with a maximum step size of 1ms. All the blocks of the controller are

10 Visual servoing 121

dq

q

sinusoidal
 functions

cs(q)

gravity

g(q)

time

s plot

J_L(s,zc,q)

features

variables
 initialization

features

cs x_co

SCARA arm

inv(B(q))(tau−tau’)

Jacobian
transpose

tr(J_L(s,zc,q))

K_p

K_d

x_do

Fig. S10.13. Simulink block diagram of the image-based visual servoing scheme
of PD type with gravity compensation

simulated as discrete-time subsystems with the given sampling time of 4 ms,
while the sampling time of the estimation algorithm has been set to 1 ms.

The files with the solution can be found in Folder 10 10.
The results are shown in Figs. S10.14 and S10.15. With respect to the

results of Figs 10.22 and 10.23, it can be observed that the phenomenon of
camera retreat is mitigated.

Solution to Problem 10.11

The control scheme in Fig. 10.17 is adopted with the same matrix gain used
in control scheme C of Sect. 10.9, namely, Ks = I4.

The initial pose of the camera frame is xc(0) = [1 1 0.5 π/4]T , and
the desired value of the feature parameters of the line segment P1P2 has
been set to sd = [−0.1250 0.0945 0.1667 −1.0472]T , corresponding to
the desired pose xd,o.

Matrix Ls(s, zc) has been approximated with matrix L̂s = Ls(s, zd),
where zd is the third component of vector xd,o.

The resulting Simulink block diagram is shown in Fig. S10.16. Notice
that the dynamics of the controlled robot manipulator is approximated by a
simple integrator. All the blocks of the controller are simulated as discrete-
time subsystems with the given sampling time of 4 ms, while the sampling
time of the estimation algorithm has been set to 1ms.

The files with the solution can be found in Folder 10 11.

122 10 Visual servoing

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

x−pos

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

y−pos

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5

[s]

[m
]

z−pos

0 2 4 6 8
0.5

1

1.5

2

[s]

[r
ad

]

alpha

Fig. S10.14. Time history of camera frame position and orientation with image-
based visual servoing scheme of PD type with gravity compensation

0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

[s]

param

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
image plane

Fig. S10.15. Time history of feature parameters and corresponding path of feature
points projections on image plane with image-based visual servoing scheme of PD
type with gravity compensation

The results of Figs. S10.17 and S10.18 (right), with the given choice of
the control gains, are quite similar to those of Figs 10.22 and 10.23 (right).
However, it can be noticed the absence of the phenomenon of camera retreat.

Solution to Problem 10.12

The distance dc can be computed as

dc = ncTrcc = zcn
cT s̃p,

10 Visual servoing 123

q

sinusoidal
 functions

cs(q)

controlled
manipulator

1
s

time

s plot

features

variables
 initialization

features

cs x_co

Jacobian
inverse

inv(J_L(s,zc,q))
K

x_do

Fig. S10.16. Simulink block diagram of the resolved-velocity image-based visual
servoing scheme

and thus
zc =

dc
ncT s̃p

.

Analogously, the following equality can be derived

zd =
dd

ndT s̃p,d
.

Hence, expression (10.94) follows directly.
In order to derive (10.95), consider that the distance dc can be computed

also as
dc = dd + ncTocc,d,

and thus
dc
dd

= 1 + ncT
occ,d
dd

.

Moreover, the following equality holds

det(H) = det
(
Rc
d +

1
dd
occ,dn

dT

)
= det

((
I +

1
dd
occ,dn

cT

)
Rc
d

)
= det

(
I +

1
dd
occ,dn

cT

)
.

By direct computation, it is possible to verify the identity

det
(
I +

1
dd
occ,dn

cT

)
= 1 + ncT

occ,d
dd

,

124 10 Visual servoing

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

x−pos

0 2 4 6 8

1

1.1

1.2

1.3

1.4

[s]

[m
]

y−pos

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5

[s]

[m
]

z−pos

0 2 4 6 8
0.5

1

1.5

2

[s]

[r
ad

]

alpha

Fig. S10.17. Time history of camera frame position and orientation with resolved-
velocity image-based visual servoing

0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

[s]

param

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
image plane

Fig. S10.18. Time history of feature parameters and corresponding path of feature
points projections on image plane with resolved-velocity image-based visual servoing

and thus
dc
dd

= det(H).

10 Visual servoing 125

Solution to Problem 10.13

Notice that

∂ep(rcc)
∂rcc

=
zc
zdρz

⎡⎢⎢⎢⎢⎢⎢⎣
− 1
zc

0
xc
z2
c

0 − 1
zc

yc
z2
c

0 0 − 1
zc

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

zdρz

⎡⎢⎣−1 0 X

0 −1 Y

0 0 −1

⎤⎥⎦

S(rcc) = zc

⎡⎣ 0 −1 Y
1 0 −X

−Y X 0

⎤⎦ .

Hence, in view of (10.26) and (10.96), the following equalities hold

Jp =
∂ep(rcc)
∂rcc

=
1

zdρz

⎡⎢⎣−1 0 X

0 −1 Y

0 0 −1

⎤⎥⎦

Jo = −∂ep(r
c
c)

∂rcc
S(rcc) =

⎡⎢⎣ XY −1 −X2 Y

1 + Y 2 −XY −X
−Y X 0

⎤⎥⎦ .

11

Mobile Robots

Solution to Problem 11.1

Denote by (x, y) the Cartesian coordinates of a representative point on the
tricycle (e.g., the midpoint of the rear wheel axle), by φ the steering angle
of the front wheel with respect to the vehicle, and by θ0 the orientation of
the vehicle with respect to the x axis. Once the configuration of the tricycle
and of the first i − 1 trailers are given, the configuration of the i-th trailer
is completely described by the its orientation θi with respect to the x axis.
The configuration vector for the complete vehicle is therefore obtained as q =
[x y φ θ0 θ1 . . . θN]T , and takes values in IR2×SO(2)× . . .×SO(2)
(with SO(2) appearing N + 2 times). Another possibility is to replace the
absolute angle θi with the relative angle θi − θi−1 to describe the orientation
of each trailer.

Solution to Problem 11.2

Add the kinematic constraints side-by-side to obtain

3 � q̇3 + r(q̇4 + q̇5 + q̇6) = 0

that can be integrated as

q3 = − r

3 �
(q4 + q5 + q6) + c,

where c is an integration constant. The kinematic constraints are then par-
tially integrable. In particular, the orientation q3 of the robot is a linear func-
tion of the wheel rotation angles q4, q5, q6.

Solution to Problem 11.3

Consider a single Pfaffian constraint

aT (q)q̇ =
n∑
j=1

aj(q)q̇j = 0.

128 11 Mobile Robots

The corresponding kinematic model is

q̇ =
n−1∑
j=1

gj(q)uj ,

where {g1(q), . . . , gn−1(q)} is a basis of N (aT (q)). Without loss of generality,
assume that a1(q) �= 0, and consider the following choice of input vector fields

g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ(q)a2(q)
γ(q)a1(q)

0
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
g2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ(q)a3(q)
0

γ(q)a1(q)
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. . . gn−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ(q)an(q)
0
0
0
...
0

γ(q)a1(q)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where γ(q) �= 0. The distribution Δ = span{g1, . . . , gn−1} is involutive if any
Lie bracket [gi, gj] can be written as a linear combination of g1, . . . , gn−1.

For example, consider [g1, g2]. A simple computation gives

[g1, g2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂(γa2)
∂q1

γa3 − ∂(γa3)
∂q1

γa2 +
(
∂(γa3)
∂q2

− ∂(γa2)
∂q3

)
γa1

∂(γa1)
∂q3

γa1 − ∂(γa1)
∂q1

γa3

∂(γa1)
∂q1

γa2 − ∂(γa1)
∂q2

γa1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the integrability condition expressed by (11.9), one easily verifies that

[g1, g2] =
∂(γa3)
∂q1

g1 −
∂(γa2)
∂q1

g2 +
∂(γa1)
∂q1

a3g1 + a2g2

a1
,

i.e., [g1, g2] is a linear combination of g1, g2.
A similar construction can be repeated for any Lie bracket [gi, gj]; hence,

the distribution Δ is involutive under the integrability condition (11.9).

Solution to Problem 11.4

Consider a set of k Pfaffian constraints

AT q̇ = 0

11 Mobile Robots 129

with a constant constraint matrix AT . Then, the associated kinematic model

q̇ =
m∑
j=1

gjuj = Gu m = n− k (S11.1)

has constant input vector fields g1, . . . , gm. Its accessibility distribution ΔA
is clearly involutive, because [gi, gj] = 0 for any i, j. The controllability
condition (11.11) is hence violated, and in particular

dimΔA(q) = m.

Therefore, the above set of Pfaffian constraints is completely integrable, i.e.,
holonomic. This obvious conclusion could have also been reached by noting
that (S11.1) is in fact a driftless linear system, and using directly the control-
lability rank condition (D.15).

Solution to Problem 11.5

Integration of the kinematic model (11.13) under the given input sequence
starting from the initial configuration q0 = [x0 y0 θ0]T provides

x(4ε) = x0 + ε cos θ0 − ε cos (θ0 + ε)
y(4ε) = y0 + ε sin θ0 − ε sin (θ0 + ε)
θ(4ε) = θ0.

The displacement is therefore

q(4ε) − q0 =

⎡⎣ ε cos θ0 − ε cos (θ0 + ε)
ε sin θ0 − ε sin (θ0 + ε)

0

⎤⎦ = ε2 t,

with

t =

⎡⎢⎢⎢⎢⎣
cos θ0 − cos (θ0 + ε)

ε
sin θ0 − sin (θ0 + ε)

ε
0

⎤⎥⎥⎥⎥⎦
— compare with the expression of the displacement for a generic two-input
system as given in Appendix D.

Finally, one obtains

lim
ε→0

t =

⎡⎢⎢⎢⎣
− dcos θ

dθ

∣∣∣
θ=θ0

− dsin θ
dθ

∣∣∣
θ=θ0

0

⎤⎥⎥⎥⎦ =

⎡⎣ sin θ0
−cos θ0

0

⎤⎦ ,

130 11 Mobile Robots

that coincides with the value at q0 of the Lie Bracket of the two input vector
fields (see Sect. 11.2.1).

Solution to Problem 11.6

With reference to Figs. 1.13 and 11.3, denote by pR = [xR yR]T , pL =
[xL yL]T and pM = [xM yM]T respectively the position vector of the
right wheel centre, of the left wheel centre and of the midpoint between the
two. Since

ẋi = r ωi cos θ
ẏi = r ωi sin θ,

where i = R,L, one obtains

ẋM =
ẋR + ẋL

2
= r cos θ

ωR + ωL
2

ẏM =
ẏR + ẏL

2
= r sin θ

ωR + ωL
2

and therefore

v =
√
ẋ2
M + ẏ2

M =
r (ωR + ωL)

2
.

The expression of the angular velocity of the robot can be obtained by
applying the general velocity composition rule (B.4) and making use of the
skew-symmetric operator S(·):

ṗR = ṗL + S(ω)(pR − pL), (S11.2)

where

S(ω) =
[

0 −ω
ω 0

]
because the motion of the robot is planar. Using the expressions of ṗR, ṗL
and the fact that

pR = pL +
[
d sin θ
−d cos θ

]
,

Equation (S11.2) becomes[
r ωR cos θ
r ωR sin θ

]
=
[
r ωL cos θ
r ωL sin θ

]
+
[

0 −ω
ω 0

] [
d sin θ
−d cos θ

]
.

Squaring and adding side-by-side these two equations leads to

ω2 =
r2(ωR − ωL)2

d2
.

11 Mobile Robots 131

Using again one of the two equations, it can be concluded that the only
solution is

ω =
r(ωR − ωL)

d
.

Solution to Problem 11.7

With reference to Fig. 11.4, denote by (xC , yC) the Cartesian coordinates of
the instantaneous centre of rotation C in the world reference frame, and by
(x′C , y

′
C) its coordinates in a moving frame having the origin at the centre of

the rear wheel and the x′ axis aligned with the bicycle body. Simple geometry
gives [

x′c
y′c

]
=
[

0
�/tanφ

]
and thus [

xc
yc

]
=
[
x
y

]
+R(θ)

[
x′c
y′c

]
=
[
x− � sin θ/tanφ
y + � cos θ/tanφ

]
,

where

R(θ) =
[

cos θ −sin θ
sin θ cos θ

]
is the (planar) rotation matrix of the moving frame with respect to the world
frame.

Since the velocity vector of a generic point P on the robot body is tangent
to the circle centred at C and passing through P , the modulus of the angular
velocity of the bicycle is obtained as

ωbody = vP /RP , (S11.3)

where vP is the modulus of the velocity of P , and RP is its instantaneous
radius of rotation (i.e., its radius of curvature):

RP =
√

(xP − xC)2 + (yP − yC)2.

The resulting ωbody is obviously the same for any choice of P . In particular,
by choosing P as the centre of the rear wheel, one has RP = �/tanφ, and thus

ωbody = θ̇ = v tanφ/�,

consistently with the evolution of θ predicted by the kinematic model (11.19).
Finally, plugging this expression of ω in (S11.3) yields

vP = Rp v tanφ/�.

132 11 Mobile Robots

Solution to Problem 11.8

With the configuration vector q = [x y φ θ0 θ1 . . . θN]T defined in the
solution to Problem 11.1, the N + 2 kinematic constraints are

ẋf sin (θ0 + φ) − ẏf cos (θ0 + φ) = 0
ẋ sin θ0 − ẏ cos θ0 = 0
ẋi sin θi − ẏi cos θi = 0 i = 1, . . . , N ,

where (xf , yf) and (xi, yi) are the Cartesian coordinates of the centre of the
tricycle front wheel and of the i-th trailer wheel axle midpoint, respectively
(compare with (11.15), (11.16)). Denote by � the distance between the front
wheel and the rear axle of the tricycle, and by �i the hinge-to-hinge length of
the i-th trailer. It is

xf = x+ � cos θ0
yf = y + � sin θ0

and

xi = x−
i∑

j=1

�j cos θj

yi = y −
i∑

j=1

�j sin θj ,

so that the kinematic constraints become

ẋ sin (θ0 + φ) − ẏ cos (θ0 + φ) − θ̇0 � cosφ = 0

ẋ sin θ0 − ẏ cos θ0 = 0

ẋ sin θi − ẏ cos θi +
i∑

j=1

θ̇j �j cos (θi − θj) = 0 i = 1, . . . , N .

The null space of the constraint matrix is spanned by the two columns of

G(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0 0
sin θ0 0

0 1
1
	 tanφ 0

− 1
	1

sin (θ1 − θ0) 0
− 1
	2

cos (θ1 − θ0) sin (θ2 − θ1) 0
...

...
− 1
	i

(∏i−1
j=1 cos (θj − θj−1)

)
sin (θi − θi−1) 0

...
...

− 1
	N

(∏N−1
j=1 cos (θj − θj−1)

)
sin (θN − θN−1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [g1(q) g2(q)]

11 Mobile Robots 133

(compare with (11.19)). The kinematic control system is then

q̇ = g1(q) v + g2(q)ω,

where v and ω are respectively the driving velocity of the rear wheels and the
steering velocity of the tricycle.

Solution to Problem 11.9

According to (11.14), the velocity inputs of the equivalent unicycle model are
given by

v =
r (ωR + ωL)

2

ω =
r (ωR − ωL)

d
,

where r is the wheel radius and d is the distance between the wheel centres.
Solving for ωR in the first and replacing the obtained expression in the second
yields

ωL =
2v − dω

2r

ωR =
2v + dω

2r
.

The resulting constraints on v, ω are then∣∣∣∣2v(t) − dω(t)
2r

∣∣∣∣ ≤ ωRL∣∣∣∣2v(t) + dω(t)
2r

∣∣∣∣ ≤ ωRL,

that correspond to a rhombus-shaped admissible region in the v, ω plane.
In particular, the maximum achievable values for these velocities are easily
computed as the intercepts of the sides of the rhombus with the v, ω axes,
i.e., ±r ωRL for the driving velocity and ±2 r ωRL/d for the steering velocity.

Solution to Problem 11.10

The geometric version of the (2,4) chained form is

z′1 = ṽ1

z′2 = ṽ2

z′3 = z2ṽ1

z′4 = z3ṽ1.

134 11 Mobile Robots

Choose the geometric inputs ṽ1, ṽ2 in the parameterized form (11.49), with
Δ = z1,f −z1,i and s ∈ [si, sf] = [0, |Δ|]. Integrating in a recursive fashion the
second, third and fourth equations and setting z2(sf) = z2,f , z3(sf) = z3,f
and z4(sf) = z4,f leads to a linear system in the form (11.50) where

D =

⎡⎢⎢⎢⎣
|Δ| Δ2

2
|Δ|3

3

sgn(Δ)Δ
2

2
Δ3

6 sgn(Δ)Δ
4

12
|Δ|3

6
Δ4

24
|Δ|5
60

⎤⎥⎥⎥⎦ d =

⎡⎣ z2,f − z2,i
z3,f − z3,i − z2,iΔ

z4,f − z4,i − z3,iΔ− z2,i|Δ|

⎤⎦ .

Solution to Problem 11.11

It is sufficient to modify (11.48) as follows:

ṽ1 = Δ = z1,f − z1,i,

with the second input (11.49) unchanged. With this choice, z1 will reach its
final desired value exactly at sf = 1. The coefficients c0, . . . , cn−2 in (11.49)
are computed by solving a linear system of equations that is still in the general
form (11.50). For example, in the case of the (2, 3) chained form, one obtains

D =
[

1 1/2
Δ/2 Δ/6

]
d =

[
z2,f − z2,i

z3,f − z3,i − z2,iΔ

]
.

Solution to Problem 11.12

As shown in the solution to Problem 11.11, the path planning scheme based
on parameterized inputs (scheme A in the following) must be modified by
letting

ṽ1 = Δ = z1,f − z1,i

to obtain sf = 1 and allow a comparison with the scheme that uses interpolat-
ing polynomials of different degree (scheme B in the following). With scheme
A one has then

z1(s) = z1,i + (z1,f − z1,i)s

that coincides with the expression of z1(s) generated by scheme B. Moreover,
being

ṽ2 = c0 + c1s

for a (2,3) chained form, it is

z2(s) = z2,i + c0 s+ c1 s
2/2

and

z3(s) = z3,i +Δ

∫ s

0

(c0 σ + c1 σ
2/2)dσ = z3,i +Δ (c0 s2/2 + c1 s

3/6).

11 Mobile Robots 135

0 0.5 1 1.5 2

0

0.5

1

[m]

[m
] 0 0.2 0.4 0.6 0.8 1

0

2

4

[m
]

tilde v(s)

0 0.2 0.4 0.6 0.8 1
0

5

10

[r
ad

]

tilde omega(s)

Fig. S11.1. Path planning via Cartesian polynomials; left: Cartesian path of the
unicycle for the required parking manoeuvre, right: geometric inputs along the path

Hence, z3(s) with scheme A is a cubic polynomial in s, as is with scheme B.
However, there is a unique cubic polynomial that meets the two boundary
conditions on z3 and the two boundary conditions on z2

z′3(0)
z′1(0)

= z2i
z′3(1)
z′1(1)

= z2f .

Hence, the expressions of z3(s) generated by the two schemes coincide. Since
z1 and z3 are flat outputs for a (2,3) chained form (see the end of Sect. 11.5.2),
a unique z2(s) is associated to z1(s) and z3(s). One can then conclude that
the paths in the z space (and the associated geometric inputs) generated by
the two schemes are exactly the same.

Solution to Problem 11.13

The files with the solution can be found in Folder 11 13. For the required
manoeuvre, the coefficients of the interpolating polynomials

x(s) = s3xf − (s− 1)3xi + αxs
2(s− 1) + βxs(s− 1)2

y(s) = s3yf − (s− 1)3yi + αys
2(s− 1) + βys(s− 1)2

are found to be

αx = −6 βx = 1
αy = −2 βy = 0

where ki = kf = 1. The corresponding unicycle path is shown in Fig. S11.1.
Using the flatness property of the unicycle, expressed by (11.45), (11.46)

and (11.47), File s11 13.m also generates the geometric inputs ṽ(s), ω̃(s)
along the path, as shown in Fig. S11.1.

There are several ways to find a feasible timing law s = s(t) over the
planned path. For example, one may simply let s = t, so that v(t) and ω(t)

136 11 Mobile Robots

coincide with ṽ(s) and ω̃(s), respectively. However, both the inputs violate the
given bounds; in particular, the maximum value is attained by ω at 10 rad/sec.
A uniform scaling procedure with T = 10 can then be used to slow down the
trajectory and recover the feasibility of the inputs (see (11.54), (11.55)).

Solution to Problem 11.14

The (2,3) chained form is

ż1 = v1

ż2 = v2

ż3 = z2 v1.

Assume that a desired state trajectory (z1d(t), z2d(t), z3d(t)) is given. For the
desired trajectory to be feasible, it must satisfy the equations

ż1d = v1d

ż2d = v2d

ż3d = z2d v1d

for some choice of the reference inputs (v1d(t), v2d(t)). Defining the state errors
ei = zid − zi, for i = 1, 2, 3, and the input errors ui = vid − vi, for i = 1, 2,
one has the following error dynamics

ė1 = u1

ė2 = u2

ė3 = z2d v1d − z2 v1 = v1d e2 + z2d u1 − e2 u1.

Linearization around the reference trajectory yields the time-varying system

ė =

⎡⎣ ė1ė2
ė3

⎤⎦ =

⎡⎣ 0 0 0
0 0 0
0 v1d 0

⎤⎦⎡⎣ e1e2
e3

⎤⎦+

⎡⎣ 1 0
0 1
z2d 0

⎤⎦[u1

u2

]
= A(t)e+B(t)u.

With the linear time-varying feedback

u1 = −k1 e1

u2 = −k2 e2 − k3

v1d
e3

the closed-loop linearized error dynamics becomes

ė =

⎡⎢⎣ −k1 0 0

0 −k2 − k3
v1d

−k1z2d v1d 0

⎤⎥⎦e.

11 Mobile Robots 137

The characteristic polynomial of this system is constant:

p(λ) = (λ+ k1)(λ2 + k2λ+ k3).

The eigenvalues are thus constant, and have negative real part provided that
k1, k2 and k3 are positive. As discussed in Sect. 11.6.1, this does not guarantee
stability in view of the time-varying nature of the linearized error dynamics,
except for the case when v1d and z2d are constant1. In this case, the linearized
error system becomes time-invariant, and therefore it is asymptotically stable
with the above choice of gains. Hence, the original error system is also asymp-
totically stable at the origin, although this result is not guaranteed to hold
globally.

Solution to Problem 11.15

With reference to the kinematic model (11.19) and Fig. 11.4, consider the
following outputs:

y1 = x+ � cos θ + b cos (θ + φ)
y2 = y + � sin θ + b sin (θ + φ)

with b �= 0. They represent the Cartesian coordinates of a point P on the line
passing through the centre of the front wheel and oriented as the wheel itself,
located at a distance |b| from the contact point of the wheel with the ground.
The time derivatives of y1 and y2 are[

ẏ1
ẏ2

]
=
[

cos θ − tanφ(sin θ + b sin (θ + φ)/�) −b sin (θ + φ)
sin θ + tanφ(cos θ + b cos (θ + φ)/�) b cos (θ + φ)

] [
v
ω

]
= T (θ, φ)

[
v
ω

]
.

Matrix T (θ, φ) has determinant b/cosφ, and is therefore always invertible
under the assumption that b �= 0 and |φ(t)| ≤ π/2. It is then sufficient to use
the following input transformation[

v
ω

]
= T−1(θ, φ)

[
u1

u2

]
to put the equations of the bicycle in the input-output linearized form:

ẏ1 = u1

ẏ2 = u2

θ̇ = sinφ(cos (θ + φ)u1 + sin (θ + φ)u2)/�
φ̇ = −(cos (θ + φ)sin φ/�+ sin (θ + φ)/b)u1

−(sin (θ + φ)sin φ/�− cos (θ + φ)/b)u2.
1 One may verify that, if the (2,3) chained form represents a unicycle under the

transformation (11.23), (11.24), constant values of v1d and z2d correspond to
reference trajectories over which ωd is constant and vd increases linearly over
time (as in an Archimedean spiral).

138 11 Mobile Robots

unicycle

v

omega

x

y

theta

inputs

configuration

variables
 initialization

plot

Cartesian regulator

configuration inputs

Fig. S11.2. Simulink block diagram of the unicycle with the modified cartesian
regulator

At this point, a simple linear controller such as

u1 = ẏ1d + k1(y1d − y1)
u2 = ẏ2d + k2(y2d − y2),

with k1 > 0, k2 > 0, guarantees exponential convergence to zero of the Carte-
sian tracking error, with decoupled dynamics on its two components. Note
that the orientation and the steering angle, whose evolutions are governed by
the third and fourth equation, are not controlled.

Solution to Problem 11.16

First of all, note that the Cartesian regulator (11.78), (11.79) may be equiv-
alently written as

v = k1 n
Tep (S11.4)

ω = k2 γ, (S11.5)

where n = [cos θ sin θ]T is the unit vector aligned with the sagittal axis,
ep = [−x −y]T is the Cartesian error and γ = Atan2(y, x) − θ + π is
the pointing error, i.e., the angle between n and ep (see also Fig. 11.18).
Expression (S11.5) shows that ω induces a rotation until n and ep align, i.e.,
until the unicycle points to the origin; as a consequence, the latter will always
be reached in forward motion.

Now, redefine the steering velocity (S11.5) as follows:

ω =

{
k2 γ if nTep > 0

k2(γ − sign(γ)π) if nTep ≤ 0.
(S11.6)

With this modification, the unicycle is forced to align with ep if the pointing
error is acute, and with −ep otherwise. In the second case, the origin will be
reached in backward motion.

Unicycle control with the modified position regulator (S11.4), (S11.6) is
implemented by the Simulink block diagram shown in Fig. S11.2. The files

11 Mobile Robots 139

-2 -1 0 1 2

-2

-1

0

1

2

[m]

[m
] 0 2 4 6 8 10

-2

-1

0

[m
/s

]

[s]

driving velocity

0 2 4 6 8 10
-1.5

-1
-0.5

0

[r
ad

/s
]

[s]

steering velocity

Fig. S11.3. Regulation to the origin of the Cartesian position of the unicycle with
the modified controller (S11.4), (S11.6); left: Cartesian motion of the unicycle, right:
time evolution of the velocity inputs v and ω

with the solution can be found in Folder 11 16. The unicycle is simulated
as a continuous-time system using a variable-step integration method, with
a maximum step size of 0.01 s. The controller gains can be chosen in the
initialization file.

When the initial pointing error is an acute angle, the modified and the
original position regulators produce exactly the same trajectories. For exam-
ple, this is the case of the simulation in Fig. 11.19 (left). However, in the case
of Fig. 11.19 (right), the initial pointing error is obtuse, and thus the modi-
fied position regulator leads the unicycle to the origin in backward motion, as
shown in Fig. S11.3.

Solution to Problem 11.17

Assume that the velocity inputs are constant within each sampling interval:

v(t) = vk ω(t) = ωk t ∈ [tk, tk+1].

Integration of the kinematic equations (11.13) of the unicycle readily provides

θ(t) = θk + ωk (t− tk)

and

x(t) = xk + vk

∫ t−tk

0

cos (θk + ωkτ)dτ = xk +
vk
ωk

(sin (θk + ωk(t− tk)) − sin θk)

= xk +
vk
ωk

(sin θ(t) − sin θk)

y(t) = yk + vk

∫ t−tk

0

sin (θk + ωkτ)dτ = yk − vk
ωk

(cos (θk + ωk(t− tk)) − cos θk)

= yk − vk
ωk

(cos θ(t) − cos θk).

140 11 Mobile Robots

unicycle

v

omega

x

y

theta
posture regulator

polar configuration inputs

odometric localization
with Runge−Kutta

v

omega

x

y

theta

x_k

y_k

theta_k

conversion to
polar coordinates

x

y

theta

delta

gamma

rho

inputs

configuration

variables
 initialization

plot

Fig. S11.4. Simulink block diagram of the unicycle with the posture regulator and
Runge–Kutta odometric localization

Evaluating the above expressions at t = tk+1 = tk + Ts leads to the odo-
metric prediction (11.85). Alternative proofs can be devised using geometric
arguments (the unicycle travels along an arc of circle during each sampling
interval) or resorting to a chained-form transformation.

Solution to Problem 11.18

Control of the unicycle with the posture regulator (11.81), (11.82) and Runge–
Kutta odometric localization (11.84) is implemented by the Simulink block
diagram shown in Fig. S11.4. The files with the solution can be found in
Folder 11 18. The unicycle is simulated as a continuous-time system using a
variable-step integration method, with a maximum step size of 0.01 s. The
controller gains and the duration Ts of the sampling interval for odometric
localization can be chosen in the initialization file.

The results obtained with Ts = 0.01 s and Ts = 0.1 s are shown in
Fig. S11.5 and Fig. S11.6, respectively. The initial configuration of the unicycle
is the same of Fig. 11.20 (right). Notice how for Ts = 0.1 s the low accuracy of
the odometric localization does not hinder the convergence of the unicycle to
the destination. However, a further increase of Ts will ultimately destabilize
the controlled unicycle.

11 Mobile Robots 141

−2 −1 0 1 2

−2

−1

0

1

2

[m]

[m
]

0 2 4 6 8 10
−2

0

2

[m
/s

]

[s]

driving velocity

0 2 4 6 8 10
−10

0

10

[r
ad

/s
]

[s]

steering velocity

Fig. S11.5. Regulation to the origin of the posture of the unicycle with the con-
troller (11.81), (11.82) and odometric localization (11.84) with Ts = 0.01 s; left:
Cartesian motion of the unicycle (continuous) and odometric estimate (dots), right:
time evolution of the velocity inputs v and ω

-2 -1 0 1 2

-2

-1

0

1

2

[m]

[m
] 0 2 4 6 8 10

-2

0

2
[m

/s
]

[s]

driving velocity

0 2 4 6 8 10
-10

0

10

[r
ad

/s
]

[s]

steering velocity

Fig. S11.6. Regulation to the origin of the posture of the unicycle with the con-
troller (11.81), (11.82) and odometric localization (11.84) with Ts = 0.1 s; left:
Cartesian motion of the unicycle (continuous) and odometric estimate (dots), right:
time evolution of the velocity inputs v and ω

12

Motion Planning

Solution to Problem 12.1

The configuration of the mobile manipulator is q = [x y θ0 θ1 . . . θ6]T ,
where (x, y) are the Cartesian coordinates of the contact point of the wheel
with the ground (equivalently, of the wheel centre), θ0 is the orientation of the
unicycle with respect to the x axis, and θ1, . . . , θ6 are the manipulator joint
variables. The configuration space is therefore C = IR2 ×SO(2)× . . .×SO(2)
(with SO(2) appearing 7 times), and has dimension 9.

Solution to Problem 12.2

Assume that the configuration q takes values in the subset Q of Fig. 12.1 —
this can be obtained by computing the joint variables q1 and q2 modulo 2π).
Given two configurations qA = (q1,A, q2,A), qB = (q1,B, q2,B) in Q, define

Δ1 = min(|q1,A − q1,B|, 2π − |q1,A − q1,B|)
Δ2 = min(|q2,A − q2,B|, 2π − |q2,A − q2,B|)

and let
d3(qA, qB) =

√
Δ2

1 +Δ2
2.

This definition of configuration space distance clearly satisfies the requirement
of the problem.

It can be easily shown that d3(qA, qB) coincides with d2(qA, qB) given by
eq. (12.2) whenever the Euclidean distance between qA and qB is not larger
than

√
2π.

Solution to Problem 12.3

A possible solution is shown in Fig. S12.1. In the first scene, the robot is
triangular and there is a single square obstacle, while in the second the robot

144 12 Motion Planning

B

x

y O

q

q2

1
CO

B

x

y O
O q

q2

1
CO

Fig. S12.1. Two different scenes (above/below) that result in the same C-obstacle
region. For each scene, left: the robot B, the obstacle O and the growing procedure
for building C-obstacles, right: the configuration space C and the C-obstacle CO

is square and the obstacle is a pentagon. Under the assumption that the robots
can freely translate without changing their orientation, the C-obstacle region
is exactly the same for the two scenes.

Solution to Problem 12.4

The problem can be solved by visual inspection of Fig. 12.4. For example,
the following configurations of the 2R manipulator lie in the three disjoint
components of Cfree:

qa =
[
π/4
π/2

]
qb =

[
4.12
π/6

]
qc =

[
4.12
2.88

]
[rad].

The manipulator posture and the position in C for each of these configurations
is shown in Fig. S12.2.

Solution to Problem 12.5

Consider the lists V = {V1, . . . , Vv} and S = {S1, . . . , Ss} of all the vertices
and sides of the given limited polygonal subset K of IR2. A rough sketch of

12 Motion Planning 145

Fig. S12.2. Three configurations of the 2R manipulator that lie in disjoint com-
ponents of Cfree: qa (top), qb (centre) and qc (bottom). For each of them, left: the
corresponding manipulator posture, right: the position in C

a naive algorithm for computing the generalized Voronoi diagram of K is the
following.
1. Build all the equidistance curves as follows:

1a. For each vertex-vertex pair (Vi, Vj), derive the equation of the line LViVj

passing through the midpoint of the segment ViVj and orthogonal to
the segment itself.

1b. For each vertex-side pair (Vi, Sj), denote by LSj the line containing Sj ,
and derive the equation of the parabola PViSj having Vi as focus and
LSj as directrix.

1c. For each side-side pair (Si, Sj), denote by LSi and LSj the lines con-
taining Si and Sj , respectively, and derive the equation of the bisectrix
LSiSj of the angle formed by LSi and LSj which contains Si and Sj .

146 12 Motion Planning

2. For each possible pair of equidistance curves, compute the intersection
points — at most one in the case of a line/line pair, at most two for a
line/parabola or parabola/parabola pair. Each of these points is charac-
terized by the two distances from the features (vertex/vertex, line/line or
line/vertex) that generate the two intersecting equidistance curves.

3. Discard all intersection points that do not belong to K.
4. Discard all intersection points for which the two characteristic distances

are not equal.
5. For each remaining intersection point, compute its clearance, and discard

all intersection points for which the clearance is not equal to the charac-
teristic distance.

6. All the remaining intersection points are nodes of the generalized Voronoi
diagram. Its arcs are the portions of the equidistance curves that are en-
closed by these nodes.

Solution to Problem 12.6

Refer to the example shown in Fig. 12.7, and assume that the goal configu-
ration qg is moved somewhere in cell c6, so that cs = c3 and cg = c6. The
shortest channel joining cs to cg is clearly {c3, c2, c6}. The path extraction
procedure described in Sect. 12.4.1 would produce a broken line with the fol-
lowing 4 vertices: qs, the midpoint of the common boundary between c3 and
c2, the midpoint of the common boundary between c2 and c6, and finally qg.
Hence, the second of the 3 edges forming the path would lie completely on the
boundary of cell c2, and in particular would go through the leftmost vertex
of the obstacle.

To solve this problem, the path extraction procedure can be modified
by including additional vertices in the path. For example, in addition to qs,
qg and the midpoints of the common boundaries in the channel, one may
include the centroids (or a generic internal point) of all the cells crossed by
the channel, with the exception of cs and cg. In the above case, the resulting
free path would be a broken line with 5 vertices: qs, the midpoint of the
common boundary between c3 and c2, the centroid of cell c2, the midpoint of
the common boundary between c2 and c6, and finally qg.

Solution to Problem 12.7

The files with the solution can be found in Folder 12 7; run s12 7.m to ex-
ecute the program. The robot is a planar manipulator whose first two joints
are prismatic (so that the base can move arbitrarily) followed by an arbitrary
number of revolute joints. An admissible range can be specified for each joint
variable; in particular, a fixed-base manipulator is specified by setting to zero
the minimum and maximum values of the prismatic joint variables. The ob-
stacles may be line segments, circles or polygons. The user must also input
the start and goal configurations, the maximum number of configurations in

12 Motion Planning 147

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

configuration space

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

workspace

Fig. S12.3. Motion planning for a 2R planar manipulator via the PRM method;
left: stroboscopic motion of the robot in the workspace, right: the PRM and the
solution path (thick gray) in the configuration space

the roadmap, the maximum number of neighbours to which a new sample can
be connected, and the maximum distance between neighbours.

The solution of a specific planning problem for a 2R fixed-base ma-
nipulator is reported in Fig. S12.3. The start and goal configurations are
qs = [−π/4 3π/4]T and qg = [5π/8 − π/2]T [rad,rad], respectively. Note
that the configuration space, shown as a square in the figure, is correctly
treated as a two-dimensional torus in the program. In particular, the config-
uration space distance is a generalization of the definition proposed in the
solution to Problem 12.2.

Solution to Problem 12.8

The files with the solution can be found in Folder 12 8; run s12 8.m to execute
the program. The obstacles may be line segments, circles or polygons. The user
must also input the start and goal configurations, the motion primitives (the
discrete set of admissible constant values of the driving and steering velocities
within the time interval Δ), the value of Δ and the maximum number of
configurations in the roadmap.

Since the unicycle cannot reach arbitrary configurations in Cfree with this
planner, the program terminates whenever a configuration is reached that is
sufficiently close to the desired goal; to this end, a user-selectable distance
threshold is used. Moreover, to bias the search towards the goal, qrand may
be set to qgoal — rather than to a random configuration — with a probability
that can be chosen arbitrarily.

The solution of a specific problem is reported in Fig. S12.4. The start and
goal configurations are qs = [−3 0 0]T and qg = [3 −3.5 0]T [m,m,rad],
respectively. Note that the unicycle does not exactly reach qg, shown in gray

148 12 Motion Planning

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
workspace

-5

0

5 -5

0

5

-2

0

2

y

configuration space

x

Fig. S12.4. Motion planning for a unicycle via the RRT method; left: stroboscopic
motion of the robot and projection of the RRT on the workspace, right: the RRT
and the solution path (thick gray) in the configuration space

in the stroboscopic plot. The configuration space, shown as a parallelepiped
in the figure, is correctly treated as IR2×SO(2) in the program. In particular,
the configuration space distance is an adaptation of the definition proposed
in the solution to Problem 12.2.

Solution to Problem 12.9

Let

Ua(q) =

⎧⎨⎩
1
2
ka‖e(q)‖2 if ‖e(q)‖ ≤ ρ

kb‖e(q)‖ if ‖e(q)‖ > ρ.

Continuity of the attractive force at the transition radius ρ is guaranteed by
imposing

kae(q) = kb
e(q)

‖e(q)‖ for ‖e(q)‖ = ρ,

i.e., kb = ρ ka.

Solution to Problem 12.10

Consider Fig. S12.5, and in particular the half-line that originates at qg and
passes through the centre of the obstacle. Visualize a point that travels along
this half-line, coming from the point at infinity, where the total potential is
infinity — because of the attractive potential. The total potential goes back
to infinity when the point reaches the boundary of the obstacle — because of
the repulsive potential. Therefore, there is a point on the line where U has a
local minimum; call this point P .

12 Motion Planning 149

Fig. S12.5. The emergence of local minima due to the superposition of attractive
and repulsive potentials

Now consider points A and B that are located along the same equipoten-
tial contour of the repulsive potential Ur as P . Since the attractive potential
is higher at A and B than at C, P is a local minimum also in the direction of
the line AB. In formulæ:

∂U

∂x

∣∣∣∣
P

= 0
∂U

∂y

∣∣∣∣
P

= 0,

which imply that P is a stationary point for U , i.e., the gradient of U is zero
at P . To show that P is indeed a local minimum, one should consider the
Hessian matrix of U ⎡⎢⎢⎢⎣

∂2U

∂x2

∂U

∂x∂y

∂U

∂y∂x

∂2U

∂y2

⎤⎥⎥⎥⎦
and prove that it is positive definite in P . This can be verified by using the
analytic expression of U . Note that the elements of the diagonal are certainly
positive in P in view of the above arguments.

Solution to Problem 12.11

Denote by (x, y) the Cartesian coordinates of the robot, by (xi, yi) the Carte-
sian coordinates of the centre Ci of the i-th circular obstacle, and by ρi its
radius. The attractive potential is

Ua(x, y) =
1
2
ka(x2 + y2),

150 12 Motion Planning

while the repulsive potentials (γ = 2) are

Ur,i(x, y) =

⎧⎪⎨⎪⎩
kr,i
2

(
1

ηi(x, y)
− 1
η0,i

)2

if ηi(x, y) ≤ η0,i

0 if ηi(x, y) > η0,i,

for i = 1, 2, 3, with ηi(x, y) =
√

(x− xi)2 + (y − yi)2 − ρi. The total potential
is

Ut(x, y) = Ua(x, y) +
3∑
i=1

Ur,i(x, y),

while the total force is

f(x, y) = fa(x, y) +
3∑
i=1

fr,i(x, y)

with

fa(x, y) = −ka
[
x
y

]
and

fr,i(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kr,i

η2
i (x, y)

(
1

ηi(x, y)
− 1
η0,i

)
∇ηi(x, y) if ηi(x, y) ≤ η0,i

0 if ηi(x, y) > η0,i.

In view of the above expression for ηi(x, y), one has

∇ηi(x, y) =

⎡⎢⎢⎢⎣
x− xi√

(x− xi)2 + (y − yi)2

y − yi√
(x− xi)2 + (y − yi)2

⎤⎥⎥⎥⎦ .

The actual numerical expressions depend on the choice of the constants ka
and kr,i, for i = 1, 2, 3, as well as of the obstacle range of influence η0,i.

Assuming that the ranges of influence of the obstacles do not overlap,
the saddle points of the total potential will be clearly located along the lines
that join the origin of the reference frame (the goal) with the centres of the
circular obstacles, in the ‘shadow zone’ of each obstacle. In particular, the
saddle points are found by solving the equations

−ka
[
x
y

]
=

kr,i
η2
i (x, y)

(
1

ηi(x, y)
− 1
η0,i

)
∇ηi(x, y) i = 1, 2, 3,

each representing the balance between the attractive force and the i-th repul-
sive force.

12 Motion Planning 151

Fig. S12.6. On-line planning based on artificial potential fields for a circular mobile
robot equipped with a rotating laser range finder.

Solution to Problem 12.12

In principle, there are two main approaches for on-line motion planning based
on sensor data.
• The first approach is to store the data coming from the sensors in a map —

i.e., a representation of the portion of the environment that the robot has
visited so far — and use it to plan in an incremental fashion (deliberative
planning).

• The second approach is to react only to the obstacles that are currently
perceived of the robot, without any form of memory (reactive planning).
The artificial potential field technique naturally lends itself to a reactive

implementation, as briefly discussed below.
Refer to the situation shown in Fig. S12.6. The workspace obstacles O1,

O2 and O3 are depicted in black for the portion falling inside the laser scan
area, and in gray outside. Note how the perceived obstacle is larger than
the actual obstacle for O2, due to the fact that the laser range finder is a
visibility-based sensor.

Consider first the case of a point robot. Since the goal is known, the
attractive potential can be built as in the off-line case — this is true provided
that the robot is equipped with a localization module. To build the repulsive
potential, it is reasonable to define the range of influence η0,i of the obstacles
to be smaller than the maximum measurable range R — if the robot does not
detect the obstacle, it does not react to it. A typical choice is η0,i = R, for all
i. As seen in Sect. 12.6.2, the perceived obstacle region must be decomposed
in convex components to guarantee continuity of the repulsive potential field;
in the case of Fig. S12.6, only O2 needs to undergo this procedure. At this
point, the repulsive force produced by each convex component is computed as

152 12 Motion Planning

Fig. S12.7. The assigned occupancy grid, the navigation function and the solution
path from cell (1, 1) to cell (7, 7); left: using 1-adjacency, right: using 2-adjacency

in (12.15), with ηi, ∇ηi directly obtained from the range scan profile — see
the example in Fig. S12.6.

In the case of a robot with a finite nonzero radius ρ, one simply uses ηi−ρ
in place of ηi in (12.15), and obtains ∇ηi as in the point robot case.

It is easy to realize that this reactive version of the artificial potential
method behaves exactly as the off-line version, in the sense that the resulting
motion of the robot is the same. Clearly, this is true as long as the envi-
ronment is continuously scanned during the motion and the above procedure
for computing the potential field can be efficiently implemented, so as to be
executed within the duration of the motion control cycle.

Solution to Problem 12.13

The files with the solution can be found in Folder 12 13. The user is required to
input the binary gridmap representing the configuration space, the start and
goal cells, and the adjacency type (1- or 2-adjacency). The cells are assumed
to be squares with unit side. During the expansion of the wavefront that
originates at qg, the increase of the navigation function between adjacent cells
(cost-to-go) is set equal to the Euclidean distance between the cell centres.
The solution path is then found by following the steepest descent from the
goal cell.

For illustration, Fig. S12.7 shows the results obtained on a (7×7) gridmap,
with (1, 1) as the start cell and (7, 7) as the goal cell. The path found using
2-adjacency is shorter as expected. It is easy to realize that even when the
solution paths are in the same homotopy class — i.e., one can be continu-
ously deformed into the other — the 1-adjacency path may be longer than
the 2-adjacency path by a factor of as much as

√
2. On the other hand, 2-

adjacency produces paths that may graze the C-obstacles; as a consequence,
it is recommended that these are slightly enlarged before planning.

http://www.springer.com/978-1-84628-641-4

