
Robot Dynamics and Control
Second Edition

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar

January 28, 2004

2

Contents

1 INTRODUCTION 5

1.1 Robotics . 5

1.2 History of Robotics . 5

1.3 Components and Structure of Robots . 8

1.3.1 Symbolic Representation of Robots 8

1.3.2 Degrees of Freedom and Workspace 9

1.3.3 Classification of Robots . 10

1.3.4 Common Kinematic Arrangements 11

1.3.5 Robotic Systems . 15

1.3.6 Accuracy and Repeatability . 16

1.3.7 Wrists and End-Effectors . 18

1.4 Outline of the Text . 20

2 RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS 29

2.1 Representing Positions . 29

2.2 Representing Rotations . 31

2.2.1 Rotation in the plane . 32

2.2.2 Rotations in three dimensions . 34

2.3 Rotational Transformations . 36

2.3.1 Summary . 40

2.4 Composition of Rotations . 40

2.4.1 Rotation with respect to the current coordinate frame 40

2.4.2 Rotation with respect to a fixed frame 42

2.4.3 Summary . 44

2.5 Parameterizations of Rotations . 45

2.5.1 Euler Angles . 45

2.5.2 Roll, Pitch, Yaw Angles . 47

2.5.3 Axis/Angle Representation . 48

2.6 Homogeneous Transformations . 51

3

4 CONTENTS

3 FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVEN-
TION 57

3.1 Kinematic Chains . 57

3.2 Denavit Hartenberg Representation . 60

3.2.1 Existence and uniqueness issues . 61

3.2.2 Assigning the coordinate frames . 63

3.2.3 Summary . 66

3.3 Examples . 67

4 INVERSE KINEMATICS 79

4.1 The General Inverse Kinematics Problem 79

4.2 Kinematic Decoupling . 81

4.3 Inverse Position: A Geometric Approach 83

4.4 Inverse Orientation . 89

5 VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN 95

5.1 Angular Velocity: The Fixed Axis Case . 96

5.2 Skew Symmetric Matrices . 97

5.3 Angular Velocity: The General Case . 100

5.4 Addition of Angular Velocities . 101

5.5 Linear Velocity of a Point Attached to a Moving Frame 102

5.6 Derivation of the Jacobian . 103

5.6.1 Angular Velocity . 104

5.6.2 Linear Velocity . 104

5.7 Examples . 109

5.8 The Analytical Jacobian . 111

5.9 Singularities . 113

5.9.1 Decoupling of Singularities . 114

5.9.2 Wrist Singularities . 115

5.9.3 Arm Singularities . 115

5.10 Inverse Velocity and Acceleration . 119

5.11 Redundant Robots and Manipulability . 120

5.11.1 Redundant Manipulators . 120

5.11.2 The Inverse Velocity Problem for Redundant Manipulators 121

5.11.3 Singular Value Decomposition (SVD) 122

5.11.4 Manipulability . 124

6 COMPUTER VISION 127

6.1 The Geometry of Image Formation . 127

6.1.1 The Camera Coordinate Frame . 128

6.1.2 Perspective Projection . 128

6.1.3 The Image Plane and the Sensor Array 129

6.2 Camera Calibration . 130

CONTENTS 5

6.2.1 Extrinsic Camera Parameters . 130

6.2.2 Intrinsic Camera Parameters . 131

6.2.3 Determining the Camera Parameters 131

6.3 Segmentation by Thresholding . 134

6.3.1 A Brief Statistics Review . 134

6.3.2 Automatic Threshold Selection . 136

6.4 Connected Components . 140

6.5 Position and Orientation . 143

6.5.1 Moments . 143

6.5.2 The Centroid of an Object . 144

6.5.3 The Orientation of an Object . 144

7 PATH PLANNING AND COLLISION AVOIDANCE 147

7.1 The Configuration Space . 148

7.2 Path Planning Using Configuration Space Potential Fields 151

7.2.1 The Attractive Field . 152

7.2.2 The Repulsive field . 153

7.2.3 Gradient Descent Planning . 154

7.3 Planning Using Workspace Potential Fields 155

7.3.1 Defining Workspace Potential Fields 156

7.3.2 Mapping workspace forces to joint forces and torques 158

7.3.3 Motion Planning Algorithm . 162

7.4 Using Random Motions to Escape Local Minima 163

7.5 Probabilistic Roadmap Methods . 164

7.5.1 Sampling the configuration space . 165

7.5.2 Connecting Pairs of Configurations 165

7.5.3 Enhancement . 167

7.5.4 Path Smoothing . 167

7.6 Historical Perspective . 168

8 TRAJECTORY PLANNING 169

8.1 The Trajectory Planning Problem . 169

8.2 Trajectories for Point to Point Motion . 170

8.2.1 Cubic Polynomial Trajectories . 172

8.2.2 Multiple Cubics . 175

8.2.3 Quintic Polynomial Trajectories . 175

8.2.4 Linear Segments with Parabolic Blends (LSPB) 180

8.2.5 Minimum Time Trajectories . 183

8.3 Trajectories for Paths Specified by Via Points 185

8.3.1 4-3-4 trajectories . 186

6 CONTENTS

9 DYNAMICS 187

9.1 The Euler-Lagrange Equations . 187

9.1.1 One Dimensional System . 188

9.1.2 The General Case . 190

9.2 General Expressions for Kinetic and Potential Energy 196

9.2.1 The Inertia Tensor . 197

9.2.2 Kinetic Energy for an n-Link Robot 198

9.2.3 Potential Energy for an n-Link Robot 199

9.3 Equations of Motion . 199

9.4 Some Common Configurations . 201

9.5 Properties of Robot Dynamic Equations . 210

9.5.1 The Skew Symmetry and Passivity Properties 211

9.5.2 Bounds on the Inertia Matrix . 212

9.5.3 Linearity in the Parameters . 213

9.6 Newton-Euler Formulation . 214

9.7 Planar Elbow Manipulator Revisited . 221

10 INDEPENDENT JOINT CONTROL 225

10.1 Introduction . 225

10.2 Actuator Dynamics . 226

10.3 Set-Point Tracking . 232

10.3.1 PD Compensator . 233

10.3.2 Performance of PD Compensators 235

10.3.3 PID Compensator . 236

10.3.4 Saturation . 237

10.4 Feedforward Control and Computed Torque 238

10.5 Drive Train Dynamics . 242

11 MULTIVARIABLE CONTROL 247

11.1 Introduction . 247

11.2 PD Control Revisited . 248

11.3 Inverse Dynamics . 250

11.3.1 Task Space Inverse Dynamics . 253

11.4 Robust and Adaptive Motion Control . 254

11.4.1 Robust Feedback Linearization . 255

11.4.2 Passivity Based Robust Control . 259

11.4.3 Passivity Based Adaptive Control 260

12 FORCE CONTROL 263

12.1 Introduction . 263

12.2 Constrained Dynamics . 264

12.2.1 Static Force/Torque Relationships 266

12.2.2 Constraint Surfaces . 267

CONTENTS 7

12.2.3 Natural and Artificial Constraints 270
12.3 Network Models and Impedance . 272

12.3.1 Impedance Operators . 273
12.3.2 Classification of Impedance Operators 274
12.3.3 Thévenin and Norton Equivalents 275

12.4 Force Control Strategies . 275
12.4.1 Impedance Control . 276
12.4.2 Hybrid Impedance Control . 277

13 FEEDBACK LINEARIZATION 281
13.1 Introduction . 281
13.2 Background: The Frobenius Theorem . 283
13.3 Single-Input Systems . 287
13.4 Feedback Linearization for N -Link Robots 295

8 CONTENTS

Chapter 1

INTRODUCTION

1.1 Robotics

Robotics is a relatively young field of modern technology that crosses traditional engineer-
ing boundaries. Understanding the complexity of robots and their applications requires
knowledge of electrical engineering, mechanical engineering, systems and industrial engi-
neering, computer science, economics, and mathematics. New disciplines of engineering,
such as manufacturing engineering, applications engineering, and knowledge engineering
have emerged to deal with the complexity of the field of robotics and factory automation.

This book is concerned with fundamentals of robotics, including kinematics, dynam-
ics, motion planning, computer vision, and control. Our goal is to provide a complete
introduction to the most important concepts in these subjects as applied to industrial robot
manipulators.

The science of robotics has grown tremendously over the past twenty years, fueled by
rapid advances in computer and sensor technology as well as theoretical advances in control
and computer vision. In addition to the topics listed above, robotics encompasses several
areas not covered in this text such as locomotion, including wheeled and legged robots, flying
and swimming robots, grasping, artificial intelligence, computer architectures, programming
languages, and computer-aided design. A complete treatment of the discipline of robotics
would require several volumes. Nevertheless, at the present time, the vast majority of robot
applications deal with industrial robot arms operating in structured factory environments
so that a first introduction to the subject of robotics must include a rigorous treatment of
the topics in this text.

1.2 History of Robotics

The term robot was first introduced into our vocabulary by the Czech playwright Karel
Capek in his 1920 play Rossum’s Universal Robots, the word robota being the Czech word
for work. Since then the term has been applied to a great variety of mechanical devices, such
as teleoperators, underwater vehicles, autonomous land rovers, etc. Virtually anything that

9

10 CHAPTER 1. INTRODUCTION

operates with some degree of autonomy, usually under computer control, has at some point
been called a robot. In this text the term robot will mean a computer controlled industrial
manipulator of the type shown in Figure 1.1. This type of robot is essentially a mechanical
arm operating under computer control. Such devices, though far from the robots of science
fiction, are nevertheless extremely complex electro-mechanical systems whose analytical
description requires advanced methods, and which present many challenging and interesting
research problems.

Figure 1.1: The ABB IRB6600 Robot. Photo courtesy of ABB

An official definition of such a robot comes from the Robot Institute of America (RIA):
A robot is a reprogrammable multifunctional manipulator designed to move material, parts,

tools, or specialized devices through variable programmed motions for the performance of

a variety of tasks.
The key element in the above definition is the reprogrammability of robots. It is the

computer brain that gives the robot its utility and adaptability. The so-called robotics
revolution is, in fact, part of the larger computer revolution.

Even this restricted version of a robot has several features that make it attractive in
an industrial environment. Among the advantages often cited in favor of the introduction
of robots are decreased labor costs, increased precision and productivity, increased flexi-
bility compared with specialized machines, and more humane working conditions as dull,
repetitive, or hazardous jobs are performed by robots.

The robot, as we have defined it, was born out of the marriage of two earlier technologies:
that of teleoperators and numerically controlled milling machines. Teleoperators,
or master-slave devices, were developed during the second world war to handle radioactive
materials. Computer numerical control (CNC) was developed because of the high precision
required in the machining of certain items, such as components of high performance aircraft.
The first robots essentially combined the mechanical linkages of the teleoperator with the
autonomy and programmability of CNC machines. Several milestones on the road to present
day robot technology are listed below.

1.2. HISTORY OF ROBOTICS 11

Milestones in the History of Robotics

1947 — the first servoed electric powered teleoperator is developed

1948 — a teleoperator is developed incorporating force feedback

1949 — research on numerically controlled milling machine is initiated

1954 — George Devol designs the first programmable robot

1956 — Joseph Engelberger, a Columbia University physics student, buys the rights to
Devol’s robot and founds the Unimation Company

1961 — the first Unimate robot is installed in a Trenton, New Jersey plant of General
Motors to tend a die casting machine

1961 — the first robot incorporating force feedback is developed

1963 — the first robot vision system is developed

1971 — the Stanford Arm is developed at Stanford University

1973 — the first robot programming language (WAVE) is developed at Stanford

1974 — Cincinnati Milacron introduced the T 3 robot with computer control

1975 — Unimation Inc. registers its first financial profit

1976 — the Remote Center Compliance (RCC) device for part insertion in assembly is
developed at Draper Labs in Boston

1976 — Robot arms are used on the Viking I and II space probes and land on Mars

1978 — Unimation introduces the PUMA robot, based on designs from a General Motors
study

1979 — the SCARA robot design is introduced in Japan

1981 — the first direct-drive robot is developed at Carnegie-Mellon University

1982 — Fanuc of Japan and General Motors form GM Fanuc to market robots in North
America

1983 — Adept Technology is founded and successfully markets the direct drive robot

1986 — the underwater robot, Jason, of the Woods Hole Oceanographic Institute, explores
the wreck of the Titanic, found a year earlier by Dr. Robert Barnard.

1988 — Stäubli Group purchases Unimation from Westinghouse

1988 — the IEEE Robotics and Automation Society is formed

1993 — the experimental robot, ROTEX, of the German Aerospace Agency (DLR) was
flown aboard the space shuttle Columbia and performed a variety of tasks under both
teleoperated and sensor-based offline programmed modes

1996 — Honda unveils its Humanoid robot; a project begun in secret in 1986

12 CHAPTER 1. INTRODUCTION

1997 — the first robot soccer competition, RoboCup-97, is held in Nagoya, Japan and
draws 40 teams from around the world

1997 — the Sojourner mobile robot travels to Mars aboard NASA’s Mars PathFinder
mission

2001 — Sony begins to mass produce the first household robot, a robot dog named Aibo

2001 — the Space Station Remote Manipulation System (SSRMS) is launched in space
on board the space shuttle Endeavor to facilitate continued construction of the space
station

2001 — the first telesurgery is performed when surgeons in New York performed a laparo-
scopic gall bladder removal on a woman in Strasbourg, France

2001 — robots are used to search for victims at the World Trade Center site after the
September 11th tragedy

2002 — Honda’s Humanoid Robot ASIMO rings the opening bell at the New York Stock
Exchange on February 15th

The first successful applications of robot manipulators generally involved some sort of
material transfer, such as injection molding or stamping where the robot merely attended a
press to unload and either transfer or stack the finished part. These first robots were capable
of being programmed to execute a sequence of movements, such as moving to a location
A, closing a gripper, moving to a location B, etc., but had no external sensor capability.
More complex applications, such as welding, grinding, deburring, and assembly require not
only more complex motion but also some form of external sensing such as vision, tactile, or
force-sensing, due to the increased interaction of the robot with its environment.

It should be pointed out that the important applications of robots are by no means
limited to those industrial jobs where the robot is directly replacing a human worker. There
are many other applications of robotics in areas where the use of humans is impractical or
undesirable. Among these are undersea and planetary exploration, satellite retrieval and
repair, the defusing of explosive devices, and work in radioactive environments. Finally,
prostheses, such as artificial limbs, are themselves robotic devices requiring methods of
analysis and design similar to those of industrial manipulators.

1.3 Components and Structure of Robots

1.3.1 Symbolic Representation of Robots

Robot Manipulators are composed of links connected by joints into a kinematic chain.
Joints are typically rotary (revolute) or linear (prismatic). A revolute joint is like a hinge
and allows relative rotation between two links. A prismatic joint allows a linear relative
motion between two links. We use the convention (R) for representing revolute joints and
(P) for prismatic joints and draw them as shown in Figure 1.2.

1.3. COMPONENTS AND STRUCTURE OF ROBOTS 13

Prismatic

2D

3D

Revolute

Figure 1.2: Symbolic representation of robot joints.

Each joint represents the interconnection between two links, say ℓi and ℓi+1. We denote the
axis of rotation of a revolute joint, or the axis along which a prismatic joint slides by zi if
the joint is the interconnection of links i and i+ 1. The joint variables, denoted by θi for
a revolute joint and di for the prismatic joint, represent the relative displacement between
adjacent links. We will make this precise in Chapter 3.

1.3.2 Degrees of Freedom and Workspace

The number of joints determines the degrees-of-freedom (DOF) of the manipulator. Typ-
ically, a manipulator should possess at least six independent DOF: three for positioning
and three for orientation. With fewer than six DOF the arm cannot reach every point
in its work environment with arbitrary orientation. Certain applications such as reaching
around or behind obstacles require more than six DOF. The difficulty of controlling a ma-
nipulator increases rapidly with the number of links. A manipulator having more than six
links is referred to as a kinematically redundant manipulator.

The workspace of a manipulator is the total volume swept out by the end-effector as the
manipulator executes all possible motions. The workspace is constrained by the geometry
of the manipulator as well as mechanical constraints on the joints. For example, a revolute
joint may be limited to less than a full 360◦ of motion. The workspace is often broken down
into a reachable workspace and a dextrous workspace. The reachable workspace is the
entire set of points reachable by the manipulator, whereas the dextrous workspace consists
of those points that the manipulator can reach with an arbitrary orientation of the end-
effector. Obviously the dextrous workspace is a subset of the reachable workspace. The
workspaces of several robots are shown later in this chapter.

14 CHAPTER 1. INTRODUCTION

1.3.3 Classification of Robots

Robot manipulators can be classified by several criteria, such as their power source, or way
in which the joints are actuated, their geometry, or kinematic structure, their intended
application area, or their method of control. Such classification is useful primarily in
order to determine which robot is right for a given task. For example, an hydraulic robot
would not be suitable for food handling or clean room applications, whereas a SCARA
robot would not be suitable for work in a foundry. We explain this in more detail below.

Power Source

Typically, robots are either electrically, hydraulically, or pneumatically powered. Hydraulic
actuators are unrivaled in their speed of response and torque producing capability. Therefore
hydraulic robots are used primarily for lifting heavy loads. The drawbacks of hydraulic
robots are that they tend to leak hydraulic fluid, require much more peripheral equipment,
such as pumps, which also requires more maintenance, and they are noisy. Robots driven
by DC- or AC-servo motors are increasingly popular since they are cheaper, cleaner and
quieter. Pneumatic robots are inexpensive and simple but cannot be controlled precisely.
As a result, pneumatic robots are limited in their range of applications and popularity.

Application Area

The largest projected area of future application of robots is in assembly. Therefore, robots
are often classified by application into assembly and non-assembly robots. Assembly
robots tend to be small, electrically driven and either revolute or SCARA (described below)
in design. The main nonassembly application areas to date have been in welding, spray
painting, material handling, and machine loading and unloading.

Method of Control

Robots are classified by control method into servo and non-servo robots. The earli-
est robots were non-servo robots. These robots are essentially open-loop devices whose
movement is limited to predetermined mechanical stops, and they are useful primarily for
materials transfer. In fact, according to the definition given previously, fixed stop robots
hardly qualify as robots. Servo robots use closed-loop computer control to determine their
motion and are thus capable of being truly multifunctional, reprogrammable devices.

Servo controlled robots are further classified according to the method that the controller
uses to guide the end-effector. The simplest type of robot in this class is the point-to-point
robot. A point-to-point robot can be taught a discrete set of points but there is no control
on the path of the end-effector in between taught points. Such robots are usually taught a
series of points with a teach pendant. The points are then stored and played back. Point-to-
point robots are severely limited in their range of applications. In continuous path robots,
on the other hand, the entire path of the end-effector can be controlled. For example, the
robot end-effector can be taught to follow a straight line between two points or even to

1.3. COMPONENTS AND STRUCTURE OF ROBOTS 15

follow a contour such as a welding seam. In addition, the velocity and/or acceleration of
the end-effector can often be controlled. These are the most advanced robots and require
the most sophisticated computer controllers and software development.

Geometry

Most industrial manipulators at the present time have six or fewer degrees-of-freedom.
These manipulators are usually classified kinematically on the basis of the first three joints
of the arm, with the wrist being described separately. The majority of these manipulators
fall into one of five geometric types: articulate (RRR), spherical (RRP), SCARA
(RRP), cylindrical (RPP), or cartesian (PPP).

We discuss each of these in detail below. Each of these five configurations are serial link
robots. A sixth and fundamentally distinct class of manipulators is the so-called parallel
robot. In a parallel configuration the links are arranged in a closed rather than open
kinematic chain. We include a discussion of the parallel robot for completeness as parallel
robots are becoming increasingly common.

1.3.4 Common Kinematic Arrangements

Articulated Configuration (RRR)

The articulated manipulator is also called a revolute, or anthropomorphic manipulator.
The ABB IRB1400 articulated arm is shown in Figure 1.3. A common revolute joint design

Figure 1.3: The ABB IRB1400 Robot. Photo courtesy of ABB

is the parallelogram linkage such as the Motoman SK16, shown in Figure 1.4. In both
of these arrangements joint axis z2 is parallel to z1 and both z1 and z2 are perpendicular
to z0. The structure and terminology associated with the elbow manipulator are shown
in Figure 1.5. Its workspace is shown in Figure 1.6. The revolute configuration provides
for relatively large freedom of movement in a compact space. The parallelogram linkage,
although less dextrous typically than the elbow manipulator configuration, nevertheless

16 CHAPTER 1. INTRODUCTION

Figure 1.4: The Motoman SK16 manipulator.

z1

z0

z2
θ3θ2

θ1

Shoulder

Forearm
Elbow

Base

Body

Figure 1.5: Structure of the elbow manipulator.

has several advantages that make it an attractive and popular design. The most notable
feature of the parallelogram linkage configuration is that the actuator for joint 3 is located
on link 1. Since the weight of the motor is born by link 1, links 2 and 3 can be made
more lightweight and the motors themselves can be less powerful. Also the dynamics of the
parallelogram manipulator are simpler than those of the elbow manipulator, thus making
it easier to control.

Spherical Configuration (RRP)

By replacing the third or elbow joint in the revolute configuration by a prismatic joint one
obtains the spherical configuration shown in Figure 1.7. The term spherical configuration
derives from the fact that the spherical coordinates defining the position of the end-effector
with respect to a frame whose origin lies at the intersection of the axes z1 and z2 are the
same as the first three joint variables. Figure 1.8 shows the Stanford Arm, one of the
most well-known spherical robots. The workspace of a spherical manipulator is shown in

1.3. COMPONENTS AND STRUCTURE OF ROBOTS 17

θ3

θ2

SideTop

θ1

Figure 1.6: Workspace of the elbow manipulator.

z1

z0

θ2

θ1

d3

z2

Figure 1.7: The spherical manipulator configuration.

Figure 1.9.

SCARA Configuration (RRP)

The so-called SCARA (for Selective Compliant Articulated Robot for Assembly) shown in
Figure 1.10 is a popular configuration, which, as its name suggests, is tailored for assembly
operations. Although the SCARA has an RRP structure, it is quite different from the
spherical configuration in both appearance and in its range of applications. Unlike the
spherical design, which has z0, z1, z2 mutually perpendicular, the SCARA has z0, z1, z2
parallel. Figure 1.11 shows the Epson E2L653S, a manipulator of this type. The SCARA
manipulator workspace is shown in Figure 1.12.

Cylindrical Configuration (RPP)

The cylindrical configuration is shown in Figure 1.13. The first joint is revolute and produces
a rotation about the base, while the second and third joints are prismatic. As the name

18 CHAPTER 1. INTRODUCTION

Figure 1.8: The Stanford Arm. Photo courtesy of the Coordinated Science Lab, University
of Illinois at Urbana-Champaign.

suggests, the joint variables are the cylindrical coordinates of the end-effector with respect to
the base. A cylindrical robot, the Seiko RT3300, is shown in Figure 1.14, with its workspace
shown in Figure 1.15.

Cartesian configuration (PPP)

A manipulator whose first three joints are prismatic is known as a cartesian manipulator,
shown in Figure 1.16.

For the Cartesian manipulator the joint variables are the Cartesian coordinates of the
end-effector with respect to the base. As might be expected the kinematic description of
this manipulator is the simplest of all configurations. Cartesian configurations are useful
for table-top assembly applications and, as gantry robots, for transfer of material or cargo.
An example of a cartesian robot, from Epson-Seiko, is shown in Figure 1.17. The workspace
of a Cartesian manipulator is shown in Figure 1.18.

Parallel Manipulator

A parallel manipulator is one in which the links form a closed chain. More specifically, a
parallel manipulator has two or more independent kinematic chains connecting the base to
the end-effector. Figure 1.19 shows the ABB IRB 940 Tricept robot, which has a parallel
configuration. The closed chain kinematics of parallel robots can result in greater structural
rigidity, and hence greater accuracy, than open chain robots. The kinematic description of
parallel robots fundamentally different from that of serial link robots and therefore requires
different methods of analysis.

1.3. COMPONENTS AND STRUCTURE OF ROBOTS 19

Figure 1.9: Workspace of the spherical manipulator.

θ1

z0

z1 z2

θ2

d3

Figure 1.10: The SCARA (Selective Compliant Articulated Robot for Assembly).

1.3.5 Robotic Systems

A robot manipulator should be viewed as more than just a series of mechanical linkages. The
mechanical arm is just one component to an overall Robotic System, shown in Figure 1.20,
which consists of the arm, external power source, end-of-arm tooling, external and
internal sensors, computer interface, and control computer. Even the programmed
software should be considered as an integral part of the overall system, since the manner in
which the robot is programmed and controlled can have a major impact on its performance
and subsequent range of applications.

20 CHAPTER 1. INTRODUCTION

Figure 1.11: The Epson E2L653S SCARA Robot. Photo Courtesy of Epson.

Figure 1.12: Workspace of the SCARA manipulator.

1.3.6 Accuracy and Repeatability

The accuracy of a manipulator is a measure of how close the manipulator can come to
a given point within its workspace. Repeatability is a measure of how close a manipu-
lator can return to a previously taught point. Most present day manipulators are highly
repeatable but not very accurate. The primary method of sensing positioning errors in
most cases is with position encoders located at the joints, either on the shaft of the motor
that actuates the joint or on the joint itself. There is typically no direct measurement of
the end-effector position and orientation. One must rely on the assumed geometry of the
manipulator and its rigidity to infer (i.e., to calculate) the end-effector position from the
measured joint angles. Accuracy is affected therefore by computational errors, machining
accuracy in the construction of the manipulator, flexibility effects such as the bending of
the links under gravitational and other loads, gear backlash, and a host of other static and
dynamic effects. It is primarily for this reason that robots are designed with extremely
high rigidity. Without high rigidity, accuracy can only be improved by some sort of direct

1.3. COMPONENTS AND STRUCTURE OF ROBOTS 21

θ1

d3

z2

z0

z1

d2

Figure 1.13: The cylindrical manipulator configuration.

Figure 1.14: The Seiko RT3300 Robot. Photo courtesy of Seiko.

sensing of the end-effector position, such as with vision.

Once a point is taught to the manipulator, however, say with a teach pendant, the above
effects are taken into account and the proper encoder values necessary to return to the given
point are stored by the controlling computer. Repeatability therefore is affected primarily by
the controller resolution. Controller resolution means the smallest increment of motion
that the controller can sense. The resolution is computed as the total distance traveled by
the tip divided by 2n, where n is the number of bits of encoder accuracy. In this context,
linear axes, that is, prismatic joints, typically have higher resolution than revolute joints,
since the straight line distance traversed by the tip of a linear axis between two points is
less than the corresponding arclength traced by the tip of a rotational link.

In addition, as we will see in later chapters, rotational axes usually result in a large
amount of kinematic and dynamic coupling among the links with a resultant accumulation
of errors and a more difficult control problem. One may wonder then what the advantages
of revolute joints are in manipulator design. The answer lies primarily in the increased
dexterity and compactness of revolute joint designs. For example, Figure 1.21 shows that

22 CHAPTER 1. INTRODUCTION

Figure 1.15: Workspace of the cylindrical manipulator.

d2

z1

z0
d1

d3

z2

Figure 1.16: The cartesian manipulator configuration.

for the same range of motion, a rotational link can be made much smaller than a link
with linear motion. Thus manipulators made from revolute joints occupy a smaller working
volume than manipulators with linear axes. This increases the ability of the manipulator to
work in the same space with other robots, machines, and people. At the same time revolute
joint manipulators are better able to maneuver around obstacles and have a wider range of
possible applications.

1.3.7 Wrists and End-Effectors

The wrist of a manipulator refers to the joints in the kinematic chain between the arm
and hand. The wrist joints are nearly always all revolute. It is increasingly common to
design manipulators with spherical wrists, by which we mean wrists whose three joint axes
intersect at a common point. The spherical wrist is represented symbolically in Figure 1.22.

The spherical wrist greatly simplifies the kinematic analysis, effectively allowing one
to decouple the positioning and orientation of an object to as great an extent as possible.

1.3. COMPONENTS AND STRUCTURE OF ROBOTS 23

Figure 1.17: The Epson Cartesian Robot. Photo courtesy of Epson.

Figure 1.18: Workspace of the cartesian manipulator.

Typically therefore, the manipulator will possess three positional degrees-of-freedom, which
are produced by three or more joints in the arm. The number of orientational degrees-of-
freedom will then depend on the degrees-of-freedom of the wrist. It is common to find wrists
having one, two, or three degrees-of-freedom depending of the application. For example,
the SCARA robot shown in Figure 1.11 has four degrees-of-freedom: three for the arm, and
one for the wrist, which has only a roll about the final z-axis.

It has been said that a robot is only as good as its hand or end-effector. The arm and
wrist assemblies of a robot are used primarily for positioning the end-effector and any tool
it may carry. It is the end-effector or tool that actually performs the work. The simplest
type of end-effectors are grippers, such as shown in Figure 1.23 which usually are capable of
only two actions, opening and closing. While this is adequate for materials transfer, some
parts handling, or gripping simple tools, it is not adequate for other tasks such as welding,
assembly, grinding, etc. A great deal of research is therefore being devoted to the design of
special purpose end-effectors as well as tools that can be rapidly changed as the task dictates.
There is also much research being devoted to the development of anthropomorphic hands.

24 CHAPTER 1. INTRODUCTION

Figure 1.19: The ABB IRB940 Tricept Parallel Robot. Photo courtesy of ABB.

Power supply

��
Input device

or
teach pendant

oo // Computer
controller

oo //

OO

��

Mechanical
arm

OO

��
Program
storage

or network

End-of-arm
tooling

Figure 1.20: Components of a robotic system.

Such hands are being developed both for prosthetic use and for use in manufacturing. Since
we are concerned with the analysis and control of the manipulator itself and not in the
particular application or end-effector, we will not discuss end-effector design or the study
of grasping and manipulation.

1.4 Outline of the Text

A typical application involving an industrial manipulator is shown in Figure 1.24. The
manipulator is shown with a grinding tool which it must use to remove a certain amount
of metal from a surface. In the present text we are concerned with the following question:

d
d

Figure 1.21: Linear vs. rotational link motion.

1.4. OUTLINE OF THE TEXT 25

Yaw

RollPitch

Figure 1.22: Structure of a spherical wrist.

Figure 1.23: Angular Jaw and Parallel Jaw Grippers.

What are the basic issues to be resolved and what must we learn in order to be able to

program a robot to perform tasks such as the above?

The ability to answer this question for a full six degree-of-freedom manipulator repre-
sents the goal of the present text. The answer itself is too complicated to be presented at
this point. We can, however, use the simple two-link planar mechanism to illustrate some
of the major issues involved and to preview the topics covered in this text.

Suppose we wish to move the manipulator from its home position to position A, from
which point the robot is to follow the contour of the surface S to the point B, at constant
velocity, while maintaining a prescribed force F normal to the surface. In so doing the robot
will cut or grind the surface according to a predetermined specification.

Problem 1: Forward Kinematics

The first problem encountered is to describe both the position of the tool and the locations
A and B (and most likely the entire surface S) with respect to a common coordinate
system. In Chapter 2 we give some background on representations of coordinate systems

26 CHAPTER 1. INTRODUCTION

B

F
A

S

Home

Camera

Figure 1.24: Two-link planar robot example.

and transformations among various coordinate systems.

Typically, the manipulator will be able to sense its own position in some manner using
internal sensors (position encoders) located at joints 1 and 2, which can measure directly
the joint angles θ1 and θ2. We also need therefore to express the positions A and B in
terms of these joint angles. This leads to the forward kinematics problem studied in
Chapter 3, which is to determine the position and orientation of the end-effector or tool in
terms of the joint variables.

It is customary to establish a fixed coordinate system, called the world or base frame
to which all objects including the manipulator are referenced. In this case we establish
the base coordinate frame o0x0y0 at the base of the robot, as shown in Figure 1.25. The

y0

x0
θ1

x1

x2

θ2

y1

y2

Figure 1.25: Coordinate frames for two-link planar robot.

coordinates (x, y) of the tool are expressed in this coordinate frame as

x = x2 = α1 cos θ1 + α2 cos(θ1 + θ2) (1.1)

y = y2 = α1 sin θ1 + α2 sin(θ1 + θ2), (1.2)

1.4. OUTLINE OF THE TEXT 27

in which α1 and α2 are the lengths of the two links, respectively. Also the orientation
of the tool frame relative to the base frame is given by the direction cosines of the x2

and y2 axes relative to the x0 and y0 axes, that is,

x2 · x0 = cos(θ1 + θ2); x2 · y0 = sin(θ1 + θ2) (1.3)

y2 · x0 = sin(θ1 + θ2); y2 · y0 = sin(θ1 + θ2)

which we may combine into an orientation matrix

[

x2 · x0 y2 · x0

x2 · y0 y2 · y0

]

=

[

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]

. (1.4)

These equations (1.1-1.4) are called the forward kinematic equations. For a six
degree-of-freedom robot these equations are quite complex and cannot be written down as
easily as for the two-link manipulator. The general procedure that we discuss in Chapter 3
establishes coordinate frames at each joint and allows one to transform systematically among
these frames using matrix transformations. The procedure that we use is referred to as
the Denavit-Hartenberg convention. We then use homogeneous coordinates and
homogeneous transformations to simplify the transformation among coordinate frames.

Problem 2: Inverse Kinematics

Now, given the joint angles θ1, θ2 we can determine the end-effector coordinates x and y.
In order to command the robot to move to location B we need the inverse; that is, we need
the joint variables θ1, θ2 in terms of the x and y coordinates of B. This is the problem of
Inverse Kinematics. In other words, given x and y in the forward kinematic equations
(1.1-1.2), we wish to solve for the joint angles. Since the forward kinematic equations are
nonlinear, a solution may not be easy to find nor is there a unique solution in general. We
can see, for example, in the case of a two-link planar mechanism that there may be no
solution, if the given (x, y) coordinates are out of reach of the manipulator. If the given
(x, y) coordinates are within the manipulator’s reach there may be two solutions as shown
in Figure 1.26, the so-called elbow up and elbow down configurations, or there may be
exactly one solution if the manipulator must be fully extended to reach the point. There
may even be an infinite number of solutions in some cases (Problem 1.25).

Consider the diagram of Figure 1.27. Using the Law of Cosines we see that the angle
θ2 is given by

cos θ2 =
x2 + y2 − α2

1 − α2
2

2α1α2
:= D. (1.5)

We could now determine θ2 as

θ2 = cos−1(D). (1.6)

28 CHAPTER 1. INTRODUCTION

elbow up

elbow down

Figure 1.26: Multiple inverse kinematic solutions.

x

c

α1

α2

θ1

θ2

y

Figure 1.27: Solving for the joint angles of a two-link planar arm.

However, a better way to find θ2 is to notice that if cos(θ2) is given by (1.5) then sin(θ2)
is given as

sin(θ2) = ±
√

1−D2 (1.7)

and, hence, θ2 can be found by

θ2 = tan−1 ±
√

1−D2

D
. (1.8)

The advantage of this latter approach is that both the elbow-up and elbow-down solu-
tions are recovered by choosing the positive and negative signs in (1.8), respectively.

It is left as an exercise (Problem 1.19) to show that θ1 is now given as

θ1 = tan−1(y/x)− tan−1

(

α2 sin θ2
α1 + α2 cos θ2

)

. (1.9)

Notice that the angle θ1, depends on θ2. This makes sense physically since we would
expect to require a different value for θ1, depending on which solution is chosen for θ2.

1.4. OUTLINE OF THE TEXT 29

Problem 3: Velocity Kinematics

In order to follow a contour at constant velocity, or at any prescribed velocity, we must
know the relationship between the velocity of the tool and the joint velocities. In this case
we can differentiate Equations (1.1) and (1.2) to obtain

ẋ = −α1 sin θ1 · θ̇1 − α2 sin(θ1 + θ2)(θ̇1 + θ̇2) (1.10)

ẏ = α1 cos θ1 · θ̇1 + α2 cos(θ1 + θ2)(θ̇1 + θ̇2).

Using the vector notation x =

[

x
y

]

and θ =

[

θ1
θ2

]

we may write these equations as

ẋ =

[

−α1 sin θ1 − α2 sin(θ1 + θ2) −α2 sin(θ1 + θ2)
α1 cos θ1 + α2 cos(θ1 + θ2) α2 cos(θ1 + θ2)

]

θ̇ (1.11)

= J θ̇.

The matrix J defined by (1.11) is called the Jacobian of the manipulator and is a
fundamental object to determine for any manipulator. In Chapter 5 we present a systematic
procedure for deriving the Jacobian for any manipulator in the so-called cross-product
form.

The determination of the joint velocities from the end-effector velocities is conceptually
simple since the velocity relationship is linear. Thus the joint velocities are found from the
end-effector velocities via the inverse Jacobian

θ̇ = J−1ẋ (1.12)

where J−1 is given by

J−1 =
1

α1α2sθ2

[

α2cθ1+θ2 α2sθ1+θ2

−α1cθ1 − α2cθ1+θ2 −α1sθ1 − α2sθ1+θ2

]

(1.13)

in which cθ and sθ denote respectively cos θ and sin θ. The determinant, detJ , of the Ja-
cobian in (1.11) is α1α2 sin θ2. The Jacobian does not have an inverse, therefore, when
θ2 = 0 or π, in which case the manipulator is said to be in a singular configuration,
such as shown in Figure 1.28 for θ2 = 0. The determination of such singular configurations
is important for several reasons. At singular configurations there are infinitesimal motions
that are unachievable; that is, the manipulator end-effector cannot move in certain direc-
tions. In the above cases the end effector cannot move in the direction parallel to x2, from
a singular configuration. Singular configurations are also related to the non-uniqueness of
solutions of the inverse kinematics. For example, for a given end-effector position, there are
in general two possible solutions to the inverse kinematics. Note that the singular configu-
ration separates these two solutions in the sense that the manipulator cannot go from one
configuration to the other without passing through the singularity. For many applications
it is important to plan manipulator motions in such a way that singular configurations are
avoided.

30 CHAPTER 1. INTRODUCTION

θ1

y0

x0

θ2 = 0α1

α2

Figure 1.28: A singular configuration.

Problem 4: Path Planning and Trajectory Generation

The robot control problem is typically decomposed heirarchically into three tasks: path
planning, trajectory generation, and trajectory tracking. The path planning problem, con-
sidered in Chapter 7, is to determine a path in task space (or configuration space) to move
the robot to a goal position while avoiding collisions with objects in its workspace. These
paths are encode position information without timing considerations, i.e. without consider-
ing velocities and accelerations along the planned paths. The tractory generation problem,
considered in Chapter 8 is to generate reference trajectories that determine the time history
of the manipulator along a given path or between initial and final configurations.

Problem 5: Vision

Cameras have become reliable and relatively inexpensive sensors in many robotic applica-
tions. Unlike joint sensors, which give information about the internal configuration of the
robot, cameras can be used not only to measure the position of the robot but also to locate
objects external to the robot in its workspace. In Chapter 6 we discuss the use of cameras
to obtain position and orientation of objects.

Problem 6: Dynamics

A robot manipulator is basically a positioning device. To control the position we must know
the dynamic properties of the manipulator in order to know how much force to exert on it
to cause it to move: too little force and the manipulator is slow to react; too much force
and the arm may crash into objects or oscillate about its desired position.

Deriving the dynamic equations of motion for robots is not a simple task due to the large
number of degrees of freedom and nonlinearities present in the system. In Chapter 9 we
develop techniques based on Lagrangian dynamics for systematically deriving the equations
of motion of such a system. In addition to the rigid links, the complete description of

1.4. OUTLINE OF THE TEXT 31

robot dynamics includes the dynamics of the actuators that produce the forces and torques
to drive the robot, and the dynamics of the drive trains that transmit the power from
the actuators to the links. Thus, in Chapter 10 we also discuss actuator and drive train
dynamics and their effects on the control problem.

Problem 7: Position Control

Control theory is used in Chapters 10 and 11 to design control algorithms for the execution
of programmed tasks. The motion control problem consists of the Tracking and Dis-
turbance Rejection Problem, which is the problem of determining the control inputs
necessary to follow, or track, a desired trajectory that has been planned for the manipula-
tor, while simultaneously rejecting disturbances due to unmodelled dynamic effects such
as friction and noise. We detail the standard approaches to robot control based on fre-
quency domain techniques. We also introduce the notion of feedforward control and the
techniques of computed torque and inverse dynamics as a means for compensating the
complex nonlinear interaction forces among the links of the manipulator. Robust control
is introduced in Chapter 11 using the Second Method of Lyapunov. Chapter ?? pro-
vides some additional advanced techniques from nonlinear control theory that are useful for
controlling high performance robots.

Problem 8: Force Control

Once the manipulator has reached location A. it must follow the contour S maintaining a
constant force normal to the surface. Conceivably, knowing the location of the object and
the shape of the contour, we could carry out this task using position control alone. This
would be quite difficult to accomplish in practice, however. Since the manipulator itself
possesses high rigidity, any errors in position due to uncertainty in the exact location of
the surface or tool would give rise to extremely large forces at the end-effector that could
damage the tool, the surface, or the robot. A better approach is to measure the forces of
interaction directly and use a force control scheme to accomplish the task. In Chapter 12
we discuss force control and compliance and discuss the two most common approaches to
force control, hybrid control and impedance control.

32 CHAPTER 1. INTRODUCTION

Chapter 2

RIGID MOTIONS AND
HOMOGENEOUS
TRANSFORMATIONS

A large part of robot kinematics is concerned with the establishment of various coordinate
systems to represent the positions and orientations of rigid objects and with transformations
among these coordinate systems. Indeed, the geometry of three-dimensional space and of
rigid motions plays a central role in all aspects of robotic manipulation. In this chapter we
study the operations of rotation and translation and introduce the notion of homogeneous
transformations.1 Homogeneous transformations combine the operations of rotation and
translation into a single matrix multiplication, and are used in Chapter 3 to derive the
so-called forward kinematic equations of rigid manipulators.

We begin by examining representations of points and vectors in a Euclidean space
equipped with multiple coordinate frames. Following this, we develop the concept of a
rotation matrix, which can be used to represent relative orientations between coordinate
frames. Finally, we combine these two concepts to build homogeneous transformation ma-
trices, which can be used to simultaneously represent the position and orientation of one
coordinate frame relative to another. Furthermore, homogeneous transformation matrices
can be used to perform coordinate transformations. Such transformations allow us to easily
move between different coordinate frames, a facility that we will often exploit in subsequent
chapters.

2.1 Representing Positions

Before developing representation schemes for points and vectors, it is instructive to dis-
tinguish between the two fundamental approaches to geometric reasoning: the synthetic

1Since we make extensive use of elementary matrix theory, the reader may wish to review Appendix A
before beginning this chapter.

33

34 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

�✂✁ ✄ ✁

☎✝✆

☎ ✁

�✝✞

✄
✞

✟

Figure 2.1: Two coordinate frames, a point p, and two vectors ~v1 and ~v2.

approach and the analytic approach. In the former, one reasons directly about geomet-
ric entities (e.g., points or lines), while in the latter, one represents these entities using
coordinates or equations, and reasoning is performed via algebraic manipulations.

Consider Figure 2.1. Using the synthetic approach, without ever assigning coordinates
to points or vectors, one can say that x0 is perpendicular to y0, or that ~v1 × ~v2 defines a
vector that is perpendicular to the plane containing ~v1 and ~v2, in this case pointing out of
the page.

In robotics, one typically uses analytic reasoning, since robot tasks are often defined in a
Cartesian workspace, using Cartesian coordinates. Of course, in order to assign coordinates
it is necessary to specify a coordinate frame. Consider again Figure 2.1. We could specify
the coordinates of the point p with respect to either frame o0x0y0 or frame o1x1y1. In
the former case, we might assign to p the coordinate vector (5, 6)T , and in the latter case
(−3, 4)T . So that the reference frame will always be clear, we will adopt a notation in which
a superscript is used to denote the reference frame. Thus, we would write

p0 =

[

5
6

]

, p1 =

[

−3
4

]

(2.1)

Geometrically, a point corresponds to a specific location in space. We stress here that
p 6= p0 and p 6= p1, i.e., p is a geometric entity, a point in space, while both p0 and p1

are coordinate vectors that represent the location of this point in space with respect to
coordinate frames o0x0y0 and o1x1y1, respectively.

Since the origin of a coordinate system is just a point in space, we can assign coordinates
that represent the position of the origin of one coordinate system with respect to another.
In Figure 2.1, for example,

o0
1 =

[

10
5

]

, o1
0 =

[

−10
5

]

. (2.2)

In cases where there is only a single coordinate frame, or in which the reference frame
is obvious, we will often omit the superscript. This is a slight abuse of notation, and the

2.2. REPRESENTING ROTATIONS 35

reader is advised to bear in mind the difference between the geometric entity called p and
any particular coordinate vector that is assigned to represent p. The former is invariant
with respect to the choice of coordinate systems, while the latter obviously depends on the
choice of coordinate frames.

While a point corresponds to a specific location in space, a vector specifies a direction
and a magnitude. Vectors can be used, for example, to represent displacements or forces.
Therefore, while the point p is not equivalent to the vector ~v1, the displacement from the
origin o0 to the point p is given by the vector ~v1. In this text, we will use the term vector
to refer to what are sometimes called free vectors, i.e., vectors that are not constrained to
be located at a particular point in space. Under this convention, it is clear that points and
vectors are not equivalent, since points refer to specific locations in space, but a vector can
be moved to any location in space. Under this convention, two vectors are equal if they
have the same direction and the same magnitude.

When assigning coordinates to vectors, we use the same notational convention that we
used when assigning coordinates to points. Thus, ~v1 and ~v2 are geometric entities that
are invariant with respect to the choice of coordinate systems, but the representation by
coordinates of these vectors depends directly on the choice of reference coordinate frame.
In the example of Figure 2.1, we would obtain

v0
1 =

[

5
6

]

, v1
1 =

[

8
1

]

, v0
2 =

[

−5
1

]

v1
2 =

[

−3
4

]

. (2.3)

In order to perform algebraic manipulations using coordinates, it is essential that all
coordinate vectors be defined with respect to the same coordinate frame. For example, an
expression of the form v1

1 + v2
2 would make no sense geometrically. Thus, we see a clear

need, not only for a representation system that allows points to be expressed with respect
to various coordinate systems, but also for a mechanism that allows us to transform the
coordinates of points that are expressed in one coordinate system into the appropriate
coordinates with respect to some other coordinate frame. Such coordinate transformations
and their derivations are the topic for much of the remainder of this chapter.

2.2 Representing Rotations

In order to represent the relative position and orientation of one rigid body with respect
to another, we will rigidly attach coordinate frames to each body, and then specify the
geometric relationships between these coordinate frames. In Section 2.1 we have already
seen how one can represent the position of the origin of one frame with respect to another
frame. In this section, we address the problem of describing the orientation of one coordinate
frame relative to another frame. We begin with the case of rotations in the plane, and then
generalize our results to the case of orientations in a three dimensional space.

36 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

o0, o1

y0

y1

θ

x1

sin θ

cos θ

x0

Figure 2.2: Coordinate frame o1x1y1 is oriented at an angle θ with respect to o0x0y0

2.2.1 Rotation in the plane

Figure 2.2 shows two coordinate frames, with frame o1x1y1 being obtained by rotating frame
o0x0y0 by an angle θ. Perhaps the most obvious way to represent the relative orientation
of these two frames is to merely specify the angle of rotation, θ. There are two immediate
disadvantages to such a representation. First, there is a discontinuity in the mapping from
relative orientation to the value of θ in a neighborhood of θ = 0. In particular, for θ = 2π−ǫ,
small changes in orientation can produce large changes in the value of θ (i.e., a rotation by
ǫ causes θ to “wrap around” to zero). Second, this choice of representation does not scale
well to the three dimensional case, with which we shall be primarily concerned in this text.

A slightly less obvious way to specify the orientation is to specify the coordinate vectors
for the axes of frame o1x1y1 with respect to coordinate frame o0x0y0. In particular, we can
build a matrix of the form:

R0
1 = [x0

1|y0
1] . (2.4)

A matrix in this form is called a rotation matrix. Rotation matrices have a number of
special properties, which we will discuss below.

In the two dimensional case, it is straightforward to compute the entries of this matrix.
As illustrated in Figure 2.2,

x0
1 =

[

cos θ
sin θ

]

, y0
1 =

[

− sin θ
cos θ

]

, (2.5)

which gives

R0
1 =

[

cos θ − sin θ
sin θ cos θ

]

. (2.6)

Note that we have continued to use the notational convention of allowing the superscript
to denote the reference frame. Thus, R0

1 is a matrix whose column vectors are the coordinates
of the axes of frame o1x1y1 expressed relative to frame o0x0y0.

2.2. REPRESENTING ROTATIONS 37

Although we have derived the entries for R0
1 in terms of the angle θ, it is not necessary

that we do so. An alternative approach, and one that scales nicely to the three dimensional
case, is to build the rotation matrix by projecting the axes of frame o1x1y1 onto the coor-
dinate axes of frame o0x0y0. Recalling that the dot product of two unit vectors gives the
projection of one onto the other, we obtain

x0
1 =

[

x1 · x0

x1 · y0

]

, y0
1 =

[

y1 · x0

y1 · y0

]

, (2.7)

which can be combined to obtain the rotation matrix

R0
1 =

[

x1 · x0 y1 · x0

x1 · y0 y1 · y0

]

. (2.8)

Thus the columns of R0
1 specify the direction cosines of the coordinate axes of o1x1y1 relative

to the coordinate axes of o0x0y0. For example, the first column (x1·x0, x1·y0)
T of R0

1 specifies
the direction of x1 relative to the frame o0x0y0. Note that the right hand sides of these
equations are defined in terms of geometric entities, and not in terms of their coordinates.
Examining Figure 2.2 it can be seen that this method of defining the rotation matrix by
projection gives the same result as was obtained in equation (2.6).

If we desired instead to describe the orientation of frame o0x0y0 with respect to the
frame o1x1y1 (i.e., if we desired to use the frame o1x1y1 as the reference frame), we would
construct a rotation matrix of the form

R1
0 =

[

x0 · x1 y0 · x1

x0 · y1 y0 · y1

]

. (2.9)

Since the inner product is commutative, (i.e. xi · yj = yj · xi), we see that

R1
0 = (R0

1)
T . (2.10)

In a geometric sense, the orientation of o0x0y0 with respect to the frame o1x1y1 is the
inverse of the orientation of o1x1y1 with respect to the frame o0x0y0. Algebraically, using
the fact that coordinate axes are always mutually orthogonal, it can readily be seen that

(R0
1)
T = (R0

1)
−1. (2.11)

Such a matrix is said to be orthogonal. The column vectors of R0
1 are of unit length and

mutually orthogonal (Problem 2-1). It can also be shown (Problem 2-2) that detR0
1 = ±1.

If we restrict ourselves to right-handed coordinate systems, as defined in Appendix A, then
detR0

1 = +1 (Problem 2-3). All rotation matrices have the properties of being orthogonal
matrices with determinant +1. It is customary to refer to the set of all 2 × 2 rotation
matrices by the symbol SO(2)2. The properties of such matrices are summarized in Figure
2.3.

2The notation SO(2) stands for Special Orthogonal group of order 2.

38 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

Every n× n rotation matrix R has the following properties (for n = 2, 3):

• R ∈ SO(n)

• R−1 ∈ SO(n)

• R−1 = RT

• The columns (and therefore the rows) of R are mutually orthogonal.

• Each column (and therefore each row) of R is a unit vector.

• det{R} = 1

Figure 2.3: Properties of Rotation Matrices

To provide further geometric intuition for the notion of the inverse of a rotation matrix,
note that in the two dimensional case, the inverse of the rotation matrix corresponding to a
rotation by angle θ can also be easily computed simply by constructing the rotation matrix
for a rotation by the angle −θ:

[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[

cos θ sin θ
− sin θ cos θ

]

=

[

cos θ − sin θ
sin θ cos θ

]T

. (2.12)

2.2.2 Rotations in three dimensions

The projection technique described above scales nicely to the three dimensional case.
In three dimensions, each axis of the frame o1x1y1z1 is projected onto coordinate frame
o0x0y0z0. The resulting rotation matrix is given by

R0
1 =





x1 · x0 y1 · x0 z1 · x0

x1 · y1 y1 · y0 z1 · y0

x1 · z1 y1 · z0 z1 · z0



 . (2.13)

As was the case for rotation matrices in two dimensions, matrices in this form are
orthogonal, with determinant equal to 1. In this case, 3× 3 rotation matrices belong to the
group SO(3). The properties listed in Figure 2.3 also apply to rotation matrices in SO(3).

Example 2.1 Suppose the frame o1x1y1z1 is rotated through an angle θ about the z0-axis,
and it is desired to find the resulting transformation matrix R0

1. Note that by convention
the positive sense for the angle θ is given by the right hand rule; that is, a positive rotation
of θ degrees about the z-axis would advance a right-hand threaded screw along the positive
z-axis. From Figure 2.4 we see that

not corrrect

2.2. REPRESENTING ROTATIONS 39

y0

z0, z1

x0

y1

cos θ

sin θ
θ

cos θ

x1

sin θ

Figure 2.4: Rotation about z0.

x1 · x0 = cos θ y1 · x0 = − sin θ (2.14)

x1 · y0 = sin θ y1 · y0 = cos θ

z0 · z1 = 1

and all other dot products are zero. Thus the transformation R0
1 has a particularly simple

form in this case, namely

R0
1 =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 . (2.15)

⋄

The Basic Rotation Matrices

The transformation (2.15) is called a basic rotation matrix (about the z-axis). In this
case we find it useful to use the more descriptive notation Rz,θ, instead of R0

1 to denote the
matrix (2.15). It is easy to verify that the basic rotation matrix Rz,θ has the properties

Rz,0 = I (2.16)

Rz,θRz,φ = Rz,θ+φ (2.17)

which together imply

Rz,θ

−1 = Rz,−θ. (2.18)

40 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

Similarly the basic rotation matrices representing rotations about the x and y-axes are
given as (Problem 2-5)

Rx,θ =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (2.19)

Ry,θ =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (2.20)

which also satisfy properties analogous to (2.16)-(2.18).

Example 2.2 Consider the frames o0x0y0z0 and o1x1y1z1 shown in Figure 2.5. Pro-
jecting the unit vectors x1, y1, z1 onto x0, y0, z0 gives the coordinates of x1, y1, z1 in the

o0x0y0z0 frame. We see that the coordinates of x1 are
(

1√
2
, 0, 1√

2

)T
, the coordinates of y1

are
(

1√
2
, 0, −1√

2

)T
and the coordinates of z1 are (0, 1, 0)T . The rotation matrix R0

1 specifying

the orientation of o1x1y1z1 relative to o0x0y0z0 has these as its column vectors, that is,

R0
1 =







1√
2

1√
2

0

0 0 1
1√
2

−1√
2

0






. (2.21)

z0

x1

y1

y0, z1

45◦x0

Figure 2.5: Defining the relative orientation of two frames.

⋄

2.3 Rotational Transformations

Figure 2.6 shows a rigid object S to which a coordinate frame o1x1y1z1 is attached. Given
the coordinates p1 of the point p (i.e., given the coordinates of p with respect to the frame

2.3. ROTATIONAL TRANSFORMATIONS 41

y1

z1

z0

x0

x1

o y0

S

p

Figure 2.6: Coordinate frame attached to a rigid body.

o1x1y1z1), we wish to determine the coordinates of p relative to a fixed reference frame
o0x0y0z0.

The coordinates p1 = (u, v, w)t satisfy the equation

p = ux1 + vy1 + wz1. (2.22)

In a similar way, we can obtain an expression for the coordinates p0 by projecting the point
p onto the coordinate axes of the frame o0x0y0z0, giving

p0 =





p · x0

p · y0

p · z0



 . (2.23)

Combining these two equations we obtain

p0 =





(ux1 + vy1 + wz1) · x0

(ux1 + vy1 + wz1) · y0

(ux1 + vy1 + wz1) · z0



 (2.24)

=





ux1 · x0 + vy1 · x0 + wz1 · x0

ux1 · y0 + vy1 · y0 + wz1 · y0

ux1 · z0 + vy1 · z0 + wz1 · z0



 (2.25)

=





x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0









u
v
w



 . (2.26)

But the matrix in this final equation is merely the rotation matrix R0
1, which leads to

p0 = R0
1p

1. (2.27)

42 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

Thus, the rotation matrix R0
1 can be used not only to represent the orientation of coor-

dinate frame o1x1y1z1 with respect to frame o0x0y0z0, but also to transform the coordinates
of a point from one frame to another. Thus, if a given point is expressed relative to o1x1y1z1
by coordinates p1, then R0

1p
1 represents the same point expressed relative to the frame

o0x0y0z0.
We have now seen how rotation matrices can be used to relate the orientation of one

frame to another frame, and to assign coordinate representations to points and vectors. For
example, given a point p in space, we have shown how a rotation matrix can be used to
derive coordinates for p with respect to different coordinate frames whose orientations are
related by a rotation matrix. We can also use rotation matrices to represent rigid motions
that correspond to pure rotation. Consider Figure 2.7. One corner of the block in Figure
2.7(a) is located at the point pa in space. Figure 2.7(b) shows the same block after it has
been rotated about z0 by the angle π. In Figure 2.7(b), the same corner of the block is
now located at point pb in space. It is possible to derive the coordinates for pb given only
the coordinates for pa and the rotation matrix that corresponds to the rotation about z0.
To see how this can be accomplished, imagine that a coordinate frame is rigidly attached
to the block in Figure 2.7(a), such that it is coincident with the frame o0x0y0z0. After the
rotation by π, the block’s coordinate frame, which is rigidly attached to the block, is also
rotated by π. If we denote this rotated frame by o1x1y1z1, we obtain

R0
1 = Rz,π =





−1 0 0
0 −1 0
0 0 1



 . (2.28)

In the local coordinate frame o1x1y1z1, the point pb has the coordinate representation p1
b.

To obtain its coordinates with respect to frame o0x0y0z0, we merely apply the coordinate
transformation equation (2.27), giving

p0
b = Rz,πp

1
b. (2.29)

The key thing to notice is that the local coordinates, p1
b, of the corner of the block do not

change as the block rotates, since they are defined in terms of the block’s own coordinate
frame. Therefore, when the block’s frame is aligned with the reference frame o0x0y0z0
(i.e., before the rotation is performed), the coordinates p1

b = p0
a, since before the rotation

is performed, the point pa is coincident with the corner of the block. Therefore, we can
substitute p0

a into the previous equation to obtain

p0
b = Rz,πp

0
a. (2.30)

This equation shows us how to use a rotation matrix to represent a rotational motion. In
particular, if the point pb is obtained by rotating the point pa as defined by the rotation
matrix R, then the coordinates of pb with respect to the reference frame are given by

p0
b = Rp0

a. (2.31)

2.3. ROTATIONAL TRANSFORMATIONS 43

z0

x0 x0

z0

pb
y0 y0

(a) (b)

pa

Figure 2.7: The block in (b) is obtained by rotating the block in (a) by π about z0.

y0

z0

x0

�v1

�v0

π
2

Figure 2.8: Rotating a vector about axis y0.

44 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

This same approach can be used to rotate vectors with respect to a coordinate frame,
as the following example illustrates.

Example 2.3 The vector ~v with coordinates v0 = (0, 1, 1)T is rotated about y0 by π
2 as

shown in Figure 2.8. The resulting vector ~v1 has coordinates given by

v0
1 = Ry, π2

v0 (2.32)

=





0 0 1
0 1 0
−1 0 0









0
1
1



 =





1
1
0



 . (2.33)

⋄
Thus, as we have now seen, a third interpretation of a rotation matrix R is as an operator

acting on vectors in a fixed frame. In other words, instead of relating the coordinates of
a fixed vector with respect to two different coordinate frames, the expression (2.32) can
represent the coordinates in o0x0y0z0 of a vector ~v1 which is obtained from a vector ~v by
a given rotation.

2.3.1 Summary

We have seen that a rotation matrix, either R ∈ SO(3) or R ∈ SO(2), can be interpreted
in three distinct ways:

1. It represents a coordinate transformation relating the coordinates of a point p in two
different frames.

2. It gives the orientation of a transformed coordinate frame with respect to a fixed
coordinate frame.

3. It is an operator taking a vector and rotating it to a new vector in the same coordinate
system.

The particular interpretation of a given rotation matrix R that is being used must then be
made clear by the context.

2.4 Composition of Rotations

In this section we discuss the composition of rotations. It is important for subsequent
chapters that the reader understand the material in this section thoroughly before moving
on.

2.4.1 Rotation with respect to the current coordinate frame

Recall that the matrix R0
1 in Equation (2.27) represents a rotational transformation between

the frames o0x0y0z0 and o1x1y1z1. Suppose we now add a third coordinate frame o2x2y2z2

2.4. COMPOSITION OF ROTATIONS 45

related to the frames o0x0y0z0 and o1x1y1z1 by rotational transformations. As we saw
above, a given point p can then be represented by coordinates specified with respect to any
of these three frames: p0, p1 and p2. The relationship between these representations of p is

p0 = R0
1p

1 (2.34)

p1 = R1
2p

2 (2.35)

p0 = R0
2p

2 = R0
1R

1
2p

2 (2.36)

where each Ri
j is a rotation matrix, and equation (2.36) follows directly by substituting

equation (2.35) into equation (2.34). Note that R0
1 and R0

2 represent rotations relative to
the frame o0x0y0z0 while R1

2 represents a rotation relative to the frame o1x1y1z1.
From equation (2.36) we can immediately infer the identity

R0
2 = R0

1R
1
2. (2.37)

Equation (2.37) is the composition law for rotational transformations. It states that, in order
to transform the coordinates of a point p from its representation p2 in the frame o2x2y2z2
to its representation p0 in the frame o0x0y0z0, we may first transform to its coordinates p1

in the frame o1x1y1z1 using R1
2 and then transform p1 to p0 using R0

1.
We may also interpret Equation (2.37) as follows. Suppose initially that all three of the

coordinate frames coincide. We first rotate the frame o2x2y2z2 relative to o0x0y0z0 according
to the transformation R0

1. Then, with the frames o1x1y1z1 and o2x2y2z2 coincident, we
rotate o2x2y2z2 relative to o1x1y1z1 according to the transformation R1

2. In each case we
call the frame relative to which the rotation occurs the current frame.

Example 2.4 Henceforth, whenever convenient we use the shorthand notation cθ = cos θ,
sθ = sin θ for trigonometric functions. Suppose a rotation matrix R represents a rotation
of φ degrees about the current y-axis followed by a rotation of θ degrees about the current
z-axis. Refer to Figure 2.9. Then the matrix R is given by

R = Ry,φRz,θ (2.38)

=





cφ 0 sφ
0 1 0
−sφ 0 cφ









cθ −sθ 0
sθ cθ 0
0 0 1





=





cφcθ −cφsθ sφ
sθ cθ 0
−sφcθ sφsθ cφ



 .

⋄
It is important to remember that the order in which a sequence of rotations are carried

out, and consequently the order in which the rotation matrices are multiplied together,
is crucial. The reason is that rotation, unlike position, is not a vector quantity and is
therefore not subject to the laws of vector addition, and so rotational transformations do
not commute in general.

46 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

z0

x0

y0, y1x1

y2

φ

+ =

z0

x0

z1

x1

φ

y1
x2

y2
x1

y0, y1

z1, z2z1, z2

x2

θθ

Figure 2.9: Composition of rotations about current axes.

Example 2.5 Suppose that the above rotations are performed in the reverse order, that
is, first a rotation about the current z-axis followed by a rotation about the current y-axis.
Then the resulting rotation matrix is given by

R′ = Rz,θRy,φ (2.39)

=





cθ −sφ 0
sθ cθ 0
0 0 1









cφ 0 sφ
0 1 0
−sφ 0 cφ





=





cθcφ −sθ cθsφ
sθcφ cθ sθsφ
−sφ 0 cφ



 .

Comparing (2.38) and (2.39) we see that R 6= R′.
⋄

2.4.2 Rotation with respect to a fixed frame

Many times it is desired to perform a sequence of rotations, each about a given fixed
coordinate frame, rather than about successive current frames. For example we may wish
to perform a rotation about x0 followed by a rotation about the y0 (and not y1!). We will
refer to o0x0y0z0 as the fixed frame. In this case the composition law given by equation
(2.37) is not valid. It turns out that the correct composition law in this case is simply to
multiply the successive rotation matrices in the reverse order from that given by (2.37).
Note that the rotations themselves are not performed in reverse order. Rather they are
performed about the fixed frame instead of about the current frame.

To see why this is so, consider the following argument. Let o0x0y0z0 be the reference
frame. Let the frame o1x1y1z1 be obtained by performing a rotation with respect to the
reference frame, and let this rotation be denoted by R0

1. Now let o2x2y2z2 be obtained

2.4. COMPOSITION OF ROTATIONS 47

by performing a rotation of frame o1x1y1z1 with respect to the reference frame (not with
respect to o1x1y1z1 itself). We will, for the moment, denote this rotation about the fixed
frame by the matrix R. Finally, let R0

2 be the rotation matrix that denotes the orientation
of frame o2x2y2z2 with respect to o0x0y0z0. We know that R0

2 6= R0
1R, since this equation

applies for rotation about the current frame. Thus, we now seek to determine the matrix
R1

2 such that R0
2 = R0

1R
1
2.

In order to find this matrix, we shall proceed as follows. First, we will rotate frame
o1x1y1z1 to align it with the reference frame. This can be done by postmultiplication of
R0

1 by its inverse. Now, since the current frame is aligned with the reference frame, we
can postmultiply by the rotation corresponding to R (i.e., now that the fixed reference
frame coincides with the current frame, rotation about the current frame is equivalent to
rotation about the fixed reference frame). Finally, we must undo the initial rotation, which
corresponds to a postmultiplication of R0

1. When we concatenate these operations, we obtain
the following:

R0
2 = R0

1R
1
2 (2.40)

R0
2 = R0

1

[

(R0
1)

−1RR0
1

]

(2.41)

R0
2 = RR0

1 (2.42)

This procedure is an instance of a classical technique in engineering problem solving.
When confronted with a difficult problem, if one can transform the problem into an easier
problem, it is often possible to transform the solution to this easier problem into a solution
to the original, more difficult problem. In our current case, we didn’t know how to solve the
problem of rotating with respect to the fixed reference frame. Therefore, we transformed the
problem to the problem of rotating about the current frame (by using the rotation (R0

1)
−1).

We then transformed the solution for this simpler problem by applying the inverse of the
rotation that we initially used to simplify the problem (i.e., we postmultiplied by R0

1).

Example 2.6 Suppose that a rotation matrix R represents a rotation of φ degrees about
y0 followed by a rotation of θ about the fixed z0. Refer to Figure 2.10. Let p0, p1, and p2

be representations of a point p. Initially the fixed and current axes are the same, namely
o0x0y0z0 and therefore we can write as before

p0 = Ry,φp
1 (2.43)

where Ry,φ is the basic rotation matrix about the y-axis. Now, since the second rotation is
about the fixed frame o0x0y0z0 and not the current frame o1x1y1z1, we cannot conclude that

p1 = Rz,θp
2 (2.44)

since this would require that we interpret Rz,θ as being a rotation about z1. Applying the
same process as above, we first undo the previous rotation, then rotate about z0 and finally

48 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

y0

y1
θ

z0

x0

x1

z0

x0

z0

x0

y0

z1z1

z2

x2
x1

y2

x1

φ

θ

φ
+ =

y0, y1

Figure 2.10: Composition of rotations about fixed axes.

reinstate the original transformation, that is,

p1 =
[

Ry,−φRz,θRy,φ

]

p2. (2.45)

This is the correct expression, and not (2.44). Now, substituting (2.45) into (2.43) we
obtain

p0 = Ry,φp
1

= Ry,φ

[

Ry,−φRz,θRy,φ

]

p2 (2.46)

= Rz,θRy,φp
2.

It is not necessary to remember the above derivation, only to note by comparing (2.46) with
(2.38) that we obtain the same basic rotation matrices, but in the reverse order.
⋄

2.4.3 Summary

We can summarize the rule of composition of rotational transformations by the following
recipe. Given a fixed frame o0x0y0z0 a current frame o1x1y1z1, together with rotation
matrix R0

1 relating them, if a third frame o2x2y2z2 is obtained by a rotation R performed
relative to the current frame then postmultiply R0

1 by R = R1
2 to obtain

R0
2 = R0

1R
1
2. (2.47)

If the second rotation is to be performed relative to the fixed frame then it is both
confusing and inappropriate to use the notation R1

2 to represent this rotation. Therefore, if
we represent the rotation by R, we premultiply R0

1 by R to obtain

R0
2 = RR0

1. (2.48)

In each case R0
2 represents the transformation between the frames o0x0y0z0 and o2x2y2z2.

The frame o2x2y2z2 that results in (2.47) will be different from that resulting from (2.48).

2.5. PARAMETERIZATIONS OF ROTATIONS 49

ya ya, yb

x0

φ

zb

θy0

za

yb

x1

y1

ψ
zb, z1

xa

z0, za

xa
xb

(2)(1) (3)

xb

Figure 2.11: Euler angle representation.

2.5 Parameterizations of Rotations

The nine elements rij in a general rotational transformation R are not independent quan-
tities. Indeed a rigid body possesses at most three rotational degrees-of-freedom and thus
at most three quantities are required to specify its orientation. This can be easily seen by
examining the constraints that govern the matrices in SO(3):

∑

i

r2ij = 1, j ∈ {1, 2, 3} (2.49)

r1ir1j + r2ir2j + r3ir3j = 0, i 6= j. (2.50)

Equation (2.49) follows from the fact the the columns of a rotation matrix are unit vectors,
and (2.50) follows from the fact that columns of a rotation matrix are mutually orthogonal.
Together, these constraints define six independent equations with nine unknowns, which
implies that there are three free variables.

In this section we derive three ways in which an arbitrary rotation can be represented
using only three independent quantities: the Euler Angle representation, the roll-pitch-
yaw representation, and the axis/angle representation.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three independent quantities
is to use the so-called Euler Angles. Consider again the fixed coordinate frame o0x0y0z0
and the rotated frame o1x1y1z1 shown in Figure 2.11.

We can specify the orientation of the frame o1x1y1z1 relative to the frame o0x0y0z0 by
three angles (φ, θ, ψ), known as Euler Angles, and obtained by three successive rotations as
follows: First rotate about the z-axis by the angle φ. Next rotate about the current y-axis
by the angle θ. Finally rotate about the current z-axis by the angle ψ. In Figure 2.11,
frame oaxayaza represents the new coordinate frame after the rotation by φ, frame obxbybzb

50 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

represents the new coordinate frame after the rotation by θ, and frame o1x1y1z1 represents
the final frame, after the rotation by ψ. Frames oaxayaza and obxbybzb are shown in the
figure only to help you visualize the rotations.

In terms of the basic rotation matrices the resulting rotational transformation R0
1 can

be generated as the product

R0
1 = Rz,φRy,θRz,ψ (2.51)

=





cφ −sφ 0
sφ cφ 0
0 0 1









cθ 0 sθ
0 1 0
−sθ 0 cθ









cψ −sψ 0
sψ cψ 0
0 0 1





=





cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ
−sθcψ sθsψ cθ



 . (2.52)

Consider now the problem of determining the angles φ, θ, and ψ, given the rotation
matrix

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 . (2.53)

Suppose that not both of r13, r23 are zero. Then the above equations show that sθ 6= 0,
and hence that not both of r31, r32 are zero. If not both r13 and r23 are zero, then r33 6= ±1,
and we have cθ = r33, sθ = ±

√

1− r233 so

θ = A tan

(

r33,
√

1− r233
)

(2.54)

or

θ = A tan

(

r33,−
√

1− r233
)

. (2.55)

The function θ = A tan(x, y) computes the arc tangent function, where x and y are the
cosine and sine, respectively, of the angle θ. This function uses the signs of x and y to
select the appropriate quadrant for the angle θ. Note that if both x and y are zero, A tan
is undefined.

If we choose the value for θ given by Equation (2.54), then sθ > 0, and

φ = A tan(r13, r23) (2.56)

ψ = A tan(−r31, r32). (2.57)

If we choose the value for θ given by Equation (2.55), then sθ < 0, and

φ = A tan(−r13,−r23) (2.58)

ψ = A tan(r31,−r32). (2.59)

2.5. PARAMETERIZATIONS OF ROTATIONS 51

Thus there are two solutions depending on the sign chosen for θ.

If r13 = r23 = 0, then the fact that R is orthogonal implies that r33 = ±1, and that
r31 = r32 = 0. Thus R has the form

R =





r11 r12 0
r21 r22 0
0 0 ±1.



 (2.60)

If r33 = 1, then cθ = 1 and sθ = 0, so that θ = 0. In this case (2.52) becomes





cφcψ − sφsψ −cφsψ − sφcψ 0
sφcψ + cφsψ −sφsψ + cφcψ 0

0 0 1



 =





cφ+ψ −sφ+ψ 0
sφ+ψ cφ+ψ 0

0 0 1



 =





r11 r12 0
r21 r22 0
0 0 1



(2.61)

Thus the sum φ+ ψ can be determined as

φ+ ψ = A tan(r11, r21) (2.62)

= A tan(r11,−r12).

Since only the sum φ+ψ can be determined in this case there are infinitely many solutions.
We may take φ = 0 by convention, and define ψ by (2.60). If r33 = −1, then cθ = −1 and
sθ = 0, so that θ = π. In this case (2.52) becomes





−cφ−ψ −sφ−ψ 0
sφ−ψ cφ−ψ 0

0 0 1



 =





r11 r12 0
r21 r22 0
0 0 −1



 . (2.63)

The solution is thus

φ− ψ = A tan(−r11,−r12) = A tan(−r21,−r22). (2.64)

As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix R can also be described as a product of successive rotations about the
principal coordinate axes x0, y0, and z0 taken in a specific order. These rotations define the
roll, pitch, and yaw angles, which we shall also denote φ, θ, ψ, and which are shown in
Figure 2.12. We specify the order of rotation as x− y− z, in other words, first a yaw about
x0 through an angle ψ, then pitch about the y0 by an angle θ, and finally roll about the z0
by an angle φ. Since the successive rotations are relative to the fixed frame, the resulting

52 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

x0

Yaw

Roll

y0

z0

Pitch

Figure 2.12: Roll, pitch, and yaw angles.

transformation matrix is given by

R0
1 = Rz,φRy,θRx,ψ (2.65)

=





cφ −sφ 0
sφ cφ 0
0 0 1









cθ 0 sθ
0 1 0
−sθ 0 cθ









1 0 0
0 cψ −sψ
0 sψ cψ





=





cφcθ −sφcψ + cφsθsψ sφsψ + cφsθcψ
sφcθ cφcψ + sφsθsψ −cφsψ + sφsθcψ
−sθ cθsψ cθcψ



 .

Of course, instead of yaw-pitch-roll relative to the fixed frames we could also interpret the
above transformation as roll-pitch-yaw, in that order, each taken with respect to the current
frame. The end result is the same matrix (2.65).

The three angles, φ, θ, ψ, can be obtained for a given rotation matrix using a method
that is similar to that used to derive the Euler angles above. We leave this as an exercise
for the reader.

2.5.3 Axis/Angle Representation

Rotations are not always performed about the principal coordinate axes. We are often
interested in a rotation about an arbitrary axis in space. This provides both a convenient
way to describe rotations, and an alternative parameterization for rotation matrices. Let
k = (kx, ky, kz)

T , expressed in the frame o0x0y0z0, be a unit vector defining an axis. We
wish to derive the rotation matrix R

k,θ
representing a rotation of θ degrees about this axis.

There are several ways in which the matrix R
k,θ

can be derived. Perhaps the simplest

way is to rotate the vector k into one of the coordinate axes, say z0, then rotate about z0
by θ and finally rotate k back to its original position. This is similar to the method that we
employed above to derive the equation for rotation with respect to a fixed reference frame.
Referring to Figure 2.13 we see that we can rotate k into z0 by first rotating about z0 by

2.5. PARAMETERIZATIONS OF ROTATIONS 53

β
θ

x0

y0

z0

kx

ky

kz

k

α

Figure 2.13: Rotation about an arbitrary axis.

−α, then rotating about y0 by −β. Since all rotations are performed relative to the fixed
frame o0x0y0z0 the matrix R

k,θ
is obtained as

Rk,θ = Rz,αRy,βRz,θRy,−βRz,−α. (2.66)

From Figure 2.13, since k is a unit vector, we see that

sinα =
ky

√

k2
x + k2

y

(2.67)

cosα =
kx

√

k2
x + k2

y

(2.68)

sinβ =
√

k2
x + k2

y (2.69)

cosβ = kz. (2.70)

Note that the final two equations follow from the fact that k is a unit vector. Substituting
(2.67)-(2.70) into (2.66) we obtain after some lengthy calculation (Problem 2.10)

Rk,θ =





k2
xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ k2
yvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ k2
zvθ + cθ



 (2.71)

where vθ = vers θ = 1− cθ.
In fact, any rotation matrix R ∈ S0(3) can be represented by a single rotation about a

suitable axis in space by a suitable angle,

R = Rk,θ (2.72)

where k is a unit vector defining the axis of rotation, and θ is the angle of rotation about
k. Equation (2.72) is called the axis/angle representation of R. Given an arbitrary

54 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

rotation matrix R with components (rij), the equivalent angle θ and equivalent axis k are
given by the expressions

θ = cos−1

(

Tr(R)− 1

2

)

(2.73)

= cos−1

(

r11 + r22 + r33 − 1

2

)

where Tr denotes the trace of R, and

k =
1

2 sin θ





r32 − r23

r13 − r31

r21 − r12



 . (2.74)

These equations can be obtained by direct manipulation of the entries of the matrix given
in equation (2.71). The axis/angle representation is not unique since a rotation of −θ about
−k is the same as a rotation of θ about k, that is,

Rk,θ = R
−k,−θ. (2.75)

If θ = 0 then R is the identity matrix and the axis of rotation is undefined.

Example 2.7 Suppose R is generated by a rotation of 90◦ about z0 followed by a rotation
of 30◦ about y0 followed by a rotation of 60◦ about x0. Then

R = Rx,60Ry,30Rz,90 (2.76)

=







0 −
√

3
2

1
2

1
2 −

√
3

4 −3
4√

3
2

1
4

√
3

4






.

We see that Tr(R) = 0 and hence the equivalent angle is given by (2.73) as

θ = cos−1

(

−1

2

)

= 120◦. (2.77)

The equivalent axis is given from (2.74) as

k =

(

1√
3
,

1

2
√

3
− 1

2
,

1

2
√

3
+

1

2

)T

. (2.78)

⋄
The above axis/angle representation characterizes a given rotation by four quantities,

namely the three components of the equivalent axis k and the equivalent angle θ. However,
since the equivalent axis k is given as a unit vector only two of its components are indepen-
dent. The third is constrained by the condition that k is of unit length. Therefore, only

2.6. HOMOGENEOUS TRANSFORMATIONS 55

θ
xA

xB

xC

�v1

(�v1)

(�v2)

�v2

yB

p2
p1

p3

yC

�v3
yA

Figure 2.14: Homogeneous transformations in two dimensions.

three independent quantities are required in this representation of a rotation R. We can
represent the equivalent angle/axis by a single vector r as

r = (rx, ry, rz)
T = (θkx, θky, θkz)

T . (2.79)

Note, since k is a unit vector, that the length of the vector r is the equivalent angle θ and
the direction of r is the equivalent axis k.

2.6 Homogeneous Transformations

We have seen how to represent both positions and orientations. In this section we combine
these two concepts to define homogeneous transformations.

Consider Figure 2.14. In this figure, frame o1x1y1 is obtained by rotating frame o0x0y0

by angle θ, and frame o2x2y2 is obtained by subsequently translating frame o1x1y1 by
the displacement ~v2. If we consider the point p1 as being rigidly attached to coordinate
frame o0x0y0 as these transformations are performed, then p2 is the location of p1 after the
rotation, and p3 is the location of p1 after the translation. If we are given the coordinates
of the point p3 with respect to frame o2x2y2, and if we know the rotation and translation
that are applied to obtain frame o2x2y2, it is straightforward to compute the coordinates of
the point p3 with respect to o0x0y0. To see this, note the point p3 is displaced by the vector
~v3 from the origin of o0x0y0. Further, we see that ~v3 = ~v1 + ~v2. Therefore, to solve our
problem, we need only find coordinate assignments for the vectors ~v1 and ~v2 with respect to
frame o0x0y0. Once we have these coordinate assignments, we can compute the coordinates
for ~v3 with respect to o0x0y0 using the equation v0

3 = v0
1 + v0

2.

We can obtain coordinates for the vector ~v1 by applying the rotation matrix to the
coordinates that represent p2 in frame o1x1y1,

56 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

v0
1 = R0

1p
1
2 (2.80)

= R0
2p

2
3, (2.81)

where the second equality follows because the orientations of o1x1y1 and o2x2y2 are the
same and because p1

2 = p2
3. If we denote the coordinate assignment for ~v2 by d0

2 (which
denotes the displacement of the origin of o2x2y2, expressed relative to o0x0y0), we obtain

p0
3 = R0

2p
2
3 + d0

2. (2.82)

Note that no part of the derivation above was dependent on the fact that we used a
two-dimensional space. This same derivation can be applied in three dimensions to obtain
the following rule for coordinate transformations.
If frame o1x1y1z1 is obtained from frame o0x0y0z0 by first applying a rotation specified by
R0

1 followed by a translation given (with respect to o0x0y0z0) by d0
1, then the coordinates p0

are given by

p0 = R0
1p

1 + d0
1. (2.83)

In this text, we will consider only geometric relationships between two coordinate sys-
tems that can be expressed as the combination of a pure rotation and a pure translation.

Definition 2.1 A transformation of the form given in Equation (2.83) is said to define a
rigid motion if R is orthogonal.

Note that the definition of a rigid motion includes reflections when detR = −1. In
our case we will never have need for the most general rigid motion, so we assume always
that R ∈ SO(3).

If we have the two rigid motions

p0 = R0
1p

1 + d0
1 (2.84)

and

p1 = R1
2p

2 + d1
2 (2.85)

then their composition defines a third rigid motion, which we can describe by substituting
the expression for p1 from (2.85) into (2.84)

p0 = R0
1R

1
2p

2 +R0
1d

1
2 + d0

1. (2.86)

Since the relationship between p0 and p2 is also a rigid motion, we can equally describe it
as

p0 = R0
2p

2 + d0
2. (2.87)

2.6. HOMOGENEOUS TRANSFORMATIONS 57

Comparing Equations (2.86) and (2.87) we have the relationships

R0
2 = R0

1R
1
2 (2.88)

d0
2 = d0

1 +R0
1d

1
2. (2.89)

Equation (2.88) shows that the orientation transformations can simply be multiplied to-
gether and Equation (2.89) shows that the vector from the origin o0 to the origin o2 has
coordinates given by the sum of do1 (the vector from o0 to o1 expressed with respect to
o0x0y0z0) and R0

1d
1
2 (the vector from o1 to o2, expressed in the orientation of the coordinate

system o0x0y0z0).
A comparison of this with the matrix identity

[

R0
1 d0

1

0 1

] [

R1
2 d2

1

0 1

]

=

[

R0
1R

1
2 R0

1d
2
1 + d0

1

0 1

]

(2.90)

where 0 denotes the row vector (0, 0, 0), shows that the rigid motions can be represented
by the set of matrices of the form

H =

[

R d

0 1

]

;R ∈ SO(3). (2.91)

Using the fact that R is orthogonal it is an easy exercise to show that the inverse transfor-
mation H−1 is given by

H−1 =

[

RT −RTd

0 1

]

. (2.92)

Transformation matrices of the form (2.91) are called homogeneous transformations.
In order to represent the transformation (2.83) by a matrix multiplication, one needs to
augment the vectors p0 and p1 by the addition of a fourth component of 1 as follows. Set

P 0 =

[

p0

1

]

(2.93)

P 1 =

[

p1

1

]

. (2.94)

The vectors P 0 and P 1 are known as homogeneous representations of the vectors p0

and p1, respectively. It can now be seen directly that the transformation (2.83) is equivalent
to the (homogeneous) matrix equation

P 0 = H0
1P

1 (2.95)

The set of all 4× 4 matrices H of the form (2.91) is denoted by E(3).3 A set of basic
homogeneous transformations generating E(3) is given by

Transx,a =









1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1









; Rotx,α =









1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1









(2.96)

3The notation E(3) stands for Euclidean group of order 3.

58 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

Transy,b =









1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1









; Roty,β =









cβ 0 sβ 0
0 1 0 0

−sβ 0 cβ 0
0 0 0 1









(2.97)

Transz,c =









1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1









; Rotx,γ =









cγ −sγ 0 0
sγ cγ 0 0
0 0 1 0
0 0 0 1









(2.98)

for translation and rotation about the x, y, z-axes, respectively.
The most general homogeneous transformation that we will consider may be written

now as

H0
1 =









nx sx ax dx
ny sy ay dy
nz sx az dz
0 0 0 1









=

[

n s a d

0 0 0 1

]

. (2.99)

In the above equation n = (nx, ny, nz)
T is a vector representing the direction of x1 in

the o0x0y0z0 system, s = (sx, sy, sz)
T represents the direction of y1, and a = (ax, ay, az)

T

represents the direction of z1. The vector d = (dx, dy, dz)
T represents the vector from the

origin o0 to the origin o1 expressed in the frame o0x0y0z0. The rationale behind the choice
of letters n, s and a is explained in Chapter 3. NOTE: The same interpretation regarding

composition and ordering of transformations holds for 4× 4 homogeneous transformations

as for 3× 3 rotations.

Example 2.8 The homogeneous transformation matrix H that represents a rotation of
α degrees about the current x-axis followed by a translation of b units along the current
x-axis, followed by a translation of d units along the current z-axis, followed by a rotation
of θ degrees about the current z-axis, is given by

H = Rotx,αTransx,bTransz,dRotz,θ (2.100)

=









1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1

















1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1

















cθ −sθ 0 0
sθ cθ 0 0
0 0 1 0
0 0 0 1









=









cθ −sθ 0 b
cαsα cαcθ −sα −sαd
sαsθ sαcθ cα cαd

0 0 0 1









.

⋄

2.6. HOMOGENEOUS TRANSFORMATIONS 59

The homogeneous representation (2.91) is a special case of homogeneous coordinates,
which have been extensively used in the field of computer graphics. There, one is, in
addition, interested in scaling and/or perspective transformations. The most general ho-
mogeneous transformation takes the form

H =

[

R3×3 d3×1

f1×3 s1×1

]

=

[

Rotation Translation

perspective scale factor

]

. (2.101)

For our purposes we always take the last row vector of H to be (0, 0, 0, 1), although the
more general form given by (2.101) could be useful, for example, for interfacing a vision
system into the overall robotic system or for graphic simulation.

60 CHAPTER 2. RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

Chapter 3

FORWARD KINEMATICS: THE
DENAVIT-HARTENBERG
CONVENTION

In this chapter we develop the forward or configuration kinematic equations for rigid
robots. The forward kinematics problem is concerned with the relationship between the
individual joints of the robot manipulator and the position and orientation of the tool
or end-effector. Stated more formally, the forward kinematics problem is to determine
the position and orientation of the end-effector, given the values for the joint variables of
the robot. The joint variables are the angles between the links in the case of revolute
or rotational joints, and the link extension in the case of prismatic or sliding joints. The
forward kinematics problem is to be contrasted with the inverse kinematics problem, which
will be studied in the next chapter, and which is concerned with determining values for the
joint variables that achieve a desired position and orientation for the end-effector of the
robot.

3.1 Kinematic Chains

As described in Chapter 1, a robot manipulator is composed of a set of links connected
together by various joints. The joints can either be very simple, such as a revolute joint
or a prismatic joint, or else they can be more complex, such as a ball and socket joint.
(Recall that a revolute joint is like a hinge and allows a relative rotation about a single
axis, and a prismatic joint permits a linear motion along a single axis, namely an extension
or retraction.) The difference between the two situations is that, in the first instance, the
joint has only a single degree-of-freedom of motion: the angle of rotation in the case of a
revolute joint, and the amount of linear displacement in the case of a prismatic joint. In
contrast, a ball and socket joint has two degrees-of-freedom. In this book it is assumed
throughout that all joints have only a single degree-of-freedom. Note that the assumption

61

62CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

does not involve any real loss of generality, since joints such as a ball and socket joint (two
degrees-of-freedom) or a spherical wrist (three degrees-of-freedom) can always be thought
of as a succession of single degree-of-freedom joints with links of length zero in between.

With the assumption that each joint has a single degree-of-freedom, the action of each
joint can be described by a single real number: the angle of rotation in the case of a rev-
olute joint or the displacement in the case of a prismatic joint. The objective of forward
kinematic analysis is to determine the cumulative effect of the entire set of joint variables.
In this chapter we will develop a set of conventions that provide a systematic procedure for
performing this analysis. It is, of course, possible to carry out forward kinematics analysis
even without respecting these conventions, as we did for the two-link planar manipulator
example in Chapter 1. However, the kinematic analysis of an n-link manipulator can be
extremely complex and the conventions introduced below simplify the analysis consider-
ably. Moreover, they give rise to a universal language with which robot engineers can
communicate.

A robot manipulator with n joints will have n + 1 links, since each joint connects two
links. We number the joints from 1 to n, and we number the links from 0 to n, starting
from the base. By this convention, joint i connects link i − 1 to link i. We will consider
the location of joint i to be fixed with respect to link i− 1. When joint i is actuated, link
i moves. Therefore, link 0 (the first link) is fixed, and does not move when the joints are
actuated. Of course the robot manipulator could itself be mobile (e.g., it could be mounted
on a mobile platform or on an autonomous vehicle), but we will not consider this case in
the present chapter, since it can be handled easily by slightly extending the techniques
presented here.

With the ith joint, we associate a joint variable, denoted by qi. In the case of a rev-
olute joint, qi is the angle of rotation, and in the case of a prismatic joint, qi is the joint
displacement:

qi =

{

θi : joint i revolute
di : joint i prismatic

. (3.1)

To perform the kinematic analysis, we rigidly attach a coordinate frame to each link.
In particular, we attach oixiyizi to link i. This means that, whatever motion the robot
executes, the coordinates of each point on link i are constant when expressed in the ith

coordinate frame. Furthermore, when joint i is actuated, link i and its attached frame,
oixiyizi, experience a resulting motion. The frame o0x0y0z0, which is attached to the robot
base, is referred to as the inertial frame. Figure 3.1 illustrates the idea of attaching frames
rigidly to links in the case of an elbow manipulator.

Now suppose Ai is the homogeneous transformation matrix that expresses the position
and orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1. The matrix Ai is not constant,
but varies as the configuration of the robot is changed. However, the assumption that all
joints are either revolute or prismatic means that Ai is a function of only a single joint
variable, namely qi. In other words,

Ai = Ai(qi). (3.2)

3.1. KINEMATIC CHAINS 63

θ1

θ3θ2

z2 z3

x0

z0

x1 x2 x3

y3

z1

y1 y2

y0

Figure 3.1: Coordinate frames attached to elbow manipulator.

Now the homogeneous transformation matrix that expresses the position and orientation of
ojxjyjzj with respect to oixiyizi is called, by convention, a transformation matrix, and
is denoted by T ij . From Chapter 2 we see that

T ij = Ai+1Ai+2 . . . Aj−1Aj if i < j

T ij = I if i = j (3.3)

T ij = (T ji)
−1 if j > i.

By the manner in which we have rigidly attached the various frames to the corresponding
links, it follows that the position of any point on the end-effector, when expressed in frame
n, is a constant independent of the configuration of the robot. Denote the position and
orientation of the end-effector with respect to the inertial or base frame by a three-vector
o0
n (which gives the coordinates of the origin of the end-effector frame with respect to the

base frame) and the 3× 3 rotation matrix R0
n, and define the homogeneous transformation

matrix

H =

[

R0
n o0

n

0 1

]

. (3.4)

Then the position and orientation of the end-effector in the inertial frame are given by

H = T 0
n = A1(q1) · · ·An(qn). (3.5)

Each homogeneous transformation Ai is of the form

Ai =

[

Ri−1
i oi−1

i

0 1

]

. (3.6)

Hence

T ij = Ai+1 · · ·Aj =

[

Ri
j oij

0 1

]

. (3.7)

64CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

The matrix Ri
j expresses the orientation of ojxjyjzj relative to oixiyizi and is given by

the rotational parts of the A-matrices as

Ri

j = Ri

i+1 · · ·Rj−1
j . (3.8)

The coordinate vectors oij are given recursively by the formula

oij = oij−1 +Ri

j−1o
j−1

j , (3.9)

These expressions will be useful in Chapter 5 when we study Jacobian matrices.
In principle, that is all there is to forward kinematics! Determine the functions Ai(qi),

and multiply them together as needed. However, it is possible to achieve a considerable
amount of streamlining and simplification by introducing further conventions, such as the
Denavit-Hartenberg representation of a joint, and this is the objective of the remainder of
the chapter.

3.2 Denavit Hartenberg Representation

While it is possible to carry out all of the analysis in this chapter using an arbitrary frame
attached to each link, it is helpful to be systematic in the choice of these frames. A commonly
used convention for selecting frames of reference in robotic applications is the Denavit-
Hartenberg, or D-H convention. In this convention, each homogeneous transformation Ai
is represented as a product of four basic transformations

Ai = Rotz,θiTransz,diTransx,aiRotx,αi (3.10)

=









cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

















1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1









=









cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1









where the four quantities θi, ai, di, αi are parameters associated with link i and joint i. The
four parameters ai, αi, di, and θi in (3.10) are generally given the names link length, link
twist, link offset, and joint angle, respectively. These names derive from specific aspects
of the geometric relationship between two coordinate frames, as will become apparent below.
Since the matrix Ai is a function of a single variable, it turns out that three of the above
four quantities are constant for a given link, while the fourth parameter, θi for a revolute
joint and di for a prismatic joint, is the joint variable.

From Chapter 2 one can see that an arbitrary homogeneous transformation matrix
can be characterized by six numbers, such as, for example, three numbers to specify the

3.2. DENAVIT HARTENBERG REPRESENTATION 65

z0x0θ

a

d

y0

O0

x1

α

y1z1

O1

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

fourth column of the matrix and three Euler angles to specify the upper left 3× 3 rotation
matrix. In the D-H representation, in contrast, there are only four parameters. How is this
possible? The answer is that, while frame i is required to be rigidly attached to link i, we
have considerable freedom in choosing the origin and the coordinate axes of the frame. For
example, it is not necessary that the origin, oi, of frame i be placed at the physical end of
link i. In fact, it is not even necessary that frame i be placed within the physical link; frame
i could lie in free space — so long as frame i is rigidly attached to link i. By a clever choice
of the origin and the coordinate axes, it is possible to cut down the number of parameters
needed from six to four (or even fewer in some cases). In Section 3.2.1 we will show why,
and under what conditions, this can be done, and in Section 3.2.2 we will show exactly how
to make the coordinate frame assignments.

3.2.1 Existence and uniqueness issues

Clearly it is not possible to represent any arbitrary homogeneous transformation using only
four parameters. Therefore, we begin by determining just which homogeneous transfor-
mations can be expressed in the form (3.10). Suppose we are given two frames, denoted
by frames 0 and 1, respectively. Then there exists a unique homogeneous transformation
matrix A that takes the coordinates from frame 1 into those of frame 0. Now suppose the
two frames have two additional features, namely:

(DH1) The axis x1 is perpendicular to the axis z0

(DH2) The axis x1 intersects the axis z0

as shown in Figure 3.2. Under these conditions, we claim that there exist unique numbers
a, d, θ, α such that

A = Rotz,θTransz,dTransx,aRotx,α. (3.11)

66CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

Of course, since θ and α are angles, we really mean that they are unique to within a multiple
of 2π. To show that the matrix A can be written in this form, write A as

A =

[

R0
1 o0

1

0 1

]

(3.12)

and let ri denote the ith column of the rotation matrix R0
1. We will now examine the

implications of the two DH constraints.
If (DH1) is satisfied, then x1 is perpendicular to z0 and we have x1 · z0 = 0. Expressing

this constraint with respect to o0x0y0z0, using the fact that r1 is the representation of the
unit vector x1 with respect to frame 0, we obtain

0 = x0
1 · z0

0 (3.13)

= [r11, r21, r31]
T · [0, 0, 1]T (3.14)

= r31. (3.15)

Since r31 = 0, we now need only show that there exist unique angles θ and α such that

R0
1 = Rx,θRx,α =





cθ −sθcα sθsα
sθ cθcα −cθsα
0 sα cα



 . (3.16)

The only information we have is that r31 = 0, but this is enough. First, since each row and
column of R0

1 must have unit length, r31 = 0 implies that

r211 + r221 = 1,

r232 + r233 = 1 (3.17)

Hence there exist unique θ, α such that

(r11, r21) = (cθ, sθ), (r33, r32) = (cα, sα). (3.18)

Once θ and α are found, it is routine to show that the remaining elements of R0
1 must have

the form shown in (3.16), using the fact that R0
1 is a rotation matrix.

Next, assumption (DH2) means that the displacement between o0 and o1 can be ex-
pressed as a linear combination of the vectors z0 and x1. This can be written as o1 =
o0 + dz0 + ax1. Again, we can express this relationship in the coordinates of o0x0y0z0, and
we obtain

o0
1 = o0

0 + dz0
0 + ax0

1 (3.19)

=





0
0
0



+ d





0
0
1



+ a





cθ
sθ
0



 (3.20)

=





acθ
asθ
d



 . (3.21)

3.2. DENAVIT HARTENBERG REPRESENTATION 67

Combining the above results, we obtain (3.10) as claimed. Thus, we see that four param-
eters are sufficient to specify any homogeneous transformation that satisfies the constraints
(DH1) and (DH2).

Now that we have established that each homogeneous transformation matrix satisfying
conditions (DH1) and (DH2) above can be represented in the form (3.10), we can in fact
give a physical interpretation to each of the four quantities in (3.10). The parameter a is
the distance between the axes z0 and z1, and is measured along the axis x1. The angle α
is the angle between the axes z0 and z1, measured in a plane normal to x1. The positive
sense for α is determined from z0 to z1 by the right-hand rule as shown in Figure 3.3. The

xi

αi zi−1

xi

θi

zi−1

xi−1

zi

Figure 3.3: Positive sense for αi and θi.

parameter d is the distance between the origin o0 and the intersection of the x1 axis with z0
measured along the z0 axis. Finally, θ is the angle between x0 and x1 measured in a plane
normal to z0. These physical interpretations will prove useful in developing a procedure
for assigning coordinate frames that satisfy the constraints (DH1) and (DH2), and we now
turn our attention to developing such a procedure.

3.2.2 Assigning the coordinate frames

For a given robot manipulator, one can always choose the frames 0, . . . , n in such a way that
the above two conditions are satisfied. In certain circumstances, this will require placing
the origin oi of frame i in a location that may not be intuitively satisfying, but typically
this will not be the case. In reading the material below, it is important to keep in mind that
the choices of the various coordinate frames are not unique, even when constrained by the
requirements above. Thus, it is possible that different engineers will derive differing, but
equally correct, coordinate frame assignments for the links of the robot. It is very important
to note, however, that the end result (i.e., the matrix T 0

n) will be the same, regardless
of the assignment of intermediate link frames (assuming that the coordinate frames for
link n coincide). We will begin by deriving the general procedure. We will then discuss
various common special cases where it is possible to further simplify the homogeneous
transformation matrix.

68CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

To start, note that the choice of zi is arbitrary. In particular, from (3.16), we see that
by choosing αi and θi appropriately, we can obtain any arbitrary direction for zi. Thus, for
our first step, we assign the axes z0, . . . , zn−1 in an intuitively pleasing fashion. Specifically,
we assign zi to be the axis of actuation for joint i+ 1. Thus, z0 is the axis of actuation for
joint 1, z1 is the axis of actuation for joint 2, etc. There are two cases to consider: (i) if
joint i+ 1 is revolute, zi is the axis of revolution of joint i+ 1; (ii) if joint i+ 1 is prismatic,
zi is the axis of translation of joint i+1. At first it may seem a bit confusing to associate zi
with joint i+ 1, but recall that this satisfies the convention that we established in Section
3.1, namely that joint i is fixed with respect to frame i, and that when joint i is actuated,
link i and its attached frame, oixiyizi, experience a resulting motion.

Once we have established the z-axes for the links, we establish the base frame. The
choice of a base frame is nearly arbitrary. We may choose the origin o0 of the base frame
to be any point on z0. We then choose x0, y0 in any convenient manner so long as the
resulting frame is right-handed. This sets up frame 0.

Once frame 0 has been established, we begin an iterative process in which we define frame
i using frame i− 1, beginning with frame 1. Figure 3.4 will be useful for understanding the
process that we now describe.

Figure 3.4: Denavit-Hartenberg frame assignment.

In order to set up frame i it is necessary to consider three cases: (i) the axes zi−1, zi
are not coplanar, (ii) the axes zi−1, zi intersect (iii) the axes zi−1, zi are parallel. Note that
in both cases (ii) and (iii) the axes zi−1 and zi are coplanar. This situation is in fact quite
common, as we will see in Section 3.3. We now consider each of these three cases.

(i) zi−1 and zi are not coplanar: If zi−l and zi are not coplanar, then there exists a
unique line segment perpendicular to both zi−1 and zi such that it connects both lines and
it has minimum length. The line containing this common normal to zi−1 and zi defines xi,

3.2. DENAVIT HARTENBERG REPRESENTATION 69

and the point where this line intersects zi is the origin oi. By construction, both conditions
(DH1) and (DH2) are satisfied and the vector from oi−1 to oi is a linear combination of
zi−1 and xi. The specification of frame i is completed by choosing the axis yi to form
a right-hand frame. Since assumptions (DH1) and (DH2) are satisfied the homogeneous
transformation matrix Ai is of the form (3.10).

(ii) zi−1 is parallel to zi: If the axes zi−1 and zi are parallel, then there are infinitely
many common normals between them and condition (DH1) does not specify xi completely.
In this case we are free to choose the origin oi anywhere along zi. One often chooses oi
to simplify the resulting equations. The axis xi is then chosen either to be directed from
oi toward zi−1, along the common normal, or as the opposite of this vector. A common
method for choosing oi is to choose the normal that passes through oi−1 as the xi axis; oi
is then the point at which this normal intersects zi. In this case, di would be equal to zero.
Once xi is fixed, yi is determined, as usual by the right hand rule. Since the axes zi−1 and
zi are parallel, αi will be zero in this case.

(iii) zi−1 intersects zi: In this case xi is chosen normal to the plane formed by zi and
zi−1. The positive direction of xi is arbitrary. The most natural choice for the origin oi in
this case is at the point of intersection of zi and zi−1. However, any convenient point along
the axis zi suffices. Note that in this case the parameter ai equals 0.

This constructive procedure works for frames 0, . . . , n−l in an n-link robot. To complete
the construction, it is necessary to specify frame n. The final coordinate system onxnynzn
is commonly referred to as the end-effector or tool frame (see Figure 3.5). The origin

Note: currently rendering
a 3D gripper...

yn ≡ s

On

O0

z0

y0

x0

xn ≡ n

zn ≡ a

Figure 3.5: Tool frame assignment.

on is most often placed symmetrically between the fingers of the gripper. The unit vectors
along the xn, yn, and zn axes are labeled as n, s, and a, respectively. The terminology
arises from fact that the direction a is the approach direction, in the sense that the gripper
typically approaches an object along the a direction. Similarly the s direction is the sliding
direction, the direction along which the fingers of the gripper slide to open and close, and
n is the direction normal to the plane formed by a and s.

70CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

In contemporary robots the final joint motion is a rotation of the end-effector by θn and
the final two joint axes, zn−1 and zn, coincide. In this case, the transformation between
the final two coordinate frames is a translation along zn−1 by a distance dn followed (or
preceded) by a rotation of θn radians about zn−1. This is an important observation that
will simplify the computation of the inverse kinematics in the next chapter.

Finally, note the following important fact. In all cases, whether the joint in question
is revolute or prismatic, the quantities ai and αi are always constant for all i and are
characteristic of the manipulator. If joint i is prismatic, then θi is also a constant, while di
is the ith joint variable. Similarly, if joint i is revolute, then di is constant and θi is the ith

joint variable.

3.2.3 Summary

We may summarize the above procedure based on the D-H convention in the following
algorithm for deriving the forward kinematics for any manipulator.

Step l: Locate and label the joint axes z0, . . . , zn−1.

Step 2: Establish the base frame. Set the origin anywhere on the z0-axis. The x0 and y0

axes are chosen conveniently to form a right-hand frame.

For i = 1, . . . , n− 1, perform Steps 3 to 5.

Step 3: Locate the origin oi where the common normal to zi and zi−1 intersects zi. If zi
intersects zi−1 locate oi at this intersection. If zi and zi−1 are parallel, locate oi in
any convenient position along zi.

Step 4: Establish xi along the common normal between zi−1 and zi through oi, or in the
direction normal to the zi−1 − zi plane if zi−1 and zi intersect.

Step 5: Establish yi to complete a right-hand frame.

Step 6: Establish the end-effector frame onxnynzn. Assuming the n-th joint is revolute,
set zn = a along the direction zn−1. Establish the origin on conveniently along zn,
preferably at the center of the gripper or at the tip of any tool that the manipulator
may be carrying. Set yn = s in the direction of the gripper closure and set xn = n

as s × a. If the tool is not a simple gripper set xn and yn conveniently to form a
right-hand frame.

Step 7: Create a table of link parameters ai, di, αi, θi.

ai = distance along xi from oi to the intersection of the xi and zi−1 axes.

di = distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes. di is
variable if joint i is prismatic.

αi = the angle between zi−1 and zi measured about xi (see Figure 3.3).

3.3. EXAMPLES 71

θi = the angle between xi−1 and xi measured about zi−1 (see Figure 3.3). θi is variable
if joint i is revolute.

Step 8: Form the homogeneous transformation matrices Ai by substituting the above pa-
rameters into (3.10).

Step 9: Form T 0
n = A1 · · ·An. This then gives the position and orientation of the tool

frame expressed in base coordinates.

3.3 Examples

In the D-H convention the only variable angle is θ, so we simplify notation by writing ci
for cos θi, etc. We also denote θ1 + θ2 by θ12, and cos(θ1 + θ2) by c12, and so on. In the
following examples it is important to remember that the D-H convention, while systematic,
still allows considerable freedom in the choice of some of the manipulator parameters. This
is particularly true in the case of parallel joint axes or when prismatic joints are involved.

Example 3.1 Planar Elbow Manipulator

Consider the two-link planar arm of Figure 3.6. The joint axes z0 and z1 are normal to

y0

x0
θ1

x1

x2

θ2

y1

y2

a1

a2

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the page, and are not
shown in the figure.

the page. We establish the base frame o0x0y0z0 as shown. The origin is chosen at the point
of intersection of the z0 axis with the page and the direction of the x0 axis is completely
arbitrary. Once the base frame is established, the o1x1y1z1 frame is fixed as shown by the
D-H convention, where the origin o1 has been located at the intersection of z1 and the page.
The final frame o2x2y2z2 is fixed by choosing the origin o2 at the end of link 2 as shown.
The link parameters are shown in Table 3.1. The A-matrices are determined from (3.10) as

72CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

Table 3.1: Link parameters for 2-link planar manipulator.

Link ai αi di θi
1 a1 0 0 θ∗1
2 a2 0 0 θ∗2

∗ variable

A1 =









c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1









. (3.22)

A2 =









c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1









(3.23)

The T -matrices are thus given by

T 0
1 = A1. (3.24)

T 0
2 = A1A2 =









c12 −s12 0 a1c1 + a2c12
s12 c12 0 a1s1 + a2s12
0 0 1 0
0 0 0 1









. (3.25)

Notice that the first two entries of the last column of T 0
2 are the x and y components of

the origin o2 in the base frame; that is,

x = a1c1 + a2c12 (3.26)

y = a1s1 + a2s12

are the coordinates of the end-effector in the base frame. The rotational part of T 0
2 gives the

orientation of the frame o2x2y2z2 relative to the base frame.
⋄

Example 3.2 Three-Link Cylindrical Robot
Consider now the three-link cylindrical robot represented symbolically by Figure 3.7. We

establish o0 as shown at joint 1. Note that the placement of the origin o0 along z0 as well
as the direction of the x0 axis are arbitrary. Our choice of o0 is the most natural, but o0
could just as well be placed at joint 2. The axis x0 is chosen normal to the page. Next, since
z0 and z1 coincide, the origin o1 is chosen at joint 1 as shown. The x1 axis is normal to
the page when θ1 = 0 but, of course its direction will change since θ1 is variable. Since z2
and z1 intersect, the origin o2 is placed at this intersection. The direction of x2 is chosen

3.3. EXAMPLES 73

d3

d2

y3

x3

z3

O3

y2

y0

y1

O0

O1

O2

z1

z2

x2

x1

x0

z0

θ1

Figure 3.7: Three-link cylindrical manipulator.

Table 3.2: Link parameters for 3-link cylindrical manipulator.

Link ai αi di θi
1 0 0 d1 θ∗1
2 0 −90 d∗2 0
3 0 0 d∗3 0

∗ variable

parallel to x1 so that θ2 is zero. Finally, the third frame is chosen at the end of link 3 as
shown.

The link parameters are now shown in Table 3.2. The corresponding A and T matrices

74CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

are

A1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 d1

0 0 0 1









(3.27)

A2 =









1 0 0 0
0 0 1 0
0 −1 0 d2

0 0 0 1









A3 =









1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1









T 0
3 = A1A2A3 =









c1 0 −s1 −s1d3

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1









. (3.28)

⋄

Example 3.3 Spherical Wrist

θ5

θ4

z5

x4

z4

θ6

To gripper

x5

z3,

Figure 3.8: The spherical wrist frame assignment.

The spherical wrist configuration is shown in Figure 3.8, in which the joint axes z3, z4,
z5 intersect at o. The Denavit-Hartenberg parameters are shown in Table 3.3. The Stanford
manipulator is an example of a manipulator that possesses a wrist of this type. In fact, the
following analysis applies to virtually all spherical wrists.

We show now that the final three joint variables, θ4, θ5, θ6 are the Euler angles φ, θ, ψ,
respectively, with respect to the coordinate frame o3x3y3z3. To see this we need only compute

3.3. EXAMPLES 75

Table 3.3: DH parameters for spherical wrist.

Link ai αi di θi
4 0 −90 0 θ∗4
5 0 90 0 θ∗5
6 0 0 d6 θ∗6

∗ variable

the matrices A4, A5, and A6 using Table 3.3 and the expression (3.10). This gives

A4 =









c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1









(3.29)

A5 =









c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1









(3.30)

A6 =









c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1









. (3.31)

Multiplying these together yields

T 3
6 = A4A5A6 =

[

R3
6 o3

6

0 1

]

(3.32)

=









c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5s6 c5 c5d6

0 0 0 1









.

Comparing the rotational part R3
6 of T 3

6 with the Euler angle transformation (2.51) shows
that θ4, θ5, θ6 can indeed be identified as the Euler angles φ, θ and ψ with respect to the
coordinate frame o3x3y3z3.

⋄

Example 3.4 Cylindrical Manipulator with Spherical Wrist

Suppose that we now attach a spherical wrist to the cylindrical manipulator of Exam-
ple 3.3.2 as shown in Figure 3.9. Note that the axis of rotation of joint 4 is parallel to z2
and thus coincides with the axis z3 of Example 3.3.2. The implication of this is that we can

76CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

d3

θ1

d2

θ5

θ4 θ6 n s

a

Figure 3.9: Cylindrical robot with spherical wrist.

immediately combine the two previous expression (3.28) and (3.32) to derive the forward
kinematics as

T 0
6 = T 0

3 T
3
6 (3.33)

with T 0
3 given by (3.28) and T 3

6 given by (3.32). Therefore the forward kinematics of this
manipulator is described by

T 0
6 =









c1 0 −s1 −s1d1

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1

















c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5c6 c5 c5d6

0 0 0 1









(3.34)

=









r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1









3.3. EXAMPLES 77

where

r11 = c1c4c5c6 − c1s4s6 + s1s5c6

r21 = s1c4c5c6 − s1s4s6 − c1s5c6
r31 = −s4c5c6 − c4s6
r12 = −c1c4c5s6 − c1s4c6 − s1s5c6
r22 = −s1c4c5s6 − s1s4s6 + c1s5c6

r32 = s4c5c6 − c4c6
r13 = c1c4s5 − s1c5
r23 = s1c4s5 + c1c5

r33 = −s4s5
dx = c1c4s5d6 − s1c5d6 − s1d3

dy = s1c4s5d6 + c1c5d6 + c1d3

dz = −s4s5d6 + d1 + d2.

Notice how most of the complexity of the forward kinematics for this manipulator results
from the orientation of the end-effector while the expression for the arm position from (3.28)
is fairly simple. The spherical wrist assumption not only simplifies the derivation of the
forward kinematics here, but will also greatly simplify the inverse kinematics problem in the
next chapter.
⋄

Example 3.5 Stanford Manipulator
Consider now the Stanford Manipulator shown in Figure 3.10. This manipulator is an

z1
θ2

θ1

z0

a

θ4

d3

z2

θ5

θ6 n s

x0, x1

Note: the shoulder (prismatic joint) is mounted wrong.

Figure 3.10: DH coordinate frame assignment for the Stanford manipulator.

example of a spherical (RRP) manipulator with a spherical wrist. This manipulator has an
offset in the shoulder joint that slightly complicates both the forward and inverse kinematics
problems.

78CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

Table 3.4: DH parameters for Stanford Manipulator.

Link di ai αi θi
1 0 0 −90 ⋆
2 d2 0 +90 ⋆
3 ⋆ 0 0 0
4 0 0 −90 ⋆
5 0 0 +90 ⋆
6 d6 0 0 ⋆

∗ joint variable

We first establish the joint coordinate frames using the D-H convention as shown. The
link parameters are shown in the Table 3.4.

It is straightforward to compute the matrices Ai as

A1 =









c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1









(3.35)

A2 =









c2 0 s2 0
s2 0 −c2 0
0 1 0 d2

0 0 0 1









(3.36)

A3 =









1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1









(3.37)

A4 =









c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1









(3.38)

A5 =









c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1









(3.39)

A6 =









c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1









(3.40)

3.3. EXAMPLES 79

T 0
6 is then given as

T 0
6 = A1 · · ·A6 (3.41)

=









r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1









(3.42)

where

r11 = c1[c2(c4c5c6 − s4s6)− s2s5c6]− d2(s4c5c6 + c4s6)

r21 = s1[c2(c4c5c6 − s4s6)− s2s5c6] + c1(s4c5c6 + c4s6)

r31 = −s2(c4c5c6 − s4s6)− c2s5c6
r12 = c1[−c2(c4c5s6 + s4c6) + s2s5s6]− s1(−s4c5s6 + c4c6)

r22 = −s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6)

r32 = s2(c4c5s6 + s4c6) + c2s5s6 (3.43)

r13 = c1(c2c4s5 + s2c5)− s1s4s5
r23 = s1(c2c4s5 + s2c5) + c1s4s5

r33 = −s2c4s5 + c2c5

dx = c1s2d3 − s1d2 + +d6(c1c2c4s5 + c1c5s2 − s1s4s5)
dy = s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)

dz = c2d3 + d6(c2c5 − c4s2s5). (3.44)

⋄

Example 3.6 SCARA Manipulator

As another example of the general procedure, consider the SCARA manipulator of Fig-
ure 3.11. This manipulator, which is an abstraction of the AdeptOne robot of Figure 1.11,
consists of an RRP arm and a one degree-of-freedom wrist, whose motion is a roll about the
vertical axis. The first step is to locate and label the joint axes as shown. Since all joint axes
are parallel we have some freedom in the placement of the origins. The origins are placed
as shown for convenience. We establish the x0 axis in the plane of the page as shown. This
is completely arbitrary and only affects the zero configuration of the manipulator, that is,
the position of the manipulator when θ1 = 0.

The joint parameters are given in Table 3.5, and the A-matrices are as follows.

80CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

z0

z1

d3

θ4

x2

y2

x0

y0

θ1

θ2

x1

y1

y3

y4

x3

x4

z2

z3, z4

Figure 3.11: DH coordinate frame assignment for the SCARA manipulator.

Table 3.5: Joint parameters for SCARA.

Link ai αi di θi
1 a1 0 0 ⋆
2 a2 180 0 ⋆
3 0 0 ⋆ 0
4 0 0 d4 ⋆

∗ joint variable

A1 =









c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1









(3.45)

A2 =









c2 s2 0 a2c2
s2 −c2 0 a2s2
0 0 −1 0
0 0 0 1









(3.46)

A3 =









1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1









(3.47)

A4 =









c4 −s4 0 0
s4 c4 0 0
0 0 1 d4

0 0 0 1









. (3.48)

3.3. EXAMPLES 81

The forward kinematic equations are therefore given by

T 0
4 = A1 · · ·A4 =









c12c4 + s12s4 −c12s4 + s12c4 0 a1c1 + a2c12
s12c4 − c12s4 −s12s4 − c12c4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1









. (3.49)

⋄

82CHAPTER 3. FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

Chapter 4

INVERSE KINEMATICS

In the previous chapter we showed how to determine the end-effector position and orien-
tation in terms of the joint variables. This chapter is concerned with the inverse problem
of finding the joint variables in terms of the end-effector position and orientation. This is
the problem of inverse kinematics, and it is, in general, more difficult than the forward
kinematics problem.

In this chapter, we begin by formulating the general inverse kinematics problem. Fol-
lowing this, we describe the principle of kinematic decoupling and how it can be used to
simplify the inverse kinematics of most modern manipulators. Using kinematic decoupling,
we can consider the position and orientation problems independently. We describe a ge-
ometric approach for solving the positioning problem, while we exploit the Euler angle
parameterization to solve the orientation problem.

4.1 The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given a 4× 4 homoge-
neous transformation

H =

[

R o
0 1

]

∈ SE(3) (4.1)

with R ∈ SO(3), find (one or all) solutions of the equation

T 0
n(q1, . . . , qn) = H (4.2)

where

T 0
n(q1, . . . , qn) = A1(q1) · · ·An(qn). (4.3)

Here, H represents the desired position and orientation of the end-effector, and our task is
to find the values for the joint variables q1, . . . , qn so that T 0

n(q1, . . . , qn) = H.

83

84 CHAPTER 4. INVERSE KINEMATICS

Equation (4.2) results in twelve nonlinear equations in n unknown variables, which can
be written as

Tij(q1, . . . , qn) = hij , i = 1, 2, 3, j = 1, . . . , 4 (4.4)

where Tij , hij refer to the twelve nontrivial entries of T 0
n and H, respectively. (Since the

bottom row of both T 0
n and H are (0,0,0,1), four of the sixteen equations represented by

(4.2) are trivial.)

Example 4.1

Recall the Stanford manipulator of Example 3.3.5. Suppose that the desired position and
orientation of the final frame are given by

H =









r11 r12 r13 ox
r21 r22 r23 oy
r31 r32 r33 oz
0 0 0 1









. (4.5)

To find the corresponding joint variables θ1, θ2, d3, θ4, θ5, and θ6 we must solve the following
simultaneous set of nonlinear trigonometric equations (cf. (3.43) and (3.44)):

c1[c2(c4c5c6 − s4s6)− s2s5c6]− s1(s4c5c6 + c4s6) = r11

s1[c2(c4c5c6 − s4s6)− s2s5c6] + c1(s4c5c6 + c4s6) = r21

−s2(c4c5c6 − s4s6)− c2s5s6 = r31

c1[−c2(c4c5s6 + s4c6) + s2s5s6]− s1(−s4c5s6 + c4c6) = r12

s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6) = r22

s2(c4c5s6 + s4c6) + c2s5s6 = r32

c1(c2c4s5 + s2c5)− s1s4s5 = r13

s1(c2c4s5 + s2c5) + c1s4s5 = r23

−s2c4s5 + c2c5 = r33

c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5) = ox

s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2) = oy

c2d3 + d6(c2c5 − c4s2s5) = oz.

⋄
The equations in the preceding example are, of course, much too difficult to solve di-

rectly in closed form. This is the case for most robot arms. Therefore, we need to develop
efficient and systematic techniques that exploit the particular kinematic structure of the
manipulator. Whereas the forward kinematics problem always has a unique solution that
can be obtained simply by evaluating the forward equations, the inverse kinematics problem
may or may not have a solution. Even if a solution exists, it may or may not be unique.

4.2. KINEMATIC DECOUPLING 85

Furthermore, because these forward kinematic equations are in general complicated nonlin-
ear functions of the joint variables, the solutions may be difficult to obtain even when they
exist.

In solving the inverse kinematics problem we are most interested in finding a closed form
solution of the equations rather than a numerical solution. Finding a closed form solution
means finding an explicit relationship:

qk = fk(h11, . . . , h34), k = 1, . . . , n. (4.6)

Closed form solutions are preferable for two reasons. First, in certain applications, such as
tracking a welding seam whose location is provided by a vision system, the inverse kinematic
equations must be solved at a rapid rate, say every 20 milliseconds, and having closed form
expressions rather than an iterative search is a practical necessity. Second, the kinematic
equations in general have multiple solutions. Having closed form solutions allows one to
develop rules for choosing a particular solution among several.

The practical question of the existence of solutions to the inverse kinematics problem
depends on engineering as well as mathematical considerations. For example, the motion of
the revolute joints may be restricted to less than a full 360 degrees of rotation so that not all
mathematical solutions of the kinematic equations will correspond to physically realizable
configurations of the manipulator. We will assume that the given position and orientation
is such that at least one solution of (4.2) exists. Once a solution to the mathematical
equations is identified, it must be further checked to see whether or not it satisfies all
constraints on the ranges of possible joint motions. For our purposes here we henceforth
assume that the given homogeneous matrix H in (4.2) corresponds to a configuration within
the manipulator’s workspace with an attainable orientation. This then guarantees that the
mathematical solutions obtained correspond to achievable configurations.

4.2 Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns out that for
manipulators having six joints, with the last three joints intersecting at a point (such as
the Stanford Manipulator above), it is possible to decouple the inverse kinematics problem
into two simpler problems, known respectively, as inverse position kinematics, and
inverse orientation kinematics. To put it another way, for a six-DOF manipulator
with a spherical wrist, the inverse kinematics problem may be separated into two simpler
problems, namely first finding the position of the intersection of the wrist axes, hereafter
called the wrist center, and then finding the orientation of the wrist.

For concreteness let us suppose that there are exactly six degrees-of-freedom and that
the last three joint axes intersect at a point oc. We express (4.2) as two sets of equations
representing the rotational and positional equations

R0
6(q1, . . . , q6) = R (4.7)

o0
6(q1, . . . , q6) = o (4.8)

86 CHAPTER 4. INVERSE KINEMATICS

where o and R are the desired position and orientation of the tool frame, expressed with
respect to the world coordinate system. Thus, we are given o and R, and the inverse
kinematics problem is to solve for q1, . . . , q6.

The assumption of a spherical wrist means that the axes z3, z4, and z5 intersect at
oc and hence the origins o4 and o5 assigned by the DH-convention will always be at the
wrist center oc. Often o3 will also be at oc, but this is not necessary for our subsequent
development. The important point of this assumption for the inverse kinematics is that
motion of the final three links about these axes will not change the position of oc, and thus,
the position of the wrist center is thus a function of only the first three joint variables.

The origin of the tool frame (whose desired coordinates are given by o) is simply obtained
by a translation of distance d6 along z5 from oc (see Table 3.3). In our case, z5 and z6 are
the same axis, and the third column of R expresses the direction of z6 with respect to the
base frame. Therefore, we have

o = o0
c + d6R





0
0
1



 . (4.9)

Thus in order to have the end-effector of the robot at the point with coordinates given by o
and with the orientation of the end-effector given by R = (rij), it is necessary and sufficient
that the wrist center oc have coordinates given by

o0
c = o − d6R





0
0
1



 . (4.10)

and that the orientation of the frame o6x6y6z6 with respect to the base be given by R. If
the components of the end-effector position o are denoted ox, oy, oz and the components of
the wrist center o0

c are denoted xc, yc, zc then (4.10) gives the relationship




xc
yc
zc



 =





ox − d6r13
oy − d6r23
oz − d6r33



 . (4.11)

Using Equation (4.11) we may find the values of the first three joint variables. This
determines the orientation transformation R0

3 which depends only on these first three joint
variables. We can now determine the orientation of the end-effector relative to the frame
o3x3y3z3 from the expression

R = R0
3R

3
6 (4.12)

as

R3
6 = (R0

3)
−1R = (R0

3)
TR. (4.13)

As we shall see in Section 4.4, the final three joint angles can then be found as a set
of Euler angles corresponding to R3

6. Note that the right hand side of (4.13) is completely
known since R is given and R0

3 can be calculated once the first three joint variables are
known. The idea of kinematic decoupling is illustrated in Figure 4.1.

4.3. INVERSE POSITION: A GEOMETRIC APPROACH 87

d6Rk

dc0

d6
0

Figure 4.1: Kinematic decoupling.

Summary

For this class of manipulators the determination of the inverse kinematics can be summarized
by the following algorithm.

Step 1: Find q1, q2, q3 such that the wrist center oc has coordinates given by

o0
c = o − d6R





0
0
1



 . (4.14)

Step 2: Using the joint variables determined in Step 1, evaluate R0
3.

Step 3: Find a set of Euler angles corresponding to the rotation matrix

R3
6 = (R0

3)
−1R = (R0

3)
TR. (4.15)

4.3 Inverse Position: A Geometric Approach

For the common kinematic arrangements that we consider, we can use a geometric approach
to find the variables, q1, q2, q3 corresponding to o0

c given by (4.10). We restrict our treatment
to the geometric approach for two reasons. First, as we have said, most present manipulator
designs are kinematically simple, usually consisting of one of the five basic configurations
of Chapter 1 with a spherical wrist. Indeed, it is partly due to the difficulty of the general
inverse kinematics problem that manipulator designs have evolved to their present state.
Second, there are few techniques that can handle the general inverse kinematics problem for
arbitrary configurations. Since the reader is most likely to encounter robot configurations

88 CHAPTER 4. INVERSE KINEMATICS

of the type considered here, the added difficulty involved in treating the general case seems
unjustified. The reader is directed to the references at the end of the chapter for treatment
of the general case.

In general the complexity of the inverse kinematics problem increases with the number
of nonzero link parameters. For most manipulators, many of the ai, di are zero, the αi are
0 or ±π/2, etc. In these cases especially, a geometric approach is the simplest and most
natural. We will illustrate this with several important examples.

Articulated Configuration

Consider the elbow manipulator shown in Figure 4.2, with the components of o0
c denoted

by xc, yc, zc. We project oc onto the x0 − y0 plane as shown in Figure 4.3.

θ1

θ2

z0

y0

x0

r

d1

yc

xc

zc

s

θ3

Figure 4.2: Elbow manipulator.

We see from this projection that

θ1 = A tan(xc, yc), (4.16)

in which A tan(x, y) denotes the two argument arctangent function. A tan(x, y) is defined
for all (x, y) 6= (0, 0) and equals the unique angle θ such that

cos θ =
x

(x2 + y2)
1
2

, sin θ =
y

(x2 + y2)
1
2

. (4.17)

For example, A tan(1,−1) = −π
4 , while A tan(−1, 1) = +3π

4 .
Note that a second valid solution for θ1 is

θ1 = π +A tan(xc, yc). (4.18)

4.3. INVERSE POSITION: A GEOMETRIC APPROACH 89

θ1

x0xc

yc

y0

r

Figure 4.3: Projection of the wrist center onto x0 − y0 plane.

Of course this will, in turn, lead to different solutions for θ2 and θ3, as we will see below.
These solutions for θ1, are valid unless xc = yc = 0. In this case (4.16) is undefined and

the manipulator is in a singular configuration, shown in Figure 4.4. In this position the

z0

Figure 4.4: Singular configuration.

wrist center oc intersects z0; hence any value of θ1 leaves oc fixed. There are thus infinitely
many solutions for θ1 when oc intersects z0.

If there is an offset d 6= 0 as shown in Figure 4.5 then the wrist center cannot intersect
z0. In this case, depending on how the DH parameters have been assigned, we will have
d2 = d or d3 = d. In this case, there will, in general, be only two solutions for θ1. These
correspond to the so-called left arm and right arm configurations as shown in Figures 4.6
and 4.7. Figure 4.6 shows the left arm configuration. From this figure, we see geometrically
that

θ1 = φ− α (4.19)

90 CHAPTER 4. INVERSE KINEMATICS

d

Figure 4.5: Elbow manipulator with shoulder offset.

where

φ = A tan(xc, yc) (4.20)

α = A tan
(
√

r2 − d2, d
)

(4.21)

= A tan
(

√

x2
c + y2

c − d2, d
)

.

The second solution, given by the right arm configuration shown in Figure 4.7 is given by

θ1 = A tan(xc, yc) +A tan
(

−
√

r2 − d2,−d
)

. (4.22)

To see this, note that

θ1 = α+ β (4.23)

α = A tan(xc, yc) (4.24)

β = γ + π (4.25)

γ = A tan(
√

r2 − d2, d) (4.26)

(4.27)

which together imply that

β = A tan
(

−
√

r2 − d2,−d
)

(4.28)

since cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ).
To find the angles θ2, θ3 for the elbow manipulator, given θ1, we consider the plane

formed by the second and third links as shown in Figure 4.8. Since the motion of links

4.3. INVERSE POSITION: A GEOMETRIC APPROACH 91

θ1

α

yc

y0

xc
x0

r

φd

Figure 4.6: Left arm configuration.

two and three is planar, the solution is analogous to that of the two-link manipulator of
Chapter 1. As in our previous derivation (cf. (1.8) and (1.9)) we can apply the law of cosines
to obtain

cos θ3 =
r2 + s2 − a2

2 − a2
3

2a2a3
(4.29)

=
x2
c + y2

c − d2 + z2
c − a2

2 − a2
3

2a2a3
:= D,

since r2 = x2
c + y2

c − d2 and s = zc. Hence, θ3 is given by

θ3 = A tan
(

D,±
√

1−D2
)

. (4.30)

Similarly θ2 is given as

θ2 = A tan(r, s)−A tan(a2 + a3c3, a3s3) (4.31)

= A tan
(

√

x2
c + y2

c − d2, zc

)

−A tan(a2 + a3c3, a3s3).

The two solutions for θ3 correspond to the elbow-up position and elbow-down position,
respectively.

An example of an elbow manipulator with offsets is the PUMA shown in Figure 4.9.
There are four solutions to the inverse position kinematics as shown. These correspond
to the situations left arm-elbow up, left arm–elbow down, right arm–elbow up and right
arm–elbow down. We will see that there are two solutions for the wrist orientation thus
giving a total of eight solutions of the inverse kinematics for the PUMA manipulator.

92 CHAPTER 4. INVERSE KINEMATICS

d

xc

α
θ1

β

rγ

yc

x0

y0

Figure 4.7: Right arm configuration.

Spherical Configuration

We next solve the inverse position kinematics for a three degree of freedom spherical manip-
ulator shown in Figure 4.10. As in the case of the elbow manipulator the first joint variable
is the base rotation and a solution is given as

θ1 = A tan(xc, yc) (4.32)

provided xc and yc are not both zero. If both xc and yc are zero, the configuration is singular
as before and θ1 may take on any value.

The angle θ2 is given from Figure 4.10 as

θ2 = A tan(r, s) +
π

2
(4.33)

where r2 = x2
c + y2

c , s = zc − d1. As in the case of the elbow manipulator a second solution
for θ1 is given by

θ1 = π +A tan(xc, yc); (4.34)

The linear distance d3 is found as

d3 =
√

r2 + s2 =
√

x2
c + y2

c + (zc − d1)2. (4.35)

The negative square root solution for d3 is disregarded and thus in this case we obtain
two solutions to the inverse position kinematics as long as the wrist center does not intersect
z0. If there is an offset then there will be left and right arm configurations as in the case of
the elbow manipulator (Problem 4-12).

4.4. INVERSE ORIENTATION 93

r

θ2

θ3

s

z0

a2

a3

Figure 4.8: Projecting onto the plane formed by links 2 and 3.

4.4 Inverse Orientation

In the previous section we used a geometric approach to solve the inverse position problem.
This gives the values of the first three joint variables corresponding to a given position of
the wrist origin. The inverse orientation problem is now one of finding the values of the
final three joint variables corresponding to a given orientation with respect to the frame
o3x3y3z3. For a spherical wrist, this can be interpreted as the problem of finding a set
of Euler angles corresponding to a given rotation matrix R. Recall that equation (3.32)
shows that the rotation matrix obtained for the spherical wrist has the same form as the
rotation matrix for the Euler transformation, given in (2.52). Therefore, we can use the
method developed in Section 2.5.1 to solve for the three joint angles of the spherical wrist.
In particular, we solve for the three Euler angles, φ, θ, ψ, using Equations (2.54) – (2.59),
and then use the mapping

θ4 = φ,

θ5 = θ,

θ6 = ψ.

Example 4.2 Articulated Manipulator with Spherical Wrist

The DH parameters for the frame assignment shown in Figure 4.2 are summarized in
Table 4.1. Multiplying the corresponding Ai matrices gives the matrix R0

3 for the articulated
or elbow manipulator as

R0
3 =





c1c23 −c1s23 s1
s1c23 −s1s23 −c1
s23 c23 0



 . (4.36)

94 CHAPTER 4. INVERSE KINEMATICS

Figure 4.9: Four solutions of the inverse position kinematics for the PUMA manipulator.

Table 4.1: Link parameters for the articulated manipulator of Figure 4.2.

Link ai αi di θi
1 0 90 d1 θ∗1
2 a2 0 0 θ∗2
3 a3 0 0 θ∗3

∗ variable

4.4. INVERSE ORIENTATION 95

θ1

θ2

z0

y0

x0

d3

r s

d1

yc

xc

zc

Figure 4.10: Spherical manipulator.

The matrix R3
6 = A4A5A6 is given as

R3
6 =





c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5
−s5c6 s5s6 c5



 . (4.37)

The equation to be solved now for the final three variables is therefore

R3
6 = (R0

3)
TR (4.38)

and the Euler angle solution can be applied to this equation. For example, the three equations
given by the third column in the above matrix equation are given by

c4s5 = c1c23r13 + s1c23r23 + s23r33 (4.39)

s4s5 = −c1s23r13 − s1s23r23 + c23r33 (4.40)

c5 = s1r13 − c1r23. (4.41)

Hence, if not both of the expressions (4.39), (4.40) are zero, then we obtain θ5 from (2.54)
and (2.55) as

θ5 = A tan
(

s1r13 − c1r23,±
√

1− (s1r13 − c1r23)2
)

. (4.42)

If the positive square root is chosen in (4.42), then θ4 and θ6 are given by (2.56) and (2.57),
respectively, as

θ4 = A tan(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (4.43)

θ6 = A tan(−s1r11 + c1r21, s1r12 − c1r22). (4.44)

96 CHAPTER 4. INVERSE KINEMATICS

The other solutions are obtained analogously. If s5 = 0, then joint axes z3 and z5 are
collinear. This is a singular configuration and only the sum θ4 + θ6 can be determined. One
solution is to choose θ4 arbitrarily and then determine θ6 using (2.62) or (2.64).
⋄

Example 4.3 Summary of Elbow Manipulator Solution
To summarize the preceding development we write down one solution to the inverse

kinematics of the six degree-of-freedom elbow manipulator shown in Figure 4.2 which has
no joint offsets and a spherical wrist.

Given

o =





ox
oy
oz



 ; R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (4.45)

then with

xc = ox − d6r13 (4.46)

yc = oy − d6r23 (4.47)

zc = oz − d6r33 (4.48)

a set of D-H joint variables is given by

θ1 = A tan(xc, yc) (4.49)

θ2 = A tan
(

√

x2
c + y2

c − d2, zc

)

−A tan(a2 + a3c3, a3s3) (4.50)

θ3 = A tan
(

D,±
√

1−D2
)

,

where D =
x2
c + y2

c − d2 + z2
c − a2

2 − a2
3

2a2a3
(4.51)

θ4 = A tan(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (4.52)

θ5 = A tan
(

s1r13 − c1r23,±
√

1− (s1r13 − c1r23)2
)

. (4.53)

θ6 = A tan(−s1r11 + c1r21, s1r12 − c1r22). (4.54)

The other possible solutions are left as an exercise (Problem 4-11). ⋄

Example 4.4 SCARA Manipulator
As another example, we consider the SCARA manipulator whose forward kinematics is

defined by T 0
4 from (3.49). The inverse kinematics is then given as the set of solutions of

the equation








c12c4 + s12s4 s12c4 − c12s4 0 a1c1 + a2c12
s12c4 − c12s4 −c12c4 − s12s4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1









=

[

R o
0 1

]

. (4.55)

4.4. INVERSE ORIENTATION 97

We first note that, since the SCARA has only four degrees-of-freedom, not every possible
H from SE(3) allows a solution of (4.55). In fact we can easily see that there is no solution
of (4.55) unless R is of the form

R =





cα sα 0
sα −cα 0
0 0 −1



 (4.56)

and if this is the case, the sum θ1 + θ2 − θ4 is determined by

θ1 + θ2 − θ4 = α = A tan(r11, r12). (4.57)

Projecting the manipulator configuration onto the x0 − y0 plane immediately yields the
situation of Figure 4.11.

z0

y0

x0

yc

xc

d1

r
zc

θ1

Figure 4.11: SCARA manipulator.

We see from this that

θ2 = A tan
(

c2,±
√

1− c2
)

(4.58)

where

c2 =
o2x + o2y − a2

1 − a2
2

2a1a2
(4.59)

θ1 = A tan(ox, oy)−A tan(a1 + a2c2, a2s2). (4.60)

We may then determine θ4 from (4.57) as

θ4 = θ1 + θ2 − α (4.61)

= θ1 + θ2 −A tan(r11, r12).

Finally d3 is given as

d3 = oz + d4. (4.62)

⋄

98 CHAPTER 4. INVERSE KINEMATICS

Chapter 5

VELOCITY KINEMATICS – THE
MANIPULATOR JACOBIAN

In the previous chapters we derived the forward and inverse position equations relating joint
positions and end-effector positions and orientations. In this chapter we derive the velocity
relationships, relating the linear and angular velocities of the end-effector (or any other
point on the manipulator) to the joint velocities. In particular, we will derive the angular
velocity of the end-effector frame (which gives the rate of rotation of the frame) and the
linear velocity of the origin. We will then relate these velocities to the joint velocities, q̇i.

Mathematically, the forward kinematic equations define a function between the space
of cartesian positions and orientations and the space of joint positions. The velocity rela-
tionships are then determined by the Jacobian of this function. The Jacobian is a matrix-
valued function and can be thought of as the vector version of the ordinary derivative of a
scalar function. This Jacobian or Jacobian matrix is one of the most important quantities
in the analysis and control of robot motion. It arises in virtually every aspect of robotic
manipulation: in the planning and execution of smooth trajectories, in the determination
of singular configurations, in the execution of coordinated anthropomorphic motion, in the
derivation of the dynamic equations of motion, and in the transformation of forces and
torques from the end-effector to the manipulator joints.

Since the Jacobian matrix encodes relationships between velocities, we begin this chap-
ter with an investigation of velocities, and how to represent them. We first consider angular
velocity about a fixed axis, and then generalize this with the aid of skew symmetric matri-
ces. Equipped with this general representation of angular velocities, we are able to derive
equations for both the angular velocity, and the linear velocity for the origin, of a moving
frame.

We then proceed to the derivation of the manipulator Jacobian. For an n-link manip-
ulator we first derive the Jacobian representing the instantaneous transformation between
the n-vector of joint velocities and the 6-vector consisting of the linear and angular ve-
locities of the end-effector. This Jacobian is then a 6 × n matrix. The same approach
is used to determine the transformation between the joint velocities and the linear and

99

100 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

angular velocity of any point on the manipulator. This will be important when we dis-
cuss the derivation of the dynamic equations of motion in Chapter 9. We then discuss
the notion of singular configurations. These are configurations in which the manipu-
lator loses one or more degrees-of-freedom. We show how the singular configurations are
determined geometrically and give several examples. Following this, we briefly discuss the
inverse problems of determining joint velocities and accelerations for specified end-effector
velocities and accelerations. We end the chapter by considering redundant manipulators.
This includes discussions of the inverse velocity problem, singular value decomposition and
manipulability.

5.1 Angular Velocity: The Fixed Axis Case

When a rigid body moves in a pure rotation about a fixed axis, every point of the body
moves in a circle. The centers of these circles lie on the axis of rotation. As the body
rotates, a perpendicular from any point of the body to the axis sweeps out an angle θ, and
this angle is the same for every point of the body. If k is a unit vector in the direction of
the axis of rotation, then the angular velocity is given by

ω = θ̇k (5.1)

in which θ̇ is the time derivative of θ.
Given the angular velocity of the body, one learns in introductory dynamics courses that

the linear velocity of any point on the body is given by the equation

v = ω × r (5.2)

in which r is a vector from the origin (which in this case is assumed to lie on the axis of
rotation) to the point. In fact, the computation of this velocity v is normally the goal in
introductory dynamics courses, and therefore, the main role of an angular velocity is to
induce linear velocities of points in a rigid body. In our applications, we are interested
in describing the motion of a moving frame, including the motion of the origin of the
frame through space and also the rotational motion of the frame’s axes. Therefore, for our
purposes, the angular velocity will hold equal status with linear velocity.

As in previous chapters, in order to specify the orientation of a rigid object, we rigidly
attach a coordinate frame to the object, and then specify the orientation of the coordinate
frame. Since every point on the object experiences the same angular velocity (each point
sweeps out the same angle θ in a given time interval), and since each point of the body is in
a fixed geometric relationship to the body-attached frame, we see that the angular velocity
is a property of the attached coordinate frame itself. Angular velocity is not a property of
individual points. Individual points may experience a linear velocity that is induced by an
angular velocity, but it makes no sense to speak of a point itself rotating. Thus, in equation
(5.2) v corresponds to the linear velocity of a point, while ω corresponds to the angular
velocity associated with a rotating coordinate frame.

5.2. SKEW SYMMETRIC MATRICES 101

In this fixed axis case, the problem of specifying angular displacements is really a planar
problem, since each point traces out a circle, and since every circle lies in a plane. Therefore,
it is tempting to use θ̇ to represent the angular velocity. However, as we have already seen
in Chapter 2, this choice does not generalize to the three-dimensional case, either when the
axis of rotation is not fixed, or when the angular velocity is the result of multiple rotations
about distinct axes. For this reason, we will develop a more general representation for
angular velocities. This is analogous to our development of rotation matrices in Chapter 2
to represent orientation in three dimensions. The key tool that we will need to develop this
representation is the skew symmetric matrix, which is the topic of the next section.

5.2 Skew Symmetric Matrices

In the Section 5.3 we will derive properties of rotation matrices that can be used to com-
puting relative velocity transformations between coordinate frames. Such transformations
involve derivatives of rotation matrices. By introducing the notion of a skew symmetric
matrix it is possible to simplify many of the computations involved.

Definition 5.1 A matrix S is said to be skew symmetric if and only if

ST + S = 0. (5.3)

We denote the set of all 3 × 3 skew symmetric matrices by SS(3) 1. If S ∈ SS(3) has
components sij , i, j = 1, 2, 3 then (5.3) is equivalent to the nine equations

sij + sji = 0 i, j = 1, 2, 3. (5.4)

From (5.4) we see that sii = 0; that is, the diagonal terms of S are zero and the off diagonal
terms sij , i 6= j satisfy sij = −sji. Thus S contains only three independent entries and
every 3× 3 skew symmetric matrix has the form

S =





0 −s3 s2
s3 0 −s1
−s2 s1 0



 . (5.5)

If a = (ax, ay, az)
T is a 3-vector, we define the skew symmetric matrix S(a) as

S(a) =





0 −az ay
az 0 −ax
−ay ax 0



 . (5.6)

Example 5.1 We denote by i, j and k the three unit basis coordinate vectors,

i = (1, 0, 0)T

j = (0, 1, 0)T

k = (0, 0, 1)T .

1In the mathematical literature this set is typically denoted as so(3).

102 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

The skew symmetric matrices S(i), S(j), and S(k) are given by

S(i) =





0 0 0
0 0 −1
0 1 0



 ; S(j) =





0 0 1
0 0 0
−1 0 0



 ; S(k) =





0 −1 0
1 0 0
0 0 0



 . (5.7)

⋄

Properties of Skew Symmetric Matrices

Skew symmetric matrices possess several properties that will prove useful for subsequent
derivations 2 Among these properties are

1. Linearity:

S(αa + βb) = αS(a) + βS(b). (5.8)

for any vectors a and b belonging to IR3 and scalars α and β.

2.

S(a)p = a× p (5.9)

for any vectors a and p, where a×p denotes the vector cross product. Equation (5.9)
can be verified by direct calculation.

3. If R ∈ SO(3) and a, b are vectors in IR3 it can also be shown by direct calculation
that

R(a× b) = Ra×Rb. (5.10)

Equation (5.10) is not true in general unless R is orthogonal. Equation (5.10) says
that if we first rotate the vectors a and b using the rotation transformation R and
then form the cross product of the rotated vectors Ra and Rb, the result is the same
as that obtained by first forming the cross product a× b and then rotating to obtain
R(a× b).

4.

RS(a)RT = S(Ra) (5.11)

for R ∈ SO(3) and a ∈ IR3. This property follows easily from (5.9) and (5.10) as
follows. Let b ∈ IR3 be an arbitrary vector. Then

RS(a)RTb = R(a×RTb)

= (Ra)× (RRTb)

= (Ra)× b

= S(Ra)b.

and the result follows.
2These properties are consequences of the fact that SS(3) is a Lie Algebra, a vector space with a suitably

defined product operation.

5.2. SKEW SYMMETRIC MATRICES 103

As we will see, (5.11) is one of the most useful expressions that we will derive. The left
hand side of Equation (5.11) represents a similarity transformation of the matrix S(a).
The equation says therefore that the matrix representation of S(a) in a coordinate frame
rotated by R is the same as the skew symmetric matrix S(Ra) corresponding to the vector
a rotated by R.

Suppose now that a rotation matrix R is a function of the single variable θ. Hence
R = R(θ) ∈ SO(3) for every θ. Since R is orthogonal for all θ it follows that

R(θ)R(θ)T = I. (5.12)

Differentiating both sides of (5.12) with respect to θ using the product rule gives

dR

dθ
R(θ)T +R(θ)

dRT

dθ
= 0. (5.13)

Let us define the matrix

S :=
dR

dθ
R(θ)T . (5.14)

Then the transpose of S is

ST =

(

dR

dθ
R(θ)T

)T

= R(θ)
dRT

dθ
. (5.15)

Equation (5.13) says therefore that

S + ST = 0. (5.16)

In other words, the matrix S defined by (5.14) is skew symmetric. Multiplying both sides
of (5.14) on the right by R and using the fact that RTR = I yields

dR

dθ
= SR(θ). (5.17)

Equation (5.17) is very important. It says that computing the derivative of the rotation
matrix R is equivalent to a matrix multiplication by a skew symmetric matrix S. The most
commonly encountered situation is the case where R is a basic rotation matrix or a product
of basic rotation matrices.

Example 5.2 If R = Rx,θ, the basic rotation matrix given by (2.19), then direct computa-
tion shows that

S =
dR

dθ
RT =





0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ









1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 (5.18)

=





0 0 0
0 0 −1
0 1 0



 = S(i). (5.19)

104 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

Thus we have shown that

dRx,θ

dθ
= S(i)Rx,θ. (5.20)

Similar computations show that

dRy,θ

dθ
= S(j)Ry,θ;

dRz,θ

dθ
= S(k)Rz,θ. (5.21)

⋄

Example 5.3 Let Rk,θ be a rotation about the axis defined by k as in (2.71). Note that in
this example k is not the unit coordinate vector (0, 0, 1)T . It is easy to check that S(k)3 =
−S(k). Using this fact together with Problem ?? it follows that

dRk,θ

dθ
= S(k)Rk,θ. (5.22)

⋄

5.3 Angular Velocity: The General Case

We now consider the general case of angular velocity about an arbitrary, possibly moving,
axis. Suppose that a rotation matrix R is time varying, so that R = R(t) ∈ SO(3) for every
t ∈ IR. Assuming that R(t) is continuously differentiable as a function of t an argument
identical to the one in the previous section shows that the time derivative Ṙ(t) of R(t) is
given by

Ṙ(t) = S(t)R(t) (5.23)

where the matrix S(t) is skew symmetric. Now, since S(t) is skew symmetric, it can be
represented as S(ω(t)) for a unique vector ω(t). This vector ω(t) is the angular velocity
of the rotating frame with respect to the fixed frame at time t. Thus, the time derivative
Ṙ(t) is given by

Ṙ(t) = S(ω(t))R(t) (5.24)

in which ω(t) is the angular velocity.

Example 5.4 Suppose that R(t) = Rx,θ(t). Then Ṙ(t) = dR
dt is computed using the chain

rule as

Ṙ =
dR

dθ

dθ

dt
= θ̇S(i)R(t) = S(ω(t))R(t) (5.25)

where ω = iθ̇ is the angular velocity. Note, here i = (1, 0, 0)T .
⋄

5.4. ADDITION OF ANGULAR VELOCITIES 105

5.4 Addition of Angular Velocities

We are often interested in finding the resultant angular velocity due to the relative rotation
of several coordinate frames. We now derive the expressions for the composition of angular
velocities of two moving frames o1x1y1z1 and o2x2y2z2 relative to the fixed frame o0x0y0z0.
For now, we assume that the three frames share a common origin. Let the relative orien-
tations of the frames o1x1y1z1 and o2x2y2z2 be given by the rotation matrices R0

1(t) and
R1

2(t) (both time varying). As in Chapter 2,

R0
2(t) = R0

1(t)R
1
2(t). (5.26)

Taking derivatives of both sides of (5.26) with respect to time yields

Ṙ0
2 = Ṙ0

1R
1
2 +R0

1Ṙ
1
2. (5.27)

Using (5.24), the term Ṙ0
2 on the left-hand side of (5.27) can be written

Ṙ0
2 = S(ω0

2)R
0
2. (5.28)

In this expression, ω0
2 denotes the total angular velocity experienced by frame o2x2y2z2.

This angular velocity results from the combined rotations expressed by R0
1 and R1

2.
The first term on the right-hand side of (5.27) is simply

Ṙ0
1R

1
2 = S(ω0

a)R
0
1R

1
2 = S(ω0

a)R
0
2. (5.29)

Note that in this equation, ω0
a denotes the angular velocity of frame o1x1y1z1 that results

from the changing R0
1, and this angular velocity vector is expressed relative to the coordinate

system o0x0y0z0.
Let us examine the second term on the right hand side of (5.27). Using the expression

(5.11) we have

R0
1Ṙ

1
2 = R0

1S(ω1
b)R

1
2 (5.30)

= R0
1S(ω1

b)R
0
1

TR0
1R

1
2 = S(R0

1ω
1
b)R

0
1R

1
2

= S(R0
1ω

1
b)R

0
2. (5.31)

Note that in this equation, ω1
b denotes the angular velocity of frame o2x2y2z2 that corre-

sponds to the changing R1
2, expressed relative to the coordinate system o1x1y1z1. Thus, the

product R0
1ω

1
b expresses this angular velocity relative to the coordinate system o0x0y0z0.

Now, combining the above expressions we have shown that

S(ω0
2)R

0
2 = {S(ω0

a) + S(R0
1ω

1
b)}R0

2. (5.32)

Since S(a) + S(b) = S(a + b), we see that

ω0
2 = ω0

a +R0
1ω

1
b . (5.33)

106 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

In other words, the angular velocities can be added once they are expressed relative to the
same coordinate frame, in this case o0x0y0z0.

The above reasoning can be extended to any number of coordinate systems. In partic-
ular, suppose that we are given

R0
n = R0

1R
1
2 · · ·Rn−1

n . (5.34)

Although it is a slight abuse of notation, let us represent by ωi−1

i the angular velocity due
to the rotation given by Ri−1

i , expressed relative to frame oi−1xi−1yi−1zi−1. Extending the
above reasoning we obtain

Ṙ0
n = S(ω0

n)R
0
n (5.35)

where

ω0
n = ω0

1 +R0
1ω

1
2 +R0

2ω
2
3 +R0

3ω
3
4 + · · ·+R0

n−1ω
n−1
n . (5.36)

5.5 Linear Velocity of a Point Attached to a Moving Frame

We now consider the linear velocity of a point that is rigidly attached to a moving frame.
Suppose the point p is rigidly attached to the frame o1x1y1z1, and that o1x1y1z1 is rotating
relative to the frame o0x0y0z0. Then the coordinates of p with respect to the frame o0x0y0z0
are given by

p0 = R0
1(t)p

1. (5.37)

The velocity ṗ0 is then given as

ṗ0 = Ṙ0
1(t)p

1 +R0
1(t)ṗ

1 (5.38)

= S(ω0)R0
1(t)p

1 (5.39)

= S(ω0)p0 = ω0 × p0

which is the familiar expression for the velocity in terms of the vector cross product. Note
that (5.39) follows from that fact that p is rigidly attached to frame o1x1y1z1, and therefore
its coordinates relative to frame o1x1y1z1 do not change, giving ṗ1 = 0.

Now suppose that the motion of the frame o1x1y1z1 relative to o0x0y0z0 is more general.
Suppose that the homogeneous transformation relating the two frames is time-dependent,
so that

H0
1 (t) =

[

R0
1(t) o0

1(t)
0 1

]

. (5.40)

For simplicity we omit the argument t and the subscripts and superscripts on R0
1 and

o0
1, and write

p0 = Rp1 + o. (5.41)

5.6. DERIVATION OF THE JACOBIAN 107

Differentiating the above expression using the product rule gives

ṗ0 = Ṙp1 + ȯ (5.42)

= S(ω)Rp1 + ȯ

= ω × r + v

where r = Rp1 is the vector from o1 to p expressed in the orientation of the frame o0x0y0z0,
and v is the rate at which the origin o1 is moving.

If the point p is moving relative to the frame o1x1y1z1, then we must add to the term
v the term R(t)ṗ1, which is the rate of change of the coordinates p1 expressed in the frame
o0x0y0z0.

5.6 Derivation of the Jacobian

Consider an n-link manipulator with joint variables q1, . . . , qn . Let

T 0
n(q) =

[

R0
n(q) o0

n(q)
0 1

]

(5.43)

denote the transformation from the end-effector frame to the base frame, where q =
(q1, . . . , qn)

T is the vector of joint variables. As the robot moves about, both the joint
variables qi and the end-effector position o0

n and orientation R0
n will be functions of time.

The objective of this section is to relate the linear and angular velocity of the end-effector
to the vector of joint velocities q̇(t). Let

S(ω0
n) = Ṙ0

n(R
0
n)
T (5.44)

define the angular velocity vector ω0
n of the end-effector, and let

v0
n = ȯ0

n (5.45)

denote the linear velocity of the end effector. We seek expressions of the form

v0
n = Jvq̇ (5.46)

ω0
n = Jωq̇ (5.47)

where Jv and Jω are 3× n matrices. We may write (5.46) and (5.47) together as
[

v0
n

ω0
n

]

= J0
nq̇ (5.48)

where J0
n is given by

J0
n =

[

Jv
Jω

]

. (5.49)

The matrix J0
n is called the Manipulator Jacobian or Jacobian for short. Note that J0

n

is a 6 × n matrix where n is the number of links. We next derive a simple expression for
the Jacobian of any manipulator.

108 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

5.6.1 Angular Velocity

Recall from Equation (5.36) that angular velocities can be added vectorially provided that
they are expressed relative to a common coordinate frame. Thus we can determine the
angular velocity of the end-effector relative to the base by expressing the angular velocity
contributed by each joint in the orientation of the base frame and then summing these.

If the i-th joint is revolute, then the i-th joint variable qi equals θi and the axis of
rotation is zi−1. Following the convention that we introduced above, let ωi−1

i represent the
angular velocity of link i that is imparted by the rotation of joint i, expressed relative to
frame oi−1xi−1yi−1zi−1. This angular velocity is expressed in the frame i− 1 by

ωi−1

i = q̇iz
i−1

i−1 = q̇ik (5.50)

in which, as above, k is the unit coordinate vector (0, 0, 1)T .
If the i-th joint is prismatic, then the motion of frame i relative to frame i − 1 is a

translation and

ωi−1

i = 0. (5.51)

Thus, if joint i is prismatic, the angular velocity of the end-effector does not depend on qi,
which now equals di.

Therefore, the overall angular velocity of the end-effector, ω0
n, in the base frame is

determined by Equation (5.36) as

ω0
n = ρ1q̇1k + ρ2q̇2R

0
1k + · · ·+ ρnq̇nR

0
n−1k (5.52)

=
n
∑

i−1

ρiq̇iz
0
i−1

in which ρi is equal to 1 if joint i is revolute and 0 if joint i is prismatic, since

z0
i−1 = R0

i−1k. (5.53)

Of course z0
0 = k = (0, 0, 1)T .

The lower half of the Jacobian Jω, in (5.49) is thus given as

Jω = [ρ1z0 · · · ρnzn−1] . (5.54)

Note that in this equation, we have omitted the superscripts for the unit vectors along the
z-axes, since these are all referenced to the world frame. In the remainder of the chapter
we will follow this convention when there is no ambiguity concerning the reference frame.

5.6.2 Linear Velocity

The linear velocity of the end-effector is just ȯ0
n. By the chain rule for differentiation

ȯ0
n =

n
∑

i=1

∂o0
n

∂qi
q̇i. (5.55)

5.6. DERIVATION OF THE JACOBIAN 109

Thus we see that the i-th column of Jv, which we denote as Jvi is given by

Jvi =
∂o0

n

∂qi
. (5.56)

Furthermore this expression is just the linear velocity of the end-effector that would result
if q̇i were equal to one and the other q̇j were zero. In other words, the i-th column of the
Jacobian can be generated by holding all joints fixed but the i-th and actuating the i-th at
unit velocity. We now consider the two cases (prismatic and revolute joints) separately.

(i) Case 1: Prismatic Joints

If joint i is prismatic, then it imparts a pure translation to the end-effector. From our
study of the DH convention in Chapter 3, we can write the T 0

n as the product of three
transformations as follows

[

R0
n o0

n

0 1

]

= T 0
n (5.57)

= T 0
i−1T

i−1
i T in (5.58)

=

[

R0
i−1 o0

i−1

0 1

] [

Ri−1
i oi−1

i

0 1

] [

Ri
n oin

0 1

]

(5.59)

=

[

R0
n R0

io
i
n +R0

i−1o
i−1

i + o0
i−1

0 1

]

, (5.60)

which gives

o0
n = R0

io
i

n +R0
i−1o

i−1

i + o0
i−1. (5.61)

If only joint i is allowed to move, then both of oin and o0
i−1 are constant. Furthermore,

if joint i is prismatic, then the rotation matrix R0
i−1 is also constant (again, assuming that

only joint i is allowed to move). Finally, recall from Chapter 3 that, by the DH convention,
oi−1

i = (aici, aisi, di)
T . Thus, differentiation of o0

n gives

∂o0
n

∂qi
=

∂

∂di
R0
i−1o

i−1

i (5.62)

= R0
i−1

∂

∂di





aici
aisi
di



 (5.63)

= ḋiR
0
i−1





0
0
1



 (5.64)

= ḋiz
0
i−1, (5.65)

110 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

in which di is the joint variable for prismatic joint i. Thus, (again, dropping the zero
superscript on the z-axis) for the case of prismatic joints we have

Jvi = zi−1. (5.66)

(ii) Case 2: Revolute Joints

If joint i is revolute, then we have qi = θi. Starting with (5.61), and letting qi = θi, since
R0
i is not constant with respect to θi, we obtain

∂

∂θi
o0
n =

∂

∂θi

[

R0
io
i

n +R0
i−1o

i−1

i

]

(5.67)

=
∂

∂θi
R0
io
i

n +R0
i−1

∂

∂θi
oi−1

i (5.68)

= θ̇iS(z0
i−1)R

0
io
i

n + θ̇iS(z0
i−1)R

0
i−1o

i−1

i (5.69)

= θ̇iS(z0
i−1)

[

R0
io
i

n +R0
i−1o

i−1

i

]

(5.70)

= θ̇iS(z0
i−1)(o

0
n − o0

i−1) (5.71)

= θ̇iz
0
i−1 × (o0

n − o0
i−1). (5.72)

The second term in (5.69) is derived as follows:

R0
i−1

∂

∂θi





aici
aisi
di



 = R0
i−1





−aisi
aici
0



 θ̇i (5.73)

= R0
i−1S(kθ̇i)o

i−1

i (5.74)

= R0
i−1S(kθ̇i)

(

R0
i−1

)T
R0
i−1o

i−1

i (5.75)

= S(R0
i−1kθ̇i)R

0
i−1o

i−1

i (5.76)

= θ̇iS(z0
i−1)R

0
i−1o

i−1

i . (5.77)

Equation (5.74) follows by straightforward computation. Thus

Jvi = zi−1 × (on − oi−1), (5.78)

in which we have, following our convention, omitted the zero superscripts. Figure 5.1
illustrates a second interpretation of (5.78). As can be seen in the figure, on− oi−1 = r and
zi−1 = ω in the familiar expression v = ω × r.

Combining the Angular and Linear Jacobians

As we have seen in the preceding section, the upper half of the Jacobian Jv is given as

Jv = [Jv1 · · ·Jvn] (5.79)

5.6. DERIVATION OF THE JACOBIAN 111

Oi−1

y0

x0

z0

On

θi

d0
i−1

r ≡ di−1
n

ω ≡ zi−1

Figure 5.1: Motion of the end-effector due to link i.

where the i-th column Jvi is

Jvi = zi−1 × (on − oi−1) (5.80)

if joint i is revolute and

Jvi = zi−1 (5.81)

if joint i is prismatic.
The lower half of the Jacobian is given as

Jω = [Jω1 · · ·Jωn] (5.82)

where the i-th column Jωi is

Jωi = zi−1 (5.83)

if joint i is revolute and

Jωi = 0 (5.84)

if joint i is prismatic.
Now putting the upper and lower halves of the Jacobian together we have shown that

the Jacobian for an n-link manipulator is of the form

J = [J1J2 · · ·Jn] (5.85)

where the i-th column Ji is given by

Ji =

[

zi−1 × (on − oi−1)
zi−1

]

(5.86)

112 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

if joint i is revolute and

Ji =

[

zi−1

0

]

(5.87)

if joint i is prismatic.

The above formulas make the determination of the Jacobian of any manipulator simple
since all of the quantities needed are available once the forward kinematics are worked out.
Indeed the only quantities needed to compute the Jacobian are the unit vectors zi and the
coordinates of the origins o1, . . . , on. A moment’s reflection shows that the coordinates for
zi w.r.t. the base frame are given by the first three elements in the third column of T 0

i while
oi is given by the first three elements of the fourth column of T 0

i . Thus only the third and
fourth columns of the T matrices are needed in order to evaluate the Jacobian according to
the above formulas.

The above procedure works not only for computing the velocity of the end-effector but
also for computing the velocity of any point on the manipulator. This will be important in
Chapter 9 when we will need to compute the velocity of the center of mass of the various
links in order to derive the dynamic equations of motion.

Example 5.5 Consider the three-link planar manipulator of Figure 5.2. Suppose we wish

v

ω

z0
x0

z1

x1

y0

y1
Oc

Figure 5.2: Finding the velocity of link 2 of a 3-link planar robot.

to compute the linear velocity v and the angular velocity ω of the center of link 2 as shown.
In this case we have that

[

v

ω

]

= [J1 J2 J3]q̇ (5.88)

where the columns of the Jacobian are determined using the above formula with oc in place
of on. Thus we have

J1 = z0 × (oc − o0) (5.89)

J2 = z1 × (oc − o1)

5.7. EXAMPLES 113

and

J3 = 0

since the velocity of the second link is unaffected by motion of link 33. Note that in this case
the vector oc must be computed as it is not given directly by the T matrices (Problem 5-1).
⋄

5.7 Examples

Example 5.6 Consider the two-link planar manipulator of Example 3.1. Since both joints
are revolute the Jacobian matrix, which in this case is 6× 2, is of the form

J(q) =

[

z0 × (o2 − o0) z1 × (o2 − o1)
z0 z1

]

. (5.90)

The various quantities above are easily seen to be

o0 =





0
0
0



 o1 =





a1c1
a1s1

0



 o2 =





a1c1 + a2c12
a1s1 + a2s12

0



 (5.91)

z0 = z1 =





0
0
1



 . (5.92)

Performing the required calculations then yields

J =

















−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

0 0
0 0
0 0
1 1

















. (5.93)

It is easy to see how the above Jacobian compares with the expression (1.1) derived in
Chapter 1. The first two rows of (5.92) are exactly the 2 × 2 Jacobian of Chapter 1 and
give the linear velocity of the origin o2 relative to the base. The third row in (5.93) is the
linear velocity in the direction of z0, which is of course always zero in this case. The last
three rows represent the angular velocity of the final frame, which is simply a rotation about
the vertical axis at the rate θ̇1 + θ̇2.

3Note that we are treating only kinematic effects here. Reaction forces on link 2 due to the motion of
link 3 will influence the motion of link 2. These dynamic effects are treated by the methods of Chapter 9.

114 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

⋄
Example 5.7 Stanford Manipulator Consider the Stanford manipulator of Exam-
ple 3.3.5 with its associated Denavit-Hartenberg coordinate frames. Note that joint 3 is
prismatic and that o3 = o4 = o5 as a consequence of the spherical wrist and the frame
assignment. Denoting this common origin by o we see that the Jacobian is of the form

J =

[

z0 × (o6 − o0) z1 × (o6 − o1) z2 z3 × (o6 − o) z4 × (o6 − o) z5 × (o6 − o)
z0 z1 0 z3 z4 z5

]

.

Now, using the A-matrices given by the expressions (3.35)-(3.40) and the T -matrices
formed as products of the A-matrices, these quantities are easily computed as follows:
First, oj is given by the first three entries of the last column of T 0

j = A1 · · ·Aj, with
o0 = (0, 0, 0)T = o1. The vector zj is given as

zj = R0
jk (5.94)

where R0
j is the rotational part of T 0

j . Thus it is only necessary to compute the matrices
T 0
j to calculate the Jacobian. Carrying out these calculations one obtains the following

expressions for the Stanford manipulator:

o6 = (dx, dy, dz)
T =





c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5)
s1s2d3 − c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)

c2d3 + d6(c2c5 − c4s2s5)



 (5.95)

o3 =





c1s2d3 − s1d2

s1s2d3 + c1d2

c2d3



 . (5.96)

The zi are given as

z0 =





0
0
1



 z1 =





−s1
c1
0



 (5.97)

z2 =





c1s2
s1s2
c2



 z3 =





c1s2
s1s2
c2



 (5.98)

z4 =





−c1c2s4 − s1c4
−s1c2s4 + c1c4

s2s4



 (5.99)

z5 =





c1c2c4s5 − s1s4s5 + c1s2c5
s1c2c4s5 + c1s4s5 + s1s2c5

−s2c4s5 + c2c5



 . (5.100)

The Jacobian of the Stanford Manipulator is now given by combining these expressions
according to the given formulae (Problem ??).

5.8. THE ANALYTICAL JACOBIAN 115

⋄
Example 5.8 SCARA Manipulator We will now derive the Jacobian of the SCARA
manipulator of Example 3.3.6. This Jacobian is a 6× 4 matrix since the SCARA has only
four degrees-of-freedom. As before we need only compute the matrices T 0

j = A1 . . . Aj, where
the A-matrices are given by (3.45)-(3.48).

Since joints 1,2, and 4 are revolute and joint 3 is prismatic, and since o4−o3 is parallel
to z3 (and thus, z3 × (o4 − o3) = 0), the Jacobian is of the form

J =

[

z0 × (o4 − o0) z1 × (o4 − o1) z2 0
z0 z1 0 z3

]

. (5.101)

Performing the indicated calculations, one obtains

o1 =





a1c1
a1s1

0



 o2 =





a1c1 + a2c12
a1s1 + a2s12

0



 (5.102)

o4 =





a1c1 + a2c12
a1s2 + a2s12
d3 − d4



 . (5.103)

Similarly z0 = z1 = k, and z2 = z3 = −k. Therefore the Jacobian of the SCARA
Manipulator is

J =

















−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 −1 0
0 0 0 0
0 0 0 0
1 1 0 −1

















. (5.104)

⋄

5.8 The Analytical Jacobian

The Jacobian matrix derived above is sometimes called the Geometric Jacobian to distin-
guish it from the Analytical Jacobian, denoted Ja(q), considered in this section, which is
based on a minimal representation for the orientation of the end-effector frame. Let

X =

[

d(q)
α(q)

]

(5.105)

denote the end-effector pose, where d(q) is the usual vector from the origin of the base
frame to the origin of the end-effector frame and α denotes a minimal representation for
the orientation of the end-effector frame relative to the base frame. For example, let α =

116 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

[φ, θ, ψ]T be a vector of Euler angles as defined in Chapter 2. Then we look for an expression
of the form

Ẋ =

[

ḋ
α̇

]

= Ja(q)q̇ (5.106)

to define the analytical Jacobian.
It can be shown (Problem X) that, if R = Rz,ψRy,θRz,φ is the Euler angle transformation

then
Ṙ = S(ω)R (5.107)

where ω, defining the angular velocity is given by

ω =





cψsθφ̇− sψ θ̇
sψsθψ̇ + cψθ

ψ̇ + cθψ̇



 (5.108)

=





cψsθ −sψ 0
sψsθ cψ 0
cθ 0 1









φ̇

θ̇

ψ̇



 = T (α)α̇ (5.109)

The components of ω are called the nutation, spin, and precession. Combining the above
relationship with the previous definition of the Jacobian, i.e.

[

v
ω

]

=

[

ḋ
ω

]

= J(q)q̇ (5.110)

yields

J(q)q̇ =

[

v
ω

]

=

[

ḋ
T (α)α̇

]

(5.111)

=

[

I 0
0 T (α)

] [

ḋ
α̇

]

(5.112)

=

[

I 0
0 T (α)

]

Ja (5.113)

Thus the analytical Jacobian, Ja(q), may be computed from the geometric Jacobian as

Ja(q) =

[

I 0
0 T (α)−1

]

J(q) (5.114)

provided det(T (α)) 6= 0.
In the next section we discuss the notion of Jacobian singularities, which are config-

urations where the Jacobian loses rank. Singularities of the matrix T (α) are called rep-
resentational singularities. It can easily be shown (Problem X) that T (α) is invertible
provided sθ 6= 0. This means that the singularities of the analytical Jacobian include the
singularities of the geometric Jacobian, J , as defined in the next section, together with the
representational singularities.

5.9. SINGULARITIES 117

5.9 Singularities

The 6× n Jacobian J(q) defines a mapping

Ẋ = J(q)q̇ (5.115)

between the vector q̇ of joint velocities and the vector Ẋ = (v,ω)T of end-effector velocities.
Infinitesimally this defines a linear transformation

dX = J(q)dq (5.116)

between the differentials dq and dX. These differentials may be thought of as defining
directions in IR6, and IRn, respectively.

Since the Jacobian is a function of the configuration q, those configurations for which the
rank of J decreases are of special significance. Such configurations are called singularities
or singular configurations. Identifying manipulator singularities is important for several
reasons.

1. Singularities represent configurations from which certain directions of motion may be
unattainable.

2. At singularities, bounded end-effector velocities may correspond to unbounded joint
velocities.

3. At singularities, bounded end-effector forces and torques may correspond to unbounded
joint torques. (We will see this in Chapter 12).

4. Singularities usually (but not always) correspond to points on the boundary of the
manipulator workspace, that is, to points of maximum reach of the manipulator.

5. Singularities correspond to points in the manipulator workspace that may be unreachable
under small perturbations of the link parameters, such as length, offset, etc.

6. Near singularities there will not exist a unique solution to the inverse kinematics problem.
In such cases there may be no solution or there may be infinitely many solutions.

Example 5.9 Consider the two-dimensional system of equations

dX = Jdq =

[

1 1
0 0

]

dq (5.117)

that corresponds to the two equations

dx = dq1 + dq2 (5.118)

dy = 0. (5.119)

In this case the rank of J is one and we see that for any values of the variables dq1 and
dq2 there is no change in the variable dy. Thus any vector dX having a nonzero second
component represents an unattainable direction of instantaneous motion.
⋄

118 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

5.9.1 Decoupling of Singularities

We saw in Chapter 3 that a set of forward kinematic equations can be derived for any
manipulator by attaching a coordinate frame rigidly to each link in any manner that we
choose, computing a set of homogeneous transformations relating the coordinate frames, and
multiplying them together as needed. The D-H convention is merely a systematic way to
do this. Although the resulting equations are dependent on the coordinate frames chosen,
the manipulator configurations themselves are geometric quantities, independent of the
frames used to describe them. Recognizing this fact allows us to decouple the determination
of singular configurations, for those manipulators with spherical wrists, into two simpler
problems. The first is to determine so-called arm singularities, that is, singularities
resulting from motion of the arm, which consists of the first three or more links, while the
second is to determine the wrist singularities resulting from motion of the spherical wrist.

For the sake of argument, suppose that n = 6, that is, the manipulator consists of a
3-DOF arm with a 3-DOF spherical wrist. In this case the Jacobian is a 6× 6 matrix and
a configuration q is singular if and only if

det J(q) = 0. (5.120)

If we now partition the Jacobian J into 3× 3 blocks as

J = [JP | JO] =

[

J11

J21

J12

J22

]

(5.121)

then, since the final three joints are always revolute

JO =

[

z3 × (o6 − o3) z4 × (o6 − o4) z5 × (o6 − o5)
z3 z4 z5

]

. (5.122)

Since the wrist axes intersect at a common point o, if we choose the coordinate frames
so that o3 = o4 = o5 = o6 = o, then JO becomes

JO =

[

0 0 0
z3 z4 z5

]

(5.123)

and the i-th column Ji of Jp is

Ji =

[

zi−1 × (o− oi−1)
zi−1

]

(5.124)

if joint i is revolute and

Ji =

[

zi−1

0

]

(5.125)

if joint i is prismatic. In this case the Jacobian matrix has the block triangular form

J =

[

J11 0
J21 J22

]

(5.126)

5.9. SINGULARITIES 119

with determinant

det J = detJ11 det J22 (5.127)

where J11 and J22 are each 3 × 3 matrices. J11 has i-th column zi−1 × (o− oi−1) if joint i
is revolute, and zi−1 if joint i is prismatic, while

J22 = [z3 z4 z5]. (5.128)

Therefore the set of singular configurations of the manipulator is the union of the set
of arm configurations satisfying detJ11 = 0 and the set of wrist configurations satisfying
det J22 = 0. Note that this form of the Jacobian does not necessarily give the correct relation
between the velocity of the end-effector and the joint velocities. It is intended only to simplify
the determination of singularities.

5.9.2 Wrist Singularities

We can now see from (5.128) that a spherical wrist is in a singular configuration whenever
the vectors z3, z4 and z5 are linearly dependent. Referring to Figure 5.3 we see that this

z4

θ6θ4

θ5 = 0

z3 z5

Figure 5.3: Spherical wrist singularity.

happens when the joint axes z3 and z5 are collinear. In fact, whenever two revolute joint
axes anywhere are collinear, a singularity results since an equal and opposite rotation about
the axes results in no net motion of the end-effector. This is the only singularity of the
spherical wrist, and is unavoidable without imposing mechanical limits on the wrist design
to restrict its motion in such a way that z3 and z5 are prevented from lining up.

5.9.3 Arm Singularities

In order to investigate arm singularities we need only to compute J11 according to (5.124)
and (5.125), which is the same formula derived previously with the wrist center o in place
of o6.

Example 5.10 Elbow Manipulator Singularities Consider the three-link articulated
manipulator with coordinate frames attached as shown in Figure 5.4. It is left as an exercise

120 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

z2

x0

z0

x1 x2

z1

y1 y2

y0

Oc

d0
c

Figure 5.4: Elbow manipulator.

(Problem ??) to show that

J11 =





−a2s1c2 − a3s1c23 −a2s2c1 − a3s23c1 −a3c1s23
a2c1c2 + a3c1c23 −a2s1s2 − a3s1s23 −a3s1s23

0 a2c2 + a3c23 a3c23



 (5.129)

and that the determinant of J11 is

det J11 = a2a3s3(a2c2 + a3c23). (5.130)

We see from (5.130) that the elbow manipulator is in a singular configuration whenever

s3 = 0, that is, θ3 = 0 or π (5.131)

and whenever

a2c2 + a3c23 = 0. (5.132)

The situation of (5.131) is shown in Figure 5.5 and arises when the elbow is fully ex-

θ3 = 0◦ θ3 = 180◦

Figure 5.5: Elbow singularities of the elbow manipulator.

tended or fully retracted as shown. The second situation (5.132) is shown in Figure 5.6.

5.9. SINGULARITIES 121

z0

θ1

Figure 5.6: Singularity of the elbow manipulator with no offsets.

This configuration occurs when the wrist center intersects the axis of the base rotation, z0.
As we saw in Chapter 4, there are infinitely many singular configurations and infinitely
many solutions to the inverse position kinematics when the wrist center is along this axis.
For an elbow manipulator with an offset, as shown in Figure 5.7, the wrist center cannot

z0

d

Figure 5.7: Elbow manipulator with shoulder offset.

intersect z0, which corroborates our earlier statement that points reachable at singular con-
figurations may not be reachable under arbitrarily small perturbations of the manipulator
parameters, in this case an offset in either the elbow or the shoulder.

⋄

122 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

Example 5.11 Spherical Manipulator Consider the spherical arm of Figure 5.8. This

θ1

z0

Figure 5.8: Singularity of spherical manipulator with no offsets.

manipulator is in a singular configuration when the wrist center intersects z0 as shown
since, as before, any rotation about the base leaves this point fixed.
⋄

Example 5.12 SCARA Manipulator We have already derived the complete Jacobian
for the the SCARA manipulator. This Jacobian is simple enough to be used directly rather
than deriving the modified Jacobian from this section. Referring to Figure 5.9 we can see

z0

z1 z2

θ2 = 0◦

Figure 5.9: SCARA manipulator singularity.

geometrically that the only singularity of the SCARA arm is when the elbow is fully extended
or fully retracted. Indeed, since the portion of the Jacobian of the SCARA governing arm

5.10. INVERSE VELOCITY AND ACCELERATION 123

singularities is given as

J11 =





α1 α3 0
α2 α4 0
0 0 −1



 (5.133)

where

α1 = −a1s1 − a2s12 (5.134)

α2 = a1c1 + a2c12

α3 = −a1s12

α4 = a1c12 (5.135)

we see that the rank of J11 will be less than three precisely whenever α1α4−α2α3 = 0. It is
easy to compute this quantity and show that it is equivalent to (Problem ??)

s2 = 0, which implies θ2 = 0, π. (5.136)

⋄

5.10 Inverse Velocity and Acceleration

It is perhaps a bit surprising that the inverse velocity and acceleration relationships are
conceptually simpler than inverse position. Recall from (5.115) that the joint velocities and
the end-effector velocities are related by the Jacobian as

Ẋ = J(q)q̇. (5.137)

Thus the inverse velocity problem becomes one of solving the system of linear equations
(5.137), which is conceptually simple.

Differentiating (5.137) yields the acceleration equations

Ẍ = J(q)q̈ +

(

d

dt
J(q)

)

q̇. (5.138)

Thus, given a vector Ẍ of end-effector accelerations, the instantaneous joint acceleration
vector q is given as a solution of

b = J(q)q̈ (5.139)

where

b = Ẍ − d

dt
J(q)q̇ (5.140)

124 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

For 6-DOF manipulators the inverse velocity and acceleration equations can therefore
be written as

q̇ = J(q)−1Ẋ (5.141)

and

q̈ = J(q)−1b (5.142)

provided detJ(q) 6= 0. In the next section, we address the case of manipulators with more
than 6-DOF.

5.11 Redundant Robots and Manipulability

In this section we briefly address the topic of redundant manipulators. Informally, a redun-
dant manipulator is one that is equipped with more internal degrees of freedom than are
required to perform a specified task. For example, a three link planar arm is redundant
for the task of positioning in the plane. As we have briefly seen in Chapter 4, in such
cases there in no unique solution for the inverse kinematics problem. Further, the Jacobian
matrix for a redundant manipulator is not square, and thus cannot be inverted to solve the
inverse velocity problem.

In this section, we begin by giving a brief and general introduction to the subject of
redundant manipulators. We then turn our attention to the inverse velocity problem. To
address this problem, we will introduce the concept of a pseudoinverse and the Singular
Value Decomposition. We end the section by introducing manipulability, a measure that
can be used to quantify the quality of the internal configuration of a manipulator, and
can therefore be used in an optimization framework to aid in the solution for the inverse
kinematics problem.

5.11.1 Redundant Manipulators

A precise definition of what is meant by the term redundant requires that we specify a task,
and the number of degrees of freedom required to perform that task. In previous chapters,
we have dealt primarily with positioning tasks. In these cases, the task was determined by
specifying the position, orientation or both for the end effector or some tool mounted at the
end effector. For these kinds of positioning tasks, the number of degrees of freedom for the
task is equal to the number of parameters required to specify the position and orientation
information. For example, if the task involves positioning the end effector in a 3D workspace,
then the task can be specified by an element of ℜ3×SO(3). As we have seen in Chapter 2,
ℜ3 × SO(3) can be parameterized by (x, y, z, φ, θ, ψ), i.e., using six parameters. Thus, for
this task, the task space is six-dimensional. A manipulator is said to be redundant when its
number of internal degrees of freedom (or joints) is greater than the dimension of the task
space. Thus, for the 3D position and orientation task, any manipulator with more than six
joints would be redundant.

5.11. REDUNDANT ROBOTS AND MANIPULABILITY 125

A simpler example is a three-link planar arm performing the task of positioning the end
effector in the plane. Here, the task can be specified by (x, y) ∈ ℜ2, and therefore the task
space is two-dimensional. The forward kinematic equations for this robot are given by

x = a1c1 + a2c12 + a3c123

y = a1s1 + a2s12 + a3s123.

Clearly, since there are three variables (θ1, θ2, θ3) and only two equations, it is not possible
to solve uniquely for θ1, θ2, θ3 given a specific (x, y).

The Jacobian for this manipulator is given by

J =

[

−a1s1 − a2s12 −a2s12 −a3s123

a1c1 + a2c12 a2c12 a3c123

]

. (5.143)

When using the relationship ẋ = Jq̇ to for q̇, we have a system of two linear equations
in three unknowns. Thus there are also infinitely many solutions to this system, and the
inverse velocity problem cannot be solved uniquely. We now turn our attention to the
specifics of dealing with these inverse problems.

5.11.2 The Inverse Velocity Problem for Redundant Manipulators

We have seen in Section 5.10 that the inverse velocity problem is easily solved when the
Jacobian is square with nonzero determinant. However, when the Jacobian is not square,
as is the case for redundant manipulators, the method of Section 5.10 cannot be used, since
a nonsquare matrix cannot be inverted. To deal with the case when m < n, we use the
following result from linear algebra.

Proposition: For J ∈ ℜm×n, if m < n and rank J = m, then (JJT)−1 exists.

In this case (JJT) ∈ ℜm×m, and has rank m. Using this result, we can regroup terms to
obtain

(JJT)(JJT)−1 = I

J
[

JT (JJT)−1
]

= I

JJ+ = I.

Here, J+ = JT (JJT)−1 is called a right pseudoinverse of J, since JJ+ = I. Note that, J+J ∈
ℜn×n, and that in general, J+J 6= I (recall that matrix multiplication is not commutative).

It is now easy to demonstrate that a solution to (5.137) is given by

q̇ = J+ẋ + (I− J+J)b (5.144)

in which b ∈ ℜn is an arbitrary vector. To see this, multiply this solution by J:

126 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

Jq̇ = J [J+ẋ + (I− J+J)b]

= JJ+ẋ + J(I− J+J)b

= JJ+ẋ + (J− JJ+J)b

= ẋ + (J− J)b

= ẋ.

In general, for m < n, (I− J+J) 6= 0, and all vectors of the form (I− J+J)b lie in the
null space of J, i.e., if q̇n is a joint velocity vector such that q̇n = (I − J+J)b, then when
the joints move with velocity q̇n, the end effector will remain fixed since Jq̇n = 0. Thus, if
q̇ is a solution to (5.137), then so is q̇ + q̇n with q̇n = (I−J+J)b, for any value of b. If the
goal is to minimize the resulting joint velocities, we choose b = 0. To see this, apply the
triangle inequality to obtain

|| q̇ || = || J+ẋ + (I− J+J)b ||
≤ || J+ẋ ||+ || (I− J+J)b ||.

5.11.3 Singular Value Decomposition (SVD)

For robots that are not redundant, the Jacobian matrix is square, and we can use tools
such as the determinant, eigenvalues and eigenvectors to analyze its properties. However,
for redundant robots, the Jacobian matrix is not square, and these tools simply do not
apply. Their generalizations are captured by the Singular Value Decomposition (SVD) of a
matrix, which we now introduce.

As we described above, for J ∈ ℜm×n, we have JJT ∈ ℜm×m. This square matrix has
eigenvalues and eigenvectors that satisfy

JJTui = λiui (5.145)

in which λi and ui are corresponding eigenvalue and eigenvector pairs for JJT . We can
rewrite this equation to obtain

JJTui − λiui = 0

(JJT − λiI)ui = 0. (5.146)

The latter equation implies that the matrix (JJT −λiI) is singular, and we can express this
in terms of its determinant as

det(JJT − λiI) = 0. (5.147)

We can use (5.147) to find the eigenvalues λ1 ≥ λ2 · · · ≥ λm ≥ 0 for JJT . The singular
values for the Jacobian matrix J are given by the square roots of the eigenvalues of JJT ,

σi =
√

λi. (5.148)

5.11. REDUNDANT ROBOTS AND MANIPULABILITY 127

The singular value decomposition of the matrix J is then given by

J = UΣVT , (5.149)

in which

U = [u1u2 . . .um] , V = [v1v2 . . .vn] (5.150)

are orthogonal matrices, and Σ ∈ Rm×n.

Σ =













σ1

σ2

.
.
σm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0













. (5.151)

We can compute the SVD of J as follows. We begin by finding the singular values, σi, of
J using (5.147) and (5.148). These singular values can then be used to find the eigenvectors
u1, · · ·um that satisfy

JJTui = σ2
i ui. (5.152)

These eigenvectors comprise the matrix U = [u1u2 . . .um]. The system of equations (5.152)
can be written as

JJTU = UΣ2
m (5.153)

if we define the matrix Σm as

Σm =













σ1

σ2

.
.
σm













.

Now, define

Vm = JTUΣ−1
m (5.154)

and let V be any orthogonal matrix that satisfies V = [Vm | Vn−m] (note that here Vn−m
contains just enough columns so that the matrix V is an n × n matrix). It is a simple

128 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

matter to combine the above equations to verify (5.149):

UΣVT = U [Σm | 0]

[

VT
m

VT
n−m

]

(5.155)

= UΣmVT
m (5.156)

= UΣm

(

JTUΣ−1
m

)T
(5.157)

= UΣm(Σ−1
m)TUTJ (5.158)

= UΣmΣ−1
m UTJ (5.159)

= UUTJ (5.160)

= J. (5.161)

Here, (5.155) follows immediately from our construction of the matrices U, V and Σm.
Equation (5.157) is obtained by substituting (5.154) into (5.156). Equation (5.159) follows
because Σ−1

m is a diagonal matrix, and thus symmetric. Finally, (5.161) is obtained using
the fact that UT = U−1, since U is orthogonal.

It is a simple matter construct the right pseudoinverse of J using the SVD,

J+ = VΣ+UT

in which

Σ+ =













σ−1
1

σ−1
2

.
.
σ−1
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0













T

.

5.11.4 Manipulability

For a specific value of q, the Jacobian relationship defines the linear system given by ẋ = Jq̇.
We can think of J a scaling the input, q̇, to produce the output, ẋ. It is often useful to
characterize quantitatively the effects of this scaling. Often, in systems with a single input
and a single output, this kind of characterization is given in terms of the so called impulse
response of a system, which essentially characterizes how the system responds to a unit
input. In this multidimensional case, the analogous concept is to characterize the output
in terms of an input that has unit norm. Consider the set of all robot tool velocities q̇ such
that

‖q̇‖ = (q̇21 + q̇22 + . . . q̇2m)1/2 ≤ 1. (5.162)

5.11. REDUNDANT ROBOTS AND MANIPULABILITY 129

If we use the minimum norm solution q̇ = J+ẋ, we obtain

‖q̇‖ = q̇T q̇

= (J+ẋ)TJ+ẋ

= ẋT (J+)TJ+ẋ

= ẋT (JT (JJT)−1)TJT (JJT)−1ẋ

= ẋT [(JJT)−1]TJJT (JJT)−1ẋ

= ẋT (JJT)−1ẋ ≤ 1. (5.163)

This final inequality gives us a quantitative characterization of the scaling that is effected by
the Jacobian. In particular, if the manipulator Jacobian is full rank, i.e., rank J = m, then
(5.163) defines an m-dimensional ellipsoid that is known as the manipulability ellipsoid.
If the input (i.e., joint velocity) vector has unit norm, then the output (i.e., task space
velocity) will lie within the ellipsoid given by (5.163). We can more easily see that (5.163)
defines an ellipsoid by replacing J by its SVD to obtain

ẋT (JJT)−1ẋT = ẋT [UΣVT (UΣVT)T]−1ẋ

= ẋT [UΣVTVΣTUT]−1ẋ

= ẋT [UΣΣTUT]−1ẋ

= ẋT [UΣ2
mUT]−1ẋ

= ẋT [UΣ−2
m UT]ẋ

= (ẋTU)Σ−2
m (UT ẋ)

= (UT ẋ)TΣ−2
m (UT ẋ) (5.164)

in which

Σ−2
m =













σ−2
1

σ−2
2

.
.
σ−2
m













.

If we make the substation w = UT ẋ, then (5.164) can be written as

wTΣ−2
m w =

∑

σ−2
i w2

i ≤ 1 (5.165)

and it is clear that this is the equation for an axis-aligned ellipse in a new coordinate
system that is obtained by rotation according to the orthogonal matrix U. In the original
coordinate system, the axes of the ellipsoid are given by the vectors σiui. The volume of
the ellipsoid is given by

volume = Kσ1σ2 · · ·σm,
in which K is a constant that depends only on the dimension, m, of the ellipsoid. The
manipulability measure, as defined by Yoshikawa [?], is given by

ω = σ1σ2 · · ·σm. (5.166)

130 CHAPTER 5. VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

Note that the constant K is not included in the definition of manipulability, since it is fixed
once the task has been defined (i.e., once the dimension of the task space has been fixed).

Now, consider the special case that the robot is not redundant, i.e., J ∈ ℜm×m. Recall
that the determinant of a product is equal to the product of the determinants, and that a
matrix and its transpose have the same determinant. Thus, we have

det JJT = det J det JT

= det J det J

= (λ1λ2 · · ·λm)(λ1λ2 · · ·λm)

= λ2
1λ

2
2 · · ·λ2

m (5.167)

in which λ1 ≥ λ2 · · · ≤ λm are the eigenvalues of J. This leads to

ω =
√

det JJT = |λ1λ2 · · ·λm| = |det J|. (5.168)

The manipulability, ω, has the following properties.

• In general, ω = 0 holds if and only if rank(J) < m, (i.e., when J is not full rank).

• Suppose that there is some error in the measured velocity, ∆ẋ. We can bound the
corresponding error in the computed joint velocity, ∆q̇, by

(σ1)
−1 ≤ ||∆q̇||

||∆ẋ|| ≤ (σm)−1. (5.169)

Example 5.13 Two-link Planar Arm. We can use manipulability to determine the
optimal configurations in which to perform certain tasks. In some cases it is desirable to
perform a task in the configuration for which the end effector has the maximum dexterity.
We can use manipulability as a measure of dexterity. Consider the two-link planar arm and
the task of positioning in the plane. For the two link arm, the Jacobian is given by

J =

[

−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

]

. (5.170)

and the manipulability is given by

ω = |det J| = a1a2|s2|
Thus, for the two-link arm, the maximum manipulability is obtained for θ2 = ±π/2.

Manipulability can also be used to aid in the design of manipulators. For example,
suppose that we wish to design a two-link planar arm whose total link length, a1 + a2, is
fixed. What values should be chosen for a1 and a2? If we design the robot to maximize the
maximum manipulability, the we need to maximize ω = a1a2|s2|. We have already seen that
the maximum is obtained when θ2 = ±π/2, so we need only find a1 and a2 to maximize the
product a1a2. This is achieved when a1 = a2. Thus, to maximize manipulability, the link
lengths should be chosen to be equal.
⋄

Chapter 6

COMPUTER VISION

If a robot is to interact with its environment, then the robot must be able to sense its
environment. Computer vision is one of the most powerful sensing modalities that currently
exist. Therefore, in this chapter we present a number of basic concepts from the field of
computer vision. It is not our intention here to cover the now vast field of computer vision.
Rather, we aim to present a number of basic techniques that are applicable to the highly
constrained problems that often present themselves in industrial applications. The material
in this chapter, when combined with the material of previous chapters, should enable the
reader to implement a rudimentary vision-based robotic manipulation system. For example,
using techniques presented in this chapter, one could design a system that locates objects
on a conveyor belt, and determines the positions and orientations of those objects. This
information could then be used in conjunction with the inverse kinematic solution for the
robot, along with various coordinate transformations, to command the robot to grasp these
objects.

We begin by examining the geometry of the image formation process. This will provide
us with the fundamental geometric relationships between objects in the world and their pro-
jections in an image. We then describe a calibration process that can be used to determine
the values for the various camera parameters that appear in these relationships. We then
consider image segmentation, the problem of dividing the image into distinct regions that
correspond to the background and to objects in the scene. When there are multiple objects
in the scene, it is often useful to deal with them individually; therefore, we next present an
approach to component labelling. Finally, we describe how to compute the positions and
orientations of objects in the image.

6.1 The Geometry of Image Formation

A digital image is a two-dimensional array of pixels that is formed by focusing light onto
a two-dimensional array of sensing elements. A lens with focal length λ is used to focus
the light onto the sensing array, which is often composed of CCD (charge-coupled device)
sensors. The lens and sensing array are packaged together in a camera, which is connected to

131

132 CHAPTER 6. COMPUTER VISION

a digitizer or frame grabber. In the case of analog cameras, the digitizer converts the analog
video signal that is output by the camera into discrete values that are then transferred to
the pixel array by the frame grabber. In the case of digital cameras, a frame grabber merely
transfers the digital data from the camera to the pixel array. Associated with each pixel
in the digital image is a gray level value, typically between 0 and 255, which encodes the
intensity of the light incident on the corresponding sensing element.

In robotics applications, it is often sufficient to consider only the geometric aspects of
image formation. Therefore in this section we will describe only the geometry of the image
formation process. We will not deal with the photometric aspects of image formation (e.g.,
we will not address issues related to depth of field, lens models, or radiometry).

We will begin the section by assigning a coordinate frame to the imaging system. We
then discuss the popular pinhole model of image formation, and derive the corresponding
equations that relate the coordinates of a point in the world to its image coordinates.
Finally, we describe camera calibration, the process by which all of the relevant parameters
associated with the imaging process can be determined.

6.1.1 The Camera Coordinate Frame

In order to simplify many of the equations of this chapter, it often will be useful to express
the coordinates of objects relative to a camera centered coordinate frame. For this purpose,
we define the camera coordinate frame as follows. Define the image plane, π, as the plane
that contains the sensing array. The axes xc and yc form a basis for the image plane, and
are typically taken to be parallel to the horizontal and vertical axes (respectively) of the
image. The axis zc is perpendicular to the image plane and aligned with the optic axis
of the lens (i.e., it passes through the focal center of the lens). The origin of the camera
frame is located at a distance λ behind the image plane. This point is also referred to as
the center of projection. The point at which the optical axis intersects the image plane is
known as the principal point. This coordinate frame is illustrated in Figure 6.1.

With this assignment of the camera frame, any point that is contained in the image
plane will have coordinates (u, v, λ). Thus, we can use (u, v) to parameterize the image
plane, and we will refer to (u, v) as image plane coordinates.

6.1.2 Perspective Projection

The image formation process is often modeled by the pinhole lens approximation. With this
approximation, the lens is considered to be an ideal pinhole, and the pinhole is located at
the focal center of the lens1. Light rays pass through this pinhole, and intersect the image
plane.

Let P be a point in the world with coordinates x, y, z (relative to the camera frame).
Let p denote the projection of P onto the image plane with coordinates (u, v, λ). Under the

1Note that in our mathematical model, illustrated in Figure 6.1, we have placed the pinhole behind the
image plane in order to simplify the model.

6.1. THE GEOMETRY OF IMAGE FORMATION 133

Z

Y

object

X

Image plane

image
center of projection

(u,v)

P = (x,y,z)

λ

Figure 6.1: Camera coordinate frame.

pinhole assumption, P , p and the origin of the camera frame will be collinear. This can is
illustrated in Figure 6.1. Thus, for some unknown positive k we have

k





x
y
z



 =





u
v
λ



 (6.1)

which can be rewritten as the system of equations:

kx = u, (6.2)

ky = v, (6.3)

kz = λ. (6.4)

This gives k = λ/z, which can be substituted into (6.2) and (6.3) to obtain

u = λ
x

z
, v = λ

y

z
. (6.5)

These are the well-known equations for perspective projection.

6.1.3 The Image Plane and the Sensor Array

As described above, the image is a discrete array of gray level values. We will denote the
row and column indices for a pixel by the coordinates (r, c). In order to relate digital images
to the 3D world, we must determine the relationship between the image plane coordinates,
(u, v), and indices into the pixel array of pixels, (r, c).

We typically define the origin of this pixel array to be located at a corner of the image
(rather than the center of the image). Let the pixel array coordinates of the pixel that

134 CHAPTER 6. COMPUTER VISION

contains the principal point be given by (or, oc). In general, the sensing elements in the
camera will not be of unit size, nor will they necessarily be square. Denote the sx and
sy the horizontal and vertical dimensions (respectively) of a pixel. Finally, it is often the
case that the horizontal and vertical axes of the pixel array coordinate system point in
opposite directions from the horizontal and vertical axes of the camera coordinate frame2.
Combining these, we obtain the following relationship between image plane coordinates and
pixel array coordinates,

− u

sx
= (r − or), − v

sy
= (c− oc). (6.6)

which gives,
u = −sx(r − or), v = −sy(c− oc). (6.7)

Note that the coordinates (r, c) will be integers, since they are the discrete indices into
an array that is stored in computer memory. Therefore, it is not possible to obtain the
exact image plane coordinates for a point from the (r, c) coordinates.

6.2 Camera Calibration

The objective of camera calibration is to determine all of the parameters that are necessary
to predict the image pixel coordinates (r, c) of the projection of a point in the camera’s
field of view, given that the coordinates of that point with respect to the world coordinate
frame are know. In other words, given the coordinates of P relative to the world coordinate
frame, after we have calibrated the camera we will be able to predict (r, c), the image pixel
coordinates for the projection of this point.

6.2.1 Extrinsic Camera Parameters

To this point, in our derivations of the equations for perspective projection, we have dealt
only with coordinates expressed relative to the camera frame. In typical robotics applica-
tions, tasks will be expressed in terms of the world coordinate frame, and it will therefore be
necessary to perform coordinate transformations. If we know the position and orientation
of the camera frame relative to the world coordinate frame we have

xw = Rw

c x
c +Ow

c (6.8)

or, if we know xw and wish to solve for xc,

xc = Rc

w(xw −Ow

c) (6.9)

In the remainder of this section, to simplify notation we will define

R = Rc

w, T = −Rc

wO
w

c . (6.10)

2This is an artifact of our choice to place the center of projection behind the image plane. The directions
of the pixel array axes may vary, depending on the frame grabber.

6.2. CAMERA CALIBRATION 135

Thus,
xc = Rxw + T (6.11)

Cameras are typically mounted on tripods, or on mechanical positioning units. In the
latter case, a popular configuration is the pan/tilt head. A pan/tilt head has two degrees
of freedom: a rotation about the world z axis and a rotation about the pan/tilt head’s x
axis. These two degrees of freedom are analogous to the those of a human head, which can
easily look up or down, and can turn from side to side. In this case, the rotation matrix R
is given by

R = Rz,θRx,α, (6.12)

where θ is the pan angle and α is the tilt angle. More precisely, θ is the angle between the
world x-axis and the camera x-axis, about the world z-axis, while α is the angle between
the world z-axis and the camera z-axis, about the camera x-axis.

6.2.2 Intrinsic Camera Parameters

Using the pinhole model, we obtained the following equations that map the coordinates of
a point expressed with respect to the camera frame to the corresponding pixel coordinates:

r = − u

sx
+ or, c = − v

sy
+ oc, u = λ

x

z
v = λ

y

z
. (6.13)

These equations can be combined to give

r = − λ

sx

x

z
+ or, c = − λ

sy

y

z
+ oc, (6.14)

Thus, once we know the values of the parameters λ, sx, or, sy, oc we can determine (r, c)
from (x, y, z), where (x, y, z) are coordinates relative to the camera frame. In fact, we don’t
need to know all of λ, sx, sy; it is sufficient to know the ratios

fx = − λ

sx
fy = − λ

sy
. (6.15)

These parameters, fx, or, fy, oc are known as the intrinsic parameters of the camera. They
are constant for a given camera, and do not change when the camera moves.

6.2.3 Determining the Camera Parameters

The task of camera calibration is to determine the intrinsic and extrinsic parameters of the
camera. We will proceed by first determining the parameters associated with the image
center, and then solving for the remaining parameters.

Of all the camera parameters, or, oc (the image pixel coordinates of the principal point)
are the easiest to determine. This can be done by using the idea of vanishing points.
Although a full treatment of vanishing points is beyond the scope of this text, the idea is
simple: a set of parallel lines in the world will project onto image lines that intersect at a

136 CHAPTER 6. COMPUTER VISION

single point, and this intersection point is known as a vanishing point. The vanishing points
for three mutually orthogonal sets of lines in the world will define a triangle in the image.
The orthocenter of this triangle (i.e., the point at which the three altitudes intersect) is the
image principal point (a proof of this is beyond the scope of this text). Thus, a simple way
to compute the principal point is to position a cube in the workspace, find the edges of the
cube in the image (this will produce the three sets of mutually orthogonal parallel lines),
compute the intersections of the image lines that correspond to each set of parallel lines in
the world, and determine the orthocenter for the resulting triangle.

Once we know the principal point, we proceed to determine the remaining camera param-
eters. This is done by constructing a linear system of equations in terms of the known coordi-
nates of points in the world and the pixel coordinates of their projections in the image. The
unknowns in this system are the camera parameters. Thus, the first step in this stage of cali-
bration is to acquire a data set of the form r1, c1, x1, y1, z1, r2, c2, x2, y2, z2, · · · rN , cN , xN , yN , zN ,
in which ri, ci are the image pixel coordinates of the projection of a point in the world with
coordinates xi, yi, zi relative to the world coordinate frame. This acquisition is often done
manually, e.g., by having a robot move a small bright light to known x, y, z coordinates in
the world, and then hand selecting the corresponding image point.

Once we have acquired the data set, we proceed to set up the linear system of equations.
The extrinsic parameters of the camera are given by

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 , T =





Tx
Ty
Tz



 . (6.16)

With respect to the camera frame, the coordinates of a point in the world are thus given by

xc = r11x+ r12y + r13z + Tx (6.17)

yc = r21x+ r22y + r23z + Ty (6.18)

zc = r31x+ r32y + r33z + Tz. (6.19)

Combining this with (6.14) we obtain

r − or = −fx
xc

zc
= −fx

r11x+ r12y + r13z + Tx
r31x+ r32y + r33z + Tz

(6.20)

c− oc = −fy
yc

zc
= −fy

r21x+ r22y + r23z + Ty
r31x+ r32y + r33z + Tz

. (6.21)

Since we know the coordinates of the principal point, we an simplify these equations by
using the simple coordinate transformation

r ← r − or, c← c− oc. (6.22)

We now write the two transformed projection equations as functions of the unknown vari-
ables: rij , Tx, Ty, Tz, fx, fy. This is done by solving each of these equations for zc, and

6.2. CAMERA CALIBRATION 137

setting the resulting equations to be equal to one another. In particular, for the data points
ri, ci, xi, yi, zi we have

rify(r21xi + r22yi + r23zi + Ty) = cifx(r11xi + r12yi + r13zi + Tx). (6.23)

We define α = fx/fy and rewrite this as:

rir21xi + rir22yi + rir23zi + riTy − αcir11xi − αcir12yi − αcir13zi − αciTx = 0. (6.24)

We can combine the N such equations into the matrix equation



























r1x1 r1y1 r1z1 r1 −c1x1 −c1y1 −c1z1 −c1
r2x2 r2y2 r2z2 r2 −c2x2 −c2y2 −c2z2 −c2

...
...

...
...

...
...

...
...

rNxN rNyN rNzN rN −cNxN −cNyN −cNzN −cN



















































r21
r22
r23
Ty
αr11
αr12
αr13
αTx

























= 0 (6.25)

This is an equation of the form Ax = 0. As such, if x̄ = [x̄1, · · · , x̄8]
T is a solution, for

(6.25) we only know that this solution is some scalar multiple of the desired solution, x,
i.e.,

x̄ = k[r21, r22, r23, Ty, αr11, αr12, αr13, αTx]
T , (6.26)

in which k is an unknown scale factor.
In order to solve for the true values of the camera parameters, we can exploit constraints

that arise from the fact that R is a rotation matrix. In particular,

(x̄2
1 + x̄2

2 + x̄2
3)

1
2 = (k2(r221 + r222 + r223))

1
2 = |k|, (6.27)

and likewise
(x̄2

5 + x̄2
6 + x̄2

7)
1
2 = (α2k2(r221 + r222 + r223))

1
2 = α|k| (6.28)

(note that by definition, α > 0).
Our next task is to determine the sign of k. Using equations (6.14) we see that r×xc < 0

(recall that we have used the coordinate transformation r ← r−or). Therefore, to determine
the sign of k, we first assume that k > 0. If r(r11x+ r12y + r13z + Tx) < 0, then we know
that we have made the right choice and k > 0; otherwise, we know that k < 0.

At this point, we know the values for k, α, r21, r22, r23, r11, r12, r13, Tx, TY , and all that
remains is to determine Tz, fx, fy. Since α = fx/fy, we need only determine Tz and fx.
Returning again to the projection equations, we can write

r = −fx
xc

zc
= −fx

r11x+ r12y + r13z + Tx
r31x+ r32y + r33z + Tz

(6.29)

138 CHAPTER 6. COMPUTER VISION

Using an approach similar to that used above to solve for the first eight parameters, we can
write this as the linear system

r(r31x+ r32y + r33z + Tz) = −fx(r11x+ r12y + r13z + Tx) (6.30)

which can easily be solved for TZ and fx.

6.3 Segmentation by Thresholding

Segmentation is the process by which an image is divided into meaningful components.
Segmentation has been the topic of computer vision research since its earliest days, and
the approaches to segmentation are far too numerous to survey here. These approaches are
sometimes concerned with finding features in an image (e.g., edges), and sometimes con-
cerned with partitioning the image into homogeneous regions (region-based segmentation).
In many practical applications, the goal of segmentation is merely to divide the image into
two regions: one region that corresponds to an object in the scene, and one region that
corresponds to the background. In many industrial applications, this segmentation can
be accomplished by a straight-forward thresholding approach. Pixels whose gray level is
greater than the threshold are considered to belong to the object, and pixels whose gray
level is less than or equal to the threshold are considered to belong to the background.

In this section we will describe an algorithm that automatically selects a threshold.
This basic idea behind the algorithm is that the pixels should be divided into two groups
(background and object), and that the intensities of the pixels in a particular group should
all be fairly similar. To quantify this idea, we will use some standard techniques from
statistics. Thus, we begin the section with a quick review of the necessary concepts from
statistics and then proceed to describe the threshold selection algorithm.

6.3.1 A Brief Statistics Review

Many approaches to segmentation exploit statistical information contained in the image.
In this section, we briefly review some of the more useful statistical concepts that are used
by segmentation algorithms.

The basic premise for most of these statistical concepts is that the gray level value
associated with a pixel in an image is a random variable that takes on values in the set
{0, 1, · · ·N − 1}. Let P (z) denote the probability that a pixel has gray level value z. In
general, we will not know this probability, but we can estimate it with the use of a histogram.
A histogram is an array, H, that encodes the number of occurrences of each gray level value.
In particular, the entry H[z] is the number of times gray level value z occurs in the image.
Thus, 0 ≤ H[z] ≤ Nrows × Ncols for all z. An algorithm to compute the histogram for an
image is shown in figure 6.2.

Given the histogram for the image, we estimate the probability that a pixel will have
gray level z by

P (z) =
H[z]

Nrows ×Ncols
. (6.31)

6.3. SEGMENTATION BY THRESHOLDING 139

For i = 0 to N − 1
H[i]← 0

For r = 0 to Nrows − 1
For c = 0 to Ncols − 1

Index← Image(r, c)
H[Index]← H[Index] + 1

Figure 6.2: Pseudo-code to compute an image histogram.

Thus, the image histogram is a scaled version of our approximation of P .
Given P , we can compute the average, or mean value of the gray level values in the

image. We denote the mean by µ, and compute it by

µ =
N−1
∑

z=0

zP (z). (6.32)

In many applications, the image will consist of one or more objects against some back-
ground. In such applications, it is often useful to compute the mean for each object in the
image, and also for the background. This computation can be effected by constructing indi-
vidual histogram arrays for each object, and for the background, in the image. If we denote
by Hi the histogram for the ith object in the image (where i = 0 denotes the background),
the mean for the ith object is given by

µi =

N−1
∑

z=0

z
Hi[z]

∑N−1
z=0 Hi[z]

, (6.33)

which is a straightforward generalization of (6.32). The term

Hi[z]
∑N−1

z=0 Hi[z]

is in fact an estimate of the probability that a pixel will have gray level value z given that the
pixel is a part of object i in the image. For this reason, µi is sometimes called a conditional
mean.

The mean conveys useful, but very limited information about the distribution of grey
level values in an image. For example, if half or the pixels have gray value 127 and the
remaining half have gray value 128, the mean will be µ = 127.5. Likewise, if half or the
pixels have gray value 255 and the remaining half have gray value 0, the mean will be
µ = 127.5. Clearly these two images are very different, but this difference is not reflected
by the mean. One way to capture this difference is to compute the the average deviation
of gray values from the mean. This average would be small for the first example, and large

140 CHAPTER 6. COMPUTER VISION

for the second. We could, for example, use the average value of |z − µ|; however, it will
be more convenient mathematically to use the square of this value instead. The resulting
quantity is known as the variance, which is defined by

σ2 =
N−1
∑

z=0

(z − µ)2P (z). (6.34)

As with the mean, we can also compute the conditional variance, σ2
i for each object in the

image

σ2
i =

N−1
∑

z=0

(z − µi)2
Hi[z]

∑N−1
z=0 Hi[z]

. (6.35)

6.3.2 Automatic Threshold Selection

We are now prepared to develop an automatic threshold selection algorithm. We will assume
that the image consists of an object and a background, and that the background pixels have
gray level values less than or equal to some threshold while the object pixels are above the
threshold. Thus, for a given threshold value, zt, we divide the image pixels into two groups:
those pixels with gray level value z ≤ zt, and those pixels with gray level value z > zt.
We can compute the means and variance for each of these groups using the equations of
Section 6.3.1. Clearly, the conditional means and variances depend on the choice of zt, since
it is the choice of zt that determines which pixels will belong to each of the two groups.
The approach that we take in this section is to determine the value for zt that minimizes a
function of the variances of these two groups of pixels.

In this section, it will be convenient to rewrite the conditional means and variances in
terms of the pixels in the two groups. To do this, we define qi(zt) as the probability that a
pixel in the image will belong to group i for a particular choice of threshold, zt. Since all
pixels in the background have gray value less than or equal to zt and all pixels in the object
have gray value greater than zt, we can define qi(zt) for i = 0, 1 by

q0(zt) =

∑zt
z=0H[z]

(Nrows ×Ncols)
, q1(zt) =

∑N−1
z=zt+1H[z]

(Nrows ×Ncols)
. (6.36)

We now rewrite (6.33) as

µi =

N−1
∑

z=0

z
Hi[z]

∑N−1
z=0 Hi[z]

=

N−1
∑

z=0

z
Hi[z]/(Nrows ×Ncols)

∑N−1
z=0 Hi[z]/(Nrows ×Ncols)

Using again the fact that the two pixel groups are defined by the threshold zt, we have

H0[z]

(Nrows ×Ncols)
=

P (z)

q0(zt)
, z ≤ zt and

H1[z]

(Nrows ×Ncols)
=

P (z)

q1(zt)
, z > zt.

(6.37)

6.3. SEGMENTATION BY THRESHOLDING 141

Thus, we can write the conditional means for the two groups as

µ0(zt) =

zt
∑

z=0

z
P (z)

q0(zt)
, µ1(zt) =

N−1
∑

z=zt+1

z
P (z)

q1(zt)
. (6.38)

Similarly, we can write the equations for the conditional variances by

σ2
0(zt) =

zt
∑

z=0

(z − µ0(zt))
2 P (z)

q0(zt)
, σ2

1(zt) =
N
∑

z=zt+1

(z − µ1(zt))
2 P (z)

q1(zt)
. (6.39)

We now turn to the selection of zt. If nothing is known about the true values of µi or
σ2
i , how can we determine the optimal value of zt? To answer this question, recall that the

variance is a measure of the average deviation of pixel intensities from the mean. Thus, if
we make a good choice for zt, we would expect that the variances σ2

i (zt) would be small.
This reflects the assumption that pixels belonging to the object will be clustered closely
about µ1, pixels belonging to the background will be clustered closely about µ0. We could,
therefore, select the value of zt that minimizes the sum of these two variances. However,
it is unlikely that the object and background will occupy the same number of pixels in the
image; merely adding the variances gives both regions equal importance. A more reasonable
approach is to weight the two variances by the probability that a pixel will belong to the
corresponding region,

σ2
w(zt) = q0(zt)σ

2
0(zt) + q1(zt)σ

2
1(zt). (6.40)

The value σ2
w is known as the within-group variance. The approach that we will take is to

minimize this within-group variance.

At this point we could implement a threshold selection algorithm. The naive approach
would be to simply iterate over all possible values of zt and select the one for which σ2

w(zt)
is smallest. Such an algorithm performs an enormous amount of calculation, much of
which is identical for different candidate values of the threshold. For example, most of
the calculations required to compute σ2

w(zt) are also required to compute σ2
w(zt + 1); the

required summations change only slightly from one iteration to the next. Therefore, we
now turn our attention to an efficient algorithm.

To develop an efficient algorithm, we take two steps. First, we will derive the between-
group variance, σ2

b , which depends on the within-group variance and the variance over the
entire image. The between-group variance is a bit simpler to deal with than the within-
group variance, and we will show that maximizing the between-group variance is equivalent
to minimizing the within-group variance. Then, we will derive a recursive formulation for
the between-group variance that lends itself to an efficient implementation.

To derive the between-group variance, we begin by expanding the equation for the total
variance of the image, and then simplifying and grouping terms. The variance of the gray

142 CHAPTER 6. COMPUTER VISION

level values in the image is given by (6.34), which can be rewritten as

σ2 =

N−1
∑

z=0

(z − µ)2P (z)

=

zt
∑

z=0

(z − µ)2P (z) +

N−1
∑

z=zt+1

(z − µ)2P (z)

=

zt
∑

z=0

(z − µ0 + µ0 − µ)2P (z) +

N−1
∑

z=zt+1

(z − µ1 + µ1 − µ)2P (z)

=

zt
∑

z=0

[(z − µ0)
2 + 2(z − µ0)(µ0 − µ) + (µ0 − µ)2]P (z)

+
N−1
∑

z=zt+1

[(z − µ1)
2 + 2(z − µ1)(µ1 − µ) + (µ1 − µ)2]P (z). (6.41)

Note that the we have not explicitly noted the dependence on zt here. In the remainder of
this section, to simplify notation, we will refer to the group probabilities and conditional
means and variances as qi, µi, and σ2

i , without explicitly noting the dependence on zt. This
last expression (6.41) can be further simplified by examining the cross-terms

∑

(z − µi)(µi − µ)P (z) =
∑

zµiP (z)−
∑

zµP (z)−
∑

µ2
iP (z) +

∑

µiµP (z)

= µi
∑

zP (z)− µ
∑

zP (z)− µ2
i

∑

P (z) + µiµ
∑

P (z)

= µi(µiqi)− µ(µiqi)− µ2
i qi + µiµqi

= 0,

in which the summations are taken for z from 0 to zt for the background pixels (i.e., i = 0)
and z from zt + 1 to N − 1 for the object pixels (i.e., i = 1). Therefore, we can simplify
(6.41) to obtain

σ2 =

zt
∑

z=0

[(z − µ0)
2 + (µ0 − µ)2]P (z) +

N−1
∑

z=zt+1

[(z − µ1)
2 + (µ1 − µ)2]P (z)

= q0σ
2
0 + q0(µ0 − µ)2 + q1σ

2
1 + q1(µ1 − µ)2

= {q0σ2
0 + q1σ

2
1}+ {q0(µ0 − µ)2 + q1(µ1 − µ)2}

= σ2
w + σ2

b (6.42)

in which
σ2
b = q0(µ0 − µ)2 + q1(µ1 − µ)2. (6.43)

Since σ2 does not depend on the threshold value (i.e., it is constant for a specific image),
minimizing σ2

w is equivalent to maximizing σ2
b . This is preferable because σ2

b is a function

6.3. SEGMENTATION BY THRESHOLDING 143

only of the qi and µi, and is thus simpler to compute than σ2
w, which depends also on

the σ2
i . In fact, by expanding the squares in (6.43), using the facts that q1 = 1 − q0 and

µ = q1µ0 + q1µ1, we obtain

σ2
b = q0(1− q0)(µ0 − µ1)

2. (6.44)

The simplest algorithm to maximize σ2
b is to iterate over all possible threshold values,

and select the one that maximizes σ2
b . However, as discussed above, such an algorithm

performs many redundant calculations, since most of the calculations required to compute
σ2
b (zt) are also required to compute σ2

b (zt + 1). Therefore, we now turn our attention to
an efficient algorithm that maximizes σ2

b (zt). The basic idea for the efficient algorithm is
to re-use the computations needed for σ2

b (zt) when computing σ2
b (zt + 1). In particular, we

will derive expressions for the necessary terms at iteration zt + 1 in terms of expressions
that were computed at iteration zt. We begin with the group probabilities, and determine
the recursive expression for q0 as

q0(zt + 1) =

zt+1
∑

z=0

P (z) = P (zt + 1) +

zt
∑

z=0

P (z) = P (zt + 1) + q0(zt). (6.45)

In this expression, P (zt + 1) can be obtained directly from the histogram array, and q0(zt)
is directly available because it was computed on the previous iteration of the algorithm.
Thus, given the results from iteration zt, very little computation is required to compute the
value for q0 at iteration zt + 1.

For the conditional mean µ0(zt) we have

µ0(zt + 1) =

zt+1
∑

z=0

z
P (z)

q0(zt + 1)
(6.46)

=
(zt + 1)P (zt + 1)

q0(zt + 1)
+

zt
∑

z=0

z
P (z)

q0(zt + 1)
(6.47)

=
(zt + 1)P (zt + 1)

q0(zt + 1)
+

q0(zt)

q0(zt + 1)

zt
∑

z=0

z
P (z)

q0(zt)
(6.48)

=
(zt + 1)P (zt + 1)

q0(zt + 1)
+

q0(zt)

q0(zt + 1)
µ0(zt) (6.49)

Again, all of the quantities in this expression are available either from the histogram, or as
the results of calculations performed at iteration zt of the algorithm.

To compute µ1(zt + 1), we use the relationship µ = q0µ0 + q1µ1, which can be easily
obtained using (6.32) and (6.38). Thus, we have

µ1(zt + 1) =
µ− q0(zt + 1)µ0(zt + 1)

q1(zt + 1)
=
µ− q0(zt + 1)µ0(zt + 1)

1− q0(zt + 1)
. (6.50)

144 CHAPTER 6. COMPUTER VISION

(a) (b)

Figure 6.3: (a) A 300 × 300 pixel image with 256 gray levels. (b) Thresholded version of
the image in (a).

We are now equipped to construct a highly efficient algorithm that automatically selects
a threshold value that minimizes the within-group variance. This algorithm simply iterates
from 0 to N − 1 (where N is the total number of gray level values), computing q0, µ0, µ1

and σ2
b at each iteration using the recursive formulations given in (6.45), (6.49), (6.50) and

(6.44). The algorithm returns the value of zt for which σ2
b is largest. Figure ?? shows a

grey level image and the binary, thresholded image that results from the application of this
algorithm.

6.4 Connected Components

It is often the case that multiple objects will be present in a single image. When this occurs,
after thresholding there will be multiple connected components with gray level values that
are above the threshold. In this section, we will first make precise the notion of a connected
component, and then describe an algorithm that assigns a unique label to each connected
component, i.e., all pixels within a single connected component have the same label, but
pixels in different connected components have different labels.

In order to define what is meant by a connected component, it is first necessary to
define what is meant by connectivity. For our purposes, it is sufficient to say that a pixel,
A, with image pixel coordinates (r, c) is adjacent to four pixels, those with image pixel
coordinates (r − 1, c), (r + 1, c), (r, c+ 1), and (r, c− 1). In other words, each image pixel
A (except those at the edges of the image) has four neighbors: the pixel directly above,
directly below, directly to the right and directly to the left of pixel A. This relationship is
sometimes referred to as 4-connectivity, and we say that two pixels are 4-connected if they
are adjacent by this definition. If we expand the definition of adjacency to include those
pixels that are diagonally adjacent (i.e., the pixels with coordinates (r−1, c−1), (r−1, c+1),

6.4. CONNECTED COMPONENTS 145

(r + 1, c− 1), and (r + 1, c+ 1)), then we say that adjacent pixels are 8-connected. In this
text, we will consider only the case of 4-connectivity.

A connected component is a collection of pixels, S, such that for any two pixels, say P
and P ′, in S, there is a 4-connected path between them and this path is contained in S.
Intuitively, this definition means that it is possible to move from P to P ′ by “taking steps”
only to adjacent pixels without ever leaving the region S. The purpose of a component
labeling algorithm is to assign a unique label to each such S.

There are many component labeling algorithms that have been developed over the years.
Here, we describe a simple algorithm that requires two passes over the image. This algorithm
performs two raster scans of the image (note: a raster scan visits each pixel in the image by
traversing from left to right, top to bottom, in the same way that one reads a page of text).
On the first raster scan, when an object pixel P , (i.e., a pixel whose gray level is above the
threshold value), is encountered, its previously visited neighbors (i.e., the pixel immediately
above and the pixel immediately to the left of P) are examined, and if they have gray value
that is below the threshold (i.e., they are background pixels), a new label is given to P . This
is done by using a global counter that is initialized to zero, and is incremented each time
a new label is needed. If either of these two neighbors have already received labels, then
P is given the smaller of these, and in the case when both of the neighbors have received
labels, an equivalence is noted between those two labels. For example, in Figure 6.4, after
the first raster scan labels (2,3,4) are noted as equivalent. In the second raster scan, each
pixel’s label is replaced by the smallest label to which it is equivalent. Thus, in the example
of Figure 6.4, at the end of the second raster scan labels 3 and 4 have been replaced by the
label 2.

After this algorithm has assigned labels to the components in the image, it is not neces-
sarily the case that the labels will be the consecutive integers (1, 2, · · ·). Therefore, a second
stage of processing is sometimes used to relabel the components to achieve this. In other
cases, it is desirable to give each component a label that is very different from the labels of
the other components. For example, if the component labelled image is to be displayed, it is
useful to increase the contrast, so that distinct components will actually appear distinct in
the image (a component with the label 2 will appear almost indistinguishable from a com-
ponent with label 3 if the component labels are used as pixel gray values in the displayed
component labelled image). The results of applying this process to the image in Figure 6.3
are shown in Figure 6.5.

When there are multiple connected object components, it is often useful to process
each component individually. For example, we might like to compute the sizes of the
various components. For this purpose, it is useful to introduce the indicator function for a
component. The indicator function for component i, denoted by Ii, is a function that takes
on the value 1 for pixels that are contained in component i, and the value 0 for all other
pixels:

Ii(r, c) =

{

1 : pixel r, c is contained in component i
0 : otherwise

. (6.51)

We will make use of the indicator function below, when we discuss computing statistics

146 CHAPTER 6. COMPUTER VISION

0 0 0 0 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 X 0 0 X X 0
0 0 0 0 X 0 0 X X 0
0 0 0 0 X X X X X 0
0 X X X X X X X X 0
0 X X X X X X X X 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 2 2 2 2 0
0 4 4 4 2 2 2 2 2 0
0 4 4 4 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0

(a) (b)

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 2 2 X 2 0
0 4 4 4 X 2 2 2 2 0
0 4 4 4 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 2 2 0
0 0 0 0 2 0 0 2 2 0
0 0 0 0 2 2 2 2 2 0
0 2 2 2 2 2 2 2 2 0
0 2 2 2 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0

(c) (d)

Figure 6.4: The image in (a) is a simple binary image. Background pixels are denoted by
0 and object pixels are denoted by X. Image (b) shows the assigned labels after the first
raster scan. In image (c), an X denotes those pixels at which an equivalence is noted during
the first raster scan. Image (d) shows the final component labelled image.

6.5. POSITION AND ORIENTATION 147

Figure 6.5: The image of Figure 6.3 after connected components have been labelled.

associated with the various objects in the image.

6.5 Position and Orientation

The ultimate goal of a robotic system is to manipulate objects in the world. In order to
achieve this, it is necessary to know the positions and orientations of the objects that are
to be manipulated. In this section, we address the problem of determining the position and
orientation of objects in the image. If the camera has been calibrated, it is then possible
to use these image position and orientations to infer the 3D positions and orientations of
the objects. In general, this problem of inferring the 3D position and orientation from
image measurements can be a difficult problem; however, for many cases that are faced
by industrial robots we an obtain adequate solutions. For example, when grasping parts
from a conveyor belt, the depth, z, is fixed, and the perspective projection equations can
be inverted if z is known.

We begin the section with a general discussion of moments, since moments will be used
in the computation of both position and orientation of objects in the image.

6.5.1 Moments

Moments are functions defined on the image that can be used to summarize various aspects
of the shape and size of objects in the image. The i, j moment for the kth object, denoted
by mij(k), is defined by

mij(k) =
∑

r,c

ricjIk(r, c). (6.52)

From this definition, it is evident that m00 is merely number of pixels in the object. The
order of a moment is defined to be the sum i+ j. The first order moments are of particular

148 CHAPTER 6. COMPUTER VISION

interest when computing the centroid of an object, and they are given by

m10(k) =
∑

r,c

rIk(r, c), m01(k) =
∑

r,c

cIk(r, c). (6.53)

It is often useful to compute moments with respect to the object center of mass. By
doing so, we obtain characteristics that are invariant with respect to translation of the
object. These moments are called central moments. The i, j central moment for the kth

object is defined by

Cij(k) =
∑

r,c

(r − r̄)i(c− c̄)jIk(r, c), (6.54)

in which (r̄, c̄) are the coordinates for the center of mass, or centroid, of the object.

6.5.2 The Centroid of an Object

It is convenient to define the position of an object to be the object’s center of mass or
centroid. By definition, the center of mass of an object is that point (r̄, c̄) such that, if all
of the object’s mass were concentrated at (r̄, c̄) the first moments would not change. Thus,
we have

∑

r,c

r̄iIi(r, c) =
∑

r,c

rIi(r, c) ⇒ r̄i =

∑

r,c rIi(r, c)
∑

r,c Ii(r, c)
=
m10(i)

m00(i)
(6.55)

∑

r,c

c̄iIi(r, c) =
∑

r,c

cIi(r, c) ⇒ c̄i =

∑

r,c cIi(r, c)
∑

r,c Ii(r, c)
=
m01(i)

m00(i)
. (6.56)

Figure 6.6(a) shows the centroids for the connected components of the image of Figure 6.3.

6.5.3 The Orientation of an Object

We will define the orientation of an object in the image to be the orientation of an axis
that passes through the object such that the second moment of the object about that axis
is minimal. This axis is merely the two-dimensional equivalent of the axis of least inertia.

For a given line in the image, the second moment of the object about that line is given
by

L =
∑

r,c

d2(r, c)I(r, c) (6.57)

in which d(r, c) is the minimum distance from the pixel with coordinates (r, c) to the line.
Our task is to minimize L with respect to all possible lines in the image plane. To do this,
we will use the ρ, θ parameterization of lines, and compute the partial derivatives of L with
respect to ρ and θ. We find the minimum by setting these partial derivatives to zero.

6.5. POSITION AND ORIENTATION 149

(a) (b)

Figure 6.6: (a) The image of figure 6.3 showing the centroids of each component. (b) The
image of figure 6.3 showing the orientation of each component.

With the ρ, θ parameterization, a line consists of all those points x, y that satisfy

x cos θ + y sin θ − ρ = 0. (6.58)

Thus, (cos θ, sin θ) gives the unit normal to the line, and ρ gives the perpendicular distance
to the line from the origin. Under this parameterization, the distance from the line to the
point with coordinates (r, c) is given by

d(r, c) = r cos θ + c sin θ − ρ. (6.59)

Thus, our task is to find

L⋆ = min
ρ,θ

∑

r,c

(r cos θ + c sin θ − ρ)2I(r, c) (6.60)

We compute the partial derivative with respect to ρ as

d

dρ
L =

d

dρ

∑

r,c

(r cos θ + c sin θ − ρ)2I(r, c) (6.61)

= −2
∑

r,c

(r cos θ + c sin θ − ρ)I(r, c) (6.62)

= −2 cos θ
∑

r,c

rI(r, c)− 2 sin θ
∑

r,c

cI(r, c) + 2ρ
∑

r,c

I(r, c) (6.63)

= −2(cos θm10 + sin θm01 − ρm00) (6.64)

= −2(m00r̄ cos θ +m00c̄ sin θ − ρm00) (6.65)

= −2m00(r̄ cos θ + c̄ sin θ − ρ). (6.66)

150 CHAPTER 6. COMPUTER VISION

Now, setting this to zero we obtain

r̄ cos θ + c̄ sin θ − ρ = 0. (6.67)

But this is just the equation of a line that passes through the point (r̄, c̄), and therefore we
conclude that the inertia is minimized by a line that passes through the center of mass. We
can use this knowledge to simplify the remaining computations. In particular, define the
new coordinates (r′, c′) as

r′ = r − r̄, c′ = c− c̄. (6.68)

The line that minimizes L passes through the point r′ = 0, c′ = 0, and therefore its equation
can be written as

r′ cos θ + c′ sin θ = 0. (6.69)

Before computing the partial derivative of L (expressed in the new coordinate system)
with respect to θ, it is useful to perform some simplifications.

L =
∑

r,c

(r′ cos θ + c′ sin θ)2I(r, c) (6.70)

= cos2 θ
∑

r,c

(r′)2I(r, c) + 2 cos θ sin θ
∑

r,c

(r′c′)I(r, c) + sin2 θ
∑

r,c

(c′)2I(r, c) (6.71)

= C20 cos2 θ + 2C11 cos θ sin θ + C02 sin2 θ (6.72)

in which the Cij are the central moments given in (6.54). Note that the central moments
depend on neither ρ nor θ.

The final set of simplifications that we will make all rely on the double angle identities:

cos2θ =
1

2
+

1

2
cos 2θ (6.73)

sin2θ =
1

2
− 1

2
cos 2θ (6.74)

cosθ sin θ =
1

2
sin 2θ. (6.75)

Substituting these into our expression for L we obtain

L = C20(
1

2
+

1

2
cos 2θ) + 2C11(

1

2
sin 2θ) + C02(

1

2
− 1

2
cos 2θ) (6.76)

=
1

2
(C20 + C02) +

1

2
(C20 − C02) cos 2θ +

1

2
C11 sin 2θ (6.77)

It is now easy to compute the partial derivative with respect to θ:

d

dθ
L =

d

dθ

1

2
(C20 + C02) +

1

2
(C20 − C02) cos 2θ +

1

2
C11 sin 2θ (6.78)

= −(C20 − C02) sin 2θ + C11 cos 2θ, (6.79)

6.5. POSITION AND ORIENTATION 151

and we setting this to zero we obtain

tan 2θ =
C11

C20 − C02
. (6.80)

Figure 6.6(b) shows the orientations for the connected components of the image of Figure
6.3.

152 CHAPTER 6. COMPUTER VISION

Chapter 7

PATH PLANNING AND
COLLISION AVOIDANCE

In previous chapters, we have studied the geometry of robot arms, developing solutions for
both the forward and inverse kinematics problems. The solutions to these problems depend
only on the intrinsic geometry of the robot, and they do not reflect any constraints imposed
by the workspace in which the robot operates. In particular, they do not take into account
the possiblity of collision between the robot and objects in the workspace. In this chapter,
we address the problem of planning collision free paths for the robot. We will assume that
the initial and final configurations of the robot are specified, and that the problem is to find
a collision free path for the robot that connects them.

The description of this problem is deceptively simple, yet the path planning problem is
among the most difficult problems in computer science. The computational complexity of
the best known complete1 path planning algorithm grows exponentially with the number
of internal degrees of freedom of the robot. For this reason, for robot systems with more
than a few degrees of freedom, complete algorithms are not used in practice.

In this chapter, we treat the path planning problem as a search problem. The algorithms
we describe are not guaranteed to find a solution to all problems, but they are quite effective
in a wide range of practical applications. Furthermore, these algorithms are fairly easy to
implement, and require only moderate computation time for most problems.

We begin in Section 7.1 by introducing the notion of configuration space, and describing
how obstacles in the workspace can be mapped into the configuration space. We then
introduce path planning methods that use artificial potential fields in Sections 7.2 and 7.3.
The corresponding algorithms use gradient descent search to find a collision-free path to
the goal, and, as with all gradient descent methods, these algorithms can become trapped
in local minima in the potential field. Therefore, in Section 7.4 we describe how random
motions can be used to escape local minima. In Section 7.5 we describe another randomized
method known as the Probabilistic Roadmap (PRM) method. Finally, since each of these

1An algorithm is said to be complete if it finds a solution whenever one exists.

153

154 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

methods generates a sequence of configurations, we describe in Chapter 8 how polynomial
splines can be used to generate smooth trajectories from a sequence of configurations.

As in previous chapters, we will restrict our attention in this chapter to the geometric
aspects of the problem. In future chapters we will consider the problem of generating motor
torques to execute such a trajectory.

7.1 The Configuration Space

In Chapter 3, we learned that the forward kinematic map can be used to determine the
position and orientation of the end effector frame given the vector of joint variables. Fur-
thermore, the Ai matrices can be used to infer the position and orientation of the reference
frame for any link of the robot. Since each link of the robot is assumed to be a rigid body,
the Ai matrices can therefore be used to infer the position of any point on the robot, given
the values of the joint variables. In the path planning literature, a complete specification
of the location of every point on the robot is referred to as a configuration, and the set of
all possible configurations is referred to as the configuration space. For our purposes, the
vector of joint variables, q, provides a convenient representation of a configuration. We will
denote the configuration space by Q.

For a one link revolute arm, the configuration space is merely the set of orientations of the
link, and thusQ = S1, where S1 represents the unit circle. We could also sayQ = SO(2). In
fact, the choice of S1 or SO(2) is not particularly important, since these two are equivalent
representations. In either case, we can parameterize Q by a single parameter, the joint
angle θ1. For the two-link planar arm, we have Q = S1 × S1 = T 2, in which T 2 represents
the torus, and we can represent a configuration by q = (θ1, θ2). For a Cartesian arm, we
have Q = ℜ3, and we can represent a configuration by q = (d1, d2, d3) = (x, y, z).

Although we have chosen to represent a configuration by a vector of joint variables, the
notion of a configuration is more general than this. For example, as we saw in Chapter 2, for
any rigid two-dimensional object, we can specify the location of every point on the object
by rigidly attaching a coordinate frame to the object, and then specifying the position and
orientation of this frame. Thus, for a rigid object moving in the plane we can represent
a configuration by the triple q = (x, y, θ), and the configuration space can be represented
by Q = ℜ2 × SO(2). Again, this is merely one possible representation of the configuration
space, but it is a convenient one given the representations of position and orientation that
we have learned in preceeding chapters.

A collision occurs when the robot contacts an obstacle in the workspace. To describe
collisions, we introduce some additional notation. We will denote the robot by A, and by
A(q) the subset of the workspace that is occupied by the robot at configuration q. We
denote by Oi the obstacles in the workspace, and by W the workspace (i.e., the Cartesian
space in which the robot moves). To plan a collision free path, we must ensure that the
robot never reaches a configuration q that causes it to make contact with an obstacle in
the workspace. The set of configurations for which the robot collides with an obstacle is
referred to as the configuration space obstacle, and it is defined by

7.1. THE CONFIGURATION SPACE 155

QO = {q ∈ Q | A(q) ∩ O 6= ∅}.
Here, we define O = ∪Oi. The set of collision-free configurations, referred to as the free
configuration space, is then simply

Qfree = Q \ QO.

Example 7.1 A Rigid Body that Translates in the Plane.

b2b3

V O
4

V O
3

a3

V A
2

a2

a1

V A
1

V A
3

b1b4

V O
1

V O
2

(a) (b)

Figure 7.1: (a) a rigid body, A, in a workspace containing a single rectangular obstacle, O,
(b) illustration of the algorithm to construct QO, with the boundary of QO shown as the
dashed line.

Consider a simple gantry robot with two prismatic joints and forward kinematics given by
x = d1, y = d2. For this case, the robot’s configuration space is Q = ℜ2, so it is particularly
easy to visualize both the configuration space and the configuration space obstacle region. If
there is only one obstacle in the workspace and both the robot end-effector and the obstacle
are convex polygons, it is a simple matter to compute the configuration space obstacle region,
QO (we assume here that the arm itself is positioned above the workspace, so that the only
possible collisions are between the end-effector and obstacles the obstacle).

Let V A
i denote the vector that is normal to the ith edge of the robot and V O

i denote the
vector that is normal to the ith edge of the obstacle. Define ai to be the vector from the
origin of the robot’s coordinate frame to the ith vertex of the robot and bj to be the vector
from the origin of the world coordinate frame to the jth vertex of the obstacle. An example
is shown in Figure 7.1(a). The vertices of QO can be determined as follows.

• For each pair V O
j and V O

j−1, if V A
i points between −V O

j and −V O
j−1 then add to QO

the vertices bj − ai and bj − ai+1.

156 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

(a) (b)

Figure 7.2: (a) A two-link planar arm and a single polygonal obstacle. (b) The correspond-
ing configuration space obstacle region.

• For each pair V A
i and V A

i−1, if V O
j points between −V A

i and −V A
i−1 then add to QO

the vertices bj − ai and bj+1 − ai.

This is illustrated in Figure 7.1(b). Note that this algorithm essentially places the robot at
all positions where vertex-vertex contact between robot and obstacle are possible. The origin
of the robot’s local coordinate frame at each such configuration defines a vertex of QO. The
polygon defined by these vertices is QO.

If there are multiple convex obstacles Oi, then the configuration space obstacle region is
merely the union of the obstacle regions QOi, for the individual obstacles. For a nonconvex
obstacle, the configuration space obstacle region can be computed by first decomposing the
nonconvex obstacle into convex pieces, Oi, computing the C-space obstacle region, QOi for
each piece, and finally, computing the union of the QOi.
⋄

Example 7.2 A Two Link Planar Arm.

For robots with revolute joints, computation of QO is more difficult. Consider a two-
link planar arm in a workspace containing a single obstacle as shown in Figure 7.2(a). The
configuration space obstacle region is illustrated in 7.2(b). The horizontal axis in 7.2(b)
corresponds to θ1, and the vertical axis to θ2. For values of θ1 very near π/2, the first link
of the arm collides with the obstacle. Further, when the first link is near the obstacle (θ1
near π/2), for some values of θ2 the second link of the arm collides with the obstacle. The
region QO shown in 7.2(b) was computed using a discrete grid on the configuration space.
For each cell in the grid, a collision test was performed, and the cell was shaded when a

7.2. PATH PLANNING USING CONFIGURATION SPACE POTENTIAL FIELDS 157

collision occured. Thus, this is only an approximate representation of QO.

⋄
Computing QO for the two-dimensional case of Q = ℜ2 and polygonal obstacles is

straightforward, but, as can be seen from the two-link planar arm example, computing QO
becomes difficult for even moderately complex configuration spaces. In the general case
(e.g., articulated arms or rigid bodies that can both translate and rotate), the problem of
computing a representation of the configuration space obstacle region is intractable. One
of the reasons for this complexity is that the size of the representation of the configuration
space tends to grow exponentially with the number of degrees of freedom. This is easy to
understand intuitively by considering the number of n-dimensional unit cubes needed to fill
a space of size k. For the one dimensional case, k unit intervals will cover the space. For
the two-dimensional case, k2 squares are required. For the three-dimensional case, k3 cubes
are required, and so on. Therefore, in this chapter we will develop methods that avoid the
construction of an explicit representation of Qfree.

The path planning problem is to find a path from an initial configuration qinit to a final
configuration qfinal, such that the robot does not collide with any obstacle as it traverses
the path. More formally, A collision-free path from qinit to qfinal is a continuous map,
τ : [0, 1] → Qfree, with τ(0) = qinit and τ(1) = qfinal. We will develop path planning
methods that compute a sequence of discrete configurations (set points) in the configuration
space. In Chapter 8 we will show how smooth trajectories can be generated from such a
sequence.

7.2 Path Planning Using Configuration Space Potential Fields

As mentioned above, it is not feasible to build an explicit representation of Qfree. An
alternative is to develop a search algorithm that incrementally explores Qfree while searching
for a path. Such a search algorithm requires a strategy for exploring Qfree, and one of the
most popular is to use an artificial potential field to guide the search. In this section, we will
introduce artificial potential field methods. Here we describe how the potential field can be
constructed directly on the configuration space of the robot. However, as will become clear,
computing the gradient of such a field is not feasible in general, so in Section 7.3 we will
develop an alternative, in which the potential field is first constructed on the workspace,
and then its effects are mapped to the configuration space.

The basic idea behind the potential field approaches is as follows. The robot is treated
as a point particle in the configuration space, under the influence of an artificial potential
field U . The field U is constructed so that the robot is attracted to the final configuration,
qfinal, while being repelled from the boundaries of QO. If U is constructed appropriately,
there will be a single global minimum of U at qfinal, and no local minima. Unfortunately,
as we will discuss below, it is often difficult to construct such a field.

In general, the field U is an additive field consisting of one component that attracts the

158 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

robot to qfinal and a second component that repels the robot from the boundary of QO,

U(q) = Uatt(q) + Urep(q). (7.1)

Given this formulation, path planning can be treated as an optimization problem, i.e.,
find the global minimum in U , starting from initial configuration qinit. One of the easiest
algorithms to solve this problem is gradient descent. In this case, the negative gradient of
U can be considered as a force acting on the robot (in configuration space),

F (q) = −∇U(q) = −∇Uatt(q)−∇Urep(q). (7.2)

In the remainder of this section, we will describe typical choices for the attractive and
repulsive potential fields, and a gradient descent algorithm that can be used to plan paths
in this field.

7.2.1 The Attractive Field

There are several criteria that the potential field Uatt should satisfy. First, Uatt should be
monotonically increasing with distance from qfinal. The simplest choice for such a field is
a field that grows linearly with the distance from qfinal, a so-called conic well potential.
However, the gradient of such a field has unit magnitude everywhere but the origin, where
it is zero. This can lead to stability problems, since there is a discontinuity in the attractive
force at the origin. We prefer a field that is continuously differentiable, such that the
attractive force decreases as the robot approaches qfinal. The simplest such field is a field
that grows quadratically with the distance to qfinal. Let ρf (q) be the Euclidean distance
between q and qfinal, i.e., ρf (q) = ||q − qfinal||. Then we can define the quadratic field by

Uatt(q) =
1

2
ζρ2

f (q), (7.3)

in which ζ is a parameter used to scale the effects of the attractive potential. This field is
sometimes referred to as a parabolic well. For q = (q1, · · · qn)T , the gradient of Uatt is given
by

∇Uatt(q) = ∇1

2
ζρ2

f (q) (7.4)

= ∇1

2
ζ||q − qfinal||2 (7.5)

=
1

2
ζ∇
∑

(qi − qifinal)
2 (7.6)

= ζ(q1 − q1final, · · · , qn − qnfinal)
T (7.7)

= ζ(q − qfinal). (7.8)

Here, (7.7) follows since

∂

∂qj

∑

i

(qi − qifinal)
2 = 2(qj − qjfinal).

7.2. PATH PLANNING USING CONFIGURATION SPACE POTENTIAL FIELDS 159

So, for the parabolic well, the attractve force, Fatt(q) = −∇Uatt(q) is a vector directed
toward qfinal with magnitude linearly related to the distance from q to qfinal.

Note that while Fatt(q) converges linearly to zero as q approaches qfinal (which is a
desirable property), it grows without bound as q moves away from qfinal. If qinit is very far
from qfinal, this may produce an attractive force that is too large. For this reason, we may
choose to combine the quadratic and conic potentials so that the conic potential attracts
the robot when it is very distant from qfinal and the quadratic potential attracts the robot
when it is near qfinal. Of course it is necessary that the gradient be defined at the boundary
between the conic and quadratic portions. Such a field can be defined by

Uatt(q) =























1

2
ζρ2

f (q) : ρf (q) ≤ d

dζρf (q)− 1

2
ζd2 : ρf (q) > d

. (7.9)

and in this case we have

Fatt(q) = −∇Uatt(q) =















−ζ(q − qfinal) : ρf (q) ≤ d

−dζ(q − qfinal)

ρf (q)
: ρf (q) > d

. (7.10)

The gradient is well defined at the boundary of the two fields since at the boundary d =
ρf (q), and the gradient of the quadratic potential is equal to the gradient of the conic
potential, Fatt(q) = −ζ(q − qfinal).

7.2.2 The Repulsive field

There are several criteria that the repulsive field should satisfy. It should repel the robot
from obstacles, never allowing the robot to collide with an obstacle, and, when the robot is
far away from an obstacle, that obstacle should exert little or no influence on the motion of
the robot. One way to achieve this is to define a potential that goes to infinity at obstacle
boundaries, and drops to zero at a certain distance from the obstacle. If we define ρ0 to
be the distance of influence of an obstace (i.e., an obstacle will not repel the robot if the
distance from the robot to the obstacle is greater that ρ0), one potential that meets these
criteria is given by

Urep(q) =



















1

2
η

(

1

ρ(q)
− 1

ρ0

)2

: ρ(q) ≤ ρ0

0 : ρ(q) > ρ0

(7.11)

in which ρ(q) is the shortest distance from q to a configuration space obstacle boundary,
and η is a scalar gain coefficient that determines the influence of the repulsive field. If QO

160 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

CB1 CB2

F rep

F rep

Figure 7.3: Situation in which the gradient of the repuslive potential of (7.11) is not con-
tinuous.

consists of a single convex region, the corresponding repulsive force is given by the negative
gradient of the repulsive field,

Frep(q) =















η

(

1

ρ(q)
− 1

ρ0

)

1

ρ2(q)
∇ρ(q) : ρ(q) ≤ ρ0

0 : ρ(q) > ρ0

. (7.12)

When QO is convex, the gradient of the distance to the nearest obstacle is given by

∇ρ(q) =
q − b

||q − b|| , (7.13)

in which b is the point in the boundary of QO that is nearest to q. The derivation of (7.12)
and (7.13) are left as exercises ??.

If QO is not convex, then ρ won’t necessarily be differentiable everywhere, which implies
discontinuity in the force vector. Figure 7.3 illustrates such a case. Here QO contains two
rectangular obstacles. For all configurations to the left of the dashed line, the force vector
points to the right, while for all configurations to the right of the dashed line the force
vector points to the left. Thus, when the configuration of the robot crosses the dashed line,
a discontinuity in force occurs. There are various ways to deal with this problem. The
simplest of these is merely to ensure that the regions of influence of distinct obstacles do
not overlap.

7.2.3 Gradient Descent Planning

Gradient descent is a well known approach for solving optimization problems. The idea is
simple. Starting at the initial configuration, take a small step in the direction of the negative
gradient (i.e., in the direction decreases the potential as quickly as possible). This gives a

7.3. PLANNING USING WORKSPACE POTENTIAL FIELDS 161

new configuration, and the process is repeated until the final configuration is reached. More
formally, we can define a gradient descent algorithm as follows.

1. q0 ← qinit, i← 0
2. IF qi 6= qfinal

qi+1 ← qi + αi
F (qi)

||F (qi)||
i← i+ 1

ELSE return < q0, q1 · · · qi >
3. GO TO 2

In this algorithm, the notation qi is used to denote the value of q at the ith iteration (not
the ith componenent of the vector q) and the final path consists of the sequence of iterates
< q0, q1 · · · qi >. The value of the scalar αi determines the step size at the ith iteration; it
is multiplied by the unit vector in the direction of the resultant force. It is important that
αi be small enough that the robot is not allowed to “jump into” obstacles, while being large
enough that the algorithm doesn’t require excessive computation time. In motion planning
problems, the choice for αi is often made on an ad hoc or empirical basis, perhaps based
on the distance to the nearest obstacle or to the goal. A number of systematic methods for
choosing αi can be found in the optimization literature [?]. The constants ζ and η used to
define Uatt and Urep essentially arbitrate between attractive and repulsive forces. Finally,
it is unlikely that we will ever exactly satisfy the condition qi = qfinal. For this reason, this
condition is often replaced with the more forgiving condition ||qi− qfinal|| < ǫ, in which ǫ is
chosen to be sufficiently small, based on the task requirements.

The problem that plagues all gradient descent algorithms is the possible existence of
local minima in the potential field. For appropriate choice of αi, it can be shown that the
gradient descent algorithm is guaranteed to converge to a minimum in the field, but there
is no guarantee that this minimum will be the global minimum. In our case, this implies
that there is no guarantee that this method will find a path to qfinal. An example of this
situation is shown in Figure 7.4. We will discuss ways to deal this below in Section 7.4.

One of the main difficulties with this planning approach lies in the evaluation of ρ and
∇ρ. In the general case, in which both rotational and translational degrees of freedom are
allowed, this becomes even more difficult. We address this general case in the next section.

7.3 Planning Using Workspace Potential Fields

As described above, in the general case, it is extremely difficult to compute an explicit
representation of QO, and thus it can be extremely difficult to compute ρ and ∇ρ. In fact,
in general for a curved surface there does not exist a closed form expression for the distance
from a point to the surface. Thus, even if we had access to an explicit representation of
QO, it would still be difficult to compute ρ and ∇ρ in (7.12). In order to deal with these
difficulties, in this section we will modify the potential field approach of Section 7.2 so that
the potential function is defined on the workspace, W, instead of the configuration space,

162 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

qfinal

local minimum

qinit

Figure 7.4: This figure illustrates the progress of a gradient descent algorithm from qinit to
a local minimum in the field U .

Q. Since W is a subset of a low dimensional space (either ℜ2 or ℜ3), it will be much easier
to implement and evaluate potential functions over W than over Q.

We begin by describing a method to define an appropriate potential field on the workspace.
This field should have the properties that the potential is at a minimum when the robot
is in its goal configuration, and the potential should grow without bound as the robot ap-
proaches an obstacle. As above, we will define a global potential field that is the sum of
attractive and repulsive fields. Once we have constructed the workspace potential, we will
develop the tools to map its gradient to changes in the joint variable values (i.e., we will map
workspace forces to changes in configuration). Finally, we will present a gradient descent
algorithm similar to the one presented above, but which can be applied to robots with more
complicated kinematics.

7.3.1 Defining Workspace Potential Fields

As before, our goal in defining potential functions is to construct a field that repels the robot
from obstacles, with a global minimum that corresponds to qfinal. In the configuration space,
this task was conceptually simple because the robot was represented by a single point, which
we treated as a point mass under the influence of a potential field. In the workspace, things
are not so simple; the robot is an articulated arm with finite volume. Evaluating the effect
of a potential field over the arm would involve computing an integral over the volume of
the arm, and this can be quite complex (both mathematically and computationally). An
alternative approach is to select a subset of points on the robot, called control points, and
to define a workspace potential for each of these points. The global potential is obtained by
summing the effects of the individual potential functions. Evaluating the effect a particular
potential field on a single point is no different than the evaluations required in Section 7.2,
but the required distance and gradient calculations are much simpler.

LetAatt = {a1,a2 · · ·an} be a set of control points used to define the attractive potential
fields. For an n-link arm, we could use the centers of mass for the n links, or the origins

7.3. PLANNING USING WORKSPACE POTENTIAL FIELDS 163

for the DH frames (excluding the fixed frame 0). We denote by ai(q) the position of the
ith control point when the robot is at configuration q. For each ai ∈ Aatt we can define an
attractive potential by

Uatti(q) =















1
2ζi||ai(q)− ai(qfinal)||2 : ||ai(q)− ai(qfinal)|| ≤ d

dζi||ai(q)− ai(qfinal)|| −
1

2
ζid

2 : ||ai(q)− ai(qfinal)|| > d
. (7.14)

For the single point ai, this function is analogous the attractive potential defined in Section
7.2; it combines the conic and quadratic potentials, and reaches its global minimum when
the control point reaches its goal position in the workspace. If Aatt contains a sufficient
number of independent control points (the origins of the DH frames, e.g.), then when all
control points reach their global minimum potential value, the configuration of the arm will
be qfinal.

With this potential function, the workspace force for attractive control point ai is defined
by

Fatt,i(q) = −∇Uatti(q) (7.15)

=











−ζi(ai(q)− ai(qfinal)) : ||ai(q)− ai(qfinal)|| ≤ d

−dζi(ai(q)− ai(qfinal))
||ai(q)−ai(qfinal)||

: ||ai(q)− ai(qfinal)|| > d

. (7.16)

For the workspace repulsive potential fields, we will select a set of fixed control points
on the robot Arep = {a1, · · · ,am}, and define the repulsive potential for aj as

Urepj(q) =



















1

2
ηj

(

1

ρ(aj(q))
− 1

ρ0

)2

: ρ(aj(q)) ≤ ρ0

0 : ρ(aj(q)) > ρ0

, (7.17)

in which ρ(aj(q)) is the shortest distance between the control point aj and any workspace
obstacle, and ρ0 is the workspace distance of influence in the worksoace for obstacles. The
negative gradient of each Urepj corresponds to a workspace repulsive force,

Frep,j(q) =















ηj

(

1

ρ(aj(q))
− 1

ρ0

)

1

ρ2(aj(q))
∇ρ(aj(q)) : ρ(aj(q)) ≤ ρ0

0 : ρ(aj(q)) > ρ0

, (7.18)

in which the notation ∇ρ(aj(q)) indicates the gradient ∇ρ(x) evaluated at x = aj(q). If
b is the point on the workspace obstacle boundary that is closest to the repulsive control

164 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

A

E1a1 a2

O

Figure 7.5: The repulsive forces exerted on the robot vertices a1 and a2 may not be sufficient
to prevent a collision between edge E1 and the obstacle.

point aj , then ρ(aj(q)) = ||aj(q)− b||, and its gradient is

∇ρ(x)

∣

∣

∣

∣ x=aj(q)
=

aj(q)− b

||aj(q)− b|| , (7.19)

i.e., the unit vector directed from b toward aj(q).
It is important to note that this selection of repulsive control points does not guarantee

that the robot cannot collide with an obstacle. Figure 7.5 shows an example where this
is the case. In this figure, the repulsive control points a1 and a2 are very far from the
obstacle O, and therefore the repulsive influence may not be great enough to prevent the
robot edge E1 from colliding with the obstacle. To cope with this problem, we can use a
set of floating repulsive control points, afloat,i, typically one per link of the robot arm. The
floating control points are defined as points on the boundary of a link that are closest to
any workspace obstacle. Obviously the choice of the afloat,i depends on the configuration
q. For the example shown in Figure 7.5, afloat would be located at the center of edge E1,
thus repelling the robot from the obstacle. The repulsive force acting on afloat is defined
in the same way as for the other control points, using (7.18).

7.3.2 Mapping workspace forces to joint forces and torques

Above we have constrructed potential fields in the robot’s workspace, and these fields induce
artificial forces on the individual control points on the robot. In this section, we describe
how these forces can be used to drive a gradient descent algorithm on the configuration
space.

Suppose a force, F were applied to a point on the robot arm. Such a force would induce
forces and torques on the robot’s joints. If the joints did not resist these forces, a motion
would occur. This is the key idea behind mapping artificial forces in the workspace to
motions of the robot arm. Therefore, we now derive the relationship between forces applied
to the robot arm, and the resulting forces and torques that are induced on the robot joints.

7.3. PLANNING USING WORKSPACE POTENTIAL FIELDS 165

Let F denote the vector of joint torques (for revolute joints) and forces (for prismatic
joints) induced by the workspace force. As we will describe in Chapter 9, the principle of
virtual work can be used to derive the relationship between F and F . Let (δx, δy, δz)T be
a virtual displacement in the workspace and let δq be a virtual displacement of the robot’s
joints. Then, recalling that work is the inner product of force and displacement, by applying
the principle of virtual work we obtain

F · (δx, δy, δz)T = F · δq (7.20)

which can be written as

FT (δx, δy, δz)T = F T δq. (7.21)

Now, recall from Chapter 8 that




δx
δy
δz



 = Jδq,

in which J is the Jacobian of the forward kinematic map for linear velocity (i.e., the top
three rows of the manipulator Jacobian). Substituting this into (7.20) we obtain

FTJδq = F T δq (7.22)

(7.23)

and since this must hold for all virtual displacements δq, we obtain

FTJ = F T (7.24)

which implies that

JTF = F. (7.25)

Thus we see that one can easily map forces in the workspace to joint forces and torques
using (7.25).

Example 7.3 A Force Acting on a Vertex of a Polygonal Robot.

Consider the polygonal robot shown in Figure 7.6. The vertex a has coordinates (ax, ay)
T

in the robot’s local coordinate frame. Therefore, if the robot’s configuration is given by
q = (x, y, θ), the forward kinematic map for vertex a (i.e., the mapping from q = (x, y, θ)
to the global coordinates of the vertex a) is given by

a(x, y, θ) =

[

x+ ax cos θ − ay sin θ
y + ax sin θ + ay cos θ

]

. (7.26)

The corresponding Jacobian matrix is given by

Ja(x, y, θ) =

[

1 0 −ax sin θ − ay cos θ
0 1 ax cos θ − ay sin θ

]

(7.27)

166 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

ax

yA

F

ay

xA
θ

a

Figure 7.6: The robot A, with coordinate frame oriented at angle θ from the world frame,
and vertex a with local coordinates (ax, ay).

Therefore, the configuration space force is given by




Fx
Fy
Fθ



 =





1 0
0 1

−ax sin θ − ay cos θ ax cos θ − ay sin θ





[

Fx
Fy

]

=





Fx
Fy

−Fx(ax sin θ − ay cos θ) + Fy(ax cos θ − ay sin θ)



 (7.28)

and Fθ corresponds to the torque exerted about the origin of the robot frame.
In this simple case, one can use basic physics to arrive at the same result. In particular,

recall that a force, F , exerted at point, a, produces a torque, τ , about the point OA, and
this torque is given by the relationship τ = r × F , in which r is the vector from OA to a.
Of course we must express all vectors relative to a common frame, and in three dimensions
(since torque will be defined as a vector perpendicular to the plane in which the force acts).
If we choose the world frame as our frame of reference, then we have

r =





ax cos θ − ay sin θ
ax sin θ + ay cos θ

0





and the cross product gives

τ = r ×F

=





ax cos θ − ay sin θ
ax sin θ + ay cos θ

0



×





Fx
Fy
0





=





0
0

−Fx(ax sin θ − ay cos θ) + Fy(ax cos θ − ay sin θ)



 (7.29)

7.3. PLANNING USING WORKSPACE POTENTIAL FIELDS 167

Thus we see that the more general expression JTF = F gives the same value for torque
as the expression τ = r ×F from mechanics.

⋄

Example 7.4 Two-link Planar Arm

Consider a two-link planar arm with the usual DH frame assignment. If we assign
the control points as the origins of the DH frames (excluding the base frame), the forward
kinematic equations for the arm give

[

a1(θ1, θ2) a2(θ1, θ2)
]

=

[

l1 cos θ1 l1 cos θ1 + l2 cos(θ1 + θ2)
l1 sin θ1 l1 sin θ1 + l2 sin(θ1 + θ2)

]

in which li are the link lengths (we use li rather than ai to avoid confusion of link lengths
and control points). For the problem of motion planning, we require only the Jacobian that
maps joint velocities to linear velocities,

[

ẋ
ẏ

]

= J

[

θ̇1
θ̇1

]

. (7.30)

For the two-link arm, The Jacobian matrix for a2 is merely the Jacobian that we derived in
Chapter 5:

Ja2(θ1, θ2) =

[

−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

]

. (7.31)

The Jacobian matrix for a1 is similar, but takes into account that motion of joint two does
not affect the velocity of a1,

Ja1(θ1, θ2) =

[

−a1s1 0
a1c1 0

]

. (7.32)

⋄
The total configuration space force acting on the robot is the sum of the configuration

space forces that result from all attractive and repulsive control points

F (q) =
∑

i

Fatti(q) +
∑

i

Frepi(q)

=
∑

i

JTi (q)Fatt,i(q) +
∑

i

JTi (q)Frep,i(q) (7.33)

in which Ji(q) is the Jacobian matrix for control point ai. It is essential that the addition of
forces be done in the configuration space and not in the workspace. For example, Figure 7.7
shows a case where two workspace forces, F1 and F2, act on opposite corners of a rectang.
It is easy to see that F1 +F2 = 0, but that the combination of these forces produces a pure
torque about the center of the square.

168 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

F2

F1

Figure 7.7: This example illustrates why forces must be mapped to the configuration space
before they are added. The two forces illustrated in the figure are vectors of equal magnitude
in opposite directions. Vector addition of these two forces produces zero net force, but there
is a net moment induced by these forces.

Example 7.5 Two-link planar arm revisited. Consider again the two-link planar arm.
Suppose that that the workspace repulsive forces are given by Frep,i(θ1, θ2) = [Fx,i,Fy,i]T .
For the two-link planar arm, the repulsive forces in the configuration space are then given
by

Frep(q) =

[

−a1s1 a1c1
0 0

] [

Fx,1
Fy,1

]

(7.34)

+

[

−a1s1 − a2s12 a1c1 + a2c12
−a2s12 a2c12

] [

Fx,2
Fy,2

]

(7.35)

⋄

7.3.3 Motion Planning Algorithm

Having defined a configuration space force, we can use the same gradient descent method
for this case as in Section 7.3. As before, there are a number of design choices that must
be made.

ζi controls the relative influence of the attractive potential for control point ai. It is not
necessary that all of the ζi be set to the same value. Typically, we weight one of the
control points more heavily than the others, producing a “follow the leader” type of
motion, in which the leader control point is quickly attracted to its final position, and
the robot then reorients itself so that the other attractive control points reach their
final positions.

ηj controls the relative influence of the repulsive potential for control point aj . As with
the ζi it is not necessary that all of the ηj be set to the same value. In particular, we
typically set the value of ηj to be much smaller for obstacles that are near the goal
position of the robot (to avoid having these obstacles repel the robot from the goal).

7.4. USING RANDOM MOTIONS TO ESCAPE LOCAL MINIMA 169

ρ0 As with the ηj , we can define a distinct ρ0 for each obstacle. In particular, we do not
want any obstacle’s region of influence to include the goal position of any repulsive
control point. We may also wish to assign distinct ρ0’s to the obstacles to avoid the
possibility of overlapping regions of influence for distinct obstacles.

7.4 Using Random Motions to Escape Local Minima

As noted above, one problem that plagues artificial potential field methods for path planning
is the existence of local minima in the potential field. In the case of articulated manipulators,
the resultant field U is the sum of many attractive and repulsive fields defined over ℜ3. This
problem has long been known in the optimization community, where probabilistic methods
such as simulated annealing have been developed to cope with it. Similarly, the robot path
planning community has developed what are known as randomized methods to deal with
this and other problems. The first of these methods was developed specifically to cope with
the problem of local minima in potential fields.

The first planner to use randomization to escape local minima was called RPP (for Ran-
domized Potential Planner). The basic approach is straightforward: use gradient descent
until the planner finds itself stuck in a local minimum, then use a random walk to escape
the local minimum. The algorithm is a slight modification of the gradient descent algorithm
of Section 7.3.

1. q0 ← qinit, i← 0
2. IF qi 6= qfinal

qi+1 ← qi + αi
F (qi)

||F (qi)||
i← i+ 1

ELSE return < q0, q1 · · · qi >
3. IF stuck in a local minimum

execute a random walk, ending at q′

qi+1 ← q′

4. GO TO 2

The two new problems that must be solved are determining when the planner is stuck in
a local minimum and defining the random walk. Typically, a heuristic is used to recognize
a local minimum. For example, if several successive qi lie within a small region of the
configuration space, it is likely that there is a nearby local minimum (e.g., if for some small
positive ǫ we have ‖qi − qi+1‖ < ǫ, ‖qi − qi+2‖ < ǫ, and ‖qi − qi+3‖ < ǫ then assume qi is
near a local minimum).

Defining the random walk requires a bit more care. The original approach used in
RPP is as follows. The random walk consists of t random steps. A random step from
q = (q1, · · · qn) is obtained by randomly adding a small fixed constant to each qi,

qrandom−step = (q1 ± v1, · · · qn ± vn)

170 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

with vi a fixed small constant and the probability of adding +vi or −vi equal to 1/2 (i.e.,
a uniform distribution). Without loss of generality, assume that q = 0. We can use
probability theory to characterize the behavior of the random walk consisting of t random
steps. In particular, the probability density function for q′ = (q1, · · · , qn) is given by

pi(qi, t) =
1

vi
√

2πt
exp

(

− q2i

2v2
i t

)

(7.36)

which is a zero mean Gaussian density function with variance v2
i t. This is a result of

the fact that the sum of a set of uniformly distributed random variables is a Gaussian
random variable.2 The variance v2

i t essentially determines the range of the random walk. If
certain characteristics of local minima (e.g., the size of the basin of attraction) are known
in advance, these can be used to select the parameters vi and t. Otherwise, they can be
determined empirically, or based on weak assumptions about the potential field (the latter
approach was used in the original RPP).

7.5 Probabilistic Roadmap Methods

The potential field approaches described above incrementally explore Qfree, searching for
a path from qinit to qfinal. At termination, these planners return a single path. Thus, if
multiple path planning problems must be solved, such a planner must be applied once for
each problem. An alternative approach is to construct a representation of Qfree that can be
used to quickly generate paths when new path planning problems arise. This is useful, for
example, when a robot operates for a prolonged period in a single workspace.

In this section, we will describe probabilistic roadmaps (PRMs), which are one-dimensional
roadmaps in Qfree that can be used to quickly generate paths. Once a PRM has been con-
structed, the path planning problem is reduced to finding paths to connect qinit and qfinal

to the roadmap (a problem that is typically much easier than finding a path from qinit to
qfinal).

A PRM is a network of simple curve segments, or arcs, that meet at nodes. Each node
corresponds to a configuration. Each arc between two nodes corresponds to a collision free
path between two configurations. Constructing a PRM is a conceptually straightforward
process. First, a set of random configurations is generated to serve as the nodes in the
network. Then, a simple, local path planner is used to generate paths that connect pairs of
configurations. Finally, if the initial network consists of multiple connected components3,
it is augmented by an enhancement phase, in which new nodes and arcs are added in an
attempt to connect disjoint components of the network. To solve a path planning problem,

2A Gaussian density function is the classical bell shaped curve. The mean indicates the center of the
curve (the peak of the bell) and the variance indicates the width of the bell. The probability density function
(pdf) tells how likely it is that the variable qi will lie in a certain interval. The higher the pdf values, the
more likely that qi will lie in the corresponding interval.

3 A connected component is a maximal subnetwork of the network such that a path exists in the subnet-
work between any two nodes.

7.5. PROBABILISTIC ROADMAP METHODS 171

2-norm in C-space: ‖q′ − q‖ =

[

∑n
i=1(q

′
i − qi)2

] 1
2

∞-norm in C-space: maxn |q′i − qi|

2-norm in workspace:

[

∑

p∈A
∥

∥p(q′)− p(q)
∥

∥

2

] 1
2

∞-norm in workspace: maxp∈A
∥

∥p(q′)− p(q)
∥

∥.

Table 7.1: Four distance functions from the literature that we have investigated

the simple, local planner is used to connect qinit and qfinal to the roadmap, and the resulting
network is searched for a path from qinit to qfinal. These four steps are illustrated in Figure
7.8. We now discuss these steps in more detail.

7.5.1 Sampling the configuration space

The simplest way to generate sample configurations is to sample the configuration space
uniformly at random. Sample configurations that lie inQO are discarded. A simple collision
checking algorithm can determine when this is the case. The disadvantage of this approach
is that the number of samples it places in any particular region of Qfree is proportional
to the volume of the region. Therefore, uniform sampling is unlikely to place samples in
narrow passages of Qfree. In the PRM literature, this is refered to as the narrow passage
problem. It can be dealt with either by using more intelligent sampling schemes, or by using
an enhancement phase during the construction of the PRM. In this section, we discuss the
latter option.

7.5.2 Connecting Pairs of Configurations

Given a set of nodes that correspond to configurations, the next step in building the PRM
is to determine which pairs of nodes should be connected by a simple path. The typical
approach is to attempt to connect each node to it’s k nearest neighbors, with k a parameter
chosen by the user. Of course, to define the nearest neighbors, a distance function is re-
quired. Table 7.1 lists four distance functions that have been popular in the PRM literature.
For the equations in this table, the robot has n joints, q and q′ are the two configurations
corresponding to different nodes in the roadmap, qi refers to the configuration of the ith
joint, and p(q) refers to the workspace reference point p of a set of reference points of the
robot, A, at configuration q. Of these, the simplest, and perhaps most commonly used, is
the 2-norm in configuraiton space.

Once pairs of neighboring nodes have been identified, a simple local planner is used to
connect these nodes. Often, a straight line in configuration space is used as the candidate
plan, and thus, planning the path between two nodes is reduced to collision checking along
a straight line path in the configuration space. If a collision occurs on this path, it can

172 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

(a) (b)

qinit

qfinal

(c) (d)

Figure 7.8: (a) A two-dimensional configuration space populated with several random sam-
ples (b) One possible PRM for the given configuration space and random samples (c) PRM
after enhancement (d) path from qinit to qfinal found by connecting qinit and qfinal to the
roadmap and then searching the roadmap for a path from qinit to qfinal.

7.5. PROBABILISTIC ROADMAP METHODS 173

be discarded, or a more sophisticated planner (e.g., RPP discussed above) can be used to
attempt to connect the nodes.

The simplest approach to collision detection along the straight line path is to sample
the path at a sufficiently fine discretization, and to check each sample for collision. This
method works, provided the discretization is fine enough, but it is terribly inefficient. This is
because many of the computations required to check for collision at one sample are repeated
for the next sample (assuming that the robot has moved only a small amount between the
two configurations). For this reason, incremental collision detection approaches have been
developed. While these approaches are beyond the scope of this text, a number of collision
detection software packages are available in the public domain. Most developers of robot
motion planners use one of these packages, rather than implementing their own collision
detection routines.

7.5.3 Enhancement

After the initial PRM has been constructed, it is likely that it will consist of multiple
connected components. Often these individual components lie in large regions of Qfree that
are connected by narrow passages in Qfree. The goal of the enhancement process is to
connect as many of these disjoint components as possible.

One approach to enhancement is to merely attempt to directly connect nodes in two
disjoint components, perhaps by using a more sophisticated planner such as RPP. A common
approach is to identify the largest connected component, and to attempt to connect the
smaller components to it. The node in the smaller component that is closest to the larger
component is typically chosen as the candidate for connection. A second approach is to
choose a node randomly as candidate for connection, and to bias the random choice based
on the number of neighbors of the node; a node with fewer neighbors in the network is more
likely to be near a narrow passage, and should be a more likely candidate for connection.

A second approach to enhancement is to add samples more random nodes to the PRM,
in the hope of finding nodes that lie in or near the narrow passages. One approach is to
identify nodes that have few neighbors, and to generate sample configurations in regions
around these nodes. The local planner is then used to attempt to connect these new
configurations to the network.

7.5.4 Path Smoothing

After the PRM has been generated, path planning amounts to connecting qinit and qfinal

to the network using the local planner, and then performing path smoothing, since the
resulting path will be composed of straight line segments in the configuration space. The
simplest path smoothing algorithm is to select two random points on the path and try to
connect them with the local planner. This process is repeated until until no significant
progress is made.

174 CHAPTER 7. PATH PLANNING AND COLLISION AVOIDANCE

7.6 Historical Perspective

The earliest work on robot planning was done in the late sixties and early seventies in a few
University-based Artificial Intelligence (AI) labs [?, ?, ?]. This research dealt with high level
planning using symbolic reasoning that was much in vogue at the time in the AI community.
Geometry was not often explicitly considered in early robot planners, in part because it was
not clear how to represent geometric constraints in a computationally plausible manner.
The configuration space and its application to path planning were introduced in [?]. This
was the first rigorous, formal treatment of the geometric path planning problem, and it
initiated a surge in path planning research. The earliest work in geometric path planning
developed methods to construct volumetric representations of the free configuration space.
These included exact methods (e.g., [?]), and approximate methods (e.g., [?, ?, ?]). In
the former case, the best known algorithms have exponential complexity and require exact
descriptions of both the robot and its environment, while in the latter case, the size of the
representation of C-space grows exponentially in the dimension of the C-space. The best
known algorithm for the path planning problem, giving an upper bound on the amount of
computation time required to solve the problem, appeared in [?]. That real robots rarely
have an exact description of the environment, and a drive for faster planning systems led
to the development of potential fields approaches [?, ?].

By the early nineties, a great deal of research had been done on the geometric path
planning problem, and this work is nicely summarized in the textbook [?]. This textbook
helped to generate a renewed interest in the path planning problem, and it provided a
common framework in which to analyze and express path planning algorithms. Soon after,
the research field of Algorithmic Robotics was born at a small workshop in San Francisco
[?].

In the early nineties, randomization was introduced in the robot planning community
[?], originally to circumvent the problems with local minima in potential fields). Early
randomized motion planners proved effective for a large range of problems, but sometimes
required extensive computation time for some robots in certain environments [?]. This
limitation, together with the idea that a robot will operate in the same environment for a
long period of time led to the development of the probabilistic roadmap planners [?, ?, ?].

Finally, much work has been done in the area of collision detection in recent years.
[?, ?, ?, ?]. This work is primarily focused on finding efficient, incremental methods for
detecting collisions between objects when one or both are moving. A number of public
domain collision detection software packages are currently available on the internet.

Chapter 8

TRAJECTORY PLANNING

In chapter 7, we learned how to plan paths for robot tasks. In order to execute these plans,
a few more details must be specified. For example, what should be the joint velocities
and accelerations while traversing the path? These questions are addressed by a trajectory
planner. The trajectory planner computes a function qd(t) that completely specifies the
motion of the robot as it traverses the path.

We begin by discussing the trajectory planning problem and how it relates to path plan-
ning. We then consider the simple case of planning a trajectory between two configurations.
This leads naturally to planning trajectories for paths that are specified as a sequence of
configurations. We then turn our attention to the problem of planning trajectories that sat-
isfy constraints that are specified in the Cartesian workspace of the robot (e.g., a straight
line trajectory for the end effector). We end the chapter with a discussion of time scaling
of trajectories.

8.1 The Trajectory Planning Problem

We begin by distinguising between a path and a trajectory. Recall from Chapter 7 that a
path from qinit to qfinal is defined as a continuous map, τ : [0, 1] → Q, with τ(0) = qinit
and τ(1) = qfinal. A trajectory is a function of time q(t) such that q(t0) = qinit and
q(tf) = qfinal . In this case, tf − t0 represents the amount of time taken to execute the
trajectory. Since the trajectory is parameterized by time, we can compute velocities and
accelerations along the trajectories by differentiation. If we think of the argument to τ
as a time variable, then a path is a special case of a trajectory, one that will be executed
in one unit of time. In other words, in this case τ gives a complete specification of the
robot’s trajectory, including the time derivatives (since one need only differentiate τ to
obtain these).

In general, a path planning algorithm may not actually give the map τ ; it might give
only a sequence of points along the path (as was the case for several of the path planning
algorithms of Chapter 7). Or, it may be the case that we prefer that the duration of the
robot motion not be one unit of time. Furthermore, there are other ways that the path

175

176 CHAPTER 8. TRAJECTORY PLANNING

could be specified. In some cases, paths are specified by giving a sequence of end-effector
poses, T 0

6 (k∆t). In this case, the inverse kinematic solution must be used to convert this to
a sequence of joint configurations. A common way to specify paths for industrial robots is
to physically lead the robot through the desired motion with a teach pendant. In this case,
there is no need for calculation of the inverse kinematics. The desired motion is simply
recorded as a set of joint angles (actually as a set of encoder values) and the robot can
be controlled entirely in joint space. In each of these cases, the path will not serve as a
trajectory for the robot.

We first consider point to point motion. In this case the task is to plan a trajectory
from q(t0) to q(tf), i.e., the path is specified by its initial and final configurations. This type
of motion is suitable for materials transfer tasks when the workspace is clear of obstacles and
is common in so-called teach and playback mode where the robot is taught a sequence
of moves with a teach pendant. In some cases, there may be constraints on the trajectory
(e.g., if the robot must start and end with zero velocity). Nevertheless, it is easy to realize
that there are infinitely many trajectories that will satisfy a finite number of constraints
on the endpoints. It is common practice therefore to choose trajectories from a finitely
parameterizable family, for example, polynomials of degree n, with n dependant on the
number of constraints to be satisfied. This is the approach that we will take in this text..

In Section 8.2, we will discuss the trajectory planning problem for point to point motion.
Once we have developed techniques for planning trajectories for point to point motion, we
will turn our attention in Section 8.3 to the problem of planning trajectories for paths that
are specified by a sequence of via points, such as those plans returned by the PRM planner
discussed in Chapter 7. In this case, we will deal not only with constraints on initial and
final configurations, but also with constraints at each via point (e.g., velocity discontinuities
will not be allowed at via points). We will investigate several methods for planning these
trajectories, each of which is an extension of a method in Section 8.2 to the multiple via
point case.

For some purposes, such as obstacle avoidance, the path of the end-effector can be further
constrained by the addition of via points intermediate to the initial and final configurations
as illustrated in Figure 8.1. Additional constraints on the velocity or acceleration between
via points, as for example in so-called guarded motion, shown in Figure 8.2, can be
handled in the joint interpolation schemes treated in this chapter .

8.2 Trajectories for Point to Point Motion

As described above, the problem here is to find a trajectory that connects an initial to a
final configuration while satisfying other specified constraints at the endpoints (e.g., velocity
and/or acceleration constraints). Without loss of generality, we will, from here on, consider
planning the trajectory for a single joint, since the trajectories for the remaining joints will
be created independently and in exactly the same way. Thus, we will concern ourselves
with the problem of determining q(t), where q(t) is a scalar joint variable.

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 177

Figure 8.1: Via points to plan motion around obstacles.

Figure 8.2: Guarded and free motions.

We suppose that at time t0 the joint variable satisfies

q(t0) = q0 (8.1)

q̇(t0) = v0 (8.2)

and we wish to attain the values at tf

q(tf) = qf (8.3)

q̇(tf) = vf . (8.4)

Figure 8.3 shows a suitable trajectory for this motion. In addition, we may wish to specify
the constraints on initial and final accelerations. In this case we have two the additional
equations

q̈(t0) = α0 (8.5)

q̈(tf) = αf . (8.6)

178 CHAPTER 8. TRAJECTORY PLANNING

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

5

10

15

20

25

30

35

40

45

Time (sec)

A
ng

le
 (

de
g)

Typical Joint Space Trajectory

t
0

q
0

t
f

q
f

Figure 8.3: Typical Joint Space Trajectory.

8.2.1 Cubic Polynomial Trajectories

Suppose that we wish to generate a trajectory between two configurations, and that we
wish to specify the start and end velocities for the trajectory. One way to generate a
smooth curve such as that shown in Figure 8.3 is by a polynomial function of t. Since
we have four constraints to satisfy, namely (8.1)-(8.3) we require a polynomial with four
independent coefficients that can be chosen to satisfy these constraints. Thus we consider
a cubic trajectory of the form

q(t) = a0 + a1t+ a2t
2 + a3t

3. (8.7)

Then the desired velocity is automatically given as

q̇(t) = a1 + 2a2t+ 3a3t
2. (8.8)

Combining equations (8.7) and (8.8) with the four constraints yields four equations in four
unknowns

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (8.9)

v0 = a1 + 2a2t0 + 3a3t
2
0 (8.10)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (8.11)

vf = a1 + 2a2tf + 3a3t
2
f . (8.12)

These four equations can be combined into a single matrix equation









1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

















a0

a1

a2

a3









=









q0
v0
qf
vf









. (8.13)

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 179

It can be shown (Problem X) that the determinant of the coefficient matrix in Equation 8.13
is equal to (tf − t0)4 and, hence, 8.13 always has a unique solution provided a nonzero time
interval is allowed for the execution of the trajectory.

Example 8.1 Writing Equation 8.13 as

Ma = b (8.14)

where M is the coefficient matrix, a = [a0, a1, a2, a3]
T is the vector of coefficients of the cubic

polynomial, and b = [q0, v0, q1, v1]
T is the vector of initial data (initial and final positions

and velocities), the Matlab script below computes the general solution as

a = M−1b (8.15)

⋄

%%

%% cubic.m

%%

%% M-file to compute a cubic polynomial reference trajectory

%%

%% q0 = initial position

%% v0 = initial velocity

%% q1 = final position

%% v1 = final velocity

%% t0 = initial time

%% tf = final time

%%

d = input(’ initial data = [q0,v0,q1,v1,t0,tf] = ’)

q0 = d(1); v0= d(2); q1 = d(3); v1 = d(4); t0=d(5); tf=d(6);

%%

t = linspace(t0,tf,100*(tf-t0));

c = ones(size(t));

%%

M = [1 t0 t0^2 t0^3;

0 1 2*t0 3*t0^2;

1 tf tf^2 tf^3;

0 1 2*tf 3*tf^2];

%%

b = [q0; v0; q1; v1];

a = inv(M)*b;

%%

% qd = reference position trajectory

180 CHAPTER 8. TRAJECTORY PLANNING

% vd = reference velocity trajectory

% ad = reference acceleration trajectory

%

qd = a(1).*c + a(2).*t +a(3).*t.^2 + a(4).*t.^3;

vd = a(2).*c +2*a(3).*t +3*a(4).*t.^2;

ad = 2*a(3).*c + 6*a(4).*t;

Example 8.2 As an illustrative example, we may consider the special case that the initial
and final velocities are zero. Suppose we take t0 = 0 and tf = 1 sec, with

v0 = 0 vf = 0. (8.16)

Thus we want to move from the initial position q0 to the final position qf in 1 second,
starting and ending with zero velocity. From the above formula (8.13) we obtain









1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

















a0

a1

a2

a3









=









q0
0
qf
0









. (8.17)

This is then equivalent to the four equations

a0 = q0 (8.18)

a1 = 0 (8.19)

a2 + a3 = qf − q0 (8.20)

2a2 + 3a3 = 0. (8.21)

These latter two can be solved to yield

a2 = 3(qf − q0) (8.22)

a3 = −2(qf − q0). (8.23)

The required cubic polynomial function is therefore

qi(t) = q0 + 3(qf − q0)t2 − 2(qf − q0)t3. (8.24)

Figure 8.4 shows this trajectory with q0 = 10◦, qf = −20◦. The corresponding velocity
and acceleration curves are given in Figures 8.5 and 8.6.

⋄

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 181

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

Time (sec)

A
ng

le
 (

de
g)

Cubic Polynomial Trajectory

Figure 8.4: Cubic polynomial trajectory.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (sec)

V
el

oc
ity

 (
de

g/
se

c)

Velocity Profile for Cubic Polynomial Trajectory

Figure 8.5: Velocity profile for cubic polynomial trajectory

8.2.2 Multiple Cubics

A sequence of moves can be planned using the above formula by using the end conditions
qf , vf of the i-th move as initial conditions for the i+ 1-st move.

Example 8.3 Figure 8.9 shows a 6-second move, computed in three parts using (??), where
the trajectory begins at 10◦ and is required to reach 40◦ at 2-seconds, 30◦ at 4seconds, and
90◦ at 6-seconds, with zero velocity at 0,2,4, and 6 seconds.

⋄

8.2.3 Quintic Polynomial Trajectories

As the above example shows, planning trajectories using multiple cubic trajectories leads to
continuous positions and velocities at the blend times but discontinuities in the acceleration.
The derivative of acceleration is called the Jerk. A discontinuity in acceleration leads to an
impulsive Jerk, which may excite vibrational modes in the manipulator and reduce tracking

182 CHAPTER 8. TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

150

200

Time (sec)

A
cc

el
er

at
io

n
(d

eg
/s

ec
2)

Acceleration Profile for Cubic Polynomial Trajectory

Figure 8.6: Acceleration profile for cubic polynomial trajectory.

0 1 2 3 4 5 6
10

20

30

40

50

60

70

80

90

Time (sec)

A
ng

le
 (

de
g)

Trajectory Built of Multiple Cubic Segments

Figure 8.7: Cubic spline trajectory made from three cubic polynomials.

accuracy. For this reason, one may wish to specify constraints on the acceleration as well as
on the position and velocity. In this case, we have six constraints (one each for initial and
final configurations, initial and final velocities, and initial and final accelerations). Therefore
we require a fifth order polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5. (8.25)

Using (8.1) - (8.6) and taking the appropriate number of derivatives we obtain the following
equations,

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 183

0 1 2 3 4 5 6
−10

0

10

20

30

40

50

Time (sec)

V
el

oc
ity

 (
de

g/
se

c)

Velocity Profile for Multiple Cubic Segments

Figure 8.8: Velocity Profile for Multiple Cubic Polynomial Trajectory

0 1 2 3 4 5 6
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time (sec)

A
cc

el
er

at
io

n
(d

eg
/s

ec
2)

Acceleration for Multiple Cubic Segments

Figure 8.9: Acceleration Profile for Multiple Cubic Polynomial Trajectory

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0

v0 = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0

α0 = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0

qf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

vf = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

αf = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f

184 CHAPTER 8. TRAJECTORY PLANNING

which can be written as


















1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f



































a0

a1

a2

a3

a4

a5

















=

















q0
v0
α0

qf
vf
αf

















. (8.26)

The Matlab script below gives the general solution to this equation.

%%

%% M-file to compute a quintic polynomial reference trajectory

%%

%% q0 = initial position

%% v0 = initial velocity

%% ac0 = initial acceleration

%% q1 = final position

%% v1 = final velocity

%% ac1 = final acceleration

%% t0 = initial time

%% tf = final time

%%

clear

d = input(’ initial data = [q0,v0,ac0,q1,v1,ac1,t0,tf] = ’)

q0 = d(1); v0= d(2); ac0 = d(3); q1 = d(4);v1 = d(5);ac1=d(6);t0=d(7); tf=d(8);

%%

t = linspace(t0,tf,100*(tf-t0));

c = ones(size(t));

%%

M = [1 t0 t0^2 t0^3 t0^4 t0^5;

0 1 2*t0 3*t0^2 4*t0^3 5*t0^4;

0 0 2 6*t0 12*t0^2 20*t0^3;

1 tf tf^2 tf^3 tf^4 tf^5;

0 1 2*tf 3*tf^2 4*tf^3 5*tf^4;

0 0 2 6*tf 12*tf^2 20*tf^3];

%%

b=[q0; v0; ac0; q1; v1; ac1];

a = inv(M)*b;

%%

%% qd = position trajectory

%% vd = velocity trajectory

%% ad = acceleration trajectory

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 185

%%

qd = a(1).*c + a(2).*t +a(3).*t.^2 + a(4).*t.^3 +a(5).*t.^4 + a(6).*t.^5;

vd = a(2).*c +2*a(3).*t +3*a(4).*t.^2 +4*a(5).*t.^3 +5*a(6).*t.^4;

ad = 2*a(3).*c + 6*a(4).*t +12*a(5).*t.^2 +20*a(6).*t.^3;

plot(t,qd)

Example 8.4 The figures below show a quintic polynomial trajectory with q(0) = 0, q(2) =
40 with zero initial and final velocities and accelerations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

Time (sec)

A
ng

le
 (

de
g)

Cubic Polynomial Trajectory

Figure 8.10: Quintic Polynomial Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

Time (sec)

V
el

oc
ity

 (
de

g/
se

c)

Velocity Profile for Cubic Polynomial Trajectory

Figure 8.11: Velocity Profile for Quintic Polynomial Trajectory

⋄

Example 8.5 The next figures show the same six second trajectory as in Example 8.3 with
the added constraints that the accelerations should be zero at the blend times.
⋄

186 CHAPTER 8. TRAJECTORY PLANNING

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−40

−20

0

20

40

60

Time (sec)

A
cc

el
er

at
io

n
(d

eg
/s

ec
2)

Acceration Profile for Quintic Polynomial Trajectory

Figure 8.12: Acceleration Profile for Quintic Polynomial Trajectory

0 1 2 3 4 5 6
10

20

30

40

50

60

70

80

90

100

Time (sec)

A
ng

le
 (

de
g)

Multiple Quintic Polynomial Segments

Figure 8.13: Trajectory with Multiple Quintic Segments

8.2.4 Linear Segments with Parabolic Blends (LSPB)

Another way to generate suitable joint space trajectories is by so-called Linear Segments
with Parabolic Blends or (LSPB) for short. This type of trajectory is appropriate when
a constant velocity is desired along a portion of the path. The LSPB trajectory is such
that the velocity is initially “ramped up” to its desired value and then “ramped down”
when it approaches the goal position. To achieve this we specify the desired trajectory in
three parts. The first part from time t0 to time tb is a quadratic polynomial. This results
in a linear “ramp” velocity. At time tb, called the blend time, the trajectory switches
to a linear function. This corresponds to a constant velocity. Finally, at time tf − tb the
trajectory switches once again, this time to a quadratic polynomial so that the velocity is
linear.

We choose the blend time tb so that the position curve is symmetric as shown in Fig-
ure 8.16. For convenience suppose that t0 = 0 and q̇(tf) = 0 = q̇(0). Then between times 0

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 187

0 1 2 3 4 5 6
−10

0

10

20

30

40

50

60

Time (sec)

V
el

oc
ity

 (
de

g/
se

c)

Velocity Profile for Multiple Quintic Segments

Figure 8.14: Velocity Profile for Multiple Quintic Segments

0 1 2 3 4 5 6
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time (sec)

A
cc

el
er

at
io

n
(d

eg
/s

ec
2)

Acceleration Profile for Multiple Quintic Segments

Figure 8.15: Acceleration Profile for Multiple Quintic Segments

and tb we have

q(t) = a0 + a1t+ a2t
2 (8.27)

so that the velocity is

q̇(t) = a1 + 2a2t. (8.28)

The constraints q0 = 0 and q̇(0) = 0 imply that

a0 = q0 (8.29)

a1 = 0. (8.30)

At time tb we want the velocity to equal a given constant, say V . Thus, we have

q̇(tb) = 2a2tb = V (8.31)

188 CHAPTER 8. TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Time (sec)

A
ng

le
 (

de
g)

Blend Times for LSPB Trajectory

t
b
 t

f
−t

b

Figure 8.16: Blend times for LSPB trajectory.

which implies that

a2 =
V

2tb
. (8.32)

Therefore the required trajectory between 0 and tb is given as

q(t) = q0 +
V

2tb
t2 (8.33)

= q0 +
α

2
t2

q̇(t) =
V

tb
t = αt (8.34)

q̈ =
V

tb
= α (8.35)

where α denotes the acceleration.

Now, between time tf and tf − tb, the trajectory is a linear segment (corresponding to
a constant velocity V)

q(t) = a0 + a1t = a0 + V t. (8.36)

Since, by symmetry,

q

(

tf
2

)

=
q0 + qf

2
(8.37)

we have

q0 + qf
2

= a0 + V
tf
2

(8.38)

8.2. TRAJECTORIES FOR POINT TO POINT MOTION 189

which implies that

a0 =
q0 + qf − V tf

2
. (8.39)

Since the two segments must “blend” at time tb we require

q0 +
V

2
tb =

q0 + qf − V tf
2

+ V tb (8.40)

which gives upon solving for the blend time tb

tb =
q0 − qf + V tf

V
. (8.41)

Note that we have the constraint 0 < tb ≤ tf
2 . This leads to the inequality

qf − q0
V

< tf ≤
2(qf − q0)

V
. (8.42)

To put it another way we have the inequality

qf − q0
tf

< V ≤ 2(qf − q0)
tf

. (8.43)

Thus the specified velocity must be between these limits or the motion is not possible.
The portion of the trajectory between tf − tb and tf is now found by symmetry consid-

erations (Problem XX). The complete LSPB trajectory is given by

q(t) =



















































q0 +
a

2
t2 0 ≤ t ≤ tb

qf + q0 − V tf
2

+ V t tb < t ≤ tf − tb

qf −
at2f
2

+ atf t−
a

2
t2 tf − tb < t ≤ tf

. (8.44)

Figure 8.17 shows such an LSPB trajectory, where the maximum velocity V = 60. In
this case tb = 1

3 . The velocity and acceleration curves are given in Figures 8.18 and 8.19,
respectively.

8.2.5 Minimum Time Trajectories

An important variation of this trajectory is obtained by leaving the final time tf unspecified
and seeking the “fastest” trajectory between q0 and qf with a given constant acceleration
α, that is, the trajectory with the final time tf a minimum. This is sometimes called a

190 CHAPTER 8. TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Time (sec)

A
ng

le
 (

de
g)

LSPB Trajectory

Figure 8.17: LSPB trajectory.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Time (sec)

V
el

oc
ity

 (
de

g/
se

c)

LSPB Velocity Profile

Figure 8.18: Velocity profile for LSPB trajectory.

Bang-Bang trajectory since the optimal solution is achieved with the acceleration at its
maximum value +α until an appropriate switching time ts at which time it abruptly
switches to its minimum value −α (maximum deceleration) from ts to tf .

Returning to our simple example in which we assume that the trajectory begins and
ends at rest, that is, with zero initial and final velocities, symmetry considerations would
suggest that the switching time ts is just

tf
2 . This is indeed the case. For nonzero initial

and/or final velocities, the situation is more complicated and we will not discuss it here.

If we let Vs denote the velocity at time ts then we have

Vs = αts (8.45)

and also

ts =
q0 − qf + Vstf

Vs
. (8.46)

8.3. TRAJECTORIES FOR PATHS SPECIFIED BY VIA POINTS 191

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

150

200

TIme (sec)

A
cc

el
er

at
io

n
(d

eg
/s

ec
2)

LSPB Acceleration Profile

Figure 8.19: Acceleration for LSPB trajectory.

The symmetry condition ts =
tf
2 implies that

Vs =
qf − q0
ts

. (8.47)

Combining these two we have the conditions

qf − q0
ts

= αts (8.48)

which implies that

ts =
√

qf − q0/2. (8.49)

8.3 Trajectories for Paths Specified by Via Points

NOTE: via points are also called knot points or interpolation points

path planner in chapter XXX gives a set of via points (e.g., PRM method). how do we
convert this set of via points into a path???

Consider the simple of example of a path specified by three points, q0, q1, q2, such that
the via points are reached at times t0, t1 and t2. If in addition to these three constraints
we impose constraints on the initial and final velocities and accelerations, we obtain the
following set of constraints,

192 CHAPTER 8. TRAJECTORY PLANNING

q(t0) = q0

q̇(t0) = v0

q̈(t0) = α0

q(t1) = q1

q(t2) = q2

q̇(t2) = v2

q̈(t2) = α2.

which could be satisfied by generating a trajectory using the sixth order polynomial

q(t) = a6t
6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t

1 + a0. (8.50)

One advantage to this approach is that, since q(t) is continuously differentiable, we need
not worry about discontinuities in either velocity or acceleration at the via point, q1. How-
ever, to determine the coefficients for this polynomial, we must solve a linear system of
dimension seven. The clear disadvantage to this approach is that as the number of via
points increases, the dimension of the corresponding linear system also increases, making
the method intractable when many via points are used..

An alternative to using a single high order polynomial for the entire trajectory is to use
low order polynomials for trajectory segments between adjacent via points. We will denote
by Qi(t) the polynomial that represents the trajectory from qi−1 to qi. These polynomi-
als sometimes refered to as interpolating polynomials or blending polynomials. With this
approach, we must take care that continuity constraints (e.g., in velocity and acceleration)
are satisfied at the via points, where we switch from one polynomial to another.

In this section, we will consider three types of interpolating polynomial trajectories:
trajectories for which each Qi is a cubic polynomial; trajectories for which each Q1 and Q3

are fourth order polynomials and Q2 is a cubic polynomial; NOTE: should generalize
this to an n segment trajectory with fourth order polynomials for first and last
segments and cubics in between. and what is that last one....;

8.3.1 4-3-4 trajectories

q(t) =







Q1(t) = a14t
4 + a13t

3 + a12t
2 + a11t+ a10 : t0 ≤ t < t1

Q2(t) = a23t
3 + a22t

2 + a21t+ a20 : t1 ≤ t < t2
Q3(t) = a34t

4 + a33t
3 + a32t

2 + a31t+ a30 : t2 ≤ t < t3

(8.51)

Chapter 9

DYNAMICS

This chapter deals with the dynamics of robot manipulators. Whereas the kinematic equa-
tions describe the motion of the robot without consideration of the forces and moments
producing the motion, the dynamic equations explicitly describe the relationship between
force and motion. The equations of motion are important to consider in the design of
robots, as well as in simulation and animation, and in the design of control algorithms.
We introduce the so-called Euler-Lagrange equations, which describe the evolution of
a mechanical system subject to holonomic constraints (this term is defined later on).
To motivate the Euler-Lagrange approach we begin with a simple derivation of these equa-
tions from Newton’s Second Law for a one-degree-of-freedom system. We then derive the
Euler-Lagrange equations from the Principle of Virtual Work in the general case.

In order to determine the Euler-Lagrange equations in a specific situation, one has to
form the Lagrangian of the system, which is the difference between the kinetic energy
and the potential energy; we show how to do this in several commonly encountered
situations. We then derive the dynamic equations of several example robotic manipulators,
including a two-link cartesian robot, a two-link planar robot, and a two-link robot with
remotely driven joints.

The Euler-Lagrange equations have several very important properties that can be ex-
ploited to design and analyze feedback control algorithms. Among these are explicit bounds
on the inertia matrix, linearity in the inertia parameters, and the so-called skew symmetry
and passivity properties. We discuss these properties in Section 9.5.

This chapter is concluded with a derivation of an alternate the formulation of the dynam-
ical equations of a robot, known as the Newton-Euler formulation which is a recursive
formulation of the dynamic equations that is often used for numerical calculation.

9.1 The Euler-Lagrange Equations

In this section we derive a general set of differential equations that describe the time evolu-
tion of mechanical systems subjected to holonomic constraints, when the constraint forces
satisfy the principle of virtual work. These are called the Euler-Lagrange equations of

193

194 CHAPTER 9. DYNAMICS

motion. Note that there are at least two distinct ways of deriving these equations. The
method presented here is based on the method of virtual displacements; but it is also
possible to derive the same equations based on Hamilton’s principle of least action [?].

9.1.1 One Dimensional System

To motivate the subsequent derivation, we show first how the Euler-Lagrange equations
can be derived from Newton’s Second Law for a single degree of freedom system consisting
of a particle of constant mass m, constrained to move in the y-direction, and subject to a
force f and the gravitational force mg, as shown in Figure 9.1. By Newton’s Second law,

Figure 9.1: One Degree of Freedom System

F = ma, the equation of motion of the particle is

mÿ = f −mg (9.1)

Notice that the left hand side of Equation (9.1) can be written as

mÿ =
d

dt
(mẏ) =

d

dt

∂

∂ẏ

(

1

2
mẏ2

)

=
d

dt

∂K
∂ẏ

(9.2)

where K = 1
2mẏ

2 is the kinetic energy. We use the partial derivative notation in the
above expression to be consistent with systems considered later when the kinetic energy
will be a function of several variables. Likewise we can express the gravitational force in
Equation (9.1) as

mg =
∂

∂y
(mgy) =

∂P
∂y

(9.3)

where P = mgy is the potential energy due to gravity. If we define

L = K − P =
1

2
mẏ2 −mgy (9.4)

and note that

∂L
∂ẏ

=
∂K
∂ẏ

and
∂L
∂y

= −∂P
∂y

9.1. THE EULER-LAGRANGE EQUATIONS 195

then we can write Equation (9.1) as

d

dt

∂L
∂ẏ
− ∂L
∂y

= f. (9.5)

The function L, which is the difference of the kinetic and potential energy, is called the
Lagrangian of the system, and Equation (9.5) is called the Euler-Lagrange Equation.
The Euler-Lagrange equations provide a formulation of the dynamic equations of motion
equivalent to those derived using Newton’s Second Law. However, as we shall see, the
Lagrangian approach is advantageous for more complex systems such as multi-link robots.

Example: 9.1 Single-Link Manipulator
Consider the single-link robot arm shown in Figure 9.2, consisting of a rigid link coupled

Link

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

Gears

Motor

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

Figure 9.2: Single-Link Robot.

through a gear train to a DC-motor. Let θℓ and θm denote the angles of the link and motor
shaft, respectively. Then θm = rθℓ where r : 1 is the gear ratio. The algebraic relation
between the link and motor shaft angles means that the system has only one degree-of-
freedom and we can therefore write the equations of motion using either θm or θℓ. In terms
of θℓ, the kinetic energy of the system is given by

K =
1

2
Jmθ̇

2
m +

1

2
Jℓθ̇

2
ℓ

=
1

2
(r2Jm + Jℓ)θ̇

2
ℓ (9.6)

where Jm, Jℓ are the rotational inertias of the motor and link, respectively. The potential
energy is given as

P = Mgℓ(1− cos θℓ) (9.7)

where M is the total mass of the link and ℓ is the distance from the joint axis to the link
center of mass. Defining J = r2Jm + Jℓ, the Lagrangian L is given by

L =
1

2
Jθ̇2

ℓ −Mgℓ(1− cos θℓ). (9.8)

Substituting this expression into the Euler-Lagrange equations yields the equation of motion

Jθ̈ℓ +Mgℓ sin θℓ = τℓ. (9.9)

196 CHAPTER 9. DYNAMICS

The generalized force τℓ consists of the motor torque u = rτm, reflected to the link and
(nonconservative) damping torques Bmθ̇m, and Bℓ, θ̇ℓ. Reflecting motor damping to the
link yields

τ = u−Bθ̇ℓ.

where B = rBm+Bℓ. Therefore the complete expression for the dynamics of this system is

Jθ̈ℓ +Bθ̇ℓ +Mgℓ sin θℓ = u. (9.10)

In general, for any system of the type considered, an application of the Euler-Lagrange equa-
tions leads to a system of n coupled, second order nonlinear ordinary differential equations
of the form

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi i = 1, . . . , n (9.11)

The order, n, of the system is determined by the number of so-called generalized co-
ordinates are required to describe the evolution of the system. We shall see that the n
Denavit-Hartenberg joint variables serves as a set of generalized coordinates for an n-link
rigid robot.

9.1.2 The General Case

Now, consider a system consisting of k particles, with corresponding position vectors r1, . . . , rk.
If these particles are free to move about without any restrictions, then it is quite an easy

rk
r1 : : :r2

Figure 9.3: System of k particles

matter to describe their motion, by noting merely that the rate of change of the momentum
of each mass equals the external force applied to it. However, if the motion of the particles
is constrained in some fashion, then one must take into account not only the externally
applied forces, but also the so-called constraint forces, that is, the forces needed to make
the constraints hold. As a simple illustration of this, suppose the system consists of two
particles, which are joined by a massless rigid wire of length ℓ. Then the two coordinates
r1 and r2 must satisfy the constraint

‖r1 − r2‖ = ℓ, or (r1 − r2)
T (r1 − r2) = ℓ2. (9.12)

9.1. THE EULER-LAGRANGE EQUATIONS 197

If one applies some external forces to each particle, then the particles experience not only
these external forces but also the force exerted by the wire, which is along the direction
r2 − r1 and of appropriate magnitude. Therefore, in order to analyze the motion of the
two particles, we can follow one of two options. First, we can compute, under each set of
external forces, what the corresponding constraint force must be in order that the equation
above continues to hold. Second, we can search for a method of analysis that does not
require us to know the constraint force. Clearly, the second alternative is preferable, since
it is in general quite an involved task to compute the constraint forces. The contents of this
section are aimed at achieving this second objective.

First it is necessary to introduce some terminology. A constraint on the k coordinates
r1, . . . , rk is called holonomic if it is an equality constraint of the form

gi(r1, . . . , rk) = 0, i = 1, . . . , ℓ (9.13)

and nonholonomic otherwise. The constraint (9.12) imposed by connecting two particles
by a massless rigid wire is a holonomic constraint. As as example of a nonholonomic
constraint, consider a particle moving inside a sphere of radius p centered at the origin of
the coordinate system. In this case the coordinate vector r of the particle must satisfy the
constraint

‖r‖ ≤ ρ. (9.14)

Note that the motion of the particle is unconstrained so long as the particle remains away
from the wall of the sphere; but when the particle comes into contact with the wall, it
experiences a constraining force.

If a system is subjected to ℓ holonomic constraints, then one can think in terms of the
constrained system having ℓ fewer degrees-of-freedom than the unconstrained system. In
this case it may be possible to express the coordinates of the k particles in terms of n
generalized coordinates q1, . . . , qn. In other words, we assume that the coordinates of
the various particles, subjected to the set of constraints (9.13), can be expressed in the form

ri = ri(q1, . . . , qn), i = 1, . . . , k (9.15)

where q1, . . . , qn are all independent. In fact, the idea of generalized coordinates can be
used even when there are infinitely many particles. For example, a physical rigid object
such as a bar contains an infinity of particles; but since the distance between each pair of
particles is fixed throughout the motion of the bar, only six coordinates are sufficient to
specify completely the coordinates of any particle in the bar. In particular, one could use
three position coordinates to specify the location of the center of mass of the bar, and three
Euler angles to specify the orientation of the body. To keep the discussion simple, however,
we assume in what follows that the number of particles is finite. Typically, generalized
coordinates are positions, angles, etc. In fact, in Chapter ?? we chose to denote the joint
variables by the symbols q1, . . . , qn precisely because these joint variables form a set of
generalized coordinates for an n-link robot manipulator.

198 CHAPTER 9. DYNAMICS

One can now speak of virtual displacements, which are any set, δr1, . . . , δrk, of in-
finitesimal displacements that are consistent with the constraints. For example, consider
once again the constraint (9.12) and suppose r1, r2 are perturbed to r1 + δr1, r2 + δr2, re-
spectively. Then, in order that the perturbed coordinates continue to satisfy the constraint,
we must have

(r1 + δr1 − r2 − δr2)
T (r1 + δr1 − r2 − δr2) = ℓ2. (9.16)

Now let us expand the above product and take advantage of the fact that the original co-
ordinates r1, r2 satisfy the constraint (9.12); let us also neglect quadratic terms in δr1, δr2.
This shows that

(r1 − r2)
T (δr1 − δr2) = 0. (9.17)

Thus any perturbations in the positions of the two particles must satisfy the above equa-
tion in order that the perturbed positions continue to satisfy the constraint (9.12). Any
pair of infinitesimal vectors δr1, δr2 that satisfy (9.17) would constitute a set of virtual
displacements for this problem.

Now the reason for using generalized coordinates is to avoid dealing with complicated
relationships such as (9.17) above. If (9.15) holds, then one can see that the set of all virtual
displacements is precisely

δri =
n
∑

j=1

∂ri

∂qj
δqj , i = 1, . . . , k (9.18)

where the virtual displacements δq1, . . . , δqn of the generalized coordinates are uncon-
strained (that is what makes them generalized coordinates).

Next we begin a discussion of constrained systems in equilibrium. Suppose each particle
is in equilibrium. Then the net force on each particle is zero, which in turn implies that the
work done by each set of virtual displacements is zero. Hence the sum of the work done by
any set of virtual displacements is also zero; that is,

k
∑

i=1

F T
i δri = 0 (9.19)

where F i is the total force on particle i. As mentioned earlier, the force F i is the sum of

two quantities, namely (i) the externally applied force f i, and (ii) the constraint force f
(a)
i .

Now suppose that the total work done by the constraint forces corresponding to any set of
virtual displacements is zero, that is,

k
∑

i=1

(f
(a)
i)T δri = 0. (9.20)

9.1. THE EULER-LAGRANGE EQUATIONS 199

This will be true whenever the constraint force between a pair of particles is directed along
the radial vector connecting the two particles (see the discussion in the next paragraph).
Substituting (9.20) into (9.19) results in

k
∑

i=1

fTi δri = 0. (9.21)

The beauty of this equation is that it does not involve the unknown constraint forces, but
only the known external forces. This equation expresses the principle of virtual work,
which can be stated in words as follows: The work done by external forces corresponding to
any set of virtual displacements is zero. Note that the principle is not universally applicable,
but requires that (9.20) hold, that is, that the constraint forces do no work. Thus, if the
principle of virtual work applies, then one can analyze the dynamics of a system without

having to evaluate the constraint forces.
It is easy to verify that the principle of virtual work applies whenever the constraint

force between a pair of particles acts along the vector connecting the position coordinates
of the two particles. In particular, when the constraints are of the form (9.12), the principle
applies. To see this, consider once again a single constraint of the form (9.12). In this case
the constraint force, if any, must be exerted by the rigid massless wire, and therefore must
be directed along the radial vector connecting the two particles. In other words, the force
exerted on particle 1 by the wire must be of the form

f
(a)
1 = c(r1 − r2) (9.22)

for some constant c (which could change as the particles move about). By the law of action
and reaction, the force exerted on particle 2 by the wire must be just the negative of the
above, that is,

f
(a)
2 = −c(r1 − r2). (9.23)

Now the work done by the constraint forces corresponding to a set of virtual displacements
is

(f
(a)
1)T δr1 + (f

(a)
2)T δr2 = c(r1 − r2)

T (δr1 − δr2). (9.24)

But (9.17) shows that for any set of virtual displacements, the above inner product must
be zero. Thus the principle of virtual work applies in a system constrained by (9.12). The
same reasoning can be applied if the system consists of several particles, which are pairwise
connected by rigid massless wires of fixed lengths, in which case the system is subjected to
several constraints of the form (9.12). Now, the requirement that the motion of a body be
rigid can be equivalently expressed as the requirement that the distance between any pair of
points on the body remain constant as the body moves, that is, as an infinity of constraints
of the form (9.12). Thus the principle of virtual work applies whenever rigidity is the only
constraint on the motion. There are indeed situations when this principle does not apply,

200 CHAPTER 9. DYNAMICS

typically in the presence of magnetic fields. However, in all situations encountered in this
book, we can safely assume that the principle of virtual work is valid.

In (9.21), the virtual displacements δri are not independent, so we cannot conclude
from this equation that each coefficient F i individually equals zero. In order to apply such
reasoning, we must transform to generalized coordinates. Before doing this, we consider
systems that are not necessarily in equilibrium. For such systems, D’Alembert’s principle
states that, if one introduces a fictitious additional force −ṗi on particle i for each i, where
pi is the momentum of particle i, then each particle will be in equilibrium. Thus, if one
modifies (9.19) by replacing F i by F i− ṗi, then the resulting equation is valid for arbitrary
systems. One can then remove the constraint forces as before using the principle of virtual
work. This results in the equations

k
∑

i=1

fTi δri −
k
∑

i=1

ṗTi δri = 0. (9.25)

The above equation does not mean that each coefficient of δri is zero. For this pur-
pose, express each δri in terms of the corresponding virtual displacements of generalized
coordinates, as is done in (9.18). Then the virtual work done by the forces f i is given by

k
∑

i=1

fTi δri =
k
∑

i=1

n
∑

j=1

fTi
∂ri

∂qj
δqj =

n
∑

j=1

ψjδqj (9.26)

where

ψj =

k
∑

i=1

fTi
∂ri

∂qj
(9.27)

is called the j-th generalized force. Note that ψj need not have dimensions of force, just
as qj need not have dimensions of length; however, ψjδqj must always have dimensions of
work.

Now let us study the second summation in (9.25) Since pi = miṙi, it follows that

k
∑

i=1

ṗTi δri =

k
∑

i=1

mir̈
T
i δri =

k
∑

i=1

n
∑

j=1

mir̈
T
i

∂ri

∂qj
δqj . (9.28)

Next, using the product rule of differentiation, we see that

k
∑

i=1

mir̈
T
i

∂ri

∂qj
=

k
∑

i=1

{

d

dt

[

miṙ
T
i

∂ri

∂qj

]

−miṙ
T
i

d

dt

[

∂ri

∂qj

]}

. (9.29)

Now differentiate (9.15) using the chain rule; this gives

vi = ṙi =

n
∑

j=1

∂ri

∂qj
q̇j . (9.30)

9.1. THE EULER-LAGRANGE EQUATIONS 201

Observe from the above equation that

∂vi

∂q̇i
=

∂ri

∂qj
. (9.31)

Next,

d

dt

[

∂ri

∂qj

]

=
n
∑

ℓ=1

∂2ri

∂qj∂qℓ
q̇ℓ =

∂vi

∂qj
(9.32)

where the last equality follows from (9.30). Substituting from (9.31) and (9.32) into (9.29)
and noting that ṙi = vi gives

k
∑

i=1

mir̈
T
i

∂ri

∂qj
=

k
∑

i=1

{

d

dt

[

miv
T
i

∂vi

∂q̇j

]

−miv
T
i

∂vi

∂qj

}

. (9.33)

If we define the kinetic energy K to be the quantity

K =
k
∑

i=1

1

2
miv

T
i vi (9.34)

then the sum above can be compactly expressed as

k
∑

i=1

mir̈
T
i

∂ri

∂qj
=

d

dt

∂K

∂q̇j
− ∂K

∂qj
. (9.35)

Now, substituting from (9.35) into (9.28) shows that the second summation in (9.25) is

k
∑

i=1

ṗTi δri =
n
∑

j=1

{

d

dt

∂K

∂q̇j
− ∂K

∂qj

}

δqj . (9.36)

Finally, combining (9.36) and (9.26) gives

n
∑

j=1

{

d

dt

∂K

∂q̇j
− ∂K

∂qj
− ψj

}

δqj = 0. (9.37)

Now, since the virtual displacements δqj are independent, we can conclude that each coef-
ficient in (9.37) is zero, that is, that

d

dt

∂K

∂q̇j
− ∂K

∂qj
= ψj , j = 1, . . . , n. (9.38)

If the generalized force ψj is the sum of an externally applied generalized force and another
one due to a potential field, then a further modification is possible. Suppose there exist
functions τj and a potential energy function P (q) such that

ψj = −∂P
∂qj

+ τj . (9.39)

202 CHAPTER 9. DYNAMICS

Then (9.38) can be written in the form

d

dt

∂L
∂q̇j
− ∂L
∂qj

= τj (9.40)

where L = K−P is the Lagrangian and we have recovered the Euler-Lagrange equations
of motion as in Equation (9.11).

9.2 General Expressions for Kinetic and Potential Energy

In the previous section, we showed that the Euler-Lagrange equations can be used to derive
the dynamical equations in a straightforward manner, provided one is able to express the
kinetic and potential energy of the system in terms of a set of generalized coordinates. In
order for this result to be useful in a practical context, it is therefore important that one
be able to compute these terms readily for an n-link robotic manipulator. In this section
we derive formulas for the kinetic energy and potential energy of a rigid robot using the
Denavit-Hartenberg joint variables as generalized coordinates.

To begin we note that the kinetic energy of a rigid object is the sum of two terms: the
translational energy obtained by concentrating the entire mass of the object at the center
of mass, and the rotational kinetic energy of the body about the center of mass. Referring
to Figure 9.4 we attach a coordinate frame at the center of mass (called the body attached
frame) as shown. The kinetic energy of the rigid body is then given as

r
y

x

z

z0

y0

x0

Figure 9.4: A General Rigid Body

K =
1

2
mvT v +

1

2
ωTIω. (9.41)

where m is the total mass of the object, v and ω are the linear and angular velocity vectors,
respectively, and I is a symmetric 3× 3 matrix called the Inertia Tensor.

9.2. GENERAL EXPRESSIONS FOR KINETIC AND POTENTIAL ENERGY 203

9.2.1 The Inertia Tensor

It is understood that the linear and angular velocity vectors, v and ω, respectively, in the
above expression for the kinetic energy are expressed in the inertial frame. In this case we
know that ω is found from the skew symmetric matrix

S(ω) = ṘRT (9.42)

where R is the orientation transformation between the body attached frame and the inertial
frame. It is therefore necessary to express the inertia tensor, I, also in the inertial frame
in order to compute the triple product ωTIω. The inertia tensor relative to the inertial
reference frame will depend on the configuration of the object. If we denote as I the inertia
tensor expressed instead in the body attached frame, then the two matrices are related via
a similarity transformation according to

I = RIRT (9.43)

This is an important observation because the inertia matrix expressed in the body attached
frame is a constant matrix independent of the motion of the object and easily computed.
We next show how to compute this matrix explicitly.

Let the mass density of the object be represented as a function of position, ρ(x, y, z).
Then the inertia tensor in the body attached frame is computed as

I =





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 . (9.44)

where

Ixx =

∫ ∫ ∫

(y2 + z2)ρ(x, y, z)dx dy dz

Iyy =

∫ ∫ ∫

(x2 + z2)ρ(x, y, z)dx dy dz

Izz =

∫ ∫ ∫

(x2 + y2)ρ(x, y, z)dx dy dz

Ixy = Iyx = −
∫ ∫ ∫

xyρ(x, y, z)dx dy dz

Ixz = Izx = −
∫ ∫ ∫

xzρ(x, y, z)dx dy dz

Iyz = Izy = −
∫ ∫ ∫

yzρ(x, y, z)dx dy dz

The integrals in the above expression are computed over the region of space occupied by
the rigid body. The diagonal elements of the inertia tensor, Ixx, Iyy, Izz, are called the
Principal Moments of Inertia about the x,y,z axes, respectively. The off diagonal

204 CHAPTER 9. DYNAMICS

terms Ixy, Ixz, etc., are called the Cross Products of Inertia. If the mass distribution
of the body is symmetric with respect to the body attached frame then the cross products
of inertia are identically zero.

Example: 9.2 Uniform Rectangular Solid

Consider the rectangular solid of length, a, width, b, and height, c, shown in Figure 9.5
and suppose that the density is constant, ρ(x, y, z) = ρ.

z

c
x

b

y

a

Figure 9.5: Uniform Rectangular Solid

If the body frame is attached at the geometric center of the object, then by symmetry,
the cross products of inertia are all zero and it is a simple exercise to compute

Ixx =

∫ c/2

−c/2

∫ b/2

−b/2

∫ a/2

−a/2
(y2 + z2)ρ(x, y, z)dx dy dz = ρ

abc

12
(b2 + c2)

Likewise

Iyy = ρ
abc

12
(a2 + c2) ; Izz = ρ

abc

12
(a2 + b2)

and the cross products of inertia are zero.

9.2.2 Kinetic Energy for an n-Link Robot

Now consider a manipulator consisting of n links. We have seen in Chapter 5 that the linear
and angular velocities of any point on any link can be expressed in terms of the Jacobian
matrix and the derivative of the joint variables. Since in our case the joint variables are
indeed the generalized coordinates, it follows that, for appropriate Jacobian matrices Jvi
and Jωi , we have that

vi = Jvi(q)q̇, ωi = Jωi(q)q̇ (9.45)

9.3. EQUATIONS OF MOTION 205

Now suppose the mass of link i is mi and that the inertia matrix of link i, evaluated around
a coordinate frame parallel to frame i but whose origin is at the center of mass, equals Ii.
Then from (9.41) it follows that the overall kinetic energy of the manipulator equals

K =
1

2
q̇T

n
∑

i=1

[

miJvi(q)TJvi(q) + Jωi(q)TRi(q)IiRi(q)TJωi(q)
]

q̇ (9.46)

In other words, the kinetic energy of the manipulator is of the form

K =
1

2
q̇TD(q)q̇ (9.47)

where D(q) is a symmetric positive definite matrix that is in general configuration depen-
dent. The matrix D is called the inertia matrix, and in Section 9.4 we will compute this
matrix for several commonly occurring manipulator configurations.

9.2.3 Potential Energy for an n-Link Robot

Now consider the potential energy term. In the case of rigid dynamics, the only source
of potential energy is gravity. The potential energy of the i-th link can be computed by
assuming that the mass of the entire object is concentrated at its center of mass and is
given by

Pi = gT rcimi. (9.48)

where g is vector giving the direction of gravity in the inertial frame and the vector rci
gives the coordinates of the center of mass of link i. The total potential energy of the n-link
robot is therefore

P =
n
∑

i=1

Pi =
n
∑

i=1

gT rcimi. (9.49)

In the case that the robot contains elasticity, for example, flexible joints, then the potential
energy will include terms containing the energy stored in the elastic elements.

Note that the potential energy is a function only of the generalized coordinates and not
their derivatives, i.e. the potential energy depends on the configuration of the robot but
not on its velocity.

9.3 Equations of Motion

In this section, we specialize the Euler-Lagrange equations derived in Section 9.1 to the
special case when two conditions hold: first, the kinetic energy is a quadratic function of
the vector q̇ of the form

K =
1

2

n
∑

i,j

dij(q)q̇iq̇j :=
1

2
q̇TD(q)q̇ (9.50)

206 CHAPTER 9. DYNAMICS

where the n× n “inertia matrix” D(q) is symmetric and positive definite for each q ∈ Rn,
and second, the potential energy P = P (q) is independent of q̇. We have already remarked
that robotic manipulators satisfy this condition.

The Euler-Lagrange equations for such a system can be derived as follows. Since

L = K − P =
1

2

∑

i,j

dij(q)q̇iq̇j − P (q) (9.51)

we have that

∂L

∂q̇k
=

∑

j

dkj q̇j (9.52)

and

d

dt

∂L

∂q̇k
=

∑

i

dkj q̈j +
∑

j

d

dt
dkj q̇j

=
∑

j

dkj q̈j +
∑

i,j

∂dkj
∂qi

q̇iq̇j (9.53)

Also

∂L

∂qk
=

1

2

∑

i,j

∂dij
∂qk

q̇iq̇j −
∂P

∂qk
. (9.54)

Thus the Euler-Lagrange equations can be written

∑

j

dkj q̈j +
∑

i,j

{

∂dkj
∂qi
− 1

2

∂dij
∂qk

}

q̇iq̇j −
∂P

∂qk
= τk. (9.55)

By interchanging the order of summation and taking advantage of symmetry, we can show
that

∑

i,j

{

∂dkj
∂qi

}

q̇iq̇j =
1

2

∑

i,j

{

∂dkj
∂qi

+
∂dki
∂qj

}

q̇iq̇j . (9.56)

Hence

sumi,j

{

∂dkj
∂qi
− 1

2

∂dij
∂qk

}

q̇iq̇j =
∑

i,j

1

2

{

∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

}

q̇iq̇j . (9.57)

The terms

cijk :=
1

2

{

∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

}

(9.58)

9.4. SOME COMMON CONFIGURATIONS 207

are known as Christoffel symbols (of the first kind). Note that, for a fixed k, we have
cijk = cjik, which reduces the effort involved in computing these symbols by a factor of
about one half. Finally, if we define

φk =
∂P

∂qk
(9.59)

then we can write the Euler-Lagrange equations as
∑

i

dkj(q)q̈j +
∑

i,j

cijk(q)q̇iq̇j + φk(q) = τk, k = 1, . . . , n. (9.60)

In the above equation, there are three types of terms. The first involve the second deriva-
tive of the generalized coordinates. The second are quadratic terms in the first derivatives
of q, where the coefficients may depend on q. These are further classified into two types.
Terms involving a product of the type q̇2i are called centrifugal, while those involving a
product of the type q̇iqj where i 6= j are called Coriolis terms. The third type of terms are
those involving only q but not its derivatives. Clearly the latter arise from differentiating
the potential energy. It is common to write (9.60) in matrix form as

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (9.61)

where the k, j-th element of the matrix C(q, q̇) is defined as

ckj =
n
∑

i=1

cijk(q)q̇i (9.62)

=
n
∑

i=1

1

2

{

∂dkj
∂qj

+
∂dki
∂qj
− ∂dij
∂qk

}

q̇i. (9.63)

Let us examine an important special case, where the inertia matrix is diagonal and

independent of q. In this case it follows from (9.58) that all of the Christoffel symbols are
zero, since each dij is a constant. Moreover, the quantity dkj is nonzero if and only if k = j,
so that the Equations 9.60) decouple nicely into the form

dkkq̈ − φk(q) = τk, k = 1, . . . , n. (9.64)

In summary, the development in this section is very general and applies to any me-
chanical system whose kinetic energy is of the form (9.50) and whose potential energy is
independent of q̇. In the next section we apply this discussion to study specific robot
configurations.

9.4 Some Common Configurations

In this section we apply the above method of analysis to several manipulator configurations
and derive the corresponding equations of motion. The configurations are progressively
more complex, beginning with a two-link cartesian manipulator and ending with a five-bar
linkage mechanism that has a particularly simple inertia matrix.

208 CHAPTER 9. DYNAMICS

Two-Link Cartesian Manipulator

Consider the manipulator shown in Figure 9.6, consisting of two links and two prismatic

q2

q1

Figure 9.6: Two-link cartesian robot.

joints. Denote the masses of the two links by m1 and m2, respectively, and denote the
displacement of the two prismatic joints by q1 and q2, respectively. Then it is easy to
see, as mentioned in Section 9.1, that these two quantities serve as generalized coordinates
for the manipulator. Since the generalized coordinates have dimensions of distance, the
corresponding generalized forces have units of force. In fact, they are just the forces applied
at each joint. Let us denote these by fi, i = 1, 2.

Since we are using the joint variables as the generalized coordinates, we know that the
kinetic energy is of the form (9.50) and that the potential energy is only a function of q1
and q2. Hence we can use the formulae in Section 9.3 to obtain the dynamical equations.
Also, since both joints are prismatic, the angular velocity Jacobian is zero and the kinetic
energy of each link consists solely of the translational term.

By (5.87) it follows that the velocity of the center of mass of link 1 is given by

vc1 = Jvc1 q̇ (9.65)

where

Jvc1 =





0 0
0 0
1 0



 , q̇ =

[

q̇1
q̇2

]

. (9.66)

Similarly,

vc2 = Jvc2 q̇ (9.67)

where

Jvc2 =





0 0
0 1
1 0



 . (9.68)

9.4. SOME COMMON CONFIGURATIONS 209

Hence the kinetic energy is given by

K =
1

2
q̇T
{

m1J
T
vcJvc1 +m2J

T
vc2Jvc2

}

q̇. (9.69)

Comparing with (9.50), we see that the inertia matrix D is given simply by

D =

[

m1 +m2 0
0 m2

]

. (9.70)

Next, the potential energy of link 1 is m1gq1, while that of link 2 is m2gq1, where g is the
acceleration due to gravity. Hence the overall potential energy is

P = g(m1 +m2)q1. (9.71)

Now we are ready to write down the equations of motion. Since the inertia matrix is
constant, all Christoffel symbols are zero. Further, the vectors φk are given by

φ1 =
∂P

∂q1
= g(m1 +m2), φ2 =

∂P

∂q2
= 0. (9.72)

Substituting into (9.60) gives the dynamical equations as

(m1 +m2)q̈1 + g(m1 +m2) = f1

m2q̈2 = f2. (9.73)

Planar Elbow Manipulator

Now consider the planar manipulator with two revolute joints shown in Figure 9.7. Let

y0

x0

x2y2

x1

q1

m1g

m2g

y1

q2

ℓc2

ℓc1

ℓ2

ℓ1

Figure 9.7: Two-link revolute joint arm.

us fix notation as follows: For i = 1, 2, qi denotes the joint angle, which also serves as a

210 CHAPTER 9. DYNAMICS

generalized coordinate; mi denotes the mass of link i, ℓi denotes the length of link i; ℓci
denotes the distance from the previous joint to the center of mass of link i; and Ii denotes
the moment of inertia of link i about an axis coming out of the page, passing through the
center of mass of link i.

We will make effective use of the Jacobian expressions in Chapter 5 in computing the
kinetic energy. Since we are using joint variables as the generalized coordinates, it follows
that we can use the contents of Section 9.7. First,

vc1 = Jvc1 q̇ (9.74)

where, from (5.80),

Jvc1 =





−ℓc sin q1 0
ℓc1 cos q1 0

0 0



 . (9.75)

Similarly,

vc2 = Jvc2 q̇ (9.76)

where

Jvc2 =





−ℓ1 sin q1 − ℓc2 sin(q1 + q2) −ℓc2 sin(q1 + q2)
ℓ1 cos q1 + ℓc2 cos(q1 + q2) ℓc2 cos(q1 + q2)

0 0



 . (9.77)

Hence the translational part of the kinetic energy is

1

2
m1v

T
c1vc1 +

1

2
m2v

T
c2vc2 =

1

2
q̇
{

m1J
T
vc1Jvc1 +m2J

T
vc2Jvc2

}

q̇. (9.78)

Next we deal with the angular velocity terms. Because of the particularly simple nature
of this manipulator, many of the potential difficulties do not arise. First, it is clear that

ω1 = q̇1k, ω2 = (q̇1 + q̇2)k (9.79)

when expressed in the base inertial frame. Moreover, since ωi is aligned with k, the triple
product ωT

i Iiωi reduces simply to (I33)i times the square of the magnitude of the angular
velocity. This quantity (I33)i is indeed what we have labeled as Ii above. Hence the
rotational kinetic energy of the overall system is

1

2
q̇T
{

I1

[

1 0
0 0

]

+ I2

[

1 1
1 1

]}

q̇ (9.80)

Now we are ready to form the inertia matrix D(q). For this purpose, we merely have to
add the two matrices in (9.78) and (9.80), respectively. Thus

D(q) = m1J
T
vc1Jvc1 +m2J

T
vc2Jvc2 +

[

I1 + I2 I2
I2 I2

]

. (9.81)

9.4. SOME COMMON CONFIGURATIONS 211

Carrying out the above multiplications and using the standard trigonometric identities
cos2 θ + sin2 θ = 1, cosα cosβ + sinα sinβ = cos(α− β) leads to

d11 = m1ℓ
2
c1 +m2(ℓ

2
1 + ℓ2c2 + 2ℓ1ℓ

2
c2 + 2ℓ1ℓc2 cos q2) + I1 + I2

d12 = d21 = m2(ℓ
2
c2 + ℓ1ℓc2 cos q2) + I2

d22 = m2ℓ
2
c2 + I2. (9.82)

Now we can compute the Christoffel symbols using the definition (9.58). This gives

c111 =
1

2

∂d11

∂q1
= 0

c121 = c211 =
1

2

∂d11

∂q2
= −m2ℓ1ℓc2 sin q2 =: h

c221 =
∂d12

∂q2
− 1

2

∂d22

∂q1
= h

c112 =
∂d21

∂q1
− 1

2

∂d11

∂q2
= −h (9.83)

c122 = c212 =
1

2

∂d22

∂q1
= 0

c222 =
1

2

∂d22

∂q2
= 0.

Next, the potential energy of the manipulator is just the sum of those of the two links. For
each link, the potential energy is just its mass multiplied by the gravitational acceleration
and the height of its center of mass. Thus

P1 = m1gℓc1 sin q1

P2 = m2g(ℓ1 sin q1 + ℓc2 sin(q1 + q2))

P = P1 + P2 = (m1ℓc1 +m2ℓ1)g sin q1 +m2ℓc2g sin(q1 + q2). (9.84)

Hence, the functions φk defined in (9.59) become

φ1 =
∂P

∂q1
= (m1ℓc1 +m2ℓ1)g cos q1 +m2ℓc2g cos(q1 + q2) (9.85)

φ2 =
∂P

∂q2
= m2ℓc2 cos(q1 + q2). (9.86)

Finally we can write down the dynamical equations of the system as in (9.60). Substituting
for the various quantities in this equation and omitting zero terms leads to

d11q̈1 + d12q̈2 + c121q̇1q̇2 + c211q̇2q̇1 + c221q̇
2
2 + φ1 = τ1

d21q̈1 + d22q̈2 + c112q̇
2
1 + φ2 = τ2. (9.87)

In this case the matrix C(q, q̇) is given as

C =

[

hq̇2 hq̇2 + hq̇1
−hq̇1 0

]

. (9.88)

212 CHAPTER 9. DYNAMICS

Planar Elbow Manipulator with Remotely Driven Link

Now we illustrate the use of Lagrangian equations in a situation where the generalized
coordinates are not the joint variables defined in earlier chapters. Consider again the planar
elbow manipulator, but suppose now that both joints are driven by motors mounted at the
base. The first joint is turned directly by one of the motors, while the other is turned
via a gearing mechanism or a timing belt (see Figure 9.8). In this case one should choose

Figure 9.8: Two-link revolute joint arm with remotely driven link.

the generalized coordinates as shown in Figure 9.9, because the angle p2 is determined by

y0

x0

x2y2

p2

p1

Figure 9.9: Generalized coordinates for robot of Figure 6.4.

driving motor number 2, and is not affected by the angle p1. We will derive the dynamical
equations for this configuration, and show that some simplifications will result.

Since p1 and p2 are not the joint angles used earlier, we cannot use the velocity Jacobians
derived in Chapter 5 in order to find the kinetic energy of each link. Instead, we have to

9.4. SOME COMMON CONFIGURATIONS 213

carry out the analysis directly. It is easy to see that

vc1 =





−ℓc1 sin p1

ℓc1 cos p1

0



 ṗ1, vc2 =





ℓ1 sin p1 −ℓc2 sin p2

ℓ1 cos p1 ℓc2 cos p2

0 0





[

ṗ1

ṗ2

]

(9.89)

ω1 = ṗ1k, ω2 = ṗ2k. (9.90)

Hence the kinetic energy of the manipulator equals

K =
1

2
ṗTD(p)ṗ (9.91)

where

D(p) =

[

m1ℓ
2
c1 +m2ℓ

2
1 + I1 m2ℓ1ℓc2 cos(p2 − p1)

m2ℓ1ℓc2 cos(p2 − p1) m2ℓ
2
c2 + I2.

]

(9.92)

Computing the Christoffel symbols as in (9.58) gives

c111 =
1

2

∂d11

∂p1
= 0

c121 = c211 =
1

2

∂d11

∂p2
= 0

c221 =
∂d12

∂p2
− 1

2

∂d22

∂p1
= −m2ℓ1ℓc2 sin(p2 − p1) (9.93)

c112 =
∂d21

∂p1
− 1

2

∂d11

∂p2
= m2ℓ1ℓc2 sin(p2 − p1)

c212 = = c122 =
1

2

∂d22

∂p1
= 0

c222 =
1

2

∂d22

∂p2
= 0.

Next, the potential energy of the manipulator, in terms of p1 and p2, equals

P = m1gℓc1 sin p1 +m2g(ℓ1 sin p1 + ℓc2 sin p2). (9.94)

Hence the gravitational generalized forces are

φ1 = (m1ℓc1 +m2ℓ1)g cos p1

φ2 = m2ℓc2g cos p2.

Finally, the equations of motion are

d11p̈1 + d12p̈2 + c221ṗ
2
2 + φ1 = τ1

d21p̈1 + d22p̈2 + c112ṗ
2
1 + φ2 = τ2. (9.95)

Comparing (9.95) and (9.87), we see that by driving the second joint remotely from the
base we have eliminated the Coriolis forces, but we still have the centrifugal forces coupling
the two joints.

214 CHAPTER 9. DYNAMICS

Five-Bar Linkage

Now consider the manipulator shown in Figure 9.10. We will show that, if the parameters

q1

ℓc4

ℓ2

ℓ4 ≡ ℓ2

ℓc1

q2
ℓc3

ℓc2

ℓ3 ≡ ℓ1

Figure 9.10: Five-bar linkage.

of the manipulator satisfy a simple relationship, then the equations of the manipulator are
decoupled, so that each quantity q1 and q2 can be controlled independently of the other.
The mechanism in Figure 9.10 is called a five-bar linkage. Clearly there are only four
bars in the figure, but in the theory of mechanisms it is a convention to count the ground
as an additional linkage, which explains the terminology. In Figure 9.10, it is assumed that
the lengths of links and 3 are the same, and that the two lengths marked ℓ2 are the same;
in this way the closed path in the figure is in fact a parallelogram, which greatly simplifies
the computations. Notice, however, that the quantities ℓc1, and ℓc3 need not be equal. For
example, even though links 1 and 3 have the same length, they need not have the same
mass distribution.

It is clear from the figure that, even though there are four links being moved, there
are in fact only two degrees-of-freedom, identified as q1 and q2. Thus, in contrast to the
earlier mechanisms studied in this book, this one is a closed kinematic chain (though of a
particularly simple kind). As a result, we cannot use the earlier results on Jacobian matrices,
and instead have to start from scratch. As a first step we write down the coordinates of the

9.4. SOME COMMON CONFIGURATIONS 215

centers of mass of the various links as a function of the generalized coordinates. This gives
[

xc1
yc1

]

=

[

ℓc1 cos q1
ℓc1 sin q1

]

(9.96)

[

xc2
yc2

]

=

[

ℓc2 cos q2
ℓc2 sin q2

]

(9.97)

[

xc3
yc3

]

=

[

ℓc2 cos q1
ℓc2 sin q2

]

+

[

ℓc3 cos q1
ℓc3 sin q1

]

(9.98)

[

xc4
yc4

]

=

[

ℓ1 cos q1
ℓ1 sin q1

]

+

[

ℓc4 cos(q2 − π)
ℓc4 sin(q2 − π)

]

=

[

ℓ1 cos q1
ℓ1 sin q1

]

−
[

ℓc4 cos q2
ℓc4 sin q2

]

. (9.99)

Next, with the aid of these expressions, we can write down the velocities of the various
centers of mass as a function of q̇1 and q̇2. For convenience we drop the third row of each
of the following Jacobian matrices as it is always zero. The result is

vc1 =

[

−ℓc1 sin q1 0
ℓc1 cos q1 0

]

q̇

vc2 =

[

0 −ℓc2 sin q2
0 ℓc2 cos q2

]

q̇

vc3 =

[

−ℓc3 sin q1 −ℓ2 sin q2
ℓc3 cos q1 ℓ2 cos q2

]

q̇ (9.100)

vc4 =

[

−ℓ1 sin q1 ℓc4 sin q2
ℓ1 cos q1 ℓc4 cos q2

]

q̇.

(9.101)

Let us define the velocity Jacobians Jvci , i = 1, . . . , 4 in the obvious fashion, that is, as the
four matrices appearing in the above equations. Next, it is clear that the angular velocities
of the four links are simply given by

ω1 = ω3 = q1k,ω2 = ω4 = q̇2k. (9.102)

Thus the inertia matrix is given by

D(q) =
4
∑

i=1

miJ
T
vcJvc +

[

I1 + I3 0
0 I2 + I4

]

. (9.103)

If we now substitute from (9.100) into the above equation and use the standard trigonometric
identities, when the dust settles we are left with

d11(q) = m1ℓ
2
c1 +m3ℓ

2
c3 +m4ℓ

2
1 + I1 + I3

d12(q) = d21(q) = (m3ℓ2ℓc3 −m4ℓ1ℓc4) cos(q2 − q1) (9.104)

d22(q) = m2ℓ
2
c2 +m3ℓ

2
2 +m4ℓ

2
c4 + I2 + I4.

216 CHAPTER 9. DYNAMICS

Now the thing to note is that if

m3ℓ2ℓc3 = m4ℓ1ℓc4 (9.105)

then the inertia matrix is diagonal and constant, and as a consequence the dynamical
equations will contain neither Coriolis nor centrifugal terms.

Turning now to the potential energy, we have that

P = g

4
∑

i=1

yci

= g sin q1(m1ℓc1 +m3ℓc3 +m4ℓ1) (9.106)

= g sin q2(m2ℓc2 +m3ℓ2 −m4ℓc4).

Hence

φ1 = g cos q1(m1ℓc1 +m3ℓc3 +m4ℓ1)

φ2 = g cos q2(m2ℓc2 +m3ℓ2 −m4ℓc4). (9.107)

Notice that φ1 depends only on q1 but not on q2 and similarly that φ2 depends only on q2
but not on q1. Hence, if the relationship (9.105) is satisfied, then the rather complex-looking
manipulator in Figure 9.10 is described by the decoupled set of equations

d11q̈1 + φ1(q1) = τ1, d22q̈2 + φ2(q2) = τ2. (9.108)

This discussion helps to explain the increasing popularity of the parallelogram config-
uration in industrial robots (e.g., P-50). If the relationship (9.105) is satisfied, then one
can adjust the two angles q1 and q2 independently, without worrying about interactions
between the two angles. Compare this with the situation in the case of the planar elbow
manipulators discussed earlier in this section.

9.5 Properties of Robot Dynamic Equations

The equations of motion for an n-link robot can be quite formidable especially if the robot
contains one or more revolute joints. Fortunately, these equations contain some important
structural properties which can be exploited to good advantage in particular for developing
control algorithms. We will see this in subsequent chapters. Here we will discuss some of
these properties, the most important of which are the so-called skew symmetry property
and the related passivity property, and the linearity in the parameters property.
For revolute joint robots, the inertia matrix also satisfies global bounds that are useful for
control design.

9.5. PROPERTIES OF ROBOT DYNAMIC EQUATIONS 217

9.5.1 The Skew Symmetry and Passivity Properties

The Skew Symmetry property refers to an important relationship between the inertia ma-
trixD(q) and the matrix C(q, q̇) appearing in (9.61) that will be of fundamental importance
for the problem of manipulator control considered in later chapters.

Proposition: 9.1 Define the matrix N(q, q̇) = Ḋ(q) − 2C(q, q̇). Then N(q, q̇) is skew
symmetric, that is, the components njk of N satisfy njk = −nkj.

Proof: Given the inertia matrix D(q), the kj-th component of Ḋ(q) is given by the chain
rule as

ḋkj =
n
∑

i=1

∂dkj
∂qi

q̇i. (9.109)

Therefore, the kj-th component of N = Ḋ − 2C is given by

nkj = ḋkj − 2ckj (9.110)

=

n
∑

i=1

[

∂dkj
∂qi
−
{

∂dkj
∂qi

+
∂dki
∂j
− ∂dij
∂qk

}]

q̇i

=

n
∑

i=1

[

∂dij
∂qk
− ∂dki

∂qj

]

q̇i.

Since the inertia matrix D(q) is symmetric, that is, dij = dji, it follows from (9.110) by
interchanging the indices k and j that

njk = −nkj (9.111)

which completes the proof.
Related to the skew symmetry property is the so-called Passivity Property which, in

the present context, means that there exists a constant, β ≥ 0, such that

∫ T

0
q̇T (ζ)τ(ζ)dζ ≥ −β, ∀ T > 0. (9.112)

The term q̇T τ has units of power hence, the expression
∫ T
0 q̇T (ζ)τ(ζ)dζ is the energy pro-

duced by the system over the time interval [0, T]. Passivity therefore means that the amount
of energy produced by the system has a lower bound given by −β. The word passivity comes
from circuit theory where a passive system according to the above definition is one that
can be built from passive components (resistors, capacitors, inductors). Likewise a passive
mechanical system can be built from masses, springs, and dampers.

To prove the passivity property, let H be the total energy of the system, i.e., the sum
of the kinetic and potential energies,

H =
1

2
q̇TD(q)q̇ + P (q) (9.113)

218 CHAPTER 9. DYNAMICS

Then, the derivative Ḣ satisfies

Ḣ = q̇TD(q)q̈ +
1

2
q̇T Ḋ(q)q̇ + q̇T

∂P

∂q
(9.114)

= q̇T {τ − C(q, q̇)− g(q)}+
1

2
q̇T Ḋ(q)q̇ + q̇T

∂P

∂q
(9.115)

where we have substituted for D(q)q̈ using the equations of motion. Collecting terms and

using the fact that g(q) = ∂P
∂q

yields

Ḣ = q̇T τ +
1

2
q̇T {Ḋ(q)− 2C(q, q̇)}q̇ (9.116)

= q̇T τ (9.117)

the latter equality following from the skew-symmetry property. Integrating both sides of
(9.117) with respect to time gives,

∫ T

0
q̇T (ζ)τ(ζ)dζ = H(T)−H(0) ≥ −H(0) (9.118)

since the total energy H(T) is non–negative, and the passivity property therefore follows
with β = H(0).

9.5.2 Bounds on the Inertia Matrix

We have remarked previously that the inertia matrix for an n-link rigid robot is symmetric
and positive definite. For a fixed value of the generalized coordinate q, let 0 < λ1(q) ≤ . . . ,≤
λn(q) denote the n eigenvalues of D(q). These eigenvalues are positive as a consequence of
the positive definiteness of D(q). As a result, it can easily be shown that

λ1(q)In×n ≤ D(q) ≤ λn(q)In×n (9.119)

where In×n denotes the n×n identity matrix. The above inequalities are interpreted in the
standard sense of matrix inequalities, namely, if A and B are n× n matrices, then B < A
means that the matrix A−B is positive definite and B ≤ A means that A−B is positive
semi-definite.

If all of the joints are revolute then the inertia matrix contains only bounded functions
of the joint variables, i.e., terms containing sine and cosine functions. As a result one can
find constants λm and λM that provide uniform (independent of q) bounds in the inertia
matrix

λmIn×n ≤ D(q) ≤ λMIn×n <∞ (9.120)

9.5. PROPERTIES OF ROBOT DYNAMIC EQUATIONS 219

9.5.3 Linearity in the Parameters

The robot equations of motion are defined in terms of certain parameters, such as link
masses, moments of inertia, etc., that must be determined for each particular robot in order,
for example, to simulate the equations or to tune controllers. The complexity of the dynamic
equations makes the determination of these parameters a difficult task. Fortunately, the
equations of motion are linear in these inertia parameters in the following sense. There exists
an n × ℓ function, Y (q, q̇, q̈), which we assume is completely known, and an ℓ-dimensional
vector Θ such that the Euler-Lagrange equations can be written

D(q) + C(q, q̇)q̇ + g(q) =: Y (q, q̇, q̈)Θ = τ (9.121)

The function, Y (q, q̇, q̈), is called the Regressor and Θ is the Parameter vector. The
dimension of the parameter space, IRℓ, i.e., the number of parameters needed to write the
dynamics in this way, is not unique. In general, a given rigid body is described by ten
parameters, namely, the total mass, the six independent entries of the inertia tensor, and
the three coordinates of the center of mass. An n-link robot then has a maximum of 10n
independent dynamics parameters. However, since the link motions are constrained and
coupled by the joint interconnections, there are actually fewer than 10n independent pa-
rameters. Finding a minimal set of parameters that can parametrize the dynamic equations
is, however, difficult in general.

Example: 9.3 Two Link Planar Robot

Consider the two link, revolute joint, planar robot from section 9.4 above. If we group
the inertia terms appearing in Equation 9.82 as

Θ1 = m1ℓ
2
c1 +m2(ℓ

2
1 + ℓ2c2) + I1 + I2 (9.122)

Θ2 = m2ℓ1ℓc2 (9.123)

Θ3 = m2ℓ1ℓc2 (9.124)

then we can write the inertia matrix elements as

d11 = Θ1 + 2Θ2 cos(q2) (9.125)

d12 = d21 = Θ3 + Θ2 cos(q2) (9.126)

d22 = Θ3 (9.127)

No additional parameters are required in the Christoffel symbols as these are functions of
the elements of the inertia matrix. The gravitational torques require additional parameters,
in general. Setting

Θ4 = m1ℓc1 +m2ℓ1 (9.128)

Θ5 = m2ℓ2 (9.129)

220 CHAPTER 9. DYNAMICS

we can write the gravitational terms, φ1 and φ2 as

φ1 = Θ4g cos(q1) + Θ5g cos(q1 + q2) (9.130)

φ2 = Θ5 cos(q1 + q2) (9.131)

Substituting these into the equations of motion it is straightforward to write the dynamics
in the form (9.121) where

Y (q, q̇, q̈) = (9.132)
[

q̈1 cos(q2)(2q̈1 + q̈2) + sin(q2)(q̇
2
1 − 2q̇1q̇2) q̈2 g cos(q1) g cos(q1 + q2)

0 cos(q2)q̈1 + sin(q2)q̇
2
1 q̈2 0 g cos(q1 + q2)

]

and the parameter vector Θ is given by

Θ =













Θ1

Θ2

Θ3

Θ4

Θ5













=













m1ℓ
2
c1 +m2(ℓ

2
1 + ℓ2c2) + I1 + I2

m2ℓ1ℓc2
m2ℓ1ℓc2

m1ℓc1 +m2ℓ1
m2ℓ2













(9.133)

Thus, we have parameterized the dynamics using a five dimensional parameter space. Note
that in the absence of gravity, as in a SCARA configuration, only three parameters are
needed.

9.6 Newton-Euler Formulation

In this section, we present a method for analyzing the dynamics of robot manipulators
known as the Newton-Euler formulation. This method leads to exactly the same final
answers as the Lagrangian formulation presented in earlier sections, but the route taken is
quite different. In particular, in the Lagrangian formulation we treat the manipulator as
a whole and perform the analysis using a Lagrangian function (the difference between the
kinetic energy and the potential energy). In contrast, in the Newton-Euler formulation we
treat each link of the robot in turn, and write down the equations describing its linear motion
and its angular motion. Of course, since each link is coupled to other links, these equations
that describe each link contain coupling forces and torques that appear also in the equations
that describe neighboring links. By doing a so-called forward-backward recursion, we are
able to determine all of these coupling terms and eventually to arrive at a description of the
manipulator as a whole. Thus we see that the philosophy of the Newton-Euler formulation
is quite different from that of the Lagrangian formulation.

At this stage the reader can justly ask whether there is a need for another formulation,
and the answer is not clear. Historically, both formulations were evolved in parallel, and
each was perceived as having certain advantages. For instance, it was believed at one
time that the Newton-Euler formulation is better suited to recursive computation than the

9.6. NEWTON-EULER FORMULATION 221

Lagrangian formulation. However, the current situation is that both of the formulations
are equivalent in almost all respects. Thus at present the main reason for having another
method of analysis at our disposal is that it might provide different insights.

In any mechanical system one can identify a set of generalized coordinates (which we
introduced in Section 9.1 and labeled q) and corresponding generalized forces (also intro-
duced in Section 9.1 and labeled τ). Analyzing the dynamics of a system means finding
the relationship between q and τ . At this stage we must distinguish between two aspects:
First, we might be interested in obtaining closed-form equations that describe the time
evolution of the generalized coordinates, such as (9.88) for example. Second, we might be
interested in knowing what generalized forces need to be applied in order to realize a par-

ticular time evolution of the generalized coordinates. The distinction is that in the latter
case we only want to know what time dependent function τ(·) produces a particular tra-
jectory q(·) and may not care to know the general functional relationship between the two.
It is perhaps fair to say that in the former type of analysis, the Lagrangian formulation is
superior while in the latter case the Newton-Euler formulation is superior. Looking ahead
to topics beyond the scope of the book, if one wishes to study more advanced mechanical
phenomena such as elastic deformations of the links (i.e., if one no longer assumes rigidity
of the links), then the Lagrangian formulation is clearly superior.

In this section we present the general equations that describe the Newton-Euler formu-
lation. In the next section we illustrate the method by applying it to the planar elbow
manipulator studied in Section 9.4 and show that the resulting equations are the same as
(9.87).

The facts of Newtonian mechanics that are pertinent to the present discussion can be
stated as follows:

1. Every action has an equal and opposite reaction. Thus, if body 1 applies a force f and
torque τ to body 2, then body 2 applies a force of −f and torque of −τ to body 1.

2. The rate of change of the linear momentum equals the total force applied to the body.

3. The rate of change of the angular momentum equals the total torque applied to the
body.

Applying the second fact to the linear motion of a body yields the relationship

d(mv)

dt
= f (9.134)

where m is the mass of the body, v is the velocity of the center of mass with respect to
an inertial frame, and f is the sum of external forces applied to the body. Since in robotic
applications the mass is constant as a function of time, (9.134) can be simplified to the
familiar relationship

ma = f (9.135)

where a = v̇ is the acceleration of the center of mass.

222 CHAPTER 9. DYNAMICS

Applying the third fact to the angular motion of a body gives

d(I0ω0)

dt
= τ 0 (9.136)

where I0 is the moment of inertia of the body about an inertial frame whose origin is at the
center of mass, ω0 is the angular velocity of the body, and τ0 is the sum of torques applied
to the body. Now there is an essential difference between linear motion and angular motion.
Whereas the mass of a body is constant in most applications, its moment of inertia with
respect an inertial frame may or may not be constant. To see this, suppose we attach a
frame rigidly to the body, and let I denote the inertia matrix of the body with respect to
this frame. Then I remains the same irrespective of whatever motion the body executes.
However, the matrix I0 is given by

I0 = RIRT (9.137)

where R is the rotation matrix that transforms coordinates from the body attached frame
to the inertial frame. Thus there is no reason to expect that I0 is constant as a function of
time.

One possible way of overcoming this difficulty is to write the angular motion equation
in terms of a frame rigidly attached to the body. This leads to

Iω̇ + ω × (Iω) = τ (9.138)

where I is the (constant) inertia matrix of the body with respect to the body attached
frame, ω is the angular velocity, but expressed in the body attached frame, and τ is the
total torque on the body, again expressed in the body attached frame. Let us now give a
derivation of (9.138) to demonstrate clearly where the term ω× (Iω) comes from; note that
this term is called the gyroscopic term.

Let R denote the orientation of the frame rigidly attached to the body w.r.t. the inertial
frame; note that it could be a function of time. Then (9.137) gives the relation between I
and I0. Now by the definition of the angular velocity given in Section 2.6, we know that

ṘRT = S(ω0). (9.139)

In other words, the angular velocity of the body, expressed in an inertial frame, is given by
(9.139). Of course, the same vector, expressed in the body attached frame, is given by

ω0 = Rω,ω = RTω0. (9.140)

Hence the angular momentum, expressed in the inertial frame, is

h = RIRTRω = RIω. (9.141)

Differentiating and noting that I is constant gives an expression for the rate of change of
the angular momentum, expressed as a vector in the inertial frame:

ḣ = ṘIω +RIω̇. (9.142)

9.6. NEWTON-EULER FORMULATION 223

Now

S(ω0) = ṘRT , Ṙ = S(ω)R. (9.143)

Hence, with respect to the inertial frame,

ḣ = S(ω0)RIω +RIω̇. (9.144)

With respect to the frame rigidly attached to the body, the rate of change of the angular
momentum is

RT ḣ = RTS(ω0)RIω + Iω̇

= S(RTω0)Iω + Iω̇

= S(ω)Iω + Iω̇ = ω × (Iω) + Iω̇. (9.145)

This establishes (9.138). Of course we can, if we wish, write the same equation in terms of
vectors expressed in an inertial frame. But we will see shortly that there is an advantage to
writing the force and moment equations with respect to a frame attached to link i, namely
that a great many vectors in fact reduce to constant vectors, thus leading to significant
simplifications in the equations.

Now we derive the Newton-Euler formulation of the equations of motion of an n-link
manipulator. For this purpose, we first choose frames 0, . . . , n, where frame 0 is an inertial
frame, and frame i is rigidly attached to link i for i ≥ 1. We also introduce several vectors,
which are all expressed in frame i. The first set of vectors pertain to the velocities and
accelerations of various parts of the manipulator.

ac,i = the acceleration of the center of mass of link i.

ae,i = the acceleration of the end of link i (i.e., joint i+ 1).

ωi = the angular velocity of frame i w.r.t. frame 0.

αi = the angular acceleration of frame i w.r.t. frame 0.

The next several vectors pertain to forces and torques.

gi = the acceleration due to gravity (expressed in frame i).

f i = the force exerted by link i− 1 on link i.

τ i = the torque exerted by link i− 1 on link i.

Ri+1
i = the rotation matrix from frame i+ 1 to frame i.

The final set of vectors pertain to physical features of the manipulator. Note that each of

the following vectors is constant as a function of q. In other words, each of the vectors

224 CHAPTER 9. DYNAMICS

listed here is independent of the configuration of the manipulator.

mi = the mass of link i.

Ii = the inertia matrix of link i about a frame parallel

to frame i whose origin is at the center of mass of link i.

ri,ci = the vector from joint i to the center of mass of link i.

ri+1,ci = the vector from joint i+ 1 to the center of mass of link i.

ri,i+1 = the vector from joint i to joint i+ 1.

Now consider the free body diagram shown in Figure 9.11; this shows link i together with

Figure 9.11: Forces and moments on link i.

all forces and torques acting on it. Let us analyze each of the forces and torques shown in
the figure. First, f i is the force applied by link i − 1 to link i. Next, by the law of action
and reaction, link i + 1 applies a force of −f i+1 to link i, but this vector is expressed in
frame i+ 1 according to our convention. In order to express the same vector in frame i, it
is necessary to multiply it by the rotation matrix Ri+1

i . Similar explanations apply to the
torques τ i and −Ri+1

i τ i+1. The force migi is the gravitational force. Since all vectors in
Figure 9.11 are expressed in frame i, the gravity vector gi is in general a function of i.

Writing down the force balance equation for link i gives

f i −Ri+1
i f i+1 +migi = miac,i. (9.146)

Next we write down the moment balance equation for link i. For this purpose, it is important
to note two things: First, the moment exerted by a force f about a point is given by f × r,
where r is the radial vector from the point where the force is applied to the point about
which we are computing the moment. Second, in the moment equation below, the vector
migi does not appear, since it is applied directly at the center of mass. Thus we have

τ i −Ri+1
i τ i+1 + f i × ri,ci − (Ri+1

i f i+1)× ri+1,ci (9.147)

= αi + ωi × (Iiωi).

9.6. NEWTON-EULER FORMULATION 225

Now we present the heart of the Newton-Euler formulation, which consists of finding
the vectors f1, . . . ,fn and τ 1, . . . , τn corresponding to a given set of vectors q, q̇, q̈. In
other words, we find the forces and torques in the manipulator that correspond to a given
set of generalized coordinates and first two derivatives. This information can be used to
perform either type of analysis, as described above. That is, we can either use the equations
below to find the f and τ corresponding to a particular trajectory q(·), or else to obtain
closed-form dynamical equations. The general idea is as follows: Given q, q̇, q̈, suppose we
are somehow able to determine all of the velocities and accelerations of various parts of the
manipulator, that is, all of the quantities ac,i, ωi and αi. Then we can solve (9.146) and
(9.147) recursively to find all the forces and torques, as follows: First, set fn+l = 0 and
τn+1 = 0. This expresses the fact that there is no link n+ 1. Then we can solve (9.146) to
obtain

f i = Ri+1
i f i+1 +miac,i −migi. (9.148)

By successively substituting i = n, n − 1, . . . , 1 we find all forces. Similarly, we can solve
(9.147) to obtain

τ i = (9.149)

Ri+1
i τ i+1 − f i × ri,ci + (Ri+1

i f i+1)× ri+1,ci + αi + ωi × (Iiωi).

By successively substituting i = nm n − 1, . . . , 1 we find all torques. Note that the above
iteration is running in the direction of decreasing i.

Thus the solution is complete once we find an easily computed relation between q, q̇, q̈
and ac,i,ωi and αi. This can be obtained by a recursive procedure in the direction of
increasing i. This procedure is given below, for the case of revolute j oint s; the corresponding
relation ships for prismatic joints are actually easier to derive.

In order to distinguish between quantities expressed with respect to frame i and the
base frame, we use a superscript (0) to denote the latter. Thus, for example, ωi denotes

the angular velocity of frame i expressed in frame i, while ω
(0)
i denotes the same quantity

expressed in an inertial frame.
Now from Section 2.6 we have that

ω
(0)
i = ω

(0)
i−1 + zi−1q̇i. (9.150)

This merely expresses the fact that the angular velocity of frame i equals that of frame i−1
plus the added rotation from joint i. To get a relation between ωi and ωi−1, we need only
express the above equation in frame i rather than the base frame, taking care to account
for the fact that ωi and ωi−1 are expressed in different frames. This leads to

ωi = (Rii−1)
Tωi−1 + biq̇i (9.151)

where

bi = (Ri0)
Tzi−1 (9.152)

226 CHAPTER 9. DYNAMICS

is the axis of rotation of joint i expressed in frame i.
Next let us work on the angular acceleration αi. It is vitally important to note here

that

αi = (Ri0)
T ω̇

(0)
i . (9.153)

In other words, αi is the derivative of the angular velocity of frame i, but expressed in
frame i. It is not true that αi = ω̇i! We will encounter a similar situation with the velocity
and acceleration of the center of mass. Now we see directly from (9.150) that

ω̇
(0)
i = ω̇

(0)
i−1 + zi−1q̈i + ω

(0)
i × zi−1q̇i. (9.154)

Expressing the same equation in frame i gives

αi = (Rii−1)
Tαi−1 + biq̈i + ωi × biq̇i. (9.155)

Now we come to the linear velocity and acceleration terms. Note that, in contrast to the
angular velocity, the linear velocity does not appear anywhere in the dynamic equations;
however, an expression for the linear velocity is needed before we can derive an expression
for the linear acceleration. From Section 5.2, we get that the velocity of the center of mass
of link i is given by

v
(0)
c,i = v

(0)
e,i−1 + ω

(0)
i × r

(0)
i,ci. (9.156)

To obtain an expression for the acceleration, we use (??), and note that the vector r
(0)
i,ci is

constant in frame i. Thus

a
(0)
c,i = a

(0)
e,i−1 × r

(0)
i,ci + ω

(0)
i × (ω

(0)
i × r

(0)
i,ci). (9.157)

Now

ac,i = (Ri0)
Ta

(0)
c,i . (9.158)

Let us carry out the multiplication and use the familiar property

R(a× b) = (Ra)× (Rb). (9.159)

We also have to account for the fact that ae,i−1 is expressed in frame i − 1 and transform
it to frame i. This gives

ac,i = (Rii−1)
Tae,i−1 + ω̇i × ri,ci + ωi × (ωi × ri,ci). (9.160)

Now to find the acceleration of the end of link i, we can use (9.160) with ri,i+1 replacing
ri,ci. Thus

ae,i = (Rii−1)
Tae,i−1 + ω̇i × ri,i+1 + ωi × (ωi × ri,i+1). (9.161)

Now the recursive formulation is complete. We can now state the Newton-Euler formulation
as follows.

9.7. PLANAR ELBOW MANIPULATOR REVISITED 227

1. Start with the initial conditions

ω0 = 0, α0 = 0,ac,0 = 0,ae,0 = 0 (9.162)

and solve (9.151), (9.155), (9.161) and (9.160) (in that order!) to compute ωi, αi and
ac,i for i increasing from 1 to n.

2. Start with the terminal conditions

fn+1 = 0, τn+1 = 0 (9.163)

and use (9.148) and (9.149) to compute f i and τ i for i decreasing from n to 1.

9.7 Planar Elbow Manipulator Revisited

In this section we apply the recursive Newton-Euler formulation derived in Section 9.6
to analyze the dynamics of the planar elbow manipulator of figure 9.8, and show that
the Newton-Euler method leads to the same equations as the Lagrangian method, namely
(9.87).

We begin with the forward recursion to express the various velocities and accelerations
in terms of q1, q2 and their derivatives. Note that, in this simple case, it is quite easy to see
that

ω1 = q̇1k, α1 = q̈1k,ω2 = (q1 + q2)k, α2 = (q̈1 + q̈2)k (9.164)

so that there is no need to use (9.151) and (9.155). Also, the vectors that are independent
of the configuration are as follows:

r1,c1 = ℓc1i, r2,c1 = (ℓ1 − ℓc1)i, r1,2 = ℓ1i (9.165)

r2,c2 = ℓc2i, r3,c2 = (ℓ2 − ℓc2)i, r2,3 = ℓ2i. (9.166)

Forward Recursion link 1

Using (9.160) with i = 1 and noting that ae,0 = 0 gives

ac,1 = q̈1k × ℓc1i + q̇1k × (q̇1k × ℓc1i)

= ℓc1q̈1j − ℓc1q̇21i =





−ℓc1q̇21
ℓcq̈1
0



 . (9.167)

Notice how simple this computation is when we do it with respect to frame 1. Compare
with the same computation in frame 0! Finally, we have

g1 = −(R1
0)
T gj = g





sin q1
− cos q1

0



 (9.168)

228 CHAPTER 9. DYNAMICS

where g is the acceleration due to gravity. At this stage we can economize a bit by not
displaying the third components of these accelerations, since they are obviously always zero.
Similarly, the third component of all forces will be zero while the first two components of all
torques will be zero. To complete the computations for link 1, we compute the acceleration
of end of link 1. Clearly, this is obtained from (9.167) by replacing ℓc1 by ℓ1. Thus

ae,1 =

[

−ℓ1q̇21
ℓ1q̈1

]

. (9.169)

Forward Recursion: Link 2

Once again we use (9.160) and substitute for (o2 from (9.164); this yields

αc,2 = (R2
1)
Tae,1 + [(q̈1 + q̈2)k]× ℓc2i + (q̇1 + q̇2)k × [(q̇1 + q̇2)k × ℓc2i] (9.170)

The only quantity in the above equation which is configuration dependent is the first one.
This can be computed as

(R2
1)
Tae,1 =

[

cos q2 sin q2
− sin q2 cos q2

] [

−ℓ1q̇21
ℓ1q̈1

]

=

[

−ℓ1q̇21 cos q2 + ℓ1q̈1 sin q̇2
ℓ1q̇

2
1 sin q2 + ℓ1q̈1 cos q2

]

. (9.171)

Substituting into (9.170) gives

ac,2 =

[

−ℓ1q̇21 cos q2 + ℓ1q̈1 sin q2 − ℓc2(q̇1 + q̇2)
2

ℓ1q̇
2
1 sin q2 + ℓ1q̈1 cos q2 − ℓc2(q̈1 + q̈2)

]

. (9.172)

The gravitational vector is

g2 = g

[

sin(q1 + q2)
− cos(q1 + q2)

]

. (9.173)

Since there are only two links, there is no need to compute ae,2. Hence the forward recursions
are complete at this point.

Backward Recursion: Link 2

Now we carry out the backward recursion to compute the forces and joint torques. Note that,
in this instance, the joint torques are the externally applied quantities, and our ultimate
objective is to derive dynamical equations involving the joint torques. First we apply (9.148)
with i = 2 and note that f3 = 0. This results in

f2 = m2ac,2 −m2g2 (9.174)

τ 2 = I2α2 + ω2 × (I2ω2)− f2 × ℓc2i. (9.175)

9.7. PLANAR ELBOW MANIPULATOR REVISITED 229

Now we can substitute for ω2, α2 from (9.164), and for ac,2 from (9.172). We also note that
the gyroscopic term equals zero, since both ω2 and I2ω2 are aligned with k. Now the cross
product f2 × ℓc2i is clearly aligned with k and its magnitude is just the second component
of f2. The final result is

τ 2 = I2(q̈1 + q̈2)k + [m2ℓ1ℓc2 sin q2q̇
2
1 +m2ℓ1ℓc2 cos q2q̈1

+m2ℓ
2
c2(q̈1 + q̈2) +m)2ℓc2g cos(q1 + q2)]k (9.176)

Since τ 2 = τ2k, we see that the above equation is the same as the second equation in (9.88).

Backward Recursion: Link 1

To complete the derivation, we apply (9.148) and (9.149) with i = 1. First, the force
equation is

f1 = m1ac,1 +R2
1f2 −m1g1 (9.177)

and the torque equation is

τ 1 = R2
1τ 2 − f1 × ℓc,1i− (R2

1f2)× (ℓ1 − ℓc1)i (9.178)

+I1α1 + ω1 × (I1ω1).

Now we can simplify things a bit. First, R2
1τ2 = τ2, since the rotation matrix does not affect

the third components of vectors. Second, the gyroscopic term is the again equal to zero.
Finally, when we substitute for f1 from (9.177) into (9.178), a little algebra gives

τ 1 = τ 2 −m1ac,1 × ℓc1i +m1g1 × ℓc1i− (R2
1f2) (9.179)

×ℓ1i + I1i + I1α1.

Once again, all these products are quite straightforward, and the only difficult calculation
is that of R2

1f2. The final result is:

τ 1 = τ 2 +m1ℓ
2
c1 +m1ℓc1g cos q1 +m2ℓ1g cos q1 + I1q̈1 (9.180)

+m2ℓ
2
1q̈1 −m1ℓ1ℓc2(q̇1 + q̇2)

2 sin q2 +m2ℓ1ℓc2(q̈1 + q̈2) cos q2.

If we now substitute for τ 1 from (9.176) and collect terms, we will get the first equation in
(9.88); the details are routine and are left to the reader.

230 CHAPTER 9. DYNAMICS

Chapter 10

INDEPENDENT JOINT
CONTROL

10.1 Introduction

The control problem for robot manipulators is the problem of determining the time history
of joint inputs required to cause the end-effector to execute a commanded motion. The
joint inputs may be joint forces and torques, or they may be inputs to the actuators, for
example, voltage inputs to the motors, depending on the model used for controller design.
The commanded motion is typically specified either as a sequence of end-effector positions
and orientations, or as a continuous path.

There are many control techniques and methodologies that can be applied to the control
of manipulators. The particular control method chosen as well as the manner in which
it is implemented can have a significant impact on the performance of the manipulator
and consequently on the range of its possible applications. For example, continuous path
tracking requires a different control architecture than does point-to-point control.

In addition, the mechanical design of the manipulator itself will influence the type of
control scheme needed. For example, the control problems encountered with a cartesian
manipulator are fundamentally different from those encountered with an elbow type ma-
nipulator. This creates a so-called hardware/software trade-off between the mechanical
structure of the system and the architecture/programming of the controller.

Technological improvements are continually being made in the mechanical design of
robots, which in turn improves their performance potential and broadens their range of
applications. Realizing this increased performance, however, requires more sophisticated
approaches to control. One can draw an analogy to the aerospace industry. Early aircraft
were relatively easy to fly but possessed limited performance capabilities. As performance
increased with technological advances so did the problems of control to the extent that the
latest vehicles, such as the space shuttle or forward swept wing fighter aircraft, cannot be
flown without sophisticated computer control.

As an illustration of the effect of the mechanical design on the control problem, compare

231

232 CHAPTER 10. INDEPENDENT JOINT CONTROL

a robot actuated by permanent magnet DC motors with gear reduction to a direct-drive
robot using high-torque motors with no gear reduction. In the first case, the motor dynamics
are linear and well understood and the effect of the gear reduction is largely to decouple
the system by reducing the inertia coupling among the joints. However, the presence of the
gears introduces friction, drive train compliance and backlash.

In the case of a direct-drive robot, the problems of backlash, friction, and compliance
due to the gears are eliminated. However, the coupling among the links is now significant,
and the dynamics of the motors themselves may be much more complex. The result is that
in order to achieve high performance from this type of manipulator, a different set of control
problems must be addressed.

In this chapter we consider the simplest type of control strategy, namely, independent
joint control. In this type of control each axis of the manipulator is controlled as a single-
input/single-output (SISO) system. Any coupling effects due to the motion of the other
links is treated as a disturbance. We assume, in this chapter, that the reader has had an
introduction to the theory of feedback control systems up to the level of say, Kuo [?].

The basic structure of a single-input/single-output feedback control system is shown in
Figure 10.1. The design objective is to choose the compensator in such a way that the plant

Disturbance

+��
Reference
trajectory +//

⊕

// Compensator // Power
amplifier

+//
⊕

// Plant
Output//

ooSensor

−OO

Figure 10.1: Basic structure of a feedback control system.

output “tracks” or follows a desired output, given by the reference signal. The control signal,
however, is not the only input acting on the system. Disturbances, which are really inputs
that we do not control, also influence the behavior of the output. Therefore, the controller
must be designed, in addition, so that the effects of the disturbances on the plant output
are reduced. If this is accomplished, the plant is said to ”reject” the disturbances. The twin
objectives of tracking and disturbance rejection are central to any control methodology.

10.2 Actuator Dynamics

In Chapter 9 we obtained the following set of differential equations describing the motion
of an n degree of freedom robot (cf. Equation (9.61))

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (10.1)

It is important to understand exactly what this equation represents. Equation (10.1) rep-
resents the dynamics of an interconnected chain of ideal rigid bodies, supposing that there

10.2. ACTUATOR DYNAMICS 233

is a generalized force τ acting at the joints. We can assume that the k-th component τk
of the generalized force vector τ is a torque about the joint axis zk−1 if joint k is revolute
and is a force along the joint axis zk−1 if joint k is prismatic. This generalized force is
produced by an actuator, which may be electric, hydraulic or pneumatic. Although (10.1)
is extremely complicated for all but the simplest manipulators, it nevertheless is an ide-
alization, and there are a number of dynamic effects that are not included in (10.1). For
example, friction at the joints is not accounted for in these equations and may be significant
for some manipulators. Also, no physical body is completely rigid. A more detailed analysis
of robot dynamics would include various sources of flexibility, such as elastic deformation
of bearings and gears, deflection of the links under load, and vibrations. In this section we
are interested mainly in the dynamics of the actuators producing the generalized force τ .
We treat only the dynamics of permanent magnet DC-motors, as these are common for use
in present-day robots.

A DC-motor basically works on the principle that a current carrying conductor in a
magnetic field experiences a force F = i × φ, where φ is the magnetic flux and i is the
current in the conductor. The motor itself consists of a fixed stator and a movable rotor that
rotates inside the stator, as shown in Figure 10.2. If the stator produces a radial magnetic

Figure 10.2: Cross-sectional view of a surface-wound permanent magnet DC motor.

flux φ and the current in the rotor (also called the armature) is i then there will be a torque
on the rotor causing it to rotate. The magnitude of this torque is

τm = K1φia (10.2)

where τm is the motor torque (N −m), φ is the magnetic flux (webers), ia is the armature
current (amperes), and K1 is a physical constant. In addition, whenever a conductor moves
in a magnetic field, a voltage Vb is generated across its terminals that is proportional to the
velocity of the conductor in the field. This voltage, called the back emf, will tend to oppose
the current flow in the conductor.

Thus, in addition to the torque τm in (10.2), we have the back emf relation

Vb = K2φωm (10.3)

234 CHAPTER 10. INDEPENDENT JOINT CONTROL

where Vb denotes the back emf (Volts), ωm is the angular velocity of the rotor (rad/sec),
and K2 is a proportionality constant.

DC-motors can be classified according to the way in which the magnetic field is produced
and the armature is designed. Here we discuss only the so-called permanent magnet motors
whose stator consists of a permanent magnet. In this case we can take the flux, φ, to be a
constant. The torque on the rotor is then controlled by controlling the armature current,
ia.

Consider the schematic diagram of Figure 10.3 where

+−

L

Vb
+

−

R

V (t)

φia

τm, θm, τℓ

Figure 10.3: Circuit diagram for armature controlled DC motor.

V = armature voltage

L = armature inductance

R = armature resistance

Vb = back emf

ia = armature current

θm = rotor position (radians)

τm = generated torque

τℓ = load torque

φ = magnetic flux due to stator

The differential equation for the armature current is then

L
dia
dt

+Ria = V − Vb. (10.4)

Since the flux φ is constant the torque developed by the motor is

τm = K1φia = Kmia (10.5)

where Km is the torque constant in N −m/amp. From (10.3) we have

Vb = K2φωm = Kbωm = Kb
dθm
dt

(10.6)

where Kb is the back emf constant.

10.2. ACTUATOR DYNAMICS 235

Figure 10.4: Typical torque-speed curves of a DC motor.

We can determine the torque constant of the DC motor using a set of torque-speed
curves as shown in Figure 10.4 for various values of the applied voltage V . When the motor
is stalled, the blocked-rotor torque at the rated voltage is denoted τ0. Using Equation (10.4)
with Vb = 0 and dia/dt = 0 we have

Vr = Ria (10.7)

=
Rτ0
Km

.

Therefore the torque constant is

Km =
Rτ0
Vr

. (10.8)

The remainder of the discussion refers to Figure 10.5 consisting of the DC-motor in series

Figure 10.5: Lumped model of a single link with actuator/gear train.

with a gear train with gear ratio r : 1 and connected to a link of the manipulator. The gear

236 CHAPTER 10. INDEPENDENT JOINT CONTROL

ratio r typically has values in the range 20 to 200 or more. Referring to Figure 10.5, we set
Jm = Ja + Jg, the sum of the actuator and gear inertias. The equation of motion of this
system is then

Jm
d2θm
dt2

+Bm
dθm
dt

= τm − τℓ/r (10.9)

= Kmia − τℓ/r (10.10)

the latter equality coming from (10.5). In the Laplace domain the three equations (10.4),
(10.6) and (10.9) may be combined and written as

(Ls+R)Ia(s) = V (s)−KbsΘm(s) (10.11)

(Jms
2 +Bms)Θm(s) = KiIa(s)− τℓ/r(s). (10.12)

The block diagram of the above system is shown in Figure 10.6. The transfer function from

τl/r

−��V (s) +//
⊕

// 1
Ls+R

Ia(s) // Ki
+//
⊕

// 1
Jms+Bm

//

oo

1
s

θm(s)
//

Kb

−OO

Figure 10.6: Block diagram for a DC motor system.

V (s) to Θm(s) is then given by (with τℓ = 0)

Θm(s)

V (s)
=

Km

s [(Ls+R)(Jms+Bm) +KbKm]
. (10.13)

The transfer function from the load torque τℓ/r to Θm is given by (with V = 0)

Θm(s)

τℓ(s)
=

−(Ls+R)

s [(Ls+R)(Jms+Bm) +KbKm]
. (10.14)

Frequently it is assumed that the “electrical time constant” L
R is much smaller than

the “mechanical time constant” Jm
Bm

. This is a reasonable assumption for many electro-

mechanical systems and leads to a reduced order model of the actuator dynamics. If we
now divide numerator and denominator of (10.11) by R and neglect the electrical time

constant by setting L
R equal to zero, the transfer function between Θm and V becomes

(again, with τℓ = 0)

Θm(s)

V (s)
=

Km/R

s(Jms+Bm +KbKm/R)
. (10.15)

10.2. ACTUATOR DYNAMICS 237

Similarly the transfer function between Θm and τℓ/r is

Θm(s)

τℓ(s)
= − 1

s(Jm(s) +Bm +KbKm/R)
. (10.16)

In the time domain Equations (10.15) and (10.16) represent, by superposition, the second
order differential equation

Jmθ̈m(t) + (Bm +KbKm/R)θ̇m(t) = (Km/R)V (t)− τℓ(t)/r (10.17)

The block diagram corresponding to the reduced order system (10.17) is shown in Fig-
ure 10.7.

τl/r

−��V (s) +//
⊕ Im // Ki/R

+//
⊕

// 1
Jms+Bm

//

oo

1
s

θm(s)
//

Kb

−OO

Figure 10.7: Block diagram for reduced order system.

If the output side of the gear train is directly coupled to the link, then the joint variables
and the motor variables are related by

θmk = rkqk ; k = 1, . . . , n (10.18)

where rk is the k-th gear ratio. Similarly, the joint torques τk given by (10.1) and the
actuator load torques τℓk are related by

τℓk = τk ; k = 1, . . . , n. (10.19)

However, in manipulators incorporating other types of drive mechanisms such as belts,
pulleys, chains, etc., θmk need not equal rkqk. In general one must incorporate into the
dynamics a transformation between joint space variables and actuator variables of the form

qk = fk(θs1 , . . . , θsn) ; τℓk = fk(τ1, . . . , τn) (10.20)

where θsk = θmk/rk.

Example 7.2.1

Consider the two link planar manipulator shown in Figure 10.8, whose actuators are both
located on link 1. In this case we have,

q1 = θs1 ; q2 = θs1 + θs2 . (10.21)

238 CHAPTER 10. INDEPENDENT JOINT CONTROL

Figure 10.8: Two-link manipulator with remotely driven link.

Similarly, the joint torques τi and the actuator load torques τℓ, are related by

τℓ1 = τ1 ; τℓ2 = τ1 + τ2. (10.22)

The inverse transformation is then

θs1 = q1 ; θs2 = q2 − q1 (10.23)

and

τ1 = τℓ1 ; τ2 = τℓ2 − τℓ1 . (10.24)

10.3 Set-Point Tracking

In this section we discuss set-point tracking using a PD or PID compensator. This type
of control is adequate for applications not involving very fast motion, especially in robots
with large gear reduction between the actuators and the links. The analysis in this section
follows typical engineering practice rather than complete mathematical rigor.

For the following discussion, assume for simplicity that

qk = θsk = θmk/rk and (10.25)

τℓk = τk.

Then, for k = 1, . . . , n, the equations of motion of the manipulator can be written as

n
∑

j=1

djk(q)q̈j +

n
∑

i,j=1

cijk(q)q̇iqj + gk(q) = τk (10.26)

Jmk θ̈mk + (Bmk +KbkKmk/Rk)θ̇mk = Kmk/RkVk − τk/rk (10.27)

10.3. SET-POINT TRACKING 239

Combining these equations yields

(Jmk +
1

r2k
dkk(q))θ̈mk + (Bmk +KbkKmk/Rk)θ̇mk = Kmk/RkVk − dk (10.28)

where dk is defined by

dk :=
1

rk

∑

j 6=k
q̈j +

∑

i,j

cijkq̇iq̇j + gk. (10.29)

Note that the coefficient of θ̈mk in the above expression is a nonlinear function of the
manipulator configuration, q. However, large gear reduction, i.e. large values of rk, mitigates
the influence of this term and one often defines a constant average, or effective inertia Jeffk
as an approximation of the exact expression Jmk + 1

r2
k

dkk(q). If we further define

Beffk = Bmk +KbkKmk/Rk and uk = Kmk/RkVk (10.30)

we may write (10.27) as

Jeffk θ̈mk +Beffk θ̇mk = uk − dk (10.31)

The advantage of this model is its simplicity since the motor dynamics represented by
(10.27) are linear. The effect of the nonlinear coupling terms is treated as a disturbance dk,
which may be small for large gear reduction provided the velocities and accelerations of the
joints are also small.

Henceforth we suppress the subscript k representing the particular joint and represent
(10.31) in the Laplace domain by the block diagram of Figure 10.9. The set-point tracking

d

−��u +//
⊕

// 1
Jeff s+Beff

// 1
s

θm//

Figure 10.9: Block diagram of simplified open loop system with effective inertia and damp-
ing.

problem is now the problem of tracking a constant or step reference command θd.

10.3.1 PD Compensator

As a first illustration we choose a so-called PD-compensator. The resulting closed loop
system is shown in Figure 10.10. The input U(s) is given by

U(s) = Kp(Θ
d(s)−Θ(s))−KDsΘ(s) (10.32)

where Kp, KD are the proportional (P) and derivative (D) gains, respectively.

240 CHAPTER 10. INDEPENDENT JOINT CONTROL

d

−��θdm +//
⊕

// KP
+//
⊕

// K
+//
⊕

// 1
Jeff s+Beff

//

oo

1
s

θm//
−OO

KD

−OO

Figure 10.10: Closed loop system with PD-control.

Taking Laplace transforms of both sides of (10.31) and using the expression (10.32) for
the feedback control V (s), leads to the closed loop system

Θm(s) =
KKp

Ω(s)
Θd(s)− 1

Ω(s)
D(s) (10.33)

where Ω(s) is the closed loop characteristic polynomial

Ω(s) = Jeffs
2 + (Beff +KKD)s+KKp. (10.34)

The closed loop system will be stable for all positive values of Kp and KD and bounded
disturbances, and the tracking error is given by

E(s) = Ωd(s)−Θm(s) (10.35)

=
Jeffs

2 + (Beff +KKD)s

Ω(s)
Θd(s) +

1

Ω(s)
D(s). (10.36)

For a step reference input

Θd(s) =
Ωd

s
(10.37)

and a constant disturbance

D(s) =
D

s
(10.38)

it now follows directly from the final value theorem [4] that the steady state error ess satisfies

ess = lim
s→0

sE(s) (10.39)

=
−D
KKp

. (10.40)

Since the magnitude D of the disturbance is proportional to the gear reduction 1
r we see

that the steady state error is smaller for larger gear reduction and can be made arbitrarily

10.3. SET-POINT TRACKING 241

small by making the position gain Kp large, which is to be expected since the system is
Type 1.

We know, of course, from (10.29) that the disturbance term D(s) in (10.35) is not con-
stant. However, in the steady state this disturbance term is just the gravitational force
acting on the robot, which is constant. The above analysis therefore, while only approx-
imate, nevertheless gives a good description of the actual steady state error using a PD
compensator assuming stability of the closed loop system.

10.3.2 Performance of PD Compensators

For the PD-compensator given by (10.32) the closed loop system is second order and hence
the step response is determined by the closed loop natural frequency ω and damping ratio
ζ. Given a desired value for these quantities, the gains KD and Kp can be found from the
expression

s2 +
(Beff +KKD)

Jeff
s+

KKp

Jeff
= s2 + 2ζωs+ ω2 (10.41)

as

Kp =
ω2Jeff
K

, KD =
2ζωJeff −Beff

K
. (10.42)

It is customary in robotics applications to take ζ = 1 so that the response is critically
damped. This produces the fastest non-oscillatory response. In this context ω determines
the speed of response.

Example 10.1 Consider the second order system of Figure 10.11. The closed loop char-

d

+��θd +//
⊕

// KP +KDs
+//
⊕

// 1
s(s+1)

θ//
−OO

Figure 10.11: System of Example 7.3.1.

acteristic polynomial is

p(s) = s2 + (1 +KD)s+Kp. (10.43)

Suppose θd = 10 and there is no disturbance (d = 0). With ζ = 1, the required PD gains for
various values of ω are shown in Table 10.1. The corresponding step responses are shown
in Figure 10.12.

Now suppose that there is a constant disturbance d = 40 acting on the system. The
response of the system with the PD gains of Table 10.1 are shown in Figure 10.13. We see
that the steady state error due to the disturbance is smaller for large gains as expected. ⋄

242 CHAPTER 10. INDEPENDENT JOINT CONTROL

Table 10.1: .

Ω KP KD

4 16 7
8 64 15
12 144 23

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

Time (sec)

S
te

p
R

es
po

ns
e

ω = 4

ω = 8

ω = 12

Figure 10.12: Critically damped second order step responses.

10.3.3 PID Compensator

In order to reject a constant disturbance using PD control we have seen that large gains are
required. By using integral control we may achieve zero steady state error while keeping the
gains small. Thus, let us add an integral term KI

s to the above PD compensator. This leads
to the so-called PID control law, as shown in Figure 10.14. The system is now Type 2 and
the PID control achieves exact steady tracking of step (and ramp) inputs while rejecting
step disturbances, provided of course that the closed loop system is stable.

With the PID compensator

C(s) = Kp +KDs+
KI

s
(10.44)

the closed loop system is now the third order system

Θm(s) =
(KDs

2 +Kps+KI)

Ω2(s)
Θd(s)− rs

Ω2(s)
D(s) (10.45)

where

Ω2 = Jeffs
3 + (Beff +KKD)s2 +KKps+KKI . (10.46)

Applying the Routh-Hurwitz criterion to this polynomial, it follows that the closed loop

10.3. SET-POINT TRACKING 243

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

Time (sec)

S
te

p
R

es
po

ns
e

ω = 4

ω = 8

ω = 12

reference

Figure 10.13: Second order system response with disturbance added.

KI
s

+��

d

−��θd +//
⊕

//

//

KP
+//
⊕ +//

⊕

// 1
Jeff s+Beff

//

oo

1
s

θm//
−OO

KD

−OO

Figure 10.14: Closed loop system with PID control.

system is stable if the gains are positive, and in addition,

KI <
(Beff +KKD)Kp

Jeff
. (10.47)

Example 10.2 To the system of Example 7.3.1 we have added a disturbance and an integral
control term in the compensator. The step responses are shown in Figure 10.17. We see
that the steady state error due to the disturbance is removed. ⋄

10.3.4 Saturation

In theory, one could achieve arbitrarily fast response and arbitrarily small steady state error
to a constant disturbance by simply increasing the gains in the PD or PID compensator.
In practice, however, there is a maximum speed of response achievable from the system.
Two major factors, heretofore neglected, limit the achievable performance of the system.
The first factor, saturation, is due to limits on the maximum torque (or current) input.
Many manipulators, in fact, incorporate current limiters in the servo-system to prevent
damage that might result from overdrawing current. The second effect is flexibility in the

244 CHAPTER 10. INDEPENDENT JOINT CONTROL

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Time (sec)

S
te

p
R

es
po

ns
e

Response With Integral Control

ω = 4

ω = 8

Figure 10.15: Response with integral control action.

motor shaft and/or drive train. We illustrate the effects of saturation below and drive train
flexibility in section 10.5.

Example 10.3 Consider the block diagram of Figure 10.16, where the saturation function

Saturation Plant

θd +//
⊕

// KP +KDs //

−50

+50
// 1
s(s+1)

θ//
−OO

Figure 10.16: Second order system with input saturation.

represents the maximum allowable input. With PID control and saturation the response is
below. ⋄

The second effect to consider is the joint flexibility. Let kr be the effective stiffness at
the joint. The joint resonant frequency is then ω4 =

√

kr/Jeff . It is common engineering
practice to limit ω in (10.42) to no more than half of ωr to avoid excitation of the joint
resonance. We will discuss the effects of the joint flexibility in more detail in section 10.5.

These examples clearly show the limitations of PID-control when additional effects such
as input saturation, disturbances, and unmodeled dynamics must be considered.

10.4 Feedforward Control and Computed Torque

In this section we introduce the notion of feedforward control as a method to track time
varying trajectories and reject time varying disturbances.

Suppose that r(t) is an arbitrary reference trajectory and consider the block diagram

10.4. FEEDFORWARD CONTROL AND COMPUTED TORQUE 245

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Time (sec)

S
te

p
R

es
po

ns
e

PD Control with Saturation

Figure 10.17: Response with Saturation and Integral Control Action

of Figure 10.18, where G(s) represents the forward transfer function of a given system and

F (s)

+��r +//

//

⊕

// H(s)
+//
⊕

// G(s)
y//

−OO

Figure 10.18: Feedforward control scheme.

H(s) is the compensator transfer function. A feedforward control scheme consists of adding
a feedforward path with transfer function F (s) as shown.

Let each of the three transfer functions be represented as ratios of polynomials

G(s) =
q(s)

p(s)
H(s) =

c(s)

d(s)
F (s) =

a(s)

b(s)
(10.48)

We assume that G(s) is strictly proper and H(s) is proper. Simple block diagram manipu-

lation shows that the closed loop transfer function T (s) = Y (s)
R(s) is given by (Problem 7-9)

T (s) =
q(s)(c(s)b(s) + a(s)d(s))

b(s)(p(s)d(s) + q(s)c(s))
. (10.49)

The closed loop characteristic polynomial of the system is then b(s)(p(s)d(s)+q(s)c(s)).
For stability of the closed loop system therefore we require that the compensator H(s) and
the feedforward transfer function F (s) be chosen so that the polynomials p(s)d(s)+q(s)c(s)
and b(s) are Hurwitz. This says that, in addition to stability of the closed loop system the
feedforward transfer function F (s) must itself be stable.

If we choose the feedforward transfer function F (s) equal to 1
G(s)′ the inverse of the

forward plant, that is, a(s) = p(s) and b(s) = q(s), then the closed loop system becomes

q(s)(p(s)d(s) + q(s)c(s))Y (s) = q(s)(p(s)d(s) + q(s)c(s))R(s) (10.50)

246 CHAPTER 10. INDEPENDENT JOINT CONTROL

or, in terms of the tracking error E(s) = R(s)− Y (s),

q(s)(p(s)d(s) + q(s)c(s))E(s) = 0. (10.51)

Thus, assuming stability, the output y(t) will track any reference trajectory r(t). Note
that we can only choose F (s) in this manner provided that the numerator polynomial q(s)
of the forward plant is Hurwitz, that is, as long as all zeros of the forward plant are in the
left half plane. Such systems are called minimum phase.

If there is a disturbance D(s) entering the system as shown in Figure 10.19, then it is

F (s)

��6
66

66
66 D(s)

+��r +//

//

⊕

// H(s)
+

+
//
⊕

// G(s)
y//

−OO

Figure 10.19: Feedforward control with disturbance.

easily shown that the tracking error E(s) is given by

E(s) =
q(s)d(s)

p(s)d(s) + q(s)c(s)
D(s). (10.52)

We have thus shown that, in the absence of disturbances the closed loop system will track
any desired trajectory r(t) provided that the closed loop system is stable. The steady state
error is thus due only to the disturbance.

Let us apply this idea to the robot model of Section ??. Suppose that θd(t) is an arbitrary
trajectory that we wish the system to track. In this case we have from (10.31) G(s) =

K
Jeff s2+Beff s

together with a PD compensator H(s) = Kp +KDs. The resulting system is

shown in Figure 10.20. Note that G(s) has no zeros at all and hence is minimum phase.

Jeffs
2 +Beffs

��4
44

44
44

4 rD(s)

−��θd +//

//

⊕

// KP +KDs
+

+
//
⊕

// 1
Jeff s2+Beff s

θm//
−OO

Figure 10.20: Feedforward compensator for second order system.

Note also that G(s)−1 is not a proper rational function. However, since the derivatives of
the reference trajectory θd are known and precomputed, the implementation of the above
scheme does not require differentiation of an actual signal. It is easy to see from (10.52)
that the steady state error to a step disturbance is now given by the same expression (10.39)
independent of the reference trajectory. As before, a PID compensator would result in zero

10.4. FEEDFORWARD CONTROL AND COMPUTED TORQUE 247

steady state error to a step disturbance. In the time domain the control law of Figure 10.20
can be written as

V (t) =
Jeff
K

θ̈d +
Beff
K

θ̇d +KD(θ̇d − θ̇m) +Kp(θ
d − θm) (10.53)

= f(t) +KDė(t) +Kpe(t) (10.54)

where f(t) is the feedforward signal

f(t) =
Jeff
K

θ̈d +
Beff
K

θ̇d (10.55)

and e(t) is the tracking error θd(t)− θ(t). Since the forward plant equation is

Jeff θ̈m +Beff θ̇m = KV (t)− rd(t)

the closed loop error e(t) = θm − θd satisfies the second order differential equation

Jeff ë+ (Beff +KKD)ė+KKpe(t) = −rd(t). (10.56)

Remark 7.6.1

We note from (10.56) that the characteristic polynomial of the closed loop system is iden-
tical to (10.34). The system now however is written in terms of the tracking errore(t).
Therefore, assuming that the closed loop system is stable, the tracking error will approach
zero asymptotically for any desired joint space trajectory in the absence of disturbances,
that is, if d = 0.

Computed Torque Disturbance Cancellation

We see that the feedforward signal (10.55) results in asymptotic tracking of any trajectory
in the absence of disturbances but does not otherwise improve the disturbance rejection
properties of the system. However, although the term d(t) in (10.56) represents a distur-
bance, it is not completely unknown since d satisfies (10.29). Thus we may consider adding
to the above feedforward signal, a term to anticipate the effects of the disturbance d(t).
Consider the diagram of Figure 10.21. Given a desired trajectory, then we superimpose, as
shown, the term

dd :=
∑

djk(q
d)q̈dj +

∑

cijk(q
d)q̇di q̇

d
j + gk(q

d) (10.57)

since dd has units of torque, the above feedforward disturbance cancellation control is called
the method of computed torque. The expression (10.57) thus compensates in a feedforward
manner the nonlinear coupling inertial, coriolis, centripetal, and gravitational forces arising
due to the motion of the manipulator. Although the difference ∆d := dd − d is zero
only in the ideal case of perfect tracking (θ = θd) and perfect computation of (10.57), in
practice, ∆d can be expected to be smaller than d and hence the computed torque has

248 CHAPTER 10. INDEPENDENT JOINT CONTROL

qd1..n
q̇d1..n
q̈d1..n







//
Computed

torque
(7.?.?)

+
��

Jeffs
2 +Beffs

��4
44

44
44

4 rD(s)

−��

θd +//

//

⊕

// KP +KDs
+

+
//
⊕

// 1
Jeff s2+Beff s

θm//
−OO

Figure 10.21: Feedforward computed torque compensation.

the advantage of reducing the effects of d. Note that the expression (10.57) is in general
extremely complicated so that the computational burden involved in computing (10.57) is
of major concern. In fact the problem of real-time implementation of this computed torque
control has stimulated a great deal of research. The development of efficient recursive
formulations of manipulator dynamics, such as the recursive Newton-Euler equations of
Chapter ??, was partly motivated by the need to compute the expression (10.57) in real-
time.

Since only the values of the desired trajectory need to be known, many of these terms can
be precomputed and stored off-line. Thus there is a trade-off between memory requirements
and on-line computational requirements. This has led to the development of table look up
schemes to implement (10.57) and also to the development of computer programs for the
automatic generation and simplification of manipulator dynamic equations.

10.5 Drive Train Dynamics

In this section we discuss in more detail the problem of joint flexibility. For many manipula-
tors, particularly those using harmonic drives1 for torque transmission, the joint flexibility
is significant. In addition to torsional flexibility in the gears, joint flexibility is caused by
effects such as shaft windup, bearing deformation, and compressibility of the hydraulic fluid
in hydraulic robots.

Consider the idealized situation of Figure 10.22 consisting of an actuator connected to
a load through a torsional spring which represents the joint flexibility. For simplicity we
take the motor torque u as input. The equations of motion are easily derived using the
techniques of Chapter ??, with generalized coordinates θℓ and θm, the link angle, and the

1Harmonic drives are a type of gear mechanism that are very popular for use in robots due to their low
backlash, high torque transmission and compact size. However, they also introduce unwanted friction and
flexibility at the joints.

10.5. DRIVE TRAIN DYNAMICS 249

Figure 10.22: Idealized model to represent joint flexibility.

motor angle, respectively, as

Jℓθ̈ℓ +Bℓθ̇ℓ + k(θℓ − θm) = 0 (10.58)

Jmθ̈m +Bmθ̇m − k(θℓ − θm) = u (10.59)

where Jℓ, Jm are the load and motor inertias, Bℓ and Bm are the load and motor damping
constants, and u is the input torque applied to the motor shaft. In the Laplace domain we
can write this as

pℓ(s)Θℓ(s) = kΘm(s) (10.60)

pm(s)Θm(s) = kΘℓ(s) + U(s) (10.61)

where

pℓ(s) = Jℓs
2 +Bℓs+ k (10.62)

pm(s) = Jms
2 +Bms+ k. (10.63)

This system is represented by the block diagram of Figure 10.23.
The output to be controlled is, of course, the load angle θℓ. The open loop transfer

function between U and Θℓ is given by

Θℓ(s)

U(s)
=

k

pℓ(s)pm(s)− k2
. (10.64)

The open loop characteristic polynomial is

JℓJms
4 + (JℓBm + JmBℓ)s

3 + (k(Jℓ + Jm) +BℓBm)s2 + k(Bℓ +Bm)s. (10.65)

If the damping constants Bℓ and Bm are neglected, the open loop characteristic polynomial
is

JℓJms
4 + k(Jℓ + Jm)s2 (10.66)

250 CHAPTER 10. INDEPENDENT JOINT CONTROL

Figure 10.23: Block diagram for the system (10.60)-(10.61).

which has a double pole at the origin and a pair of complex conjugate poles at s = ±jω
where ω2 = k

(

1
Jℓ

+ 1
Jm

)

. Assuming that the open loop damping constants Bℓ and Bm are

small, then the open loop poles of the system (10.60)-(10.61) will be in the left half plane
near the poles of the undamped system.

Suppose we implement a PD compensator C(s) = Kp+KDs. At this point the analysis
depends on whether the position/velocity sensors are placed on the motor shaft or on the
load shaft, that is, whether the PD-compensator is a function of the motor variables or the
load variables. If the motor variables are measured then the closed loop system is given by
the block diagram of Figure 10.24. Set Kp + KDs = KD(s + a); a = Kp/KD. The root

Figure 10.24: PD-control with motor angle feedback.

locus for the closed loop system in terms of KD is shown in Figure 10.25.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−3

−2

−1

0

1

2

3

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 10.25: Root locus for the system of Figure 10.24.

We see that the system is stable for all values of the gain KD but that the presence of

10.5. DRIVE TRAIN DYNAMICS 251

the open loop zeros near the jω axis may result in poor overall performance, for example,
undesirable oscillations with poor settling time. Also the poor relative stability means that
disturbances and other unmodeled dynamics could render the system unstable.

If we measure instead the load angle θℓ, the system with PD control is represented by
the block diagram of Figure 10.26. The corresponding root locus is shown in Figure 10.27.

Figure 10.26: PD-control with load angle feedback.

In this case the system is unstable for large KD. The critical value of KD, that is, the value

−6 −5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 10.27: Root locus for the system of Figure 7.22.

of KD for which the system becomes unstable, can be found from the Routh criterion. The
best that one can do in this case is to limit the gain KD so that the closed loop poles remain
within the left half plane with a reasonable stability margin.

Example 10.4 Suppose that the system (10.58)-(10.59) has the following parameters (see

252 CHAPTER 10. INDEPENDENT JOINT CONTROL

[1])

k = 0.8Nm/rad Bm = 0.015Nms/rad (10.67)

Jm = 0.0004Nms2/rad Bℓ = 0.0Nms/rad

Jℓ = 0.0004Nm2/rad.

If we implement a PD controller KD(s + a) then the response of the system with motor
(respectively, load) feedback is shown in Figure 10.28 (respectively, Figure 10.29). ⋄

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 10.28: Step response – PD-control with motor angle feedback.

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

Figure 10.29: Step response – PD control with load angle feedback.

Chapter 11

MULTIVARIABLE CONTROL

11.1 Introduction

In the previous chapter we discussed techniques to derive a control law for each joint of
a manipulator based on a single-input/single-output model. Coupling effects among the
joints were regarded as disturbances to the individual systems. In reality, the dynamic
equations of a robot manipulator form a complex, nonlinear, and multivariable system.
In this chapter, therefore, we treat the robot control problem in the context of nonlinear,
multivariable control. This approach allows us to provide more rigorous analysis of the
performance of control systems, and also allows us to design robust and adaptive nonlinear
control laws that guarantee stability and tracking of arbitrary trajectories.

Let us first reformulate the manipulator dynamic equations in a form more suitable for
the discussion to follow. Recall the robot equations of motion (10.26) and (10.27)

n
∑

j=1

djk(q)q̈j +

n
∑

i,j=1

cijk(q)q̇iq̇j + φk = τk (11.1)

Jmk θ̈mk +Bkθ̇mk = Kmk/RkVk − τk/rk. (11.2)

where Bk = Bmk +KbkKmk/Rk. Multiplying (11.2) by rk and using the fact that

θmk = rkqk (11.3)

we write Equation (11.2) as

r2kJmq̈k + r2kBkq̇k = rkKmk/RVk − τk (11.4)

Substituting (11.4) into (11.1) yields

r2kJmk q̈k +

n
∑

j−1

djkq̈j +

n
∑

i,j=1

cijkq̇iq̇j + r2kBkq̇k + φk = rk
Km

R
Vk. (11.5)

253

254 CHAPTER 11. MULTIVARIABLE CONTROL

In matrix form these equations of motion can be written as

M(q)q̈ + C(q, q̇)q̇ +Bq̇ + g(q) = u (11.6)

where M(q) = D(q) + J where J is a diagonal matrix with diagonal elements r2kJmk . The
vector g(q) and the matrix C(q, q̇) are defined by (9.61) and (9.62), respectively, and the
input vector u has components

uk = rk
Kmk

Rk
Vk.

Note that uk has units of torque.

Henceforth, we will take B = 0 for simplicity in Equation (11.6) and use this equation
for all of our subsequent development. We leave it as an exercise for the reader (cf:Problem
X) to show that the properties of passivity, skew-symmetry, bounds on the inertia matrix
and linearity in the parameters continue to hold for the system (11.6).

11.2 PD Control Revisited

It is rather remarkable that the simple PD-control scheme for set-point control of rigid
robots that we discussed in Chapter 10 can be rigorously shown to work in the general
case.1. An independent joint PD-control scheme can be written in vector form as

u = KP q̃ −KDq̇ (11.7)

where q̃ = qd − q is the error between the desired joint displacements qd and the actual
joint displacements q, and KP ,KD are diagonal matrices of (positive) proportional and
derivative gains, respectively. We first show that, in the absence of gravity, that is, if g is
zero in (11.6), the PD control law (11.7) achieves asymptotic tracking of the desired joint
positions. This, in effect, reproduces the result derived previously, but is more rigorous, in
the sense that the nonlinear equations of motion (11.1) are not approximated by a constant
disturbance.

To show that the above control law achieves zero steady state error consider the Lya-
punov function candidate

V = 1/2q̇TM(q)q̇ + 1/2q̃TKP q̃. (11.8)

The first term in (11.8) is the kinetic energy of the robot and the second term accounts
for the proportional feedback KP q̃. Note that V represents the total kinetic energy that
would result if the joint actuators were to be replaced by springs with stiffnesses represented
by KP and with equilibrium positions at qd. Thus V is a positive function except at the
“goal” q = qd, q̇ = 0, at which point V is zero. The idea is to show that along any motion

1The reader should review the discussion on Lyapunov Stability in Appendix C.

11.2. PD CONTROL REVISITED 255

of the robot, the function V is decreasing to zero. This will imply that the robot is moving
toward the desired goal configuration.

To show this we note that, since J and qd are constant, the time derivative of V is given
by

V̇ = q̇TM(q)q̈ + 1/2q̇T Ḋ(q)q̇ − q̇TKP q̃. (11.9)

Solving for M(q)q̈ in (11.6) with g(q) = 0 and substituting the resulting expression into
(11.9) yields

V̇ = q̇T (u− C(q, q̇)q̇) + 1/2q̇T Ḋ(q)q̇ − q̇TKP q̃ (11.10)

= q̇T (u−KP q̃) + 1/2q̇T (Ḋ(q)− 2C(q, q̇))q̇

= q̇T (u−KP q̃)

where in the last equality we have used the fact (Theorem 6.3.1) that Ḋ − 2C is skew
symmetric. Substituting the PD control law (11.7) for u into the above yields

V̇ = −q̇TKDq̇ ≤ 0. (11.11)

The above analysis shows that V is decreasing as long as q̇ is not zero. This, by itself
is not enough to prove the desired result since it is conceivable that the manipulator can
reach a position where q̇ = 0 but q 6= qd. To show that this cannot happen we can use
LaSalle’s Theorem (Appendix C). Suppose V̇ ≡ 0. Then (11.11) implies that q̇ ≡ 0 and
hence q̈ ≡ 0. From the equations of motion with PD-control

M(q)q̈ + C(q, q̇)q̇ = −KP q̃ −KDq̇

must then have

0 = −KP q̃

which implies that q̃ = 0, q̇ = 0. LaSalle’s Theorem then implies that the equilibrium is
asymptotically stable.

In case there are gravitational terms present in (11.6) Equation (11.10) must be modified
to read

V̇ = q̇T (u− g(q)−KP q̃). (11.12)

The presence of the gravitational term in (11.12) means that PD control alone cannot
guarantee asymptotic tracking. In practice there will be a steady state error or offset.
Assuming that the closed loop system is stable the robot configuration q that is achieved
will satisfy

KP (qd − q) = g(q). (11.13)

256 CHAPTER 11. MULTIVARIABLE CONTROL

The physical interpretation of (11.13) is that the configuration q must be such that
the motor generates a steady state “holding torque” KP (qd − q) sufficient to balance the
gravitational torque g(q). Thus we see that the steady state error can be reduced by
increasing the position gain KP .

In order to remove this steady state error we can modify the PD control law as

u = KP q̃ −KDq̇ + g(q). (11.14)

The modified control law (11.14), in effect, cancels the effect of the gravitational terms
and we achieve the same Equation (11.11) as before. The control law (11.14) requires
microprocessor implementation to compute at each instant the gravitational terms g(q)
from the Lagrangian equations. In the case that these terms are unknown the control law
(11.14) cannot be implemented. We will say more about this and related issues later.

11.3 Inverse Dynamics

We now consider the application of more complex nonlinear control techniques for trajectory
tracking of rigid manipulators. Consider again the dynamic equations of an n-link robot in
matrix form from (11.6)

M(q)q̈ + C(q, q̇)q̇ + g(q) = u. (11.15)

The idea of inverse dynamics is to seek a nonlinear feedback control law

u = f(q, q̇, t) (11.16)

which, when substituted into (11.15), results in a linear closed loop system. For general
nonlinear systems such a control law may be quite difficult or impossible to find. In the
case of the manipulator dynamic equations (11.15), however, the problem is actually easy.
By inspecting (11.15) we see that if we choose the control u according to the equation

u = M(q)aq + C(q, q̇)q̇ + g(q) (11.17)

then, since the inertia matrix M is invertible, the combined system (11.15)-(11.17) reduces
to

q̈ = aq (11.18)

The term aq represents a new input to the system which is yet to be chosen. Equa-
tion (11.18) is known as the double integrator system as it represents n uncoupled double
integrators. The nonlinear control law (11.17) is called the inverse dynamics control2 and
achieves a rather remarkable result, namely that the “new” system (11.18) is linear, and

2We should point out that in the research literature the control law (11.17) is frequently called computed

torque as well.

11.3. INVERSE DYNAMICS 257

decoupled. This means that each input aqk can be designed to control a scalar linear system.
Moreover, assuming that aqk is a function only of qk and its derivatives, then aqk will affect
qk independently of the motion of the other links.

Since aqk can now be designed to control a linear second order system, the obvious choice
is to set

aq = −K0q −K1q̇ + r (11.19)

where K0 and K1 are diagonal matrices with diagonal elements consisting of position and
velocity gains, respectively. The closed loop system is then the linear system

q̈ +K1q̇ +K0q = r. (11.20)

Now, given a desired trajectory

t → (qd(t), q̇d(t)). (11.21)

if one chooses the reference input r(t) as3

r(t) = q̈d(t) +K0q
d(t) +K1q̇

d(t) (11.22)

then the tracking error e(t) = q − qd satisfies

ë(t) +K1e(t) +K0e(t) = 0. (11.23)

A simple choice for the gain matrices K0 and K1 is

K0 = diag{ω2
1, . . . , ω

2
n} (11.24)

K1 = diag{2ω1, . . . , 2ωn}

which results in a closed loop system which is globally decoupled, with each joint response
equal to the response of a critically damped linear second order system with natural fre-
quency ωi. As before, the natural frequency ωi determines the speed of response of the
joint, or equivalently, the rate of decay of the tracking error.

The inverse dynamics approach is extremely important as a basis for control of robot
manipulators and it is worthwhile trying to see it from alternative viewpoints. We can give a
second interpretation of the control law (11.17) as follows. Consider again the manipulator
dynamic equations (11.15). Since M(q) is invertible for q ∈ R

n we may solve for the
acceleration q̈ of the manipulator as

q̈ = M−1{u− C(q, q̇)q̇ − g(q)}. (11.25)

Suppose we were able to specify the acceleration as the input to the system. That is,
suppose we had actuators capable of producing directly a commanded acceleration (rather

3Compare this with the feedforward expression (10.53).

258 CHAPTER 11. MULTIVARIABLE CONTROL

than indirectly by producing a force or torque). Then the dynamics of the manipulator,
which is after all a position control device, would be given as

q̈(t) = aq(t) (11.26)

where aq(t) is the input acceleration vector. This is again the familiar double integrator
system. Note that (11.26) is not an approximation in any sense; rather it represents the
actual open loop dynamics of the system provided that the acceleration is chosen as the
input. The control problem for the system (11.26) is now easy and the acceleration input
aq can be chosen as before according to (11.19).

In reality, however, such “acceleration actuators” are not available to us and we must be
content with the ability to produce a generalized force (torque) ui at each joint i. Comparing
equations (11.25) and (11.26) we see that the torque u and the acceleration aq of the
manipulator are related by

M−1{u(t)− C(q, q̇)q̇ − g(q)} = aq (11.27)

By the invertibility of the inertia matrix we may solve for the input torque u(t) as

u = M(q)aq + C(q, q̇)q̇ + g(q) (11.28)

which is the same as the previously derived expression (11.17). Thus the inverse dynamics
can be viewed as an input transformation which transforms the problem from one of choosing
torque input commands, which is difficult, to one of choosing acceleration input commands,
which is easy.

Note that the implementation of this control scheme requires the computation at each
sample instant of the inertia matrix M(q) and the vector of Coriolis, centrifugal, and grav-
itational. Unlike the computed torque scheme (10.56), however, the inverse dynamics must

be computed on-line. In other words, as a feedback control law, it cannot be precom-
puted off-line and stored as can the computed torque (10.57). An important issue therefore
in the control system implementation is the design of the computer architecture for the
above computations. As processing power continues to increase the computational issues
of real-time implementation become less important. An attractive method to implement
this scheme is to use a dedicated hardware interface, such as a DSP chip, to perform the
required computations in real time. Such a scheme is shown in Figure 11.1.

Figure 11.1 illustrates the notion of inner-loop/outer-loop control. By this we mean that
the computation of the nonlinear control (11.17) is performed in an inner loop, perhaps with
a dedicated hardwire interface, with the vectors q, q̇, and aq as its inputs and u as output.
The outer loop in the system is then the computation of the additional input term aq.
Note that the outer loop control aq is more in line with the notion of a feedback control in
the usual sense of being error driven. The design of the outer loop feedback control is in
theory greatly simplified since it is designed for the plant represented by the dotted lines in
Figure 11.1, which is now a linear or nearly linear system.

11.3. INVERSE DYNAMICS 259

ROBOT

LINEARIZED SYSTEM

INNER LOOP

CONTROLLERCONTROLLER

OUTER LOOP

PLANNER

TRAJECTORY
�✂✁✄✆☎ ✝

Figure 11.1: Inner loop/outer control architecture.

11.3.1 Task Space Inverse Dynamics

As an illustration of the importance of the inner loop/outer loop paradigm, we will show
that tracking in task space can be achieved by modifying our choice of outer loop control
q̈ in (11.18) while leaving the inner loop control unchanged. Let X ∈ R6 represent the
end-effector pose using any minimal representation of SO(3). Since X is a function of the
joint variables q ∈ C we have

Ẋ = J(q)q̇ (11.29)

Ẍ = J(q)q̈ + J̇(q)q̇. (11.30)

where J = Ja is the analytical Jacobian of section 5.8. Given the double integrator system,
(11.18), in joint space we see that if aq is chosen as

aq = J−1
{

aX − J̇ q̇
}

(11.31)

the result is a double integrator system in task space coordinates

Ẍ = aX (11.32)

Given a task space trajectory Xd(t), satisfying the same smoothness and boundedness
assumptions as the joint space trajectory qd(t), we may choose aX as

aX = Ẍd +KP (Xd −X) +KD(Ẋd − Ẋ) (11.33)

so that the Cartesian space tracking error, X̃ = X −Xd, satisfies

¨̃X +KD
˙̃X +KP X̃ = 0. (11.34)

Therefore, a modification of the outer loop control achieves a linear and decoupled system
directly in the task space coordinates, without the need to compute a joint space trajectory
and without the need to modify the nonlinear inner loop control.

260 CHAPTER 11. MULTIVARIABLE CONTROL

Note that we have used a minimal representation for the orientation of the end–effector
in order to specify a trajectory X ∈ ℜ6. In general, if the end–effector coordinates are given
in SE(3), then the Jacobian J in the above formulation will be the geometric Jacobian J .
In this case

V =

(

v
ω

)

=

(

ẋ
ω

)

= J(q)q̇ (11.35)

and the outer loop control

aq = J−1(q){
(

ax
aω

)

− J̇(q)q̇} (11.36)

applied to (11.18) results in the system

ẍ = ax ∈ ℜ3 (11.37)

ω̇ = aω ∈ ℜ3 (11.38)

Ṙ = S(ω)R, R ∈ SO(3), S ∈ so(3). (11.39)

Although, in this latter case, the dynamics have not been linearized to a double integrator,
the outer loop terms av and aω may still be used to defined control laws to track end–effector
trajectories in SE(3).

In both cases we see that non–singularity of the Jacobian is necessary to implement
the outer loop control. If the robot has more or fewer than six joints, then the Jacobians
are not square. In this case, other schemes have been developed using, for example, the
pseudoinverse in place of the inverse of the Jacobian. See [?] for details.

The inverse dynamics control approach has been proposed in a number of different guises,
such as resolved acceleration control [?] and operational space control [?]. These seemingly
distinct approaches have all been shown to be equivalent and may be incorporated into the
general framework shown above [?].

11.4 Robust and Adaptive Motion Control

A drawback to the implementation of the inverse dynamics control methodology described
in the previous section is the requirement that the parameters of the system be known
exactly. If the parameters are not known precisely, for example, when the manipulator
picks up an unknown load, then the ideal performance of the inverse dynamics controller is
no longer guaranteed. This section is concerned with robust and adaptive motion control
of manipulators. The goal of both robust and adaptive control to maintain performance
in terms of stability, tracking error, or other specifications, despite parametric uncertainty,
external disturbances, unmodeled dynamics, or other uncertainties present in the system.
In distinguishing between robust control and adaptive control, we follow the commonly ac-
cepted notion that a robust controller is a fixed controller, static or dynamic, designed to
satisfy performance specifications over a given range of uncertainties whereas an adaptive

11.4. ROBUST AND ADAPTIVE MOTION CONTROL 261

controller incorporates some sort of on-line parameter estimation. This distinction is im-
portant. For example, in a repetitive motion task the tracking errors produced by a fixed
robust controller would tend to be repetitive as well whereas tracking errors produced by
an adaptive controller might be expected to decrease over time as the plant and/or control
parameters are updated based on runtime information. At the same time, adaptive con-
trollers that perform well in the face of parametric uncertainty may not perform well in the
face of other types of uncertainty such as external disturbances or unmodeled dynamics.
An understanding of the trade-offs involved is therefore important in deciding whether to
employ robust or adaptive control design methods in a given situation.

Many of the fundamental theoretical problems in motion control of robot manipulators
were solved during an intense period of research from about the mid-1980’s until the early-
1990’s during which time researchers first began to exploit fundamental structural proper-
ties of manipulator dynamics such as feedback linearizability, passivity, multiple time-scale
behavior, and other properties that we discuss below.

11.4.1 Robust Feedback Linearization

The feedback linearization approach relies on exact cancellation of nonlinearities in the
robot equations of motion. Its practical implementation requires consideration of various
sources of uncertainties such as modeling errors, unknown loads, and computation errors.
Let us return to the Euler-Lagrange equations of motion

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (11.40)

and write the inverse dynamics control input u as

u = M̂(q)aq + Ĉ(q, q̇)q̇ + ĝ(q) (11.41)

where the notation (̂·) represents the computed or nominal value of (·) and indicates that
the theoretically exact feedback linearization cannot be achieved in practice due to the
uncertainties in the system. The error or mismatch (̃·) = (·) − (̂·) is a measure of one’s
knowledge of the system dynamics.

If we now substitute (11.41) into (11.40) we obtain, after some algebra,

q̈ = aq + η(q, q̇, aq) (11.42)

where

η = M−1(M̃aq + C̃q̇ + g̃) (11.43)

is called the Uncertainty. We note that

M−1M̃ = M−1M̂ − I =: E (11.44)

and so we may decompose η as

η = Eaq +M−1(C̃q̇ + g̃) (11.45)

262 CHAPTER 11. MULTIVARIABLE CONTROL

We note that the system (11.42) is still nonlinear and coupled due to the uncertainty
η(q, q̇, aq). Thus we have no guarantee that the outer loop control given by Equation (11.19)
will satisfy desired tracking performance specifications. In this chapter we discuss several
design methods to modify the outer loop control (??) to guarantee global convergence of
the tracking error for the system (11.42).

Outer Loop Design via Lyapunov’s Second Method

There are several approaches to treat the robust feedback linearization problem outlined
above. We will discuss only one method, namely the so-called theory of guaranteed stabil-
ity of uncertain systems, which is based on Lyapunov’s second method. In this approach
we set the outer loop control aq as

q̈ = q̈d(t) +KP (qd − q) +KD(q̇d − q̇) + δa (11.46)

In terms of the tracking error

e =

[

q̃
˙̃q

]

=

[

q − qd
q̇ − q̇d

]

(11.47)

we may write
ė = Ae+B{δa+ η} (11.48)

where

A =

[

0 I
−KP −KD

]

; B =

[

0
I

]

. (11.49)

Thus the double integrator is first stabilized by the linear feedback, −KP e−KDė, and δa is
an additional control input that must be designed to overcome the potentially destabilizing
effect of the uncertainty η. The basic idea is to compute a time–varying scalar bound,
ρ(e, t) ≥ 0, on the uncertainty η, i.e.,

||η|| ≤ ρ(e, t) (11.50)

and design the additional input term δa to guarantee ultimate boundedness of the state
trajectory x(t) in (11.48).

Returning to our expression for the uncertainty

η = Eq̈ +M−1(C̃q̇ + g̃) (11.51)

= Eδa+ E(q̈d −KP e−KDė) +M−1(C̃q̇ + g̃) (11.52)

we assume a bound of the form

||η|| ≤ α||δa||+ γ1||e||+ γ2||e||2 + γ3 (11.53)

where α = ||E|| = ||M−1M̂ − I|| and γi are nonnegative constants. Assuming for the
moment that ||δa|| ≤ ρ(e, t), which must then be checked a posteriori, we have

||η|| ≤ αρ(e, t) + γ1||e||+ γ2||e||2 + γ3 =: ρ(e, t) (11.54)

11.4. ROBUST AND ADAPTIVE MOTION CONTROL 263

which defines ρ as

ρ(e, t) =
1

1− α(γ1||e||+ γ2||e||2 + γ3) (11.55)

Since KP and KD are chosen in so that A in (11.48) is a Hurwitz matrix, we choose
Q > 0 and let P > 0 be the unique symmetric positive definite matrix satisfying the
Lyapunov equation,

ATP + PA = −Q. (11.56)

Defining the control δa according to

δa =















−ρ(e, t) BTPe
||BTPe|| ; if ||BTPe|| 6= 0

0 ; if ||BTPe|| = 0

(11.57)

it follows that the Lyapunov function V = eTPe satisfies V̇ ≤ 0 along solution trajectories
of the system (11.48). To show this result, we compute

V̇ = −eTQe+ 2eTPB{δa+ η} (11.58)

For simplicity, set w = BTPe and consider the second term, wT {δa + η} in the above
expression. If w = 0 this term vanishes and for w 6= 0, we have

δa = −ρ w

||w|| (11.59)

and (11.58) becomes, using the Cauchy-Schwartz inequality,

wT (−ρ w

||w|| + η) ≤ −ρ||w||+ ||w||||η|| (11.60)

= ||w||(−ρ+ ||η||) ≤ 0 (11.61)

since ||η|| ≤ ρ and hence
V̇ < −eTQe (11.62)

and the result follows. Note that ||δa|| ≤ ρ as required.
Since the above control term δa is discontinuous on the manifold defined by BTPe = 0,

solution trajectories on this manifold are not well defined in the usual sense. One may
define solutions in a generalized sense, the so-called Filipov solutions [?]. A detailed
treatment of discontinuous control systems is beyond the scope of this text. In practice, the
discontinuity in the control results in the phenomenon of chattering, as the control switches
rapidly across the manifold BTPe = 0. One may implement a continuous approximation
to the discontinuous control as

δa =















−ρ(e, t) BTPe
||BTPe|| ; if ||BTPe|| > ǫ

−ρ(e, t)ǫ BTPe ; if ||BTPe|| ≤ ǫ
(11.63)

264 CHAPTER 11. MULTIVARIABLE CONTROL

In this case, since the control signal (11.63, a solution to the system (11.48) exists and
is uniformly ultimately bounded (u.u.b). Ssee Appendix C for the definition of uniform
ultimate boundedness.

Theorem 1 The origin of the system (11.48) is u.u.b. with respect to the set S, defined
below, using the continuous control law (11.63).

Proof: As before, choose V (e) = eTPe and compute

V̇ = −eTQe+ 2wT (δa+ η) (11.64)

≤ −eTQe+ 2wT (δa+ ρ
w

||w||) (11.65)

with ||w|| = ||BTPe|| as above.
For ||w|| ≥ ǫ the argument proceeds as above and V̇ < 0. For ||w|| ≤ ǫ the second term

above becomes

2wT (−ρ
ǫ
w + ρ

w

||w||)

= −2
ρ

ǫ
||w||2 + 2ρ||w||

This expression attains a maximum value of ǫ
ρ
2 when ||w|| = ǫ

2. Thus we have

V̇ = −eTQe+ ǫ
ρ

2
< 0 (11.66)

provided

−eTQe > ǫ
ρ

2
(11.67)

Using the relationship

λmin(Q)||e||2 ≤ eTQe ≤ λmax(Q)||e||2 (11.68)

where λmin(Q), λmax(Q) denote the minimum and maximum eigenvalues, respectively, of
the matrix Q, we have that V̇ < 0 if

λmin(Q)||e||2 ≥ ǫρ
2

(11.69)

or, equivalently

||e|| ≥
(

ǫρ

2λmin(Q)

) 1
2

=: δ (11.70)

Let Sδ denote the smallest level set of V containing B(δ), the ball of radius δ and let Br
denote the smallest ball containing Sδ. Then all solutions of the closed loop system are
u.u.b. with respect to S := Br. The situation is shown in Figure 11.2. All trajectories will
eventually enter the ball, Br; in fact, all trajectories will reach the boundary of Sδ since V̇
is negative definite outside of Sδ.

11.4. ROBUST AND ADAPTIVE MOTION CONTROL 265

Figure 11.2: Uniform Ultimate Boundedness Set

11.4.2 Passivity Based Robust Control

In this section we derive an alternative robust control algorithm which exploits the passivity
and linearity in the parameters of the rigid robot dynamics. This methods are qualitatively
different from the previous methods which were based on feedback linearization. In the
passivity based approach we modify the inner loop control as

u = M̂(q)a+ Ĉ(q, q̇)v + ĝ(q)−Kr. (11.71)

where v, a, and r are given as

v = q̇d − Λq̃

a = v̇ = q̈d − Λ ˙̃q

r = q̇d − v = ˙̃q + Λq̃

with K, Λ diagonal matrices of positive gains. In terms of the linear parametrization of the
robot dynamics, the control (11.71) becomes

u = Y (q, q̇, a, v)θ̂ −Kr (11.72)

and the combination of (11.71) with (11.40) yields

M(q)ṙ + C(q, q̇)r +Kr = Y (θ − θ0). (11.73)

Note that, unlike the inverse dynamics control, the modified inner loop control (11.40) does
not achieve a linear, decoupled system, even in the known parameter case θ̂ = θ.

In the robust passivity based approach of [?], the term θ̂ in (11.72) is chosen as

θ̂ = θ0 + u (11.74)

where θ0 is a fixed nominal parameter vector and u is an additional control term. The
system (11.73) then becomes

M(q)ṙ + C(q, q̇)r +Kr = Y (a, v, q, q̇)(θ̃ + u) (11.75)

where θ̃ = θ0 − θ is a constant vector and represents the parametric uncertainty in the
system. If the uncertainty can be bounded by finding a nonnegative constant, ρ ≥ 0, such
that

‖θ̃‖ = ‖θ0 − θ‖ ≤ ρ, (11.76)

then the additional term u can be designed according to the expression,

u =















−ρ Y T r
||Y T r|| ; if ||Y T r|| > ǫ

−ρǫ Y T r ; if ||Y T r|| ≤ ǫ
(11.77)

266 CHAPTER 11. MULTIVARIABLE CONTROL

The Lyapunov function

V =
1

2
rTM(q)r + q̃TΛKq̃ (11.78)

is used to show uniform ultimate boundedness of the tracking error. Calculating V̇ yields

V̇ = rTMṙ +
1

2
rT Ṁr + 2q̃TΛK˙̃q (11.79)

= −rTKr + 2q̃TΛK ˙̃q +
1

2
rT (Ṁ − 2C)r + rTY (θ̃ + u) (11.80)

Using the passivity property and the definition of r, this reduces to

V̇ = −q̃TΛTKΛq̃ − ˙̃qTK ˙̃q + rTY (θ̃ + u) (11.81)

Defining w = Y T r and

Q =

[

ΛTKΛ 0
0 ΛK

]

(11.82)

and mimicking the argument in the previous section, we have

V̇ = −eTQe+ wT (u+ θ̃) (11.83)

= −eTQe+ wT (u+ ρ
w

||w||) (11.84)

Uniform ultimate boundedness of the tracking error follows with the control u from (11.77)
exactly as in the proof of Theorem 1.

Comparing this approach with the approach in the section (11.4.1), we see that finding
a constant bound ρ for the constant vector θ̃ is much simpler than finding a time–varying
bound for η in (11.43). The bound ρ in this case depends only on the inertia parameters
of the manipulator, while ρ(x, t) in (11.50) depends on the manipulator state vector, the
reference trajectory and, in addition, requires some assumptions on the estimated inertia
matrix M̂(q).

Example 11.1 TO BE WORKED OUT ⋄

11.4.3 Passivity Based Adaptive Control

In the adaptive approach the vector θ̂ in (11.73) is taken to be a time-varying estimate of
the true parameter vector θ. Combining the control law (11.71) with (11.40) yields

M(q)ṙ + C(q, q̇)r +Kr = Y θ̃. (11.85)

The parameter estimate θ̂ may be computed using standard methods such as gradient or
least squares. For example, using the gradient update law

˙̂
θ = −Γ−1Y T (q, q̇, a, v)r (11.86)

11.4. ROBUST AND ADAPTIVE MOTION CONTROL 267

together with the Lyapunov function

V =
1

2
rTM(q)r + eTΛKe+

1

2
θ̃TΓθ̃ (11.87)

results in global convergence of the tracking errors to zero and boundedness of the parameter
estimates since

V̇ = −eTΛTKΛe− ėTKė+ θ̃T {Γ ˙̂
θ + Y T r}. (11.88)

COMPLETE THE PROOF

Example 11.2 TO BE WORKED OUT ⋄

268 CHAPTER 11. MULTIVARIABLE CONTROL

Chapter 12

FORCE CONTROL

12.1 Introduction

Position control is adequate for tasks such as materials transfer and spot welding where the
manipulator is not interacting significantly with objects in the workplace (hereafter referred
to as the environment). However, tasks such as assembly, grinding, and deburring, which
involve extensive contact with the environment, are often better handled by controlling the
forces1 of interaction between the manipulator and the environment directly. For example,
consider an application where the manipulator is required to wash a window, or to write
with a felt tip marker. In both cases a pure position control scheme is unlikely to work.
Slight deviations of the end-effector from a planned trajectory would cause the manipulator
either to lose contact with the surface or to press too strongly on the surface. For a highly
rigid structure such as a robot, a slight position error could lead to extremely large forces
of interaction with disastrous consequences (broken window, smashed pen, damaged end-
effector, etc.). The above applications are typical in that they involve both force control
and trajectory control. In the window washing application, for example, one clearly needs
to control the forces normal to the plane of the window and position in the plane of the
window.

A force control strategy is one that modifies position trajectories based on the sensed
force. There are three main types of sensors for force feedback, wrist force sensors, joint
torque sensors, and tactile or hand sensors. A wrist force sensor such as that shown in
Figure 12.1 consists of an array of strain gauges and can delineate the three components
of the force vector along the three axes of the sensor coordinate frame, and the three
components of the torque about these axes. A joint torque sensor consists of strain gauges
located on the actuator shaft. Tactile sensors are usually located on the fingers of the
gripper and are useful for sensing gripping force and for shape detection. For the purposes
of controlling the end-effector/environment interactions, the six-axis wrist sensor usually
gives the best results and we shall henceforth assume that the manipulator is equipped
with such a device.

1Hereafter we use force to mean force and/or torque and position to mean position and/or orientation.

269

270 CHAPTER 12. FORCE CONTROL

Figure 12.1: A Wrist Force Sensor.

12.2 Constrained Dynamics

Force control tasks can be thought of in terms of constraints imposed by the robot/environment
interaction. A manipulator moving through free space within its workspace is unconstrained
in motion and can exert no forces since there is no source of reaction force from the envi-
ronment. A wrist force sensor in such a case would record only the inertial forces due to
any acceleration of the end-effector. As soon as the manipulator comes in contact with the
environment, say a rigid surface as shown in Figure 12.2, one or more degrees of freedom in
motion may be lost since the manipulator cannot move through the environment surface.
At the same time the manipulator can exert forces against the environment.

Figure 12.2: Robot End-Effector in contact with a Rigid Surface

In order to describe the robot/environment interaction, let V = (v, ω)T ∈ so(3) represent
the instantaneous linear and angular velocity of the end-effector and let F = (f, n)T ∈ so∗(3)
represent the instantaneous force and moment. The notation so∗(3) refers to the dual space

12.2. CONSTRAINED DYNAMICS 271

of so(3).2.
If e1, . . . , e6 is a basis for the vector space so(3), and f1, . . . , f6 is a basis for so∗(3), we

say that these basis vectors are reciprocal provided

eifj = 0 if i 6= j

eifj = 1 if i = j

Definition 12.1 The Reciprocal Product V ∈ so(3) and F ∈ so∗(3) is defined as

V · F = V TF = vT f + ωTn (12.1)

Note that Equation (12.1) is not the same as the usual inner product since V and F lie in
different vector spaces. The advantage of using reciprocal basis vectors is that the product
V TF is then invariant with respect to a linear change of basis from one reciprocal coordinate
system to another. This invariance property would, of course, automatically be satisfied if
V and F were vectors in the same vector space. We note that expressions such as V T

1 V2

or F T1 F2 for vectors Vi, Fi belonging to so(3) and so∗(3), respectively, are not well defined.
For example, the expression

V T
1 V2 = vT1 v2 + ωT1 ω2 (12.2)

is not invariant with respect to either choice of units or basis vectors in so(3). It is pos-
sible to define inner product like operations, i.e. symmetric, bilinear forms on so(3) and
so∗(3), which have the necessary invariance properties. These are the so-called Klein Form,
KL(V1, V2), and Killing Form, KI(V1, V2), defined according to

KL(V1, V2) = vT1 ω2 + ωT1 v2 (12.3)

KI(V1, V2) = ωT1 ω2 (12.4)

A detailed discussion of these concepts is beyond the scope of this text. As the reader may
suspect, the need for a careful treatment of these concepts is related to the geometry of
SO(3) as we have seen before in other contexts.
Example 12.1 [?] Suppose that

V1 = (1, 1, 1, 2, 2, 2)T

V2 = (2, 2, 2,−1,−1,−1)T

where the linear velocity is in meters/sec and angular velocity is in radians/sec. The clearly,
V T

1 V2 = 0 and so one could infer that V1 and V2 are orthogonal vectors in so(3). However,
suppose now that the linear velocity is represented in units of centimeters/sec. Then

V1 = (1× 102, 1× 102, 1× 102, 2, 2, 2)T

V2 = (2× 102, 2× 102, 2× 102,−1,−1,−1)T

2In more advanced texts, the vectors V and F are called Twists and Wrenches [?] although we will
continue to refer to them simply as velocity and force.

272 CHAPTER 12. FORCE CONTROL

and clearly V T
1 V2 6= 0. Thus, usual notion of orthogonality is not meaningful in so(3). It

is easy to show that the equality KL(V1, V2) = 0 (respectively, KI(V1, V2) = 0) is indepen-
dent of the units or the basis chosen to represent V1 and V2. For example, the condition
KI(V1, V2) = 0 means that the axes of rotation defining ω1 and ω2 are orthogonal. ⋄ We
will utilize the reciprocal product V TF in later sections to derive force control strategies.

12.2.1 Static Force/Torque Relationships

Forces at the end-effector due to robot/environment interaction induce torques about the
joint axes of the robot. Similarly, torques applied at the joint axes will produce forces at
the robot/environment interface. Let τ denote the vector of joint torques induced by an
end-effector force, F , and let δX represent a virtual end-effector displacement caused by
the force F . Let δq represent the corresponding virtual joint displacement. These virtual
displacements are related through the manipulator Jacobian J(q) according to

δX = J(q)δq. (12.5)

The virtual work δw of the system is

δw = F T δX − τT δq. (12.6)

Substituting (12.5)) into (12.6) yields

δw = (F TJ − τT)δq (12.7)

which is equal to zero if the manipulator is in equilibrium. Since the generalized coordinates
q are independent we have the equality

τ = J(q)TF. (12.8)

In other words the end-effector forces are related to the joint torques by the transpose of
the manipulator Jacobian according to (12.8).

Example 12.2 Consider the two-link planar manipulator of Figure 12.3, with a force
F = (Fx, Fy)

T applied at the end of link two as shown. The Jacobian of this manipulator
is given by Equation (5.93). The resulting joint torques τ = (τ1, τ2) are then given as

[

τ1
τ2

]

=

[

−a1s1 − a2s12 a1c1 + a2c12 0 0 0 1
−a2s12 a2c12 0 0 0 1

]

















Fx
Fy
Fz
nx
ny
nz

















. (12.9)

⋄

12.2. CONSTRAINED DYNAMICS 273

Figure 12.3: Two-link planar robot.

When the manipulator is in contact with the environment, the dynamic equations of
Chapter 9 must be modified to include the reaction torque JTFe corresponding to the end-
effector force Fe. Thus the equations of motion of the manipulator in joint space are given
by

M(q)q̈ + C(q, q̇)q̇ + g(q) + JT (q)Fe = u (12.10)

12.2.2 Constraint Surfaces

Let us assume that the force Fe in Equation (12.10) is due to the contact between the
end-effector and a rigid environment. Supppose the robot/environment constraint can be
expressed in configuration space by nf < n algebraic equations of the form

φq(q) =







φq1
...

φqnf






=







0
...
0






(12.11)

where φq : IRn → IRn is a continuously differentiable function. Assume that the constraints

are independent so that the Jacobian Jφq =

(

∂φqi
∂qj

)

for i = 1, . . . , nf , j = 1, . . . , n has full

rank equal to nf
In the Lagrangian approach to the derivation of the robot dynamics, the standard way

to incorporate such constraint functions is to modify the Lagrangian function as

L = K − P −
nf
∑

j=1

λjφqj(q) (12.12)

where λ = [λ1, . . . , λnf]
T is a vector of Lagrange Multipliers. The solution to the Euler-

Lagrange equations

d

dt

∂L
∂q̇k
− ∂L
∂qk

= uk k = 1, . . . , n (12.13)

274 CHAPTER 12. FORCE CONTROL

then results in (Problem ??)

M(q)q̈ + C(q, q̇)q̇ + g(q) + JTφq(q)λ = u (12.14)

Comparing Equations (12.10) and (12.14) gives

JTFe = JTφqλ

= JTJ−TJTφqλ

= JTJTφxλ (12.15)

where we define
Jφx = JφqJ

−1 (12.16)

Thus, as long as the manipulator Jacobian, J(q), is invertible we may write the environment
force, Fe, as

Fe = JTφxλ (12.17)

Equation (12.17) means that the reaction forces, Fe, belong to an nf dimensional subspace
spanned by the column vectors of Jφx . Let Sf denote a basis for this vector space. Then
any constraint force, Fe, may be expressed as

Fe = Sfβ (12.18)

where β = [β1, . . . , βnf]
T is a vector of dimensionless scalars. We refer to the vector space

spanned by Sf as the Force Controlled Subspace.

Example 12.3 Suppose the robot is constrained to follow the circular surface shown in
Figure 12.4 With the coordinates as shown in the Figure, the constraint can be written as

Figure 12.4: End Effector Constrainted to Follow a Circle

φx = (x− a)2 + (y − b)2 − r2 = 0 (12.19)

12.2. CONSTRAINED DYNAMICS 275

or, using the forward kinematic equations,

φq = (a1c1 + a2c12 − a)2 + (a1s1 + a2s12 − b)2 − r2 = 0 (12.20)

The Jacobian, Jφx, is therefore given by

Jφx = [2(x− a), 2(y − b)] (12.21)

It can be verified by direct calculation (Problem ??) that Jφq is given by

Jφq = [2(a1c1 + a2c12 − a), 2(a1s2 + a2s12 − b)]
[

−a2s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

]

(12.22)

Therefore
Jφx = JφqJ (12.23)

where J is the Jacobian of the two-link planar robot derived in Chapter 1. If we take

Sf =

[

x− a
y − b

]

(12.24)

then the contact force between the robot and the environment may be expressed as

Fe = Sfβ =

[

x− a
y − b

]

β (12.25)

where β is an arbitrary scalar. Note that Fe is always directed along the line through the
center of the circle, i.e. perpendicular to the tangent to the circle. ⋄

We may therefore assume that

so∗(3) = span(Sf)⊕ span(Sf)
⊥ (12.26)

We can similarly describe the end-effector velocity subject to the constraints (12.11).
With φq(q) identically zero we have

0 = φ̇q(q) =
∂φq
∂q

q̇ = Jφq q̇ (12.27)

Thus
0 = Jφq q̇ = (JφqJ

−1)Jq̇ = JφxV (12.28)

where V = (v, ω) is the usual end-effector linear and angular velocity. It follows from (12.17)
and (12.28) that the reciprocal product satisfies

V TFe = F Te V = 0 (12.29)

Equation (12.29) is called the Reciprocity Condition. This means that we can define a set
of nx = n− nf basis vectors so that

V = Sxγ, for some γ (12.30)

Furthermore, the reciprocity condition (12.29) implies that

STx Sf = 0 (12.31)

276 CHAPTER 12. FORCE CONTROL

12.2.3 Natural and Artificial Constraints

In this section we discuss so-called Natural Constraints which are defined using the reci-
procity condition (12.1). We then discuss the notion of Artificial Constraints, which are
used to define reference inputs for motion and force control tasks.

We begin by defining a so-called Compliance Frame ocxcyczc (also called a Constraint
Frame) in which the task to be performed is easily described. For example in the window
washing application we can define a frame at the tool with the zc-axis along the surface
normal direction. The task specification would then be expressed in terms of maintaining
a constant force in the zc direction while following a prescribed trajectory in the xc − yc
plane. Such a position constraint in the zc direction arising from the presence of a rigid
surface is a natural constraint. The force that the robot exerts against the rigid surface
in the zc direction, on the other hand, is not constrained by the environment. A desired
force in the zc direction would then be considered as an artificial constraint that must be
maintained by the control system.

Figure 12.5 shows a typical task, that of inserting a peg into a hole. With respect to a
compliance frame ocxcyczc as shown at the end of the peg, we may take the the standard
orthonormal basis in ℜ6 for both so(3) and so∗(3), in which case

V TF = vxfx + vyfy + vzfz + ωxnx + ωyny + ωznz (12.32)

If we assume that the walls of the hole and the peg are perfectly rigid and there is no
friction, it is easy to see that

vx = 0 vy = 0 fz = 0
ωx = 0 ωy = 0 nz = 0

(12.33)

and thus the reciprocity condition V TF = 0 is satisfied. These relationships (12.33) are
termed Natural Constraints.

Figure 12.5: Inserting a peg into a hole.

Examining Equation (12.32) we see that the variables

fx fy vz nx ny ωz (12.34)

12.2. CONSTRAINED DYNAMICS 277

are unconstrained by the environment, i.e. given the natural constraints (12.33), the reci-
procity condition V TF = 0 holds for all values of the above variables (12.34). We may
therefore assign reference values, called Artificial Constraints, for these variables that may
then be enforced by the control system to carry out the task at hand. For example, in the
peg-in-hole task we may define artificial constraints as

fx = 0 fy = 0 vz = vd

nx = 0 ny = 0 ωz = 0
(12.35)

where vd is the desired speed of insertion of the peg in the z-direction.

Figures 12.6 and 12.7 show natural and artificial constraints for two additional tasks,
that of turning a crank and and turning a screw, respectively.

Figure 12.6: Turning a crank

Figure 12.7: Turning a screw.

278 CHAPTER 12. FORCE CONTROL

12.3 Network Models and Impedance

The reciprocity condition V TF = 0 means that the forces of constraint do no work in
directions compatible with motion constraints and holds under the ideal conditions of no
friction and perfect rigidity of both the robot and environment. In practice, compliance and
friction present at the robot/environment interface will alter the strict separation between
motion constraints and force constraints. For example, consider the situation in Figure 12.8.
Since the environment deforms in response to a force there is clearly both motion and force

Figure 12.8: Compliant Environment

in the same direction, i.e. normal to the surface. Thus the product V (t)F (t) along this
direction will not be zero. Let k represent the stiffness of the surface so that F = kx. Then

∫ t

0
V (u)F (u)du =

∫ t

0
ẋ(u)kx(u)du = k

∫ t

0

d

du

1

2
kx2(u)du =

1

2
k(x2(t)− x2(0)) (12.36)

is the change of the potential energy. The environment stiffness, k, determines the amount of
force needed to produce a given motion. The higher the value of k the more the environment
“impedes” the motion of the end-effector.

In this section we introduce the notion of Mechanical Impedance which captures the
relation between force and motion. We introduce so-called Network Models, which are
particularly useful for modeling the robot/environment interaction. We model the robot
and environment as One Port Networks as shown in Figure 12.9. The dynamics of the robot
and environment, respectively, determine the relation between the Port Variables, Vr, Fr,
and Ve, Fe, respectively. Fr, Fe are known as Effort or Across variables while Vr, Ve are
known as Flow or Through variables. In a mechanical system, such as a robot, force and
velocity are the effort and flow variables while in an electrical system, voltage and current
are the effort and flow variables, respectively. With this description, the “product” of the
port variables, V TF , represents instantaneous power and the integral of this product

∫ t

0
V T (σ)F (σ)dσ

12.3. NETWORK MODELS AND IMPEDANCE 279

Figure 12.9: One-Port Networks

is the Energy dissipated by the Network over the time interval [0, t].
The robot and the environment are then coupled through their interaction ports, as

shown in Figure 12.10, which describes the energy exchange between the robot and the
environment.

Figure 12.10: Robot/Environment Interaction

12.3.1 Impedance Operators

The relationship between the effort and flow variables may be described in terms of an
Impedance Operator. For linear, time invariant systems, we may utilize the s-domain or
Laplace domain to define the Impedance.

Definition 12.2 Given the one-port network 12.9 the Impedance, Z(s) is defined as the
ratio of the Laplace Transform of the effort to the Laplace Transform of the flow, i.e.

Z(s) =
F (s)

V (s)
(12.37)

280 CHAPTER 12. FORCE CONTROL

Example 12.4 Suppose a mass-spring-damper system is described by the differential equa-
tion

Mẍ+Bẋ+Kx = F (12.38)

Taking Laplace Transforms of both sides (assuming zero initial conditions) it follows that

Z(s) = F (s)/V (s) = Ms+B +K/s (12.39)

⋄

12.3.2 Classification of Impedance Operators

Definition 12.3 An impedance Z(s) in the Laplace variable s is said to be

1. Inertial if and only if |Z(0)| = 0

2. Resistive if and only if |Z(0)| = B for some constant 0 < B <∞

3. Capacitive if and only if |Z(0)| =∞

Thus we classify impedance operators based on their low frequency or DC-gain, which will
prove useful in the steady state analysis to follow.
Example 12.5 Figure 12.11 shows examples of environment types. Figure 12.11(a)
shows a mass on a frictionless surface. The impedance is Z(s) = Ms, which is iner-
tial. Figure 12.11(b) shows a mass moving in a viscous medium with resistance B. Then
Z(s) = Ms+B, which is resistive. Figure 12.11(c) shows a linear spring with stiffness K.
Then Z(s) = K/s, which is capacitive. ⋄

Figure 12.11: Inertial, Resistive, and Capacitive Environment Examples

12.4. FORCE CONTROL STRATEGIES 281

12.3.3 Thévenin and Norton Equivalents

In linear circuit theory it is common to use so-called Thévenin and Norton equivalent
circuits for analysis and design. It is easy to show that any one-port network consisting
of passive elements (resistors, capacitors, inductors) and active current or voltage sources
can be represented either as an impedance, Z(s), in series with an effort source (Thévenin
Equivalent) or as an impedance, Z(s), in parallel with a flow source (Norton Equivalent).
The independent sources, Fs and Vs may be used to represent reference signal generators

Figure 12.12: Thévenin and Norton Equivalent Networks

for force and velocity, respectively, or they may represent external disturbances.

12.4 Force Control Strategies

Let us consider a modified inverse dynamics control law of the form

u = M(q)aq + C(q, q̇)q̇ + g(q) + JT (q)af (12.40)

where aq and af are outer look controls with units of acceleration and force, respectively.
Using the relationship between joint space and task space variables derived in Chapter 11

ẍ = J(q)q̈ + J̇(q)q̇ (12.41)

ax = J(q)aq + J̇(q)q̇ (12.42)

we substitute (12.40)-(12.42) into (12.10) to obtain

ẍ = ax +W (q)(Fe − af) (12.43)

where W (q) = J(q)M−1(q)JT (q) is called the Mobility Tensor. There is often a conceptual
advantage to separate the position and force control terms by assuming that ax is a function
only of position and velocity and af is a function only of force [?]. However, for simplicity,

282 CHAPTER 12. FORCE CONTROL

we shall take af = Fe to cancel the environment force, Fe and thus recover the task space
double integrator system

ẍ = ax (12.44)

and we will assume that any additional force feedback terms are included in the outer loop
term ax. This entails no loss of generality as long as the Jacobian (hence W (q)) is invertible.
This will become clear in the sequel.

12.4.1 Impedance Control

In this section we discuss the notion of Impedance Control. We begin with an example that
illustrates in a simple way the effect of force feedback
Example 12.6 Consider the one-dimensional system in Figure 12.13 consisting of a mass,

Figure 12.13: One Dimensional System

M , on a frictionless surface subject to an environmental force F and control input u. The
equation of motion of the system is

Mẍ = u− F (12.45)

With u = 0, the object “appears to the environment” as a pure inertia with mass M .
Suppose the control input u is chosen as a force feedback term u = −mF . Then the closed
loop system is

Mẍ = −(1 +m)F =⇒ M

1 +m
ẍ = −F (12.46)

Hence, the object now appears to the environment as an inertia with mass M
1 +m . Thus the

force feedback has the effect of changing the apparent inertia of the system. ⋄
The idea behind Impedance Control is to regulate the mechanical impedance, i.e., the

apparent inertia, damping, and stiffness, through force feedback as in the above example.

12.4. FORCE CONTROL STRATEGIES 283

For example, in a grinding operation, it may be useful to reduce the apparent stiffness of
the end-effector normal to the part so that excessively large normal forces are avoided.

We may formulate Impedance Control within our standard inner loop/outer loop control
architecture by specifying the outer loop term, ax, in Equation (12.44). Let xd(t) be a
reference trajectory defined in task space coordinates and let Md, Bd, Kd, be 6×6 matrices
specifying desired inertia, damping, and stiffness, respectively. Let e(t) = x(t) − xd(t) be
the tracking error in task space and set

ax = ẍd −M−1
d (Bdė+Kde+ F) (12.47)

where F is the measured environmental force. Substituting (12.47) into (12.44) yields the
closed loop system

Mdë+Bdė+Kde = −F (12.48)

which results in desired impedance properties of the end-effector. Note that for F = 0
tracking of the reference trajectory, xd(t), is achieved, whereas for nonzero environmental
force, tracking is not necessarily achieved. We will address this difficulty in the next section.

12.4.2 Hybrid Impedance Control

In this section we introduce the notion of Hybrid Impedance Control following the treatment
of [?]. We again take as our starting point the linear, decoupled system (12.44). The
impedance control formulation in the previous section is independent of the environment
dynamics. It is reasonable to expect that stronger results may be obtained by incorporating
a model of the environment dynamics into the design. For example, we will see below that
one may regulate both position and impedance simultaneously which is not possible with
the pure impedance control law (12.47).

We consider a one-dimensional system representing one component of the outer loop
system (12.44)

ẍi = axi (12.49)

and we henceforth drop the subscript, i, for simplicity. We assume that the impedance of
the environment in this direction, Ze is fixed and known, a priori. The impedance of the
robot, Zr, is of course determined by the control input. The Hybrid Impedance Control
design proceeds as follows based on the classification of the environment impedance into
inertial, resistive, or capacitive impedances:

1. If the environment impedance, Ze(s), is capacitive, use a Norton network representa-
tion. Otherwise, use a Thévenin network representation3.

2. Represent the robot impedance as the Dual to the environment impedance. Thévenin
and Norton networks are considered dual to one another.

3. In the case that the environment impedance is capacitive we have the robot/environment
interconnection as shown in Figure 12.14 where the environment one-port is the Nor-

3In fact, for a resistive environment, either representation may be used

284 CHAPTER 12. FORCE CONTROL

Figure 12.14: Capacitive Environment Case

ton network and the robot on-port is the Thévenin network. Suppose that Vs = 0,
i.e. there are no environmental disturbances, and that Fs represents a reference force.
From the circuit diagram it is straightforward to show that

F

Fs
=

Ze(s)

Ze(s) + Zr(s)
(12.50)

Then the steady state force error, ess, to a step reference force, Fs = F d

s is given by
the Final Value Theorem as

ess =
−Zr(0)

Zr(0) + Ze(0)
= 0 (12.51)

since Ze(0) =∞ (capacitive environment) and Zr 6= 0 (non-capacitive robot).

The implications of the above calculation are that we can track a constant force
reference value, while simultaneously specifying a given impedance, Zr, for the robot.

In order to realize this result we need to design outer loop control term ax in (12.49)
using only position, velocity, and force feedback. This imposes a practical limitation
on the the achievable robot impedance functions, Zr.

Suppose Z−1
r has relative degree one. This means that

Zr(s) = Mcs+ Zrem(s) (12.52)

where Zrem(s) is a proper rational function. If we now choose

ax = − 1

Mc
Zremẋ+

1

mc
(Fs − F) (12.53)

Substituting this into the double integrator system ẍ = ax yields

Zr(s)ẋ = Fs − F (12.54)

Thus we have shown that, for a capacitive environment, force feedback can be used
to regulate contact force and specify a desired robot impedance.

12.4. FORCE CONTROL STRATEGIES 285

4. In the case that the environment impedance is inertial we have the robot/environment
interconnection as shown in Figure 12.15 where the environment one-port is a Thévenin

Figure 12.15: Inertial Environment Case

network and the robot on-port is a Norton network. Suppose that Fs = 0, and that
Vs represents a reference velocity. From the circuit diagram it is straightforward to
show that

V

Vs
=

Zr(s)

Ze(s) + Zr(s)
(12.55)

Then the steady state force error, ess, to a step reference velocity command, Vs = V d

s
is given by the Final Value Theorem as

ess =
−Ze(0)

Zr(0) + Ze(0)
= 0 (12.56)

since Ze(0) = 0 (inertial environment) and Zr 6= 0 (non-inertial robot).

To achieve this non-inertia robot impedance we take, as before,

Zr(s) = Mcs+ Zrem(s) (12.57)

and set

ax = ẍd +
1

Mc
Zrem(ẋd − ẋ) +

1

Mc
F (12.58)

Then, substituting this into the double integrator equation, ẍ = ax, yields

Zr(s)(ẋ
d − x) = F (12.59)

Thus we have shown that, for a capacitive environment, position control can be used
to regulate a motion reference and specify a desired robot impedance.

286 CHAPTER 12. FORCE CONTROL

Chapter 13

FEEDBACK LINEARIZATION

13.1 Introduction

In this chapter we discuss the notion of feedback linearization of nonlinear systems. This
approach generalizes the concept of inverse dynamics of rigid manipulators discussed in
Chapter 11. The basic idea of feedback linearization is to construct a nonlinear control law
as a so-called inner loop control which, in the ideal case, exactly linearizes the nonlinear
system after a suitable state space change of coordinates. The designer can then design a
second stage or outer loop control in the new coordinates to satisfy the traditional control
design specifications such as tracking, disturbance rejection, and so forth.

In the case of rigid manipulators the inverse dynamics control of Chapter 11 and the
feedback linearizing control are the same. However, as we shall see, the full power of the
feedback linearization technique for manipulator control becomes apparent if one includes
in the dynamic description of the manipulator the transmission dynamics, such as elasticity
resulting from shaft windup, gear elasticity, etc.

To introduce the idea of feedback linearization consider the following simple system,

ẋ1 = a sin(x2) (13.1)

ẋ2 = −x2
1 + u. (13.2)

Note that we cannot simply choose u in the above system to cancel the nonlinear term
a sin(x2). However, if we first change variables by setting

y1 = x1 (13.3)

y2 = a sin(x2) = ẋ1 (13.4)

then, by the chain rule, y1 and y2 satisfy

ẏ1 = y2 (13.5)

ẏ2 = a cos(x2)(−x2
1 + u). (13.6)

287

288 CHAPTER 13. FEEDBACK LINEARIZATION

We see that the nonlinearities can now be cancelled by the input

u =
1

a cos(x2)
v + x2

1 (13.7)

which result in the linear system in the (y1, y2) coordinates

ẏ1 = y2 (13.8)

ẏ2 = v. (13.9)

The term v has the interpretation of an outer loop control and can be designed to place
the poles of the second order linear system (13.6) in the coordinates (y1, y2). For example
the outer loop control

v = −k1y1 − k2y2 (13.10)

applied to (13.6) results in the closed loop system

ẏ1 = y2 (13.11)

ẏ2 = −k1y1 − k2y2

which has characteristic polynomial

p(s) = s2 + k2s+ k1 (13.12)

and hence the closed loop poles of the system with respect to the coordinates (y1, y2) are
completely specified by the choice of k1 and k2. Figure 13.1 illustrates the inner loop/outer

Figure 13.1: Architecture of feedback linearization controller.

loop implementation of the above control strategy. The response in the y variables is easy
to determine. The corresponding response of the system in the original coordinates (x1, x2)
can be found by inverting the transformation (13.2), in this case

x1 = y1 (13.13)

x2 = sin−1(y2/a) − a < y2 < +a.

13.2. BACKGROUND: THE FROBENIUS THEOREM 289

This example illustrates several important features of feedback linearization. The first
thing to note is the local nature of the result. We see from (13.3) and (13.4) that the
transformation and the control make sense only in the region −∞ < x1 <∞, −π

2 < x2 <
π
2 .

Second, in order to control the linear system (13.6), the coordinates (y1, y2) must be available
for feedback. This can be accomplished by measuring them directly if they are physically
meaningful variables, or by computing them from the measured (x1, x2) coordinates using
the transformation (13.2). In the latter case the parameter a must be known precisely.

In Section 13.3 give necessary and sufficient conditions under which a general singl-
input nonlinear system can be transformed into a linear system in the above fashion, using
a nonlinear change of variables and nonlinear feedback as in the above example.

13.2 Background: The Frobenius Theorem

In this section we give some background from differential geometry that is necessary to un-
derstand the feedback linearization results to follow. In recent years an impressive volume
of literature has emerged in the area of differential geometric methods for nonlinear sys-
tems, treating not only feedback linearization but also other problems such as disturbance
decoupling, estimation, etc. The reader is referred to [?] for a comprehensive treatment of
the subject. Most of the results in this area are intended to give abstract, coordinate-free
descriptions of various geometric properties of nonlinear systems and as such are difficult
for the non-mathematician to follow. It is our intent here to give only that portion of the
theory that finds an immediate application to the manipulator control problem, and even
then to give only the simplest versions of the results.

We restrict our attention here to single-input nonlinear systems of the form

ẋ = f(x) + g(x)u (13.14)

where f(x), g(x) are smooth vector fields on R
n. By a smooth vector field on R

n we will
mean a function f : R

n → R
n which is infinitely differentiable. Henceforth, whenever we

use the term function or vector field, it is assumed that the given function or vector field is
smooth.

Definition 13.1 Let f and g be two vector fields on R
n. The Lie Bracket of f and g,

denoted by [f, g], is a vector field defined by

[f, g] =
∂g

∂x
f − ∂f

∂x
g (13.15)

where
∂g
∂x

(respectively,
∂f
∂x

) denotes the n × n Jacobian matrix whose ij-th entry is
∂gi
∂xj

(respectively,
∂fi
∂xj

).

290 CHAPTER 13. FEEDBACK LINEARIZATION

Example 13.1 Suppose that vector fields f(x) and g(x) on R
3 are given as

f(x) =





x2

sinx1

x2
3 + x1



 g(x) =





0
x2

2

0



 .

Then the vector field [f, g] is computed according to (13.15) as

[f, g] =





0 0 0
0 2x2 0
0 0 0









x2

sinx1

x1 + x2
3



−





0 1 0
cosx1 0 0

1 0 2x3









0
x2

2

1





=





−x2
2

2x2 sin s1
−2x3



 .

⋄
We also denote [f, g] as adf (g) and define adkf (g) inductively by

adkf (g) = [f, adk−1
f (g)] (13.16)

with ad0
f (g) = g.

Definition 13.2 Let f : R
n → R

n be a smooth vector field on R
n and let h : R

n → R be a
scalar function. The Lie Derivative of h, with respect to f , denoted Lfh, is defined as

Lfh =
∂h

∂x
f(x) =

n
∑

i=1

∂h

∂xi
fi(x) (13.17)

The Lie derivative is simply the directional derivative of h in the direction of f(x), equiva-
lently the inner product of the gradient of h and f . We denote by L2

fh the Lie Derivative
of Lfh with respect to f , i.e.

L2
fh = Lf (Lfh) (13.18)

In general we define

Lkfh = Lf (L
k−1
f h) for k = 1, . . . , n (13.19)

with L0
fh = h.

The following technical lemma gives an important relationship between the Lie Bracket
and Lie derivative and is crucial to the subsequent development.

Lemma 13.1 Let h : R
n → R be a scalar function and f and g be vector fields on R

n.
Then we have the following identity

L[f,g]h = LfLgh− LgLfh (13.20)

13.2. BACKGROUND: THE FROBENIUS THEOREM 291

Proof: Expand Equation (13.20) in terms of the coordinates x1, . . . , xn and equate both
sides. The i-th component [f, g]i of the vector field [f, g] is given as

[f, g]i =
n
∑

j=1

∂gi
∂xj

fj −
n
∑

j=1

∂fi
∂xj

gj .

Therefore, the left-hand side of (13.20) is

L[f,g]h =
n
∑

i=1

∂h

∂xi
[f, g]i

=
n
∑

i=1

∂h

∂xi





n
∑

j=1

∂gi
∂xj

fj −
n
∑

j=1

∂fi
∂xj

gj





=
n
∑

i=1

n
∑

j=1

∂h

∂xi

(

∂gi
∂xj

fj −
∂fi
∂xj

gj

)

.

If the right hand side of (13.20) is expanded similarly it can be shown, with a little algebraic
manipulation, that the two sides are equal. The details are left as an exercise (Problem 12-
1).

In order to discuss the idea of feedback linearization we first present a basic result in
differential geometry known as the Frobenius Theorem. The Frobenius Theorem can be
thought of as an existence theorem for solutions to certain systems of first order partial
differential equations. Although a rigorous proof of this theorem is beyond the scope of this
text, we can gain an intuitive understanding of it by considering the following system of
partial differential equations

∂z

∂x
= f(x, y, z) (13.21)

∂z

∂y
= g(x, y, z) (13.22)

In this example there are two partial differential equations in a single unknown z. A solution
to (13.21)-(13.22) is a function z = φ(x, y) satisfying

∂φ

∂x
= f(x, y, φ(x, y)) (13.23)

∂φ

∂y
= g(x, y, φ(x, y)) (13.24)

We can think of the function z = φ(x, y) as defining a surface in R
3 as in Figure 13.2. The

function Φ : R
2 → R

3 defined by

Φ(x, y) = (x, y, φ(x, y)) (13.25)

292 CHAPTER 13. FEEDBACK LINEARIZATION

Figure 13.2: Integral manifold in R3.

then characterizes both the surface and the solution to the system of Equations (13.21). At
each point (x, y) the tangent plane to the surface is spanned by two vectors found by taking
partial derivatives of Φ in the x and y directions, respectively, that is, by

X1 = (1, 0, f(x, y, φ(x, y)))T (13.26)

X2 = (0, 1, g(x, y, φ(x, y)))T . (13.27)

The vector fields X1 and X2 are linearly independent and span a two dimensional sub-
space at each point. Notice that X1 and X2 are completely specified by the system of
Equations (13.21). Geometrically, one can now think of the problem of solving the system
of first order partial differential Equations (13.21) as the problem of finding a surface in
R

3 whose tangent space at each point is spanned by the vector fields X1 and X2. Such a
surface, if it can be found, is called an integral manifold for the system (13.21). If such
an integral manifold exists then the set of vector fields, equivalently, the system of partial
differential equations, is called completely integrable.

Let us reformulate this problem in yet another way. Suppose that z = φ(x, y) is a
solution of (13.21). Then it is a simple computation (Problem 12-2) to check that the
function

h(x, y, z) = z − φ(x, y) (13.28)

satisfies the system of partial differential equations

LX1h = 0 (13.29)

LX2h = 0 (13.30)

Conversely, suppose a scalar function h can be found satisfying (13.29)-(13.30), and suppose
that we can solve the equation

h(x, y, z) = 0 (13.31)

13.3. SINGLE-INPUT SYSTEMS 293

for z, as z = φ(x, y).1 Then it can be shown that φ satisfies (13.21). (Problem 12-3) Hence,
complete integrability of the set of vector fields (X1, X2) is equivalent to the existence of h
satisfying (13.29). With the preceding discussion as background we state the following

Definition 13.3 A linearly independent set of vector fields {X1, . . . , Xm} on R
n is said

to be completely integrable if and only if there are n − m linearly independent functions
h1, . . . , hn−m satisfying the system of partial differential equations

LXihj = 0 for 1 ≤ i ≤ n ; 1 ≤ j ≤ m (13.32)

Definition 13.4 A linearly independent set of vector fields {X1, . . . , Xm} is said to be
involutive if and only if there are scalar functions αijk : R

n → R such that

[Xi, Xj] =

m
∑

k=1

αijkXk for all i, j, k. (13.33)

Involutivity simply means that if one forms the Lie Bracket of any pair of vector fields from
the set {X1, . . . , Xm} then the resulting vector field can be expressed as a linear combination
of the original vector fields X1, . . . , Xm. Note that the coefficients in this linear combination
are allowed to be smooth functions on R

n. In the simple case of (13.21) one can show that
if there is a solution z = φ(x, y) of (13.21) then involutivity of the set {X1, X2} defined by
(13.32) is equivalent to interchangeability of the order of partial derivatives of φ, that is,
∂2φ
∂x∂y

=
∂2φ
∂y∂x

. The Frobenius Theorem, stated next, gives the conditions for the existence

of a solution to the system of partial differential Equations (13.32).

Theorem 2 Let {X1, . . . , Xm} be a set of vector fields that are linearly independent at each
point. Then the set of vector fields is completely integrable if and only if it is involutive.

Proof: See, for example, Boothby [?].

13.3 Single-Input Systems

The idea of feedback linearization is easiest to understand in the context of single-input
systems. In this section we derive the feedback linearization result of Su [?] for single-input
nonlinear systems. As an illustration we apply this result to the control of a single-link
manipulator with joint elasticity.

Definition 13.5 A single-input nonlinear system

ẋ = f(x) + g(x)u (13.34)

1The so-called Implicit Function Theorem states that (13.31) can be solved for z as long as ∂h
∂z

6= 0.

294 CHAPTER 13. FEEDBACK LINEARIZATION

where f(x) and g(x) are smooth vector fields on R
n, f(0) = 0, and u ∈ R, is said to be feed-

back linearizable if there exists a region U in R
n containing the origin, a diffeomorphism2

T : U → R
n, and nonlinear feedback

u = α(x) + β(x)v (13.35)

with β(x) 6= 0 on U such that the transformed variables

y = T (x) (13.36)

satisfy the system of equations

ẏ = Ay + bv (13.37)

where

A =

















0 1 0 0
0 0 1 ·
· · · · ·
· · · · ·
· · · 1
0 0 · · 0 0

















b =

















0
0
·
·
·
1

















. (13.38)

Remark 13.1 The nonlinear transformation (13.36) and the nonlinear control law (13.35),
when applied to the nonlinear system (13.34), result in a linear controllable system (13.37).
The diffeomorphism T (x) can be thought of as a nonlinear change of coordinates in the state
space. The idea of feedback linearization is then that if one first changes to the coordinate
system y = T (x), then there exists a nonlinear control law to cancel the nonlinearities in
the system. The feedback linearization is said to be global if the region U is all of R

n.

We next derive necessary and sufficient conditions on the vector fields f and g in (13.34)
for the existence of such a transformation. Let us set

y = T (x) (13.39)

and see what conditions the transformation T (x) must satisfy. Differentiating both sides of
(13.39) with respect to time yields

ẏ =
∂T

∂x
ẋ (13.40)

where ∂T
∂x

is the Jacobian matrix of the transformation T (x). Using (13.34) and (13.37),

Equation (13.40) can be written as

∂T

∂x
(f(x) + g(x)u) = Ay + bv. (13.41)

2A diffeomorphism is simply a differentiable function whose inverse exists and is also differentiable. We
shall assume both the function and its inverse to be infinitely differentiable. Such functions are customarily
referred to as C∞ diffeomorphisms.

13.3. SINGLE-INPUT SYSTEMS 295

In component form with

T =













T1

·
·
·
Tn













A =

















0 1 0 0
0 0 1 ·
· · · · ·
· · · · ·
· · · 1
0 0 · · 0 0

















b =

















0
0
·
·
·
1

















(13.42)

we see that the first equation in (13.41) is

∂T1

∂x1
ẋ1 + · · ·+ ∂T1

∂xn
ẋn = T2 (13.43)

which can be written compactly as

LfT1 + LgT1u = T2 (13.44)

Similarly, the other components of T satisfy

LfT2 + LgT2u = T3 (13.45)

·
·
·

LfTn + LgTnu = v.

Since we assume that T1, . . . , Tn are independent of u while v is not independent of u we
conclude from (13.45) that

LgT1 = LgT2 = · · · = LgTn−1 = 0 (13.46)

LgTn 6= 0 (13.47)

This leads to the system of partial differential equations

LfTi = Ti+1 i = 1, . . . n− 1 (13.48)

together with

LfTn + LgTnu = v (13.49)

Using Lemma 13.1 and the conditions (13.46) and (13.47) we can derive a system of
partial differential equations in terms of T1 alone as follows. Using h = T1 in Lemma 13.1
we have

L[f,g]T1 = LfLgT1 − LgLfT1 = 0− LgT2 = 0 (13.50)

296 CHAPTER 13. FEEDBACK LINEARIZATION

Thus we have shown

L[f,g]T1 = 0 (13.51)

By proceeding inductively it can be shown (Problem 12-4) that

Ladk
f
gT1 = 0 k = 0, 1, . . . n− 2 (13.52)

Ladn−1
f

gT1 6= 0 (13.53)

If we can find T1 satisfying the system of partial differential Equations (13.52), then
T2, . . . , Tn are found inductively from (13.48) and the control input u is found from

LfTn + LgTnu = v (13.54)

as

u =
1

LgTn
(v − LfTn) (13.55)

We have thus reduced the problem to solving the system (13.52) for T1. When does such
a solution exist? First note that the vector fields g, adf (g), . . . , ad

n−1
f (g) must be linearly

independent. If not, that is, if for some index i

adif (g) =
i−1
∑

k=0

αkad
k
f (g) (13.56)

then adn−1
f (g) would be a linear combination of g, adf (g), . . . , ad

n−2
f (g) and (13.53) could

not hold. Now by the Frobenius Theorem (13.52) has a solution if and only if the set of
vector fields {g, adf (g), . . . , adn−2

f (g)} is involutive. Putting this together we have shown
the following.

Theorem 3 The nonlinear system

ẋ = f(x) + g(x)u (13.57)

with f(x), g(x) smooth vector fields, and f(0) = 0 is feedback linearizable if and only if
there exists a region U containing the origin in R

n in which the following conditions hold:

1. The vector fields {g, adf (g), . . . , adn−1
f (g)} are linearly independent in U .

2. The set {g, adf (g), . . . , adn−2
f (g)} is involutive in U .

Example 13.2 Consider the single link manipulator with flexible joint shown in Fig-
ure 13.3. Ignoring damping for simplicity, the equations of motion are

13.3. SINGLE-INPUT SYSTEMS 297

Figure 13.3: Single-Link Flexible Joint Robot

Iq̈1 +Mgl sin(q1) + k(q1 − q2) = 0 (13.58)

Jq̈2 + k(q2 − q1) = u (13.59)

Note that since the nonlinearity enters into the first equation the control u cannot simply
be chosen to cancel it as in the case of the rigid manipulator equations.

In state space we set

x1 = q1 x2 = q̇1 (13.60)

x3 = q2 x4 = q̇2

and write the system (13.58) as

ẋ1 = x2 (13.61)

ẋ2 = −MgL

I
sin(x1)−

k

I
(x1 − x3)

ẋ3 = x4

ẋ4 =
k

J
(x1 − x3) +

1

J
u.

The system is thus of the form (13.34) with

f(x) =









x2

−MgL
I sin(x1)− k

I (x1 − x3)
x4

k
J (x1 − x3)









g(x) =









0
0
0
1
J









. (13.62)

Therefore n = 4 and the necessary and sufficient conditions for feedback linearization of
this system are that

rank
[

g, adf (g), ad
2
f (g), ad

3
f (g)

]

= 4 (13.63)

298 CHAPTER 13. FEEDBACK LINEARIZATION

and that the set

{g, adf (g), ad2
f (g)} (13.64)

be involutive. Performing the indicated calculations it is easy to check that (Problem 12-7)

[g, adf (g), ad
2
f (g), ad

3
f (g)] =









0 0 0 k
IJ

0 0 k
IJ 0

0 1
J 0 − k

J2

1
J 0 − k

J2 0









(13.65)

which has rank 4 for k > 0, I, J <∞. Also, since the vector fields {g, adf (g), ad2
f (g)} are

constant, they form an involutive set. To see this it suffices to note that the Lie Bracket
of two constant vector fields is zero. Hence the Lie Bracket of any two members of the set
of vector fields in (13.64) is zero which is trivially a linear combination of the vector fields
themselves. It follows that the system (13.58) is feedback linearizable. The new coordinates

yi = Ti i = 1, . . . , 4 (13.66)

are found from the conditions (13.52), with n = 4, that is

LgT1 = 0

L[f,g]T1 = 0

Lad2
f
gT1 = 0

Lad3
f
gT1 = 0

Carrying out the above calculations leads to the system of equations (Problem 12-8)

∂T1

∂x2
= 0 ;

∂T1

∂x3
= 0 ;

∂T1

∂x4
= 0 (13.67)

and

∂T1

∂x1
6= 0. (13.68)

From this we see that the function T1 should be a function of x1 alone. Therefore, we take
the simplest solution

y1 = T1 = x1 (13.69)

and compute from (13.48) (Problem 12-9)

y2 = T2 = LfT1 = x2 (13.70)

y3 = T3 = LfT2 = −MgL

I
sin(x1)−

k

I
(x1 − x3) (13.71)

y4 = T4 = LfT3 = −MgL

I
cos(x1)−

K

I
(x2 − x4). (13.72)

13.3. SINGLE-INPUT SYSTEMS 299

The feedback linearizing control input u is found from the condition

u =
1

LgT4
(v − LfT4) (13.73)

as (Problem 12-10)

u =
IJ

k
(v − a(x)) = β(x)v + α(x) (13.74)

where

a(x) :=
MgL

I
sin(x1)

(

x2
2 +

MgL

I
cos(x1) +

k

I

)

(13.75)

+
k

I
(x1 − x3)

(

k

I
+
k

J
+
MgL

I
cos(x1)

)

.

⋄
Therefore in the coordinates y1, . . . , y4 with the control law (13.74) the system becomes

ẏ1 = y2 (13.76)

ẏ2 = y3

ẏ3 = y4

ẏ4 = v

or, in matrix form,

ẏ = Ay + bv (13.77)

where

A =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









b =









0
0
0
1









. (13.78)

Remark 13.2 The above feedback linearization is actually global. In order to see this
we need only compute the inverse of the change of variables (13.69)-(13.72). Inspecting
(13.69)(13.72) we see that

x1 = y1 (13.79)

x2 = y2

x3 = y1 +
I

k

(

y3 +
MgL

I
sin(y1)

)

x4 = y2 +
I

k

(

y4 +
MgL

I
cos(y1)y2

)

. (13.80)

300 CHAPTER 13. FEEDBACK LINEARIZATION

The inverse transformation is well defined and differentiable everywhere and, hence, the
feedback linearization for the system (13.58) holds globally. The transformed variables
y1, . . . , y4 are themselves physically meaningful. We see that

y1 = x1 = link position (13.81)

y2 = x2 = link velocity

y3 = ẏ2 = link acceleration

y4 = ẏ3 = link jerk.

Since the motion trajectory of the link is typically specified in terms of these quantities they
are natural variables to use for feedback.

Example 13.3 One way to execute a step change in the link position while keeping the
manipulator motion smooth would be to require a constant jerk during the motion. This can
be accomplished by a cubic polynomial trajectory using the methods of Chapter 8. Therefore,
let us specify a trajectory

θdℓ (t) = yd1 = a1 + a2t+ a3t
2 + a4t

3 (13.82)

so that

yd2 = ẏd1 = a2 + 2a3t+ 3a4t
2

yd3 = ẏd2 = 2a3 + 6a4t

yd4 = ẏd3 = 6a4.

Then a linear control law that tracks this trajectory and that is essentially equivalent to the
feedforward/feedback scheme of Chapter 11 is given by

v = ẏd4 − k1(y1 − yd1)− k2(y2 − yd2)− k3(y3 − yd3)− k4(y4 − yd4) (13.83)

Applying this control law to the fourth order linear system (13.74) we see that the tracking
error e(t) = y1 − yd1 satisfies the fourth order linear equation

d4e

dt4
+ k4

d3e

dt3
+ k3

d2e

dt2
+ k2

de

dt
+ k1e = 0 (13.84)

and, hence, the error dynamics are completely determined by the choice of gains k1, . . . , k4.
⋄

Notice that the feedback control law (13.83) is stated in terms of the variables y1, . . . , y4.
Thus, it is important to consider how these variables are to be determined so that they may
be used for feedback in case they cannot be measured directly.

Although the first two variables, representing the link position and velocity, are easy
to measure, the remaining variables, representing link acceleration and jerk, are difficult

13.4. FEEDBACK LINEARIZATION FOR N -LINK ROBOTS 301

to measure with any degree of accuracy using present technology. One could measure the
original variables x1, . . . , x4 which represent the motor and link positions and velocities,
and compute y1, . . . , y4 using the transformation Equations (13.69)-(13.72). In this case the
parameters appearing in the transformation equations would have to be known precisely.
Another, and perhaps more promising, approach is to construct a dynamic observer to
estimate the state variables y1, . . . , y4.

13.4 Feedback Linearization for N-Link Robots

In the general case of an n-link manipulator the dynamic equations represent a multi-input
nonlinear system. The conditions for feedback linearization of multi-input systems are
more difficult to state, but the conceptual idea is the same as the single-input case. That
is, one seeks a coordinate systems in which the nonlinearities can be exactly canceled by
one or more of the inputs. In the multi-input system we can also decouple the system,
that is, linearize the system in such a way that the resulting linear system is composed of
subsystems, each of which is affected by only a single one of the outer loop control inputs.
Since we are concerned only with the application of these ideas to manipulator control we
will not need the most general results in multi-input feedback linearization. Instead, we will
use the physical insight gained by our detailed derivation of this result in the single-link
case to derive a feedback linearizing control both for n-link rigid manipulators and for n-link
manipulators with elastic joints directly.

Example 13.4 We will first verify what we have stated previously, namely that for an
n-link rigid manipulator the feedback linearizing control is identical to the inverse dynamics
control of Chapter 11. To see this, consider the rigid equations of motion (11.6), which we
write in state space as

ẋ1 = x2 (13.85)

ẋ2 = −M(x1)
−1(C(x1, x2)x2 + g(x1)) +M(x1)

−1u

with X1 = q; X2 = q̇. In this case a feedback linearizing control is found by simply inspecting
(13.85) as

u = M(x1)v + C(x1, x2)x2 + g(x1) (13.86)

Substituting (13.86) into (13.85) yields

ẋ1 = x2 (13.87)

ẋ2 = v.

Equation (13.97) represents a set of n-second order systems of the form

ẋ1i = x2i (13.88)

ẋ2i = vi, i = 1, . . . , n.

302 CHAPTER 13. FEEDBACK LINEARIZATION

Comparing (13.86) with (11.17) we see indeed that the feedback linearizing control for a
rigid manipulator is precisely the inverse dynamics control of Chapter 11. ⋄

Example 13.5 If the joint flexibility is included in the dynamic description of an n-link
robot the equations of motion can be written as

D(q1)q̈1 + C(q1, q̇1)q̇1 + g(q1) +K(q1 − q2) = 0 (13.89)

Jq̈2 −K(q1 − q2) = u. (13.90)

In state space, which is now R
4n, we define state variables in block form

ẋ1 = q1 x2 = q̇1 (13.91)

ẋ3 = q2 x4 = q̇2.

Then from (13.89)-(13.90) we have:

ẋ1 = x2 (13.92)

ẋ2 = −D(x1)
−1{h(x1, x2) +K(x1 − x3)} (13.93)

ẋ3 = x4 (13.94)

ẋ4 = J−1K(x1 − x3) + J−1u. (13.95)

where we define h(x1, x2) = C(x1, x2)x2 + g(x1) for simplicity. This system is then of the
form

ẋ = f(x) +G(x)u. (13.96)

In the single-link case we saw that the appropriate state variables with which to define
the system so that it could be linearized by nonlinear feedback were the link position, velocity,
acceleration, and jerk. Following the single-input example, then, we can attempt to do the
same thing in the multi-link case and derive a feedback linearizing transformation blockwise
as follows: Set

y1 = T1(x1) := x1 (13.97)

y2 = T2(x) := ẏ1 = ẋ2 (13.98)

y3 = T3(x) := ẏ2 = ẋ2 (13.99)

= −D(x1)
−1{h(x1, x2) +K(x1 − x3)}

y4 = T4(x) := ẏ3 (13.100)

= − d

dt
[D(x1)

−1]{h(x1, x2) +K(x1 − x3)} −D(x1)
−1

{

∂h

∂x1
x2

+
∂h

∂x2
[−D(x1)

−1(h(x1, x2) +K(x1 − x3))] +K(x2 − x4)

}

:= a4(x1, x2, x3) +D(x1)
−1Kx4

13.4. FEEDBACK LINEARIZATION FOR N -LINK ROBOTS 303

where for simplicity we define the function a4 to be everything in the definition of y4 except
the last term, which is D−1Kx4. Note that x4 appears only in this last term so that a4

depends only on x1, x2, x3.
As in the single-link case, the above mapping is a global diffeomorphism. Its inverse can

be found by inspection to be

x1 = y1 (13.101)

x2 = y2 (13.102)

x3 = y1 +K−1(D(y1)y3 + h(y1, y2)) (13.103)

x4 = K−1D(y1)(y4 − a4(y1, y2, y3)). (13.104)

The linearizing control law can now be found from the condition

ẏ4 = v (13.105)

where v is a new control input. Computing ẏ4 from (13.100) and suppressing function
arguments for brevity yields

v = ∂a4
∂x1

x2 − ∂a4
∂x2

D−1(h+K(x1 − x3)) (13.106)

+∂a4
∂x3

x4 + d
dt [D

−1]Kx4 +D−1K(J−1K(x1 − x3) + J−1u)

=: a(x) + b(x)u

where a(x) denotes all the terms in (13.106) but the last term, which involves the input u,
and b(x) := D−1(x)KJ−1.

Solving the above expression for u yields

u = b(x)−1(v − a(x)) (13.107)

=: alpha(x) + β(x)v (13.108)

where β(x) = JK−1D(x) and alpha(x) = −b(x)−1a(x).
With the nonlinear change of coordinates (13.97)-(13.100) and nonlinear feedback (13.107)

the transformed system now has the linear block form

ẏ =









0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0









y +









0
0
0
I









v (13.109)

=: Ay +Bv

where I = n × n identity matrix, 0 = n × n zero matrix, yT = (yT1 , y
T
2 , y

T
3 , y

T
4) ∈ R

4n, and
v ∈ R

n. The system (13.109) represents a set of n decoupled quadruple integrators. The
outer loop design can now proceed as before, because not only is the system linearized, but
it consists of n subsystems each identical to the fourth order system (13.76). ⋄

	INTRODUCTION
	Robotics
	History of Robotics
	Components and Structure of Robots
	Symbolic Representation of Robots
	Degrees of Freedom and Workspace
	Classification of Robots
	Common Kinematic Arrangements
	Robotic Systems
	Accuracy and Repeatability
	Wrists and End-Effectors

	Outline of the Text

	RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS
	Representing Positions
	Representing Rotations
	Rotation in the plane
	Rotations in three dimensions

	Rotational Transformations
	Summary

	Composition of Rotations
	Rotation with respect to the current coordinate frame
	Rotation with respect to a fixed frame
	Summary

	Parameterizations of Rotations
	Euler Angles
	Roll, Pitch, Yaw Angles
	Axis/Angle Representation

	Homogeneous Transformations

	FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION
	Kinematic Chains
	Denavit Hartenberg Representation
	Existence and uniqueness issues
	Assigning the coordinate frames
	Summary

	Examples

	INVERSE KINEMATICS
	The General Inverse Kinematics Problem
	Kinematic Decoupling
	Inverse Position: A Geometric Approach
	Inverse Orientation

	VELOCITY KINEMATICS -- THE MANIPULATOR JACOBIAN
	Angular Velocity: The Fixed Axis Case
	Skew Symmetric Matrices
	Angular Velocity: The General Case
	Addition of Angular Velocities
	Linear Velocity of a Point Attached to a Moving Frame
	Derivation of the Jacobian
	Angular Velocity
	Linear Velocity

	Examples
	The Analytical Jacobian
	Singularities
	Decoupling of Singularities
	Wrist Singularities
	Arm Singularities

	Inverse Velocity and Acceleration
	Redundant Robots and Manipulability
	Redundant Manipulators
	The Inverse Velocity Problem for Redundant Manipulators
	Singular Value Decomposition (SVD)
	Manipulability

	COMPUTER VISION
	The Geometry of Image Formation
	The Camera Coordinate Frame
	Perspective Projection
	The Image Plane and the Sensor Array

	Camera Calibration
	Extrinsic Camera Parameters
	Intrinsic Camera Parameters
	Determining the Camera Parameters

	Segmentation by Thresholding
	A Brief Statistics Review
	Automatic Threshold Selection

	Connected Components
	Position and Orientation
	Moments
	The Centroid of an Object
	The Orientation of an Object

	PATH PLANNING AND COLLISION AVOIDANCE
	The Configuration Space
	Path Planning Using Configuration Space Potential Fields
	The Attractive Field
	The Repulsive field
	Gradient Descent Planning

	Planning Using Workspace Potential Fields
	Defining Workspace Potential Fields
	Mapping workspace forces to joint forces and torques
	Motion Planning Algorithm

	Using Random Motions to Escape Local Minima
	Probabilistic Roadmap Methods
	Sampling the configuration space
	Connecting Pairs of Configurations
	Enhancement
	Path Smoothing

	Historical Perspective

	TRAJECTORY PLANNING
	The Trajectory Planning Problem
	Trajectories for Point to Point Motion
	Cubic Polynomial Trajectories
	Multiple Cubics
	Quintic Polynomial Trajectories
	Linear Segments with Parabolic Blends (LSPB)
	Minimum Time Trajectories

	Trajectories for Paths Specified by Via Points
	4-3-4 trajectories

	DYNAMICS
	The Euler-Lagrange Equations
	One Dimensional System
	The General Case

	General Expressions for Kinetic and Potential Energy
	The Inertia Tensor
	Kinetic Energy for an n-Link Robot
	Potential Energy for an n-Link Robot

	Equations of Motion
	Some Common Configurations
	Properties of Robot Dynamic Equations
	The Skew Symmetry and Passivity Properties
	Bounds on the Inertia Matrix
	Linearity in the Parameters

	Newton-Euler Formulation
	Planar Elbow Manipulator Revisited

	INDEPENDENT JOINT CONTROL
	Introduction
	Actuator Dynamics
	Set-Point Tracking
	PD Compensator
	Performance of PD Compensators
	PID Compensator
	Saturation

	Feedforward Control and Computed Torque
	Drive Train Dynamics

	MULTIVARIABLE CONTROL
	Introduction
	PD Control Revisited
	Inverse Dynamics
	Task Space Inverse Dynamics

	Robust and Adaptive Motion Control
	Robust Feedback Linearization
	Passivity Based Robust Control
	Passivity Based Adaptive Control

	FORCE CONTROL
	Introduction
	Constrained Dynamics
	Static Force/Torque Relationships
	Constraint Surfaces
	Natural and Artificial Constraints

	Network Models and Impedance
	Impedance Operators
	Classification of Impedance Operators
	Thévenin and Norton Equivalents

	Force Control Strategies
	Impedance Control
	Hybrid Impedance Control

	FEEDBACK LINEARIZATION
	Introduction
	Background: The Frobenius Theorem
	Single-Input Systems
	Feedback Linearization for N-Link Robots

