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Liuchao JIN ENGG5403 Linear System Theory & Design Assignment #1

Problem 1

external force applied to the mass M, y (t) is the displacement of the mass 
with respect to the position when the spring is relaxed. The spring force and 
friction force are given respectively by

Q.1. Consider the mechanical system shown in the figure below. Here u (t) is an

Solution:

1. Using Newton’s second law, the differential equation model of the system is derived as
follows:

𝑀 ¥𝑦 + 𝑓𝑏 (𝑡) + 𝑓𝑠𝑝 (𝑡) = 𝑢 (1)

that is
𝑀 ¥𝑦 (𝑡) + 𝑏 ¤𝑦 (𝑡) + 𝑘

(
1 + 𝑎𝑦2 (𝑡)

)
𝑦 (𝑡) = 𝑢 (2)

2. Let states be 𝑥1 = 𝑦 (𝑡) and 𝑥2 = ¤𝑦 (𝑡). Therefore, the system can be described by these
states: {

¤𝑥1 = 𝑥2

¤𝑥2 = − 𝑘
𝑀

(
1 + 𝑎𝑥21

)
𝑥1 − 𝑏

𝑀
𝑥2 + 1

𝑀
𝑢

(3)

Hence, the state space description of the system is

¤𝑥 =

[
0 1

− 𝑘 (1+𝑎𝑥21)
𝑀

− 𝑏
𝑀

]
𝑥 +

[
0
1
𝑀

]
𝑢 (4)

and
𝑦 =

[
1 0

]
𝑥 (5)
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3. The system is not linear. The Jacobian matrix of the nonlinear equation is

𝜕 𝑓 (𝑥, 𝑢)
𝜕𝑥

=

[
𝜕 𝑓1 (𝑥)
𝜕𝑥1

𝜕 𝑓1 (𝑥)
𝜕𝑥2

𝜕 𝑓2 (𝑥)
𝜕𝑥1

𝜕 𝑓2 (𝑥)
𝜕𝑥2

]
=

[
0 1

− 𝑘 (1+3𝑎𝑥21)
𝑀

− 𝑏
𝑀

]
(6)

The linearized system around the operating point with 𝑢0 = 0 is{
¤𝑥 = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥
(7)

where

𝐴 =
𝜕 𝑓 (𝑥, 𝑢)

𝜕𝑥

����
𝑥=0,𝑢=0

=

[
0 1

− 𝑘
𝑀

− 𝑏
𝑀

]
(8)

𝐵 =
𝜕 𝑓 (𝑥, 𝑢)

𝜕𝑢

����
𝑥=0,𝑢=0

=

[
0
1
𝑀

]
(9)

𝐶 =

[
1 0

]
(10)

4. The transfer function of the system is

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷 =

[
1 0

] [ 𝑠 −1
𝑘
𝑀

𝑠 + 𝑏
𝑀

]−1 [
0
1
𝑀

]
=

1

𝑀𝑠2 + 𝑏𝑠 + 𝑘
(11)
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Problem 2

Q.2. Consider the electric circuit network in the figure below. Let the input be
vi(t) and output be vo(t).

1. Derive the state and output equation of the network.

2. Find the transfer function of the network.

Assuming that R1 =R2 =R3 =1, C1 =C2 =1F and L1 =1H,

3. Find the unit step response of the network.

4. Find the unit impulse response of the network.

Solution:

1. Assume the voltages across the capacities 𝐶1 and 𝐶2 are equal to 𝑣1 and 𝑣2, respectively
and the current across the inductor is equal to 𝑖.

Applying KCL to the node near 𝐶1, 𝑅3, and 𝐿1 yields that

𝐶1
𝑑𝑣1

𝑑𝑡
= 𝑖 + 𝐶2

𝑑𝑣2

𝑑𝑡
(12)

Applying KVL to the loop around 𝑣𝑖, 𝑅1, 𝐶1, 𝐿1, and 𝑅2 yields that

𝑅1𝐶1
𝑑𝑣1

𝑑𝑡
+ 𝑣1 + 𝐿1

𝑑𝑖

𝑑𝑡
+ 𝑅2𝑖 − 𝑣𝑖 = 0 (13)

Applying KVL to the loop around 𝑣𝑜, 𝑅2, 𝐿1, and 𝑅3 yields that

𝑅3𝐶2
𝑑𝑣2

𝑑𝑡
+ 𝑣2 − 𝐿1

𝑑𝑖

𝑑𝑡
− 𝑅2𝑖 = 0 (14)

Combining Equation (12), (13), and (14) obtains that

𝑑𝑣1

𝑑𝑡
= − 1

(𝑅1 + 𝑅3) 𝐶1
𝑣1 −

1

(𝑅1 + 𝑅3) 𝐶1
𝑣2 +

𝑅3

(𝑅1 + 𝑅3) 𝐶1
𝑖 + 1

(𝑅1 + 𝑅3) 𝐶1
𝑣𝑖 (15)
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𝑑𝑣2

𝑑𝑡
= − 1

(𝑅1 + 𝑅3) 𝐶2
𝑣1 −

1

(𝑅1 + 𝑅3) 𝐶2
𝑣2 −

𝑅1

(𝑅1 + 𝑅3) 𝐶2
𝑖 + 1

(𝑅1 + 𝑅3) 𝐶2
𝑣𝑖 (16)

𝑑𝑖

𝑑𝑡
= − 𝑅3

(𝑅1 + 𝑅3) 𝐿1
𝑣1 +

𝑅1

(𝑅1 + 𝑅3) 𝐿1
𝑣2 −

𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3

(𝑅1 + 𝑅3) 𝐿1
𝑖 + 𝑅3

(𝑅1 + 𝑅3) 𝐿1
𝑣𝑖

(17)
Therefore, the state and output equation of the network is

¤𝑥 =


𝑑𝑣1
𝑑𝑡
𝑑𝑣2
𝑑𝑡
𝑑𝑖
𝑑𝑡

 =

− 1

(𝑅1+𝑅3)𝐶1
− 1

(𝑅1+𝑅3)𝐶1

𝑅3
(𝑅1+𝑅3)𝐶1

− 1
(𝑅1+𝑅3)𝐶2

− 1
(𝑅1+𝑅3)𝐶2

− 𝑅1
(𝑅1+𝑅3)𝐶2

− 𝑅3
(𝑅1+𝑅3)𝐿1

𝑅1
(𝑅1+𝑅3)𝐿1 −𝑅1𝑅2+𝑅1𝑅3+𝑅2𝑅3

(𝑅1+𝑅3)𝐿1



𝑣1

𝑣2

𝑖

 +


1
(𝑅1+𝑅3)𝐶1

1
(𝑅1+𝑅3)𝐶2

𝑅3
(𝑅1+𝑅3)𝐿1

 𝑣𝑖
= 𝐴𝑥 + 𝐵𝑢

(18)

𝑦 = 𝑣𝑜 = 𝑣2 =

[
0 1 0

] 
𝑣1

𝑣2

𝑖

 = 𝐶𝑥 (19)

2. The transfer function of the system is equal to

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

=

[
0 1 0

] 
𝑠 + 1

(𝑅1+𝑅3)𝐶1

1
(𝑅1+𝑅3)𝐶1

− 𝑅3
(𝑅1+𝑅3)𝐶1

1
(𝑅1+𝑅3)𝐶2

𝑠 + 1
(𝑅1+𝑅3)𝐶2

𝑅1
(𝑅1+𝑅3)𝐶2

𝑅3
(𝑅1+𝑅3)𝐿1 − 𝑅1

(𝑅1+𝑅3)𝐿1 𝑠 + 𝑅1𝑅2+𝑅1𝑅3+𝑅2𝑅3
(𝑅1+𝑅3)𝐿1


−1 

1
(𝑅1+𝑅3)𝐶1

1
(𝑅1+𝑅3)𝐶2

𝑅3
(𝑅1+𝑅3)𝐿1


= [𝐶1𝑠 (𝑅2 + 𝐿1𝑠)] /

[
𝐶1𝐶2𝐿1 (𝑅1 + 𝑅3) 𝑠3

+ ((𝐶1 + 𝐶2) 𝐿1 + 𝐶1𝐶2 (𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3)) 𝑠2

+ (𝐶1 (𝑅1 + 𝑅2) + 𝐶2 (𝑅2 + 𝑅3)) 𝑠 + 1
]

(20)

3. When 𝑅1 = 𝑅2 = 𝑅3 = 1 Ω, 𝐶1 = 𝐶2 = 1 F and 𝐿1 = 1 H, the transfer function becomes

𝐺 (𝑠) = 𝑠 (𝑠 + 1)
2𝑠3 + 5𝑠2 + 4𝑠 + 1

(21)

Therefore, when subjected to the step input, the response of the system becomes

𝑦 (𝑡) = ℒ
−1

{
𝐺 (𝑠) · 1

𝑠

}
= ℒ

−1
{

𝑠 + 1

2𝑠3 + 5𝑠2 + 4𝑠 + 1

}
= ℒ

−1
{

1

(𝑠 + 1) (2𝑠 + 1)

}
= 𝑒−

1
2 𝑡 − 𝑒−𝑡

(22)
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4. When subjected to the unit impulse input, the response of the system becomes

𝑦 (𝑡) = ℒ
−1 {𝐺 (𝑠)}

= ℒ
−1

{
𝑠 (𝑠 + 1)

2𝑠3 + 5𝑠2 + 4𝑠 + 1

}
= ℒ

−1
{

𝑠

(𝑠 + 1) (2𝑠 + 1)

}
= 𝑒−𝑡 − 1

2
𝑒−

1
2 𝑡

(23)
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Problem 3

Q.3.

Solution:

1. Assume the voltages across the capacities 1 F and 2 F are equal to 𝑣1 and 𝑣2, respectively
and the current across the inductor and fourth resistor are equal to 𝑖 and 𝑖𝑅. Analyzing
the current across the inductor and the second capacitor yields that

2
𝑑𝑣2

𝑑𝑡
= 𝑖 (24)

Applying KVL to the loop-the inductor, the second capacitor, and the fourth resistor-yields
that

0.1
𝑑𝑖

𝑑𝑡
+ 𝑣2 − 10𝑖𝑅 = 0 (25)

Applying KVL to the loop-the second, third, and fourth resistor-yields that

10 (𝑖 + 𝑖𝑅) + 10𝑖𝑅 − 𝑣1 = 0 (26)

Applying KVL to the loop-the input voltage source, the first resistor, and the first capacitor-
yields that

−𝑢 + 𝑣1 + 10

(
𝑖 + 𝑖𝑅 + 𝑣1

10
+ 𝑑𝑣1

𝑑𝑡

)
= 0 (27)
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Observing Equation (26), 𝑖𝑅 can be represented by other parameters:

𝑖𝑅 =
1

20
𝑣1 −

1

2
𝑖 (28)

Substituting Equation (28) into Equation (24), (25), and (27) yields that
𝑑𝑣1

𝑑𝑡
= −1

4
𝑣1 −

1

2
𝑖 + 1

10
𝑢 (29)

𝑑𝑣2

𝑑𝑡
=
1

2
𝑖 (30)

𝑑𝑖

𝑑𝑡
= 5𝑣1 − 10𝑣2 − 50𝑖 (31)

Therefore, the state and output equation of the network is

¤𝑥 =


𝑑𝑣1
𝑑𝑡
𝑑𝑣2
𝑑𝑡
𝑑𝑖
𝑑𝑡

 =

−1
4 0 −1

2

0 0 1
2

5 −10 −50



𝑣1

𝑣2

𝑖

 +

1
10

0

0

 𝑣𝑖
= 𝐴𝑥 + 𝐵𝑢

(32)

𝑦 = 𝑣𝑜 = 𝑣2 =

[
0 1 0

] 
𝑣1

𝑣2

𝑖

 = 𝐶𝑥 (33)

2. The Laplace transfer of the output of the system when subjected to the step input (𝑢 (𝑠) =

1
𝑠
) with the initial condition 𝑥 (0−) =


1

2

0

 is equal to

𝑌 (𝑠) =
[
𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

]
𝑢 (𝑠) + 𝐶 (𝑠𝐼 − 𝐴)−1 𝑥 (0−)

=
8𝑠3 + 402𝑠2 + 130𝑠 + 1

𝑠
(
4𝑠3 + 201𝑠2 + 80𝑠 + 5

) (34)

Applying the inverse Laplace transform to Equation (34) obtains the response of output:

𝑦 (𝑡) = 1.7589𝑒−0.07761𝑡 + 0.0441𝑒−0.3231𝑡 − 0.003𝑒−49.8493𝑡 + 0.2 (35)

3. The Laplace transfer of the output of the system when subjected to the unit impulse

(𝑢 (𝑠) = 1) with the initial condition 𝑥 (0−) =

1

2

0

 is equal to

𝑌 (𝑠) =
[
𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

]
𝑢 (𝑠) + 𝐶 (𝑠𝐼 − 𝐴)−1 𝑥 (0−)

=
8𝑠2 + 402𝑠 + 131

4𝑠3 + 201𝑠2 + 80𝑠 + 5

(36)

Applying the inverse Laplace transform to Equation (36) obtains the response of output:

𝑦 (𝑡) = −0.0401𝑒−0.3231𝑡 + 2.043𝑒−0.07761𝑡 − 0.0029−49.8493𝑡 (37)
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4. The eigenvalues of matrix 𝐴 are −49.8493, −0.3231, and −0.0776. They all have a
negative real part. Therefore, the system is both BIBO stable and internal stable.
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Problem 4

Q.4.

Solution:

∫ 𝑡2

𝑡1

𝑒−𝐴𝜏𝐵𝑢 (𝜏) 𝑑𝜏 =

∫ 𝑡2

𝑡1

{
−𝑒−𝐴𝜏𝐴𝑥 (𝜏) +

[
𝑒−𝐴𝜏 (𝐴𝑥 (𝜏) + 𝐵𝑢 (𝜏))

]}
𝑑𝜏

=

∫ 𝑡2

𝑡1

{[
𝑒−𝐴𝜏

]′
𝑥 (𝜏) + 𝑒−𝐴𝜏 ¤𝑥 (𝜏)

}
𝑑𝜏

=

∫ 𝑡2

𝑡1

[
𝑒−𝐴𝜏𝑥 (𝜏)

]′
𝑑𝜏

= 𝑒−𝐴𝜏𝑥 (𝜏)
��𝜏=𝑡2
𝜏=𝑡1

= 𝑒−𝐴𝑡2𝑥2 − 𝑒−𝐴𝑡1𝑥1

(38)
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Problem 5

Q.5.

Solution:
When 𝑡 = 0, we have 𝑒𝐴𝑡 = 𝑒0 = 𝐼. Therefore, we can know that 𝛼 = 2 and 𝛽 = 1.
Because ℒ

(
𝑒𝐴𝑡

)
= (𝑠𝐼 − 𝐴)−1,

ℒ

(
𝑒𝐴𝑡

)
= ℒ

{[
−𝑒−𝑡 + 2𝑒−2𝑡 −𝑒−𝑡 + 𝑒−2𝑡

2𝑒−𝑡 − 2𝑒−2𝑡 2𝑒−𝑡 − 𝑒−2𝑡

]}
=

[
𝑠

(𝑠+1) (𝑠+2)
−1

(𝑠+1) (𝑠+2)
2

(𝑠+1) (𝑠+2)
𝑠+3

(𝑠+1) (𝑠+2)

]
(39)

Therefore,

𝑠𝐼 − 𝐴 =

[
𝑠

(𝑠+1) (𝑠+2)
−1

(𝑠+1) (𝑠+2)
2

(𝑠+1) (𝑠+2)
𝑠+3

(𝑠+1) (𝑠+2)

]−1
=

[
𝑠 + 3 1

−2 𝑠

]
(40)

Hence,

𝐴 =

[
−3 −1
2 0

]
(41)

The eigenvalues of matrix 𝐴 is −2 and −1. Therefore, the matrix 𝐴 can be decomposed to

𝐴 = 𝑋𝐽𝑋−1 =

[
−1 −0.5
1 1

] [
−2 0

0 −1

] [
−2 −1
2 2

]
(42)

Therefore,

𝐴100 = 𝑋𝐽100𝑋−1 =

[
−1 −0.5
1 1

] [
2100 0

0 1

] [
−2 −1
2 2

]
=

[
2101 − 1 2100 − 1

−2101 + 2 −2100 + 2

]
(43)
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Problem 6

Q.6. Show that the pendulum system is a BIBO unstable system even though it
was proved to be internally marginally stable. Identify a bounded input 
signal such that when it is applied to the pendulum, the resulting output 
response will go unbounded. 

For simplicity, you can assume that 2 1 and .M L g L 

Solution:
The inverse pendulum operating point is unstable evidently. The inverted pendulum is

a classic example in control theory and robotics that involves stabilizing a pendulum in an
inverted position by controlling the base on which it stands. The inverted pendulum has an
operating point where the pendulum is perfectly balanced in the upright position, and the
objective is to maintain the pendulum in that position.

It is well-known that the inverted pendulum’s operating point is marginally stable, meaning
that small perturbations from the upright position will cause the pendulum to oscillate around
the operating point. However, while the operating point may be internally marginally stable, it
is actually BIBO (bounded-input bounded-output) unstable.

BIBO stability is concerned with the response of a system to arbitrary inputs, rather than just
small perturbations around an operating point. A system is BIBO stable if, for any bounded
input signal, the output signal remains bounded. In the case of the inverted pendulum, if an
arbitrary input is applied to the system, the pendulum will eventually fall over, regardless of
how small the initial perturbation was.

Near the point 𝜃 = 0, the system can be modelled as

¤𝑥 =

[
0 1
𝑔

𝐿
0

]
𝑥 +

[
0
1

𝑀𝐿2

]
𝑢 (44)

𝑦 =

[
1 0

]
𝑥 (45)

where 𝑥 =

[
𝜃

¤𝜃

]
.

Because the real part of the eigenvalues of matrix 𝐴 is 0, the system is internal stable.
Assume 𝑀𝐿2 = 1 and 𝑔 = 𝐿, the system can be simplified as

¤𝑥 =

[
0 1

1 0

]
𝑥 +

[
0

1

]
𝑢 (46)

𝑦 =

[
1 0

]
𝑥 (47)
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The transfer function of the system is

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷 =
1

𝑠2 + 1
(48)

So, the impulse response of the system is

𝑦 (𝑡) = ℒ
−1

{
1

𝑠2 + 1

}
= sin 𝑡 (49)

Because ∫ ∞

0
|𝑦 (𝑡) | 𝑑𝑡 → ∞ (50)

Therefore, the system is BIBO unstable by "BIBO stability criterion" (Kotsios & Kalouptsidis,
1993) and it states that a single-input single-output (SISO) system is absolutely bounded-input
bounded-output (BIBO) stable if and only if its impulse response is absolutely integrable on the
interval (0,∞].

This theorem has its roots in the field of control theory and systems engineering, where it’s
important to understand the behavior of a system in response to various inputs. The concept of
BIBO stability is a basic requirement for a system to be considered well-behaved, as it ensures
that the output of the system remains bounded when a bounded input is applied.

The theorem is a fundamental result that has been widely used in the analysis and design
of control systems, and it’s a cornerstone of modern control theory. The proof of the theorem
involves the application of Laplace transforms and the use of the convolution theorem.
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