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Liuchao JIN ENGG5403 Linear System Theory & Design Assignment #6

Problem 1

Write the system to be controlled in Homework Assignment 5 in the following form

with

1. Determine the best achievable H∞-norm of the closed-loop system from     to z?

2. Design an H∞ suboptimal control law such that the H∞-norm of the resulting closed-
loop system is reasonably close to the optimal value. 

3. Plot the singular value of the closed-loop system and find its H∞-norm.

4. Find the resulting gain and phase margins of the system under the control law.

5. Assume that there is an unstructured but stable perturbation, , presented in the given
plant. Give the range of || ||∞ so that the closed-loop would remain stable.
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Solution:
Writing the system to be controlled in Homework Assignment 5 yields that


¤𝑥1
¤𝑥2
¤𝑥3
¤𝑥4


=


0 1 0 0

−1 −1 1 1

0 0 0 1

1 1 −1 −1



𝑥1

𝑥2

𝑥3

𝑥4


+


0

1

0

0


𝑢 +


0 0 0

1 0 0

0 0 0

0 0 0



𝑣 (𝑡)
𝑤1 (𝑡)
𝑤2 (𝑡)


𝑦 =

[
1 0 0 0

0 0 1 0

] 
𝑥1

𝑥2

𝑥3

𝑥4


+
[
0 1 0

0 0 1

] 
𝑣 (𝑡)
𝑤1 (𝑡)
𝑤2 (𝑡)


𝑧 =

[
1 0 0 0

] 
𝑥1

𝑥2

𝑥3

𝑥4



(1)

1. Try gm8s_sc for many times, we find 𝛾∗∞ = 0.75259 is the best achievable 𝐻∞ norm of
the closed-loop system from �̃� to 𝑧.

2. When designing the 𝐻∞ optimal controller, we use 𝛾 = 0.805. Choose 𝜖 = 0.01 and solve
h8care function in MATLAB to calculate 𝑃 and 𝑄 in following equation

𝐴𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇2𝐶2 + 𝛾−2𝑃𝐸𝐸𝑇𝑃 −
(
𝑃𝐵 + 𝐶𝑇2 �̃�2

) (
�̃�𝑇2 �̃�2

)−1 (
�̃�𝑇2𝐶2 + 𝐵𝑇𝑃

)
= 0 (2)
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and

𝑄𝐴𝑇 + 𝐴𝑄 + 𝐸𝐸𝑇 + 𝛾−2𝑄𝐶𝑇2𝐶2𝑄 −
(
𝑄𝐶𝑇1 + 𝐸�̃�𝑇1

) (
�̃�1�̃�

𝑇
1

)−1 (
�̃�1𝐸

𝑇 + 𝐶1𝑄

)
= 0 (3)

The results of 𝑃 and 𝑄 are

𝑃 =


0.1420 0.0099 0.0001 −0.0001
0.0099 0.0013 0.0001 0.0001

0.0001 0.0001 0.0002 0.0001

−0.0001 0.0001 0.0001 0.0002


(4)

and

𝑄 =


3.4975 1.4166 3.0796 1.6504

1.4166 0.9522 1.1241 0.8309

3.0796 1.1241 2.8024 1.3486

1.6504 0.8309 1.3486 0.9637


(5)

𝐹 and 𝐾 can be gotten from following equations

𝐹 = −
(
�̃�𝑇2 �̃�2

)−1 (
�̃�𝑇2𝐶2 + 𝐵𝑇𝑃

)
=

[
−69.7284 −10.9821 −1.0077 −1.0377

]
(6)

and

𝐾 = −
(
𝑄𝐶𝑇1 + 𝐸�̃�𝑇1

) (
�̃�1�̃�

𝑇
1

)−1
=


−3.4999 −3.0815
−1.4172 −1.1246
−3.0815 −2.8040
−1.6513 −1.3494


(7)

Also, the eigenvalues of the closed-loop system are verified

𝜆 =



−369.08
−5.99 + 5.91𝑖

−5.99 − 5.91𝑖

−1.03 + 1.02𝑖

−1.03 − 1.02𝑖

−0.50 + 0.87𝑖

−0.50 − 0.87𝑖

−0.47

(8)

which are all in the left-half plane. Therefore, the 𝐻∞-suboptimal output feedback law is
then given by

¤𝑥𝑐𝑚𝑝 =


−208.7362 1.0000 −183.1922 −0.0000
−157.0601 −11.9787 −75.6699 −0.0374
−183.1922 0.0000 −160.8651 1.0000

−98.2744 1.0000 −88.0212 −1.0000


𝑥𝑐𝑚𝑝 +


208.7362 183.1922

86.3534 75.6626

183.1922 160.8651

99.2744 87.0212


𝑦

𝑢 =

[
−69.7282 −10.9820 −1.0077 −1.0377

]
𝑥𝑐𝑚𝑝

(9)
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3. Using Matlab, the singular value of the closed-loop system can be plotted as shown in
Figure 1.
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Figure 1: singular value of the closed-loop system.

And the 𝐻∞ norm of the system is equal to 0.7264.

4. The resulting gain and phase margins of the system under the control law are all equal to
∞.

5. The range of the unstructured but stable perturbation is

∥Δ∥∞ <
1

𝛾
= 1.3766 (10)

The codes for this question are listed below:

1 %% Q6−1

2 clc; clf; clear all; close all;

3 A = [

4 0 1 0 0;

5 −1 −1 1 1;

6 0 0 0 1;

7 1 1 −1 −1;

8 ];

9 B = [

10 0;
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11 1;

12 0;

13 0;

14 ];

15 C1 = [1 0 0 0;

16 0 0 1 0;];

17 C2 = [1 0 0 0];

18 D1 = [0 1 0;

19 0 0 1;];

20 D2 = 0;

21 E = [0 0 0;

22 1 0 0;

23 0 0 0;

24 0 0 0;];

25 epsilon = 0.01;

26 % C2 = [C2; epsilon*eye(size(C2,2)); zeros(size(D2,2),size(C2,2));];

27 % D2 = [D2; zeros(size(C2,2),size(D2,2)); epsilon*eye(size(D2,2));];

28 % E = [E epsilon*eye(size(E,1)) zeros(size(E,1),size(D1,1))];

29 % gms8 = gm8star(A,B,C2,D2,E);

30 gamma = 0.805;

31 % gm8s_sc(A,B,E,C1,D1,C2,D2,gamma);

32 C2 = [C2; epsilon*eye(size(C2,2)); zeros(size(D2,2),size(C2,2));];

33 D2 = [D2; zeros(size(C2,2),size(D2,2)); epsilon*eye(size(D2,2));];

34 E = [E epsilon*eye(size(E,1)) zeros(size(E,1),size(D1,1))];

35 D1 = [D1 zeros(size(D1,1),size(E,1)) epsilon*eye(size(D1,1))];

36 % gms8 = gm8star(A,B,C2,D2,E);

37 P = h8care(A,B,C2,D2,E,gamma);

38 Q = h8care(A’,C1’,E’,D1’,C2’,gamma);

39 % % F = −((D2’*D2)^−1)*(D2’*C2+B’*P);

40 % % K = −(Q*C1’+E*D1’)*((D1*D1’)^−1);

41 % % epsilon = 0;

42 [F,K,Acmp,Bcmp,Ccmp,Dcmp,EigCL] = h8out(A,B,E,C1,D1,C2,D2,gamma,epsilon);

43 % % EigCL

44 % % gm8 = sqrt(max(eig(P*Q)))

45 C1 = [1 0 0 0;

46 0 0 1 0;];

47 C2 = [1 0 0 0];

48 D1 = [0 1 0;

49 0 0 1;];

50 D2 = 0;

51 E = [0 0 0;

52 1 0 0;

53 0 0 0;

54 0 0 0;];

55 Acl = [A+B*Dcmp*C1 B*Ccmp; Bcmp*C1 Acmp];

56 Bcl = [E+B*Dcmp*D1; Bcmp*D1];
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57 Ccl = [C2+D2*Dcmp*C1 D2*Ccmp];

58 Dcl = D2*Dcmp*D1;

59 [num,den] = ss2tf(Acl,Bcl,Ccl,Dcl,1);

60 sys = tf(num,den);

61 p= sigmaoptions;

62 p. MagUnits=’abs’;

63 fig1 = figure(1);

64 sigma(sys,p);

65 grid on;

66 % a = get(gca,’XTickLabel’);

67 % set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

68 set(gcf,’renderer’,’painters’);

69 filename = "Q6_SV"+".pdf";

70 saveas(gcf,filename);

71 close(fig1);

72 [Gm,Pm,Wcg,Wcp] = margin(sys);
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Problem 2

Consider a linear time-invariant system characterized by

Σ :

{
¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑤
𝑧 = 𝐶2𝑥 + 𝐷2𝑢

(11)

where𝐶2 = 0𝑚×𝑛, 𝐷2 = 𝐼𝑚, and where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, 𝑤 ∈ R𝑙 and 𝑧 ∈ R𝑚, are the state, control
input, disturbance input and controlled output, respectively. Assume that the state variable 𝑥 is
available for feedback, i.e, the measurement output 𝑦 = 𝑥, and assume that (𝐴, 𝐵) is stabilizable
and (𝐴, 𝐵, 𝐶2, 𝐷2) has no invariant zeros on the imaginary axis.

(a) Show that the subsystem (𝐴, 𝐵, 𝐶2, 𝐷2) has a total of 𝑛 invariant zeros and are given by
𝜆 (𝐴), i.e., the eigenvalues of 𝐴.

(b) Show that there exist an 𝑛 × 𝑛 nonsingular transformation 𝑇 such that

𝐴 = 𝑇−1𝐴𝑇 =

[
𝐴− 0

0 𝐴+

]
(12)

where 𝐴− and 𝐴+ are stable and unstable matrices, respectively.

(c) Let us define a state transformation 𝑥 = 𝑇𝑥, where 𝑇 as given in Part (b). It is easy to
verify that the given system Σ can be transformed into the following:

¤̃𝑥 =
[
𝐴− 0

0 𝐴+

]
𝑥 +

[
𝐵−

𝐵+

]
𝑢 +

[
𝐸−

𝐸+

]
𝑤

𝑧 =

[
0 0

]
𝑥 + 𝐼𝑢

(13)

where 𝐵−, 𝐵+, 𝐸−, and 𝐸+ are respectively appropriate constant matrices. Show that
(𝐴, 𝐵) is stabilizable if and only if (𝐴+, 𝐵+) is controllable.

(d) Show that the solution to the corresponding 𝐻2 Riccati equation for the transformed
system in Part (c), if existent, can be partitioned as follows

𝑃 =

[
0 0

0 𝑃+

]
, 𝑃+ > 0 (14)

Find the 𝐻2 optimal state feedback control law 𝑢 = 𝐹𝑥 for the transformed system in
terms of 𝑃+. Show that the resulting closed-loop system has poles at 𝜆 (𝐴−) and 𝜆 (−𝐴+).

(e) Show that 𝛾∗2 = 0, i.e., the disturbance can be totally rejected from the controlled output,
if and only if 𝐸+ = 0, i.e., the disturbance is not allowed to enter the unstable invariant
zero subspace.

Solution:
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(a) or a linear time-invariant system, the invariant zeros are defined as the values of 𝑠 for which
the system has no response to the input. We can find the invariant zeros by computing the
transfer function from 𝑢 to 𝑧 and looking for the zeros of the determinant of the system
matrix. In our case, the transfer function is given by:

𝐺 (𝑠) = 𝐶2(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷2 = 𝐼𝑚 . (15)

Since 𝐶2 is a zero matrix and 𝐷2 is the identity matrix, the transfer function is always
equal to 𝐼𝑚 and does not depend on the system’s poles or zeros. However, we can still
find the invariant zeros by computing the transfer function from 𝑤 to 𝑧. In this case, the
transfer function is given by:

𝐻 (𝑠) = 𝐶2(𝑠𝐼 − 𝐴)−1𝐸. (16)

To find the invariant zeros, we want to find the values of 𝑠 for which the determinant of
(𝑠𝐼 − 𝐴) is zero:

det(𝑠𝐼 − 𝐴) = 0. (17)

This equation gives us the eigenvalues of 𝐴, which are the invariant zeros of the subsys-
tem (𝐴, 𝐵, 𝐶2, 𝐷2). Thus, the subsystem has a total of 𝑛 invariant zeros, given by the
eigenvalues of 𝐴.

(b) Since (𝐴, 𝐵) is stabilizable, there exists a nonsingular transformation 𝑇 such that the
transformed 𝐴 matrix, 𝐴, is in the block upper-triangular form with stable and unstable
parts 𝐴− and 𝐴+, respectively. This transformation is obtained through modal decompo-
sition. To show this, we first find the eigenvectors of 𝐴 corresponding to its eigenvalues.
Let 𝑣𝑖 be the eigenvector corresponding to the eigenvalue 𝜆𝑖 of 𝐴:

𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 . (18)

We can then construct the transformation matrix 𝑇 by placing the eigenvectors as its
columns:

𝑇 =


| |
𝑣1 · · · 𝑣𝑛

| |

 . (19)

Applying this transformation, we obtain the block upper-triangular form for 𝐴:
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𝐴 = 𝑇−1𝐴𝑇 =

[
𝐴− 0

0 𝐴+

]
, (20)

where 𝐴− and 𝐴+ are stable and unstable matrices, respectively.

(c) We have already defined the state transformation 𝑥 = 𝑇𝑥. Let’s rewrite the system Σ in
terms of 𝑥:

¤̃𝑥 = 𝑇−1 ¤𝑥 = 𝑇−1(𝐴𝑥 + 𝐵𝑢 + 𝐸𝑤) = 𝑇−1𝐴(𝑇𝑥) + 𝑇−1𝐵𝑢 + 𝑇−1𝐸𝑤. (21)

Using the definition of 𝐴 and noting that 𝑇−1𝐴 = 𝐴𝑇−1, we can write

¤̃𝑥 = 𝐴𝑥 + 𝑇−1𝐵𝑢 + 𝑇−1𝐸𝑤. (22)

Now, let’s define 𝐵 = 𝑇−1𝐵 and 𝐸 = 𝑇−1𝐸 . Then, we can partition these matrices as:

𝐵 =

[
𝐵−

𝐵+

]
, 𝐸 =

[
𝐸−

𝐸+

]
. (23)

With these definitions, the transformed system takes the form:


¤̃𝑥 =

[
𝐴− 0

0 𝐴+

]
𝑥 +

[
𝐵−

𝐵+

]
𝑢 +

[
𝐸−

𝐸+

]
𝑤

𝑧 =

[
0 0

]
𝑥 + 𝐼𝑢

(24)

The pair (𝐴, 𝐵) is stabilizable if and only if the unstable part of the system, (𝐴+, 𝐵+),
is controllable. This is because stabilizability implies that we can place the closed-loop
poles in the left-half plane, and this can only be achieved if we can control the unstable
part of the system.

(d) The 𝐻2 optimal control problem is related to minimizing the 𝐻2 norm of the transfer
function from 𝑤 to 𝑧. The optimal control law can be found by solving the 𝐻2 Riccati
equation:

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝐵𝑇𝑃 +𝑄 = 0, (25)

where 𝑄 = 𝐶𝑇2𝐶2 and 𝑅 = 𝐷𝑇2𝐷2. In our case, 𝐶2 = 0𝑚×𝑛 and 𝐷2 = 𝐼𝑚, so 𝑄 = 0𝑛×𝑛 and
𝑅 = 𝐼𝑚. Now, if the solution to the Riccati equation exists, we can partition the matrix 𝑃
as:
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𝑃 =

[
0 0

0 𝑃+

]
, (26)

with 𝑃+ > 0. The 𝐻2 optimal state feedback control law is given by 𝑢 = 𝐹𝑥, where
𝐹 = −(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝐴. Using the partitioned form of 𝑃, the feedback control law
becomes:

𝑢 = −(𝐼 + 𝐵𝑇+𝑃+𝐵+)−1𝐵𝑇+𝑃+𝐴+𝑥+. (27)

The resulting closed-loop system has the state-space representation:

¤̃𝑥 =
[
𝐴− 0

0 𝐴+ + 𝐵+𝐹

]
𝑥 +

[
𝐸−

𝐸+

]
𝑤. (28)

The poles of the closed-loop system are given by the eigenvalues of the matrix in the above
equation. Since 𝐴− is stable and the feedback law stabilizes the unstable part 𝐴+ + 𝐵+𝐹,
the closed-loop poles are given by 𝜆(𝐴−) and 𝜆(−𝐴+).

(e) The disturbance can be totally rejected from the controlled output, i.e., 𝛾∗2 = 0, if and
only if the transfer function from 𝑤 to 𝑧 is identically zero. This can be achieved if and
only if 𝐸+ = 0, meaning the disturbance is not allowed to enter the unstable invariant zero
subspace. If 𝐸+ = 0, then the disturbance only affects the stable part of the system, and
the feedback control law can completely reject the disturbance from the controlled output.
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