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What are we going to learn in this class?
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Questions 1 to 5 will be answered in Part 1, and the last one in Part 2...
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My philosophy towards control systems design......

» Break the system to be controlled into essential pieces and examine

their inherent properties.

» For alousy system, it is better to re-design the system itself

» Do not push to the physical limits of the system

L &

» Choose the simplest possible control law
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My philosophy towards control systems design......

your teaching style? @ GSM

Ben: 1 have taught both under-
graduate and graduate control classes,
including classical feedback control,
computer control systems, optimal
control, and multivariable control sys-
tems. My favorite course is a graduate-
level module on multivariable control,
in which I need to cover topics ranging
from classical techniques, such as LQR
control, Kalman filter, LQG, and LTR
control methods, to modern control
theories, such as H, control, robust and
H.. control, and disturbance decou-
pling problems. These topics happen
to be in line with my research interests.
Instead of focusing on mathematical
details, I spend considerable time giv-
ing students the overall picture and
development in the field by highlight-
ing interesting history and milestones
behind the theories. My homework
assignments are pretty unique too. I
challenge my students in the assign-
ments to beat the designs in my mono-
graphs. This teaching method forces
them to read and learn things beyond
the class and textbooks to complete
the assignments and familiarizes them
with control system design for real and
complicated problems. All my teaching
materials can be freely accessed from
my Web site at http://uav.ece.nus.edu.
sg/~bmchen/.

Q. What are some of the most promis-
ing opportunities in the control field?

Ben: In my opinion, the area of con-
trol applications is full of opportunities,
to tackle real and meaningful problems

and to attract more research funding.
Applications also challenge academic
researchers to think more realistically.

1 personally believe that a good contro
system design should not start from
differential equations but should be
down to earth and start from the hard-
ware level, including the selection and
blacement of sensors and actuators.

Q. You are the author of 11 books
in the control field. What topics do
these books cover?

Ben: 1 have authored or coauthored
ten monographs and one textbook, of
which eight are directly related to con-
trol theory and application. My earlier
monographs were more on systems and
control theory, including Loop Transfer

Profile of Ben M. Chen

Recovery: Analysis and Design (with A.
Saberi and P. Sannuti, Springer, 1993),
H, Optimal Control (with A. Saberi and
P. Sannuti, Prentice Hall, 1995), H,, Con-
trol and Its Applications (Springer, 1998),
Robust and H.. Control (Springer, 2000),
and Linear Systems Theory: A Structural
Decomposition Approach (with Z. Lin
and Y. Shamash, Birkhiduser, 2004).
My recent works focus more on con-
tirel applications, which include Hard
Disk "Biive Serve Systems (first edition
with T.H. L.ee and V. Venkataramanan,

Springer, 2002 second edition with
T.H. Lee, K. Pengand V. Venkatara-
manan, Springer, 2006and Unmanned

+ Current position: professor and area director of Control, Intelligent Systems, and

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 4
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ference Editorial Board, 1997-1998; associate editor, IEEE Transactions
on Automatic Control, 1999-2001; chair, IEEE Singapore Control Systems
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Notable awards: University Researcher Award, National University of Singa-
pore, 2000; Prestigious Engineering Achievement Award, Institution of Engi-
neers Singapore, 2001; Best Industrial Control Application Prize, Fifth Asian
Control Conference, Melbourne, Australia, 2004; IEEE Fellow, 2007; Best
Application Paper Award, 7th Asian Control Conference, Hong Kong, 2009.
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_ I'personally believe
that a good control
system design
should not start
from differential
equations but
should be down to
earth and start
from the hardware
level, including the
selection and
placement of
sensors and

actuators (to design

~—

a good system).
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Course outline

Introduction

Mathematical background materials
State space representation of systems
Realization of linear systems

Solution of state equations

Stability analysis

Controllability and observability
Systems zeros and invertibility

Some structural decomposition techniques
Review of classical control system design
State feedback design

Observer and compensator design

Modern control systems design

o o o o o o o o o o o o o o

Concluding remarks
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Preparation

Fundamental

Design

Conclusion
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Reading materials

o C.T. Chen, Linear System Theory & Design, Holt, Rinehart & Winston, 1984

v

o T. Kailath, Linear Systems, Prentice Hall, 1980 *?U;’

o B.M. Chen, Z. Lin, Y. Shamash, Linear Systems Theory, Birkhauser, 2004* | é ~

o L. Qiu, K. Zhou, Feedback Control, Prentice Hall, 2010* 7

o FEL. Lewis, Applied Optimal Control & Estimation, Texas Instruments, 1992 -

o B.M. Chen, Robust and H, Control, Springer, 2000* - %

o A. Saberi, P. Sannuti, B.M. Chen, H, Optimal Control, Prentice Hall, 1995 = —

o A.Saberi, B. M. Chen, P. Sannuti, Loop Transfer Recovery, Springer, 1993 "
=

o G.Cai, B.M. Chen, T.H. Lee, Unmanned Rotorcraft Systems, Springer, 2011* %

o B.M. Chen, et al., Hard Disk Drive Servo Systems, 2nd Edn., Springer, 2006* } %'J" M

* This text is available for downloading at SpingerLink Book through CUHK Library...
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Important Notice:

We will focus only on continuous-time systems and control in this course. All
results presented here, however, have discrete-time counterparts. Interested
students are advised to take another class on digital/computer control systems
if there is such a module at CUHK. Alternatively, one could grasp the ideas on

discrete-time version from the references listed on the previous page.

Basically, there are two ways to design and implement a control system for real

problems:

1. doing everything in the continuous-time setting to design an appropriate

control law and then discretize it when implemented to the real system.

2. discretizing the plant first and preparing everything in the discrete-time

setting to design a discrete-time controller for direct implementation.

The methods covered in this course are sufficient to handle the first case...
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Homework assignments and design problems

There will be six (6) homework assignments and two (2) design problems to

design controllers for real physical systems.

All students are expected to have knowledge in MATLAB™ (Control Toolbox
and Robust Control Toolbox) and SIMULINK™ after completing these
assignments. Homework assignments and projects are to be marked and

counted towards your final grade.

* Some problems might be solved by using a linear systems toolkit developed

by the course instructor and his co-workers.
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Final Grade = 30% ~ Midterm Exam
30% ~ Homework Assignments (6)
30% ~ Design Projects (2)

10% ~ Quizzes (to be randomly announced in the class)

Notice:

1. Lectures are to be conducted in the face-to-face mode. Online
lectures might be arranged if necessary.

2. Midterm exam will be of open-book. It covers materials in the first

part. The schedule will be announced in the class.

3. The following is the teaching assistant and his contact information.
You can approach the course TA for help when needed...

» XYZ, email: xyz@link.cuhk.edu.hk

4. There is no final exam for this course.
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Course Material Flow (theory)...

Introduction

~

Mathematical Background

~

J

Dynamic Modeling/State Space
Representation/Realization

\

/

[ System Dynamic Responses

J

-

-

System Stability

/)

-~

&

Controllability & Observability

~
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Systems Invertibility & Zeros

Structural Decompositions

Advanced Concepts of Linear
Systems™

Decomposition of Proper
Systems™

|
|
|

Linear Systems Toolkit }
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Course Material Flow (design)...

[ Review of Classical Control } \ Introduction to Robust Control )
( e . A / H, and H_ Control \
Stabilization of Multivariable L 2 ©
Systems
\ J
Loop Transfer Recovery

4 N\ . >

LQR Control Design

Kalman Filter \ Robust and Perfect Tracking
L J Control™

LQG Control _
L J [ Concluding Remarks }
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Introduction
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What is a system?
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Examples: Some systems of interest...

L/

]
o\;_ a

InstrumentationTools.com

oy 1
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Block diagram representation of a system

u () y() )

System

\ 4

u () is a signal or certain information injected into the system, which is called
the system input, whereas y (¢) is a signal or certain information produced by
the system with respect to the input signal u(?). y(¢) is called the system

output. For example,

input: voltage source

output: voltage across R,

u(®) © Ry [l y() Ey <

RZ
1) = “u(t
L [(v(@) R R, (1)

A
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Linear systems

u () y()

System

\ 4

\ 4

Let y,(#) be the output produced by an input signal «,(¢) and y,(¢) be the output

produced by another input signal u,(¢). Then, the system is said to be linear if
a) the input is « u,(¢), the outputis « y,(¢), where « is a scalar; and
b) the input is u,(¢) + u,(¢), the outputis y,(¢) + y,(?).

Or equivalently, the inputis o u,(7) + fu,(7), the outputis a y,(¢) + S y,(f). Sucha

property is called superposition. For the circuit example on the previous page,

5 Jau, @)+ Bu, ()] = 2 = u,(t)+f =

1) =
) R, +R, R, +R, R +R,

u,(t)y=ay )+ y, (@)

It is a linear system! We will mainly focus on linear systems in this course.
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Time invariant systems

u (1) y ()

System

\ 4

v

A system is said to be time-invariant if for a shift input signal u(7—¢,), the output of

the system is y (7—1¢,). To see if a system is time-invariant or not, we test
a) Find the output y,(¢) that corresponds to the input u, (7).
b) Let u,(¢) = u,(t—1,) and then find the corresponding output y,(7).
c) If y,(¢) = y,(t—1,), then the system is time-invariant. Otherwise, it is not!
In common words, if a system is time-invariant, then for the same input signal, the

output produced by the system today will be exactly the same as that produced by

the system tomorrow or any other time.
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Time variant systems examples

Example 1: Consider a system characterized by

y(1) = cos(t)u(?)

Step One:

n(@)=cos(t)-u(t) = yt—ty)=cos(t—ty) u(t—t,)

Step Two: Let u,(t) =u,(t —¢,) , we have

Y, (t) = cos(t) - u, (1) = cos(t) -u,(t—ty) # y,(t—¢,)

The system is not time-invariant. It is time-variant!

Example 2: Consider a financial system such as a stock market. Assume that you invest
$10,000 today in the market and make $2,000. Is it guaranteed that you will make
exactly another $2,000 tomorrow if you invest the same amount of money? Is such a

system time-invariant? You know the answer, don’t you?
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Systems with memory and without memory

u(?) y(?) )

System

A 4

A system is said to have memory if the value of y (¢) at any particular time ¢, depends on

the time from — o to t,. For example,

1 () 1 &
f) (~ C t u()=C—2 = y(t)=— |u@)dt | &
u()<> -l-y() (1) 7 y(t) CI() .cfﬁ
_ bt &
s
On the other hand, a system is said to have no memory if the value y»b
of y (¢) at any particular time ¢, depends only on ¢,. For example,
| I |
Rl + R
: =—2. A stati tem...
u(?) C_) R, (1) (1) RAR, u(t) static system

<
<
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Causal systems

u(tr)

t
System y (@) >

A 4

A causal system is a system where the output y(t) at a particular time t; depends on the

input for t < t,. For example,

+

u(t) & C T (0 u(t) = C% ) :% ju(r)dr

On the other hand, a system is said to be non-causal if the value of y(¢) at a particular

Claire Voyant
“1 see things!”

time t; depends on the input u (¢) for some ¢ > ¢,. For example,

y(@) =u(t+1)

in which the value of y(¢) at f = 0 depends on the inputat¢=1.
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What is control?
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Typical structure of a control system

/Information
Desired . it about the
Performance [leference} to | system:
REFERENCE ERROR DR - \ OuTPUT Y,

=>©=> '_l_(—YJ Controller =>| System to be controlled HJ>

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key issues: (1) How to describe the system to be controlled? (Modeling)
(2) How to design the controller? (Control)
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[
o o _
- Ol Economic System

Some control systems examples...
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Uncertainties, nonlinearities and disturbances

There are many other factors of life have to be carefully considered when

dealing with real-life problems. These factors include:

uncertainties
disturbances ww | noises
R(s) E(s) : '
;O 5 8 @ v 5
A Ys)
U(s) 4
nonlinearities

6) If you were the system, what would be your disturbances, noises,

®  uncertainties, and nonlinearities?
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A brief view on control design techniques

» Classical control

PID control, developed in 1930s/40s and used heavily for in industrial applications.

» Optimal control

Linear quadratic regulator control, Kalman filter, H, control, developed in 1960s to
achieve certain optimal performance.

> Robust control

H_ control, developed in 1980s & 90s to handle systems with uncertainties and
disturbances and with high performances.

> Nonlinear control

Developed to handle nonlinear systems with high performances.

» Multi-agent systems & cooperative control

It is a hot topic at moment.

» Intelligent control (with a possible link to deep learning...)

Knowledge-based control, adaptive control, neural and fuzzy control, developed to
handle systems with unknown models.
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An actual control system example...

o Flight formation of fully autonomous unmanned helicopters

Data Link
\
S
Commands
Mission/task Motion Control
Management Planning System
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Flight dynamics variable description

Variable  Physical description Yree_ Tip-path-plane (TPP)
5s

Px.Py. P Position vector along NED-frame x, y, and z axes Yip<R8{
w, v, w Velocity vector along body-frame x, y, and z axes Yeody q/8

| IS
Dy, Roll, pitch, and yaw angular rates Vv
0,0, Euler angles
s, by Longitudinal and lateral tip-path-plane (TPP) flapping angle :
Oped, int Intermediate state in yaw rate gyro dynamics XTPP*”a—l”/
Oat Normalized aileron servo input (—1, 1) East (Yieo)
on Normalized elevator servo input (—1, 1)
- . . . . B North
Ocol Normalized collective pitch servo input (—1, 1) (Xoeo) _—
Oped Normalized rudder servo input (—1, 1) (Zneo)

NED frame

First-principles modeling approach is adopted to obtain an accurate nonlinear model

in full envelope, which includes:

e kinematics e main rotor flapping dynamics

e 6 DOF rigid-body dynamics e yaw rate gyro dynamics

* G. Cai, B. M. Chen, T. H. Lee and K. Y. Lum, Comprehensive nonlinear modeling of a miniature unmanned helicopter, Journal of the American
Helicopter Society, Vol. 57, No. 1, pp. 012004-1~13, January 2012.
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Flight dynamic model structure

"’p«i.}m

Vwimi
Ve o

-

I/' Yaw rate 1)
g : 1 Pped )
Uped ——=  feedback T Tail rotor
\\ controller ,’I'
”/V ST ST :
- - ]
- s ]
- i Vertical fin
1
1
1st :
]
order ;
- Horizontal fin
1
1
A
i
! Fuselage
i
i _*
]
]
1
) £ ; N
2 nd Ocol . : {ain rotor
]
order .
S I \
S o
Slat 4 Main rotor ‘\‘
5 ' flapping b L 2
lon | dynamics /
ST <. “ - -

I
1
'
|
I
! Vi
; 9, =
1 o
' . Py \ -
| ya yid
1 ,’ \ \
i \ v
I
F'h ' 4 \ \ pn

——— 4 al \ el
"I T i \
! ‘\ ! ‘I
! o 1
1 6-DOF \ | :
1, 1 ! 1
| — H | - .
il ngid-body H ] Kinematics .
1o 1 1 I
1 d = I 1 1

\ ynamics b
M 'y ’ i \ V@, 0,0
b !

——
1
1 \ ’
I \ ’
i \ ’
I
I
'
1
'
I
I
1
1
I

The model structure can be determined by the first-principles approach...
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Some model parameters needed to be identified using a black box approach

\ 4

Unknown system

n(t)

AN

Black box modelling and system identification

u(t)

Y
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Artificial Results for Users
cla Big Data Processing -

Intelligence

——

|'--Data S-énsors- ]

:,"' .-.-. 4 = ' ( i j 4 o \
‘*‘IMission/task“‘“ */ Motion " Control , - N Positioning ‘
™ " | BB
) :.iManagement } ‘I Planning = System —n M /SLAM '
‘ \ Automatic }

|

\ Autonomous }

|

Intelligent & Autonomous

*B. M. Chen, On the trends of autonomous unmanned systems research, Engineering, 2022. https://doi.org/10.1016/j.eng.2021.10.014

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 30 © BEN M. CHEN



Mathematical Background
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Vector spaces and subspaces

We assume that the reader is familiar with the basic definitions of scalar fields and
vector spaces.

Let X’ be a vector space over a certain scalar field K. A subset of X', say S,
is said to be a subspace of X if § itself is a vector space over K. The dimension
of a subspace &, denoted by dim S, is defined as the maximal possible number of
linearly independent vectors in S.

We say that vectors s1,82,...,5: € S, k = dimS, form a basis for § if
they are linearly independent, i.e., Zf'zl «;s; = 0 holds only if a; = 0. Two
subspaces V and WV are said to be independent if V N W = {0}.

Example:
(1)

s;=|0
\0)
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(0
1

0

»
>

for a basis for 3D.

( linate > y

/ Y-coordinate
X

X-coordinat
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Definition 2.2.4 (Kernel and image of a matrix). Given A € C"™" (orR™""),

a linear map from X =C" (orR") to Y =C"" (orR""), the kernel or null space of
A is defined as

ker (A) :={x € X| Az = 0}, (2.2.8)

and the image or range space of A is defined as
im(A) = AX :={Ax |z € X'} (2.2.9)

Obviously, ker (A) is a subspace of X', and im (A) is a subspace of ).

Example:

= — =< + . 1m =
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Definition 2.2.6 (Invariantsubspace). Given AcC"”™" (orR"™"), a linear map
fromX = C" (orR") to X, a subspace V of X is said to be A-invariant if

Ay C V. (2.2.11)

Such a 'V is also called an invariant subspace of A.

Example:

1 2 1
A= {2 4} » Q= {a(zj} is an invariant subspace of A.
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Matrix inverse

If two square matrices A € C"*" and B € C""" satisfy AB = BA = I,
then B is said to be the inverse of A and is denoted by A~!. If the inverse of A
exists, then A is said to bemonsingular; otherwise it is singular. We note that A is
nonsingular if and only if det (A) # 0. The following identities are useful.

(I + AB)'A = A(I + BA)™ ', (2.3.14)
I+C(sI —A)'B"'=I1-C(sI — A+ BC) 'B, (2.3.15)
and
(I -BD) ' =1I+B(I-DB) 'D. (2.3.16)
If A and B are nonsingular, then
(AB)' =B '4™
- - —1 -
A 0 A1 0
Cc B| | -BlcA™! B‘1] edul)
= _1 =
A D A-1 —_A-1pB-1
SOOI AEET G
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Eigenvalues: Given an n x n matrix A, a complex scalar A is said to be

an eigenvalue of 4 1f
Ar=Xr (<= (M —A)x=0), (2.3.30)

for some nonzero vector & € C". Such an x is called a (right) eigenvector associ-
ated with the eigenvalue A.
It then follows from (2.3.30) that, for an eigenvalue A,

rank (Al — A) <n (< det(Al — A) =0). (2.3.31)
Thus, the eigenvalues of A are the roots of its characteristic polynomial,
XA i=det A\ —A) = X"+ a1 " 1+ -+ a1 A+ an, (2.3.32)

which has a total of n roots. The set of these roots or eigenvalues of A is denoted
by AM(A) = {\1, Ao, ..., \,}. The following property is the Cayley—Hamilton
theorem,

Y(A) = A"+ A"+ o+ a, 1A+ a,l = 0. (2.3.33)
X
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We can show that

A=| 0O 0 1

has a characteristic polynomial of
Arthur Cayley

1821-1895
A —1 0 British Mathematician

y(A)=det(AI-4)=[0 A2 -1 |=A+aA’+aA+a,

a, a, A+a,

Generally, we can show that

0 1 0 e 0 0 This result is
0 0 1 e 0 0 particularly
: useful for pole William R. Hamilt
O O O .. 0 O liam . famiiton
A=| . , , , , , placement... 1805-1865
: : : . . : Irish Mathematician
1 )
0 0 0 0 = y D) =A"+aqA"" +-+a, A+a,
-4, —d,, —4d,, - —dy, —4;
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Spectral radius and trace

The spectral radius of A is defined as

p(A) :=max{ || | A€ AXA)},

and the trace of A, defined as

is related to the eigenvalues of A as

trace (A) = Z A

(2.3.34)

(2.3.35)

(2.3.30)

Remark: Matrix trace be computed using an m-function TRACE and the roots of a

polynomial can be computed using ROOTS in MATLAB.
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Special matrices

The following are several important types of square matrices. We say that a
matrix A € R"™" is

I. symmetricif A" = A (such a matrix has all eigenvalues on the real axis);

2. skew-symmetric if A’=— A (such a matrix has all eigenvalues on the imag-
inary axis);

3. orthogonal if A’A = AA" = I (such a matrix has all eigenvalues on the
unit circle);

4. nilpotent if A*¥ = 0 for integer k (such a matrix has all eigenvalues at the
origin);

5. idempotentif A*> = A (such a matrix has eigenvalues at either 1 or 0);

6. a permutation matrix if A is nonsingular and each one of its columns (or
rows) has only one nonzero element, which is equal to 1.
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Special matrices (cont.)

We say that a matrix A € C"*" is

I. Hermitianif A" = A (such a matrix has all eigenvalues on the real axis);

2. unitary it A"A = AA" = I (such a matrix has all eigenvalues on the unit
circle);

positive definite if " Ax > 0 for every nonzero vector x € C";
positive semi-definite if x" Ax > 0 for every vector x € C";
negative definite it " Ax < 0 for every nonzero vector x € C";

negative semi-definite if x" Az < 0 for every vector v € C";

SN ORES I

indefinite if A is neither positive nor negative semi-definite.

Note that Hermitian and symmetric matrices have all its eigenvalues being real
scalars. Moreover, a Hermitian or symmetric matrix 4> 0 (positive definite) 1ff all
its eigenvalues are positive, 4 >0 (positive semi-definite) iff all its eigenvalues are

non-negative, 4 <0 (negative definite) iff all its eigenvalues are negative.

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 40 © BEN M. CHEN


s1155184008
Highlight

s1155184008
Highlight

s1155184008
Highlight

s1155184008
Highlight

s1155184008
Highlight

s1155184008
Highlight

s1155184008
Highlight


Matrix norms

Given a matrix A = [a;;] € C"™*", its Frobenius norm is defined as
J

‘ Lie min{m,n} 1/2
A = [ D lai;/? = ) o4 . (2.4.3)
i=1 j=1 i=1

The p-norm of A is a norm induced from the vector p-norm, i.e.,

Az,
|A|l, := sup | Az, = sup [Az|,. (2.4.4)
220 Zllp  yz),=1
In particular, for p = 1, 2. oo, we have
|A]l1 = mjaX; |aijl, (24.5)
HAI|2 — \/)\max(AHA) — Jlnax(A)-, (246)

which is also called the spectral norm of A, and

1Al = max )  agl. (2.4.7)

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 41 © BEN M. CHEN


s1155184008
Highlight


Norms of continuous-time signals

For any p € [1,00), let L} denote the linear space formed by all measurable
signals g : R, — R"™ such that

/* g(8)[Pdt < oo.

0

Forany g € L)', p € [1,00), its L,,-norm is defined as

lgllp == ([ |g(t)|pdt)l/p. 1 <p<oo. (24.9)
Let L' denote the linear space formed by all signals ¢ : R, — R™ such that
lg(t)| < o0, VteR,.
The L-normofa g € L7} is defined as

19|~ :=sup |g(t)|. (2.4.10)
>0

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 42 © BEN M. CHEN



Laplace transform

Given a time-domain function f(¢), the one-sided Laplace transform is defined as

follows:

F(s)=L{f(t)} = ]O f()edt, s=c+ jw

where the lower limit of integration is set to 0~ to include the origin (¢ = 0) and to

capture any discontinuities of the function at # = 0.

Given a frequency-domain function F(s), the inverse Laplace transform is to

convert it back to its original time-domain function /(7):

I . ROC
f)y=L"[F(s)]= L.al TOOF (s)e™ ds

] o1-jeo

v

Laplace transform technique is invaluable in solving engineering problems!
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Summary of Laplace transform properties

Property £ F (s)

Linearity a1f1(t) +az2fa2(t)  a1Fi(s) + axFa(s)

Scaling f(at) %F(%)

Time shift ft —a)u(t —a) e S F(s)

Frequency shift e~ £ () F(s+a)

Time derivative d"digt) SF(s)—s"LF(07)—s"2f (07)—. .. —sOf ("1 (07)
. . . L 1

Time integration g 1(&)d¢ < F(s)
. o Fi(s)

Time periodicity f(t) = f(t +nT) ——

Initial value £(07) S'LTQO[SF (s)]

Final value f(o0) ;%[SF(S)] >

Pierre-Simon Laplace
Convolution A ® f2(t) F1(s)Fa(s) 1749-1827
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Some commonly used Laplace transform pairs

f@t) < F(s) f(@) = F(s)
: @
o) < 1 sin wt = 5 5
ST+
1
1) < — s
S cos wt = 5 5
ST+
¢ P l ) ssin@ + wcosd
§2 sin(wt +60) < 5 5
s+ w
n! scosl —wsind
" s e cos(wt+60) < —
s+ w
ot 1 Car - @
e — e “sinot < 5 >
s+a (s+a) +o
—at 1 —at S+a
te & 3 e coswt < 3 .
(S-I—a) (s+a) + @
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Dynamic Modeling & State Space Representation

-

é“ System to be controlled
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G(s)
I Linear
x(t) = Ax(t)+ Bu(t) system
y(t) = Cx(t) + Du(?)

© BEN M. CHEN



Basic laws for electrical systems

resistor Capacitor inductor

| | |
I i (1) i(t)

=
vT R |\v=IR v(t)/l\ c li—c?Y v(t)T L |v=L%

Kirchhoff’s Voltage Law (KVL): Kirchhoff’s Current Law (KCL):

The sum of voltage drops around The sum of currents entering/
any close loop in a circuit is 0. leaving a node/closed surface is 0.

|

v+, vty v, =0

Lt+i, +i;+i, +is=0
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Some basic mechanical systems

Newton’s law of motion f =ma = mi =mv

f
—_— m
Isaac Newton
1642-1726
English...

Mass-spring-damper system

mx+cx+kx= f Clarence de Silva*
> University of

k X British Columbia

I N

A= m —> f

c

Gustav Kirchhoff

OO
S S S 1824-1887

German Physicist

*C. W. de Silva, Modeling of Dynamic Systems, Taylor & Francis/CRC Press, 2017.
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Dynamic modeling based on first principles

Example (Qiu and Zhou): Consider an RLC circuit as shown in the figure below,
where the diamond symbol labeled, gv, means a dependent current source whose
current 1s proportional to v,. The input and output of the system are v, (¢) and v (?),

respectively. Find the dynamic model of the given system.

Third order system

# order = # energy
storage equipment

O
+
V; 81 R2 Vo
O

The common practice in solving an electric circuit problem is to assign a voltage

variable to a capacitor and a current variable to an inductor.

For the given circuit, we assign v, and v, as the voltages across C, and C, and i as

the inductor current. The system 1s of 3rd order as it has 3 energy storing elements.
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t
KCL .KL dt KCL KCL
e a'a'e WAL IR ; — 0
dv dv —
C —vy C,—=

.y L + 2" g Y + +
v, C, == \_}Cz =, gvi {y R, v,

o @ o O

As 1t is of a 3rd order system, find 3 equations from 3 independent loops using KVL

Red Loop: Blue Loop: Gray Loop:

dv, | di : dv
(Clj;HleJFVl:Vi LE-H}ZZVI (Z—Cz—z—gvlijzvz
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(C—dv1+in +v, =y, = \'/———1 v—1i+ : v
Red Loop: U 1T =Y I C 1 c'RC i
di .1 1
Blue Loop: LE+V2 =V, = =TV
dv : g 1 1 .
y LOOp ( 2" gvlj 2 =W 2 C, 1 RC, 2 C,

Define a so-called state variable vector

1 0 _/ |
A1 Cl Cl V, %{1 Cl
& 0

R S %72 —%ezg 1C2 v, |+ i

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 51 © BEN M. CHEN



Define

Vhe 0 el (M
= fe e e 0
oo

The dynamic equation of the system can be expressed as

o
Il

, C=[0 1 0]

Rudolf E. Kalman
1930-2016

. Hungarian-

x=Ax+B v American Scholar

and the system outputv, =Cx=Cx+0-v,.

The dynamic equation together with the output equation form the so-called state

space representation of the given electrical circuit or system.

In fact, all linear time-invariant systems can be expressed in the form of

xX=Ax+Bu, y=Cx+Du

* R.E. Kalman, On the general theory of control systems, Proceedings of 1st International IFAC Congress on Automatic and Remote
Control, Moscow, USSR, pp. 481-492, August 1960.
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Example (Qiu and Zhou): Consider a two-cart system as depicted in the figure

‘ X1 X

below

[\,
u e Y Y Y
— ‘[ 1 - ‘[ o)
m—

HONONNLEENONO N

The carts, assumed to have masses M, and M,, respectively, are connected by a
spring and a damper. A force u(¢) 1s applied to Cart M, and we wish to observe the
position of Cart M,, 1.e., y = X,.
Applying Newton’s law of motion to M,, we obtain

M i =u(t)—K(x,—x,)—F (% —x,)
Applying Newton’s law of motion to M,, we obtain

M,i, =K (x,—x,)+ F(x,—X%,)
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Define a state variable vector

X,
X X, 1 K K F F
, Uu——x, +—x, X, +——X,
¥ = Y M M, M, M, 1 1
= = x= =
X X, X,
X, X, K K F F
xl x2+ .xl x2
M, M, 2 2
0 1 0 0 | 0
K F K F R ]
M1 Ml M1 Ml X, s
_ +| M, \u=Ax+ Bu
0 0 0 1 X, 0
K oFo Kk Fls) |,
| M, M, M, M, | -

The variable to be observed, i.e., the system output

R

y=x,=[0 0 1 0] =Cx+0-u

-

2

x2
which together form the state space representation of the two-cart system.
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A torque u (%) can be applied around the pivot point and we are
concerned with the angle (7). The length of the pendulum is L and

the mass M of the pendulum 1s concentrated at its tip.

In a rotational motion, Newton’s second law takes the form

d*0
J? - T(t) Kemin Zhou

Louisiana State
where J is the moment of inertia and 7 1s the total torque applied. University
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For the pendulum system, the moment of inertia J = M L? and there are two torques
applied to the system: the external torque u(?) and the torque due to the gravity of

the mass, which 1s Mg Lsin 6(t). As such, the equation governing the motion 1s

given by
2 2
Mde;g:u—MgLsinﬁ = dfzéz—gsinﬁnL 12u
dt dt L ML
Question: Can we write this dynamic equation in the form of
x=Ax+Bu, y=Cx+Du
with properly defined state variable?
Let us define
. ' 0 | 0 ]
0 : 0 0 0 1|6 Can or
xzéjx:é:g‘,9+lu:‘?09+1uCannot‘7
oY) lmr | Y ML |

Why not?
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Linearization

We now study how to approximate a nonlinear system by a linear model. Assume

that a nonlinear system 1s described by the following dynamic equations:

X(1) = f(x(0),u(®), y()=g(x(t),u())
where xe[R” 1s the state vector, u and y are respectively the input and output scalar
variables, fand g are continuously differentiable functions.
A triple of constant vectors (u,,x,,),) is said to be an operating (equilibrium) point
of the system 1f
0=1(xty), Yy=28(xpu)
The physical meaning of an operating point is that if the system has initial condition

X, and a constant input u, 1s applied, then the state and output will stay at constant

values x, and y,, respectively, for all time, 1.e.,

u)=u,, x(0)=x, = x()=x, y{)=y,
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Denote
u(t) =u(t) —u,, x(t)=x(t)=x,

It can be shown that

N of . of
[)=—_— 1)+
x( ) ax X=X(, U=U x( ) au X=Xq, U=U
3 og <o, 08
t)=— £)+—=
y( ) ax X=Xq, U=U x( ) au X=X, U=U
where
K/ Oof, ]
Ox Ox A
o | e |
Ox ' ' I éu P
o, ... 9 9,
| Ox, ox, | | Ou |

\Y;'
Jacobian matrix
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(&)= y(1) =y,

i(t) + high-order terms

i(t) + high-order terms

g_|% .. %
ox | Ox ox,
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For a small neighborhood of the operating point, 1.e.,

u(t) = u(t) —uy, X(t)=x(2)=xy, (1) =y()=y,
are small, we can neglect the higher-order terms and approximate the original

system by the following linear system:
X(t) = AX(t)+ Bi(t)
y()=Cx(t)+ Dii(t)

where
Ll
ax X=Xq, U=U 6” X=X, U=U
o i
ax X=Xq, U=l 8” X=Xq, U=l

This linear system is called the linearized state space model of the original

nonlinear system.
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Example: Revisit the (inverse) pendulum system studied earlier

We have obtained earlier a nonlinear dynamic equation governing the system
0
' 1 S (xu) y
X = = f(x,u), x=| .
—Esing+ U 0
L ML

Let us define the system output to be 8. We have the output equation
y=0=g(x,u)
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We note that there 1s an operating point of the system at
6

0
A — O, ,O = 0= 0,0 - . R =0
(g, %y, ¥0) = ( (Oj ) /(0,0) —§81n9+ 1L2u Yo

u=0 ‘
6=0,60=0

In the small neighborhood of the operating point, 1.e., when &1s small, we have

% 9% 0o 01
A _| 06 06 _ _
OX|,0ueo | Of, Of, _Ecosh 0 &
’ AN AN | L do=0,6=0,u=0 L L .
| o0 06 46=0, 6=0, u=0
o "0
al/l x=0, u=0 af;q MLZ ax x=0, u=0
_au 1x=0,u=0 B -
. i ] 0
% 0 1 % 0 Linearized model around
:é:—§09+1u’y:[10]9’ 0=0
L ML
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Another operating point of the system is at

( y=lo) " Lz = 0o=r" |0 ’ 1
u Qx b — b b — 9 — . 9 = 72.
0> %02 o 0 0 —Esing+ Su Yo
L ML u=0
O=7,0=0
In the small neighborhood of the operating point, we have
% % [0 1] (0 1]
= o _| 06 06 _ _
ol |0 O, —%cos@ 0 % 0
0 — =0y =3
L 69 80 d6=7,0=0,u=0 - —07m 020,20 B B %
B = Gi - g’“‘ =l 1 |, C= @—g =[1 0] g
u x:(o}u:() f;z ML2 X x:(oj,uzo g
| au _x:(gj u=0 B N :

AT ] 5\ G-0-x
= | 1= g |+ u, y=[1 0] -
6 7 0|\& IYis ) yv=y—-nx

Linearized model around 8= !
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Feedback linearization of nonlinear systems

There exist a class of nonlinear systems

x() = f(x(0),u(t)), »(t)=g(x(),u())

for which we can find a pre-feedback law of the following form

u(t) =h(y(1)) +u(r)

such that when it is applied to the given nonlinear system, the resulting system 1is

linear, 1.e.,
x(t)=Ax(t)+Biu(t), y()=Cx(t)+Diu(t)

Such a technique is commonly called as feedback linearization.

Example: Let us consider the pendulum system once again, i.¢.,
0

0
.: ju— ) ) ju— . ) :0: )
* ~Zsin0-+ le Slou), x (ej y=0=glxu)
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Let us apply a pre-feedback control law

u(t)y=gM LsinO(t)+u(t)=gM Lsin y(t)+u(t)
which implies

0 0 0
(ej : 1 1
s |= g . = £ . : N\ |~ _
/2] —=smé + u —=sméf+ ML sin 0 +u u
L ML L ML (2 ) ML

=(

0o 11(0 0
= .|+ 1
0 0 |\é A“z
. 3 6
x=Ax+Bu, x=|.
6

y=0=[1 0]lx=Cx

We indeed obtain a linear system in the entire state space through. Such a technique

has been widely used in the nonlinear research community.
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Transfer function of linear systems

Throughout the rest of this course, we will be dealing with linear systems in the

state space form
X(t)=Ax(t)+ Bu(t), y(t)=Cx(t)+ Du(t)

By Laplace transformation on both sides of the above equations, we obtain
L[)'c(t)] =sX(s)—x(07) = L[A x(t)+ Bu(t)] = AX(s)+ BU(s)
Lly()]=Y(s)=L[Cx(#)+ Du(t)]= CX(s)+ DU(s) ‘\

which implies

X(s)= (s —A)'BU(s)+(s] —A) "' x(07)

ss2tf

Y(s)=CX(s)+DU(s)=| C(sI — A B+ D |U(s)+C(s] — 4) " x(0")
For the case when the initial condition 1s x (07) = 0,
Y(s)=[C(sI = 4)'B+D]|U(s):=G(s5)U(s)

where G(s)=C(s] — A) "' B+ D is called the system transfer function matrix.
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Time domain vs frequency domain...

Let us revisit the electrical system studied earlier

— — e O
: ;
B ) -

For simplicity, assume R, =R, =1Q, L=1H, C,=C,=1F, and g=100. We then have

1 0 -l 1 v
x=-100 -1 1{x+|0|v, v :(O 1 O)x, x=|v, internal
variables

1 -1 O 0 i

which has an (input-output) transfer function . .
Ratio of input-output magnitudes at @

R {G(jw)
e 4G6(jw)

Phase shifting at @
CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 66 © BEN M. CHEN
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Frequency domain response...

Bode Diagram

20 T T T T T llll T T T T T T ITI T T T T T T 1T !\ T T !I IIII T T T T T
| |
10 : |
i i
i |
—~ O ! |
% i |
° i |
o -10 I |
o ! |
> ! |
= i i
%-20 ! ?
®© i |
| |
= 30 f i
| |
i i
[ |
-40 [ |
I |
50 1 1 1 1 1 1 II| 1 1 1 1 1 1 I\l 1 1 1 1 1 1 II| !\ 1 !I 1 II| 1 1 1 111
- T T
45 — T T T T T T II T T T T T III T T T T T ll| ?\ T %l T II T T | B B B =
| |
[ |
| |
i i
| |
i i
= [
> [
) [
~ |
o) i
@ [
2 i
o i
i
i
i
i
i \
_135 = 1 1 1 1 1 ) | Il 1 1 1 1 1 11 1| 1 1 1 1 1 | | I| IJ L 1 JI | | I| 1 1 1 ) - |
107 107 107" 10° 10"
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State, input and output transformations

It 1s very often that we need to perform some transformations on the state, input
and output variables, for the ease of systems analysis and control design. These
transformations, so long as they are nonsingular, in fact, preserve all the structural

properties of the given system.
Consider again the following system
xX(t)=Ax(t)+ Bu(t), y@)=Cx(t)+ Du(t)
We define a set of nonsingular state, input and output transformations, I', I'; and

', respectively, 1.e.,

~ ~

x=0I2x, u=lu, y=Iy = ( x=Tx, a=T]"u, y:r:y )
which implies

$=T.'%=T,"(Ax+Bu)=(T AT )

=
+
—
.
o
Mg
N—
g}
I
2
=
+
ool
g}

p=T,'y=T"(Cx+Du)=(I",'CT,)

=
_|_
—
o]
>
oy
N—"
AN
I
@Y
=
+
o
g
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We obtain a transformed system characterized by
¥(t)= AX@) + Bii(t), 7(t)=Cx@t)+ Dii(t)
which has a transfer function
G(s)=C(s1-A) B+D=(T;'CT,)(s/~T;'4T,) " (I;'BT, )+(T;'DT))
=T | C(s1-4)"B+D]T,
=T,'G(9)T;
For single-input and single-output (SISO) system,
G(s)=aG(s), a#0

We note that the nonsingular transformations of the system state, input and output
have been proven to be a powerful tool for solving many systems and control
problems. We will see very often this technique used in this course. Nevertheless,

we first illustrate it by an example...
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Example: Consider a system characterized by

11 1] [1
x=|1 2 2|x+|0 |u, y=[3 1 —3]x ex1070
2 1 1] [1]
With the state transformation
X, 0 2 1] X,
x, |=x=x=| 2 3 0|x, Xx=|X,
X, -2 -1 1] X,
we obtain a transformed system
0 1 0| [0
X=|0 0 1|x+|0|u
0 0 4] |1]
y=8x[l 0 0]x
It has an identical transfer function as the original one: G(s) = G(s) _ . 84S2 :
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Realization of Transfer Functions

Y(s) _ u(®) | x()=Axt)+Bur) | Y@

G =
(S) U(S) y(t)=Cx(t)+ Du(t)
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Black-box system identification

Laplace transforms

FFT is actually used instead... @

Y(s)
1 00="D -

Transfer Function - A linear model in frequency domain
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Let a SISO system be given by a proper n-th order transfer function

_Y(s)  bys"+bs"" +--+b,  b(s)

- U(s) - a,s" +as" +-+a,  a(s)

G(s)

a, #0

A physical realization of the above transfer function 1s shown 1n the figure below:

(n)
byx
bx(n—l)
— bl 1
b x
a,x" —| b, ol
l b x
u y
—( —>| l/a —o—)-—f c ot —— f e ain
x(u) x(n — 1) X X
- (n)
-1 T b, x
alx(” ) 0
a) | — 1
. | +hx""
an—l'x ,
a, | [ + cee
a X .
i a, g +bl’l—1x
(n-1) :
T—ax ——a _X—ax +b x
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To show this, we note that
a, x" () =—-ax" " (t)——a x(t)+u(t)
0 1 n

Taking the Laplace transforms (with 0 initial conditions), we obtain

a,s" X (s)=—as"" X(s)——a X(s)+U(s)
U
(aOS” +as"" ++a )X(S) =U(s)
U
a(s)X(s)=U(s)

Y(s) b(s)
U(s)  a(s)

Also note that
y(t)=b,x" () +bx" (&) +---+b x(2)
U
Y(s)=bys"X(s)+bs"" X (s)+-++b X(s)=b(s)X(s)
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Let us define a state variable vector

XD

X

X

Then the corresponding state space model is given as

I TR Y 1
dy dy dy dy
x(£)=| 1 0 0 [|x(r)+| O
0 1 0 0
b
J/(t):£b1_a1_0 bn—l_an—l
dy 0 dy

Exercise: Verify that G(s)=C(s/ — A)"' B+ D.
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u(t)=Ax+Bu

b b —a, b—ojx(t)+b—°u(t) =Cx+Du
a

a,
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Another realization of the same G(s) 1s as follows:

_4 1 .0 b _alb_o
a, a,
X(t) = 4, 0 i x(¢)+ b _an_lb_o u(t)y=Ax+Bu
a, )
TR 0 b—a
d d

a, a,

y(t)z(L 0o .- ij(f)+b—0u(t)=Cx+Du

This realization is called the observer form realization. We note that the realization
of the transfer function to the state space form is generally non-unique. There are

many forms of realization for any given transfer function!

Exercise: Verify that G(s)=C(sI — A)"' B+ D.
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Example: Find the controller and observer form realizations of

2
Gis) =L I _0-5+0-5+1 ‘\

_S(S+1)_S2+S s> +s5+0

The controller form realization is given as

-1 0 1
Xlz{ | O}xl+{0}u:Axl+Bu, y:[O 1]x1+0-u:Cxl+Du

The observer form realization is given as

-1 1 0
X2:|: 0 O}x2+{l}u:sz+Bu, y=[l 0]x,+0-u=Cx,+Du

We note that x, and x, are related by the following nonsingular transformation:

-1 1
X, = | OX2
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Dynamical Responses of Linear Systems

X0

() y()="
| A X(t)= Ax(t)+ Bu(?) . . ~aig( g
Y(1) = Cx(r) + Du(t) ' ==

x(t)="?
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We will focus primarily on continuous-time linear time-invariant systems char-
acterized by the following state and output equations:

{jt(t) = A x(t) + B u(t),
y(t) = C x(t) + D u(?),
where () € R" is the system state, u(t) € R" is the system input, y(t) € R”

is the system output, and A, B, C' and D are constant matrices of appropriate
dimensions. Also, 7 1s referred to the order of the system in (3.1.1), which 1s

(3.1.1)

used throughout this whole course unless otherwise specified.

The solution of the state variable or the state response, x (%), of X with an initial
condition 2o = x(0) can be uniquely expressed as

't

z(t) = etxg + / e =7 Bu(r)dr, t>0, (3.2.1)
Jo

where the first term 1s the response due to the initial state, xo, and the second
term is the response excited by the external control force, wu(t).
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— R

Phase plane - Illustration of solutions to some 2nd order systems...
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To introduce the definition of a matrix exponential function, we derive

this result by separating it into the following two cases:

1) the system is free of external input, 1.e., u(z) = 0; and

11) the system has a zero 1nitial state, 1.e., x, = 0.

ot
z(t) = ety + / e =T Bu(r)dr, t>0, (3.2.1)
Jo
(1) (11)
Due to 1nitial Due to external
condition with no force with zero
external force initial condition
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I. For the case when the external force u(t) = 0, the state equation of (3.1.1)
reduces to

= Ax, z(0)= xo. (3.2.2)

Let the solution to the above autonomous system be expressed as
o0
z(t) = g + agt + agt> +--- = Z aptt. t>0. (3.2.3)
k=0

where ap € R", k = 0.1, ..., are parameters to be determined. Substitut-
ing (3.2.3) into (3.2.2), we obtain

= Aag+ Aat+ Aast’ +---. (3.24)
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Since the equality in (3.2.4) has to be true for all # > 0, we have

1 | 1 1
a; = Aag, ag = §Aal - 2—!A250, asg = gAag - ﬁAi”ao.
and 1n general,
1 .,
ap = FA’”&O. k=0,1,2,.... (3.2.5)

=1 .
x(t) = (Z FA’%") ao = eMug, t >0, (3.2.6)

where

et .— Z iAkz“"’. (3.2.7)
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Properties of matrix exponential

[t 1s straightforward to verity that ‘
expm
ieAt _4 [+ At 4o £F 4 43 4.
dt dt 2! 3!

:A+l'Azt+i'A3t2 +---:A(1+At+i'Azt2 +---j:AeA’

I! 2 2!
:(1+At+%A2t2 +%A3t3 +---jA - \/\/ (3.2.8)

exchangeable
4 ) 4 A2 » , )
Foreveryt, v € R, For everyt € R, ¢™ is nonsingular and
_— AN —Ar
()At()Ar — €A(t+r). (( ) = ¢ .
. J . J
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& Jordan Canonical Form: For every n x n matrix, there exists a non-

singular similarity transformation P such that

J=pPAP!1=|0

Ji
0

0

where each J; is a Jordan block of the form

A1 0
0 x; 1
0O 0 A
0O O O
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0
0

=l P25 KT

O 0 ... 0
s 0 .. 0
0 & <« 0O
0 0 - Ji]

where each 4, is an eigenvalue
of 4, and the number £ of
Jordan blocks 1s equal to the
total number of independent
eigenvectors of A.
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& Example: Given a matrix

30
A= 1 1
-1 1

its Jordan canonical form is given by

(1 1 1]
P=|1 0 1| = J=PAP'=
0 1 1

Camille Jordan
1838-1922
French Mathematician

2 1 0] ‘\
0 2 1 iof
_O O 2_ ex1037

Matrix A has three eigenvalue at A = 2, but with only one independent

eigenvector.

Note: It can be computed using an m-function JCF in Linear Systems Toolkit.
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& Example: Given a matrix

3 1 -1
A= 1 1 0 | > 0 (i.e., positive definite) as it is symmetric
-1 0 2 and has all its eigenvalues > 0!
which 1s symmetric. Its eigenvalues are given by ‘\
A, =0.468, A,=1.653, A, =3.879 rid

ex1040

We can find a non-singular transformation such that

[—0.449 -0.293 -0.844 | (0.468 0 0
P=| 0844 -0.449 —-0293| = J=PAP'=| 0 1.653 0
| -0.293 —0.844  0.449 0 0 3.879]

Note: It can be computed using an m-function JLF/RJD in Linear Systems Toolkit.
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Properties of matrix exponential (cont.)

For the case when 4 1s a diagonal matrix, 1.¢c.,

When 4 is given by a Jordan block, 1.¢.,

A

1
A

1

A
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A
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At

At

" e [(n—1)!
"2 [(n—2)!
t"2e™ [(n—3)!

A
e t
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2. For the case when the system (3.1.1) has a zero 1nitial condition, 1.e., g =0,
but with a nonzero external input, «(?), we consider the following equality:

d de—At

—At — At - — At — At -
— (e 'z = r+e M= —e"Ax+e M x
dt ( ) dt

= e (i — Ax) = e M Bu(t). (3.2.9)

Integrating both sides of (3.2.9), we obtain
t
e~ A (t) — xg = e Au(t) = / e~ AT Bu(7)dr, (3.2.10)
0
which implies that

t t
x(t) = et / e A7 Bu(r)dr = f eA=7) By(r)dr. (3.2.11)
0 0
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state response of the given system in (3.1.1) as
t
z(t) = etz + / A" Bu(r)dr, t >0, (3.2.1)
0

Moreover, the uniqueness of the above solution to (3.1.1) with an initial condition
x(0) = & can be shown as follows: Suppose .r; and .5 are the solutions to (3.1.1)
with z1(0) = 2o(0) = xq. Let &(t) = x1(t) — x2(t), and thus g = (0) = 0.
We have

T = 1 — 9 = Axr1 + Bu — Axes — Bu = Ax. (3.2.12)

It follows from (3.2.6) that z(t) = eig = 0, i.e., x1(t) = wo(t) forall ¢ > 0.

Lastly, it is simple to see that the corresponding output response of the system

(3.1.1) 1s given as:

L
y(t) = Cetluy + / Ce*=7) Bu(r)dr + Du(t), t> 0. (3.2.13)
0
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The term zero-input response refers to output response due to the initial state and
in the absence of an input signal. The terms unit step response and the impulse
response, for the continuous-time system (3.1.1) respectively refer to the output
responses of (3.2.13) with zero initial conditions to the input signals,

1 1
@) =[] and wut)=|: |é0) (3.2.14)
1 1

where 0(t) is a unit impulse function.

Recap:

Property of an impulse function 6(¢) — for any continuous function (),

f(a) 1ifc<a<d

F(0)S(t—-a)= f(a)d(t) and f F(OS(t—a)dt =

0 otherwise
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Example: Find the state and output responses of the following system

11 0 X, 0 |
X = x+|  |u, x= , x(0)=x, =
—O l I 2 I ex15889

V= :1 O]x

with u being a unit step function, i.e., u(¢) = 1, and a impulse function u (¢) = o (¢).

Solution: By the property of matrix exponential, we have

. et B e te'|(0 te'
e’ = | = efx = t =
0 e 0 ¢ [\ e

- e (t-1)e " |(0 t—1)e"
= )BM(T)=|: 0 (t=7) }( j-1=(( _) j for a unit step function.

el‘—T 1 e

(2t —1)e' +1

t
and x(1)=e*x. + | e’ P Bu(r)dr =
()=e"x, j () e

j, y()=QR2t-De' +1

...unit step state response... unit step output response. ..
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State response due to a unit step input...

initial
step

25 I I I I I I

20

Magnitude
o

N
o

t (seconds)
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State response due to a unit impulse input can be calculated as follows: Noting

te'
A
e’'x, =
t
e

e Bu(r) = h e } m 5(r)= ((I e j 5(7)
e e

and

we have

x(t) = eAtxO N j‘eA(tr)Bu(z_)dz_ _ (te: ] . j [(l‘ - j')fef—r ) -

e e
te' te' 2te’ .
— 4+ — ...unit impulse state response...
e’ e’ 2¢'
d
y(t) =2te'  ...unit impulse output response... J' F(OS(t—a)di = f(a)
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State response due to a unit impulse input...

30

25

20

15

10
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i(t) = Ax(?)

System Stability
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\ 4

:I)(D

Controller

A 4

System to be controlled
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Respect the Unstab

-

The practical, physical (and sometimes dangerous)
consequences of control must be respected, and the

underlying principles must be clearly and well taught.

By Gunter Stein

eedback contro
around us in mod
life. They are at wo
our cars, our factories, od
tation systems, our defense sys-
tems—everywhere we look. Certainly,
one of the great achievements of the interna-

tinnal cantrale recearch community ic that the
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Examples of system stability...

/’/ v I \

)\

- - -

P wnnpudJ

ﬁn[npuaa 9SIOAU]

Stable? Stable?
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Bounded-input bounded output (BIBO) stability

0 oy

System

\ 4

A system is said to be BIBO stable if for any bounded input u (7), 1.¢.,
|u(t)| <u <oo, forallz>0

the corresponding output y(¢) 1s also bounded.

For a continuous-time linear time-invariant (LTT) system, the condition for BIBO
stability is that its impulse response, / (%), be absolutely integrable, i.e., its L,

norm exists:

j ()| dt = |h, < oo
0

Note that BIBO stability is only applicable when the system is initially relaxed,

1.e., with 1nitial condition being 0.
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Sticky Note
all poles of denominator should have negative part


N | T, 40 | 0 ~

0 01 0 0

| = |+ 1w, y=[1 0] .

g) |5 ollé 0
L ML

which has a transfer function

]
@ 1
7 M / g/ _
< G(s) = Set Ale_z’ L—l
g u s? -8
= L for simplicity
= 2
s’ —1

The impulse response A(r) =L [G(s)]= L‘{ 22 } =L { t_ 1 } =e' —¢e"
s°—1 s—1 s+1

= T|h(t)|dt >

O ey 8

e'dt — I e'dt=00 = the system is not BIBO stable.
0

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 100 © BEN M. CHEN



Internal stability

Stability, more specifically internal stability, is always a primary issue in design-
ing a meaningful control system. For linear systems, either the continuous-time
system (3.1.1),e.g., x(¢)=A4x(t), x(0)=x,, the notion of internal stability
of the system is related to the behavior of its state trajectory in the absence of the
external input, u. Thus, the internal stability is related to the trajectory of

= Ax, x(0) = xp, (3.3.1)

The system (3.1.1) is said to be marginally stable or stable in the sense of Lya-

punov or simply stable if the state trajectorycorrespondlng to every bounded ini-
tial condition x¢ is bounded. It is said to be asymptotically stable if it is stable
and, in addition, for any initial condition, thecorrespondmg .:s:t.éié"t}ajectory x(t)
of (3.3.1) satisfies,

lim 2(t) = lim e?'zy = 0. (3.3.3)

t—oc t— 00

Note: For LTI systems, asymptotic stability and exponential stability are equivalent.
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It is straightforward to verify that the continuous-time linear system (3.1.1) or
(3.3.1) is stable if and only if all the eigenvalues of A are in the closed left-half
complex plane with those on the jw axis having Jordan blocks of size 1. It is
asymptotically stable if and only if all the eigenvalues of A are in the open left-
half complex plane, i.e., A\(A) C C. This can be shown by first transforming A
into a Jordan canonical form, say

-7, _

1 /2
J=PlApP= | | (3.3.4)

_ J,

where P € C"”™" is a nonsingular matrix, and

;= cCMXM 1 =1.2....q. (3.3.5)
A1
i Ai
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We proceed to define a non-singular state transformation
x=P% = x=P'%=P'Ax=P'AP%=J%, X =P'x,
It follows from (3.2.6) that the solution to the transformed system 1s given by

f(H)=e"%, = x(t)=PH(t)=Pe"%,=(Pe"P")x,=¢"x,

Alternatively, we note that

A=PJP" = A= (PJP‘I )(PJP-1 ) : -(PJP‘I) —pJtp

which implies

Thus,
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Then, we have

_e']lt -
e.]gt
et = Peltp~l=P 5 Pt (3.3.6)
i e’at _
where i i
e)\\;‘t te)\;f L. t‘n,’—le)\,‘t/(ni_l)!
O e)\lf . tni_Qe)\i'f 72}1_2 !
et = | — S ./ ( ) , (3.3.7)
0 0 ehit |
b= L, 2 .. gl

We note that the result in (3.3.7) follows from the properties of matrix exponential

given earlier.
Take note on the off-diagonal elements 1n (3.3.7), which are functions of # powers!

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 104 © BEN M. CHEN



It is now clear that e”i" — 0 as t — oo if and only if \; € C~, and thus

" lim e/t |

t— o0
tlim e’2!
lim etz = P S P lro=0, (33.8)

t— 00

lim e/t
8 t— o0 _

for any 2o € R",ifandonlyif \;, € C",i=1,2,...,q,0r A\(A) C C . Onthe
other hand, the solutions remain bounded for all initial conditions if and only if
MA) cC~uC?andn; =1 for \;(A4) e C°.

In other words, the given system i1s asymptotically stable, i.e., the state trajectory
converts to zero as time progresses, if and only if all the eigenvalues of 4 (which
are also called the poles of the given system or A) are on the open left-half
complex plane. The given is marginally stable if and only if all the eigenvalues
or poles of 4 are on the closed left-half plane with those on the imaginary axis

being simple (why?).
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Remark: The BIBO stability does not imply internal stability as it can be seen

from the following simple example:
x=1x+0-u, y=x

which 1s a BIBO stable system, but not internally stable as it has an unstable pole
at s = 1. Any non-zero initial condition will cause the state (and output) variable

blowing up to infinity.

On the other hand, the internal (asymptotic or exponential) stability of an LTI
system does imply its BIBO stability. This can be shown by finding its impulse
response of the system and showing that the L, norm of the impulse output

response 1s bounded and hence the system is BIBO stable.

However, 1t will be shown by a counterexample (Q.6 in Homework Assignment 1)
that the marginally internal stability does not guarantee the given system is BIBO

stable. In fact, we can show that a marginally internally stable system is always
BIBO unstable.
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Summary of internal stability

A linear time-invariant system 1s said to be asymptotically stable 1f all its poles
are located on the left-half complex plane (LHP), marginally stable if all its

poles are in closed LHP with those on imaginary axis being simple, and unstable

otherwise...

A Im(s) . Marginally
' stable poles

’ ~.‘.‘.‘.‘.‘.‘_\ E P i_ :
LA RH Unstable
[ 1 : ~ 71 poles

Al = plotioN _ Lot (COS wt+ j sin a)f)
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Lyapunov stability of dynamical systems

Consider a general dynamic system, x = f(x)with /(0) = 0.
If there exists a so-called Lyapunov function V(x), which
satisfies the following conditions:

1. V(x) 1s continuous in x and V(0) = 0;

2. V(x) >0 (positive definite);

Aleksandr Lyapunov
1857-1918

3. V(x)=0 %x f(x) <0 (negative definite),
then we can say that the system 1s asymptotically stable at x = 0. If in addition,
V(x)—> oo, as ||x|| —>

then we can say that the system is globally asymptotically stable at x = 0. In this
case, the stability is independent of the initial condition x(0).

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 108 © BEN M. CHEN



Lyapunov stability for LTI systems

The following result is particularly useful for stability analysis when numerical
values of system matrix are unknown. It will be used in coming lectures when we

deal with control systems design.

Theorem 3.3.1. The continuous-time system of (3.3.1) is asymptotically stable if

nXn

and only if for any given positive definite matrix () = Q" € R""", the Lyapunov

equation
AP+ PA=—-Q (3.3.9)

has a unique and positive definite solution P = P’ € R"™".

We note that unlike Lyapunov stability theory for general dynamical systems on
the previous page, Theorem 3.3.1 gives a necessary and sufficient condition for
the stability of LTI systems.

The result of Theorem 3.3.1 also holds for O > 0 and (4, Q) being observable (the

concept of observability is to be studied in the next section).
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Proof. The asymptotic stability of the system implies that all eigenvalues of A
have negative real parts. Thus, the following matrix is well defined,

P / At Qe gt (3.3.10)
0

In what follows, we will show that such a P is the unique solution to the Lyapunov
equation (3.3.9) and is positive definite.
First, substitution of (3.3.10) in (3.3.9) yields

A'P+ PA = / A'e?tQeAt dt + / et Qe Adt

0 0
d ooy Af)
— — e” "Qe™" ) dt
| G(re
_ At At d | |
= e” "Qe o HOAt — AeAt — oAt 4
C
— _Q

where we have used the fact that e — 0 as t — oo. This shows that P as
defined in (3.3.10) is indeed a solution to (3.3.9).
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To show that the solution (3.3.9) is unique, let P, and P> both be a solution, i.e.,

A'P, + PLA = -Q, (3.3.12)
and

APy, 4+ P,A = —Q. (3.3.13)
Subtracting (3.3.13) from (3.3.12) yields

A'(Py — Py) + (P, — P))A =0, (3.3.14)

which implies that

d

eAt A (P, — Py)ett + At (P — Py) At = EeA’t(Pl—Pg)eAt = 0. (3.3.19)

Integration of (3.3.15) from ¢t = 0 to oo yields
At (P, — Py)ett =P -P=0 (3.3.16)
=

This shows that P as defined in (3.3.10) is the unique solution to the Lyapunov
equation (3.3.9).
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follows from the fact that, for any nonzero x € R",
Jeo.® p
' Px = / et Qe rdt > 0, (3.3.17)
J 0O

which in turn follows from the facts that @ is positive definite and that e’ is
nonsingular for any 7.

Conversely, for any 0> 0, if the Lyapunov equation has a solution P>0, we

define a Lyapunov function
Vix)=x"Px
which obviously a continuous function in x and positive definite, and

V(x)=x'Px+x'"Px=(Ax)Px+x'PAx = x'(A'P+ PA)x =—x'0Ox <0

Furthermore,
V(x)—> o0, as ||x|| —> 0

By the Lyapunov stability theorem, x = 4x 1s asymptotically stable.
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On the other hand, we can prove the result by directly determining the locations of
the eigenvalues of matrix A. If there are positive definite P and Q that satisfy the

Lyapunov equation (3.3.9), i.e.,
AP+ PA=-Q (3.3.9)

then all eigenvalues of matrix 4 have negative real parts, and thus it 1s stable. We

let \ be an eigenvalue of A with an associated eigenvector v # 0, i.e.,
Av = A,

which also implies that
v A" = N*.

Pre-multiplying and post-multiplying (3.3.9) by v™ and v respectively yields
—0*Qv = v*A'Pv+ v*PAv = (\* + A\)v* Pv = 2Re(\)v* Po,

which implies that Re(\) < 0, as both P and () are positive definite. m
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The above pendulum system has two simple poles on the imaginary axis of

I
0Q

0 0
gl | _&

Al—A|=

A
g

L

o)

The eigenvalues of the system matrix are

-1

A

0
1

L
L

the complex plane. It 1s thus a marginally stable system.

= A, =

Recall that it was showed earlier that the inverse pendulum system 1s BIBO

unstable. It is easy to verify that the system matrix of the inverse pendulum

has two poles at +./g/L. Clearly, it is an internally unstable system.
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Example: Consider an LTI system

2 1 1]
x=Ax=|1 -2 1 |x
11 3]

whose system matrix 4 has eigenvalues at
A, =-3.7321, A, =-3, A, =-0.2679,

respectively. The system is clearly stable. Let

1 0 0]
O=L.=(0 1 0
0 0 1]

The solution to the corresponding Lyapunov equation 4P + PA =—( 1s given by

5 4 3
P= ps 4 5 3|>0 = the given system is stable!
3 3 3
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Homework Assignment 1 (due in two weeks)

Q.1. Consider the mechanical system shown in the figure below. Here u () is an
external force applied to the mass M, y (¢) is the displacement of the mass
with respect to the position when the spring is relaxed. The spring force and
friction force are given respectively by

Fp(t) = k(1 + ay”(1))y(t). fo(t) = by(t).
L - [,
— M [
- f}

-

. Write the differential equation model of this system.

. Write a state space description of the system.

3. Is the system linear? If it is not linear, linearize it around the operating
point with ug = 0.

4. Find the transfer function of the linearized system.

[\
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Q.2. Consider the electric circuit network in the figure below. Let the input be
v{(?) and output be v (¢).

— 0

R,
——AW
)

0 (=

1. Derive the state and output equation of the network.
2. Find the transfer function of the network.
Assuming that R, =R,=R;=1Q, C,=C,=1Fand L,=1H,

3. Find the unit step response of the network.

4. Find the unit impulse response of the network.
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Q.3. Consider an electric network shown in the circuit below with its input,
u, being a voltage source, and output, y, being the voltage across the 2 F
capacitor. Assume that the initial voltages across the 1 F and 2 F capacitors
are 1 V and 2 V, respectively, and that the inductor is initially uncharged.

10 © 10 ©2 0.1 H
+e—1 ] T . +
u Y Si— IOQ” IOQH 2F - Y

=

(a) Derive the state and output equations of the network.
(b) Find the unit step response of the network.
(¢) Find the unit impulse response of the network.

(d) Determine the stability of the network.
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Q.4. Given a linear system, @ = Ax + Bu, with (t;) = x1 and x(t2) = 22 for
some t; > 0 and 5 > 0, show that

o
/ e~ AT Bu(r)dr = e At2py — e A1y,
1.

1

Q.5. Given
At _ —e P+ ae 2t —et4 Be 2t
T | 27t =272 et — g2

determine the values of the scalars «v and /3, and the matrices A and A,

Q.6. Show that the pendulum system is a BIBO unstable system even though it
was proved to be internally marginally stable. Identify a bounded input
signal such that when it is applied to the pendulum, the resulting output

response will go unbounded.

For simplicity, you can assume that M > =1and g = L.
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X1

final desired S
/f_ state == =) R
2 : ?N,;‘_ P

mitial |

> X

3

% Controllability
u(?) | 20 = Ax(@)+ Bu(?) and

y(t)=Cx(t)+ Du(t) .
Observability
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Controllability and stabilizability

Let us first focus on the issue of controllability. The concept of controllability is
about controlling the state trajectory of a given system through its input. Sim-
ply stated, a system is said to be controllable if its state can be controlled in the
state space from any point to any other point through an appropriate control input
within a finite time interval. For a linear time-invariant system, it is equivalent
to controlling the state trajectory from an arbitrary point to the origin of the state
space. To be more precise, we consider the following continuous-time system:

Y : = Az + Bu, x(0)=xo, (3.4.1)

where x € Rn, U & Rm" A€ R"™*"™ and B c R™X™

/ X X1 final desired The system (3.4.1) is said to be controllable if\

A state for every x, € R" and every finite ¢, > 0, there
e 2 exists a control signal u(?), ¢ [0, ¢,], such that
::t:f ); > X3 the resulting state trajectory goes from a given
/ 0 initial condition x(0) = x, to x(¢,) = x,.

sz Otherwise, it 1s said to be uncontrollable. J
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Theorem 3.4.1. The given system X of (3.4.1) is controllable if and only if the
matrix

t
We(t) := / e A" BB'e 4" dr (3.4.2)
0
is nonsingular for all t > 0. W.(t) is called the controllability grammian of X.

Proof. If W (¢) 1s nonsingular for all # > 0, for a fixed ¢, > 0, we let

u(t) = —Be AWt (zo — e M ay), te [0, t]. (3.4.3)
o

Then, by (3.2.1), i.e.. (t) = ez + / e'=7) Bu(7)dr, we have
J0

t1
x(t1) = ey +/ e =) By(t)dt
(

t1
= ey — (f BEeE tdt) Wl (t) (wo —e™ )

0
i ,
= eAtliU() — et (] e *BBe 4 fdt) I“VJ%U)(CL’() — e_AtICEl)
0

Atlﬂ?n — e

Aty

—e To+xr1 = 21.

By definition, X is controllable.
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We prove the converse by contradiction. Suppose X is controllable, but W (t)
is singular for some ¢, > 0. Then, there exists a nonzero xo € R" such that

o , oy
xp W.(1) x, = x| UO e “BB'e Atdt)xo =0 (3.4.5)
Thus, we have

vty
0 :/ rhe M BB'e A trodt
0

7t1 / / /
— / (B’e_A tl‘o) (BIG—A tl‘o) dt
0

t1 , 9
= / Ble=4 t:z:()} dt, (3.4.6)
0
which implies the mx 1 vector function
Ble 4tz =0, Vtel0,ti)]. (3.4.7)
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Since X is controllable, by definition, for any 21, there exists a control u(t) suc
that

- .

t1
T, = etliyy + f eAtie= A By(t)dt. (3.4.8)
0
In particular, for 1 = 0, we have
't
0= edfigy + et / e_AtBu(t)dt, (3.4.9)
0
or
tq
To = —/ e~ Bu(t)dt, (3.4.10)
0

which together with (3.4.7) imply that
Q

7

tq d t1
—/ e_AtBu(t)dt] Lo = —/ u’(t)LB’e_A fxodt = 0.
0 5

0

|£L’0|2 = 5136360 — [

This is a contradiction as xg # 0. Hence, W, (%) is nonsingular forall > 0. m

-t

z(t) = ez + / e =7 Bu(r)dr, t >0, (3.2.1)
/0
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Theorem 3.4.2. The given system X of (3.4.1) is controllable if and only if =+
rank (QQ.) = n, (3.4.11)

where
Q.:=[B AB --- A"'B] (3.4.12)

is called the controllability matrix of X2.
This 1s the most commonly used result to determine the controllability of an LTI

system. It only involves checking the rank of a constant matrix generated from

the given system, rather than time domain functions.

However, one should note that the determination of the rank of the controllability
matrix sometimes can be ill-conditioned when the system order 1s high.

Nonetheless, it 1s still much easier than checking the condition in Theorem 3.4.1.

Note: [TRE in MATLAB Control Toolbox calculates the controllability matrix.

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 125 © BEN M. CHEN



Proof. We again prove this theorem by contradiction. Suppose rank (Q).)
but X is uncontrollable. Then, it follows from Theorem 3.4.1 that

11 )
’K00=j/ e""BB'e”dt, Vt; >0 (3.4.13)
0

is singular for some ¢; > 0. Also, it follows from the proof of Theorem 3.4.1, i.e.,
equation (3.4.7), that there exists a nonzero xo € R" such that

zhe M B =0, Vtelot]. (3.4.14)

Differentiating (3.4.14) with respect to ¢ and letting ¢ = 0, we obtain
t0B=0, 2pAB=0, ..., $pA" 'B =0, (3.4.15)

or
rg|B AB --- A"'B]=z,Q. =0, (3.4.16)

which together with the fact that x¢ # 0 imply rank (Q).) < n. Obviously, this is
a contradiction, and hence, Y is controllable.
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Conversely, we will show that if 3 is controllable, then rank (Q).) = n. If ¥ is
controllable, but rank (Q).) # n, i.e., rank ().) < n, then, there exists a nonzero
xo € R" such that z;,Q. = 0, i.e.,

0B =0, )AB=0, ..., 20A" 'B=0. (3.4.17)

It follows from the Cayley—Hamilton Theorem, i.e., (2.3.33), that

:E6A’*'B =0, k=n,n+1,... (3.4.18)
Thus, we have
rhe B =0 (3.4.19)
and
t ’
X, (.[0 e "BB e_“dr)xo =x,W.(t)x, =0 (3.4.20)

which implies that W, (¢) is singular for all ¢ > 0, and hence, by Theorem 3.4.1,
the given system X is uncontrollable. This is a contradiction. Thus, (). has to be
of full rank. |
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Example: Consider an LTT system

x=Ax+Bu=

0
1
1

O Ny Ty

1
1
0

X+

Calculate the controllability matrix, we obtain

0.=|B 4B A'B|=

The given system is uncontrollable.
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Example: Consider an LTI system

x=Ax+Bu=

o = O
_—

1
1
0

X+

Calculate the controllability matrix, we obtain

O.=|B 4B A’'B|=

The given system is controllable.
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Theorem 3.4.3. The given system X of (3.4.1) is controllable if and only if, for
every eigenvalue of A, \;,1=1,2,...,n,

rank [\;] — A B]|=n. (3.4.21)

This theorem is known as the PBH (Popov-Belevitch—Hautus) test, developed by
Popov [109], Belevitch [11] and Hautus [63].

The proof of the above result can be found in Chen, Lin and Shamash (2004).
The significance of the PBH test is that it leads to the introduction of another
important concept in control theory — the system stabilizability, which turns out to

be a necessary and sufficient condition to stabilize a system to be controlled.

P B H
Vasile M. Popov ¥ Vitold Belevitch Malo Hautus
Romanian American Belgian Mathematician / Eindhoven University
1928- 1921-1999 of Technology
1940-
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We note that Theorem 3.4.3 builds an interconnection between the system
controllability and the eigenstructure of the system matrix, i.e., A. The system
is controllable if all the eigenvalues of A satisfy the condition given in (3.4.21).
On the other hand, the system is not controllable if one or more eigenvalues of
A do not satisfy the condition given in (3.4.21). As such, we call an eigenvalue
of A a controllable mode if it satisfies (3.4.21). Otherwise, it is said to be an un-
controllable mode. In many control system design methods, it is not necessary to
require the given system to be controllable. The system can be properly controlled
if all its uncontrollable modes are stable. Such a system is said to be stabilizable
as it can still be made stable through a proper state feedback control. For easy
reference, in what follows, we highlight the concept of stabilizability.

: The system (3.4.1) 1s said to be stabilizable if all its uncontrollable A

modes are asymptotically stable. Otherwise, the system 1is said to

be unstabilizable.

D
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Example: Consider an LTT system

0 1 17 [T 4
x=Ax+Bu=|1 1 1|x+|1|u ex1125
_1 1 O_ _1_

It 1s verified earlier that the given system is uncontrollable as its controllability

matrix O, has a rank of 2 <3.

The eigenvalues of A4 are respectively at —1, 1— J2 , 1+ J2.

Using the PBH test,
-1 -1 -1 1]
rank[-1-/—4 B]=rank|-1 -2 -1 1|=2<3
-1 -1 -1 1
Thus, 4, =—1 1s an uncontrollable mode. Without any further calculation, one can

conclude that the other two modes are controllable as Q_ has a rank of 2.
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Nonetheless, let us proceed the PBH test for the other two modes...

For /12:1—\/5,
1-v2 -1 -1 1]
rank[(1—ﬁ)-l—/1 B}:rank 1 2 a1 1]=3
1 -1 142 1

Thus, 4, 1s a controllable mode. For A4, =1+ J2,

142 -1 -1 1
rank[(lJr\/E)-]—A B}:rank —1 \/5 —1 11=3
1 -1 1+42 1

which implies that A, 1s also a controllable mode. As the only uncontrollable mode

1s stable, the given system 1is stabilizable.
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Theorem 3.4.4. For the given system X of (3.1.1), the following two statements
are equivalent:

1. The pair (A, B) is stabilizable.
2. There exists an F' € R™*" such that, under the state feedback law
u = Fz, (3.4.23)

the resulting closed-loop system is asymptotically stable, i.e., A + BF' has
all its eigenvalues in C ™,

The above result 1s heavily used in control systems design. It shows that the
stabilizability of a given system 1s necessary for any control problem if one

wishes to make a controlled system stable.

One should not proceed to carry out a control system design any further 1f the
given system 1s not stabilizable. Instead of designing a controller, the designer

should try to re-design the system to be controlled.
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Observability and detectability

Similarly, we can introduce the concept of observability and detectability for
the following unforced system X::

T = Az, y=_~Cx, (3.4.24)

where x € R", y € R” and A and C are constant matrices of appropriate dimen-
sions. Basically, the system of (3.4.24) is said to be observable if we are able to
reconstruct (or observe) the state variable, x, using only the measurement output
y. More precisely, we have the following definition.

Definition 3.4.3. The given system X2 of (3.4.24) 1s said to be observable if for
any ¢, > 0, the initial state x(0) = x,, can be uniquely determined from the
measurement output y(?), ¢ € [0, ¢,]. Otherwise, X 1s said to be unobservable.

- i <> £ o | —8 40
oz S = === =<
able to see what is going < N e
.. W v = "
on inside the system (O)—comorm
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Theorem 3.4.6. The given system Y. of (3.1.1) is observable if and only it either

one of the following statements is true:

1. The observability matrix of X,

- O -
CA
Qo = : (3.4.27)
AL
is of tull rank, i.e., rank () = n.
2. Forevery eigenvalue of A, \j,7 =1,2,....n,
rank [AJC A] = n. (3.4.28)

Definition 3.4.4. The given system Y. of (3.1.1) is said to be detectable if all its
unobservable modes are asymptotically stable. Otherwise, Y is said to be unde-
tectable.
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Theorem 3.4.7. For the given system X of (3.1.1), the following two statements
are equivalent:

1. The pair (A, C') is detectable.
2. There exists a K € R"”" such that A + K C has all its eigenvalues in C ™.

Furthermore, the following dynamical equation utilizing only the system output
and control input is capable of asymptotically estimating the system state trajec-
tory, x(t), without knowing its initial value x:

= Ai+ Bu— K(y—C# — Du), &o€R", (3.4.29)
ie,e(t) :=x(t)— x(t) — 0ast — oo. The dynamical equation of (3.4.29) is
commonly called the state observer or estimator of X..

We note that all modern control techniques with measurement feedback using the

above observer framework or its variant form!
IT
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Example: Consider an LTI system

0 1 1
x=Ax=|1 0 1|x, y=[2 1 1]x
11 0
Calculate the observability matrix (m-function 0B3V), we obtain
C | [2 1 1]
QO =|CA =2 3 3|, rank(Q,)=2<3
CA”| |6 5 5]
The given system is unobservable. The unobservable mode is —1 as
2 1 1]
ranl{ ¢ }:rank - =2<3
—1.-7- -1 -1 -1
-1 -1 -1

The system 1s detectable. In fact, the given system has two modes at —1 with one

being unobservable and one not.
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Homework Assignment 2 (due in one week)

Q.1. It was shown in the section of dynamic modeling that the two-cart system

can be described by the following state space model:

‘ X1 X

f .
| Y Y Y
_)’ "[ 1 . 1’[ )
pu—— |

X, 0 1 0 0 |fx 0 X,
X, -K -F K F ||lx 1 X,
X, 0O 0 O 1 || x, 0 X,
) | K F -K -F|\x,) |0] X,

(@) Determine the stability of the network.

(b) Determine the controllability and observability of the network.
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Q.2. Given a linear time-invariant system, & = Ax + Bu, let

~ A BB
i 23]

(a) Verify that e has the form

At _ |E1(t) E2(t)]
0  Es(t)]

(b) Show that the controllability grammian of the system is given by

-t
We(t) = / e A "BB'e A Tdr = E4(t)Es(t).
0

Q.3. Show that if (A, B) is uncontrollable, then (A + o/, B) is also uncontrol-
lable for any o € R.
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Q.4. Consider an uncontrollable system, & = Axz + Bu, with x € R" and
u € R"™. Assume that

rank (Q.) =rank ([B AB --- A""'B])=r<n.

Let {q1,qo,...,q,-} be a basis for the range space of the controllability
matrix, ()., and let {q, .1, ..., g, } be any vectors such that

T = [Ql qaq - 4r qr+1 - QN,]

is nonsingular. Show that the state transformation

transforms the given system into the form

g?c _ Acc ACE jc = Bc
Fe) T 10 A \ i 0"

where (Acc, B:) is controllable. Show that the uncontrollable modes of the
system are given by A\(Azz).
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Q.5. Verify the result in Q.4 for the following systems:

) 1 1 17 - 07
: 1 2 1 1 1

i = 9 0 9 _9 T+ 1 U,

-1 -1 -1 3. | 1

and
T —3 =3 1 07 . o |
- 26 36 -3 -—-25 - -2 -1 y

30 39 -2 -=27|°7 0 3
L 30 43 -3 —-32._ 0 1]

Q.6. Given 4 e R"™*", B eR "™ show than if the pair (A, B) is controllable
(detectable) if and only if (A1, B") is observable (stabilizable).
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System Invertibility and Invariant Zeros

u(t) y(t)=0 e [ RN

Wvﬂvﬂ_, x(t) = Ax(t)+ Bu(t) ‘ T__hm = \\
y(t)=Cx(¢)+ Du(t) ; i—i;:“;:::‘ .i?:if%,;:f
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Good systems vs. bad systems...

It 1s meaningless to talk about a good system or a bad system without controller
design in the picture. When controlling a given system, its (structural) properties
do play crucial roles. Up to now, we have learned that...
1. An unstable system is bad as it blows up everything inside out.

Solution: To employ a control law to stabilize it, if possible. How to work

out a stabilizing controller for an unstable system is the story of Part 2.

2. An unstabilizable system is bad as it cannot be stabilized and thus cannot be
controlled.

Solution: No solution besides redesigning the system itself.

3. Anundetectable system is bad as it cannot be stabilized and controlled.

Solution: No solution besides redesigning the system itself.

There are more to be added to the above list as we progress. There are systems
that can be controlled but would generally yield bad control performance.
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System invertibility

The topic of system invertibilities has been left out in many popular
texts in linear systems (for example, in almost all the references listed
for this course), although 1t is important and crucial in almost every

control problem.

By definition, 1t is clear that an invertible system has to be a square
system, i.e., the number of the system inputs, m, and the number of the
system outputs, p, are identical. A square system is, however, not
necessarily invertible. Unfortunately, confusion between invertibility
and square systems 1s common in the literature. Many people take it
for granted that a square system is invertible. We illustrate this in the

following example.
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Example 3.5.1. Consider a system X of (3.1.1) characterized by

ex1351
(1 0 1] 0 0]
A=11 1 1|, B=}|0 1 (3.54)
_1 1 1_ _1 0_
and
0O 0 1 0 0
L = [1 0 0], 1) = [O O] (3.5.5)

Note that both matrices B and C are of full rank. It is controllable and observable,
and has a transfer function:

B 1 (s -1 §—1
G(S)_83382+S[ .1 | ] (3.5.6)

Clearly, although square, it is a degenerate system as the determinant of G (s) is
identical to zero.
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Recall the given system (3.1.1), which has a transfer function
G(s) =C(sI —A)"'B+D. (3.5.1)
Definition 3.5.1. Consider the linear time-invariant system . of (3.1.1). Then,

1. X 1s said to be left invertible if there exists a rational function matrix of s,

say L(s), such that
L(s)G(s) = I,. (3.5.2)

2. Y 1s said to be right mmvertible if there exists a rational function matrix of s,

say R(s), such that
G(s)R(s) = I,. (3.5.3)

3. X is said to be invertible if it is both left and right invertible.

4. 3 is said to be degenerate if it is neither left nor right invertible. JTT

A rational function is a ratio of two polynomials...
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Example (left invertibility): Consider an LTI system

0 1 1 |
. _ ss2tf
x=Ax+Bu=|1 1 1|x+|1|u ex1144
_1 | 0_ _1_
(2 1 1 0
y=Cx+Du= X+ u
9 8 5] |0

which has a transfer function

225% +30s +8

s> —s*—3s5s—1

4s” +55+1 j

G(s) = [

It is easy to see that

2 —s?=3s5—1 s> —s*—3s5s—1
L(s)= ; ;
2(4s +5s+1) 2(22s +3os+8)
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Example (right invertibility): Consider an LTI system

x=Ax+Bu=

ke
ke

.
I |x+
O_

0
1
1

.
2 |u
1_

y=Cx+Du:[2 1 1]x+[0 O]u

which has a transfer function

(4s2 +55+1

9s2+85+1)

G(s)=

It is easy to see that

R(s) =
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s> —s*—3s5s—1

s> —s*—3s5s—1

2(4S2 +5s+1)

s> —s*—3s5—1

2(9s2 +8s+1)

= G(s)R(s)=1
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Example (invertible system): Consider an LTI system

0 1 1 1 3
x=Ax+Bu=|1 1 1|x+|1 2|u
110 1 1

2 1 1 1 0]
y=Cx+Du= X+ u
9 8 5 0 1

which has a transfer function

s° +3s% +2s Os” +8s +1
225 +30s+8 s  +47s*+49s+11

s> —s*—3s5—1

G(s)= {

Exercise: Find the inverse of the above system, i.e., find

For D=1 it follows from (2.3.15) on p. 33 that G™'(s) =1 - C(s[ — A+ BC)'B.
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Interpretation of system invertibility

The system left and right invertibilities can be interpreted in the time domain as follows.

» For a left invertible system, given an output y(¢) produced by the system with an

initial condition x,,, one 1s able to 1dentify a unique control signal u (¢) that generates
the given output y (7).

m < X, fixed
S L O fixed &
? unique . > . known
u(t) eR” ; : System W) R

» For aright invertible system, for any given signal y, () €R?, one is able

to determine a (or many) control input u(¢) and an (or many) initial

Peter Moylan
condition x,, for the system, which would produce an output y(t) = y,.¢(f) .  University of
Newcastle
xo? m >p Australia
? one or many > S arbitrarily given
: stem
u(f) eR™ ; : Yy . ¥(t) eR?
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A good example that illustrates a left invertible system is underactuated robot manipulators

or a double pendulum...

: : shoulder
Consider the double pendulum system on the right,

where the output variables are 6, and 6,. If we have

torque to control both the elbow and the shoulder,

the double pendulum system is fully actuated and

the resulting dynamical system is invertible. If there up
is only one actuator providing torque to the elbow, ‘67 € 1;1
the pendulum is underactuated and the resulting Double Ferdnlom i
system is left invertible. In such a case, the system does not enough control authorities to

drive all the output variables to desired values as illustrated on the previous page.

A left invertible system would cause problems in output tracking. Dually, a right invertible
system (over-actuated) 1s good for output tracking but would degrade the performance of the
overall system with output feedback controllers where an observer 1s used. The concepts of
left and right invertibility are dual. This will be clear in Part 2 when we study advanced

control design techniques.
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Normal rank and invariant zeros

Definition 3.6.1. Consider the given system Y. of (3.1.1). The normal rank of its

transfer function G(s) = C(sI — A)~'B + D, or in short, normrank{ G(s)}, is
defined as

normrank { G(s)} = max {rank [G(\)] | X € C} . (3.6.2)

We note that Example 3.5.1 given earlier has a 2x2 transfer function matrix

G(S): 1 [(5—1)2 3_1]

The normal rank of this function matrix is 1.

Historically, many researchers had made lots of mistakes in defining system
zeros. Normal rank was introduced to give a correct and precise definition of

zeros, more specifically the invariant zeros, for multivariable systems.
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Invariant zeros

Definition 3.6.2. Consider the given system Y. of (3.1.1). A scalar 3 € C is said
to be an invariant zero of Y if

rank { P, ()} < n + normrank {G (s)}. (3.6.4)
Here A
eSiI — f _B
Pz(S) — C D ]

which is known as the so-called Rosenbrock system matrix.

We note that

* Invariant zeros play a crucial role in designing sensible
Howard H. Rosenbrock

control systems. 1920-2010

* For a SISO system, invariant zeros are identical to the zeros or transmission

zeros, 1.e., the roots of the numerator of its transfer function.
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Other but incorrect definition of transmission zeros has been used in the literature. The
same mistake has been spread over all the places including our textbook by C.T. Chen...

/ Definition \

Given the system (1), the transmission zeros of
(1) are defined to be the set of complex numbers 4 S
which satisfy the following inequality &

A—Al B :
rank[ C D] <n+min( 2 m) (2)

\_

« E. J. Davidson and S. H. Wang, “Properties and calculation of transmission

zeros of linear multivariable systems,” Aufomatica, pp. 643-658, 1974. Edwa.r d Dk avison Chi-Tsong Chen
University of Stony Brook
« « E. ]J. Davidson and S. H. Wang, “Remark on multiple transmission zeros Toronto University

of a system,” Aufomatica, p. 195, 1976.

Example: Consider an LTI system

_ _ ~ I

1 0 1 0 O] | |
A=|1 1 1|, B=|0 1 We will demonstrate using MATLAB that for
any scalar A on the complex plane,

I 1 1 1 O

i 0 o 1: ~ 0 O_ " A-AI B A + min( - ‘

ran = < min , — P

1 0 O 0 O ex1351
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Clearly, by definition, if /3 is an invariant zero of %, then there exist a nonzero
vector 2z € C" and a vector w, € C™ such that

, - 31 - A —-B g
Ps(3) (i}‘;) = [‘ = 5 ] (i}z) = 0. (3.6.5)

Here, 2, and wy are respectively called the right state zero direction and right input
zero direction associated with the invariant zero 3 of X..

Proposition 3.6.1. Let 3 be an invariant zero of X with a corresponding right
state zero direction xy and a right input zero direction wy. Let the initial state of
) be xo = xy and the system input be

u(t) = wee’, t>0. (3.6.6)
Then, the output of ¥ is identically zero, i.e., y(t) = 0,t > 0, and
z(t) = ze”t, t>0. (3.6.7)

This implies that with an appropriate initial state, the system input signal at an
appropriate direction and frequency is totally blocked trom the system output.
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Lo = Tp

\ 4

U (IL) — fu;Re,df.

System

Interpretation of invariant zeros (transmission zeros)

We note that physically

* An invariant zero [ with a state zero direction x; and mput zero direction wy

means that the input signal at frequency e’ entering the system at the

direction wy will be totally blocked by the system provided that the 1nitial

condition of the given system 1is x;.

* There are cases that a certain complex frequency, say £, might be totally

blocked in all input directions. Such a f1is called a blocking zero of the given

system.
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Proof. First, it 1s simple to verify that (3.6.5), 1.e.,
zx\ _ |BI—-A -—-B Tp \
ror ()= " " D) (n) -

Axy + Buy = Bxr, Cxx+ Dwr = 0. (3.6.8)

We first show that x(t) = zxe”" is a solution to the system X of (3.1.1) with the
initial condition x¢o = 2, and the input u(t) given in (3.6.6). Indeed, with u(t) of
(3.6.6) and x(t) of (3.6.7), we have

Az 4+ Bu = Axzel’’ + BuwgeP® = (Azx + Bui)e’ = fare® =&, (3.6.9)

Thus, 2(¢) is indeed a solution to the state equation of Y and it satisfies the initial
condition 2(0) = xy. In fact, 2(¢) as given in (3.6.7) is the unique solution (see,
e.g., Section 3.2). Next, we have

y(t) = Cx(t) + Du(t) = (Cxx + Dup)e’ =0, t>0. (3.6.10)

This concludes the proot of Proposition 3.6.1. |
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Example: Consider an LTI system

0 1 1 2
i=Ax+Bu=|1 1 1|x+|1|u, y=[9 8 5]x v
1 1 0 1 ex1155
2
which has a transfer function G(s) = S1s7 345+ 7 with a normal rank of 1.

s —s"=3s-1
Since it 1s a SISO system, its invariant zeros are the zeros or roots of the numerator

of its transfer function

174642 ~17-632
31

=-0.2747, z, = 31 =—0.8221

Z

It 1s easy to check for each of them, the rank of the corresponding Rosenbrock

system matrix drops.

For MIMO systems, the computation of invariant zeros are rather complicated! The m-
function TZERD in MATLAB and INVZ in Linear Systems Toolkit can do the job.
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Remarks:

* In this course, we define an LTI system to be of minimum phase if all its
invariant zeros are in the LHP (note that we don’t need the system to be

stable). Otherwise, it is called to be of nonminimum phase.

* Invariant zeros are invariant under state feedback and output injection, 1.e.,
we cannot re-place the locations of invariant zeros through a feedback
control law. On the other hand, we can freely assign a closed-loop pole so
long as its corresponding mode 1s controllable.

* A nonminimum phase zero would cause a lot of problems in designing a

control system. The overall control performance would be bad.

o In particular, the time-domain response of a nonminimum phase system

to a step input might have an undershoot.

o The frequency-domain performance will be limited as to be seen in the
results given in Part 2.
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Why are invariant zeros invariant?

Consider the LTI system characterized by
z:{)'c:AerBu
y=Cx+Du
with a state feedback law u=Fx+v, the resulting closed-loop system is given by
| {x =(A+BF)x+Bv
Ty =(C+DF)x+Dv

and the corresponding Rosenbrock system matrix is
sl-A-BF -B sI-A -B| I 0
{ C+DF D}{ C DHF 1}
Obviously, s 1s an invariant zero of 2 if and only if it 1s an invariant zero of X, 1.e.,

invariant zeros are invariant under state feedback. Similarly, we can show that the

invariant zeros are invariant under output injection, 1.€.,

sI-A-KC -B-KD]| [I -K|sI-4 -B
C D | |0 I C D
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Why are bad (nonminimum phase) invariant zeros bad?

For simplicity, we consider a SISO with a transfer function G(s), 1.e.,

Us) — G(s) F—> Y(s)

If we want the output to track a reference r, the simplest way i1s to design a control

law of the following form

R(s) — G71(s) Ues) G(s) — Y()

which results in pole-zero cancellations. Actually, almost all the control techniques
to be studied in Part 2 possess inherent pole-zero cancellations whenever the zeros
of the given systems are stable. Unfortunately, unstable pole-zero cancellations
are not allowed in control system design (to be explained in the class). As such,
the unstable phase zeros would limited the performance of the closed-loop system.

For instance, the unstable zeros would cause an undershoot in its step response...
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Example: The step responses of the systems with stable and unstable zeros...

Y(s) 1 l+s
G(s)= == G(s)=—5———
R(s) s +s+1 s*+s+1
Step Response Step Response
12 T T T T T 14 T T T
12}
1 ...................................................................................
1 L
08
) 008
© ©
2 2
5 06 S
S S
< <06
04r
04r
02r
0.2 1
O | | | | | O 1 | |
0 2 4 6 8 10 12 0 2 4 6

Time (seconds)
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l—s

G(s)=———
() sT+s+1

Step Response
1 4 T T T

Amplitude

02t/ Undershoot

Time (seconds)
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Good systems vs. bad systems (cont.)...

1. An unstable system is bad as it blows up everything inside out.

Solution: To employ a control law to stabilize it, if possible. How to work out
a stabilizing controller for an unstable system is the story of Part 2.

2. An unstabilizable system is bad as it cannot be stabilized and controlled.

Solution: To redesign the system itself.

3. An undetectable system is bad as it cannot be stabilized and controlled.
Solution: To redesign the system itself.

4. A degenerate system is bad as it would yield bad performance in the overall
control system.

o In state feedback control, left invertible (underactuated) systems would generally
yield bad performance.

o In observer-based feedback control, right invertible systems would cause troubles.

Solution: To redesign the system if better performance 1s wanted.

5. A nonminimum phase system is bad as it would yield bad control performance.

Solution: To redesign the system if better performance 1s wanted.

Finally, note that some good systems could also be improved to be better ones...
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How to get rid of bad invariant zeros? *

Even though the unstable invariant zeros (or nonminimum phase or bad systems in

general) cannot be changed by feedback control laws, they can be relocated by...

* Reselection of the system actuators (matrix B) and/or

* Replacement of the measurement sensors (matrix C) ‘\

ex1160
Example: Consider a system characterized by

(1 1 0 0 s—1
- G($)=——>
x=Ax+Bu=|1 0 1|x+|0u, y=[0 (1) O]x 8 $” =8 =25 +1
0O 1 O | X nonminimum phase

If we replace the measurement sensor to measure the first state variable instead, 1.e.,

1
=1 0 O G(s)=
4 [\/ ]x E> () s =5 =2s5+1

» minimum phase!

Note: There are techniques that can also be used to solve all the

problems highlighted on the previous slide.
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Some Structural

Decompositions ‘{ o

The performance of a control system is primarily determined by the structural
properties of the system to be controlled, rather than the control law
controlling it...

A good system can be controlled by a simple controller.

A bad system cannot perform well no matter what control law is used.
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Why and what?

Structural properties play an important role in our understanding of linear systems
in the state space representation. The structural canonical form representation of
linear systems not only reveals the structural properties but also facilitates the
design of feedback laws that meet various control objectives. In particular, it
the interconnections that exist among them, clearly show the structural properties
of the system. The simplicity of the subsystems and their explicit interconnections

meet our design specifications. The discovery of structural canonical forms and
their applications in feedback design for various performance specifications has
been an active area of research for a long time. The effectiveness of the structural
decomposition approach has also been extensively explored in nonlinear systems
and control theory in the recent past.
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Unsensed systems

We now proceed to introduce the controllability structural decomposition (CSD)

for the unsensed system characterized by
&t = Ax + Bu, (4.4.1)
where as usual x € R" is the state and u € R" is the input.

We note that the CSD i1s also commonly known as the Brunovsky canonical form

(1970). But the same result was reported by Luenberger earlier in 1967.

Pavel Brunovsky
1934-2018
Slovakian Mathematician

David Luenberger
Stanford University
USA
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Theorem 4.4.1 (CSD). Consider the unsensed system of (4.4.1) with B being of

nXxXn

full rank. Then, there exist nonsingular state and input transtormationsT; € R
and T; € R"”™"™ such that, in the transformed input and state,

%= Il w= I, 4.4.2)

such that the transformed system X = A%+ Bii has the following form:

uncontrollable modes

(Ag) 0 0 o 0 0 0 .- 07
0 [0 Ilp_1 -+ 0O 0 O .-« 0
2 O * cee % * . I - 0
A= = (4.4.7)
0 0 0 e 100 T, 0 --- |0
B * cee (K * )] o --- (1]

controllable pairs

where {k,,k,,---,k,} are called the controllability index of (4, B).
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/ Uncontrollable dynamics of
the systems
AO N _

linear combinations of the states

Ti9

=
Y

The shorter this chain of integrators is, the easier to control it.

Figure 4.4.1: Interpretation of the controllability structural decomposition.
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Example: Consider an LTI system x = 4 x+ B u with

10 0 0 0 07 "1 67
0 1 0 0 0 0 2 5
0 0 0 1 10 3 4
A= 0 0 —1 0 0 1 B= 4 3
0 0 0 0 0 1 5 2
L0 0 0 0 —1 04 L6 1.

Using the (3D function in Linear System Toolkit, we obtain a state transformation

-63 -292 15 126 -86 90
-38 -226 30 101 -68 75
25 =70 45 -25 -35 60
150 49 -109 60 77 -122 45
-62 13 75 -1 =29 30 ‘\
37 =127 90 26 —-41 15 4

csd

which transforms the given system into the CSD form, 1.e., ex1166
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T, AT, =

0
0

0
0

0.8286

1
0

0.1619 0.0095

0
0

0
1

0
0

| —0.8381 -2.5714 3.4095

0
0

0
0

—0.2286 0.4381

0
0
1.4381

1
0
—2.4286

0 0
0 0
-02095| |1
, T''B=
0 0
1 0
1.9905 | 0 1]

This controllability structural decomposition form is particularly useful if we

want to design a state feedback control law to place the closed-loop system poles

to any desired locations. By using a proper pre-feedback gain, we can simplify

the above pair to the following form.

S O O/ o O

S oo o =

oS oo = O
S O OO O O
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oS O~ 1O O O

oS - OO O O

o O o= O O

— o O o O O

This special form 1s
particular useful in
designing state feedback
control law as 1llustrated

on the next page...
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Pole placement is trivial in the CSD form. For simplicity, we consider a 3rd

order matrix pair in the CSD or Brunovsky canonical form, 1.e.,

0 1
A=|0 0 1
_Al Az A3_

0

9

0
B=|0
1

and a set of desired closed-loop system poles at 4, 4,, 4,, respectively. The

desired characteristic polynomial is then given as
X)) =(s—-A)s—L)s—4) = s+ alsz TS Ty

It 1s straightforward to show that the following state feedback gain ¥ would

place the closed-loop poles at the desired locations

F=—[A A, Al-|a, a, a]=[-A-a, -A,—a, —A,—a]

[0
= A+BF=| 0

1
0

0

1

— A(A+BF)=1, 4,
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Unforced systems

We consider an unforced system X characterized by
T = Az, y=~Cr, (4.3.1)

where x € R" is the state, y € R” is the output, and A and C' are constant matri-
ces of appropriate dimensions. We note that there are quite a number of canoni-
cal forms associated with such a system, e.g., the observable canonical form and
the observability canonical form (see, e.g., Chen [33] and Kailath [70]). These
canonical forms are effective in studying the observability of the given system.
However, they are not adequate to show the more intrinsic system structural prop-
erties (see, for example, Q.4 in Homework Assignment No. 2).

We proceed to present next an observability structural decomposition (OSD),

which 1s dual of the CSD introduced earlier, 1.€.,

—>—>—> 0OSDof(4,C) < CSDof (4,C") <« <« «
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Theorem 4.3.1 (OSD). Consider the unforced system of (4.3.1) with C' being of
full rank. Then, there exist nonsingular state transformation T, € R"™*" and
nonsingular output transformation T,, € R””? such that, in the transformed state

and output,

(4.3.2)

such that the transformed system x = 4 &, y= C X has the following form:

-
-
-

unobservable modes

A= T 'AT, =

~

C=17'CT, =

@
0
0

| 0

*
*
*

0

0
I/\'l —1
0
0
0
0

where x represents a matrix of less interest.
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pairs

© BEN M. CHEN



Also, {kl,kz,. : -,kp} are called the observability index of (A4,C).

,

Pt

Unobservable dynamics of

the systems

Ao T —

Note: the signals indicated by double-edged arrows are some linear combinations of y, .

U Ti ke, U Tio \H/ Ti1 =Y,
—_—— — — —— ————
)

\

v

The shorter this chain is, the easier to observe it from the output.

Figure 4.3.1: Interpretation of the observability structural decomposition.
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Example 4.3.1. Consider an unforced system (4.3.1) characterized by

1 0 0 0 -1 07
2 —1 4 -2 3 0
-2 -1 3 -1 3 0
1 :

2
1

A= | o 5 _9 0 (4.3.46)
1 -2 2 =3 0
_ 1 -1 1 1 -1
and
1 1 0 0O 1 0
(= 10 1 -1 1 0] . (4.3.47)

The following transformations will bring the system into the OSD form:

0 2 2 —1 —0.6667 —0.55567
0 0 -2 2 0.3333  0.4444
|0 -2 -1 3 1 0.3333 ] Tozlo 1]
s T 10 -7 -3 3 2 1 11
0 -2 0 0 0.3333 0.1111
1 -2 0 0.3333  0.6667 0.
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such that the transformed system Xx=A%, y= C X has the following form:

| cervable modes F=11]23333 0[4.3333 0 0 |
unobservable modes 0 —9 1 -2 0 0
- 0 1 0 1 0 0
A=7"1 .= '
T AT 0 0 0 5 1 0
0| —-14 o =14 0 1
0 6 0 6 0 0
and
- 0 ‘ 1 0‘ 0 0 O
C=T (T, =
0 | 0 0 1 0 0

From the OSD form, it is simple to see that the given system is unobservable,
but detectable as the unobservable mode is —1. There are two observable pairs

associated with the system.

Note: It can be computed using an m-function 080 in Linear Systems Toolkit.
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Ilustrative Example: Consider a linear system characterized by

0 1 1
x=Ax=|1 1 1 |x, ysz:[l 1 O]x
1 1 0]

We define a new state variable
Xx=y=Cx=[1 1 0]x = Xx=y=Cx=CAx=[1 2 2]x
which 1s independent of x,=y. We proceed to define
n=x=[1 2 2]x = x,=Ci=CA’x=[4 5 3]x
which 1s independent of X, and X,. We proceed to define

X,=x,=[4 5 3]x

which implies
x) [1 1 0 4 -3 2
x=|x |=|1 2 2{x=8S"x = S=| 5 3 =2 ‘\
X)) |45 3 -3 -1 1 ex1174
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We obtain a transformed system

0 1 0](x
¥=Ax=(5"48)x=0 0 1||x% |, y=Cx=(CS)x=[1 0 0]x

13 1\ x5

X=X, V=X

x;z =X

X, =1-% +3-%, +(Ix1)-X,

We define another set of new state variables...

X X
~ | ~ . - _1.% _op-l=
X=|X,|= x, —1-Xx =7 x=
X, X, —3-x—1-x,
X
= | X, |=x=Tx=
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0 0

1 0|x

-1 1]
0] X,
0|X=| X +7,
1 4%, + X, + X,
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We obtain a final transformed system

1 X

X
X=X, |= E Z = Xy =X,
X, ) \x-3x-X,) \X+3%,+X,-3%,-X,
X, X, X,
=X, =X, [=|4X,+X, +X,—X, —X, |=|3Xx, +X,
X, X, X,
X, +X, 1 1 0ffx
=13x,+x, |=|3 0 1]|x,]|, y=X =X =
X, 10 0]\x
The required state transformation
(1 -1 2]
x=[ ¥=(ST)¥=|0 1 -2|x = A=TAl' =
0O 0 1
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Homework Assignment 3 (due 1n one week)

Q.1. It was showed earlier that the invariant zeros of linear systems are invariant

under state feedback. More specifically, for a system characterized by
x=Ax+Bu

y=Cx+Du

with a state feedback u = Fx + v, it gives a closed-loop system
x=(A+BF)x+Bv
y=(C+DF)x+Dv

We have showed that if a scalar £ 1s an invariant zero of the original system,

1t 1s also an invariant zero of the new one as well.

(a) Show that the state feedback law does not change the controllability
property of the given system either.

(b) Show by a simple example that the state feedback law, however, may
change the observability property of the given system.
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Q.2. Verify that the system

I 1 0 0
t={0 0 1ix+ {0/ u, yz{o L O]:z;,
I 1 1 1

is left invertible. Given an output

coswt + w sinwt
Y\r) = i
y(t) ( e! — coswt ) L=

which is produced by the given system with an initial condition,

determine the corresponding control input, u(t), which generates the above
output, y(t). Also, show that such a control input is unique.
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Q.3. Verify that the system

u, y=[0 1 0]z,

oo =

0 0
lixz+ {0
1 1

— O

1
r= 10
1

is right invertible. Find an initial condition, 2:(0), and a control input, u(?),
which together produce an output

y(t) = acoswt, t>0.
Show that the solutions are nonunique.
Q.4. Given an unforced system
S| _
)\. 1
A

where A € R and o € R, show that the system is observable if and only if

a # 0.
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Q.5. Given an unsensed system characterized by a matrix pair in the CSD form

(0 1 O] 0 |
x=Ax+Bu, with A={0 0 1|, B=|0
2 1 1] 1

Let the output equation be y = C x. Verify that the resulting system has

(a) No invariant zeroif C=[1 0 0];
(b) One invariant zero if C=[0 1 0]; and

(¢) Two invariant zeroif C=[0 0 1].

Q.6. Given the matrix pair (4, B) as that in Q.5, determine an appropriate state
feedback gain matrix F such that A+ B F has its eigenvalues at —1, —1 £/,

respectively. Show that such an F is unique.

Show by an example that solutions to the pole placement problem for a

multiple input system is non-unique. Hint: put the pair in the CSD form.
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System invariant structural indices (infinite zeros, etc...)

In what follows, however, we will introduce the well-known Kronecker canon-

structure, invertibility structures and infinite zero structure of X altogether. Al-
though it 1s not a simple task (it 1s actually a pretty difficult task for systems with
a high dynamical order), it can be shown (see Gantmacher [56]) that there exist

nonsingular transformations U and V' such that Px(s) can be transformed into the

following form:
blkdiag{.sf—.f. Ly, ..., L; mer L —sH, I.ma} 0

0 0/
(3.6.11)

where 0 1s a zero matrix corresponding to the redundant system inputs and outputs.

U Ps(s)V =

Kronecker canonical form characterizes all the structure properties of linear
time-invariant systems, 1.e., it contains almost everything one needs to know

about linear systems. More detailed illustrations on are given on the next...
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Kronecker form of linear time-invariant system...

Invariant zeros

UP,(s)V =

\ 4
sl —J

Right mvertibility structure
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Left invertibility structure

Infinite zero

structure

Redundant
inputs
or outputs
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J 1s in Jordan canonical form, and s/ —.J has the following Zle 7; pencils
as 1ts diagonal blocks,

S — Jj’,b —1 ]

slyy o — Jng, (3;) = R , (3.6.12)
S — _.ijq; —1

j=12,...,mandi=1,2,...;0;and L;,,i = 1,2, .. ..pp.isan ([; + 1) x [;
bidiagonal pencil given by

Ly, = (3.6.13)
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Ry,i=1,2,...,me,isanr; X (r; + 1) bidiagonal pencil given by

s —1
R, = : (3.6.14)

H 1s nilpotent and in Jordan form, and [ — sH has the following mgq pencils as its
diagonal blocks,

"1 g -

Tpii —sJgan(0):=| = L gi>0,i=1,2,.. . md, (3.6.15)

and finally myg in Iy, 1s the rank of D, 1.e., mo = rank (D).
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Definition 3.6.3. Consider the given system X of (3.1.1) whose system matrix ~—
Ps(s) has a Kronecker form as in (3.6.11) to (3.6.15). Then,

and an algebraic multiplicity ofz;:":l ng,.j- It has a zero structure

_75‘1-(2) = {”_63-_..1- N3, 25, 'n_st-_._n}- (3.6.16)

SHE) = Iy la. ... Iy} (3.6.17)

SH(X) :={r1,r2, ..o rm ) (3.6.18)

S (2) ={q.q92. .-, Gmg |- (3.6.19)

We say that 3. has mgq infinite zeros of order q1, qo, . . .. Gmy- Tespectively.

If g1 = -+ = gm, and mgo = 0, then X is said to be of uniform rank ¢;. If

Y is a SISO system, i.e., m=1, q, is also called a relative degree. B,
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Everything
about a linear
system is
characterized
by these
indices.
Control
performance
is fully
determined
by these
structural

properties!
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Example 3.6.1. Consider a system . of (3.1.1) characterized by

-1 1 1 0 0 1 1 0- -0 0 07 kef
0O 1 1 0 0 1 1 O 0 0 O ex1361
O 0o 1 1 0 1 1 0 0 0 O
00 1 0 0 1 1 0 0 0 O

A= 11 1 1 1 1 1 1 B= 0 0 1 (3.6.20)
1 1 1 1 1 1 1 1 0 0
00 0 0 0 0 0 1 0 0 O
11 1. 1 1 1 1 1. L0 1 0
(00 00O 1 0 0] (0 0 O]

C=;0 0 00 001 0}y, D=;0 0 07. (3.6.21)
00 1 0 0 0 0 0 0 0 0

[t can be shown (using the technique to be given later in Section 5.6 of Chapter 5)

that with the following transformations

U=--. I/ =-.- (to be demonstrated using MATLAB in class)

Note: U and V can be obtained using m-function KCF in Linear Systems Toolkit.
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the Kronecker canonical form of ¥ is given as follows:

s=1 =i 0o o0lo olo 0 0 0 0
0 s—1| 0 0|0 0[O0 00 0 0

0O : 0 |-l 0/0 0]0 OO0 0 0

0 0 s —1]0 0l0 00 0 0

0 0 0O s|0 0[O0 0 0 0 0

UPs(s)V = 0 0 0: 0 s —1|0O 0 0 0 0
0 0 0: 0]0: 0|l —s 0 0 0

0 0 0 0]0 00 1 0 0 0

0 0 0 010 00 ™0 1 —s 0

0 0 0i 0[0: 00 0 Vo 1 —s

0 0 0! 0|0 0]0 0 0O ™0 1|

\7 v \/ -« .
Thus, we have S7(X) = {2}, SF(X2) = {2}, S§(¥X) = {1}, S5 () = {1, 2},
1.e., 22 has a nonsimple invariant zero at s = 1, and two infinite zeros of order 1
and 2, respectively. ¥ is degenerate as both S (3) and S} () are nonempty.

Leopold Kronecker Felix Gantmacher
1823-1891 1908-1964
German Mathematician Soviet Mathematician
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¥ :
Theorem 5.2.1. Consider the SISO system of (5.2.1). There exist nonsingular v

state, input and output transformations I'; € R"*", T'; € R and I', € R, which

b — A r L
decompose the state space of Y. into two subspaces, x, and xq. These two sub- - t=Az+ Bu,
spaces correspond to the finite zero and infinite zero structures of X, respectively. y=Cuz. (52.1)
The new state space, input and output space of the decomposed system are de-
scribed by the following set of equations:

- - . Transformed System:
r=1I0r, y=1I.y, u=1I%u, (5.2.2) f 4
| (A * 0 0 0 0] 0]
( ‘;‘;1 \ 0 010 « 00 0
- i)
I = ( 8‘) T, €R"™, x4 € R™, 24 = , . (5.2.3) |0 001 00 0
Id . A= 0 0 0 0 0 0|, B=|0
1 nd : . . ) . . s
and 0O 00O0 .- 01 0
i % % % % % >k_ _]__
T, = A1, + L.qy. 524 _
a aaa adl ( ) = [ 0 10 0 0 0 ]
:if1 — 9, 1} = I, (5.2.5)
;'f_fg = I3, (526) -A « 0 0 - 0 O-
0 010 0 0
. 0 0 01 0 0
Tna—1= Tna; (5:2.7) A+BF=| 0 0 0 0 0 0
:ifnd = Fgquxa + FEix1 4+ Esxg+ -+ -+ End:rnd -+ 1. (5.2.8) O
Furthermore, \(A,.) contains all the system invariant zeros and ngq is the relative 0 000 - 00

degree of X..
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Invariant zero Laqy
dynamics l

The shorter this chain
of integrators is, the
easier to control it...

25

Infinite zero
5 ’ L structure

13
_—
7]
©
A

Note: the signal given by the double-edged arrow is a linear combination of the states.

Figure 5.2.1: Interpretation of structural decomposition of a SISO system.
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5.3 Strictly Proper Systems

Next, we consider a general strictly proper linear system 2 characterized by

{ r=A1r + B u.

y—Cu (5.3.1)

where = € R", u € R™ and y € R? are the state, input and output. Without loss of
generality, we assume that both B and ' are of full rank. We have the following

structural or special coordinate basis decomposition of X..

Theorem 5.3.1. Consider the strictly proper system 2. characterized by (5.3.1).

There exist a nonsingular state transformation, I'y € R™™", a nonsingular output
- . . % . . - . _ W

transformation, I', € RP*?, and a nonsingular input transformation, I'; e R™"™,

that will reveal all the structural properties of Y. More specifically, we have
r=Ir, y=1.y, u=1I%u, (5.3.2)

with the new state variables

Ta

T .
b1, 2z, eR™, 1, e R™, 2, R™, 14 R™ (5.3.3)

Lo

rq

i
|
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the new output variables

y= (yd) , Ya € R™4,
Yb

and the new input variables

N U
i = d . ug € R™4,
U

yb € RPP,

U € R™<,

Further, the state variable x4 can be decomposed as:

Td1
rd,2

|

Td,my

rq,; € RY,
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Yd.1 Uuq,1
Ya,2 ud,2
Yd,my Ud,mg
a1
a1 _ _

Tdi = : , 1=1,2,...,maq,

I'q \2:qi

—
N
)
N

"

(5.3.7)
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with g1 < g2 < -+ < @¢my,. The state variable xy, can be decomposed as

I'h1 Yb.,1
Ib,2 Ub,2
Ty = . s Y = . .. (5.3.8)
'-I:b!pb yb|pb
Ibil
. I'b,i,2 .
rp; € R, ap; = , i =1.2,.... pp. (5.3.9)
Ih,i,l;

withly <ly < ... <, . And finally, the state variable x. can be decomposed as

'.-T:C: 1 HC 4 1
'-I:C ; 2 UC s 2
Te = ) L Ue = ) ) (5.3.10)
Le,me Ue,mg
/ Te,i,1 \
- i . Te,i,2 i = 9 7
Te; € R™, 2o; = , i =1,2,...,mc. (5.3.11)
Te,i,r;

with gy < 1o < -+ < 1.
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The decomposed system can be expressed in the

following dynamical equations:

invariant
Ty = *48.3,3:& + Labﬁ.fb + Ladyd' (5312)} F
(JCF)
for each subsystem 1y, ;, 1 = 1,2,..., py,
Ib,i1 = Tbi,2 + Lbdiays + Lbi1vd,  Ybi = Thyi1, (5.3.13) ™
. , left
T2 = Thi 3+ Lbdi2yb + Lbi2vd. (5.3.14) _ invertibility
structure
(OSD)
Thil, = Lbdi g U + Lbd.i g, Yd- (5.3.15)—~
for each subsystem . ;i =1.2,...,mc,
Teil=Tci2+ Lebi1Up + Led i 1Yd. (5.3.16)—
right
- invertibility
:'i-?c.,i.-ri'—l = Leir + ch.z’.,n‘—lyb + Lcd_g'._-rt-_lyd-, (5.3.17) structure
: /i, i, (CSD)

j:c,z',n — Ac:i.,a;l‘-a, + Ac,,iﬁc;?.‘-c ‘|'ch:1'.:-1*¢- b ‘|'Lcd.,i,-r1' Ya + U4, (5.3.1 8)-/
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and finally, for each subsystem xq;, @ = 1,2,..., ma,

-~
Tai1 = Td,:2+ Laiivyd, : Trdil, (5.3.19)
j-?d,i,z = T4, 3+ Ld?i:zyd- (5.3.20)
>~
Td,iq = AdjiaTa + AdicTe +AdipTy + Adgiara + (5.3.21) »

where A... Lay. . ... Aq; q are constant matrices of appropriate dimensions.

infinite zero structure. why?

We note that for each of these SISO subsystem,
the corresponding transfer function from its

input u,; to its output y,; can be expressed as

1
Ali Saberi Pedda Sannuti Hl. (S) = — Hl. (S) = 0
Washington Rutgers A .
State University .
University USA It has a zero at oo with an order of ¢,.

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 201 © BEN M. CHEN



T, — the subsystem without direct input and output:

invariant zero

1y, ; — the chain of integrators without a direct input:

left invertibility
structure

Lhi1=Yb,i

T ; — the chain of integrators without a direct output:

rq,; — the chain of integrators with direct input and output:

infinite zero
structure

Idi,q; l Irq,:,2 l Ldi1=Yd:
—_—

CUHK MAE ENGG 5403 - PART 1: THEORY ~ PAGE 202 © BEN M. CHEN

Te i | teiz b Te il right invertibility
—C > - > structure



=
=
=
—_—
—
3
o)

-

characterized by (

Example 5.3.1. Consider a strictly proper system .

scb
ex1531

I
™

[Tm}

1 -1 -1

—1

-1 -1

0

—2
—2

3 —1
3 —1

3
3

-1 -1

3

-1 -3 7 -3 -1 4 -3 -1

0

1}

—1 2
0

0

—1

—1

0

—1

0 1

0
—1

0

1
1

0

1 1 0 07

1
0O 0 0 0

0O 0 0 O

0O 0 0 0

1

01 2 2

1

1

o Q

oo

oo

oo

A=

© BEN M. CHEN
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The required state, input and output transformations...

-3 0 0 O

3
10
—4

—1

3
0
0
0

0
0
0
0

0 0 0 O

—1

0
0
0

0 0 O
0 0 O

—2 0

—1

1

0 0 0 O

—1

2

o

0 0 0 1

10

0
0

0
0
2

0
0
0

4 0 0 0
4 0 0 0
2 0 0 O

0
1

6

These transformations

are non-unique!

AN

0 0 1 07

1 0 0 O
1 1 0 0
I 1 0 1

Lo

0
0
1

Note: It can also be done using an m-function SCB in Linear Systems Toolkit.

© BEN M. CHEN
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0
0
0
0

0
1
0
0

00 0 O
0/0 0 O
00 0 O
00 0 O

0
0
0
1

0
0
0
0

0
0
1
0

[
<
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m 010000004.0___000__

o
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_

<

(qv]

-

)

Q

<

T

I
L)

~

+BF+KC in an essential form shown on the next page...

A=A
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0O 00 O
0O 00 O
0O 00 O
0O 00 O
0O 00 O

00 O
0 00 O
0O 00 O

1

the essentials

0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
1
0
0

1
0
0
0

0O 0j0 O O
0O 00 O O
0 0j0 0 O
0O 00 O O
O 1]0 0 O
O 00 0 O
0O 00 O O
0O 0,0 O O
O 0,0 0 O
0 0jo 0 O

0 010

0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

The essential structures of the system...

00 0 O
0j0 0 O
00 0 O
0jo 0 0

0
0
0
1

0
0
0
0

0
0
|
0
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infinite zero
structure
(%) = {1.3}

o0

S'k

(1.2}

(%) =

*
R

S

structure
(¥) ={2,2}

*
L

¥

S

2
h
-
o)
e
—
L
(@
-
=
(<D}
p—

I
QO

A(Aaa) = {~2,1)
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Just for fun...

The link between Taoism and chain of integrators...

Wil XA AR LERKSABIERRZFAZXF

(& %b 4 94%)

E Tﬁ-‘ KA ) A Yoy
L B A %65 %1415 81-84 T, 2019

ﬂ%‘-

[#H2] ALEZXALRERMALALBEIAEZR (LA 1) ATtz F THigz] "F=
TAF PR [ AEH, iR, REd, @hkak] WFE s,

L B 25 AN AEAD O AT AL [RTRidbim] 2 & REhS3:  “RERMY, MzEEmd, 7t
HoRd, EENEZWERAR B R KRB R 8. [ NS, gk, RKiEE] , BT
B AT N MEFRFRSFEREG KRG BOyR S, PZ2rine DEEAR] , —2E B R
WAEHgs. P [RERR] | 7 A CEliEnE TR T e 5 RS BT R K R,
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human earth haven natural order of the universe

y‘.o'J) ﬂ"f’{l{jéhf'ﬁiu')‘ﬂ, ‘ﬁ(:ﬂ“l/:’\ Xren — /\9 Xdi — J’{{’,, Xtian — k, Xdao — 3@-—

................................................................................ :‘;@@T |
H A W}\{fiL, iL{jai; Tmf ll i‘E‘LJI x]‘en = xdj_& xdi = xrian-’ xtian = xdao | =
il H UL ARSI R R R R
'X-.l'.'ell _0 1 0 0— xl'el.]. _0_ . c’b\&O((o
. M
%, | 001 0] x; | |0 0
b= b+ u ¢ (3)
_ &Y s
xtian 0 0 0 1 xtian 0 0q
. %(\\0
Xeo ) |0 0 0 O0](xg4 /) [1)
AR (3) B — AU AR 8 R Ge. N 7 L, FRA14
xl‘Ell . \es .
«1?»‘\(80
Xgi X<
tian
xdao

N RS (3) BPRAELRE, Hrp x BF AL 3, M@, BERA PR R Y elIrEr HAA . H

.............................................................................................................................

xdaozu:f(x):FX %“b&e (5)
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A brief introduction of geometric approach to linear systems......

3.7 Geometric Subspaces

The geometric approach to linear systems and control theory has attracted much
attention over the past few decades. It was started in the 1970s and quickly ma-
tured in the 1980s when researchers attempted to solve disturbance decoupling
and almost disturbance decoupling problems, which require the design of appro-
priate control laws to make the influence of the exogenous disturbances to the
controlled outputs equal to zero or almost zero (see, e.g., Basile and Marro [9],
Schumacher [126], Willems [151,152], Wonham [154], and Wonham and Morse
[155]). In fact, most of the concepts in linear systems can be tackled and studied
nicely within the geometric framework (see, e.g., the classical text by Wonham
[154] and a recent text by Trentelman et al. [141]). The geometric approach is
mathematically elegant in expressing abstract concepts in linear systems. It is,
however, hard to compute explicitly various subspaces defined in the framework.
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Definition 3.7.1. Consider the continuous-time system 2. of (3.1.1). An initial

state of ¥, wo € R", is called weakly unobservable if there exists an input signal
u(t) such that the corresponding system output y(t) = 0 for all t > 0. The
subspace formed by the set of all weakly unobservable points of 2. 1s called the

weakly unobservable subspace of ¥ and is denoted by V*(X).

oooooooooooooo

The following lemma shows that any state trajectory of > starting from an
initial condition in V* () with a control input that produces an output y(t) = 0,
t > 0, will always stay inside the weakly unobservable subspace, V*(X).

Lemma 3.7.1. Let x( be an initial state of X with xo € V*(X) and u be an input

oooooooooooooo

such that the corresponding system output y(t) = 0 for all t > 0. Then the
resulting state trajectory x(t) € V*(X) for allt > 0.

oooooooooooooo

Definitions of other geometric subspaces can be found in Chapter 3 of Chen et al...
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Links between the special coordinate basis and geometric subspaces...

The structural decomposition decomposes the state space of 2 into several
distinct parts. In fact, the state space X 1s decomposed as

X=X QXX XD X P Xy (5.4.37)
Here X is related to the stable invariant zeros, i.e., the eigenvalues of A are the
stable invariant zeros of X. Similarly, X" and X" are respectively related to the
invariant zeros of 2. located in the marginally stable and unstable regions. On the
other hand, A}, 1s related to the right invertibility, 1.e., the system is right invertible
if and only if A}, = {0}, while X, is related to left invertibility, i.e., the system
is left invertible if and only if X, = {0}. Finally, X}y is related to zeros of X at
infinity.
There are interconnections between the subsystems generated by the structural
decomposition and various invariant geometric subspaces. The following proper-
ties show these interconnections.
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Property 5.4.6. The geometric subspaces defined in Definitions 3.7.2 and 3.7.4

are given by:

6. X.® Xy spans S*(X).

7. X. spans R*(X).

Ly & invariant zeros
= Ihb @ left invertibility
B R e EiDilie
Id ¢ infinite zeros
L. ¢ stable zeros
La = €, <7 Zeros on jw axis

a
0
a
‘l’ & unstable zeros

Partition of the state space in
the special coordinate basis...

8. X o X)X ¢ X, ® Xy spans N* ().
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What are these geometric subspaces for?

Let us consider the following linear system

xX=Ax+Bu+FEw, z=Cx+Du

where x is the state, u the control input, z the output and w is disturbance

entering the system as an additional input.

We can show that there exists a state feedback control law = F' x such that
when it is applied to the given system, the resulting closed-loop system transfer

matrix from w to z can be made perfectly zero (disturbance decoupling), i.e.,
H_(s)=(C+DF)(sI—A-BF) E=0

ifand only if Im(E) < V*(X). In the special coordinate basis,

and X~ & XY ® X @ X, spans V*(X). It means the disturbance input can
only allow to enter in the subsystem spanned by X, & X.f o X DX,
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If in addition it requires 4+ B F to be asymptotically stable, the
disturbance decoupling problem is solvable if and only if the disturbance
enters the system through X" & X., which spans a geometric subspace

V™~ (X)) if (4,B,C,D) has no invariant zeros on the imaginary axis.

Note that if (4,B,C,D) is right invertible and is of minimum phase with no
infinite zeros, then X~ ¢ X, spans the entire state space X of the given
system, which means the disturbance decoupling problem is solvable for

any disturbance entering the system.

Such a system is super good for disturbance rejection under state
feedback.

We will examine this issue further in the second part of this course when

we are studying topics related to H, and H_, control.
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We can also show that if (4,B,C,D) has no invariant zeros on the imaginary
axis and if the disturbance enter the system through the subspace S*(X),
which is spanned by X, © X, @ X4, then there exists a stabilizing state
feedback law such that when it is applied to the given system, the resulting
closed-loop system is asymptotically stable and the resulting closed-loop
transfer function matrix from w to z can be made arbitrarily small (almost

disturbance decoupling).

Note that if (4,B,C,D) is right invertible and is of minimum phase, then
X, D X, @ Xy or ST(X)spans the entire state space X of the given system,
which means the almost disturbance decoupling problem is solvable for any

disturbance entering the system.

Such a system is good for disturbance rejection under state feedback.
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We conclude this part on linear systems theory by noting that the topics covered in this
course are pretty elementary, but sufficient for students to understand basic linear system

theory and to grasp basic ideas and solutions to many linear control problems.

Some advanced topics such as the geometric subspaces of linear systems, which are
instrumental in developing many control theories (including some nonlinear control

theories), are left out as there is too much mathematics involved.

Interested readers can find more
detailed information in the text by
Chen, Lin and Shamash (2004).

One can also utilize a Linear

Zongli Lin
University of Virginia

Systems Toolkit developed by
Lin, Chen and Liu, available for
free by request, for computing all
the structural decompositions and
geometric subspaces of general

linear systems. Yacov Shamash

Stony Brook University
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Other advanced linear systems
theory for control using a
geometric approach can also
be found in the literature, e.g.,
the texts listed on the right.

Finally, we note that the
control performance of a
system depends more on its
system structural properties
rather than control

methodologies used.

Don’t expect to have a good
performance if the system to
be controlled 1s bad!
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Harry L Trenteiman, Anton A. Stoorvogel

and Malo Hautus

W. Murray Wonham
i e Control Theory for
ml\duluvanable Linear Systems
A Geometric Approach
Third Edition
1985
@sﬂiwvm (;) Springer

W. M. Wonham H. L. Trentelman
University of Toronto University of Groningen
Canada The Netherlands
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C  ® Notsecure | www.mae.cuhk.edu.hk/~bmchen/linsyskit/index.html

Linear Systems Toolkit

Xinmin Liu
University of Pennsylvania

Zongli Lin, Ben M. Chen, Xinmin Liu

The Linear Systems ToolKit contains 66 m-functions that realize all the structural decompositions of linear systems, and their
properties (such as finite and infinite zero structures, invertibility structure and geometric subspaces) as well as applications
(such as system factorizations and sensor selection), documented in the monograph, Linear Systems Theory: A Structural
Decomposition Approach, authored by B. M. Chen, Z. Lin and Y. Shamash (Birkhauser, Boston, 2004).

The beta version of this toolkit is currently available for free. Interested readers might wish to register below. A zipped file that
contains all m-functions of the toolkit will then be sent to the registered email addresses. Registered users will also automatically
receive any advanced version of the toolkit through email. Nonetheless, the owners of the toolkit reserve all the rights. Users
should bear in mind that the toolkit downloaded from the web site or received through email is free for use in research and
academic work only. Uses for other purposes, such as commercialization, commercial development and redistribution without
permission from the owners, are strictly prohibited.

The contents of the toolkit can be viewed by clicking this link. Some of these m-functions are interactive, which require users
to enter desired parameters when executed. Some are implemented in a way that can return results either in a symbolic or
numerical form. Detailed descriptions of the toolkit and the user manual can be found in Chapter 12 of the monograph.

Interested readers please send us an email with (1) your name; (2) email address; (3) institution; and (4) country. A zipped file,
linsyskit.zip, containing all the m-functions of the toolkit will be sent to your email address. Please note that we might verify your
information first before sending out the package to you. Once again, note that your information will be added to our database for
distribution of future versions.

> > ... This link leads to the list of errata for the monograph mentioned above ...

> > ... This link leads to bmchen.net (= www.mae.cuhk.edu.hk/~bmchen) for other toolkits ...
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Linear Systems & Control Toolkit m-functions

For control system

design in Part 2...

Tzwo.m
Tzws.m
addps.m
atea.m
bdcsd.m
bdosd.m
blkz.m

csd.m
ctridx.m

/aaddps.m N

dare.m

datea.m
ddpcm.m
dgm2star.m
dgm8star.m
\thState.m//

Copyrighted © Ben M. Chen

[thState.m

h8state.m ]

dicofact.m
dmpfact.m
dscb.m
dssd.m
ea _ds.m

gcfact.m
/amZSos.m N\
gm2star.m
gm8sos.m
gm8star.m
h2care.m
h2dare.m
h2out.m
h2state.m
h8care.m
h8dare.m

\QBout.m //
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infz.m

infz ds.m

invz.m

invz ds.m

iofact.m

Jef.m

kcf.m

1 invt.m

1 invt ds.m
[ 1trloops.m |

morseidx.m
mpfact.m
(n_star.m |

normrank.m
obvidx.m
osd.m

r invt.m

r invt ds.m

v_plus.m

Geometric

subspaces...

(r_star.m |

rijd.m
rosysdddp.m
s lambda.m
S minus.m
s_plus.

m
s _star.m
5a_act.m
5a_sen.m
scbh.m
schraw.m
sd _ds.m
552tf ds.m
ssadd.m
ssd.m
/ssintsec.m )
ssorder.m
v_lambda.m

vV _minus.m

\v_star.m /

© BEN M. CHEN



NEHD ‘W N3g © 02Z 39Vd ~ AYOFH] T 14Vd - £0%S DONI AVIN ¥HND

*"oUQ JIE] JO puy

*'S.10JeI393UI JO SUIEYD JO 39S B SI WISAS Y

‘9S.Ino0d SIY U]
'SEUIY3 JO Sureyd pajeldajul Jo 39S € ST WISAS Y

JWI)SAS e S11eyM






