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It is show time!It is show time!

This last topic is to be learned in the second part…

Recap:	What	are	we	going	to	learn	in	this	class?.

Is it a good system? 
(System structural 
properties)  

How does it 
behave?
(System 
responses)

⑥

②

③

④

⑤
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Controller

Typical	structure	of	a	control	system	(revisit)…

System to be controlled
REFERENCE OUTPUT

+
–

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key	issues: (1) How to describe systems to be controlled? (Done in Part 1)

(2) How to design control laws? (To be done in Part 2)
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Examples	of	classical	and	advanced	control

Optimal control Robust control

Measurement 
Output

Control Input

More than just control
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Outline	for	Part	2

 Revisit of classical control design methods for SISO systems.

 Stablization of multivariable systems.

 Linear quadratic regulation (LQR) control and its properties; 
returned differences; guaranteed gain and phase margins; Kalman 
filter; linear quadratic Gaussian (LQG) design.

 Introduction to modern control system design; H2 and Hoptimal 
control; solutions to regular and singular H2 and Hoptimal control 
problems; solutions to some robust control problems.

 Loop transfer recovery (LTR) design technique.

 Robust and perfect tracking (RPT) control and composite nonlinear 
feedback (CNF) control techniques (if time permits).



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 6 © BEN M. CHEN

A
dvanced C

ontrol

Robust C
ontrol

O
ptim

al C
ontrol

Concluding Remarks: Nonlinear Control, Implementation Issues

Material	Flow	of	Part	2:	Design…

Review of Classical Control, PID, Lead and Lag Compensators, etc.

Stabilization of Multivariable Systems

LQR Control

Kalman Filter

LQG Control Robust and Perfect Tracking

H2 and H Control

Introduction to Robust Control

Loop Transfer Recovery (LTR) Design
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Review of Classical Control TechniquesReview of Classical Control Techniques

+
r

( )G s( )K s
y

–
( )C s
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John	Ziegler
American	Engineer

1909–1997	

Nathaniel	Nichols
American	Engineer

1914–1997	

CONTROL ENGINEERING
2ND OCTOBER 1990
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Norbert	Wiener
American	Mathematician	and	Philosopher

1894–1964	

It is the first public usage of the term cybernetics to refer to self-regulating mechanisms. The book 
laid the theoretical foundation for servomechanisms (whether electrical or mechanical), automatic 
navigation, analog computing, artificial intelligence, neuroscience, and reliable communications.

– 1948 EDITION

Feedback	and	Oscillation:	This chapter lays down the foundations for the mathematical treatment 
of negative feedback in automated control systems. The opening passage illustrates the effect of 
faulty feedback mechanisms by the example of patients with various forms of ataxia. He then 
discusses railway signaling, the operation of a thermostat, and a steam engine centrifugal governor. 
The rest of the chapter is mostly taken up with the development of a mathematical formulation of the 
operation of the principles underlying all of these processes. More complex systems are then 
discussed such as automated navigation, and the control of nonlinear situations such as steering on 
an icy road. He concludes with a reference to the homeostatic processes in living organisms.
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1
9
5
4

U.S. Army Colonel in World War II

Hsue‐shen Tsien (Qian	Xueshen)
Chinese	Mathematician	and	Aerospace	Engineer

1911–2009	

(Xuesen Qian)

工
程
控
制
论

钱
学
森

He	was	influenced	by	the	methods	of	American	engineering	education,	especially	its	focus	on	
experimentation.	This	was	in	contrast	to	the	contemporary	approach	practiced	by	many	
Chinese	scientists,	which	emphasized	theoretical	elements	rather	than	hands‐on experience…



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 11 © BEN M. CHEN

Recall that the main objectives in control system design are: (1) to stabilize the 
given system; and (2) to track certain desired references. As illustrated in Part 1, if 
we consider a SISO system

U (s) Y (s)G (s)

and if we want the output to track a reference r, the simplest solution is to design a 
control law of the following form

Besides the issue on unstable pole-zero cancellations as explained in Part 1, the 
above open-loop control strategy is not robust with respect to uncertainties in 
unmodeled system dynamics and external disturbances. As such, such an open-loop 
control system has never been adopted for practical uses!

U (s) Y (s)G (s)G–1 (s)R (s)
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Recall that the objective of control system design is trying 
to match the output Y(s) to the reference R(s). Thus, it is 
important to find the relationship between them. Recall 
that

)()()(
)(
)()( sUsGsY

sU
sYsG 

Similarly, we have                            , and                              . 
Thus,

( ) ( ) ( )U s K s E s ( ) ( ) ( )E s R s Y s 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .
Y s G s U s G s K s E s

G s K s R s Y s
 

 

Instead, we adopt the following feedback control scheme: Idea… Op Amp

Harold	S.	Black (1898–1983) was 
an American electrical engineer, 
who revolutionized the field of 
applied electronics by discovering 
the negative	feedback	amplifier
in 1927. To some, his discovery is 
considered the most important 
breakthrough of the twentieth 
century in the field of electronics, 
as it has a wide area of application. 
He published a famous paper,
Stabilized	Feedback	Amplifiers, 
in 1934.

+
U (s)R (s)

)(sG)(sK
Y (s)

–

E (s)
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 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

Y s G s K s R s G s K s Y s

G s K s Y s G s K s R s

 

  

)()(1
)()(

)(
)()(

sKsG
sKsG

sR
sYsH




R (s) ( )H s Y (s)

which is the closed-loop transfer function from the reference input R to the 
system output Y.

Classical control techniques are focusing on designing an appropriate controller 
K (s) such that the resulting closed-loop transfer function H (s) is stable and meets 
given design specifications, such as settling time and overshoot in time domain 
and gain and phase margins in frequency domain.
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Classical Control System Design Philosophy…

It is to select an appropriate controller such that when it is applied to the given 
plant, the resulting closed-loop system H (s) meets the time domain specifications 
(such as rise time, settling time and overshoot, etc.).

We observe that the best choice is to have an overall closed-loop system

Unfortunately, having a unity transfer function is practically impossible, we would 
thus try to make             , instead. More specifically, we will try to make H (s) to be 
as close to 1 as possible within the operating frequency range (working bandwidth) 
of the system. 

In almost all classical control system designs, we are trying to match the closed-
loop system to 1 at one particular frequency point, i.e., s = 0. We always carry out 
to design a controller such that the resulting H (0) = 1, a unity DC gain.  

R (s) ( ) 1H s  Y (s)

( ) 1H s 
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Based on the nature of the system to be controlled, typical choices of K(s) in the 
classical design methods are: 

• P (proportional) control: 

• PI (proportional-integral) control, 

• PD (proportional-derivative) control, 

• PID (proportional-integral-derivative) control:

( ) ( ) ( )p p pu r y ek k kU s E s    

0

( ) ( ) ( ) ( ) ( )
t

i
p i pu kt e t e d U s s

s
k Ek k        

 

 ( )( ) ( ) ( ) ( )p d p du k de tt e t U s s E sk k
t

k
d

    

0

( )( ) ( ) ( ) ( ) ( )i
p i d p

t

d
de tu t e t e d U sk s E s

d s
kk k k k

t
          

 
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In classical control design, one is to choose a suitable controller (P/PI/PD/PID) 
with appropriate gains such that the resulting closed-loop transfer function H(s) 
is dominated by a second order system and then compared it with the behaviors 
of a typical second order prototype whose properties are well studied and 
documented.

2

propotype 2 2( )
2

n

n n

H s
s s


 


 

21   n

n 

 is called the damping ratio of the system

n is called the natural frequency

The following is a commonly used 
prototype and important benchmark for 
classical control system design:
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The behavior 
of the system 
is fully 
characterized 
by  ,  the 
damping ratio, 
and n , the 
natural 
frequency.

2

propotype 2 2( )
2

n

n n

H s
s s


 


 

Unit step response of
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2

propotype 2 2( )
2

n

n n

H s
s s


 


 

Further zoom in to the unit step response of

1% settling time

overshoot

rise time

st
rt t

n
rt 

8.1


n
st 

6.4


21   eM p
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Example: Recall that the linear model of the pendulum system around 0 = 0 is

 
2

00 1
, 1 01

0
u yg

M LL

 
 

                            


 

L For simplicity, we assume

The above system can thus be expressed as  

Pendulum
Pendulum

2
11, 1g

L M L
 

 
0 1 0

, 1 0
1 0 1

u y
 
 

        
                 


 

It has a transfer function                      . We wish to design a PD controller to 

yield a settling time of 1 sec. and an overshoot less than 10% for a step response.    
2
1( )

1
G s

s



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The problem can be formulated as follows…

+
R (s)

)(sG)(sK
Y (s)

–

2

1( )
1

G s
s




design a PD control law

such that the closed-loop system response due to a unit step input has a settling 
time ts = 1 second and overshoot less than 10%.

( ) p dK s k k s 
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The resulting closed-loop system is given by

2

( ) ( )( )
1 ( ) ( ) 1

d p

d p

k s kG s K sH s
G s K s s k s k


 

   

Compare this with the standard 2nd order system:

2

propotype 2 2( )
2

n

n n

H s
s s


 


 

2

2

1
d n

p n

k

k







 

The key issue now is to choose parameters kp and kd such that the above 
resulting system has desired properties, such as prescribed settling time and 
overshoot. We should note that the numerator cannot be exactly matched no 
matter what and the resulting DC gain is always equal to kp /(1+ kp ). We can 
add an additional feedforward constant gain to make the DC gain unity.

Cannot do anything 
with this term…
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To achieve an overshoot less than 10%, we obtain              from the figure on the 
right that

0.6 

x

To achieve a settling time of 1 second, 
we use

54.6 4.6 4.6
0.

.
8

1 5 7
n

s n
st

t



 

     

8.0. To be safe, we choose

9.2
32.1

d
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k
k




2

2

1
d n

p n

k

k







 
21
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Simulation Result:
The resulting 
overshoot is 

about 18% and 
the settling time 
is about 1 sec. 
Also, there is a 

steady state error.
Thus, our design 

goal is only 
partially 
achieved. 

We need to 
resign the 
controller.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (seconds)
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Summary for designing K(s)…

Step 1: Given a plant, G (s), to be controlled and given design specifications (e.g., the 
required on settling time, overshoot, etc.), determine an appropriate 2nd order 
prototype Hprototype(s), which meets the requirements.

Step 2: Choose an appropriate (P/PI/PD/PID) 
controller, K (s), and work out its 
closed-loop transfer function H (s). 

+
r ( )G s( )K s

y
–

Step 3: Determine the required gain 
parameters in K (s) by 
matching H (s) in Step 2 and 
Hprototype(s) in Step 1, either 
exactly or approximately 
(usually we would only be 
able to match them loosely). 

R (s) ( )H s Y (s) prototype ( )H s

Step 4: Simulate the above design to verify the result. Repeat Step 2 and Step 3 until a 
satisfactory result is obtained.
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 Ziegler-Nichols tuning method for designing a process controller…

Step 1: In the configuration below, the proportional gain is increased until the closed-loop 
system becomes marginally stable (i.e., the closed-loop system has simple poles on 
the imaginary axis, say ju , in the complex plane). Such a gain, Ku, is called the 
ultimate gain. The corresponding period of oscillation, Pu = 2 /u , is called the 
ultimate period. 

Step 2: Ziegler-Nichols tuning parameters are set as…

PI                             kp = 0.45 Ku,  ki = 0.54 Ku / Pu

PID                         kp = 1.6 Ku,  ki = 3.2 Ku / Pu,   kd = 0.2 Ku Pu

P                              kp = 0.5 Ku

Ku

u

0 2 4 6 8 10
0

0.5

1

1.5

2
Step Response

Pu

Pu
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Even though we might be happy with the 
time-domain performance, the frequency 
domain properties (such as gain	and	phase	
margins	as well as sensitivity	function	
specifications) are equally important in real-
life applications. These frequency-domain 
specifications guarantee the robustness of 
the overall closed-loop system in face of 
uncertainties and disturbances.

In order to elaborate the concept of 
frequency-domain specifications, we need to 
recall the Bode	plot	and Nyquist	plot	of a 
transfer function that we have learned in the 
elementary introduction course to feedback 
control in our undergraduate studies.  

What	is	next?

In 1945 H. W. Bode presented a system for 
analyzing the stability of feedback systems 
by using graphical methods. Until this 
time, feedback analysis was done by 
multiplication and division, so calculation 
of transfer functions was a time 
consuming and laborious task. Remember, 
engineers did not have calculators or 
computers until the 1970s. Bode 
presented a log technique that 
transformed the intensely mathematical 
process of calculating a feedback system’s 
stability into graphical analysis that was 
simple and perceptive. Feedback system 
design was still complicated, but it no 
longer was an art dominated by a few 
electrical engineers kept in a small dark 
room. Any electrical engineer could use 
Bode’s methods to find the stability of a 
feedback circuit.                ——Ron	Mancini

Hendrik	W.	Bode
American	Engineer

1905–1982	
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Frequency responses

Consider the following feedback control system,

Frequency response of the open-loop transfer function, i.e., K(s)G(s), are the 
key in examining the robustness properties of the closed-loop system.

For example, suppose a control system has an open-loop transfer function

3 2
5( ) ( )

5 5 1s j
s j

K s G s
s s s







  

3
1

22 2 3 2

5 5( ) ( ) , ( ) ( ) tan
1 5(1 5 ) ( 5 )

K j G j K j G j     
  

  
        

+
r

)(sG)(sK
y

–

e

Nyquist 
plot

Bode plot

2 3

2 2 3 2
5(1 5 ) 5( 5 )
(1 5 ) (5 )

j  
  

  


  

e jz x i y r   
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3 2
5( ) ( )

5 5 1
K s G s

s s s


  

bode
ex2021
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Nyquist	plot

Nyquist plot maps the open-loop transfer function       
K( j)G( j) directly onto a complex plane. For the 
previous example, its Nyquist plot is as follows…

Harry	Nyquist
Swedish	

American	Engineer
1889–1976	

nyquist

3 2
5( ) ( )

5 5 1
K s G s

s s s


  

Nyquist	stability	criterion, 
independently discovered by 
the German electrical 
engineer Felix	Strecker at
Siemens in 1930 and the 
Swedish-American electrical 
engineer Harry Nyquist at Bell 
Telephone Lab in 1932, is a 
graphical technique for 
determining the stability of 
a dynamical system. Because it 
only looks at the Nyquist	plot	
of the open loop systems, it can 
be applied without explicitly 
computing the poles and 
zeros of either the closed-loop 
or open-loop system. As a 
result, it can be applied to 
systems defined by non-rational 
functions, such as systems with 
delays. 
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Nyquist	stability	criterion
Recall the closed-loop transfer function of feedback system…

The closed-loop characteristic polynomial is given by

Clearly, zeros of 1+ K(s)G(s) are the closed-loop system poles.

( ) ( )( )
1 ( ) ( )

K s G sH s
K s G s




01 ( ) ( ) 0 ( ) 1( 1)K s G s K s s jG     

Let Z be the number of zeros of 1 + K(s) G(s) in the right half 
plane (i.e., the unstable closed-loop poles), P the number of 
unstable poles of the open-loop transfer function K(s) G(s). Then, 
the Nyquist plot of K(s) G(s) shall encircle the point – 1 + j 0
(clockwise) N = Z – P times (or Z = N + P).

Note: The above result can be utilized to determine the stability of the closed-loop 
system. It can also be used to determine how far the system is from instability.
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Procedure	for	determining	Nyquist	stability

For the case when the open-loop system is stable (P = 0), Thus, the closed-loop is stable iff the 
Nyquist plot has no encirclement of – 1.  If the open-loop system has two unstable pole (P = 2), then 
the closed-loop is stable iff N = – 2, i.e., the Nyquist plot should encircle – 1 anti-clockwise twice… 

2N  

Gene	F.	Franklin
Stanford	University	

1927–2012	
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First of all, the key idea of Nyquist stability criterion is to use open‐loop	transfer	function	
to determine the closed‐loop	stability. This can be done because under the unity feedback 
framework

The closed-loop transfer function is given as

It can be seen from the above expression that the closed-loop 
stability is determined by the characteristic polynomial of     
1+G(s)K(s) = 0, which is equivalent to                                          .

It together with the argument principle in complex analysis give Nyquist stability criterion.

Side	note…



F

K
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–1

PM

1
GM

Gain and phase margins

The gain margin and phase margin can be found 
from the Nyquist plot by zooming in the region 
in the neighbourhood of the origin. 

1( ) ( ) , ( ) ( ) 180p p p p pK j G j K j G j    GM where  is  such  that      

( ) ( ) 180 , ( ) ( ) 1PM   where  is  such  that  g g g g gK j G j K j G j       

y
+

r
–

e
( ) ( )K s G s

GM

Gain margin is the additional gain 
that can be tolerated in KG(s) (or 
gain uncertainties in G(s)) such 
that the resulting closed-loop 
system would still remain stable. 
Similarly, phase margin is the 
additional phase that can be 
tolerated in KG(s) (or phase 
uncertainties in G(s), such as input 
delay) such that the corresponding 
closed-loop would still be stable.
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  
1 0.21 GM 4.8

GM

Gain and phase margins in Nyquist plot

Example:
3 2

5( ) ( )
5 5 1

K s G s
s s s


  

0, 0 0P N Z P N      
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gain crossover 
frequency

phase crossover 
frequency

gain 
margin

Gain and phase margins in Bode plot

margin

GM 4.8 13.62 dB 

PM 49.8 

–1

Bode	plot

Nyquist	plot

3 2
5( ) ( )

5 5 1
K s G s

s s s


  

GM = 4.8

GMdemo

phase 
margin

e jz x i y r   
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When the open-loop system is unstable, its Nyquist plot must encircle –1 point (counter 
clockwise) to ensure the closed-loop stability. The following is such an example (the open-
loop system has one unstable pole)…

 If we increase the open-loop gain by more 
than 2.3, the right circle will encircle –1
point clockwise instead. By Nyquist 
stability criterion, the resulting closed-loop 
system has 2 unstable poles. Thus, we 
cannot increase the open-loop gain more 
than 2.3, which the upper gain limit.

 On the other hand, if we decrease the open-
loop gain by a factor less than 0.8, there 
will be no encirclement of –1 point. By 
Nyquist stability criterion, the resulting

 The closed-loop system will remain stable so long as the open-loop gain is perturbed 
within (0.8, 2.3), which is the gain margin for this example.

closed-loop system one unstable pole. Thus, we cannot decrease the open-loop gain by 
less than 0.8, which is the lower gain limit.

GM = (0.82, 2.3)

PM = 14.3

Gain	margins	for	unstable	open‐loop	systems

X 
2.3
X 
2.3

X 
0.82
X 

0.82 ++



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 37 © BEN M. CHEN

Sensitivity and complementary sensitivity functions

Sensitivity and complementary sensitivity functions are two other measures for a 
good control system design. The sensitivity function is defined as the closed-loop 
transfer function from the reference signal, r, to the tracking error, e, and is given 
by

The complementary sensitivity function is defined as the closed-loop transfer 
function between the reference, r, and the system output, y, i.e.,

Clearly, we have S(s) + T (s) 1.

1( )
1 ( ) ( )

S s
K s G s




( ) ( )( )
1 ( ) ( )

K s G sT s
K s G s




+
r

( )G s( )K s
y

–

e
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A good control system design should 
have a sensitivity function that is 
small at low frequencies for good 
tracking performance and disturbance 
rejection and is equal to unity at high 
frequencies. On the other hand, the 
complementary sensitivity function 
should be made unity at low 
frequencies. It must roll off at high 
frequencies to possess good 
attenuation of high-frequency noise.

Gunter	Stein
Honeywell,	USA

SS
TT

2006
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+
R (s)

( ) ( )K s G s( )C s
Y (s)

–

Now, recall the block diagram of control system: 

in which as usual G (s) is the plant to be controlled, K (s) is the controller one 
has designed to meet the time-domain specifications, and controller (commonly 
called compensator) C (s) is to be meet the frequency-domain specifications. 

The common choices for C (s) are either a lead or a lag compensator:

1,
1

1)( 



 
Ts
TssC10,

1
1)( 



 
Ts
TssC

LEAD COMPENSATOR LAG COMPENSATOR

The key idea in designing these lead and lag compensators is rather simple – it 
tries to shift the frequency response to have desired gain and phase margins…

!(0) 1 ?C   
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Frequency responses of lead and lag compensators

1,
1

1)( 



 
Ts
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1
1)( 



 
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Idea of adding a lead compensator

Phase of lead 
compensator

Phase margin 
after 
compensation

Gain of lead 
compensator

Gain cross-over 
frequency gets 
shifted after 
compensation

Generally, it requires 
many iterations to 
have a good result…

Original PM
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Desired PMDesired PM

Phase after 
compensation

Gain cross-over 
frequency 
shifted to lower 
frequency after 
compensation

Gain of lag compensator

Phase of lag compensator

Idea of adding a lag compensator

Again, it 
requires 
many 
iterations 
to have a 
good 
result…
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Summary for designing C(s) and the overall controller…

Step 1: Given a plant, G (s), together with a pre-designed controller, K (s), which meets 
the time-domain design specifications (e.g., overshoot, settling time, etc.), we are 
to design an appropriate compensator to meet frequency-domain specifications 
(e.g., required gain and phase margins).

Step 2: Choose an appropriate compensator (either lead or lag compensator), C (s), and 
work out the required design parameters. 

Step 3: Simulate the above design to verify the result. Repeat Step 2 until a satisfactory 
result is obtained.

Step 4: Perform simulation for the over design consisting of both K (s) and C (s). Check 
if all the design goals are achieved…

+
R (s)

( )G s( )K s
Y (s)

–

Step 5: Repeat the design processes of K (s) and C (s) all over again, if necessary 

( )C s
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Advantages	and	drawbacks	of	classical	control
The advantages of the classical or PID control are:

 It is structurally simple and it is easier to tune controller gains.

 It links directly to the time- and frequency-domain specifications.

 It can be applied to plants whose dynamic model is unknown.

The drawbacks are also very obvious:

 All specs are approximately met through out the design process. Many 
iterations are required.

 It can only be used to control certain classes of SISO plants. For instance, a PID 
controller cannot even stabilize a triple integrator plant.

 It only takes the error signal e for feedback rather than r and y independently, 
which limits the overall control performance. 

 It is not feasible to control MIMO systems directly. We need to decouple a 
MIMO system first before utilizing PID control.
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Stabilization of Multivariable SystemsStabilization of Multivariable Systems

PLANT

OBSERVERSTATE FEEDBACK
LAW

ˆ x

u y



F K


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Stability, more specifically the internal stability, is of the utmost importance in 
control systems design. It is meaningless to discuss control system performance 
without internal stability.

In this section, we focus on systematic procedures in designing

1. A state feedback control law to stabilize an unstable system provided 
that it is stabilizable, and all its state variables are available for 
feedback. The design procedure would also allow us to re-locate the 
closed-loop poles of a controllable pair to any desired locations.

2. An observer or estimator to estimate the state variables of the given 
plant if they are only partially measurable, provided that the given 
system is detectable. It is basically a dual procedure of that in Item 1.

3. An observer-based controller for the stabilization of a general 
multivariable LTI system with measurement feedback, provided that it 
is stabilizable and detectable.



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 47 © BEN M. CHEN

State feedback control law

We first consider a SISO system characterized by

with (A, B) being controllable. It follows from Theorem 4.4.1 (the controllability 
structural decomposition or the Brunovsky canonical form) of Part 1 that there exist 
nonsingular state and input transformation Ts and Ti such that

and

where                            are some constants of no interest.

, R , Rnx A x Bu x u   

s i,x T x u T u  

2

1 1
s s s i

1

0 1 0 0
0 0 0 0

,
1

1n

A T AT B T BT 

   
   
      
   
   

   


 

   


, 1,2, , ,i i n 
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Mathematical background material from Part 1…
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We wish to design a state feedback law u =F x such that when it is applied to the 
given system, the resulting closed-loop system has poles are desired locations, say 
at s1, s2, …, sn, respectively. We write the corresponding closed-loop characteristic 
equation as

Then, the required gain matrix is 

Let us examine the closed-loop system matrix A + B F, 

which has a characteristic polynomial exactly matched the desired one. 

The gain matrix F is uniquely determined for a SISO system if it is controllable!

1
1 12( ) ( )( ) ( ) n

n n
n as s as               

     1
1 2

1
i s i 1 1 snn nF T a aT F T Ta 


        

1 1 1 1 1
s s s i i s s s s

11

s

0 1 0
0 0 0

( )
1

n n

A BF T AT T BT T FT T A F

a a

B T T

a

T   





 
 
      
 
    


    

  


Replace the rubbish with the desired
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Example: Consider a SISO system characterized by

Using CSD in the Linear Systems Toolkit, we obtain a set of transformations

Let the desired closed-loop system poles be placed at

and the desired state feedback gain is given by

0 1 1 2
1 1 1 1
0 1 0 1

x A x Bu x u
   
         
      



s i

1 0 2 0 1 0 0
1 3 1 , 1 0 0 1 , 0
1 0 1 2 11 1

T T A B
     
              
          

 

1 2,3,s s j      
2 2 23 2 22 2 ( )( ) ( ) ( )s s s s            

2 2 2 2( ) 21 2
1 0 2

1 0 1
3

1 0
1

1
2 1F        

 
          
 





  
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Just for	fun…

v

Illustration of system 
stabilization using the 
pole placement 
through a state 
feedback control law…

Lariat Logan applies state feedback bang bang control 
for eigenvalue placement.

Suresh	M.	Joshi
NASA	Langley	Research	Center
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We now consider a MIMO system characterized by

with (A, B) being stabilizable. By Theorem 4.4.1 of Part 1 that there exist 
nonsingular state and input transformation Ts and Ti such that

and the transformed system                        has the CSD form

, R , Rn mx A x Bu x u   

s i,x T x u T u  

uncontrollable modes

controllable pairs

x A x B u     
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We can apply a pre-feedback again, say      , to clean up all the  terms first, 
i.e.,

0u F x  

0A BF    0 0 0 0 0

0 0 0 0 0

For the uncontrollable modes in A0, it cannot be changed by any state feedback law. 
The stabilizability of (A, B) implies A0 is stable. We leave it as it.

For each controllable pair, we can use the result derived earlier for SISO systems to 
design an appropriate sub-gain matrix. A desired state feedback control law u = F x 
can then be obtained by putting all these sub-gain matrices together. We omit the 
detailed procedure. 

Note that one can also use m-function PLACE to obtain a desired gain F.
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State observer or estimator

The state feedback control law given in the previous section requires all the 
state variables of the given system to be available for feedback, which usually 
not the case in real-life situations. More often, we would face problems in 
which the information of the system state variables is partially available. 

In what follows, we proceed to design a so-called observer or estimator to 
estimate the state variables of the given system when there is only partial 
information available.

To be more specific, we consider an LTI system characterized by

with the matrix pair (A,C ) being detectable (which is necessary for designing 
an observer). 

, R , R
, R ,

n m

p

x A x Bu x u
y C x Du y p n
   

   


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ˆ ˆx A x Bu 

Let us try to be a copycat by duplicating the system dynamic equation

We note that u is the input to the system and is known. Define an error signal

It follows from (3.2.1) in Part 1 that the solution to the above error dynamic 
equation is given by 

If x(0) is known, we can choose the initial condition of the observer dynamics to 
match it exactly and thus e0 = 0 gives perfect estimation e(t)=0 for all t. 
Unfortunately, this can never be the case in real life, in which x(0) is generally 
unknown. On the other hand, if A is a stable matrix,

would give us an asymptotic estimation of x(t) if A is stable! 

 ˆ ˆ ˆ:e x x e x x A x Bu A x Bu Ae          

0 0 ˆ( ) e , (0) (0) (0)Ate t e e e x x   

0lim ( ) lime 0At

t t
e t e

 
 

ˆ( )x t
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For the case when the system matrix A is unstable, the copycat estimator on the 
previous page does not work at all.

Instead, we introduce an output error feedback term to solve the problem, i.e.,

As usual, define the error signal                               , we have

and  

Obviously, if K is chosen such that A+KC is stable, we would have an asymptotic 
estimation of x(t), i.e., 

ˆ ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ( )
ˆ ˆ( )

x A x Bu K y y A x Bu K y C x Du
A x Bu K C x Du C x Du
A x Bu KC x x

        
     
   



ˆ( ) : ( ) ( )e t x t x t 

 ˆ ˆ ˆ( ) ( )e x x A x Bu A x Bu KC x x A KC e          

( )
0 0 ˆ( ) e , (0) (0)A KC te t e e x x  

( )
0 0 ˆlim ( ) lime 0, for any (0) (0)A KC t

t t
e t e e x x

 
   
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The problem now becomes on how to choose K such that A + KC is stable. It can 
be solved using the observability structure decomposition given in Theorem 4.3.1 
of Part 1.  Alternatively, we can define an auxiliary system

It is straightforward to verify that (A, C) detectable implies (Aaux,Baux) stabilizable.

Then, follow the procedure given in the state feedback control law section to 
design an appropriate state feedback gain Faux such that Aaux+Baux Faux is stable and 
has all its eigenvalues in the desired locations. The required observer gain matrix 
is therefore given as

which gives 

and                                                                 (all are in the stale locations).

aux auxx A x B u  : A x C u T T

 K F aux
T

 aux aux aux( ) CA KC A B F     

 A KC A C K  T T T T
aux aux auxA B F 

aux
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Example: Consider a SISO system characterized by

Using m-function PLACE in MATLAB, we obtain an observer gain matrix

which places the eigenvalues of A + K C at –1, –2 and –3, respectively. The 
simulation result shown on the next page verifies that the observer 

indeed gives an asymptotic estimation of the given plant. 

 

0

0 1 1 9 3
1 1 1 8 , (0) 6
0 1 0 5 9

2 1 1

x A x Bu x u x x

y C x Du x

     
              
         

  



1
4
1

K
 
   
 
 

ˆ ˆ ˆ ˆ ˆ( ) ( ) , (0) 0x A x Bu K y C x A KC x Bu K y x        

place
ex2050
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Estimation error signals

1( )e t

2 ( )e t

3 ( )e t

simulink
ex2050
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Observer-based controller

We now consider the stabilization of a general LTI system with measurement 
feedback. Consider 

with (A, B) being stabilizable and (A,C) detectable. We would like to design a 
proper dynamical measurement feedback control law of the following form

such that when it is applied to the given plant, the overall closed-loop system is 
asymptotically stable.

The design procedure for the above problem turns out to be rather straightforward 
and systematic.

, R , R
, R

n m

p

x A x Bu x u
y C x Du y

    


  



cmp cmp cmp cmp

cmp cmp cmp

x A x B y

u C x D y

 
  


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Step 1. Assume that all the state variables are available for feedback, we design a 
state feedback control law

()

such that A+BF is asymptotically stable. 

Step 2. Design an observer 

()

such that A + K C is asymptotically stable. 

Step 3. Replace x in () with     in (), we obtain a measurement feedback 
controller 

which will do the job for us.

u F x

ˆ ˆ ˆ( )x A x Bu K y C x Du    

x̂

ˆ ˆ( )
ˆ

KDFx A BF KC x Ky
u F x

     






m

cmp cmcmp cmp

c p cmp

p

c pm

x x y

u C x y

A B

D

 
  


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Why? Let us recall

and

We have

,x A x Bu y C x Du   

ˆ ˆ ˆ( ) ,x A BF KC KDF x Ky u F x     

ˆ,x A x B F x 

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

ˆ( )

x A BF KC KDF x K Cx Du
A BF KC KDF x K Cx DF x
A BF KC x KCx

     
     
   


and

and the closed-loop dynamic equation

ˆ ˆ
A BF
KC A B C

x x
x F K x

   
   
 
     



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Noting that

It is then clear that the closed-loop system is asymptotically stable provided that 
both A +B F and A +K C are asymptotically stable.

The beauty of this result shows that in order to stabilize the given plant, we can 
separate it into (i) designing a stabilizing state feedback gain, and (ii) designing a 
stabilizing observer gain. Such a result is commonly called the separation 
principle in the control literature and has been used heavily in deriving tons of 
new techniques including what we are to learn in this part. All advanced methods 
are to design specific F and K to meet specific requirements.

Finally, we should note that there are many types of 
observers studied in the literature, which include full 
order and reduced order types. The most general 
type of observer was given by Luenberger in 1966.

David	Luenberger
Stanford	University
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A K
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    
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Implementation	of	a	multivariable	control	law	with	a	reference	and	D = 0…

PLANT
Reference

u y
r 


G

1
2

1[ ( ) ]A BFG BC   

Matrix C2 is related to output variables of interest, say

z = C2 x

where z is to track the reference r.

Multivariable controller

G is chosen such 
that the DC gain 
from r to z is unity.

ˆ x
F ˆ ˆ( )x A BF KC x K y B rG    

r
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Example: Consider the linear model of the pendulum system characterized by

L with it being set at  =10 initially. Design an observer-
based compensator to stabilize the system and to regulate 
the pendulum to  =0. 

 
0 1 0

, 1 0
1 0 1

u y
 
 

        
                 


 

Step 1. Assume that all the state variables are available for feedback, we design 
a state feedback control law

such that A+BF has eigenvalues at –1 j, i.e., the desired characteristic 
polynomial s2 +2s+2 and 

 1 2u F x f f


 

   
 

   2
2 1

1 2

1 2
1

1
1

s
sI A BF s

f
Ff s f

f s


         
 
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Step 2. Design an observer 

such that A + K C has eigenvalues at –1 j, i.e., the desired characteristic 
polynomial s2 +2s+2 and

   1

2

ˆ ˆ ˆ ˆ ˆ
k

x A x Bu K y C x A x Bu y C x
k
 

        
 



 1 2
1 2

2

1
1

2
11

s k
sI A KC s k s

s
Kk

k





      


 
 

 

Step 3. The measurement feedback controller with the reference r=0 is given as

 

1ˆ ˆˆ

ˆ
2 2
3

( )
ˆˆ

ˆ ˆ

2 1

1 2
ˆ ˆ

A BF KC KDF K

u F

 
 

 

 

 

      
                     


   
        



 

  
       


 



 

 
m

cmp cmcmp cmp

c p cmp

p

c pm

x x y

u C x y

A B

D

 
  


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Closed-loop system response…

Time (seconds)



̂



̂

Exercise: Verify the above result using SIMULINK in MATLAB…
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Homework Assignment 4 (due in 1 week) 

Consider a two-cart system as depicted in the figure below

The carts, assumed to have masses M1 and M2, respectively, are connected by a spring and 
a damper. A force u(t) is applied to Cart M1 and the position of Cart M2 can be observed, 
i.e., y = x2. For simplicity, we assume M1 =1, M2 =1, F=1 and K=1. 

It was derived in Part 1 of this course that the given plant can be characterized as a linear 
time-invariant system 

where the system data are given as follows:

x A x Bu
y C x Du
 

  



u
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1

1
0

2

2

0 1 0 0 0 1
1 1 1 1 1 0

, , ,
0 0 0 1 0 1
1 1 1 1 0 0

x
x

A B x x
x
x

      
                 
      
             





1. Design an observer-based controller to stabilize the system and to maintain the position
of Cart M1, i.e., 

at 2 m, i.e., r = 2. Place all the closed-loop poles at –1, i.e., select a state feedback gain 
matrix F and an observer gain matrix K such that the eigenvalues of A+BF and A+KC
are all at –1. Express the corresponding observer-based controller in the usual state-
space form. Simulate the overall closed-loop system state responses and the estimation 
errors of the state variables (set the initial condition of the controller to 0).

2. Comment if it is possible to control the system using PID and/or lead/lag compensators. 
Why or why not?

 0 0 1 0 , 0.C D 

 1 2 1 0 0 0z x C x x  
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Linear Quadratic Regulator (LQR)Linear Quadratic Regulator (LQR)

OBSERVER
x

u y



x A x Bu
y x
 



F
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Background 
The theory of optimal control is concerned with operating a dynamic system at 
minimum cost. The case where the system dynamics are described by a set of 
linear differential equations and the cost is described by a quadratic function is 
called the LQ problem. One of the main results in the theory is that the solution 
is provided by the linear quadratic regulator (LQR), a feedback controller 
utilizing all the information of the system state variables. LQR together Kalman 
filtering, which is commonly called LQG (linear quadratic Gaussian) form a 
corner stone in modern control theory.

Like the role of PID in the classical control, LQR (or LQG) plays even a more 
important role in modern multivariable control although there are tons of new 
control methods developed in the literature. To tackle a real-life problem, one 
should first try a PID controller if it is a SISO plant, or LQR control law if it is 
a MIMO system, before trying anything else.
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1 TF R B P  

Linear	quadratic	regulator	(LQR)

Consider a linear system characterized by

where (A, B) is stabilizable. We define a cost index

and                  is detectable. The linear quadratic regulation problem is to find a 

control law u =– F x such that A –B F is stable, and J is minimized. The 

solution is given by                      , with P being a positive semi-definite solution 

of the following Riccati equation:

Nonetheless, LQR technique is a special way to design a state feedback law. 

x A x B u    

0,0,)(),,,(
0

 


RQdtRuuQxxRQuxJ TT

1/ 2( , )A Q

01   QPBPBRPAPA TT

Jacopo	F.	Riccati
Venetian	Mathematician	

1676–1754

are
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The derivation of the LQR result is rather involved. It is 
rooted from the general optimal control problem for a 
nonlinear time-varying plant characterized by the following 
dynamical equation:

where x is the state vector and u is the control vector, subject 
to the minimization of the cost function

( , , )x f x u t

0

0( ) ( ( ), ) ( ( ), ( ), )
T

t

J t x T T L x t u t t dt  

with t0 the initial time and T the final time of interest. The 
final-state weighting function  (x(T),T) and weighting 
functions L(x, u, t) are selected depending on the performance 
objectives.

1986

Frank	L.	Lewis
Univ.	of	Texas	at	Arlington

The general optimal control problem is to determine a control input u(t) that 
minimizes the cost function and also ensures some final state constraint.
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The solution to the optimal control problem involves 
using Lagrange multipliers and the introduction of a 
costate variable and a Hamiltonian function. The 
original constrained problem can be reformulated into 
an optimization problem without constraints. For the 
LQR problem considered in this course, we are 
interested in the result for the linear time-invariant 
system

with a cost function

with Q  0 and R > 0, the optimal solution is

which gives a minimal cost Jmin = xT(0) P x(0), where 
P0 is a solution of  

0

( )J x Qx u Ru dt


  T T

( , , )x f x u t A x Bu  

1( ) ( ),u t F x t F R B P     T

1 0PA A P PBR B P Q   T T

1972

1975

1971

Brian	Anderson
Australian	National	University

Huibert Kwakernaak
Univ.	of	Twente,	The	Netherlands

Arthur	Bryson
Stanford	University

Larry	Y.C.	Ho
Harvard	University
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If we arrange the LQR control as follows,

we can find its gain margin and phase margin as we have done in classical 
control. It is clear that the open-loop transfer function,

The block diagram can be re-drawn as follows,

Fx Ax Bu 
–

1 1 1( ) ( )F sI A B R B P sI A B     TOpen loop transfer function

–
BAsIPBR 11 )(  T

The detailed derivations of all the optimal control problems can be found in 
the beautiful textbook by Lewis. In what follows, we should just concentrate 
on examining the properties of this remarkable LQR control.

lqr

xu
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Side	note…	connection to Nyquist stability criterion

For the LQR design or the state feedback control in general, we assume that y = x. For 
such a case, the state feedback and output feedback are the same thing as the 
measurement output is the same as the state variable. Thus, we can arrange the state
feedback control either as

–
y xu

F

x Ax Bu 

or as the following to connect to the form linked to the Nyquist stability criterion 

As such, the stability of the closed-loop system under the state feedback control law 
is fully determined by the its open-loop transfer function T (s) =F (s I – A)–1 B .

Fx Ax Bu 
–

xu 1( )F sI A B
–=


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( ) ( )P j I A j I A P F RF Q      T T

   1 1 0PA A P PB B Pj RP I Pj I QR R        T T

Return	difference	equality	and	inequality

Consider the LQR control law. The following so-called return difference equality holds:

The following is called the return difference inequality:

Proof.	Recall that

Then, we have

RBAIjFIRFAIjBI   ])([])([ 11  TTT

& 1 0RPA A P PB B P Q   T T1F R B P T

1 1 1 1( ) ( ) [ ( ) ] [ ( ) ]R B j I A Q j I A B I B j I A F R I F j I A B                T T T T T
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1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )
( )

( )
( ) ( ) )

)
(

(B j I A j I A B B j I A j I A B
B j I A j I A B B j I A j I A B

P j I A j I A P
F RF Q

   

   

      



 

   

   

   

  T

T

T T T T

T T T T

Noting the fact that 

we have

RFPBRFPBP  BRF TTT   &1

BAIjQAIjB
BAIjRFFAIjBBAIjRFRFAIjB

11

1111

)()(
)()()()(












TT

TTTTTT

1 1 1 1

1 1

( ) ( ) ( ) ( )
( ) ( )

B j I A B B j I A B B j I A j I A B
B j I A j I A B

P P F RF
Q

   

 

     





  

   

 

TT T T T T

T T

R 

R

1 1 1 1[ ( ) ] [ ( ) ] ( ) ( )I B j I A F R I F j I A B R B j I A Q j I A B                T T T T T

1( )j I A B Multiplying it on the left by       and on the right by                           , 1( )B j I A  T T
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Single	input	case

In the single input case, the transfer function 

is a scalar function. Then, the return difference equation is reduced to

1( )Open loop transfer function f sI A b 

211 ( ) 0where r r f j I A b      

rbAIjfr   21)(1 

211 ( ) 1  Return Difference Inequality...f j I A b   

1 1 1 1( ) ( ) [1 ( ) ][1 ( ) ]r b j I A Q j I A b r b j I A f f j I A b                T T T T T
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Let Z be the number of the unstable closed-loop poles, P the number of unstable open-loop poles. Then, the Nyquist plot 
of the open-loop transfer function shall encircle the point –1 (clock-wise) N = Z – P times (i.e., Z = N + P).

Graphically,                                                                                                            implies 

–1

PM  60

21 11 ( ) 1 ( ) ( ) 11 0f j I A b f j I A b j        

The phase margin resulting from the 
LQR design is at least 60 deg.

* R.E.	Kalman,	Contributions	to	the	theory	of	optimal	control,	Boletín	de	la	Sociedad	Matemática	Mexicana,	Vol.	5,	pp.	102–119,	1960…
* R.E.	Kalman,	When	is	a	linear	control	system	optimal?	Journal	of	Basic	Engineering,	Trans	of	ASME,	Series	D,	Vol.	86,	pp.	51–60, 1964.

The gain margin is at least from 
[0.5, ).

A stable A unstable

X 
0.5
X 
0.5
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Example: Consider a given plant characterized by 

which has a pole at                            , an unstable one if a >0. Solving an LQR 

problem, which minimizes the following cost function

we obtain

and

0 1 0
1 1

x x u
a
   

       


0

1 0
( , , , ) ( ) , , 0.1

0 0
J x u Q R x Qx u Ru dt Q R

  
    

 
 T T

2
1 0 0

0 2 1 0 2 0 2
0 2

20 1 110, , , 10
10 10

p p pa aP p p p p p p a p
p p

    
       
 

 1 4 1 1
2

a  

 2 210 2 10 1 1F a a a a         

ex2070
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PM = 83.6

GM = 

X

• For a = – 1…

+
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PM = 61.2

GM = (0.458, )

X

X

• For a = 5…

+



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 84 © BEN M. CHEN

How	to	select	Q and	R in	LQR	design?

There is no universal rule in selecting the weighting matrices Q and R in the 
LQR design. In practice, one might try diagonal matrices first, i.e., 

Then, the cost function can be written as

We can then proceed to select the entries of Q and R in accordance with the 
properties of their associated state and input variables.

11 11

22 22,

nn mm

q r
q r

Q R

q r

   
   
    
   
   
   

 

  2 2

1 10 0

( , , , )
n m

i ii i
i i

iiJ x u x x u u dt x uQ R Q R q dr t
 

 

 
    

 
  T T

What	is	the	shortfall	with	the	LQR	design? It requires full state information x!
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Kalman FilterKalman Filter

Rudolf Kalman (1930-2016) & Richard Bucy (1935-2019)

x̂

u yx A x Bu
y Cx

v
w

  
 


ˆ ˆ ˆ( )
ˆ ˆ
x Ax Bu y y
y Cx

K   




The problem of Kalman 
filter (or Kalman-Bucy
filter) is a special way to 
design an observer gain 
matrix K for a state 
estimator. What we have 
covered in this section is 
more related to the work 
done by Bucy and his co-
workers…

Kalman-Bucy Filter?

 R. S. Bucy & P. D. Joseph (1968).
Filtering for Stochastic Processes with 
Applications to Guidance.
Interscience: New York. 
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Rudolf E. KalmanRudolf E. Kalman

Rudolf	E.	Kalman
1930–2016

Hungarian	American	

Rudolf Emil Kalman was a Hungarian-born American 
electrical engineer, mathematician, and inventor. He 
earned both his bachelor’s and master’s degrees in 
electrical engineering from MIT, and completed his 
PhD at Columbia University. He was most noted for his 
co-invention and development of the Kalman filter, a 
mathematical algorithm that is widely used in signal 
processing, guidance, navigation and control systems. 
For this work, U.S. President Barack Obama awarded 
Kalman the National Medal of Science, 2009.

Kalman was a member of the U.S. National Academy of 
Sciences, the American National Academy of 
Engineering, and the American Academy of Arts and 
Sciences. He was a foreign member of the Hungarian, 
French, and Russian Academies of Science. In 2012 he 
became a Fellow of the American Mathematical Society.

Kalman received the IEEE Medal of Honor in 1974, the 
IEEE Centennial Medal in 1984, Inamori Foundation’s 
Kyoto Prize in Advanced Technology in 1985, Steele 
Prize of the American Mathematical Society in 1987, 
Richard E. Bellman Control Heritage Award in 1997, 
and National Academy of Engineering’s Charles Stark 
Draper Prize in 2008.

His passing not only brought about 
personal loss but also a sad  
reminder of the passing of a 
golden era in systems and control.

 Larry Y.C. Ho

 R. E. Kalman, Y. C. Ho and K. S. Narendra, “Controllability of linear dynamical systems,” Contributions to Differential
Equations, vol. 1, no. 2, pp. 189–213, 1963.
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Review	of	random	processes

A random	variable X is a mapping between the sample 
space and the real numbers. A random	process (a.k.a
stochastic	process) is a mapping from the sample space 
into an ensemble of time functions (known as sample 
functions). To every member in the sample space, there 
corresponds a function of time (a sample function) X(t). 

X (t)

t

XX1 X2

H.H.

H.T.

T.H.

T.T.

x2(t)

x1(t)

x3(t)

x4(t)
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Mean,	moment,	variance,	covariance	of	random	processes

Let f (x,t) be the probability	density	function (p.d.f.) associated with a random process 

X (t). If the p.d.f. is independent of time t, i.e., f (x,t) = f (x), then the corresponding random 

process is said to be stationary. We will focus our attention only on this class of random 

processes in this course. For this type of random processes (RP), we define:

1) mean (or expectation): 2) moment	( j-th order moment)

3) variance 4) covariance	of	two	random	processes

Two RPs v and w are said to be independent if their joint p.d.f.

  ( )m E X x f x dx




   ( )j jE X x f x dx




     

2 2 2( ) ( ) ( )E x m x m f x dx




        ( , ) ( [ ])( [ ])v w E v E v w E w  con

  ( , ) ( ) ( ) [ ] [ ]E vw vw f v w dvdw v g v dv w h w dw E v E w
   

   

         

( , ) ( ) ( )f v w g v h w 
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Autocorrelation	function	and	power	spectrum

Autocorrelation function is used to describe the time domain property of a random 

process. Given a random process v, its autocorrelation	function is defined as 

follows:

If v is a wide	sense	stationary	(WSS) process,

Note that Rx(0) is the time average of the power or energy of the random process.

Power	spectrum of a random process is the Fourier transform of its autocorrelation 

function. It is a frequency domain property of the random process. To be more 

specific, it is defined as 

 1 2 1 2( , ) ( ) ( )xR t t E v t v t

 1 2 2 1( , ) ( ) ( ) ( , ) ( ) ( )x x x xR t t R t t R R t t E v t v t        
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However, many noises (or the so-called colored noises, or noises with finite energy 
and finite frequency components) can be modeled as the outputs of low-pass linear 
systems with an injection of a white noise into their inputs, i.e., a colored	noise	can be 
generated by a white noise as follows

Finally, Gaussian	Process	v is also known as normal	process	has a p.d.f.

White	noise,	colored	noise	and	Gaussian	random	process

White	Noise	is a random process with a constant power spectrum, and an autocorrelation 
function 

which implies that a white noise has an infinite energy and thus it is nonexistent in real 
life. 

( ) ( ) ( ) ( ) ( )j j
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Kalman	filter	for	a	linear	time	invariant	(LTI)	system

Consider an LTI system characterized by

Assume:    (1) (A, C) is detectable

(2) v(t) and w(t) are independent white noises with the following properties

(3)                      is stabilizable (to guarantee closed-loop stability).

( )  is the input noise
( )  is the measureme

 
nt noise

x Ax Bu v t v
y Cx w t w
  
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
 2

1
, QA

The problem of Kalman	Filter is a special way to design a state estimator to estimate 

the state x (t) by         such that the estimation error covariance is minimized, i.e., the 

following index is minimized:

)(ˆ tx

ˆ[ ( ) ( )], ( ) ( ) ( )eJ E e t e t e t x t x t T
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Construction	of	steady	state	Kalman	filter

Kalman filter is a state observer with a specially selected observer gain (or Kalman 

filter gain). It has the dynamic equation:

with the Kalman filter gain Ke being given as

where  Pe is the positive semi-definite solution of the following Riccati equation,

Let                     . We can show (see next) that such a Kalman filter has the following 

properties:
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Kalman	filter	and	LQR	– They	are	dual

Recall the optimal regulator problem,

The LQR problem is to find a state feedback law u = – F x such that J is minimized. It was 

shown that the solution to the above problem is given by

and the optimal value of J is given by                     . Note that x0 is arbitrary. Let us consider 

a special case when x0 is a random vector with

Then, we have
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The	duality

 Linear	quadratic	regulator  Kalman	filter

P  BRF T1 1
e eK PC R T

1 0PA A P PBR B P Q   T T 1 0e e e eP A AP P C R CP Q   T T

ePJ   traceoptimal PJ   traceoptimal 

These two problems are equivalent (or dual) if we let
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F
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T

T
e
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Proof	of	properties	of	Kalman	filter

Recall that the dynamics of the given plant and Kalman filter, i.e.,

( )
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Next, it is reasonable to assume that initial error e (0) and d (t) are independent, i.e.,
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We will next show  is asymptotically stable andeA A K C 

lim [ ( ) ( ) ] et
E e t e t P
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Recall that                              and                                                                     . We have

Since Q = QT  0 and                      is assumed to be stabilizable, it follows from Lyapunov 

stability theory (see Theorem 3.3.1 of Part 1) that matrix      is stable.
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Recall also the solution to                            , i.e.,
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Noting that          is deterministic, we have
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We next show that P() = Pe , i.e., the solution to the Kalman filter ARE. Let

In view of (), i.e., , we have

Next, we have

Thus, we have for every given z(0),                                                     , which implies 
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It is now simple to see from the definition of P(t)=E [e(t)eT(t)] that

Finally, we have
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Example: Consider a given plant characterized by the following state space model,

Solving the Kalman filter ARE, we obtain 
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Related topics:

Solutions to algebraic Riccati equations (AREs): Solutions to 
AREs are rather numerically involved. All solutions are closely 
associated with the eigenvectors of a so-called Hamiltonian 
matrix. A fairly completed compilation of the literature and 
results on solutions to AREs can be found in Chapter 4 of Saberi 
et al. (1995).

Extended Kalman filter (EKF): In estimation theory, the EKF is the nonlinear version 
of the Kalman filter, which linearizes about the current mean and covariance. The EKF 
has been considered the de facto standard in the theory of nonlinear state estimation, 
navigation systems and GPS.

Unscented Kalman filter (UKF): When the state transition and observation models, the 
predict and update functions are highly nonlinear, the extended Kalman filter can give 
particularly poor performance. UKF uses a deterministic sampling technique known as 
the unscented transform to pick a minimal set of sample points (called sigma points) 
around the mean, which more accurately captures the true mean and covariance.

1995
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Linear Quadratic Gaussian (LQG) ControlLinear Quadratic Gaussian (LQG) Control
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Problem	statement

It is very often in control system design for a real-life problem that one cannot 
measure all the state variables of the given plant. Thus, the linear quadratic 
regulator, although it has very impressive gain and phase margins (GM =  and 
PM > 60 degrees), is impractical as it utilizes all state variables in the feedback, 
i.e., u = – F x. In most of practical situations, only partial information of the state 
of the given plant is accessible or can be measured for feedback. The natural 
questions one would ask:

 Can we replace x the control law in LQR, i.e., u = – F x, by the estimated state 
to carry out a meaningful control system design? 

The answer is yes. One of the solutions is called LQG	control.

 Do we still have impressive properties associated with the LQG control? 

The answer is NO! 

 Any solution? Yes. The technique is called a loop	transfer	recovery (LTR).
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Linear	quadratic	Gaussian	design

Consider a given plant characterized by

where v(t) and w(t) are white with zero means. v(t), w(t) and x(0) are independent, and

The performance index has to be modified as follows:

The linear	quadratic	Gaussian (LQG) control is to design a control law that only 

requires the measurable information such that when it is applied to the given plant, the 

overall system is stable and the performance index is minimized.

( )  is the input noise
( )  is the measureme
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Solution	to	the	LQG	problem	– the	separation	principle

Step	1. Design an LQR control law u = – F x which solves the following problem, 

i.e., compute

Step	2. Design a Kalman filter for the given plant, i.e., 

where

Step	3. The LQG control law is given by                      , i.e.,
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Block	implementation	of	an	LQG	control	law	with	a	reference…

PLANT
Reference

ˆ x

u yr 


G

1
2

1[ ( ) ]A BFG BC   

Matrix C2 is related to output variables of interest, say

z = C2 x

where z is to track the reference r.

LQG controller

G is chosen such 
that the DC gain 
from r to z is unity.

F ˆ ˆ( )e ex A BF K C BGx K y r    
r
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Closed-loop dynamics of the given plant together with LQG controller

Recall the plant:                                       and controller

We define a new variable                     and thus

and 
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Clearly, the closed-loop system is characterized by the following state space equation,

,
0 0e e

A BF BF vx x BG
r v v

A K C v K we e
        

                    


 



 0  
x

y C w
e
 

  
 

The closed-loop poles are given by                                                    , which are stable.)()( CKABFA e 
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Example: Consider again the inverse pendulum system characterized by

 
2

00 1
, 1 01

0
u yg

M LL

 
 

                           

  
 

L Also, consider that there are some input noise v and 
measurement noise w with Qe = I and Re = 1. We 
thus have

Inverse Pendulum
Inverse Pendulum

M

2For simplicity,  we .1s ,t   1e  gM L L 

 
0 1 0

, 1 0
1 0 1

u v y w
 
 

        
            
       

  
 

We proceed to design an LQG control law for the given system to keep the output 
around  = and also minimize the cost function

 
0

1 01lim , , 1.
0 0

T

T
J E x Q x u Ru dt Q R

T

   
      

  
 T T

ex2097
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Step 1: With the given system data and Q and R, we solve the following ARE
1 0PA A P PBR B P Q   T T

and obtain

which gives the eigenvalues of A– B F at –1.0987 j0.4551.

 13.1075 2.4142
2.4142 2.1974

2.4142 2.1974
P F R B P 
    
 

T

Step 2: Solving the Kalman filter ARE
1 0e e e e e eP A AP PC R CP Q   T T

we obtain

which places the eigenvalues of A –Ke C at –1 and –1.4142, respectively.

12.4142 2.4142 2.4142
2.4142 3.4142 2.4142e e e eP K PC R   

      
   

T
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Step 3: The resulting LQG control law is given by

where                                    .

 

2.4142 1 0 2.4142
( )ˆ ˆ ˆ

3.8284 2.1974 1.4142 2.4142
2.4142 2.1974 1.4142ˆ ˆ

e ex A BF K C x BGr K y x r y

u F x Gr x r

      
                    

      



1 1[ ( ) ]G C A BF B  

The closed-loop system is given by
0 1 0 0 0

1.4142 2.1974 2.4142 2.1974 1.4142
0 0 2.4142 1 0
0 0 1.4142 0 0

e

vx x
r

v K we e

   
                            
      




 1 0 0 0  
x

y w
e

 
  

 
Simulation results given on the next page show that LQG control works, 
but its performance can be and should be improved before implementing 
it to the real problem.  
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1

2 0

3
0

Initial condition 
3

0
t

e
e








   
   
   
   
   

  






1e

2e




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GM = (0.4142,∞)

PM = 61.3

GM = (0.82, 2.29)

PM = 14.3

 Gain margins and phase margins…

LQR Control LQG Control LTR

LTRWhat	is	the	shortfall	with	the	LQG	design? It does not guarantee robustness!



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 113 © BEN M. CHEN

Homework Assignment 5 (due in 1 week) + Design Problem 1 (due in 4 weeks)

Reconsider the two-cart system as in Homework Assignment 4, i.e.,

The carts, assumed to have masses M1 and M2, respectively, are connected by a spring and 
a damper. A force u(t) is applied to Cart M1 and we wish to control the displacement of 
Cart M1, i.e.,        . For simplicity, we assume M1 =1, M2 =1, F=1 and K=1. 

1. Assume all state variables of the plant are available for feedback. Find an LQR control 
law, which minimizes the following performance index:

What are the resulting gain and phase margins of your LQR design? 

u

  4
0

, , 1J x Qx u Ru dt Q I R


    T T

1z x
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2. Assume that there is an input noise (or disturbance) entering the system as:

and the system measurement output is 

where w(t) is the measurement noise. Assume both v(t) and w(t) have zero means and

Design an appropriate Kalman filter.

3. Derive the corresponding LQG control law, which combines the LQR law in Step 1 
and the Kalman filter in Step 2. What are the closed-loop eigenvalues? What are the 
resulting gain and phase margins of your LQG control law? Simulate your design 
using SIMULINK with

and the initial condition for the Kalman filter being 0.

1 0
[ ( ) ( )] ( ), 1, [ ( ) ( )] ( ), .

0 1v v e eE v t v t Q t Q E w t w t R t R     
       

 
T T

1 2 1 21, (0) (0) 1, (0) (0) 0,r x x x x     

( ),x A x Bu Bv t  

1

2

( )
x

y w t
x

 
  
 
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Introduction to Robust ControlIntroduction to Robust Control

George	Zames
Canadian	Control	Theorist	

1934–1997	

M

Small	Gain	Theorem
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Representation	of	uncertain	plant	dynamics

Perturbation	

Nominal		Plant
response

measurements

disturbance

sensor noise
control inputs

u y

disturbances noises

uncertainties

nonlinearities

Example:	An	HDD	servo	system…

|||
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A	real	control	problem

response
disturbances

sensor noise

Controller references/
commands

measurementscontrol input

Controller	Objective: To provide desired responses in face of

 Uncertain plant dynamics + External inputs 

Nominal	Plant

disturbances
sensor noise

Perturbation	

}

S.G.
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Standard	feedback	loops	in	terms	of	general	interconnection	structure

Standard feedback 
system

K G
r u

d

+ –

e y

Even though it is not directly 
formulated in the problem 
formulation, classical control 
system design deals with 
system uncertainties through 
specifications imposed on 
gain and phase margins… +

y

K

G

r

? ?d

u

_

e

e
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Analysis	objectives

• Nominal	Performance	Question (H2 Optimal	Control):

Are closed loop responses acceptable for disturbances? sensor noise? 

• Robust	Stability	Question (H Optimal	Control):

Is closed loop system stable for nominal plant? for all possible perturbations?

• Robust	Performance	Question (Mixed	H2	/H Optimal	Control):

Are closed loop responses acceptable for all possible perturbations and all 

external inputs? Simultaneously?

Many	issues	related	to	robust	performance	problems	are	still	open!...	
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H2 and H Control TechniquesH2 and H Control Techniques



cmp

u
w z

y

Tzw(s) zw
|||
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Introduction	to	the	problems

We first ignore uncertainties (perturbations) in the plant. Will bring such an issue back 
later. Consider a stabilizable and detectable linear time-invariant nominal system  with 
a proper controller cmp as in the configuration below:



cmp

u

w z

y

1 1

2 2

0
0

:
x A x B u

w

E w
y C x D w
z C x D u

u
  

 



  


cmpcmp cmpcmp

cmp
cmpcmp cmp

:
B yA xx
D yC xu

 
   



cmp

R state variable R control input

R measurement & R disturbance

R controlled output R controller state

n m

p l

q k

x u

y w

z x

   

   

   






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The problems of H2 and H optimal control are to design a proper control law cmp

such that when it is applied to the given plant with disturbance, i.e., , we have

 The resulting closed loop system is internally stable.

 The resulting closed-loop transfer function matrix from the disturbance input w
to the controlled output z, say, Tzw(s), is as small as possible, i.e., the effect of the 
disturbance input on the controlled output is minimized.

 H2 optimal control: the H2-norm of Tzw(s) is minimized.

 H optimal control: the H-norm of Tzw(s) is minimized.

Note: Tzw(s) is a function of frequencies. 
It is meaningless to say if it is large or 
small. The common practice is to 
measure its norms instead. H2-norm 
and H-norm are two commonly used 
norms in measuring the sizes of a 
transfer function matrix.



cmp

u
w z

y

Tzw(s) zw
|||
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The	closed‐loop	transfer	function	matrix:	Tzw(s)

The closed-loop transfer function from disturbance to controlled output can be derived 
as follows: Recall…

2 2

1 1: y C x D w
D

ux A x B E w

z C ux

  
 



 




and
cmp cmp cm

m

pcm
p

c p cmp c

p
m

p
c

m
:

y
y

x
C x
Ax

Du
B


 







cmp cmp c

2

mp

c c

1 1

mp mp2 cmp

( )

( )

x A x B E w
y C x D w

C

C x D y

z D yDx C x





  
  
 







cmp cmp cmp

2 2 cmp cmp 2 cmp

x A x BC x BD E w
z yC x D

y
D C x D

   
   



cmp 1 1

cmp cmp c p

cmp cm

m 1 cmp

p cmp

1

( )x C x D w

A x B C x B D w

A x B


  

  



cmp cmp cmp cmp 1 cmp 1x A x B C x B D w  
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 
 

cmp cmp cmp

2 2 cmp cmp 2 cm

1 1

1p 1 w
x Ax BC x BD Ew

Dz C x D C x D
C x D w

C xD
   

   






   
 

cmp 1 cmp cmp 1

2 2 cmp 1 2 c

cmp

cmpmp 2 cmp 1

x x x w

z

A BD C BC E BD D

C D D C D C D Dx x wD

   


  

 





cm p 1 cm p cm p 1

2 2 cm p 1 2 cm p 2 cm p 1

cm p cm p

cm

cm p 1 cm p cm p 1

p
[ ]

A BD C BC E BDx x
w

x x

x
z w

x
D

D
B C

C

A B

D C D C D D D

D
       

       
       


      

 







clA clB

clC clD

cmp 1 cmp cmp 1cmp
cmp

x
x wD

x
B C A B

 
    

 


......
......
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Thus, Tzw(s) is given by

  1
cl cl cl cl( )zwT s C sI A B D  

Remark: For the state feedback case, C1 = I and D1 = 0, i.e., all the states of 
the given system can be measured, c can then be reduced to u = F x and the 
corresponding closed-loop transfer function is reduced to 

The closed-loop system is internally stable 
if and only if the eigenvalues of

cmp 1 cmp
cl

cmp 1 cmp

A BD C BC
A

B C A
 

  
 

are all in open left half complex plane.

    1
2 2( )zwT s C D F sI A BF E   

The closed-loop stability implies and is implied that A+BF	has stable eigenvalues.



cmp

u
w z

y

Tzw(s) zw

|||

Tzwo
Tzws
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H2‐norm	and	H‐norm	of	a	transfer	function	matrix

Definition: (H2-norm) Given a stable and proper transfer function matrix Tzw(s), its 

H2-norm is defined as 
1
2

H
2

1 trac (e
2

( ) )zw zw zwT T j T j d  






  
   

  


Graphically,

Note: The H2-norm is the total energy corresponding to the impulse response of 

Tzw(s). Thus, minimization of the H2-norm of Tzw(s) is equivalent to the minimization of 

the total energy from the disturbance w to the controlled output z.



|Tzw(j)|
H2-norm

Tzw(s) zw



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 127 © BEN M. CHEN

 Singular value decomposition
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 Example: Given a matrix

its singular value decomposition is given as

where

1 2 3 4
2 4 6 8

A
 

  
 

12.4472 0 0 0
0 0 0 0

A U V U V      
 

0.1826 0.9832 0 0
0.4472 0.8944 0.3651 0.0678 0.5571 0.7428

,
0.8944 0.4472 0.5477 0.1017 0.7737 0.3017

0.7303 0.1356 0.3017 0.5977

U V

  
               
   

Note: It can be computed using an m-function SVD in MATLAB.

Gene	H.	Golub
1932–2007

Stanford	University	

ex1042
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Definition: (H-norm) Given a stable and proper transfer function matrix Tzw(s), its 

H-norm is defined as 

 max
0
sup ( )zw zwT T j





 


where max [Tzw(j)] denotes the maximum singular value of Tzw(j). For a single-input-

single-output transfer function Tzw(s), it is equivalent to the magnitude of Tzw(j).

Graphically,

Note: The H-norm is the worst-case gain in Tzw(s). Thus, minimization of the H-norm

of Tzw(s) is equivalent to the minimization of the worst-case (gain) situation on the 

effect from the disturbance w to the controlled output z.

H-norm



|Tzw(j)|

Tzw(s) zw
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Infima	(optimal	performance)	and	optimal	controllers

Definition: (The infimum of H2 optimization) The infimum of the H2-norm of the 

closed-loop transfer matrix Tzw(s) over all  stabilizing proper controllers is denoted 

by      ,  that is
 *

2 cmp2
: inf  internally stabilizes .zwT   

Definition: (The infimum of H optimization) The infimum of the H-norm of the 

closed-loop transfer matrix Tzw(s) over all stabilizing proper controllers is denoted by      

a    , that is
 *

cmp: inf  internally stabilizes .zwT 
  

Definition: (The H2 optimal controller) A proper controller cmp is said to be an H2

optimal controller if it internally stabilizes  and                      .*
22
zwT

Definition: (The H -suboptimal controller) A proper controller cmp is said to be an 

H - suboptimal controller if it internally stabilizes  and                                . *


 zwT

*
2

*
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1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

  
  
  



Critical	assumptions:	regular	case	vs singular	case

Most results in H2 and H optimal control deal with a so-called a regular problem or 
regular case because it is simple. An H2 or H control problem is said to be regular if 
the following conditions are satisfied,

1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix

2. The subsystem (A,B,C2,D2) has no invariant zeros on the imaginary axis;

3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix

4. The subsystem (A,E,C1,D1) has no invariant zeros on the imaginary axis;

An H2 or H control problem is said to 
be singular if it is not regular, i.e., at 
least one of the above 4 conditions is 
not satisfied.

Note:	For state feedback control, Conditions 1 and 2 are sufficient for the regular case.
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Classification	of	H2 and	H control	problems……

State Feedback
Output Feedback

Regular Case Singular Case

①

Regular problem under 
static state feedback control 

laws…

②

Singular problem under 
static state feedback control 

laws…

Regular problem under 
dynamic output feedback 

control laws…

③

Singular problem under 
dynamic output feedback 

control laws…

④


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Solutions	to	the	state	feedback	problems:	the	regular	case

The state feedback H2 and H control problems are referred to the problems in which 

all the states of the given plant  are available for feedback. That is the given system is 

wE

u

u

D

B

x
x
x

C

A

z
y
x 

















22

:


where (A, B ) is stabilizable, D2 is of maximal column rank and (A, B, C2, D2) has no 

invariant zeros on the imaginary axis.

In the state feedback case, we look for a static control law, instead of a dynamical 

control law, 

which would give us the required H2 and H performance. 

xFu 
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Solution	to	the	regular	H2 state	feedback	problem

Solve the following algebraic Riccati equation (H2-ARE)

     1

2 2 2 2 2 2 2 2 0A DP PA C C B D PC D D C BP


     T T T T T T

for a unique positive semi-definite stabilizing solution P	 0. The H2 optimal state 

feedback law is then given by

 1
2 2 2 2( )u F x D D D C B xP   T T T

It can be showed that the resulting closed-loop system Tzw(s) has the following 

property:

It can also be showed that                                            .  

Note: the trace of a matrix is defined as the sum of all its diagonal elements.

2

*
2 .zwT 

  2*
2

1
trace( )E PE 

h2care
h2state
gm2star
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Example: Consider a system characterized by 

  uxz

xy

wuxx












































111

2
1

1
0

43
25

:



which has two unstable invariant zeros at 
1.7639 and 6.2361, respectively.  Solving the 
H2-ARE using MATLAB, we obtain a positive 
definite solution

144 40
,

40 16
P

 
  
 

 41 17F   

*
2 19.1833 

The closed-loop magnitude response from 
the disturbance to the controlled output is 
given on the right. The H2 optimal 
performance or infimum is given by 

ex2121
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Classical	LQR	problem	is	a	special	case	of	H2 control

It can be shown that the well-known LQR problem can be re-formulated as an H2

optimal control problem. Consider a linear system,

The LQR problem is to find a control law u = F x such that the following index is 

minimized:

where Q  0 is a positive semi-definite matrix and R > 0 is a positive definite 

matrix. The problem is equivalent to finding a static state feedback 

H2 optimal control law u = F x for 

0)0(, XxuBxAx 

 
0

J x Q x u Ru dt


  T T

uRx
Q

z

xy
wXuBxAx


























0

0 2
1

2
1

0

John	Doyle
CalTech
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Solution	to	the	regular	H state	feedback	problem

Given  > *, solve the following algebraic Riccati equation (H-ARE)

for a unique positive semi-definite stabilizing solution P	 0. The H -suboptimal 
state feedback law is then given by

 1
2 2 2 2( )u F x D D D C B xP   T T T

The resulting closed-loop system Tzw(s) has the following property: .zwT

  12
2 2 2 2 2 2 2 2( ) ( ) 0A CP P PA C C EE P B D D D D CP B P

      T T T T T T T

h8care
h8state
gm8star

Remark: The computation of the best achievable H attenuation 
level, *, is in general quite complicated. For certain cases, * can 
be computed exactly. There are cases in which * can only be 
obtained using some iterative algorithms. One method is to keep 
solving the H-ARE for different values of  until it hits * for 
which and any  < *, the H-ARE does not have a solution. Please 
see the reference by Chen (2000) for details. 

2000
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Example: Again, consider the following system

  uxz

xy

wuxx













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
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



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



















111

2
1

1
0

43
25

:



It can be showed that the best achievable H

performance for this system is             . Solving 
the H-ARE using MATLAB with  = 5.001, we 
obtain a solution

330111.5 110028.8
,

110028.8 26679.1
P  
  
 

 110029.8 36680.1F   

* 5  

The closed-loop magnitude response from the 
disturbance to the controlled output is given 
on the right. The worse case gain, occurred at 
the low frequency is equal to 5.000999775.
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About	good	and	bad	invariant	zeros……

For simplicity, we consider the system

with        being square and full rank, i.e., it is nonsingular. We can then apply a pre-
feedback                                           to the given system, which yields

and the Rosenbrock system matrix of the subsystem from     to z is given by

2 2

:
x A x B u E w
y x
z C x D u

  
 
  



2D
1 1

2 2 2 uu D C Dx  
1 1

2 2 2(

0

)x x E w

u

A BD C uBD
y x
z x I

   
 
 











( )
0

sI
P s

I
A B



 
  
 

All the eigenvalues of  are the 
invariant zeros of the system!

0

x x E w
y x

x Iz

B

u

A u  
 
  







A

u
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0

x A x B E w

u
y x
z x

u

I

  
 
  







Then, it can be seen that P = 0 is the required solution!  
The optimal solution is given by

If (A,B,C2,D2) is of minimum phase, i.e., all its invariant zeros are stable, or equivalently    
is a stable matrix, the its corresponding H2-ARE, i.e.,

can be simplified as

      022
1

222222 
 PBCDDDDCPBCCPAPA TTTTTT

0A P PA PB B P  T T

 1 0( ) 0 0F I I Ix xBu       T T T

1 1 1
2 2 2 2 2u x xD C D D Cu     

A

0 0 0I

and the solution in terms of the original control input is given by
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Similarly, the corresponding H∞-ARE, i.e.,

can be simplified as

Again, P = 0 is the required solution. The optimal solution (for this special situation, 
the H∞ control has an optimal solution) is given by

and the solution in terms of the original control input is given by

In both H2 and H∞ cases, the closed-loop transfer function matrix from w to z is

  12
2 2 2 2 2 2 2 2( ) ( ) 0A P PA C C PEE P PB C D D D D C B P

      T T T T T T T

2 0A P PA PEE P PBB P    T T T

 1 0( ) 0 0F I I Ix xBu       T T T

1
2

1 1
2 2 2 2u x xDD C D Cu    

  1
) 00(zw sT I Es A


   

The disturbance is totally rejected. Also note that the closed-loop system poles are 
exactly the invariant zeros of (A,B,C2,D2). They cancel each other!

0 0 0I
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If (A,B,C2,D2) has all its invariant zeros to be unstable, or equivalently     is an anti-
stable matrix, the its corresponding H2-ARE, i.e.,

has a solution P = 0 too. But it does not give a stabilizing control law (why?)… 

However, it can be converted into a Lyapunov equation

From the Lyapunov stability theorem, it has a unique positive definite solution. The 
optimal performance is                                    and the optimal solution is given by

The resulting closed-loop system matrix

0A P PA PB B P  T T

 1( ) 0x x xF I I I B Bu P P      T T T T   11
2 2 2 2D C D xDu B P

    T T

A

   1 1P A A P B B     
T T  1P A P A BB P      

T T

That is the closed-loop system poles are located right at 
the mirror images of the unstable invariant zeros of the 
subsystem (A,B,C2,D2).

 1A BF A BB P P A P    
TT xx

xx

xx

*
2 trace( )EPE
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Similarly, the corresponding H∞-ARE, i.e.,

can be re-written as

which can be solved by solving two Lyapunov equations:

It can be showed that

The -suboptimal solution is given as

More general results for the singular case can be found in Chen et	al.	(1992). 

2 0A P PA PEE P PB B P    T T T

1 1 2P A AP B B EE    T T T

S A AS B B T A AT EE   T T T Tand

1 *
1

*
max 2

1n 0,( ) a dTS P S T


 



 

 
   


  



  11
2 2 2 2D C xDu D B P

   T T

Ian	Petersen
Australian	National	

University

 I. R. Petersen, “Disturbance attenuation and H∞-optimization: A design method based on the algebraic Riccati equation,” 
IEEE Transactions on Automatic Control, Vol. AC-32, pp. 427-429, 1987.

 B. M. Chen, et al., “Exact computation of the infimum in H∞-optimization via output feedback,” IEEE Transactions on 
Automatic Control, Vol. 37, pp. 70-78, 1992.
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Side	note:	For the case when      has both stable and unstable eigenvalues, there 
exists a similarity transformation T such that 

One can then deal with each part separately. 

A

1 0
, stable, anti-stable.  

0
 T

A
A A A

A
T 

 




 
  
 

0
0
0

P
P

 
  
 

The solution to the ARE corresponding to the stable zero dynamic 
part is 0 and the solution to the ARE corresponding to the 
unstable part cannot be set to 0 (it can be calculated by solving 
Lyapunov equations as on the previous page), which implies…

 When the disturbance enters the system through the stable zero dynamic 
subspace, its effect to the output to be controlled can be totally attenuated. 

 When the disturbance enters the system through the unstable zero subspace, 
the attenuation of its effect to the output to be controlled is limited. 

This once again confirms that a nonminimum phase system would result in a bad 
overall control performance including disturbance attenuation.
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Solutions	to	the	state	feedback	problems	– the	singular	case

Consider the following system again, 

2 2

:
x A x B u E w
y x
z C x D u

  
 
  



where (A, B) is stabilizable, D2 is not necessarily of maximal rank and  
(A, B, C2, D2) might have invariant zeros on the imaginary axis.

Solution to this kind of problems can be done using the following trick 
(or so-called a perturbation	approach): Define a new controlled 
output

2 2

0
0

C Dz
z x I x u

u I
 
 

    
          
         



Clearly,               if  = 0.zz ~

small 
perturbations

P	Khargonekar
University	of	Florida

 K. Zhou and P. Khargonekar, “An algebraic Riccati equation approach to H∞-optimization,” Systems & Control Letters, 
Vol. 11, pp. 85-91, 1988.

Kemin Zhou
Louisiana	State	
University
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 

5 2 0 1
3 4 1 2

1 1 0

x x u w

y x
z x u

     
       
     



  



The perturbed system is nonunique and can be done in many ways. The whole idea is to 
make the perturbed system satisfying the regularity assumptions. It can be showed that

2 2

:
x A x B u E

C

w
y x

Dz x u

  
 
  





with 2

2

2

2

0: an :
0

d
I

C I
C D

D


   
       
      



always satisfies the regularity assumptions when          . We should note that the perturbation 
block in       might be replaced by any other perturbed term so long as the resulting       is of 
full rank. Similarly, the perturbation block in      might be omitted or replaced by another one 
as long as                            has no zeros on the imaginary axis. Here is an example:

2D

2 2( , , , )A B C D 

Note: the blue perturbation blocks in the above example might be omitted as the perturbed 
system would also meet the regularity assumptions without these blocks.  

2D

2C

0 

1

0 0

5 2 0
3 4 1 2

1 1 0

0 0
0 0

x x u w

y x

z x u





     
       
     



   
   
    
   
   
   





5 2 0 1
3 4 1 2

1
0
1 0

0

x x u w

y x

z x u


     
       
     



   
    
   





or
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Solution	to	the	general	H2 state	feedback	problem

Given a small  > 0, Solve the following algebraic Riccati equation (H2-ARE)

     1

2 2 2 2 2 2 2 2 0A A C C B C D D D D C BP P P P


              T T T T T T

for a unique positive definite solution > 0. Obviously,      is a function of  . The H2

suboptimal state feedback law is then given by

 1
2 2 2 2( )u F x D D D C B xP       T T T

It can be showed that the resulting closed-loop system Tzw(s) has 

It can also be showed that

*
22 as 0zwT   

1
2 *

2trace( ) as 0.PE E    
  

P~ P~

gm2star
gm2sos
h2out
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Example: Consider a system characterized by 

  uxz

xy

wuxx












































011

2
1

1
0

43
25

:



Solving the following H2-ARE using MATLAB

with = 1,  we obtain


 
 
 

 186.1968 46.2778
,

46.2778 18.2517
P    46.2778 18.2517F

*
2 1.225 

The closed-loop magnitude response 
from the disturbance to the controlled 
output:

The optimal performance or infimum
is given by


 
 
 

 4.3046 0.6944
,

0.6944 0.2387
P    69.4426 23.8688F

• = 0.1

• = 0.0001


 
 
 

 1.5016 0.0004
,

0.0004 0.0001
P      44.0023 1.0012 10F

 = 1

 = 0.1

 = 0.0001
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Solution	to	the	general	H state	feedback	problem

Step 1: Given a  > *, choose  = 1.

Step 2: Define the corresponding 

Step 3: Solve the following algebraic Riccati equation (H-ARE) for 

Step 4: If              , go to Step 5. Otherwise, reduce the value of  and go to Step 2.

Step 5: Compute the required state feedback control law

It can be showed that the resulting closed-loop system Tzw(s) has:

More general results for the singular case can be found in Chen (2000). 




   
       
      

 
2 2

2 2: and : 0
0

C D
C I D

I
22

~~ DC and

  12
2 2 2 2 2 2 2 2( ) ( ) 0A DP PA C C PE BP P PE C D D D C B

                T T T T T T T

:P

0~ P

 1
2 2 2 2( )u F x D D D C B xP       T T T

.zwT   
gm8star
gm8sos
h8out



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 150 © BEN M. CHEN

Example: Again, consider the following system

  uxz

xy

wuxx












































011

2
1

1
0

43
25

:



It can be showed that the best achievable H

performance for this system is                . 
Solving the following H-ARE using MATLAB

with = 0.6 and  = 0.01, we obtain a positive 
definite solution

and

6.3774 0.1373
0.1373 0.0131

P  
  
 

 1373 131.5F   

* 0.5  

The closed-loop magnitude response 
from the disturbance to the controlled 
output:

Clearly, the worse case gain, occurred 
at the low frequency is slightly less 
than 0.6. The design specification is 
achieved. 
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 2  Output Feedback Problems  2 

PLANT

OBSERVERSTATE FEEDBACK
LAW

ˆ x

u y



F K

zw
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Solutions	to	output	feedback	problems	– the	regular	case

Recall the system with measurement feedback, i.e.,

where (A, B) is stabilizable and (A, C1) is detectable. Also, it satisfies the following 

regularity assumptions:

1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix

2. The subsystem (A, B, C2, D2) has no invariant zeros on the imaginary axis

3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix

4. The subsystem (A, E, C1, D1) has no invariant zeros on the imaginary axis

1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

  
  
  





CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 153 © BEN M. CHEN

Solution	to	the	regular	H2 output	feedback	problem

Solve the following algebraic Riccati equation (H2-ARE)

     1

2 2 2 2 2 2 2 2 0A P PA C C PB C D D D D C B P


     T T T T T T

for a unique positive semi-definite stabilizing solution P  0, and the following ARE

1
2 2 2 2( ) ( )F D D D C B P  T T T

     1

1 1 1 1 1 1 0QA AQ EE QC ED D D D E C Q


     T T T T T T

for a unique positive semi-definite stabilizing solution Q  0. The H2 optimal output 

feedback law is then given by

 1
cmp

cmp cmp

cmp

:
x A

F
B KC x y

u x
F K   










1
1 1 1 1( ) ( ) .K QC ED D D   T T Tandwhere

Furthermore,

  
1

2
2

*
2 2( ) .AP P P QE E A C C      

T T Ttrace trace
gm2sos
h2out
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Example: Consider a system characterized by 

 
  uxz

wxy

wuxx












































111

110

2
1

1
0

43
25

:



Solving the following H2-AREs using MATLAB, 

we obtain

and an output feedback control law,

 
  
 

144 40
,

40 16
P     41 17F

 *
2 347.3

The closed-loop magnitude response 
from the disturbance to the controlled 
output:

The optimal performance or infimum 
is given by

49.7778 23.3333
,

23.3333 14.0000
Q

 
  
 

24.3333
16.0000

K
 

   

 

cmp cmp

cmp

cmp

5 22.3333 24.3333
38 29 16:

41 17

y

u

x x

x


 

 

  

    
    

   




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Solution	to	the	regular	H output	feedback	problem

Given a  > *, solve the following algebraic Riccati equation (H-ARE)

for a positive semi-definite stabilizing solution P  0, and the ARE

1
2 2 2 2( ) ( ) ,F D PD D C B  T T T

2 1
2 2 1 1 1 1 1 1( )( ) ( ) 0QA AQ EE QC C Q QC ED D D D E C Q        T T T T T T T

for a positive semi-definite stabilizing solution Q  0. In fact, these 
P and Q satisfy the so-called coupling condition:                       . 

1
1 1 1 1( )( ) .K C ED D DQ   T T T

where

2 1
2 2 2 2 2 2 2 2( )( ) ( ) 0A P PA C C PEE P PB C D D D D C B P       T T T T T T T

2 2 1 2
1 1( ) ( ),A A EE B I C DKP E PF QP          m

T
c p

T

2 1
cmp cmp( ) , ,QPIB CK F    

cmp cmpcmp cm

m

p
c

m c
mp

c pp

:
x

x
A B
C

x y
u

 
 




John	Doyle

Keith	Glover

P	Khargonekar

Bruce	Francis
1947–2018

Gilead	Tadmor

The H -suboptimal output feedback law is then given by [DGKF]

  2PQ  

and where
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Example: Consider a system characterized by 

 
  uxz

wxy

wuxx












































111

110

2
1

1
0

43
25

:



It can be showed that the best achievable H

performance for this system is                          . 

Solving the following H-AREs using MATLAB

with = 97, we obtain

and the corresponding controller

144.353 40.1168
,

40.1168 16.0392
P  
  
 

The closed-loop magnitude response 
from the disturbance to the controlled 
output:

49.8205 23.3556
23.3556 14.0118

Q  
  
 

 

cmp cmp

cmp

38.808668 1848.4365 1836.35389
59.411030 914.00139 894.116965
41.116796 17.039 215

x x y

u x

     
          

   



* 96.32864  

Clearly, the worse case gain, occurred 
at the low frequency, is slightly less 
than 97 (96.998). The H performance 
specification is achieved. 

gm8sos
h8out
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Solutions	to	the	output	feedback	problems	– the	singular	case

For general systems for which the regularity conditions are not satisfied, it can be 

solved again using the perturbation approach. We define a new controlled output:

and new matrices associated with the disturbance inputs:

The H2 and H control problems for singular output feedback case can be obtained 

by solving the following perturbed regular system with sufficiently small  :

2 2

0
0

C Dz
z x I x u

u I
 
 

    
          
         



1 1[ 0 ] and [ 0 ].E E I D D I   

1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

  
  
  

 
 

 

Remark:	Perturbation	approach	might	

have	serious	numerical	problems!

gm2sos
h2out
gm8sos
h8out
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Block	diagram	of	an	H2 or	H control	law	with	a	reference……

1 1
2[ ( ) ]C A BF BG  

PLANT

cmpx

u y


G

H2 or H controller

cmpC x rx A B y BG  cmp cmp cmp cmp

w z
r

assuming z = C2 x ( ) , as .z t r t  

R.C.

r
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Side	notes	on	the	H singular	case

1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix

2. ( A,B,C2,D2 ) has no invariant zeros on the imaginary axis

3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix

4. ( A,E,C1,D1 ) has no invariant zeros on the imaginary axis

Anton	Stoorvogel	&	coworkers
University	of	Twente

Carsten	Scherer
University	of	Stuttgart BMC	&	coworkers

Construction of closed-form solutions and computation of *  etc…

Some applications…
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Side	notes	on	(almost)	disturbance	decoupling

1. If 2
* = 0, then the corresponding H2 optimal control problem is also called an 

H2 (almost) disturbance decoupling problem. It can be showed that the H2

almost disturbance decoupling problem is solvable if the following 

conditions are satisfied (Good	systems!):

• (A, B) is stabilizable and (A, C1) is detectable

• (A, B, C2, D2) is right invertible and has no invariant zeros on open RHP

• (A, E, C1, D1) is left invertible and has no invariant zeros on open RHP

Necessary and sufficient conditions for the solvability of the almost 

disturbance decoupling problem is available in the literature. However, they 

can only be expressed in terms of certain geometric subspaces on the given 

system…
 B. M. Chen, Z. Lin and C. C. Hang, “Design for general H∞ almost disturbance decoupling problem with measurement feedback and 

internal stability - An eigenstructure assignment approach,” International Journal of Control, Vol. 71, pp. 653-685, 1998.

LTR
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2. If ∞* = 0, then the corresponding H∞ optimal control problem is also called an H∞
almost disturbance decoupling problem. It can be showed that the H∞ almost 

disturbance decoupling problem is solvable if the following conditions are satisfied:

• (A, B) is stabilizable and (A, C1) is detectable

• (A, B, C2, D2) is right invertible and of minimum phase

• (A, E, C1, D1) is left invertible and of minimum phase

Studies on disturbance decoupling problems led to the development of the geometric 

theory in linear systems…

Carsten	Scherer
University	of	Stuttgart

Jan	C.	Willems
Belgian	Scientist
1939–2013	

W.	M.	Wonham
University	of	Toronto

……

LTR

BMC	&	coworkers

imav
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Robust	stabilization	of	systems	with	unstructured	uncertainties

Consider an uncertain plant with an unstructured perturbation,

c

u
w z

y

w z
zwT

Small	Gain	Theory	(	!	)

If      is stable and                             ,  then 
the interconnected system is stable.

1


M

M

Assume                     . Then the system with 

unstructured uncertainty is stable if    
zwT 





 11 

zwT
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Robust	stabilization	with	additive	perturbation

Consider an uncertain plant with additive perturbations,

m

e

u y


m has a transfer function mmmmm DBAsICsG  1)()(

e is an unknown perturbation.

m and em  have same number of unstable poles.

Given a a > 0, the problem of robust stabilization for plants with additive perturbations 

is to find a proper controller such that when it is applied to the uncertain plant, the 

resulting closed-loop system is stable for all possible perturbations with their L-norm 

 a. (The definition of L-norm is the same as that of H-norm except for L-norm, the 

system need not be stable.) Such a problem is equivalent to find an H -suboptimal 

control law ( with  = 1/ a ) for 
m m

add m m

0
:

0

x A x B u w
y C x D u I w
z x I u

  
   
  


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Robust	stabilization	with	multiplicative	perturbation

Consider an uncertain plant with multiplicative perturbations,

m

e

u y


m has a transfer function mmmmm DBAsICsG  1)()(

e is an unknown perturbation.

m and
em  have same number of unstable poles.

Given a m > 0, the problem of robust stabilization for plants with multiplicative 

perturbations is to find a proper controller such that when it is applied to the uncertain 

plant, the resulting closed-loop system is stable for all possible perturbations with their 

L-norm  m. Again, such a problem is equivalent to find an H -suboptimal control law 

( with  = 1/ m ) for the following system,

m m m

multi m m m:
0

x A x B u B w
y C x D u D w
z x I u

  
   
  


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Example: Consider again the inverse pendulum system characterized by

LInverse Pendulum
Inverse Pendulum

M

   

 

0 1 0 0 0
1 0 1 1 0

1 0 0 1

1 0

u w

y w

z










        
          
       

 
  

 
 

  
 

 








where contains both the input disturbance 
and measurement noise (we treat both of them 
as system disturbance). 

Design H2 and H controllers such that the resulting closed-loop system is stable, 
and the controlled output z is kept around  = as it was done in the LQG design. 

Clearly, this is a singular problem as D2 =0. It can be calculated that the optimal 
performance      and      are given as           and                  , respectively.  *

*
2

* 1  *
2 1.4824 

ex2149

w
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Note that this perturbation 
 is good enough to make 
the problem regular…
No need to perturb E and 
D1 as Conditions 3 and 4 
are already satisfied…

Since it is a singular problem, we adopt the perturbation approach to make it 
regular, i.e., 

   

0

0 1 0 0 0
1 0 1 1 0

1 0 0 1

0
0
1 0

u w

y w

z u












        
          
       

 
  

 
    

      
    

 






 

Thus, we have

   1 1 2 2

0 1 0 0 0
, ,

1 0 1 1 0

1 0 , 0 1 ,
1 0
0 0

,
0

A B E

C D C D


     
       
     

   
      

   
 

where  is a small perturbation variable. For our design, we select  = 0.01.
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H2 control	law

Solving the following H2-AREs

we obtain

and the corresponding state feedback gain and observer gain matrices

     1

2 2 2 2 2 2 2 2 0A P PA C C PB C D D D D C B P


           T T T T T T

     1

1 1 1 1 1 1 0QA AQ EE QC ED D D D E C Q


     T T T T T T

0.1421 0.0101 2.1974 2.4142
,

0.0101 0.0014 2.4142 3.1075
P Q   
    
   

 
2.1974

101.005 14.213 ,
2.4142

F K  
    

 
The resulting H2 control law is given as

 

 

1cmp cmp cmp

cmp cm

11
2 p

2.1974 1 2.1974
102.4192 14.213 2.4142

0( ) . 100.0101 05 14.213 05

A BF KC K y

u F C A BF B r r

x x x y

x x


    

 

    
         

       


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1

2 0

3
0

Initial condition 
3

0
t

e
e








   
   
   
   
   

  





1e

2e




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Nyquist Diagram
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Gain margins and phase margins of the H2 control laws

State Feedback Case Output Feedback Case

Here we note that the open-loop transfer matrix for the H2 output feedback control is

which will be studied in detail later in the topic of loop transfer recovery (LTR)…

LTR

) ( )( ) )( (( )oL s F sI A BF KC K C sI A B s G s             
1 1

1 1
LTR
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H control	law

Solving the following H-AREs with  = 2

we obtain

and the corresponding state feedback gain and observer gain matrices

0.1421 0.0101 2.8739 3.0972
,

0.0101 0.0014 3.0972 3.8018
P Q   
    
   

 
2.8739

101.0063 14.2133 ,
3.0972

F K  
    

 
The resulting H control law is given as

cmp cmp cmp cmp
cmp

cmp cmp

:
x A x B y
u C x

 




 




  12
2 2 2 2 2 2 2 2( ) ( ) 0A P PA C C PEE P PB C D D D D C B P

            T T T T T T T

     12
2 2 1 1 1 1 1 1 0QA AQ EE QC C Q QC ED D D D E C Q

       T T T T T T T
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The resulting closed-loop system was derived earlier and is given as follows

It is shown in the singular value plot on the next page that the resulting closed-
loop is indeed has an H norm of 1.7021 <  =2. 

   12 2 2
1 1

3.2619 1
103.5235 14.2129

A A EE P BF I QP K C D E P
       

 
    

  T T
cmp

  12
cmp ,

3.2619
3.5198

B I QP K
  

 
 

   

cmp 1 cmp cmp 1

cmp cmp 1 cmp cmp cmp 1

2 2 cmp 1 2 cmp 2 cmp 1
cmp

[ ]

x A BD C BC x E BD D
w

x B C A x B D

x
z C D D C D C D D D w

x

        
       

       


       








where

 cmp . .C   101 0063 14 2133
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Singular values of the closed-loop system…

Time-domain simulation can be done similarly as those in the previous cases…

Tzwo
Tzws
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Gain margins and phase margins of the H∞ control laws

State Feedback Case Output Feedback Case

Here we note that the open-loop transfer matrix for the H∞ output feedback control is

which will be studied in detail later in the topic of loop transfer recovery (LTR)…

LTR

cmp cmp cmp ( ) ( )( ) ( ) ( )oL ss C sI A B B GC I A ss            
1 1

1

LTR
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Homework Assignment 6 (due in 1 week) + Design Problem 2 (due in 3 weeks)

P.1: Write the system to be controlled in Homework Assignment 5 in the following form

with

1. Determine the best achievable H∞-norm of the closed-loop system from     to z? 

2. Design an H∞ suboptimal control law such that the H∞-norm of the resulting closed-
loop system is reasonably close to the optimal value. 

3. Plot the singular value of the closed-loop system and find its H∞-norm.

4. Find the resulting gain and phase margins of the system under the control law. 

5. Assume that there is an unstructured but stable perturbation, , presented in the given 
plant. Give the range of || ||∞ so that the closed-loop would remain stable. 

w

( )
, the combination of the input and measurement noises.

( )
v t

w
w t
 

  
 



1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

  
  
  

 

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P.2:
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Loop Transfer Recovery (LTR) TechniqueLoop Transfer Recovery (LTR) Technique

x̂

u y



x A x Bu
y Cx Du
 
 


F
ˆ ˆ ˆ( )
ˆ ˆ

Bu
Du

x Ax y y
y

K
Cx

 






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Is	LQG	controller	robust?

It is now well-known that the linear quadratic regulator (LQR) has very impressive 
robustness properties, including guaranteed infinite gain margins and at least 60⁰ 
phase margins. The result is only valid, however, for the full state feedback case. If 
observers or Kalman filters (i.e., LQG regulators) are used in implementation, no 
guaranteed robustness properties hold. Still worse, the closed-loop system may 
become unstable if you do not design the observer of Kalman filter properly. The 
following example given in Doyle (1978) shows the unrobustness of the LQG regulators.

Example: Consider the following system characterized by

1 1 0 1
,

0 1 1 1
x x u v     
       
     

 [1 0]y x w 

where x, u and y denote the usual states, control input and measured 
output, and w and v are white noises with intensities 1 and   > 0, 
respectively. 

John	Doyle
CalTech

 J. Doyle, “Guaranteed margins for LQG regulators,” IEEE Transactions on Automatic Control, Vol. 23, pp. 756-757, 1978.

LQG H2 H
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The LQG controller consists of an LQR control law and a Kalman filter.

LQR	design:	Suppose we wish to minimize the performance index

It is known that the state feedback law u = – F x which minimize the 
performance index J is given by                          where

We can obtain a closed-form solution,

0

1
1

( ) , 1, 1 1 , 0J x Qx u Ru dt R Q q q
  

    
 

     T T

1 ,F R B P    T

1 0, 0.PA A P PBR B P Q P    T T

  [1 1]4 1 .2 [ 1]F q f  

It can be verified that the open loop of the 
LQR design with any q = 60 has a gain 
margin of (0.2,∞) and a phase margin of 
101.5 degrees. Thus, it is very robust. -5 -4 -3 -2 -1 0
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It can also be shown that the Kalman filter gain for this problem can be expressed as

which together with the LQR law result an LQG controller,

Suppose that the resulting closed-loop controller has a scalar gain 1 +  (nominally unity) 

associated with the input matrix, i.e.,

Tedious manipulations show that the characteristic function of the closed-loop system 

comprising the given system an the LQG controller is given by

  1
1

2
1

4
1

kK 
   

    
  






ˆ ˆ( )
ˆ

x A BF KC x K y
u F x

    


 


or

0
(1 )

1
B


 

     
the actual input matrix

   4 3 2( ) 2 4 1k f k f k fK s s s s s              

1( )u F sI A BF KC Ky    
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A necessary condition for stability is that

It is easy to see that for sufficient large q and , the closed-loop could be unstable for a 
small perturbation in B in either direction.  For instance, let us choose q = = 60. Then it 
is simple to verify the closed-loop system remains stable only when – 0.07 <  < 0.01 .

This shows that the LQG controller is not robust at all!

2 4 0 1 0k f k f k f      and

What	is	wrong?

The answer is that the open-loop transfer function of 
the LQR design and the open-loop transfer function of 
the LQG design are totally different and thus, all the 
nice properties associated with the LQR design 
vanish in the LQG controller. It can be seen more 
clearly from the precise mathematical expressions of 
these two open-loop transfer functions, and this leads 
to the birth of the loop transfer recovery technique. -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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Open‐loop	transfer	function	of	LQR

Open-loop transfer function: When the loop is broken at the input point of the 
plant, i.e., the point marked X, we have

Thus, the loop transfer matrix from u to        is given by

We have learnt from the previous lectures that the open loop transfer Lt (s) have 
very impressive properties if the gain matrix F comes from the LQR design, i.e.,

x Ax Bu 

– F

xr = 0 û u

ˆ ( )u uF sI A B  1

û

t ( ) ( )L s F sI A B  1

–
BAsIPBR 11 )(  T
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Open‐loop	transfer	function	of	LQG

Open-loop transfer function: When the loop is broken at the input point of the 
plant, i.e., the point marked X, we have

Thus, the loop transfer matrix from u to         is given by

Clearly, Lt (s) and Lo(s) are very different and that is why LQG in general does 
not have nice properties as LQR does.

û

x Ax Bu 

– F ( sI – A + B F + K C )–1 K 

xr = 0  u C
yû

)ˆ ( )(u C sI A B uF sI A BF KC K           
11

o ) ( )( ) ( C sI A BL s F sI A BF KC K          
11


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Doyle‐Stein	conditions: It can be shown that Lo(s) and Lt (s) are 
identical if the observer gain K satisfies

which is equivalent to B = 0 (prove it!). Thus, it is impractical. 

Loop	transfer	recovery

The above problem can be fixed by choosing an appropriate Kalman filter gain matrix 
K such that Lt (s) and Lo(s) are either exactly or almost matched over a certain range 
of frequencies. Such a technique is called Loop	Transfer	Recovery	(LTR).

The idea was first pointed out by Doyle and Stein in 1979. They had given a sufficient 
condition under which Lo(s) = Lt (s). They had also developed a procedure to design 
the Kalman filter gain matrix  K in terms of a tuning parameter q such that the 
resulting Lo(s)  Lt (s) as q , for invertible and minimum phase systems. The 
technique is known as LQG/LTR in the literature.

     1 1 1,B BK I C C sI AK         
Gunter	Stein
Honeywell

 J. Doyle and G. Stein, “Robustness with observers,” IEEE Transactions on Automatic Control, Vol. 24, pp. 607-611, 1979.
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Classical	LTR	design

The following procedure was proposed by Doyle and Stein in 1979 for left invertible and 

minimum phase systems (good systems): Define 

where Q0 and R0 are noise intensities appropriate for the nominal plant (in fact, Q0 can be 

chosen as a zero matrix and R0 = I ), and V is any positive definite symmetric matrix (V

can be chosen as an identity matrix). Then the observer (or Kalman filter) gain is given by

where P is the positive definite solution of

It can be shown that the resulting open-loop transfer function Lo(s) from the above 

observer or Kalman filter has

0 0
2 ,qQ BqQ VB R R  T

1K RPC  T

1 0qP P PA A Q C R CP   T T

, .( )) (L sL qs  to as
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Example: Consider a given plant characterized by

with                                              and

This system is of minimum phase with one invariant zero at s = – 2. The LQR control 
law is given by

The resulting open-loop transfer function Lt (s) has an infinity gain margin and a phase 
margin over 85°. We apply the Doyle-Stein LTR procedure to design an observer-based 
controller, i.e.,

where K is computed as on the previous page with 

6
0 1 0

,
3 1 14

35
x x u v

   
        

 
  

 [2 1]y x w 

[ ( ) ( )] [ ( ) ( )] ( ).E v t v E w t w t     [ ( )] [ ( )] 0E v t E w t 

 50 10u x xF   

1 1[ ]u F BF KC K y     

2
2

0 1225 2135
[0 1] .

35
[35 61]

61 1 2135 3721qQ q
q

   
       

 
 

  
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target

Lo(s) with 

q2 = 500

Lo(s) with 

q2 = 10000

Lo(s) with 

q2 = 100000

ltrloops
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Nyquist	plots…
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New	formulation	for	loop	transfer	recovery

Consider a general stabilizable and detectable plant,

The transfer function is given by                                                                    Also, let F be a 
state feedback gain matrix such that under the state feedback control law u = – F x
has the following properties: i) the resulting closed-loop system is asymptotically 
stable; and ii) the resulting target	loop meets design specifications.

Such a state feedback can be obtained using LQR design or any other design methods 
so long as it meets your design specifications. Usually, a desired target loop would 
have the shape as given in the figure on the next page.

x A x B u
y C x D u
 

  



1( ) , ( ) .G s C B D sI A      

( )L s F B t

x Ax Bu 

– F

xr = 0 û u



CUHK MAE ENGG 5403 – PART 2: DESIGN ~ PAGE 190 © BEN M. CHEN

Typical	desired	open‐loop	characteristics…

 D. B. Ridgely and S. S. Banda, Introduction to Robust Multivariable Control, Report No. AFWAL-TR-85-3102, Flight 
Dynamics Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, 1986.

Siva	S.	Banda
Air	Force	Research	Lab	

USA
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The problem of LTR is to find a stabilizing controller 

such that the resulting open-loop transfer function from  u		to         , i.e.,

is either exactly or approximately equal to the target loop Lt (s). Let us define the 

recovery	error as the difference between the target loop and the achieved loop, 

i.e.,

Then, we say exact LTR is achievable if E(s) can be made identically zero, or almost 

LTR is achievable if E(s) can be made arbitrarily small.

G(s)

 (s)

r u y

û

( )u s y 

û

( ) ( ) ( )L s s G so

( ) ( ) ( ) ( ) ( )E s L s L s F B s G s    t o

LQG

H2

H
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Observer‐based	structure	for	 (s)

ˆ ˆ ˆ( )
ˆ ˆ
x A x B u K y Cx D u
u u F x
    

  



1 1( ) ( ) ( )s s F BF KC KDF K        o

 
oo

1 1

( )

( )

( ) ( )s

F B D

L

F KC KDF K

s G s

C B


    



    

Dynamic equations of  (s):

Transfer function of

Achieved open-loop:
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Lemma: Recovery error, Eo(s), i.e., the mismatch between the target loop and the 
resulting open-loop of the observer-based controller is given by

Proof.	

       1
o

11)( ) ( ) (,( )E DCs M s I M s F B F KI M K Bs      

   

     

 

   

   

1

o o

1

1 1 1

11

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1 1

( )

( ) ( ) ( )

(

( )

(

(

( )

)

)

)

L s s G s F BF KDF K C B D

I B KD K C B D

I KC K C B D

I F B F KC KD

I M F B F KC K

KF

C

KC

K

FK B

M

K

C

F

F

K

C C

D

KC C

I K

 







  



 

 







 







      

       

       
        

     



 

 



 

   

 



 
     
 

   

1

1

1 11 1

1

1
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 

   





           

     

 










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( )
( )
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  

 

    

       1
o

1( ) ( ( ( )))( ) F B I M s F B BME I M ss s M s FI      

1

1
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Credit to G C Goodman in 
a master thesis 

conducted at MIT in 1984
Michael	Athans

MIT
1937–2020	
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Loop	transfer	recovery	design

It is simple to observe from the above lemma that the loop transfer recovery is 
achievable if and only if we can design a gain matrix K such that M (s) can be made 
either identically zero or arbitrarily small, where

Let us define an auxiliary system

1 1( ) .( ) ( )M s F KC B KD    

:
x A x C u F w
y x
z B x D u

   
 
  

 T T T

aux

T T

+ u K x  T

Closed-loop transfer function from w to z is 1 .( )( )( )B D K sI A C K F M s   T T T T T T T T

Thus, LTR design is equivalent to design a state feedback law for the above auxiliary 
system such that certain norm of the resulting closed-loop transfer function is made 
either zero or arbitrarily small. As such, the H2 and H optimization techniques (with
2

* = 0 and ∞* = 0, i.e., the corresponding almost disturbance decoupling problems) 
can be used to solve the LTR problem.

H2 H
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G(s)

W

Bernard	Friedland	
New	Jersey	Institute	of	Technology	

A story behind a new 
controller structure 
for LTR…
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Dynamic equations of  (s):

Transfer function of

Achieved open-loop:

( ) ,

ˆ

x A KC x K y

u u Fx

  

  

cmp cmp

cmp

1 1
c( ) ( ) ( )s s F KC K      

 1 1

( )

(

) )

)

( (L s G s

C B D

s

F KC K


  



    
cc

Proposed by Chen, Saberi & Sannuti in 1991, the CSS based 
controller has the following characteristics:

Ali	Saberi
Washington	State	University

Pedda	Sannuti	
Rutgers	University

LTR	design	via	CSS	architecture‐based	controller

BMC
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Lemma: Recovery error, Ec(s), i.e., the mismatch between the target loop and the 
resulting open-loop of the CSS architecture-based controller is given by

Proof.	

  1

c
1( ) ( ) ( )E s F KC B KM s D

    

   

   
   

1

t c

1

c

11

1

11

( )

( )

( ) ( )E

B

KC

L s L s

F B F

C

KC

KC

K C B D

F KC B K K D

F KC B K D

s

C B

M

B K

s











 

 





 

 

   

       

  



 

It is clear that LTR via the CSS architecture-based controller is achievable iff one can 
design a gain matrix K such that the resulting M (s) can be made either zero or 
arbitrarily small. This is the same as the LTR design via the observer-based controller. 

 B. M. Chen, A. Saberi and P. Sannuti, “A new stable compensator design for exact and approximate loop transfer recovery,” 
Automatica, Vol. 27, pp. 257–280, 1991.

Collected in Bibliography on Robust Control by P. Dorato, R. Tempo, G. Muscato in Automatica, Vol. 29, 1993.
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What	is	the	advantage	of	CSS	structure?

Theorem. Consider a stabilizable and detectable system  characterized by (A,B,C,D) 
and target loop transfer function Lt (s) = FB. 

 Assume that  is left invertible and of minimum phase (the so-called good systems),
which implies that the target loop Lt (s) is recoverable by both observer-based and 
CSS architecture- based controllers. 

 Also, assume that the same gain K is used for both observer-based controller and 
CSS architecture-based controller and is such that for all   ,  where  is some 
frequency region of interest,

Then, for all   ,

1993

Proof of this result can be found in Chen et	al., Automatica, vol. 27, 1991; 
and a monograph by Saberi et	al. (1993).

 min 1F B  

   max c max o( ) ( )E j E j   
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Remark: In order to have good command following and desired disturbance rejection 

properties, the target loop transfer function Lt (j) has to be large and consequently, 

the minimum singular value                          should be relatively large in the appropriate 

frequency region. Thus, the assumption in the above theorem is very practical.

Example: Consider a given plant characterized by

Let the target loop Lt (s) = F B be characterized by a state feedback gain

Using MATLAB, we know that the above system has an invariant zero at s = – 2. Hence it 

is of minimum phase. Also, it is invertible. Thus, the target loop Lt (s) is recoverable by 

both the observer based and CSS architecture-based controllers. 

Using the H2 optimization method, we obtain matrix

 0 1 0
, 2 1 0

3 4 1
x x u y x u

   
           


 50 10 .F 

6.9
.

84.6
K  
  
 

 min t ( )L j 
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CSS

Target

Observer

Target	loops	and	achieved	loops…

ltrloops
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Recovery	errors…

ltrloops
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Advantages	and	drawbacks	of	multivariable	control	techniques

The advantages of the multivariable control techniques covered:

 It is relatively easy to formulate the control system design process into some 
optimization problems, which can effectively be solved using MATLAB.

 The problem formulations are mathematically elegant and are applicable to 
general MIMO systems.

 Some techniques, such as LQR, can automatically guarantee remarkable robust 
properties (such as impressive gain and phase margins). Some, such as H

control, could yield a design that is robust to perturbation and uncertainties.

The drawbacks are also very obvious:

 It is tedious to tune the parameters (e.g., Q and R in LQR, weighting functions 
in H2 and H control) used in optimization associated with the design process.

 It is hard, if not impossible, to formulate the design process directly linked to 
the time‐domain	specifications	(such as overshoot, settling time and/or rise 
time), as it is done in classical control. 
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Robust & Perfect Tracking (RPT) ControlRobust & Perfect Tracking (RPT) Control

We	have	spent	too	much	time	on	frequency‐domain	methods…	It	is	time	to	
improve	time‐domain	performance!

PLANT

cmpx

u yr
?

cmpC x A x B y cmp cmp cmp cmp

w z
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The robust and perfect tracking (RPT) control technique 
developed by Chen and his co-workers is to design a controller 
such that the resulting closed-loop system is stable, and the 
controlled output almost perfectly tracks a given reference 
signal in the presence of any initial conditions and external 
disturbances. 

One of the most interesting features in the RPT control method 
is its capability of utilizing all possible information available in 
its controller structure. Such a feature is highly desirable for 
UAV flight missions or other unmanned vehicles involving 
complicated maneuvers, in which not only the position reference 
is useful, but also its velocity and even acceleration information 
are important or even necessary to be used in order to achieve a 
good overall performance.

Robust	and	perfect	tracking	control	

BMC

2000
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Robust to 
disturbance &

initial condition

Problem	formulation	

Perfect in 
Tracking

RPT CONTROL
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Solvability	conditions:	

The solvability condition for the general measurement feedback case is rather 
complicated. Please refer to the reference text for details (Theorem 9.2.1).

(8.1)

(8.2)

8.0.1.
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Solution:	

8.0.1.

(8.4)
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(8.4)

The required gain matrix is then given by

( 1)
10 1( )) (( )( )u F x H H rr H r 

    
    

Such a controller structure is a perfect choice for flight control systems, in 
which not only the position reference is relevant, but also the velocity and 
acceleration references are crucial in many applications. 

which feeds in all the possible reference signals.

The RPT state feedback control law:
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Special	case…	

For the special case when the given plant is of a double integrator, i.e.,

where p is the position and v is the acceleration, assuming the reference position 
(pr), velocity (vr) and acceleration (ar) are all available, it can be shown that the RPT 
control law can be calculated in the following closed-form

where  is the damping ratio and n is the natural frequency of the closed-loop 
system, and  is the tuning parameter.

We note such a plant is very common in real applications including the outer loop 
flight control systems. In fact, the RPT control is very effective in improving flight 
performance for UAVs.

 0 1 0
, , 1 0

0 0 1
p p p p

u y
v

E w
v v

z
v

           
              

           




r

2
n n

2
n n

22 rr
22 p

vp au
v

 
  

               
     
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Case	study:	Unmanned	helicopter	flight	control	systems

Measured 
Signal

Inner Loop 
Control

Inner Loop 
Control

Outer Loop 
Control

Outer Loop 
Control

Trajectory 
Generation

Path 
Planning

Mission 
Management

An unmanned systemAn unmanned system



 Inner Loop to stabilize UAV attitude

o PID Control (commonly used)
o Optimal Control
o Robust Control
o Nonlinear Control
o ……

 Outer Loop to control position/velocity

o PID Control (commonly used)
o Pole placement
o RPT Control
o Robust Control
o ……
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H controlH control

Wind disturbanceWind disturbance

Detailed	control	structure
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Inner‐loop	control	system	design	setup

This part is actually 

what are solving in 

design problems for 

this course.

2011
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Inner‐loop	linearized	model	at	hover

p
q
r






 
 
 
 

  
 
 
  
 

y

out





 
   
 
 

h

One can use the techniques covered earlier, i.e., H2 control, H∞ control, or LQG to 
design an appropriate inner-loop controller for the above system.
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Inner‐loop	command	generator

The inner-loop command generator is given as

r

r b,r

r

0 0.0019 0.0477
0 0.1022 0.0037

0.1022 0 0.0001





   
       
      

a

Here we note that the purpose of adding the inner-loop command generator is 
to yield a unity DC gain… 
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Outer‐loop	control	system	design	setup

VIRTUAL

ACTUATOR

VIRTUAL

ACTUATOR
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Properties	of	the	virtual	actuator

X Channel

Y Channel

Z Channel

Unstable	Zeros!

From practical point of view, it is safe 

to ignore them so long as the outer-

loop bandwidth is within 1 rad/sec…

Frequency	response	of	the	virtual	actuator…
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Properties	of	the	outer‐loop	dynamics

It can also be verified that coupling among each channel of the outer loop dynamics is 
very weak and thus can be ignored. As a result, all the x, y and z channels of the 
rotorcraft dynamics can be treated as decoupled, and each channel can be characterized 
by

where p* is the position, v* is the velocity and a* is the acceleration, which is treated a 
control input in our formulation. 

For such a simple system, it can be controlled by almost all the control techniques 
available in the literature, which include the most popular and the simplest one such as 
PID control…

* *
*

* *

0 1 0
0 0 1

p p
a

v v
      

       
      



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Outer‐loop	RPT	control	law
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Simulation of RPT control with  = 0.7 & n = 1…
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Simulation of RPT control with  = 0.7 & n = 1 (cont.)
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Concluding Remarks Concluding Remarks 

Improvement	of	transient	performance.	
Nonlinear	control	techniques.	

Issues	on	implementation	of	controllers	on	physical	systems…	
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fast	rise	
time	with	
huge	

overshoot

CNF Control

slow	settling	time	
with	no	overshoot

small	damping	ratio

large	damping	ratio

 Z. Lin, M. Pachter, and S. Banda, “Toward improvement of tracking performance — nonlinear feedback for linear systems,” 
International Journal of Control, vol. 70, pp. 1–11, 1998.

 B. M. Chen, T. H. Lee, K. Peng and V. Venkataramanan, “Composite nonlinear feedback control for linear systems with input 
saturation: Theory and an application,” IEEE Transactions on Automatic Control, Vol. 48, pp. 427-439, 2003.

Zongli	Lin
University	of	Virginia

Siva	S.	Banda
US	Air	Force	Research	Lab	typical	responses	of	a	2nd	order	LTI	system	with	bounded	input

Key	idea… u F x Gr  | | 1( )ee BP x A BF BGr        

Nonlinear	switching	for	transient	improvement

Composite	Nonlinear	Feedback	(CNF)	Control…
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CNF	Control	Toolkit…

The toolkit, programmed by Guoyang Cheng, provides a user-
friendly interface to tune nonlinear parameters… Guoyang	Cheng

Fuzhou	University
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2006

Applications	of	CNF	Control…
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Some	good	references	in	nonlinear	systems	and	control…

Jean‐Jacques	Slotine
MIT

Hassan	Khalil
Michigan	State	University

Alberto	Isidori
University	of	Rome

Jie	Huang
CUHK
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Implementation of control laws obtained in this part in the real systems can be done 
using analog devices. It is, however, much more convenient and efficient to realize a 
controller using a computer or digital signal processor (DSP) instead. There are two 
ways to design an implementable controller: 

i. Design a continuous-time controller like we have done so far in this class and 
then discretize it using some discretization techniques such as ZOH or bilinear 
transformation to obtain an equivalent digital controller. 

+ U (s)R (s) Y (s)

–

E (s)

+R (s) Y (s)

– T

ZOH

( )K s

( )K z

( )G s

( )G s

Implementation	of	controllers……
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ii. Alternatively, we can discretize the system to be controlled first to obtain a 
sampled‐data	system	or discrete‐time	system	and design a controller in the 
discrete-time setting. The discrete-time controller obtained can then be 
implemented directly using a computer or digital signal processor (DSP).

+ U (z)R (z) Y (z)

–

E (z)
T

+ U (z)R (z) Y (z)

–

E (z)

ZOH

Such an approach is to be covered in a course on computer	control	systems	or 
digital	control	systems.

( )K z

( )K z

( )G s

( )G z
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 We have learned in this course the most fundamental linear systems theory. It is 
sufficient to understand multivariable control design methods and to carry out some 
basic multivariable control systems design.

 None of the multivariable control techniques covered in this course can be directly 
applied to solve real-life problems unless one fully understands the nature of the 
problem to be solved. However, the design methods presented in this course can be 
used as the first attempt (and guideline) in solving the actual problem.

 A good system to be controlled is always superior to a good control technique to

Zongli	Lin
University	of	Virginia

Yacov	Shamash	
Stony	Brook	University BMC

achieve good performance. A 
good system is referred to a 
plant with good system 
structural properties. As 
mentioned in Part 1, one can 
find such topics in the text by 
Chen, Lin and Shamash (2004). 

Final	remarks……
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Do not forget: Engineering is to solve real-life problems!……
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What’s	the	next?…What’s	the	next?…

Smart	Cities……
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Path planning Autonomous flight 

Process of
Infrastructure Inspection 

and
3D Reconstruction

Real	industrial	application
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色即是空，空即是色

道可，道非，常道

That’s all, folks! Thank you! 

All that is visible is only imagination. All that is 
invisible is part of the visible.

道可道非常道


