
CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 1  BEN M. CHEN

ENGG	5403
Linear	System	Theory	and	Design	/	Part	1:	Theory	

Ben M. Chen
Professor of Mechanical and Automation Engineering

Chinese University of Hong Kong
Office: ERB 311  ∞ Phone: 3943-8054

Email: bmchen@cuhk.edu.hk  ∞ http://www.mae.cuhk.edu.hk/~bmchen

~ ~-

Jl 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 2  BEN M. CHEN

Questions 1 to 5 will be answered in Part 1, and the last one in Part 2…

What	are	we	going	to	learn	in	this	class?.

Is it a good system? 
(System structural 
properties)  

How does it 
behave?
(System 
responses)
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My philosophy towards control systems design……

 Break the system to be controlled into essential pieces and examine 
their inherent properties.

道

 For a lousy system, it is better to re-design the system itself (instead of 
employing advanced techniques to control it, even it is possible).

 Do not push to the physical limits of the system (most of the so-called 
optimal performance measures do not mean anything in practice).

 Choose the simplest possible control law (if it is not for publication)

Jl 
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My philosophy towards control systems design……

I personally believe 
that a good control 

system design 
should not start 

from differential 
equations but 

should be down to 
earth and start 

from the hardware 
level, including the 

selection and 
placement of 
sensors and 

actuators (to	design	
a	good	system).



CSM

22

your leaching s tyle? 

Be11: I have ta ug ht bo th unde r­
g raduate and g raduate control c la es, 

including cla sica l feedback control, 
computer control systems, optima l 
control, and multiva riable control sys­

tems. My favorite cour e i a graduate­
level module on multiva riable control, 

in which I need to cover topic ra ng ing 

fro m c lassical techniques, uch a LQR 
control, Ka lma n filter, LQG, and LTR 
control methods, to mode rn control 

theories, such as H2 control, robust and 

H.. control, a nd disturba nce decou­
pling proble m . Thee topic happen 

to be in line w ith m resea rch inte re ts. 
Jn lead of focu ing o n mathematica l 

de ta ils, I spend considerable time g iv­
ing tudent the overa ll picture and 
development in the field by highlig ht­

ing inte resting h istory a nd milestones 
behind the theorie . My homework 

assig nments a re pretty unique too. I 
cha llenge my student in the a ig n­

ments to bea t the desig ns in my mono­

graphs. Th i leaching method forces 
the m to read and learn thing beyond 
the cla and textbook to comple te 

the assig nments a nd familia ri zes them 
with control sy tem design fo r rea l a nd 

complica ted problem . All my teaching 

materia ls ca n be freely acce sed fro m 
my Web it at http://uav.ece.nus.edu. 
sg/~bmchen/. 

Q. What are some of the most prom is­
ing opporlunitie in the control fi e ld? 

Beu: In my opinion, the area of con­

trol applications is full of opportuni ties, 
to tackle rea l and meaningful problems 

and to attract more resea rch funding. 
Applica tion a l o challenge academic 
resea rchers to thin k mo re rea li tica lly. 

I pe r onally believe that a good contro 
sy tern desig n hould not sta rt from 
differentia l equations but hould be 
down to ea rth and sta rt from the ha rd­

wa re level, including the selection and 
lacement of ensors a nd actuators. 

Q. You a re the author of 11 books 
in the control field . What topics do 
these books cover? 

Be11: I have autho red or coautho red 
ten mo nogra ph and one textbook, o f 
which e ight a re d irect( rela ted to con­

trol theory and appl ica tion. My ea rlie r 

monog raphs were more on systems and 
control theory, including Loop Transfer 

Profile of Ben M. Chen 

Recovery: Analysis a11d Design (with A. 

aberi and P. annuti, Springer, 1993), 
H2 Opti111al Control (with A. aberi a nd 

P. Sa nnuti, Prentice Hall, 1995), Hw Con­

trol and Its Applications (Springer, 1998), 
Robust and H~ Control (Springer, 2000), 
a nd Linear Systems Theory: A Strucf11ml 
Deco111posilio11 Approach (w ith Z. Lin 

a nd Y. ha ma h, Birkhau e r, 200-l). 
My recent work focus more on con­
t applicatio n , wh ich include Hard 
Disk ive Servo Syste111s (first editio n 
w ith T.H. e a nd V. Venkata rama na n, 

Springer, 20 · second edition w ith 
T.H . Lee, K. Peng, nd V. Venkata ra­

ma na n, pringer, 20 and Unmanned 
Rotorcmfl Systems (with G. i and T.H . 

Lee, pringer, 2011). E en tho h my 
mo t recent monogra ph, Stock Ma • t 
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• IEEE Control Systems Society experience highlights: associate editor, Con­
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Application Paper Award, 7th Asian Control Conference, Hong Kong, 2009. 
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Course	outline
o Introduction
o Mathematical background materials
o State space representation of systems
o Realization of linear systems
o Solution of state equations
o Stability analysis
o Controllability and observability
o Systems zeros and invertibility
o Some structural decomposition techniques
o Review of classical control system design
o State feedback design
o Observer and compensator design 
o Modern control systems design 
o Concluding remarks

Fundamental

Design

Preparation

Conclusion

} 
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Reading	materials

o C.T. Chen, Linear	System	Theory	&	Design, Holt, Rinehart & Winston, 1984

o T. Kailath, Linear	Systems, Prentice Hall, 1980

o B.M. Chen, Z. Lin, Y. Shamash, Linear	Systems	Theory,	Birkhauser, 2004

o L. Qiu, K. Zhou, Feedback	Control, Prentice Hall, 2010

o F.L. Lewis, Applied	Optimal	Control	&	Estimation, Texas Instruments, 1992

o B.M. Chen, Robust	and HControl, Springer, 2000

o A. Saberi, P. Sannuti, B.M. Chen, H2 Optimal	Control, Prentice Hall, 1995

o A. Saberi, B. M. Chen, P. Sannuti, Loop	Transfer	Recovery, Springer, 1993

o G. Cai, B.M. Chen, T.H. Lee, Unmanned	Rotorcraft	Systems, Springer, 2011

o B.M. Chen, et	al., Hard	Disk	Drive	Servo	Systems, 2nd Edn., Springer, 2006

This text is available for downloading at SpingerLink Book through CUHK Library…

System
s

Control
Applications

} 
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Important	Notice:

We will focus only on continuous-time systems and control in this course. All 
results presented here, however, have discrete-time counterparts. Interested 
students are advised to take another class on digital/computer control systems 
if there is such a module at CUHK. Alternatively, one could grasp the ideas on 
discrete-time version from the references listed on the previous page.

Basically, there are two ways to design and implement a control system for real 
problems: 

1. doing everything in the continuous-time setting to design an appropriate 
control law and then discretize it when implemented to the real system.

2. discretizing the plant first and preparing everything in the discrete-time 
setting to design a discrete-time controller for direct implementation.

The methods covered in this course are sufficient to handle the first case…
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Homework	assignments	and	design	problems

There will be six (6) homework assignments and two (2) design problems to 

design controllers for real physical systems. 

All students are expected to have knowledge in MATLABTM (Control Toolbox 

and Robust Control Toolbox) and SIMULINKTM after completing these 

assignments. Homework assignments and projects are to be marked and 

counted towards your final grade.

Some problems might be solved by using a linear systems toolkit developed 

by the course instructor and his co-workers.
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Final	Grade	 =  30% ~ Midterm Exam

30% ~ Homework Assignments (6)

30% ~ Design Projects (2)

10% ~ Quizzes (to be randomly announced in the class)
Notice:

1. Lectures are to be conducted in the face-to-face mode. Online 
lectures might be arranged if necessary. 

2. Midterm exam will be of open-book. It covers materials in the first 
part. The schedule will be announced in the class.

3. The following is the teaching assistant and his contact information. 
You can approach the course TA for help when needed…

 XYZ, email: xyz@link.cuhk.edu.hk

4. There is no final exam for this course.
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Course	Material	Flow	(theory)…

Introduction

Mathematical Background

Dynamic Modeling/State Space 
Representation/Realization

System Dynamic Responses

System Stability

Controllability & Observability

Systems Invertibility & Zeros

Structural Decompositions

Advanced Concepts of Linear 
Systems

Decomposition of Proper 
Systems

Linear Systems Toolkit
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Course	Material	Flow	(design)…

Review of Classical Control

Stabilization of Multivariable 
Systems

LQR Control

Kalman Filter

H2 and H Control

Robust and Perfect Tracking 
Control

Loop Transfer Recovery 
Design

Concluding Remarks
LQG Control

Introduction to Robust Control
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IntroductionIntroduction
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What	is	a	system?

A system is a set of integrated chains of things.

.
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Examples:	Some	systems	of	interest…
Jl 
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Block	diagram	representation	of	a	system

SystemSystem
u (t) y (t)

u (t) is a signal or certain information injected into the system, which is called 

the system input, whereas y (t) is a signal or certain information produced by 

the system with respect to the input signal u (t).  y (t) is called the system 

output. For example,

+
u (t)

R1

R2

+
y (t)
─

)()(
21

2 tu
RR

Rty 




input: voltage source

output: voltage across R2

Jl 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 16  BEN M. CHEN

Linear	systems

Let y1(t) be the output produced by an input signal u1(t) and y2(t) be the output 

produced by another input signal u2(t). Then, the system is said to be linear if 

a) the input is  u1(t), the output is  y1(t), where  is a scalar; and

b) the input is u1(t) + u2(t), the output is y1(t) + y2(t).

Or equivalently, the input is  u1(t) +  u2(t),  the output is  y1(t) +  y2(t).  Such a 

property is called superposition. For the circuit example on the previous page,

It is a linear system! We will mainly focus on linear systems in this course.

SystemSystem
u (t) y (t)

  )()()()()()()( 212
21

2
1

21

2
21

21

2 tytytu
RR

Rtu
RR

Rtutu
RR

Rty  










Jl 
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Time	invariant	systems

A system is said to be time-invariant if for a shift input signal u( t t0), the output of 

the system is y ( t t0). To see if a system is time-invariant or not, we test

a) Find the output y1(t) that corresponds to the input u1(t).

b) Let u2(t) = u1(t t0) and then find the corresponding output y2(t).

c) If y2(t) = y1(t t0), then the system is time-invariant. Otherwise, it is not!

In common words, if a system is time-invariant, then for the same input signal, the 

output produced by the system today will be exactly	the	same as that produced by 

the system tomorrow or any other time.

SystemSystem
u (t) y (t)

s1155184008
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Time	variant	systems	examples

Example	1: Consider a system characterized by

Step	One:

Step	Two: Let                               , we have

The system is not time-invariant. It is time-variant!

Example	2: Consider a financial system such as a stock market. Assume that you invest 
$10,000 today in the market and make $2,000. Is it guaranteed that you will make 
exactly another $2,000 tomorrow if you invest the same amount of money? Is such a 
system time-invariant? You know the answer, don’t you?

)()cos()()()cos()( 0100111 ttuttttytutty 

)()()cos()()cos()( 010122 ttyttuttutty 

)()( 012 ttutu 

)()cos()( tutty 
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Systems	with	memory	and	without	memory

A system is said to have memory if the value of y (t) at any particular time t1 depends on 
the time from   to t1. For example, 

SystemSystem
u (t) y (t)

~u (t) C
+
y (t)
─





t

dttu
C

ty
dt

tdyCtu )(1)()()(

On the other hand, a system is said to have no memory if the value 
of y (t) at any particular time t1 depends only on t1. For example, 

+
u (t)

R1

R2
)()(

21

2 tu
RR

Rty 



+
y (t)
─

A	static	system…

Jl 
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Causal	systems

A causal system is a system where the output y(t) at a particular time t1 depends on the 
input for t  t1. For example, 





t

du
C

ty
dt

tdyCtu  )(1)()()(

On the other hand, a system is said to be non-causal if the value of y (t) at a particular 
time t1 depends on the input u (t) for some t > t1. For example,

in which the value of y (t) at t = 0 depends on the input at t = 1. 

)1()(  tuty

~u (t) C
+
y (t)
─

SystemSystem
u (t) y (t)

Jl 
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What	is	control?	

Control is to regulate a system to desired performance.

.
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ControllerController

Typical	structure	of	a	control	system

System to be controlled

Desired 
Performance

REFERENCE

INPUT
to 

the system

Information 
about the 
system: 
OUTPUT

+
–

Difference
ERROR

Objective: To make the system OUTPUT and the desired REFERENCE as close
as possible, i.e., to make the ERROR as small as possible.

Key	issues: (1) How to describe the system to be controlled? (Modeling)

(2) How to design the controller? (Control)

24
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System to be controlled

Some	control	systems	examples…Some	control	systems	examples…

Controller
+ –

Economic SystemEconomic System

Government 
Policies

Government 
Policies

Jl 
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Uncertainties,	nonlinearities	and	disturbances

There are many other factors of life have to be carefully considered when 
dealing with real-life problems. These factors include:

R (s)

+ U (s)
)(sK

Y (s)–

E (s)

disturbances noises

uncertainties

nonlinearities

If you were the system, what would be your disturbances, noises, 
uncertainties, and nonlinearities???

30
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A	brief	view	on	control	design	techniques
 Classical	control

PID control, developed in 1930s/40s and used heavily for in industrial applications.

 Optimal	control
Linear quadratic regulator control, Kalman filter, H2 control, developed in 1960s to 
achieve certain optimal performance.

 Robust	control	
H control, developed in 1980s & 90s to handle systems with uncertainties and 
disturbances and with high performances.

 Nonlinear	control
Developed to handle nonlinear systems with high performances.

 Multi‐agent	systems	&	cooperative	control
It is a hot topic at moment.

 Intelligent	control	(with a possible link to deep learning…)
Knowledge-based control, adaptive control, neural and fuzzy control, developed to 
handle systems with unknown models. 
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An	actual	control	system	example…
 Flight	formation	of	fully	autonomous	unmanned	helicopters	

Commands  

Control 
System

Motion 
Planning

Mission/task 
Management

GCS

Data Link

A Product of NUS Unmanned 
Research Team 

Jl 
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First-principles modeling approach is adopted to obtain an accurate nonlinear model 
in full envelope, which includes:

• kinematics
• 6 DOF rigid-body dynamics

• main rotor flapping dynamics
• yaw rate gyro dynamics

 G. Cai, B. M. Chen, T. H. Lee and K. Y. Lum, Comprehensive nonlinear modeling of a miniature unmanned helicopter, Journal	of	the	American	
Helicopter	Society, Vol. 57, No. 1, pp. 012004-1~13, January 2012.

Flight	dynamics	variable	descriptionFlight	dynamics	variable	description

Variable 

Px ,Py , Pz 

u , v, 'W 

p , q, r 

q; 0,'lj; 

61a t 

610n 

6col 

6ped 

Physical description 

Position vector along NED-frame x, y, and z axes 

Velocity vector along body-frame x, y, and z axes 

Roll , pitch, and yaw angular rates 

Euler angles 

Longitudinal and lateral tip-path-plane (TPP) flapping angle 

Intermediate state in yaw rate gyro dynamics 

ormalized aileron servo input (-1, l ) 

ormalized elevator servo input ( - 1, 1) 

ormalized collective pitch servo input (-1, 1) 

ormalized rudder servo input (-1, 1) 

Ysody 

V 

<J/0 

Xsody 

Jl 
Tip-path-plane (TPP) 

.... (Px• Pv, P, ) in 
NED frame 

Z sody 

East (Yurn) 

North \ 
(X weo),.,,,,,,, l Down 

(Zueo) 
NED frame 
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The model structure can be determined by the first-principles approach…

6th 
order

6th 
order

6th 
order

6th 
order

2nd 
order
2nd 

order

1st 
order

1st 
order

Flight	dynamic	model	structureFlight	dynamic	model	structure

.--1 re 

□ 

---
and mom nt 
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Jl 
Some model parameters needed to be identified using a black box approach 

n(t) 

u(t) y(t) 
Unknown system 

Black box modelling and system identification 

7 ( t) 

u(t) y(t) 
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Automatic	/	Autonomous	/	Intelligent	Autonomous	Systems	

Automatic

Autonomous

Intelligent & Autonomous

*B. M. Chen, On the trends of autonomous unmanned systems research, Engineering, 2022. https://doi.org/10.1016/j.eng.2021.10.014

Mission/task 

Management 

Motion 

Planning 

Control 

System 

Data Sensors 

~--------- ,-----} y 
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Mathematical BackgroundMathematical Background
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Vector spaces and subspaces

Example:

1 2 3

1 0 0
0 , 1 , 0 for a basis for 3D.
0 0 1

s s s
     
            
     
     

We as ume that the reader is familiar with the ba ic definition of scalar fields and 

vector space . 

Let X be a vector space over a certain calar field IK. A subset of X , say S , 
is said to be a subspace of X if S itself is a vector space over IK. The dimension 
of a ubspace S, denoted by dim S, is defined a the maximal po ible number of 

linearly independent vectors in S. 

We say that vectors s1 s2 i ... i Sk E S , k == dimS, form a basis for S if 

they are linearly independent, i.e. , I:7 1 a i si == 0 holds only if a i == 0. Two 

sub paces V and W are said to be independent if V n W == { 0}. 

z 

Z-coordinate 

Y,coordinate 

X 

s1155184008
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1 2

2 3
1 2 3 1

ker ( ) 1 0 , im ( )
2 4 6 2

0 1
A A A  

    
                                  

Example:

Jl 
Definition 2.2.4 (Kernel and image of a matrix). Given A E ccmxn (or ffi.mxn ), 

a linear map from X ~ ccn ( or JR.n) to Y ~ ccm ( or JR.m ), the kernel or null space of 

A i s defined as 

ker (A) : ~ { x E X I Ax ~ 0} 

and the image or range space of A i s defined as 

im (A) ~AX:~ { Ax Ix E X }. 

Obviou ly, ker (A) i a subspace of X , and im (A) i s a ubspace of Y. 

(2.2.8) 

(2.2.9) 

s1155184008
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1 2
2 4

A
 

  
 

Example:

V
1
2


  

   
  

is an invariant subspace of A.

 
1 1 2 1 5 1

5
2 2 4 2 10 2

A   
          

            
          

 V

Jl 
Definition 2.2.6 (Invariant subspace). Given A E ccnxn (orIR.nxn ), a linear map 

from X == ccn ( or IR.n) to X, a subspace V of X is said to be A-invariant if 

AVcV. (2.2 .11 ) 

Such a Vis al o called an invariant ub pace of A. 
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Matrix inverse

The following identities are useful.

1 1 1( )A B B A  



Jl 
If two square matrices A E ccnxn and B E ccnxn atisfy A B == B A == I , 

then B is said to be the inverse of A and is denoted by A - 1 . If the inverse of A 

exists, then A is said to be nonsingular; otherwise it is singular. We note that A is 

nonsingular if and only if det (A) -# 0. 

(I + A B )- 1 A== A(I + B A) - 1 

[I + C(sI - A) - 1 B ]- 1 == I - C(sI - A+ B C) - 1 B 

and 

(I - BD)- 1 == I + B (I - DB)-1 D . 

If A and B are non ingular, then 

(2.3.14) 

(2.3.15) 

(2.3.16) 

(2.3.17) 

(2.3.18) 
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Eigenvalues: Given an n x n matrix A, a complex scalar  is said to be 
an eigenvalue of A if

Ax = AX ( ~ (AI - A)x = 0) (2.3.30) 

for some nonzero vector x E ccn. Such an x is called a (right) eigenvector associ­

ated with the eigenvalue A. 

It then follows from (2.3 .30) that, for an eigenvalue A, 

rank (AI - A) < n ( ~ det (AI - A) = 0). (2.3.31 ) 

Thus, the eigenvalues of A are the root of its characteristic polynomial, 

(2.3.32) 

which ha a total of n root . The set of the e root or eigenvalue of A is denoted 

by A(A) = {A1 A2 ... An}. The following property i the Cayley-Hamilton 
theorem, 

(A) =An+ a1An-l + · · · + an-lA + anI = o. (2.3.33) 
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We can show that

3 2 1

0 1 0
0 0 1A
a a a

 
   
    

has a characteristic polynomial of

  3 2
1 2 3

3 2 1

1 0
( ) det 0 1I A a a a

a a a


      




       



Generally, we can show that

1 2 2 1

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 1

n n n

A

a a a a a 

 
 
 
 

  
 
 
      





     



Arthur	Cayley
1821–1895	

British	Mathematician

William	R.	Hamilton
1805–1865

Irish	Mathematician

1
1 1( ) n n

n na a a    
    

This result is 
particularly 
useful for pole 
placement…

169

68

Jl 
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Spectral radius and trace

Remark: Matrix trace be computed using an m-function TRACE and the roots of a 
polynomial can be computed using ROOTS in MATLAB.

Jl 

The spectral radius of A is defined a 

p(A) :== max { IAI I A E A(A) } (2.3 .34) 

and the trace of A, defined a 

n 

trace (A) :== L aii, (2.3.35) 
i =l 

is related to the eigenvalue of A a 

n 

trace (A) == L Ai. (2.3.36) 
i =l 
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Special matrices
Jl 

The fallowing are several important type of square matrices. We ay that a 
matrix A E IRnxn is 

1. symmetric if A' == A ( such a matrix ha all eigenvalue on the real axi ) ; 

2. skew-symmetric if A'== -A ( uch a matrix ha all eigenvalues on the imag­

inary axis); 

3. orthogonal if A' A == AA' == I (such a matrix ha all eigenvalues on the 

unit circle); 

4. nilpotent if A k == 0 for integer k ( uch a matrix ha all eigenvalue at the 

origin); 

5. idempotent if A2 == A (such a matrix ha eigenvalues at either 1 or O); 

6. a permutation matrix if A i non ingular and each one of it column ( or 

rows) ha only one nonzero element, which i equal to 1. 
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Special matrices (cont.)

Note that Hermitian and symmetric matrices have all its eigenvalues being real 
scalars. Moreover, a Hermitian or symmetric matrix A >0 (positive definite) iff all 
its eigenvalues are positive, A0 (positive semi-definite) iff all its eigenvalues are 
non-negative, A <0 (negative definite) iff all its eigenvalues are negative.

Jl 
We say that a matrix A E e nxn is 

l. Hermitian if AH == A (such a matrix has all eigenvalues on the real axis); 

2. unitary if AH A == AA H == J ( uch a matrix has all eigenvalue on the unit 

circle); 

3. positive definite if x H A x > 0 for every nonzero vector x E e n; 

4. positive semi-definite if xH A x > 0 for every vector x E e n; 

5. negative definite if xH A x < 0 for every nonzero vector x E e n; 

6. negative semi-definite if x H A x < 0 for every vector x E e n; 

7. indefinite if A i neither po itive nor negative emi-definite. 
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Matrix norms
Given a matrix A= [aij] E c mxn, its Frobenius norm is defined as 

m n 
1/ 2 

min{ m n } 
1/ 2 

LL laij l2 L Cli (A) 
i =l j =l i =l 

The p-norm of A is a norm induced from the vector p-norm, i.e. , 

IIAxllp 
IIAI IP := sup II II = sup II Axllp• 

x#O X P llx ll p=l 

In particular, for p = 1, 2, , we have 

m 

IIAl l2 = ✓ Amax (A" A) = Umax(A) , 

which is also called the spectral norm of A, and 

n 

IIA II = m0x L laij l• 
1, 

j= l 

Jl 

(2.4.3) 

(2.4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 
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Norms of continuous-time signals Jl 
For any p E [1 ) , let L"; denote the linear pace formed by all measurable 
signals g : IR+ ~ JR m such that 

For any g E L"; , p E [1 ) , its LP-norm is defined as 

(2.4.9) 

Let Lm denote the linear space formed by all signals g : IR+ ~ ]Rm such that 

lg(t) I < Vt E IR+ · 

The L -norm of a g E Lm is defined as 

ll gll :== up lg(t) I. (2.4.10) 
t >O 
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Laplace transform

Given a time-domain function f (t), the one-sided Laplace transform is defined as 
follows:

where the lower limit of integration is set to 0 to include the origin (t = 0) and to 
capture any discontinuities of the function at t = 0.

Given a frequency-domain function F(s), the inverse Laplace transform is to 
convert it back to its original time-domain function f (t):

Laplace transform technique is invaluable in solving engineering problems!

 
0

( ) ( ) ( ) ,stF s L f t f t e dt s j 



   

  




 
j

j

stdsesF
j

sFLtf
1

1

)(
2

1)()( 1


 1

ROC

Jl 
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Summary of Laplace transform properties 

Property f (t) F (s)

Linearity

Scaling

Time shift

Frequency shift

Time derivative

Time integration

Time periodicity

Initial value

Final value

Convolution

 
t

df
0



sTe
sF
1
)(1

)0( f

Pierre‐Simon	Laplace
1749‐1827

French	Scholar

Jl 

f(at) 

J(t - a)u(t - a) 

e-at J(t) F(s + a) 

;F(s) 

f (t) == f (t + nT) 

lim [sF(s)] 
S -+00 

f(oo) lim [sF(s)] 
s-+0 
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 

 

2 2

2 2

2 2

2 2

2 2

2 2

( ) ( )

sin

cos

sin cossin( )

cos sincos( )

sin

cos

at

at

f t F s

t
s

st
s

st
s

st
s

e t
s a

s ae t
s a







   


   





















 




 




 




  

2

1

2

( ) ( )

( ) 1

11( )

1

!

1

1

n
n

at

at

f t F s

t

t
s

t
s

nt
s

e
s a

te
s a

























Some commonly used Laplace transform pairs Jl 
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Dynamic Modeling & State Space RepresentationDynamic Modeling & State Space Representation

( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

 
  



( )G s

   ( ) ( ), ( ) , ( ) ( ), ( )x t f x t u t y t g x t u t 

Linear 
system

nonlinear





Jl 

+ 
System to be controlled 

t 

t 
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Basic	laws	for	electrical	systems

v

i

R

resistor

Riv 

capacitor

Cv (t)

i (t)

dt
dvCi 

inductor

Lv (t)

i (t)

dt
diLv 

Kirchhoff’s	Voltage	Law	(KVL):

The sum of voltage drops around 
any close loop in a circuit is 0.

v5

v1

v4

v3

v2

054321  vvvvv

Kirchhoff’s	Current	Law	(KCL):

The sum of currents entering/ 
leaving a node/closed surface is 0.

i i

i
ii

1

2
3

4

5
i i

i
ii

1

2
3

4

5

054321  iiiii

Jl 

l 

➔ 
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' I \ 
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\ I 
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Some	basic	mechanical	systems

Mass-spring-damper system

Newton’s law of motion

m

x

f

f ma mx mv   

x

m f

k
x

c

mx cx k x f   

Isaac	Newton
1642–1726
English…

Gustav	Kirchhoff	
1824–1887

German	Physicist

Clarence	de	Silva
University	of	

British	Columbia

C. W. de Silva, Modeling	of	Dynamic	Systems, Taylor & Francis/CRC Press, 2017.

Jl 
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Dynamic modeling based on first principles
Example (Qiu and Zhou): Consider an RLC circuit as shown in the figure below, 
where the diamond symbol labeled, gv1 means a dependent current source whose 
current is proportional to v1. The input and output of the system are vi (t) and vo(t), 
respectively. Find the dynamic model of the given system.

The common practice in solving an electric circuit problem is to assign a voltage 
variable to a capacitor and a current variable to an inductor. 

For the given circuit, we assign v1 and v2 as the voltages across C1 and C2 and i as 
the inductor current. The system is of 3rd order as it has 3 energy storing elements.

Jl 

L 
l 

+ + + + 
V · I 

17826
Text Box
Third order system

17826
Text Box
# order = # energy storage equipment
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1
1

dvC
dt

2
2

dvC
dt

1
1

dvC i
dt

 2
2 1

dvi C gv
dt

  

diL
dt

Assign all the branch currents and calculate their values using KCL… 

As it is of a 3rd order system, find 3 equations from 3 independent loops using KVL

1
1 1 1 i

dvC i R v v
dt

    
 

Red Loop: Blue Loop:

2 1
diL v v
dt
 

Gray Loop:

2
2 1 2 2

dvi C gv R v
dt

    
 

KCLKCL KCLKCLKCLKCL

2
2

dvi C
dt


KCLKCL

Jl 

L 

+ + + 
V· 1 
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1
1 1 1 1 1

1 1 1 1 1

1 1 1
i i

dvC i R v v v v i v
dt R C C R C

         
 

Red Loop:

Blue Loop: 2 1 1 2
1 1diL v v i v v

dt L L
    

Gray Loop: 2
2 1 2 2 2 1 2

2 2 2 2

1 1dv gi C gv R v v v v i
dt C R C C

         
 



Define a so-called state variable vector 

1

2

v
x v

i

 
    
 

1 1 1
1 11 1

2 2
2 2 2 2

1 10 1

1 1 0
01 1 0

i

R C C R Cv v
gx v v vC R C C

i i
L L

                                        


 



The output variable 
 

1

2 20 1 0o

v
v v v

i

 
     
 

I I I 
I I I 
I I 

Jl 
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Define 

 
1 1 1

1 1

2 2 2 2

1 10 1

1 1 , 0 , 0 1 0
01 1 0

R C C R C
gA B CC R C C

L L

                        

The dynamic equation of the system can be expressed as

and the system output    

ix A x Bv 

0 .o iv C x C x v   

The dynamic equation together with the output equation form the so-called state 
space representation of the given electrical circuit or system.  

In fact, all linear time-invariant systems can be expressed in the form of

,x A x Bu y C x Du   

* R.E. Kalman, On the general theory of control systems, Proceedings	of	1st	International	IFAC	Congress	on	Automatic	and	Remote	
Control, Moscow, USSR, pp. 481–492, August 1960.  

Rudolf	E.	Kalman	
1930–2016
Hungarian‐

American	Scholar

CHF

Jl 
I I 
I I I I 
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Example (Qiu and Zhou): Consider a two-cart system as depicted in the figure 
below

The carts, assumed to have masses M1 and M2, respectively, are connected by a 
spring and a damper. A force u (t) is applied to Cart M1 and we wish to observe the 
position of Cart M2, i.e., y = x2.

   1 1 1 2 1 2( )M x u t K x x F x x      

Applying Newton’s law of motion to M1, we obtain

Applying Newton’s law of motion to M2, we obtain

   2 2 1 2 1 2M x K x x F x x     

u

Jl 

K 
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Define a state variable vector

1

1

2

2

x
x

x
x
x

 
 
 
 
 
 





1 1 1 1

2 2 2

1

1
1 2 1 2

1 1 1 1 11

2 2

2
1 2 1 2

2 2 2 2

2

2

1

1

1

2

0 1 0 0

0 0
0

1

0 1

0
1

0

x

M

x
x K K F Fu x x x x

M M M M Mx
x

x
x K K F Fx x x x

M M M M

K F K F
M M M M

K F K F
M

x

M

x
x

x
M M



 
           

 
 
  





      



     








 

 
 




 
 

 
 
  
 
 









 



 
  





u x uBA


















The variable to be observed, i.e., the system output

which together form the state space representation of the two-cart system.

 

1

1
2

2

2

0 0 1 0 0

x
x

y x x uC
x
x

 
 
     
 
 
 





Jl 
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Example (Qiu and Zhou): Consider a pendulum system shown in the figure below

In a rotational motion, Newton’s second law takes the form

where J is the moment of inertia and  is the total torque applied.

2

2 ( )dJ t
dt
 

Kemin Zhou
Louisiana	State	
University

Li	Qiu
HKUSTA torque u (t) can be applied around the pivot point and we are 

concerned with the angle (t). The length of the pendulum is L and 
the mass M of the pendulum is concentrated at its tip.

Jl 

Mgcos 0 
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For the pendulum system, the moment of inertia J = ML2 and there are two torques 
applied to the system: the external torque u(t) and the torque due to the gravity of 
the mass, which is MgLsin (t). As such, the equation governing the motion is 
given by

2 2
2

2 2 2
1sin sind d gM L u MgL u

dt dt L M L
         

Question: Can we write this dynamic equation in the form of

with properly defined state variable? 

,x A x Bu y C x Du   

Let us define 

x


 

  
  2 2

0 0
0 1

1 1
0s ?in

x u ug
M L M LL

 
 

                                      


 

Can or 
Cannot?

Why not? Because it is a nonlinear system! . 
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Linearization
We now study how to approximate a nonlinear system by a linear model. Assume 
that a nonlinear system is described by the following dynamic equations:

where x n is the state vector, u and y are respectively the input and output scalar 
variables,  f and g are continuously differentiable functions.

   ( ) ( ), ( ) , ( ) ( ), ( )x t f x t u t y t g x t u t 

A triple of constant vectors                   is said to be an operating (equilibrium) point 
of the system if 

The physical meaning of an operating point is that if the system has initial condition 
x0 and a constant input u0 is applied, then the state and output will stay at constant 
values x0 and y0, respectively, for all time, i.e.,

0 0 0( , , )u x y

   0 0 0 0 00 , , ,f x u y g x u 

0 0 0 0( ) , (0) ( ) , ( )u t u x x x t x y t y    

Jl 
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Denote 

0 0 0( ) ( ) , ( ) ( ) , ( ) ( )u t u t u x t x t x y t y t y       

It can be shown that 

0 0 0 0, ,

high-order terms( ) ( ) ( )
x x u u x x u u

f fx t x t u t
x u   

 
  
 

  

0 0 0 0, ,

high-order r( ) ( ) te ms( )
x x u u x x u u

g gy t x t u t
x u   

 
  
 

  

where 

1 1 1

1

1

1

, ,
n

n
n n n

n

f f f
x x u

f f g g g
x u x x x

f f f
x x u

    
             

                        



    



Jacobian matrix
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For a small neighborhood of the operating point, i.e., 

are small, we can neglect the higher-order terms and approximate the original 
system by the following linear system:

where   

0 0 0( ) ( ) , ( ) ( ) , ( ) ( )u t u t u x t x t x y t y t y       

( ) ( ) ( )

( ) ( ) ( )

x t A x t Bu t

y t C x t Du t

 

 

  

  

0 0 0 0, ,

,
x x u u x x u u

f fA B
x u   

 
 
 

0 0 0 0, ,

,
x x u u x x u u

g gC D
x u   

 
 
 

This linear system is called the linearized state space model of the original 
nonlinear system.
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Example: Revisit the (inverse) pendulum system studied earlier

We have obtained earlier a nonlinear dynamic equation governing the system

Let us define the system output to be . We have the output equation

2

( , ),1sin
x f x u xg u

L M L




 

 
           

 


 

( , )y g x u 

Jl 
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We note that there is an operating point of the system at  

0 0 0

0
( , , ) (0, ,0)

0
u x y  

  
 

0
2

0
0, 0

0 (0,0) , 01sin
u

f yg u
L M L

 





 

 
      
  



In the small neighborhood of the operating point, i.e., when  is small, we have

 

1 1

0, 0 2 2
0, 0, 0

0, 0, 0

1

0, 0 0, 02

0, 0

0 1 0 1

cos 0 0

0
, 1 01

x u
u

u

x u x un

x u

f f
fA g gf fx

L L

f
f guB C

fu x
M L

u

 
 

 


 
 

  
  

   

 

                                

                     








 
2

00 1
, 1 01

0
u yg

M LL

 
 

                             


 

Linearized model around 
 = 0
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Another operating point of the system is at  

0 0 0( , , ) 0, ,
0

u x y



  

   
  

0
2

0
, 0

0 ( ,0) ,1sin0
u

f yg u
L M L

  








 

 
            

  



In the small neighborhood of the operating point, we have

 
2

00 1
, 1 0 ,1

0
u yg y yM LL

    
  

                                

   
  

Linearized model around  =  !

1 1

, 0 2 2
0 , 0, 0

, 0, 0

1

, 0 2
0 0

, 0
0

0 1 0 1

cos 0 0

0
,1

x u
u

u

x u xn

x u

f f
fA g gf fx

L L

f
f guB C

fu x
M L

u



  
  

 



 


 
 

  
    

  

   
    
  

 
  
 

                               

                    








 
, 0

1 0
u





L

Inverse Pendulum
Inverse Pendulum
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Feedback linearization of nonlinear systems

There exist a class of nonlinear systems

for which we can find a pre-feedback law of the following form

such that when it is applied to the given nonlinear system, the resulting system is 
linear, i.e.,  

Such a technique is commonly called as feedback linearization.

Example: Let us consider the pendulum system once again, i.e.,

   ( ) ( ), ( ) , ( ) ( ), ( )x t f x t u t y t g x t u t 

) ( )) )( ( (h y tt tu u  

)( ) ( ) ,( ( ) ( )) (A t xux tx t t y ttB C D u     

2

( , ), ,1sin
x f x u xg u

L M L




 

 
           

 


  ( , )y g x u 
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Let us apply a pre-feedback control law

which implies
i ( ) ( )s n ( ) sin () )( u tgM L t gM L yu t u tt    

 1 0y Cx x  

 2 2

2

2
1 1 1sin sin sin

00 1
0

,

10

g gu
L M L L M L

u

M

L

u

u

L

x x x

ML

B

ug

M

A

  


 










     
                           

     

 
  

 

 
     

  
  
 



 





  




 











We indeed obtain a linear system in the entire state space through. Such a technique 
has been widely used in the nonlinear research community.

}
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Throughout the rest of this course, we will be dealing with linear systems in the 
state space form 

( ) ( ) ( ), ( ) ( ) ( )Cx t x t u t y t x t Du tA B   

By Laplace transformation on both sides of the above equations, we obtain 

   
   

( ) ( ) (0 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L x t X s x L x t u t X s UA s

DL t

s A

y t Y s L x u t X

B B

C D C s U s

     

    



1 1

11

( ) ( ) ( ) (0 )

( ) ( ) ( ) ( )

( )

( ) ( )) (0

X

U

sI A B

C D Cs sI

s U s sI A x

Y X s U s s C sIB AA D x

 

  

  

     



  

which implies 

For the case when the initial condition is x (0–) = 0,

where                                          is called the system transfer function matrix.1( ) ( )G s C sI A B D  

Transfer function of linear systems

ss2tf

1(( ) ( ) : (( ) ))Y C sI A B D Gs U s Us s    
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Let us revisit the electrical system studied earlier 

Time domain vs frequency domain…

For simplicity, assume R1 =R2 =1, L=1H, C1 =C2 =1F, and g= 100. We then have

1 0 1 1
100 1 1 0 ,

1 1 0 0
ix x v

    
               

  0 1 0 ,ov x

which has an (input-output) transfer function

3 2
100 1( )

2 3 102
o

i

V sG s
V s s s

 
 

  
)

( ) ( )
)

(
(s j G

G
j

j G s
G

j


 



 






Ratio of input-output magnitudes at 

Phase shifting at 

internal 
variables

1

2

v
x v

i

 
    
 

Jl 
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Frequency domain response…

-50

-40

-30

-20

-10

0

10

20

10-3 10-2 10-1 100 101 102
-135

-90

-45

0

45

Bode Diagram

Frequency  (rad/s)

{Bandpass

Just	an	illustration…

-0) 
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..c 
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State, input and output transformations
It is very often that we need to perform some transformations on the state, input 
and output variables, for the ease of systems analysis and control design. These 
transformations, so long as they are nonsingular, in fact, preserve all the structural 
properties of the given system. 

( ) ( ) ( ), ( ) ( ) ( )Cx t x t u t y t x t Du tA B   

We define a set of nonsingular state, input and output transformations, s, i and 
o, respectively, i.e., 

s i o, ,x x u u y y       

     1 1
s

1
s ss

1
s iA ux x xB A BA x Bu x u               

     1 1
o s o i

1 1
o oy y C x Du x u x uC D C D                

which implies 

Consider again the following system 

 1 1 1
s i o, ,x x u u y y          
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We obtain a transformed system characterized by 

( ) ( ) ( ), ( ) ( ) ( )xAx t x t u t y t t uB C D t        

which has a transfer function 

        
 

11 1 1 1
o s s s s i o i

1
o i

1
o i

1

1

)

)

(

(

B

G s C sI A B D IC A B D

C sI D

G s

s

A

   









          



 



    






    

For single-input and single-output (SISO) system, 

, 0( )) (GG s s  

We note that the nonsingular transformations of the system state, input and output 
have been proven to be a powerful tool for solving many systems and control 
problems. We will see very often this technique used in this course. Nevertheless, 
we first illustrate it by an example…
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Example: Consider a system characterized by 

 
1 1 1 1
1 2 2 0 , 3 1 3
2 1 1 1

x x u y x
   
         
      



With the state transformation

we obtain a transformed system 

s

1 1

2 2

3 3

0 2 1
2 3 0
2 1 1

,
x x
x x x x x x
x x

 
   



   
         


   


  


   



 

0 1 0 0
0 0 1 0
0 0 4 1

8 1 0 0

x x u

y x

   
       
      

 

 



It has an identical transfer function as the original one:                                        .
3 2

8( ) ( )
4

G s G s
s s

 




ex1070

37

Jl 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 71  BEN M. CHEN

Realization of Transfer FunctionsRealization of Transfer Functions

u(t) y(t)( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

 
 

( )( )
( )

Y sG s
U s

  -·I I · 
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Black‐box	system	identification

input output

black-box

u(t) y(t)

Laplace transforms

Transfer	Function	– A	linear	model	in	frequency	domain

U (s) Y (s)( )( ) ( )
Y sG s U s

FFT	is	actually	used	instead…

？
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Let a SISO system be given by a proper n-th order transfer function 
1

0 1
01

0 1

( ) ( )( ) : , 0
( ) ( )

n n
n

n n
n

b s b s bY s b sG s a
U s a s a s a a s





  
   

  



A physical realization of the above transfer function is shown in the figure below: 



( )
0

na x

( 1)
1 1

n
n na x a x a x
    

( )
0

( 1)
1

1

n

n

n

n

b x

b x

b x
b x
















( )
0

nb x
( 1)

1
nb x 

1nb x 

nb x

( 1)
1

na x 

1na x 

na x

…

Jl 

bn - 1 i-------~~ 

u l 
x<" - 1) X 

b,, 

~-------------, a,, - 1 
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To show this, we note that 
( ) ( 1)

0 1( ) ( ) ( ) ( )n n
na x t a x t a x t u t    

Taking the Laplace transforms (with 0 initial conditions), we obtain

 

1
0 1

1
0 1

( ) ( ) ( ) (

( ) ( ) ( )

)

( ) ( )

n n
n

n n
n

a s X s a s X s a X s U s

a s a s

U

a X s U s

a s X s s





    



   








Also note that 
( ) ( 1)

0 1

1
0 1( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n n
n

n n
n

y t b x t b x t b x t

b s X s sY s bb s X ss X s b X





   



   





( ) ( )
( ) ( )

Y s b s
U s a s



.... 
········· 

·················· .... Y(s) _ b(s) 

U(s) a(s) 
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Let us define a state variable vector 
( 1)nx

x
x

 
 
 
 
 
 

x



Then the corresponding state space model is given as

11

00 0 0

1

01 0 0( ) ( ) ( )

00 1 0

n na aa
aa a a

t t u Bt A u

        
   

     
   
   

  
 





x xx



 
   



0 0 0 0
1 1 1 1

0 0 0 0

( ) ( ) ( )n n n n
b b b by ut b a b a b a t u t
a a a a

C D 

 
      
 

xx

Exercise: Verify that  1 .( ) ( )G s C sI A B D  

Controller 
Form 

Realization

Controller 
Form 

Realization 

Jl 
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Another realization of the same G(s) is as follows: 

01
1 1

0 0

1 0
1 1

0 0

0

0 0

1 0

( ) ( ) ( )
0 1

0 0

n
n n

n
n n

u

ba b a
a a

t t u ta bb a
a a
a bb a

A

a

B

a


 

     
  
  
       
  
  
      





  

x xx



    






0

0 0

1( ) 0 0 ( ) ( ) C Duby t t u t
a a

 
   




x x

This realization is called the observer form realization. We note that the realization 
of the transfer function to the state space form is generally non-unique. There are 
many forms of realization for any given transfer function! 

Exercise: Verify that  1 .( ) ( )G s C sI A B D  

Jl 
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Example: Find the controller and observer form realizations of 
2

2 2

0 0
0

1 1 1( )
( 1)

s sG s
s s s s s s

 
  







 

The controller form realization is given as

1 1 1

1 0 1
1 0 0

,A Bu u 
   
   

 






x x x   1 10 1 0y u uC D    x x

The observer form realization is given as

2 2 2

1 1 0
0 0 1

,A Bu u 
   
   

 






x x x   2 21 0 0y u uC D    x x

We note that x1 and x2 are related by the following nonsingular transformation:

tf2ss

21

1 1
1 0
 

  
 

xx

Jl 
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Dynamical Responses of Linear SystemsDynamical Responses of Linear Systems

u (t) y(t)=?
( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

 
 



x0

x(t)=?



Jl 
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Also, n is referred to the order of the system in (3.1.1), which is
used throughout this whole course unless otherwise specified.

Jl 
We will focus primarily on continuous-time linear time-invariant systems char­

acterized by the following state and output equations: 

~ : { ±(t) == A x(t) + B u(t) 
y(t) == C x(t) + D u(t) 

(3.1.1) 

where x(t) E IRn is the system state, u(t) E IRm is the system input, y(t) E JRP 

is the system output, and A, B, C and D are constant matrices of appropriate 

dimensions. 

The solution of the state variable or the tate response, x ( t), of ~ with an initial 

condition x0 == x(O) can be uniquely expressed as 

(3.2.1) 

where the first term is the response due to the initial state, x 0 , and the second 

term is the response excited by the external control force, u( t). 

17826
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

2x2x

0x
0x

Phase plane – Illustration of solutions to some 2nd order systems…

0
0

( )
( ) t

t
t

x


 
  
 



0x

L



 

0x

0x

0x

Jl 

'///////////~//////////, 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 81  BEN M. CHEN

To introduce the definition of a matrix exponential function, we derive 
this result by separating it into the following two cases: 

i) the system is free of external input, i.e., u(t) = 0; and 
ii) the system has a zero initial state, i.e., x0 = 0.

(i) (ii)
Due to initial 

condition with no 
external force

Due to external 
force with zero 
initial condition

Jl 

x (t) = eAtxo + 1t eA(t- T)Bu(T)dT t > 0, (3 .2.1 ) 

~ 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 82  BEN M. CHEN

A x

Jl 
1. For the a e when the e ternal for e ( t == 0 the tate equation of .1.1 

redu e to 

·. == A ~ ·(O) == · ·o. .2.2 

Let the luti n t the abo e auton mou tern be e pre ed a 

, . t ) == - ,0 - + - t 2 + ~ - k 1 2 ···==~ k · t > O .2. 

k =O 

where - k E }Rn k == 0. 1 ... are parameter to be determined. Sub titut-

1n .2. int 3 .2.2 we obtain 

- 3t 2 + ... == 
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Sin e the equalit in .2.4 ha t be true for all > we ha e 

and in eneral 

·== ~1~2 .... 

whi h t ether with the i en initial onditi n impl 

. t ) == 

where 

0 == 

t ·== ~ 2-Ak k 
. D k! . 

k =O 

> O 

Jl 

3.2.5 

.2.6 

3.2.7 
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2 2 3

2 2

3

2

3 3

3 2

2 2

1 1
2! 3!

2
1 1

2!
1 1
2!

1

3!

1
! !

At

At

At A

e I At A t A t

I At A t e

I At

d d
dt dt

A A t A t A

A t A At e

A

   
 

   



   

 



   
 

   



 
 







Properties of matrix exponential

(3.2.8)

exchangeable

expm

Jl 

It i trai htf rward to erif that 

F r r t r E F r r t E At i n n ingular and 

At Ar A t+r At)-J == -At 

17826
Highlight

17826
Highlight

17826
Highlight

17826
Highlight

17826
Highlight

17826
Highlight



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 85  BEN M. CHEN

 Jordan Canonical Form: For every n x n matrix, there exists a non-
singular similarity transformation P such that

where each λi is an eigenvalue 
of A, and the number l of 
Jordan blocks is equal to the 
total number of independent 
eigenvectors of A.

Jl 

11 0 0 0 
0 12 0 0 

l==PAP- 1 == 0 0 ]3 0 

0 0 0 l e 

where each Ji is a Jordan block of the form 

Ai 1 0 0 
0 Ai 1 0 
0 0 0 

0 0 0 
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3 0 1
1 1 0
1 1 2

A
 
   
  

 Example: Given a matrix

its Jordan canonical form is given by

1

1 1 1 2 1 0
1 0 1 0 2 1
0 1 1 0 0 2

P J PAP

   
         
      

Matrix A has three eigenvalue at  = 2, but with only one independent 
eigenvector.

Note: It can be computed using an m-function JCF in Linear Systems Toolkit.

Camille	Jordan	
1838–1922

French	Mathematician

jcf
ex1037

Jl 
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 Example: Given a matrix

which is symmetric. Its eigenvalues are given by

1 2 30.468, 1.653, 3.879    

We can find a non-singular transformation such that

1

0.449 0.293 0.844 0.468 0 0
0.844 0.449 0.293 0 1.653 0
0.293 0.844 0.449 0 0 3.879

P J PAP

     
           
       

Note: It can be computed using an m-function JCF/RJD in Linear Systems Toolkit.

3 1 1
1 1 0
1 0 2

A
 

   
  

0 (i.e., positive definite) as it is symmetric 
and has all its eigenvalues > 0 !



rjd
ex1040
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Properties of matrix exponential (cont.)

For the case when A is a diagonal matrix, i.e., 

1

2

1

2

n

t

t
At

t
n

e
e

A e

e












  
  
    
  
  

   

 

When A is given by a Jordan block, i.e., 

2 1

2

3

1 2! ( 1)!
1 ( 2)!

( 3)!
1

t t t n t

t t n t

At t n t

t

e te t e t e n
e te t e n

A e e t e n

e

   

  

 














  
     
     
  
  
     




  
  

0
0

0
0

0

0

0

00
I I 

I 
I 

Jl 
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At Ate A x e x   

Jl 
2. For the a e \Vhen the tern 3.1.1 ha a zer initial ndition i.e. ·0 ~ 0 

but with a nonzero external input ) we on ider the foll win equalit : 

- t 
-( - t,-) ~ -

t t 
- t ·. -

~ - t :._A•. .2.9 

Inte ratin both ide of 3 .2.9 we obtain 

- t . t ' . - - t ·( - 0 - 3.2.10 

whi h implie that 

. t ) = At 1 - AT B T T = 1t (t-T) B (T T. .2.11 

HK MAE ENGG 5403 - PART 1: T HEORY ~ PAGE 89 © BEN M. ( 
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By the superposition property of linear systems, we obtain the solution of the 
state response of the given system in (3.1.1) as 

Moreover, the uniqueness of the above solution to (3.1.1) with an initial condition

Jl 

(3 .2.1) 

· ·(0 == , ·0 an be h wn a f llow : Suppo e ·1 and ·2 are the lution t .1.1 

with ~1 (0 ·2 (0) == 0 . Let ~ t) == 1 t ) - ~2 t) and thu -:0 == ~·(0 == 0. 
We have 

.2.12 

It foll w from .2.6 that ,~ ) == t ~.0 0 i.e. ·1 t ·2 ( t f r all t > 0. 

La tl it i imple to ee that the orre p ndin utput re p n e f the tern 

.1. 1 i 1 en a : 

y(t == t ·o 1t 

.2.1 
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Recap:

Property of an impulse function  (t) –– for any continuous function f (t),    

( ) if
( ) ( ) ( ) ( ) and ( ) ( )

0 otherwise  

d

c

f a c a d
f t t a f a t f t t a dt  

     




Jl 
The term zero-input response refers to output re pon e due to the initial tate and 

in the ab ence of an input ignal. The term unit tep respon e and the impulse 
respon e, for the continuous-time system (3.1.1) respectively refer to the output 

re pon e of (3 .2.13) with zero initial condition to the input ignal , 

1 

u(t) == and u(t) == 
1 

where b ( t) i a unit impulse function. 

1 

b(t) (3.2.14) 

1 
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Example: Find the state and output responses of the following system 

1
0

2

1 1 0 0
, , (0)

0 1 1 1
x

x x u x x x
x

      
          
      



 1 0y x

Solution: By the property of matrix exponential, we have 

with u being a unit step function, i.e., u (t) = 1, and a impulse function u (t) =  (t). 

0

0
10 0

t t t t t
At At

t t t

e te e te te
e e x

e e e
      

          
      

( ) 0( ) ( )
( ) 1

10

t t t
A t

t t

e t e t e
e Bu

e e

  


 

 


  


 

     
        

    

( )
0

0

(2 1) 1
and ( ) ( ) , ( ) (2 1) 1

2 1

t t
At A t t

t

t e
x t e x e Bu d y t t e

e
     

      
 



for a unit step function. 

…unit step state response… unit step output response… 

ss
ex1089

Jl 
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State response due to a unit step input… 
M

ag
ni

tu
de

1y x

2x

initial
step

Jl 

20 

10 

0 l-==i=:=====-l.__ _ ___l_ __ __l___ _ _____l_ __ _L_ _ ___l __ ___L_ _ __JL__ _ _j 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

t (seconds) 
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( ) ( ) ( )
d

c

f t t a dt f a  

State response due to a unit impulse input can be calculated as follows: Noting 

( ) 0( ) ( )
( ) ( ) ( )

10

t t t
A t

t t

e t e t e
e Bu

e e

  


 

 
    

  


 

     
       

    

( )
0

0 0

( )
( ) ( ) ( )

2
2

( ) 2

t tt t
At A t

t t

t t t

t t t

t

te t e
x t e x e Bu d d

e e

te te te
e e e

y t te







    








   
      

   
     

       
     



 

0

t
At

t

te
e x

e
 

  
 

and 

we have 

…unit impulse state response… 

…unit impulse output response… 
d 

ff (t)8(t-a)dt == f (a) 
C 
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State response due to a unit impulse input… 

1y x

2x

t (seconds)

impulse

Jl 

25 

15 

5 

0 '--======L_ __ l.__ __ l..._ __ l..._ __ ..1__ __ ..1.__ __ _L_ __ _L_ __ _j__ _ __J 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
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System StabilitySystem Stability

( ) ( )x t A x t



L

Jl 

~ - Controller System to be controlled ~ 

+'~~ 
,. , ,.. 

' ~ -
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2003

Chernobyl Nuclear DisasterChernobyl Nuclear Disaster

FEATURE 

The practical, physical (and sometimes dangerous) 
consequences of control must be respected, and the 
underlying principles must be clearly and well taught. 

By Gunter Stein 

eedback contr 

around us in mo 

our cars , our factories ,......._..,,,., 

II 

tation systems , our defense sys­

tems-everywhere we look. Certainly, 

one of the great achievements of the interna­
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Examples of system stability…

Stable? Stable?

Inverse Pendulum
Inverse Pendulum

Pendulum
Pendulum
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Bounded-input bounded output (BIBO) stability

A system is said to be BIBO stable if for any bounded input u (t), i.e.,

the corresponding output y (t) is also bounded.

For a continuous-time linear time-invariant (LTI) system, the condition for BIBO 
stability is that its impulse response, h (t), be absolutely integrable, i.e., its L1

norm exists:

Note that BIBO stability is only applicable when the system is initially relaxed, 
i.e., with initial condition being 0. 

SystemSystem
u(t) y(t)
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A system is BIBO stable if and only if the impulse response goes to zero with time. 
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Example: The linear model of the inverse pendulum system around 0 =  is
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Internal stability

0, . ., ( ) ( ), (0) ,e g x t A x t x x 

The

Note: For LTI systems, asymptotic stability and exponential stability are equivalent. 

Jl 
Stability, more specifically internal stability, is always a primary issue in design­

ing a meaningful control y tern. For linear ystem , either the continuou -time 

sy tern (3 .1.1) the notion of internal tability 

of the system is related to the behavior of its state trajectory in the absence of the 

external input, u. Thus, the internal tability i related to the trajectory of 

± == Ax x (O) == xo (3.3.1) 

sy tern (3.1.1) i said to be marginally stable or stable in the ense of Lya­
punov or simply stable if the state trajectory corresponding to every bounded ini­

tial condition xo i bounded. It i aid to be asymptotically table if it i table 

and in addition for any initial condition, the corresponding state trajectory x (t) 
of (3.3.1) satisfies, 

lim x (t) == lim eAtx0 == 0. 
t-----:, t-----:, 

(3.3.3) 
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Jl 
It is straightforward to verify that the continuous-time linear ystem (3 .1.1 ) or 

(3.3.1 ) i table if and only if all the eigenvalue of A are in the clo ed left-half 

complex plane with tho e on the jw axis having Jordan block of size 1. It i 

a ymptotically table if and only if all the eigenvalue of A are in the open left­

half complex plane, i.e. , ,\ (A) c c- . Thi can be shown by first transforming A 

into a Jordan canonical form, say 

J == p - 1A P == (3.3.4) 

where P E c nxn is a nonsingular matrix, and 

E rri n i X n i · l 2 
~ ' i == ... q. (3.3.5) 
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We proceed to define a non-singular state transformation

It follows from (3.2.6) that the solution to the transformed system is given by

Alternatively, we note that

which implies

Thus,

1 1 1 1
0 0,x P x x P x P Ax P AP x J x x P x              
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Jl 
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We note that the result in (3.3.7) follows from the properties of matrix exponential 
given earlier.

Take note on the off-diagonal elements in (3.3.7), which are functions of t powers! 

Then, we have 

where 
8 >- i t te>- i t 

Q e>- i t 

0 0 

i == 1 2 . . . q. 

p-l 

t n i - leA i t I (ni -1)! 

t n i -2 eA i t I (ni -2)! 

Jl 

(3.3.6) 

(3.3.7) 
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In other words, the given system is asymptotically stable, i.e., the state trajectory 
converts to zero as time progresses, if and only if all the eigenvalues of A (which 
are also called the poles of the given system or A) are on the open left-half 
complex plane. The given is marginally stable if and only if all the eigenvalues 
or poles of A are on the closed left-half plane with those on the imaginary axis 
being simple (why?).

Jl 
It is now clear that eJi t ~ O as t ~ if and only if Ai E cc- , and thus 

P - 1x 0 == 0 (3.3.8) 

for any x0 E IRn, if and only if Ai E cc- , i == 1 2 . . . q, or A(A) c cc- . On the 

other hand, the olution remain bounded for all initial condition if and only if 

A(A) c cc- U CC0 and ni == l for Ai(A) E CC 0 . 
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Remark: The BIBO stability does not imply internal stability as it can be seen 
from the following simple example:

which is a BIBO stable system, but not internally stable as it has an unstable pole 
at s = 1. Any non-zero initial condition will cause the state (and output) variable 
blowing up to infinity.

On the other hand, the internal (asymptotic or exponential) stability of an LTI 
system does imply its BIBO stability. This can be shown by finding its impulse 
response of the system and showing that the L1 norm of the impulse output 
response is bounded and hence the system is BIBO stable.

However, it will be shown by a counterexample (Q.6 in Homework Assignment 1) 
that the marginally internal stability does not guarantee the given system is BIBO 
stable. In fact, we can show that a marginally internally stable system is always
BIBO unstable.

1 0 ,x x u y x    
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Marginally 
stable poles

Unstable 
poles

Stable 
poles

Summary of internal stability
A linear time-invariant system is said to be asymptotically stable if all its poles 
are located on the left-half complex plane (LHP), marginally stable if all its 
poles are in closed LHP with those on imaginary axis being simple, and unstable 
otherwise… 
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Lyapunov stability of dynamical systems

Consider a general dynamic system,                 with f (0) = 0.  

If there exists a so-called Lyapunov function V(x), which 

satisfies the following conditions:

1. V(x) is continuous in x and V(0) = 0;

2. V(x) > 0  (positive definite);

3.                                         (negative definite),

then we can say that the system is asymptotically stable at x = 0. If in addition,

then we can say that the system is globally asymptotically stable at x = 0. In this 

case, the stability is independent of the initial condition x(0).  

)(xfx 

0)()( 
 xfx
VxV

( ) , as  V x x 

Aleksandr Lyapunov
1857–1918

Jl 

I 

II II 
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Lyapunov stability for LTI systems

The following result is particularly useful for stability analysis when numerical 
values of system matrix are unknown. It will be used in coming lectures when we 
deal with control systems design.

We note that unlike Lyapunov stability theory for general dynamical systems on 
the previous page, Theorem 3.3.1 gives a necessary and sufficient condition for 
the stability of LTI systems. 

The result of Theorem 3.3.1 also holds for Q  0 and (A,Q) being observable (the 
concept of observability is to be studied in the next section).

Jl 

Theorem 3.3.1. The continuous-time system of (3.3.1) is asymptotically stable if 

and only if for any given positive definite matrix Q == Q' E IR.nxn , the Lyapunov 

equation 

A' P +PA== -Q (3 .3.9) 

has a unique and positive definite solution P == P' E IR.nxn . 
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Jl 
Proof. The a ymptotic tability of the y tern implie that all eigenvalue of A 
have negative real part . Thus, the following matrix i well defined, 

p = 1 eA't QeAtdt. (3.3.10) 

In what follows, we will how that such a P i the unique olution to the Lyapunov 

equation (3.3.9) and is positive definite. 

Fir t, substitution of (3 .3 .10) in (3 .3 .9) yields 

A'P+PA= 1 A'eA'tQeAtdt+ 1 eA'tQeAtAdt 

= 1 :t (eA'tQeAt) dt 

== -Q 

l 

dt 
t == A t 

where we have u ed the fact that eAt ~ 0 a t ~ . Thi show that P a 

defined in (3.3.10) i indeed a olution to (3.3.9). 
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Jl 
To how that the solution (3.3.9) is unique, let P 1 and P 2 both be a solution, i.e. , 

(3.3.12) 
and 

A' P 2 + P2A == - Q. (3.3.13) 

Subtracting (3.3.13) from (3.3.12) yields 

(3.3.14) 

which implies that 

eA't A' (P1 - P2)eAt +eA't(Pi - P2)AeAt = :t eA't (Pi - P2)eAt == 0. (3.3.15) 

Integration of (3.3.15) from t == 0 to yield 

(3.3.16) 

This shows that P as defined in (3 .3 .10) i the unique solution to the Lyapunov 

equation (3.3.9). 
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Conversely, for any Q > 0, if the Lyapunov equation has a solution P> 0, we 
define a Lyapunov function 

which obviously a continuous function in x and positive definite, and

Furthermore,  

( )V x x P x

( ) ( ) 0( ) x P x x P x AxV Px x PAx x A P PA xx x Qx             

( ) , as  V x x 

By the Lyapunov stability theorem,             is asymptotically stable.x Ax

Jl 
It is clear that this P is symmetric since Q is. The positive definiteness of P 

follow from the fact that, for any nonzero x E IR.n, 

(3.3.17) 

which in turn follow from the fact that Q i po itive definite and that e At i 

nonsingular for any t. 

II 11 
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On the other hand, we can prove the result by directly determining the locations of 
the eigenvalues of matrix A. If there are positive definite P and Q that satisfy the 
Lyapunov equation (3.3.9), i.e.,

then all eigenvalues of matrix A have negative real parts, and thus it is stable. We 

Jl 

A' P +PA== -Q (3.3.9) 

let A be an eigenvalue of A with an associated eigenvector -1- 0, i.e., 

A == AV 

which also implies that 

v* A'== A*v* . 

Pre-multiplying and po t-multiplying (3.3.9) by v* and v re pectively yields 

- v* Qv == v* A' P v + v* P Av == (A* + A) * P v == 2Re(A) * P v 

which implie that Re(A) < 0, a both P and Qare positive definite. ■ 
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Example: The linear model of the pendulum system around 0 = 0 is

 
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L The eigenvalues of the system matrix are

The above pendulum system has two simple poles on the imaginary axis of 
the complex plane. It is thus a marginally stable system. 

Pendulum
Pendulum

2
1,2

1
g gI A jg L L

L


  




      

g L

Recall that it was showed earlier that the inverse pendulum system is BIBO 
unstable. It is easy to verify that the system matrix of the inverse pendulum 
has two poles at            . Clearly, it is an internally unstable system.  

Jl 

L 

f 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 115  BEN M. CHEN

Example: Consider an LTI system 

2 1 1
1 2 1
1 1 3

x A x x
 
    
  



whose system matrix A has eigenvalues at 

1 2 33.7321, 3, 0.2679,       

respectively. The system is clearly stable. Let

The solution to the corresponding Lyapunov equation A P + PA = –Q is given by

3 3

1 0 0
0 1 0
0 0 1

Q I 

 
    
  

the given system is stable!
5 4 3

1 4 5 3 0
6

3 3 3
P 

 
   
  

lyap
eig

ex1112

Jl 
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Q.1. Consider the mechanical system shown in the figure below. Here u (t) is an 
external force applied to the mass M, y (t) is the displacement of the mass 
with respect to the position when the spring is relaxed. The spring force and 
friction force are given respectively by

Homework Assignment 1 (due in two weeks) Jl 

f p(t) == k(l + ay2 (t))y(t) f b ( t) == by ( t) . 

1. Write the differential equation model of this stein. 
2. Write a tate pace de cription of the y tern. 
3. I the y tern linear? If it is not linear linearize it around the operating 

point with uo = 0. 
4. Find the tran fer function of the linearized y tern. 
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Q.2. Consider the electric circuit network in the figure below. Let the input be 
vi(t) and output be vo(t).

1. Derive the state and output equation of the network.

2. Find the transfer function of the network.

Assuming that R1 =R2 =R3 =1, C1 =C2 =1 F and L1 =1H,

3. Find the unit step response of the network.

4. Find the unit impulse response of the network.

+ 
V · I 

Jl 

+ 
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Q.3. 
Jl 

Consider an electric network shown in the circuit below with its input, 

u, being a voltage source, and output, y, being the voltage across the 2 F 

capacitor. A ume that the initial voltage aero s the 1 F and 2 F capacitor 

are 1 V and 2 V, respectively, and that the inductor is initially uncharged. 

10 n 10 n 0.1 H 
+ ..,__--C::::J--.------.-----c::::J-.--____J .....__----,--------e + 

u IF 10 n 10 n 2F 

(a) Derive the tate and output equation of the network. 

(b) Find the unit tep re pon e of the network. 

( c) Find the unit impul e respon e of the network. 

( d) Determine the tability of the network. 

y 
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Q.4.

Q.5. 

Q.6. Show that the pendulum system is a BIBO unstable system even though it 
was proved to be internally marginally stable. Identify a bounded input 
signal such that when it is applied to the pendulum, the resulting output 
response will go unbounded. 

For simplicity, you can assume that 2 1 and .M L g L 

Jl 
Given a linear ystem, ± == Ax+ Bu, with x(t1) == x1 and x(t2) == x2 for 

some t1 > 0 and t2 > 0, show that 

Given 
At [ -e-t + ae-2t e -- 2 -t 2 -2t e - e 

-t + -2t ] -e e 
2 -t -2t e -e 

determine the value of the scalars a and , and the matrices A and A 100 . 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 120  BEN M. CHEN

Controllability 
and 

Observability

Controllability 
and 

Observability

u(t)

y(t)
( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

 
 




X 1 final desired 

~ tate 
·< .... 

initial ~ ----~ x3 state 

--------+i•IL____I 

Jl 
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Controllability and stabilizability

The system (3.4.1) is said to be controllable if 
for every x1 and every finite t1 > 0, there 
exists a control signal u(t), t[0, t1], such that 
the resulting state trajectory goes from a given 
initial condition x(0) = x0 to x(t1) = x1. 
Otherwise, it is said to be uncontrollable.

x0

x1

Jl 
Let us fir t f ocu on the is ue of controllability. The concept of controllability i 

about controlling the state trajectory of a given y tern through its input. Sim­

ply stated, a y tern is said to be controllable if it tate can be controlled in the 

tate space from any point to any other point through an appropriate control input 

within a finite time interval. For a linear time-invariant y tern, it i equivalent 

to controlling the tate trajectory from an arbitrary point to the origin of the tate 

pace. To be more precise, we con ider the following continuou -time sy tern: 

~ : ± == Ax + Bu x (O) == xo 

final de ired 
.... ~ tate 

., .... -?? . 

(3.4.1 ) 
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i.e.,                                                       we have

If Wc(t) is nonsingular for all t > 0, for a fixed t1 > 0, we let

Theorem 3.4.1. The given system ~ of (3.4.1) is controllable if and only if the 

matrix 

(3.4.2) 

is nonsingular for all t > 0. We (t) is called the controllability grammian of~. 

Proof. 

u(t) == - B'e-A'twr.-1(t1)(xo - e-Atix1) t E [O t1] . (3.4.3) 

Then, by (3.2.1 ), . x(t ) = eAtxo + i t eA(t-T) B u( T )dT 

x( t1) = eAti xo + lot, eA(t, -t) B u( t)dt 

= eAt1 Xo - (fot1 eA(t1 -t) BB' e-A'tdt) wc-1 ( t1) (xo - e-At1 X1) 

= eAt'xo - eAt1 (fot1 e-At BB' e-A'tdt) wc-1 (t1) (xo - e-At, x1) 

By definition, ~ i controllable. 

Jl 

17826
Highlight
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the mx1 vector function

 1

c 1 00 0 0 0( ) e e 0
t At A tx xt xW BB t xd    

Jl 
We prove the converse by contradiction. Suppa e ~ is controllable, but We ( t) 

is singular for some t 1 > 0. Then, there exists a nonzero x 0 E IRn such that 

(3.4.5) 

Thus, we have 

(3.4.6) 

which implie 

(3.4.7) 
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Jl 
Since~ is controllable, by definition, for any x 1, there exi t a control u(t) uch 

that 

X 1 = eAtixo + l ti eAti e-At Bu(t)dt. (3.4.8) 

In particular, for x 1 == 0, we have 

(3.4.9) 

or rt1 
xo == - 10 e- At Bu(t)dt (3.4.10) 

which together with (3.4.7) imply that 
-1/'~ 

lxol2 = x~xo = [-fot1 e- At Bu(t)dt]' xo = -lti u' (t)~~ ,-e-- -A'-tx-o~ t = 0. 

Thi i a contradiction a xo # 0. Hence, We ( t) i non ingular for all t > 0. ■ 

x(t) = eAtx0 + i t A(t-T) Bu(T)dT t > 0, (3.2.1) 
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This is the most commonly used result to determine the controllability of an LTI 
system. It only involves checking the rank of a constant matrix generated from 
the given system, rather than time domain functions.

However, one should note that the determination of the rank of the controllability 
matrix sometimes can be ill-conditioned when the system order is high. 
Nonetheless, it is still much easier than checking the condition in Theorem 3.4.1.

Note: CTRB in MATLAB Control Toolbox calculates the controllability matrix.

Jl 
Theorem 3.4.2. The given ystem ~ of (3 .4.1) is controllable if and only if 

rank ( Qc) == n (3 .4.11 ) 

where 

Q : == [ B AB · · · An - l B ] (3 .4.12) 

is called the controllability matrix of~. 
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c 1( )W t

Jl 
Proof. We again prove this theorem by contradiction. Suppose rank ( Qc) == n, 

but~ i uncontrollable. Then, it follows from Theorem 3.4.1 that 

= lat1 e-At BB' e-A'tdt (3.4.13) 

1 singular for some t1 > 0. Al o, it follow from the proof of Theorem 3.4.1 , i.e. , 
equation (3.4.7), that there exists a nonzero x 0 E !Rn such that 

(3.4.14) 

Differentiating (3.4.14) with re pect to t and letting t == 0, we obtain 

'B O ' AB O x'oAn-lB == 0 Xo == Xo == ... (3.4.15) 

or 

(3.4.16) 

which together with the fact that x0 # 0 imply rank ( Qc) < n . Obviously, this is 

a contradiction, and hence, ~ is controllable. 
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  0 0 c 000 e ( ) 0e
t A AB Wx B d x x t x       

Jl 
Conversely, we will show that if~ i controllable, then rank ( Qc) == n. If~ i 

controllable, but rank ( Qc) i= n, i.e. , rank ( Qc) < n, then, there exi ts a nonzero 

Xo E IRn uch that x SQc == 0, i.e. , 

x~B == 0 x~AB == 0 

It follows from the Cayley-Hamilton Theorem i.e. , (2.3.33), that 

xSAkB==0 k == nn+l ... 

Thus, we have 

and 

(3.4.17) 

(3.4.18) 

(3.4.19) 

(3.4.20) 

which implies that Wc(t) is singular for all t > 0, and hence, by Theorem 3.4.1 , 

the given y tern ~ i uncontrollable. This i a contradiction. Thu , Q c ha to be 

of full rank. ■ 
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Example: Consider an LTI system 

0 1 1 1
1 1 1 1

1 0 11
x A x Bu x u

   
         
      



Calculate the controllability matrix, we obtain

2
c c

1 2 5
1 3 7 , rank( ) 2 3
1 2 5

Q B AB A B Q
 
        
  

The given system is uncontrollable.

ctrb
rank

ex1125

Jl 
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Example: Consider an LTI system 

0 1 1 1
1 1 1 1

1 0 10
x A x Bu x u

   
         
      



Calculate the controllability matrix, we obtain

2
c c

1 2 4
1 3 6 , rank( ) 3
1 1 3

Q B AB A B Q
 
       
  

The given system is controllable.
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The proof of the above result can be found in Chen, Lin and Shamash (2004). 
The significance of the PBH test is that it leads to the introduction of another 
important concept in control theory – the system stabilizability, which turns out to 
be a necessary and sufficient condition to stabilize a system to be controlled.

Vasile M.	Popov
Romanian	American
1928–

Vitold Belevitch
Belgian	Mathematician
1921–1999

Malo Hautus
Eindhoven	University	
of	Technology	
1940–

PP BB HH

Jl 
Theorem 3.4.3. The given system~ of (3.4.1) is controllable if and only if, for 

every eigenvalue of A, Ai, i == l , 2 ... , n, 

rank [Ail- A B] == n . (3 .4.21 ) 

This theorem is known as the PBH (Popov-Belevitch-Hautu ) te t, developed by 

Popov [109], Belevitch [11] and Hautus [63]. 
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The system (3.4.1) is said to be stabilizable if all its uncontrollable 
modes are asymptotically stable. Otherwise, the system is said to 
be unstabilizable.

Jl 
We note that Theorem 3.4.3 builds an interconnection between the system 

controllability and the eigenstructure of the system matrix, i.e., A. The system 

i controllable if all the eigenvalues of A satisfy the condition given in (3.4.21). 

On the other hand, the ystem is not controllable if one or more eigenvalue of 

A do not ati fy the condition given in (3.4.21). A such, we call an eigenvalue 

of A a controllable mode if it ati fie (3.4.21). Otherwi e, it is aid to be an un--
controllable mode. In many control y tern de ign method , it i not nece sary to 

require the given system to be controllable. The system can be properly controlled 

if all its uncontrollable mode are stable. Such a system is said to be tabilizable 
as it can still be made stable through a proper state feedback control. For easy 

reference, in what follows, we highlight the concept of stabilizability. 
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Example: Consider an LTI system 

0 1 1 1
1 1 1 1
1 1 0 1

x A x Bu x u
   
         
      



It is verified earlier that the given system is uncontrollable as its controllability 
matrix Qc has a rank of 2 < 3. 

The eigenvalues of A are respectively at                                   

Using the PBH test,

1, 1 2, 1 2.  

 
1 1 1 1

rank 1 rank 1 2 1 1 2 3
1 1 1 1

I A B
   
          
    

Thus, 1 = – 1 is an uncontrollable mode. Without any further calculation, one can 
conclude that the other two modes are controllable as Qc has a rank of 2.

ex1125

Jl 

✓ ✓ 
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Nonetheless, let us proceed the PBH test for the other two modes…

For                     , 

Thus, 2 is a controllable mode. For                    ,

 
1 2 1 1 1

rank 1 2 rank 1 2 1 1 3

1 1 1 2 1

I A B

   
 

            
    

which implies that 3 is also a controllable mode. As the only uncontrollable mode 
is stable, the given system is stabilizable.

2 1 2  

3 1 2  

 
1 2 1 1 1

rank 1 2 rank 1 2 1 1 3

1 1 1 2 1

I A B

   
 

           
    

Jl 

✓ 

✓ 
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The above result is heavily used in control systems design. It shows that the 
stabilizability of a given system is necessary for any control problem if one 
wishes to make a controlled system stable.

One should not proceed to carry out a control system design any further if the 
given system is not stabilizable. Instead of designing a controller, the designer 
should try to re-design the system to be controlled.



Jl 
Theorem 3.4.4. For the given system ~ of (3 .1.1), the following two statements 
are equivalent: 

1. The pair ( A B) is stabilizable. 

2. There exists an F E Illrnxn such that, under the state feedback law 

u~Fx (3 .4.23) 

the resulting closed-loop system is asymptotically stable, i.e., A+ BF has 
all its eigenvalues in cc- . 
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Observability and detectability

able to see what is going 
on inside the system

able to see what is going 
on inside the system

Definition 3.4.3. The given system  of (3.4.24) is said to be observable if for 
any t1 > 0, the initial state x(0) = x0 can be uniquely determined from the 
measurement output y(t), t  [0, t1]. Otherwise,  is said to be unobservable.

Jl 
Similarly, we can introduce the concept of ob ervability and detectability for 

the following unforced system~: 

± ==Ax y == C x (3.4.24) 

where x E ffi.n, y E ffi.P and A and C are constant matrice of appropriate dimen­

sion . Basically, the ystem of (3.4.24) is aid to be ob ervable if we are able to 

recon truct (or ob erve) the tate variable, x , u ing only the mea urement output 

y. More precisely, we have the following definition. 

,....r'"""\ Flow C ) Flow .~ x~ 

17826
Sticky Note
Exam
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Jl 
Theorem 3.4.6. The given system :E of (3.1. 1) is observable if and only if either 

one of the following statements is true: 

1. The observability matrix of :E, 

C 
CA 

C An-l 

is of full rank, i.e. , rank ( Q 0 ) == n. 

2. For every eigenvalue of A , ,,\i , i == 1, 2, ... , n , 

[,,\.J-A] 
rank 1, C == n. 

(3.4.27) 

(3.4.28) 

Definition 3.4.4. The given system ~ of (3.1.1) is said to be detectable if all its 

unobservable modes are asymptotically stable. Otherwise, ~ is said to be unde­

tectable. 
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We note that all modern control techniques with measurement feedback using the 
above observer framework or its variant form!

Jl 
Theorem 3.4.7. For the given system~ of (3.1.1), the following two statements 

are equivalent: 

1. The pair ( A C) is detectable. 

2. There exists a K E JRnxp such that A+ KC has all its eigenvalues in c- . 

Furthermore, the following dynamical equation utilizing only the sy tern output 

and control input is capable of asymptotically estimating the system state trajec­

tory, x(t), without knowing it initial value x0 : 

x ==Ax + B u - K(y - Cx - Du) xo E IRn (3.4.29) 

i.e. , e(t) :== x(t) - x(t) ---+ 0 as t ---+ . The dynamical equation of (3.4.29) is 
commonly called the state observer or estimator of~. 
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Example: Consider an LTI system 

 
0 1 1
1 0 1 , 2 1 1
1 1 0

x A x x y x
 
    
  



Calculate the observability matrix (m-function OBSV), we obtain

o o
2

2 1 1
2 3 3 , rank( ) 2 3
6 5 5

C
Q CA Q

CA

   
         
      

The given system is unobservable. The unobservable mode is –1 as 

2 1 1
1 1 1

rank rank 2 3
1 1 1 1

1 1 1

C
I A

 
                 
    

The system is detectable. In fact, the given system has two modes at –1 with one 
being unobservable and one not. 
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Homework Assignment 2 (due in one week)

Q.1. It was shown in the section of dynamic modeling that the two-cart system 
can be described by the following state space model:

(a)

(b)

1 1

1 1

2 2

2 2

0 1 0 0 0
1

,
0 0 0 1 0

0

x x
x xK F K F

f
x x
x xK F K F

      
              
      
             


 

 

 

1

1

2

2

0 0 1 0

x
x

y
x
x

 
 
 
 
 
 





Jl 

K 
f 

Determine the stability of the network. 

Determine the controllability and observability of the network. 
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Q.2.

Q.3. 

Given a linear time-invariant system,± == Ax+ Bu let 

~ [A BB'] 
A :== 0 -A' . 

(a) Verify that eAt ha the form 

eAt == [ E10(t) E2(t) ] 
E3(t) . 

(b) Show that the controllability grammian of the system is given by 

Wc(t) =late-AT BB'e-A'T dT = E~(t)E2(t) . 

Show that if ( A B ) i uncontrollable, then ( A + a l B ) is also uncontrol­

lable for any a E ffi. . 

Jl 
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Q.4. Consider an uncontrollable system, ± 
u E ~ m . A ume that 

Ax + Bu, with x E ~ n and 

rank ( Qc) == rank ([ B A B • • • An-l B ]) == r < n . 

Let { q1 q2 . . . qr} be a basis for the range space of the controllability 

matrix, Q , and let { qr+ 1 qn} be any vectors such that 

1 non ingular. Show that the tate transformation 

x = T X = T ( !: ) Xe E !Rr Xe E !Rn - r 

transforms the given ystem into the form 

( ~c ) == [ A ce Ace ] ( ~c ) + [ Be ] U 
Xe O Ace Xe 0 

where (Ace Be) is controllable. Show that the uncontrollable mode of the 

system are given by A(Acc ). 

Jl 
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Q.5. Verify the result in Q.4 for the following systems:

Q.6. Given ARnxn, B nxm, show than if the pair (A, B ) is controllable 
(detectable) if and only if ( AT, BT) is observable (stabilizable).

Jl 

5 1 1 1 0 
1 2 1 1 1 

X == -2 0 2 -2 x + -1 
u 

-1 -1 -1 3 1 

and 
-3 -3 1 0 3 3 

. 26 36 -3 -25 -2 -1 
X == 30 39 -2 -27 x + 0 3 

u . 

30 43 -3 -32 0 1 

JR· :]R_ 
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System Invertibility and Invariant ZerosSystem Invertibility and Invariant Zeros

u (t) y(t)=0
( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

 
 

 

Jl 

0 /\.. _A_ .. IL_/\_ D 

·I 
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It is meaningless to talk about a good system or a bad system without controller 
design in the picture. When controlling a given system, its (structural) properties 
do play crucial roles. Up to now, we have learned that…

1. An unstable system is bad as it blows up everything inside out.

Solution: To employ a control law to stabilize it, if possible. How to work 
out a stabilizing controller for an unstable system is the story of Part 2.

2. An unstabilizable system is bad as it cannot be stabilized and thus cannot be 
controlled.

Solution: No solution besides redesigning the system itself. 

3. An undetectable system is bad as it cannot be stabilized and controlled.

Solution: No solution besides redesigning the system itself.

There are more to be added to the above list as we progress. There are systems 
that can be controlled but would generally yield bad control performance.  

Good	systems	vs.	bad	systems…
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The topic of system invertibilities has been left out in many popular 
texts in linear systems (for example, in almost all the references listed 
for this course), although it is important and crucial in almost every 
control problem.

By definition, it is clear that an invertible system has to be a square 
system, i.e., the number of the system inputs, m, and the number of the 
system outputs, p, are identical. A square system is, however, not 
necessarily invertible. Unfortunately, confusion between invertibility 
and square systems is common in the literature. Many people take it 
for granted that a square system is invertible. We illustrate this in the 
following example.

System	invertibility
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ex1351

G

G

Jl 
Example 3.5.1. Con ider a sy tern ~ of (3 .1.1 ) characterized by 

1 0 1 0 0 
A== 1 1 1 B == 0 1 (3.5.4) 

1 1 1 1 0 

and 

C = [~ 
0 ~] D = [~ ~] . (3.5.5) 
0 

Note that both matrice Band C are of full rank. It i controllable and ob ervable, 

and ha a tran fer function: 

1 [ ( s - l )2 s - l] 
( 8 ) == s3 - 3s2 + s s - l 1 · 

Clearly, although square, it i a degenerate ystem as the determinant of 

identical to zero. 

(3.5.6) 

(s) i 
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A rational function is a ratio of two polynomials… 

Recall the given system (3.1.1), which has a transfer function

G

L(s)G(s)

G

function	matrix	of	s,

function	matrix	of	s,

Jl 
(s) == C(sl - A) - 1 B + D. (3.5.1) 

Definition 3.5.1. Consider the linear ti1ne-invariant system~ of (3.1.1). Then, 

1. ~ is said to be left invertible if there exists a rational 

say L(s ), such that 

== Im,• 

2. ~ is said to be right invertible if there exists a rational 

say R( s) , such that 

(s)R(s) == Ip. 

3. ~ is said to be invertible if it is both left and right invertible. 

4. ~ is said to be degenerate if it is neither left nor right invertible. 

A rational function is a ratio of two polynomials ... 

(3.5.2) 

(3.5.3) 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 148  BEN M. CHEN

Example	(left	invertibility): Consider an LTI system 

0 1 1 1
1 1 1 1
1 1 0 1

x A x Bu x u
   
         
      



2 1 1 0
9 8 5 0

y C x Du x u
   

      
   

which has a transfer function

2

2

3 2

4 5 1
22 30 8

( )
3 1

s s
s s

G s
s s s

  
 

  
  

It is easy to see that

   
3 2 3 2

2 2

3 1 3 1( ) ( ) ( ) 1
2 4 5 1 2 22 30 8
s s s s s sL s L s G s

s s s s

         
     

ss2tf
ex1144

Jl 
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Example	(right	invertibility): Consider an LTI system 

0 1 1 1 3
1 1 1 1 2
1 1 0 1 1

x A x B u x u
   
         
      



which has a transfer function

 2 2

3 2

4 5 1 9 8 1
( )

3 1
s s s s

G s
s s s

   


  
It is easy to see that

 

 

3 2

2

3 2

2

3 1
2 4 5 1

( ) ( ) ( ) 1
3 1

2 9 8 1

s s s
s s

R s G s R s
s s s

s s

   
         
   

ss2tf
ex1145

   2 1 1 0 0y C x Du x u   

Jl 
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Example	(invertible	system): Consider an LTI system 

0 1 1 1 3
1 1 1 1 2
1 1 0 1 1

x A x B u x u
   
         
      



which has a transfer function

Exercise: Find the inverse of the above system, i.e., find 

ss2tf
ex1146

3 2 2

2 3 2

3 2

3 2 9 8 1
22 30 8 47 49 11

( )
3 1

s s s s s
s s s s s

G s
s s s

    
      

  

1( )G s 

2 1 1 1 0
9 8 5 0 1

y C x Du x u
   

      
   

For D=I, it follows from (2.3.15) on p. 33 that 1 1( ) ( ) .G s I C sI A BC B     

Jl 

For D= I, it follows from (2.3 .15) on p. 33 that a-1 (s) == I - C(sl - A+ BC)-1 B. 
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The system left and right invertibilities can be interpreted in the time domain as follows. 

 For a left invertible system, given an output y (t) produced by the system with an 
initial condition x0, one is able to identify a unique control signal u (t) that generates 
the given output y (t). 

Interpretation	of	system	invertibility

SystemSystemu(t)Rm
y(t)Rp 

m  p x0
? unique

SystemSystemu(t)Rm y(t)Rp 

m  px0

? one or many

?

fixed & 
known

arbitrarily given

fixed

 For a right invertible system, for any given signal yref (t)Rp, one is able 
to determine a (or many) control input u (t) and an (or many) initial 
condition x0 for the system, which would produce an output y(t) = yref (t) .

Peter	Moylan
University	of	
Newcastle
Australia

Jl 

JR.: 

_.,_ . 
, 

_.,_ 

JR. _.,_ . JR: 
, 
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Robot ArmRobot Arm

elbowelbow

shouldershoulder

A good example that illustrates a left invertible system is underactuated robot manipulators 
or a double pendulum…

Consider the double pendulum system on the right, 
where the output variables are 1 and 2. If we have 
torque to control both the elbow and the shoulder, 
the double pendulum system is fully actuated and 
the resulting dynamical system is invertible. If there 
is only one actuator providing torque to the elbow, 
the pendulum is underactuated and the resulting

A left invertible system would cause problems in output tracking. Dually, a right invertible 
system (over-actuated) is good for output tracking but would degrade the performance of the 
overall system with output feedback controllers where an observer is used. The concepts of 
left and right invertibility are dual. This will be clear in Part 2 when we study advanced 
control design techniques.

system is left invertible. In such a case, the system does not enough control authorities to 
drive all the output variables to desired values as illustrated on the previous page. 

Double PendulumDouble Pendulum

Jl 
shoulder 

ig 
Robot Arm 

Double Pendulum 
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Normal	rank	and	invariant	zeros

We note that Example 3.5.1 given earlier has a 2x2 transfer function matrix

The normal rank of this function matrix is 1.

Historically, many researchers had made lots of mistakes in defining system
zeros. Normal rank was introduced to give a correct and precise definition of 
zeros, more specifically the invariant zeros, for multivariable systems.

G

G

Jl 
Definition 3.6.1. Consider the given system E of (3.1.1). The normal rank of its 

transfer function ( s) == C(sl - A) - 1 B + D , or in short, normrank{ G(s) }, is 

defined as 

normrank { G ( s)} == max { rank [ G(,,\)] I ,,\ E (C} . (3.6.2) 

1 [ (s-1) 2 s-lJ 
( 8 ) == s3 - 3s2 + s s - 1 1 

s1155184008
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Here

Invariant	zeros

which is known as the so-called Rosenbrock system matrix.

Howard	H.	Rosenbrock
1920–2010	

We note that

• Invariant zeros play a crucial role in designing sensible 
control systems.

• For a SISO system, invariant zeros are identical to the zeros or transmission 
zeros, i.e., the roots of the numerator of its transfer function. 

Jl 
Definition 3.6.2. Consider the given system :E of (3.1.1). A scalar f3 E CC is said 

to be an invariant zero of :E if 

rank {Py:,(/3)} < n + normrank{G-(s)}. (3.6.4) 

[sl-A -BJ PL, ( s) : == C D 

s1155184008
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Other but incorrect definition of transmission zeros has been used in the literature. The 
same mistake has been spread over all the places including our textbook by C.T. Chen… 

 E. J. Davidson and S. H. Wang, “Properties and calculation of transmission 
zeros of linear multivariable systems,” Automatica, pp. 643–658, 1974.

  E. J. Davidson and S. H. Wang, “Remark on multiple transmission zeros 
of a system,” Automatica, p. 195, 1976.

Edward Davison
University of 

Toronto 

Chi-Tsong Chen
Stony Brook 
University 

1 0 1 0 0
1 1 1 , 0 1
1 1 1 1 0

A B
   
       
      

0 0 1 0 0
,

1 0 0 0 0
C D

   
    
   

Example: Consider an LTI system 

{

5rank min4 ( , )
A I B

n p m
C D
 

    
 

We will demonstrate using MATLAB that for 
any scalar  on the complex plane, 

ex1351

Definition 
Given the system (1), the transmission zeros of 

(1) are defined to be the set of complex numbers ,l 
which satisfy the following inequality 

[ A-11 B] . rank C D <n+m1n(P,m) (2) 

Jl 
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Clearly, by definition, if is an invariant zero of~, then there exist a nonzero 

vector XR E ccn and a vector WR E ccm such that 

(3.6.5) 

Here, xR and wR are re pectively called the right state zero direction and right input 
zero direction associated with the invariant zero of~-

Jl 

Proposition 3.6.1. Let be an invariant zero of ~ with a corresponding right 

state zero direction xR and a right input zero direction wR . Let the initial state of 

~ be xo == xR and the system input be 

u(t) == wRe t t > 0. (3.6.6) 

Then , the output of~ is identically zero, i.e. , y(t) == 0, t > 0, and 

x( t) == xRe t t > 0. (3.6.7) 

This implies that with an appropriate initial state, the system input signal at an 
appropriate direction and frequency is totally blocked from the system output. 
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SystemSystem

Interpretation of invariant zeros (transmission zeros)

y(t) 0

We note that physically

• An invariant zero  with a state zero direction xR and input zero direction wR

means that the input signal at frequency e t entering the system at the 
direction wR will be totally blocked by the system provided that the initial 
condition of the given system is xR.

• There are cases that a certain complex frequency, say , might be totally 
blocked in all input directions. Such a  is called a blocking zero of the given 
system.

Xo == X R 

Jl 
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Proof. First, it is simple to verify that (3.6.5), i.e.,

We first show that

I -A 
C 

• 

Jl 

-:J (::) = 0 

(3.6.8) 

x (t) == xRe t is a solution to the system~ of (3.1.1) with the 

initial condition x0 == xR and the input u(t) given in (3.6.6). Indeed, with u(t) of 

(3.6.6) and x (t) of (3.6.7), we have 

Ax + Bu == AxRe6t + BwRef3t == (AxR + BwR)ef3t == (3x Ref3 t == x. (3.6.9) 

Thus, x ( t) is indeed a solution to the state equation of ~ and it satisfies the initial 

condition x(O) == xR. In fact, x (t) as given in (3.6.7) is the unique solution (see, 

e.g. , Section 3.2). Next, we have 

y(t) == Cx (t) + Du(t) == (CxR + DwR)ef3 t O t > 0. (3.6.10) 

This concludes the proof of Proposition 3 .6.1. ■ 
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Example: Consider an LTI system 

 
0 1 1 2
1 1 1 1 , 9 8 5
1 1 0 1

x A x Bu x u y x
   
          
      



which has a transfer function                                        with a normal rank of 1.  
2

3 2

31 34 7( )
3 1

s sG s
s s s

 


  

Since it is a SISO system, its invariant zeros are the zeros or roots of the numerator 
of its transfer function 

It is easy to check for each of them, the rank of the corresponding Rosenbrock 
system matrix drops.

For MIMO systems, the computation of invariant zeros are rather complicated! The m-
function TZERO in MATLAB and INVZ in Linear Systems Toolkit can do the job. 

1 2
17 6 2 17 6 20.2747, 0.8221

31 31
z z   
     

tzero
invz

ex1155

Jl 
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Remarks:

• In this course, we define an LTI system to be of minimum phase if all its 
invariant zeros are in the LHP (note that we don’t need the system to be 
stable). Otherwise, it is called to be of nonminimum phase. 

• Invariant zeros are invariant under state feedback and output injection, i.e., 
we cannot re-place the locations of invariant zeros through a feedback 
control law. On the other hand, we can freely assign a closed-loop pole so 
long as its corresponding mode is controllable.

• A nonminimum phase zero would cause a lot of problems in designing a  
control system. The overall control performance would be bad. 

o In particular, the time-domain response of a nonminimum phase system 
to a step input might have an undershoot.

o The frequency-domain performance will be limited as to be seen in the 
results given in Part 2.

s1155184008
Highlight
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Why are invariant zeros invariant?

Consider the LTI system characterized by

with a state feedback law u=F x +v, the resulting closed-loop system is given by

and the corresponding Rosenbrock system matrix is

:
x A x Bu
y C x Du
 

   



 
 F :

x A BF x Bv
y C DF x Dv
  

    



0sI A BF B sI A B I
C DF D C D F I
         

          
Obviously, s is an invariant zero of  if and only if it is an invariant zero of F, i.e., 
invariant zeros are invariant under state feedback. Similarly, we can show that the 
invariant zeros are invariant under output injection, i.e.,

0
sI A KC B KD I K sI A B

C D I C D
           

     
     
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For simplicity, we consider a SISO with a transfer function G(s), i.e., 

Why are bad (nonminimum phase) invariant zeros bad?

U (s) Y (s)G (s)

If we want the output to track a reference r, the simplest way is to design a control 
law of the following form

which results in pole-zero cancellations. Actually, almost all the control techniques 
to be studied in Part 2 possess inherent pole-zero cancellations whenever the zeros 
of the given systems are stable. Unfortunately, unstable pole-zero cancellations 
are not allowed in control system design (to be explained in the class). As such, 
the unstable phase zeros would limited the performance of the closed-loop system. 
For instance, the unstable zeros would cause an undershoot in its step response…

U (s) Y (s)G (s)G–1 (s)R (s)

Jl 

-~ I . 

-~ I . -
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Example: The step responses of the systems with stable and unstable zeros… 

2( )
1

1 sG s
s s




  2( )
1

1 sG s
s s




 2
( )( )
( ) 1

1Y sG s
R s s s

 
 

Undershoot Undershoot 

Jl 

Step Response Step Response Step Response 

1.2 
1.2 

0.8 0.8 

(I) (I) 0.8 
"O "O .gi 0.6 
:::i ~ %_ 0.6 a. 

~ 
a. 

E E 
<( <C 0.6 

E 
<( 0.4 

0.4 0.2 

0.4 

0 

0.2 
0.2 

-0.2 

o~-~--~--~-~~-~ -0.4 
2 4 6 8 10 12 0 2 4 6 8 10 0 2 4 6 8 10 12 

Time (seconds) Time (seconds) Time (seconds) 
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1. An unstable system is bad as it blows up everything inside out.
Solution: To employ a control law to stabilize it, if possible. How to work out 
a stabilizing controller for an unstable system is the story of Part 2.

2. An unstabilizable system is bad as it cannot be stabilized and controlled.
Solution: To redesign the system itself. 

3. An undetectable system is bad as it cannot be stabilized and controlled.
Solution: To redesign the system itself.

4. A degenerate system is bad as it would yield bad performance in the overall 
control system. 
o In state feedback control, left invertible (underactuated) systems would generally 

yield bad performance. 
o In observer-based feedback control, right invertible systems would cause troubles. 

Solution: To redesign the system if better performance is wanted.

5. A nonminimum phase system is bad as it would yield bad control performance.
Solution: To redesign the system if better performance is wanted.

Finally, note that some good systems could also be improved to be better ones…

Good	systems	vs.	bad	systems	(cont.)…
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nonminimum phasenonminimum phase

How to get rid of bad invariant zeros?

Even though the unstable invariant zeros (or nonminimum phase or bad systems in 
general) cannot be changed by feedback control laws, they can be relocated by…

• Reselection of the system actuators (matrix B) and/or

• Replacement of the measurement sensors (matrix C)

Example: Consider a system characterized by

 
1 1 0 0
1 0 1 0 , 0 0
0 0 1

1
1

x A x Bu x u y x
   
          
      



If we replace the measurement sensor to measure the first state variable instead, i.e.,  

 0 01y x 3 2

1( )
2 1

G s
s s s


  

minimum phase!minimum phase!

3 2( )
2 1

1G
s

ss
s s


  







ex1160

Note: There are techniques that can also be used to solve all the 
problems highlighted on the previous slide.  

CD 

CD 

s-1 
G(s)= s3-s2_ 

Jl 

nonminimum phase 

-
A~signmcnt of Complete Suuc1ur.tl Propcnie!i 

or Linear Sy,1em~ \ ia Sensor Selca ion 
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Some Structural 
Decompositions
Some Structural 
Decompositions

The	performance	of	a	control	system	is	primarily	determined	by	the	structural	
properties	of	the	system	to	be	controlled,	rather	than	the	control	law	

controlling	it…	

A	good	system	can	be	controlled	by	a	simple	controller.

A	bad	system	cannot	perform	well	no	matter	what	control	law	is	used.


Jl 

xo 

= f; 
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Why	and	what?
Jl 

Structural propertie play an important role in our under tanding of linear y tern 

in the tate pace representation. The tructural canonical form repre entation of 

linear y terns not only reveal the structural propertie but al o facilitate the 

de ign of feedback law that meet various control objective . In particular, it 

~t~~~P.P.~--~-~--~~--~.Y.~~-~~}.~~.<?. .. ~~~.<?.~----~-~P.~.Y. .. ~.~JE..~.- These ub y terns, along with 
the interconnection that exist among them, clearly show the structural properties 

of the ystem. The simplicity of the subsystem and their explicit interconnections 
...................................................................................................................................... 

~-~~-~--~-?.~~--~-~~~!. .. ~~~9. .~ ... ~.?..~--~-~~P..~E..~~-~-~~~! .. ~~-~~--~~-~--!~.~-~~~~~-~~-~~-~~~--~~-~~-~ -~~-~ 
effect on the sy tern, and thus to the explicit construction of feedback laws that 

meet our design specification . The di co very of structural canonical forms and 

their application in feedback design for variou performance pecification ha 

been an active area of research for a long time. The effectivene of the tructural 

decomposition approach has also been extensively explored in nonlinear ystems 

and control theory in the recent pa t. 
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Unsensed systems

We now proceed to introduce the controllability structural decomposition (CSD) 
for the unsensed system characterized by

We note that the CSD is also commonly known as the Brunovsky canonical form 
(1970). But the same result was reported by Luenberger earlier in 1967.

Pavel	Brunovský
1934–2018

Slovakian	Mathematician	

David	Luenberger
Stanford	University

USA

Jl 

± ==Ax + B u (4.4.1 ) 

where a usual x E JRn is the state and u E JRrn i the input. 
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x A x B u     such that the transformed system                        has the following form: 

uncontrollable modes

controllable pairs

 1 2where , , ,  are called the controllability index of ( , ).mk k k A B

Theorem 4.4.1 (CSD). Consider the unsensed system of ( 4.4.1 ) with B being of 

full rank. Then , there exist nonsingular state and input transformation sT E IRn x n 

and Tl E IRm x m uch that, in the transformed input and state, 

x == T x u == 71.u (4.4.2) 

0 0 0 0 0 0 

J 1- l 0 0 ~ 0 
~ * ~ 

~ I A == B == 4.4.7) 

0 0 0 Ik m. - 0 

* 0 1 
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

  

Uncontrollable dynamics of 
the systems

The shorter this chain of integrators is, the easier to control it.

Jl 
"" Xo 

Ao 

linear combination of the states 

Figure 4.4.1 : Interpretation of the controllability structural decomposition. 
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Example: Consider an LTI system                         with x A x B u 

s

63 292 15 126 86 90
38 226 30 101 68 75
25 70 45 25 35 601
49 109 60 77 122 4515
62 13 75 1 29 30
37 127 90 26 41 15

T

   
    
   

    
    
 

  

Using the CSD function in Linear System Toolkit, we obtain a state transformation 

which transforms the given system into the CSD form, i.e., 
csd

ex1166

Jl 
1 0 0 0 0 0 1 6 
0 1 0 0 0 0 2 5 

A== 
0 0 0 1 1 0 

B== 
3 4 

0 0 -1 0 0 1 ' 4 3 
0 0 0 0 0 1 5 2 
0 0 0 0 -1 0 6 1 
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1 1
s s s

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0.8286 0.1619 0.0095 0.2286 0.4381 0.2095 1 0
,

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0.8381 2.5714 3.4095 1.4381 2.4286 1.9905 0 1

T AT T B 

   
   
   
    

    
   
   
   
     

This controllability structural decomposition form is particularly useful if we 
want to design a state feedback control law to place the closed-loop system poles 
to any desired locations. By using a proper pre-feedback gain, we can simplify 
the above pair to the following form.

This special form is 
particular useful in 
designing state feedback 
control law as illustrated 
on the next page…

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

,
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

    
    
    
    
    
    
    
         

Jl 

0.8286 0.1619 0.0095 -0.2286 0.4381 -0.2095 I 1 

-0.8381 -2.5714 3.4095 1.4381 -2.4286 1.9905 1 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 173  BEN M. CHEN

Pole placement is trivial in the CSD form. For simplicity, we consider a 3rd 
order matrix pair in the CSD or Brunovsky canonical form, i.e.,

and a set of desired closed-loop system poles at              , respectively. The 
desired characteristic polynomial is then given as 

1 2 3 1 2 3
3 2( ) ( )( )( ) a as s s s s as s          

1 2 3

0 1 0 0
0 0 1 , 0

1
A B

   
       
       

1 2 3

3 2 1

,
0 1 0
0 0 1 ( ) ,A BF A BF
a a a

  
 
     
  


  

1 2 3, ,  

It is straightforward to show that the following state feedback gain F would 
place the closed-loop poles at the desired locations

     21 2 13 31 3223 1F a a a a a a         




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Unforced	systems

We proceed to present next an observability structural decomposition (OSD), 
which is dual of the CSD introduced earlier, i.e., 

OSD of ( , ) CSD of ( , )A C A C   

(see, for example, Q.4 in Homework Assignment No. 2).

We consider an unforced sy tern ~ characterized by 

x == Ax y == C x 

Jl 

(4.3.1) 

where x E !Rn i the tate, y E JRP i the output, and A and C are constant matri­

ces of appropriate dimensions. We note that there are quite a number of canoni­

cal form a sociated with such a ystem, e.g., the observable canonical form and 

the observability canonical form (see, e.g., Chen [33] and Kailath [70]). These 

canonical forms are effective in tudying the ob ervability of the given ystem. 

However, they are not adequate to show the more intrinsic system structural prop­

erties 
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,x A x y C x     such that the transformed system                              has the following form: 

A

C 

unobservable modes

observable 
pairs

Theorem 4.3.1 (OSD). Consider the unforced system of (4.3.1) with C being of 

full rank. Then, there exist nonsingular state transformation T. E !Rn x n and 

nonsingular output transformation T0 E IRpxp such that, in the transformed tate 

and output, 

(4.3 .2) 

______ ., © * 0 0 -. . . 
* 

Q r * I k1 -1 . . . 
* 0 

0 * 0 . . . 
* 0 y - 1 AT. 

s 

.,,,, 

0 * 0 * I kp- l 

0 * 0 . . . 
* 0 ~-

0 [ 1 o l 0 0 
y-lCT. == 

0 

0 0 0 1 0 

where * rep re en t a matrix of le s intere t. 

Jl 
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

  

 1 2Also, , , ,  are called the observability index of ( , ).pk k k A C

Unobservable dynamics of 
the systems

The shorter this chain is, the easier to observe it from the output.

Jl 

"' Xo 

Ao 

Note: the signals indicated by double-edged arrows are ome linear combination of Yi. 

D D 

Figure 4.3.1: Interpretation of the ob ervability structural decompo ition. 
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The following transformations will bring the system into the OSD form:

sT o, T

osd
ex1431

Jl 
Example 4.3.1. Consider an unforced system ( 4.3.1) characterized by 

1 0 0 0 -1 0 
-2 -1 4 -2 3 0 

A== 
-2 -1 3 -1 3 0 

(4.3.46) 
1 1 -2 3 -2 0 
2 1 -2 2 -3 0 
1 1 -1 1 1 -1 

and 

C = [ 1 
1 0 0 1 ~] . (4.3.47) 

-1 0 1 -1 1 

0 2 2 -1 -0.6667 -0.5556 
0 0 -2 2 0.3333 0.4444 

[~ ~] 0 -2 -1 3 1 0.3333 
0 -7 -3 3 2 1 
0 -2 0 0 0.3333 0.1111 
1 -2 0 0.3333 0.6667 0 
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From the OSD form, it is simple to see that the given system is unobservable, 
but detectable as the unobservable mode is –1. There are two observable pairs 
associated with the system. 

,x A x y C x     such that the transformed system                              has the following form: 

A

C 

Note: It can be computed using an m-function OSD in Linear Systems Toolkit.

1
o

0 1 0 0 0 0
0 0 0 1 0 0sC T CT  

   
 



unobservable modes

and 

.... n ...... cY -1 
0 
0 
0 
0 
0 

2.3333 0 

G] 0 
-0 0 

-14 0 
6 0 

Jl 
4.3333 0 0 

-2 0 0 
1 0 0 

/ 5 1 O' 
-14 0 1 

\.. 6 0 0 

1 0 0 
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Illustrative Example: Consider a linear system characterized by 

 
0 1 1
1 1 1 , 1 1 0
1 1 0

x A x x y C x x
 
     
  



We define a new state variable 

   1 11 1 0 1 2 2x y C x x x y C x CA x x         

which is independent of = y. We proceed to define

   2
2 1 21 2 2 4 5 3x x x x C x CA x x       

which is independent of and    . We proceed to define2x1x

 3 2 4 5 3x x x 

which implies

1
1

2

3

1 1 0
1

3

4 3 2
5 3 2
3 1

2 2
5 14

S
x

x x x S x
x



  
   
  

   
         
 

 
ex1174

1x

Jl 
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We obtain a transformed system 

We define another set of new state variables…

1 1

2 2 1

3 3 1 2

1

1 0 0
1 1 0

3 1 3 1
1

1

x x
x x x x x x

x x x x
T 

   
           
      



   


  
   


 



     
1

1
2

3

0 1 0
0 0 1 , 1 0

3
0

1 1

x
x A x S AS x x y C x C S x x

x



  
             



 

1 2 1

2 3

3 1 2 31

,

1 3 1

x x y x
x x
x x x x

 



      





1 1

2 1 2

3 1 2 3

1 0 0
1 1 0
4 1 1 4

x x
Tx x x x x x

x x x x

 
 
 
  



   
           
       


   

  

Jl 
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1 1

2 1 2

3 1 2 34

x x
x x x
x x x x

   
       
       


 
  

We obtain a final transformed system 

3

2

3 2

1 1 2

2 2 1 3 2

3 3 1 2 1 2 3 2

2 2

1 2 3 1 2 1 3

1 1

1 2

1

1

3

1

3 3 3

4 3

3

x x x
x x x x x x

x x x x x x x x x

x x
x x x x x x x

x x

x x
x x

x

x

x
x

x

     
              

            
     
                 
     
     

 
  

 



 
    

   

      
 

 
 


1

2

3

1 0
0 1 ,

1
3

0 01

x
x
x

  
            





 1 1 0 01y x x x   

The required state transformation 

 s

1 1 2
0 1 2
0 0 1

x x xSx T





   
  

   

sC C 

1
s s

1 0
0 1
0

1
3
1 0

A A

 
    











Jl 
~ ~ 
X1 +X2 

4.Xl +X2 +X3 
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Homework Assignment 3 (due in one week)

Q.1. It was showed earlier that the invariant zeros of linear systems are invariant 
under state feedback. More specifically, for a system characterized by

with a state feedback u = F x + v, it gives a closed-loop system 

We have showed that if a scalar  is an invariant zero of the original system, 
it is also an invariant zero of the new one as well.

x A x Bu
y C x Du
 
 



( )
( )

x A BF x B v
y C DF x D v
  
  



(a)  Show that the state feedback law does not change the controllability 
property of the given system either. 

(b) Show by a simple example that the state feedback law, however, may 
change the observability property of the given system. 
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Q.2. Verify that the sy tern 

1 1 0 0 

X ~ 0 0 1 X + 0 U y ~ [~ ~ ~] X 

1 1 1 1 

is left invertible. Given an output 

(t) ~ ( co wt + w in wt ) t > 0 
y et - cos wt 

which is produced by the given ystem with an initial condition, 

x (O) ~ 
0 
1 

w2 

Jl 

determine the corresponding control input, u( t), which generates the above 

output, y ( t) . Al o, show that such a control input is unique. 
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Q.3.

Q.4.

Verify that the sy tern 

1 1 0 0 1 
X == 0 0 1 x + 0 0 u y == [ 0 1 0 ]x 

1 1 1 1 0 

i right invertible. Find an initial condition, x(0), and a control input, u(t), 
which together produce an output 

y(t) == a cos wt t > 0. 

Show that the olution are nonun1que. 

Given an unforced ystern 

,\ 1 

X == 
1 
,\ 

X, y == [ a * · · · * ] X 

where,\ E IR and a E IR, how that the y tern i ob ervable if and only if 

a# 0. 

Jl 
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Q.5. Given an unsensed system characterized by a matrix pair in the CSD form

Let the output equation be             .  Verify that the resulting system has

(a) No invariant zero if C = [ 1   0   0 ];

(b)  One invariant zero if C = [ 0   1   0 ]; and

(c) Two invariant zero if C = [ 0   0   1 ].

Q.6. Given the matrix pair (A, B) as that in Q.5, determine an appropriate state 
feedback gain matrix F such that A +B F has its eigenvalues at –1, –1 j, 
respectively. Show that such an F is unique.

Show by an example that solutions to the pole placement problem for a 
multiple input system is non-unique. Hint: put the pair in the CSD form.

0 1 0 0
, with  0 0 1 , 0

2 1 1 1
x A x Bu A B

   
         
      



y C x



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 186  BEN M. CHEN

Advanced Concepts in Linear SystemsAdvanced Concepts in Linear Systems
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System	invariant	structural	indices	(infinite zeros, etc…)

.

Kronecker canonical form characterizes all the structure properties of linear 
time-invariant systems, i.e., it contains almost everything one needs to know 
about linear systems. More detailed illustrations on are given on the next…

In ,vhat follow however, we will introduce the well-known Kronecker canon-
-·-·-·-·-·-·-·-·-· -·-·- ·-

ical form for the y tern matrix PE ( ) , which i able to di play the invariant zero 

tructure invertibility structure and infinite zero tructure of ~ altogether. Al­

though it i not a imple ta k (it i actually a pretty difficult ta k for y tern 'Nith 

a high dynamical order), it can be hown (see Gantmacher [56] that there exist 
-·-·-·-·-·-·-·-·- ·-·-·-

non ingular tran formation U and V uch that PE ( ) can be tran formed into the 

fallowing form: 

Rrmc' I - H , Im0 } 0] 
0 ' 

(3.6.11) 

where O i a zero matrix corre ponding to the redundant y tern input and output 

Jl 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 188  BEN M. CHEN

1

1

0

( )

0

pb

mc

l

l

r

r

m

sI J
L

L

R
U P s V

R

I sH
I



 
 
 
 
 
 
 
 
 
 
 
  
 
 
  





Left invertibility structureLeft invertibility structureInvariant zerosInvariant zeros

Right invertibility structureRight invertibility structure

Infinite zero structureInfinite zero structure

rank(D)rank (D)

Redundant 
inputs 

or outputs

Redundant 
inputs 

or outputs

Kronecker	form	of	linear	time‐invariant	system…	
Jl 

~ 
[-1-s-H ) 

f @ .. 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 189  BEN M. CHEN

Jl 
J i in Jordan canonical form and I - J ha the following Lf 1 Ti pencil 

a it diagonal block , 

i - 1 

(3.6.12 
- 1 

s - i 

j == 1 2 . . . Ti and · == 1 2 j • • • b · and Lzi i == 1 2 j • • • Pb, i an ( li 1) x li 

bidiagonal pencil given by 

·-r-1 
l 

(3.6.13 
- 1 
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Rri , · == 1 2, . . . m e is an r i x ( 1'i + 1) bidiagonal pencil given by 

- 1 

Jl 

Rri :== (3.6.14 

s - 1 

H i nilpotent and in Jordan form, and I - sH ha the following m d pencil a it 

diagonal block 

- s 

1 l 
7J 

qi> 0, . == 1, 2, ... 1nd (3.6.15 

and finally m o in Imo i the rank of D i.e. m o == rank (D ) . 
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Everything 
about a linear 
system is 
characterized 
by these 
indices. 
Control 
performance 
is fully 
determined 
by these 
structural 
properties!

Everything 
about a linear 
system is 
characterized 
by these 
indices. 
Control 
performance 
is fully 
determined 
by these 
structural 
properties!

 is a SISO system, i.e., m=1 , q1 is also called a relative degree.
If

Definition 3.6.3. Consider the given y tem ~ of (3 .1.1) who e system matrix 

PE ( s) ha a Kronecker form a in (3. 6.11) to (3. 6.15). Then, 

1. i 1 aid to be an invariant .zero of~ with a geometric multiplicity of T i 

and an algebraic multiplicity of~;~1 n13i ,J . It has a zero structure 

(3 .6.16) 

i 1 said to be a simple invariant zero if n13 . 1 = · · · = n13 . T · = 1. 
i. , i. , 'l, 

2. The left invertibility _tructure of~ i defined a 

(3 .6.17) 

3. The right invertibility structure of~ i defined a 

(3 .6.18) 

4. Finally, m0 i the number of the infinite zeros of~ of order 0. The infinite 

zero structure of~ of order higher than O i defined a : 

(3 .6.19) 

We ay that~ has m d infinite zero of order q1 q2 , . . . qmd , re :pectively. 

If q1 = · · · = qmd and m o = 0, then~ i aid to be of uniform rank q1. 

Jl 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 192  BEN M. CHEN

U V  

Note: U and V can be obtained using m-function KCF in Linear Systems Toolkit.

kcf
ex1361

(to be demonstrated using MATLAB in class)

Jl 
Example 3.6.1. Consider a y tern :E of 3 .1.1 ) characterized by 

r~ 1 1 0 0 1 1 ~l r~ 0 0 
1 1 0 0 1 1 0 0 

0 0 1 1 0 1 1 
~I 

0 0 0 

A = 0 0 1 0 0 1 1 B = 0 0 0 
3.6.20 

1 1 1 1 1 1 1 1 II , 0 0 1 ' 
1 1 1 1 1 1 1 1 II I 1 0 0 
0 0 0 0 0 0 0 

iJ l~ 0 0 
1 1 1 1 1 1 1 1 0 

ro 0 0 0 0 1 0 0 11 
D = rn 

0 0 1 
C = 0 0 0 0 0 1 0 3.6.21 l~ ~J' ~r 0 1 0 0 0 0 0 

It can be hown u ing the technique to be given later in Section 5.6 of Chapter 5) 

that with the following tran formation 
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Leopold	Kronecker	
1823–1891

German	Mathematician

Felix	Gantmacher	
1908–1964

Soviet	Mathematician

Jl 
the Kronecker canonical form of ~ i 

. 
follow : given a 

I - -1 0 0 0 0 0 0 0 0 

~ l 0 -1 0 0 0 0 0 0 0 0 
0 0 -1 0 0 0 0 0 0 0 
0 0 -1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

UP'E- (s) V = 0 0 0 1 0 -1 0 0 0 0 0 
' 

0 ' 0 o : 0 0 0 l 0 0 0 
' i 

0 ' 0 0 1 0 0 0 0 1 0 0 0 ' ' 
0 ' 0 o : 0 0 0 0 '·-o. 1 ' 

' ' 

0 ' 0 o : 0 0 0 0 0 l 
' ' ' 

0 ' 0 Q I 0 0 0 0 0 0 '·,{), l ' ' ' y v t ' ' .... 
Thu we have i(L) = {.J} t(L) = {2} t(L) = {1} , * (L) = .'fl. 2} 
. 

~ ha a non imple invariant zero at s = 1 and two infinite zero of order 1 1.e. 

and 2 re pectively. ~ is degenerate as both St (~) and s; (~) are nonempty. 
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道

Structural Decompositions of LTI SystemsStructural Decompositions of LTI Systems

,x A x Bu y Cx  

Jl 
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aaA

A

0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

,0 0 0 0 0 0

0 0 0 0 0 1

 
 
 
 
   
 
 
 
       





 
      




B

0
0
0
0

0
1

 
 
 
 
   
 
 
 
  





 C 0 1 0 0 0 0 

Transformed	System:

aaA

A BF

0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

0 0 0 0 0 1
0 0 0 0 0 0

 
 
 
 
    
 
 
 
  





   
      




y 
Theorem 5.2.1. Con sider tl1 e SISO system of (5.2.1). Th ere exist nonsingular 

state, input and output transformations rs E IR_n X n r i E lR_ and r o E IR., which 

decompose d1e state space of~ into two subspaces Xa and x d. The e two sub-

pace corre pond to the fi_nite zero and infi_nite zero structures of~ , respecti vely. 

The new state space, input and output space of th e decomposed system a.re de­

cribed by the follo wing et of equation : 

X = 

and 

x 1 = x2, y = x 1, 

(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5 ) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

Furd1 ermore, J\. (Aaa) contains all the system in variant zeros and nd is the relative 

degree of~. 

Jl 
.i· = ~ .r + B u. 

y=C.r. (5.2.1) 

Transformed System: 

Aaa * 0 

0 0 1 

0 0 0 

A= 0 0 0 

0 0 0 

* * * 

c =[ o 1 0 

Aaa 
0 

0 

A+BF= 0 

0 

0 

0 0 

0 0 

1 0 

0 0 

0 0 

* * 

0 0 

* 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

1 

* 

0] 

0 

0 

1 

0 

0 

0 

B= 

0 

0 

0 

0 

0 

1 

0 0 

0 0 

0 0 

0 0 

0 1 
0 0 
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Invariant zero 
dynamics

Invariant zero 
dynamics

Infinite zero 
structure

Infinite zero 
structure



  

The shorter this chain 
of integrators is, the 
easier to control it…

Jl 

.l' 

~ 
ll 

ate: the ignal given by tlw double-edged arrow i a linear . ombination of the tate . 

Figure 5.2.1: Interpretation of tructural decompo ition of a SISO y tern. 
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5.3 Strictly Proper Systems 

1 ext, we on ider a general tri tly proper linear y tern~ chara terized by 

{
. A + B u 

y - C . ' 
(5.3.1) 

where x E ]Rn u E :R.m and y E :[RP are the tate input and output. Without lo of 

generality, we a ume that both Band Care of full rank. We have the following 

truct I ral or pecial coordinate ba. i decompo ition of~-

Theorem 5.3.1. Con ider the trictl proper y te111 ~ characterized by (5 .. 1). 

There exi ta non ingular tate tran forn1ation r s E :R.n x n a non ingular output 

tran formation r O E :R.p x p and a non ino-ular input tran for111ation ri E :[Rm x m 

that will reveal all the tru tural propertie of~. More pecifi ally we have 

(5.3.2) 

with the new tate variable 

X = (5.3.3) 

Jl 
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Jl 
tbe new output variable 

~ y == (Yd )1 

Yb 
Yd E R'Tnd ' Yb E JR.Pb (5.3.4) 

and ,tl1e new input ariables 

~ = ( l: ) , d E JR(rnd , Uc E llimc. (5.3.5) 

Ftuther the ;tate variable d -an be de -ompo ed a : 

Yd 1 
' 

Yd2 
Yd == (5.3.6) 

E ll1)qi 
X d i - .IN.. ., d i == 

' ' 
· == 1,, ..... . . . ,, md :, (5.3.7) 
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wi tlJ q1 < q2 < · · · < qmd. The tate variable b can be decon1po ed as 

b = 

X b,p6 

Yb = 

bil 

bi2 

Yb ,1 
Yb 2 

Yb ,pb 

i = 1, 2 ... Pb , 

(5.3.8) 

(5.3.9) 

witlJ li < l2 < · · · < lp6 • And finally the tate variable c can be deco1npo ed a 

c -

C 'I, 

< rmc· 

· c ,1 

C 2 

( c ,i,1 \ 

~ :::J 
1, 

Uc 1 

Uc 2 

i = l2 ... nc 

5.3.10 

5.3.1 1 

Jl 
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invariant 
zero

(JCF)

left 
invertibility 

structure
(OSD)

right 
invertibility 

structure
(CSD)

The decon1po ed y ten1 can be expre ed in tl1e 

followino dynan1i al equation : 

for each ub y tern b. i i = 1, 2~ ... Pb 

b i 1 = Xb i 2 
' ' 

L bd ,; 1Yb + L b ,; . 1 Yd., Yb · - Xb · 1 " " )i - ,i , 

for each ub y te1n c.i · = 1, 2 ... 1 me 

c.i 1 = c.i . 2 L eh i .1Yb + L ed i, 1Yd 

c i Ti - 1 = c i Ti + L eh i,ri - 1Yb + L ed i Ti - 1Yd , 

Xe i,ri = A e,i,a a A.c i c c + L eb,i Ti Yb+ L ed i )Ti Yd 

5.3.12 }--

5.3.13 

5.3.14 

5.3.15 

5.3.16 

5.3.17 

5.3.18 

Jl 
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infinite zero structure. why?

Ali	Saberi
Washington	

State	
University	

Pedda	Sannuti
Rutgers	
University
USA

We note that for each of these SISO subsystem, 
the corresponding transfer function from its 
input ud,i to its output yd,i can be expressed as

It has a zero at  with an order of qi. 

) 01( ) (
ii q siH s H s

s 
  



.and fin.ally for .a 11 ub 

di 1 = 

di2 = 

a i, 2 + La i 1 Ya 

a i, 3 + La i 2Ya 

. = 1 2, ... , ffid 

@ = d i 1 • ) , 

±a,i,qi = Aai.aXa+Aaic c + Adib b + Adid a + ~ 

5.3. 19 

5.3.20 

5.3 . ..., l 

where Aaa,, Lab ... , Adi a .are on :tant rnatri e of .appropriate din1e11 ion . 

Jl 

• 
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invariant zeroinvariant zero

left invertibility 
structure

left invertibility 
structure

right invertibility 
structure

right invertibility 
structure

infinite zero 
structure

infinite zero 
structure



  

  



Xa - the subsystem without direct input and outp ut: 

~----t A aa 

X a 

X b ,i - the chain o f integrators without a direct input: 

X c ,i - d1 e chain of integrators widwut a direct output: 

X . c,i, r i =-------

x d i - d1 e chain o f integrators with direct input and output: 

X ci ,i, qi ~----

Jl 
}-

}-

}-
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scb
ex1531

Jl 
Example 5.3.1. Con ider a trictly proper y tem I: characterized by 5.3.1) with 

0 0 2 - 1 2 0 - 1 2 0 - 1 0 2 2 
0 2 4 - 5 3 2 - 4 3 2 - 4 0 5 0 
0 - 1 - 1 1 0 - 1 1 0 - 1 1 - 1 - 1 1 
0 0 0 3 - 2 0 3 - 3 0 3 1 - 1 0 
0 2 2 0 - 2 2 1 - 3 2 1 1 1 - 2 
0 3 3 - 1 - 2 3 0 - 2 3 0 2 2 - 3 

A = 0 3 3 - 1 - 2 3 - 1 - 1 3 0 1 3 - 3 
0 3 3 - 1 - 2 3 - 1 0 3 0 1 4 - 3 
0 2 2 1 - 1 2 0 0 2 1 1 3 - 1 
1 1 1 1 0 1 0 1 1 0 2 2 0 
0 0 - 2 4 - 2 0 2 - 2 0 2 1 - 2 0 
0 - 1 - 3 7 - 3 - 1 4 - 3 - 1 4 2 - 4 1 

- 1 0 0 1 1 0 - 1 2 0 - 1 0 0 2 

1 1 0 0 
1 1 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 1 1 0 1 1 - 1 0 1 - 1 0 1 - 1 - 1 2 - 1 

B = 0 1 1 1 C = 0 0 0 1 - 1 1 0 - 1 1 0 0 0 0 

0 1 2 2 0 1 1 0 - 1 1 0 - 1 1 0 1 0 - 1 

1 1 1 1 0 0 0 1 - 1 0 1 - 1 0 1 1 - 1 0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
1 1 1 0 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 204  BEN M. CHEN

The required state, input and output transformations…

These transformations 
are non-unique!

Note: It can also be done using an m-function SCB in Linear Systems Toolkit.

Jl 
- 1 - 1 1 - 1 3 - 3 0 0 0 2 1 0 
- 1 0 0 10 0 0 0 0 0 3 2 1 

0 - 1 - 2 0 - 4 - 1 0 0 0 0 0 0 0 
0 0 1 1 0 1 0 0 0 0 0 0 0 
0 0 0 1 - 1 0 0 0 0 0 0 0 0 
1 - 1 2 0 4 0 1 0 1 0 4 1 0 

rs = 0 - 2 2 0 5 0 1 1 1 0 6 2 0 
1 - 3 7 0 14 1 1 1 2 - 1 11 4 1 
0 - 2 4 0 9 0 0 1 1 0 7 3 1 
1 - 1 5 0 10 0 0 0 1 0 6 2 1 
1 1 0 2 0 4 0 0 0 0 0 0 0 
1 1 1 2 1 4 0 0 0 0 0 0 0 
0 0 2 1 6 2 0 0 0 0 2 2 1 

[_~] 
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The transformed system

[ F	]

[ K	]

   A A BF K C in an essential form shown on the next page…

道

Jl 
- - - 1 - 1 - 1 · ( A B C) = (r Ar s , r s BI\ ,, r O e r s) 

-2 0 0 11 0 0 0 0 1 1 0 0 0 0 0 0 
1 1 -2 0 - 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 1 1 2 0 0 0 0 2 2 0 0 0 0 0 0 
0 0 1 0 2 0 0 0 0 2 2 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 -1 -1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 

A = 0 0 1 0 2 0 0 0 0 1 0 0 B = 0 0 1 0 
0 0 10 0 0 0 1 0 0 0 0 0 0 
- -1 1 0 1 1 2 0 0 0 0 0 1 
2 -2 12 6 1 1 2 6 2 1 0 0 0 
0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
2 -2 :3 1> -1 1 1 2 1 l 1 .5 1 0 1 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

C = 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 

+ 
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道

The essential structures of the system…

two invariant 
zeros

two invariant 
zeros

left invertibility 
structure

left invertibility 
structure

right invertibility 
structure

right invertibility 
structure

infinite zero 
structure

infinite zero 
structure

the essentials

Jl 
I -2 0 0 0 0 0 0 0 0 0 0 0 ~ l 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A = 0 0 0 0 0 0 0 0 0 0 0 0 B = 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 

0 0 0 0 0 0 0 0 0 l 0 0 0 

C = 0 0 0 0 0 0 0 0 0 0 l 0 0 
u 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 

-\(Aaa) = { - 2, 1} R(~) = {1, 2} CX) (~ ) = {1 3} 
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Just for fun…

The link between Taoism and chain of integrators...

道

《系统与控制纵横》

第6卷第1期第81–84页, 2019

Jl 

( -tiii * l ,$-. :t. * -ii( m ~ ~k 6 ,&_ tt .f tic, * i~tt ~A½ Jfi½t ( .!Jl, 00 1 ) ,{.i 1-t!?. ~ f7 81 +t-ttt- Z 11 r ift ,f:t i.i J [ l] i -=-

~ ~~ t ~ ~ ~ ~ r A~~, ~~k, k~iit , irt ~~~ J ~~~~*o 

u_i tf~Art1m:S:ilimi~ 01W'f i2 r ~JJ ·:r1irr:tm J c21z~er~ 9] TJJJJ = "*~xtiliiTJ~ , tm:ti□ -++--++-f)c1:. , n 
Jt;:: ~ , 1£ :=1.:: J ~ ij~ :w 71C~s: Jff.t J: ·tB 7F i1. ~ ~ ~- ~r 81 [Q ~Jr lR 5J 1Ji : f A$ ±ilii , iilii ·'t x , x $ J1t ] , ~& -=f 

J1t ~ ~ -=f J o Tm.± $= ~ ~ ~:R 5J tJi 01 :t~ t 1J ~ ~Jc t!2 tvi 1~ f8J * , filP ~ -J· J5fr i5l 81 r :i1~}t El 1'!.U , ~ 1§ }@, & ti 

01 t~ $1J-6& o J5Jr i~ 81 r j( l1t~ f8J ] ! " * }( '; i:i\Jij 10 ~ -J ~ ~f ffi ft ~ ~ tR ~ ,& t_BH~ $1J ~ fJE El1 * ~ o 
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natural order of the universehavenearthhuman
• • • 

7'J ~ -' - ~ J ~mJJ/l , ft 11 J ,&. . Xren = A, Xdi = J:-tl!,, Xtian = J:::..., 

xren 0 1 0 0 xren 0 

Xdi 0 0 1 0 Xdi 0 
+ u 

Xtian 0 0 0 1 xtian 0 

Xdao 0 0 0 0 Xdao 1 

X= 

xdao =U= f(x) =F x 

• 
Xciao - ill.. 

·c~ 
o"O-~ 

c~~ 
N~ 

-<ptv."0-0 

\Ot~··· 

( 3 ) 

(4 ) 

( 5 ) 



CUHK MAE ENGG 5403 – PART 1: THEORY ~ PAGE 209  BEN M. CHEN

A	brief	introduction	of	geometric	approach	to	linear	systems……	
Jl 

3.7 Geometric Subspaces 

The geometric approach to linear systems and control theory has attracted much 

attention over the past few decades. It was started in the 1970s and quickly ma­

tured in the 1980s when researchers attempted to solve disturbance decoupling 

and almost disturbance decoupling problems, which require the design of appro­

priate control laws to make the influence of the exogenous disturbances to the 

controlled outputs equal to zero or almost zero (see, e.g., Basile and Marro [9], 

Schumacher [126], Willems [151,152], Wonham [154], and Wonham and Morse 

[155]). In fact, most of the concepts in linear systems can be tackled and studied 

nicely within the geometric framework (see, e.g., the classical text by Wonham 

[154] and a recent text by Trentelman et al. [141]). The geometric approach is 

mathematically elegant in expressing abstract concepts in linear systems. It is, 

however, hard to compute explicitly various subspaces defined in the framework. 
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Definitions of other geometric subspaces can be found in Chapter 3 of Chen et al…

Jl 
The following are the definition and properties of the weakly unobservable 

............................................. 

subspace adopted from Trentelman et al. [141]. 

Definition 3. 7 .1. Consider the continuous-time system ~ of (3 .1.1 ). An initial 

state of~, x 0 E ]Rn , is called weakly unobservable if there exists an input signal 
............................................. 

u( t) such that the corresponding system output y( t) == 0 for all t > 0. The 

subspace formed by the set of all weakly unobservable points of~ is called the 

weakly unobservable subspace of~ and is denoted by V* (~). 

The following lemma shows that any state trajectory of ~ starting from an 

initial condition in V* (~) with a control input that produces an output y(t) == 0, 

t > 0, will always stay inside the weakly unobservable subspace, V* (~). 

Lemma 3.7.1. Let x o be an initial state of~ with x o E V* (~) and u be an input 
.............. 

such that the corresponding system output y(t) == 0 for all t > 0. Then the 

resulting state trajectory x (t) E V* (~) for all t > 0. 
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Links	between	the	special	coordinate	basis	and	geometric	subspaces…	
Jl 

The structural decomposition decomposes the state space of ~ into several 

distinct parts. In fact, the state space X is decomposed as 

(5 .4.37) 

Here x a- is related to the stable invariant zeros, i.e., the eigenvalues of Aaa are the 

stable invariant zeros of~- Similarly, X~ and x: are respectively related to the 

invariant zeros of ~ located in the marginally stable and unstable regions. On the 

other hand, Xb is related to the right invertibility, i.e., the system is right invertible 

if and only if Xb == {O}, while Xe is related to left invertibility, i.e., the system 

is left invertible if and only if Xe == { 0}. Finally, Xd is related to zeros of ~ at 

infinity. 

There are interconnections between the subsystems generated by the structural 

decomposition and various invariant geometric subspaces. The following proper­

ties show these interconnections. 
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 invariant zeros

 left invertibility

 right invertibility

 infinite zeros

 stable zeros

 zeros on jω axis

 unstable zeros

Partition	of	the	state	space	in	
the	special	coordinate	basis…

Jl 
Property 5.4.6. The geometric subspaces defined in Definitions 3. 7.2 and 3. 7.4 

are given by: 
............................................................................• 

~ 1. x; EB x2 EB Xe spans v- (~) . l . . 
~ •..........................................................................•. 

2. x: EB Xe spans v+(~). 
.•....................................................................................... . ~ 

~ 3. X; EB X2 EB x: EB Xe spans V* (~). ~ 
· ........................................................................................• 

4. x: EB Xe EB Xd spans s- (~) . 
......................................................................................... . . 
~ 5. x; EB x2 EB Xe EB xd spans s+ (~). I . . ........................................................................................ 

6. Xe EB xd spans S * (~). 

7. Xe spans R * (~). 

Xa ¢:i invariant zeros 

~ Xb ¢:i left invertibility 
X == 

Xe ¢:i right invertibility 

X d ¢:i infinite zeros 

X a ¢:i stable zeros 

X a == X~ ¢:i zeros on jw axis 

X + ¢:i unstable zeros 
a 

8. X; EB X2 EB x: EB Xe EB X<l spans N * (~) . 
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What	are	these	geometric	subspaces	for?

Let us consider the following linear system

where x is the state, u the control input, z the output and w is disturbance 
entering the system as an additional input.

We can show that there exists a state feedback control law                such that 
when it is applied to the given system, the resulting closed-loop system transfer 
matrix from w to z can be made perfectly zero (disturbance	decoupling), i.e.,

if and only if                                In the special coordinate basis,   

and                                                                         . It means the disturbance input can 
only allow to enter in the subsystem spanned by                                              . 

,x A x B u E C x D uw z    

u F x

   1( ) 0zwH s C DF sI A BF E    

Im ( )E 

Jl 

V*(~ ) . .•.....•..• 

X == Xa- EB X~ EB x: EB Xb EB Xe EB Xd ...... 

X; EB X~ EB x: EB Xe spans V* (~) 
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If in addition it requires A+BF to be asymptotically stable, the 
disturbance decoupling problem is solvable if and only if the disturbance 
enters the system through                   , which spans a geometric subspace                 

if (A,B,C,D) has no invariant zeros on the imaginary axis. 

Note that if (A,B,C,D) is right invertible and is of minimum	phase	with no 
infinite zeros, then                    spans the entire state space      of the given 
system, which means the disturbance decoupling problem is solvable for 
any disturbance entering the system. 

Such a system is super	good	for disturbance rejection under state 
feedback.

We will examine this issue further in the second part of this course when 
we are studying topics related to H2 and H control.

Jl 

v-(~) 
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We can also show that if (A,B,C,D) has no invariant zeros on the imaginary 
axis and if the disturbance enter the system through the subspace               , 
which is spanned by                              , then there exists a stabilizing state 
feedback law such that when it is applied to the given system, the resulting 
closed-loop system is asymptotically stable and the resulting closed-loop 
transfer function matrix from w to z can be made arbitrarily small (almost	
disturbance	decoupling).

Note that if (A,B,C,D) is right invertible and is of minimum	phase, then                    
or               spans the entire state space     of the given system, 

which means the almost disturbance decoupling problem is solvable for any 
disturbance entering the system. 

Such a system is good	for disturbance rejection under state feedback.

Jl 
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We conclude this part on linear systems theory by noting that the topics covered in this 
course are pretty elementary, but sufficient for students to understand basic linear system 
theory and to grasp basic ideas and solutions to many linear control problems. 

Some advanced topics such as the geometric subspaces of linear systems, which are 
instrumental in developing many control theories (including some nonlinear control 
theories), are left out as there is too much mathematics involved.

Interested readers can find more 
detailed information in the text by 
Chen, Lin and Shamash (2004). 
One can also utilize a Linear 
Systems Toolkit developed by 
Lin, Chen and Liu, available for 
free by request, for computing all 
the structural decompositions and 
geometric subspaces of general 
linear systems. 2004

Zongli	Lin
University	of	Virginia

Yacov	Shamash	
Stony	Brook	University

Jl 
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Other advanced linear systems 
theory for control using a 
geometric approach can also 
be found in the literature, e.g., 
the texts listed on the right. 

Finally, we note that the 
control performance of a 
system depends more on its 
system structural properties 
rather than control 
methodologies used. 

Don’t expect to have a good 
performance if the system to 
be controlled is bad!

W.	M.	Wonham
University	of	Toronto

Canada

H.	L.	Trentelman
University	of	Groningen

The	Netherlands

20011985

\\'. \ 1urray m 

Linear Multivariabl 
ntrol 

Geometric AJll)l'OQCh 

Than! Ed111on 

: ' Spranger-Verlag 
v 

Control Theory for 
Linear Systems 

Jl 
--r:T:if .... , ·:: . 
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Xinmin	Liu
University	of	Pennsylvania

➔ C <D Not secure I www.mae.cuhk.edu.hk/~bmchen/linsyskit/index.html 

Linear Systems Toolkit 
Zongli Lin, Ben M. Chen, Xinmin Liu 

The Linear Systems Toolkit contains 66 m-functions that real ize all the structural decompositions of linear systems, and their 
properties (such as finite and infinite zero structures, invertibility structure and geometric subspaces) as well as applications 
(such as system factorizations and sensor selection) , documented in the monograph, Linear Systems Theory: A Structural 
Decomposition Approach, autho red by B. M. Chen, Z. Lin and Y. Shamash (Birkhauser, Boston, 2004) . 

The beta version of this toolkit is currently avai lable for free. Interested readers might wish to register below. A zipped file that 
contains all m-functions of the toolkit will then be sen t to the registered email addresses. Registered users will also automatically 
receive any adva nced version of the toolkit through email. Nonetheless, the owners of the toolkit reserve all the rights . Users 
should bear in mind that the toolkit downloaded from the web site or received through email is free fo r use in research and 
academic work only. Uses for other purposes, such as commercialization, commercial development and redistribution withou t 
permission from the owners, are strictly prohibited. 

The contents of the toolkit can be viewed by clicking this link. Some of these m-functions are interactive, which require users 
to enter desi red parameters when executed. Some are implemented in a way that can return results either in a symbolic or 
numerical fo rm. Detailed descriptions of the toolkit and the user manual can be found in Chapter 12 of the monograph. 

Interested readers please send us an email with (1) your name; (2) email address; (3) institution; and (4) coun try. A zipped file, 
linsyskit.zip, containing all them-functions of the toolkit will be sent to your email address. Please note that we might verify your 
information first befo re sending out the package to you. Once again, note that your information will be added to our database for 
dis tribution of futu re versions. 

> > ... This link leads to the list of errata for the monograph mentioned above ... 

> > ... This link leads to bmchen.net ( = www.mae.cuhk.edu.hk/ ~bmchen) for other toolkits ... 
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Linear	Systems	&	Control	Toolkit	m‐functions

For control system 
design in Part 2…

Copyrighted  Ben M. Chen

Geometric 
subspaces…

Tz o .m 
zws .m 

addps .m 
atea .m 

bdcsd .. . m 

bdosd .. m 

blkz .. ·m 

csd ,_.m 

c t ridx .. m 

daddps .m 
dare .m 
datea .m 
ddpcm .m 
dgm2star .m 
dgmBstar .m 
dh2state .m 

[ dhBstate .m 
d"o fac t . m 

dmp fac t . m 

dscb .. rn 

dssd .. rn 

ea ds .. Il.il 

gcfact .. m 

gm2sos .m 
gm2star .m 
gm8sos .m 
gmBstar . 
h2care .m 
h2dare .m 
h2out .m 
h2state . 
hBcare .m 
hBdare .m 
hBout .m 

hBstate .m 

i nfz .. m 

i nfz ds .. m 

i nv z .. m 

i nv z ds .. m 

iofac t .. m 

jcf .. m 

kcf .. m 

l i nv t .. m 

l i nv t ds .. m 
·- -
trloops .m 

·morseidx .. m 

mp fac t .. m 
n star .m 
norrnrank .. m 

obvidx .. m 

osd .. m 

r i nv t .. m 

r nv t ds .. m 

v _Plus .. rn 

[ r _star .m 
rjd .. m 

r osy s 4 ddp .. m 

s lambda .m 
s minus . m 
s_p us .m 
s star .m 

s a a c t . m 

s a s en .. m 

scb .. m 

scbraw . m 

sd ds .. m 

ss2t f ds .. rn 

ssadd .. m 

ssd .. rn 

ss ntsec .m 
ssorder .m 
v lambda .m 
v m nus . 

v star .m 
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What	is	a	system?

A system is a set of integrated chains of things.

In this course, 

A system is a set of chains of integrators...

End of Part One… End of Part One…

-'••' ' ' 

T 

. ·<} C· O· . c .. , 




