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Preface 

THE FORMULATION OF the optimization theory has certainly become one of 

the mile stones of modern control theory. In a typical analytical design of 

control systems, the given specifications are first transformed into a performance 
criterion, and then control laws which would minimize the performance criterion 

are sought. Two important and well-known criteria are the H 2 norm and the 
H 00 norm of the transfer matrix from an exogenous disturbance to a pertinent 

controlled output of a given linear time invariant plant. This book aims to study 
the H 00 control wherein the control design problem is modeled as a problem 

of minimizing the H 00 norm of a certain closed-loop transfer matrix under 

appropriate feedback control laws. Our aim is to examine both the theoretical 

and practical aspects of Hoo control from the angle of the structural properties 

of linear systems. Our objectives are to provide constructive algorithms for 

finding solutions to general singular H00 control problems, to general Hoo almost 
disturbance decoupling problems, and to newly formulated robust and perfect 

tracking problems, as well as to apply these techniques to solve several practical 
problems. 

The preliminary edition of this work was published earlier by the publisher 
under the title, Hoo Control and Its Applications, Volume 235 of the Series of 
Lecture Notes in Control and Information Sciences. I am thankful to Nicholas 

Pinfield, the Engineering Editor, for urging me to upgrade it to the current 

series and for his kindly assistance. I have taken this opportunity to enhance 

the overall presentation of the work, and to include several newly developed 

theoretical and practical results, namely, Chapters 9, 13 and 14, which deal 

with the theory of robust and perfect tracking and its application to a hard 

disk drive servo system design. 

The intended audience of this manuscript includes practicing control engi­
neers and researchers in areas related to control engineering. An appropriate 

background for this monograph would be some first year graduate courses in 
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linear systems and multivariable control. A little bit of knowledge of the geo­
metrical theory of linear systems would certainly be helpful. 

I have been fortunate to have the benefit of the cooperation of several co­
workers. Foremost, I am indebted to Zongli Lin of University of Virginia. Many 

parts of this book were born as the result of our continual collaboration and 
our numerous discussions over the past few years. In general, I would like to 
thank Professors Ali Saberi of Washington State University, Yacov Shamash of 
State University of New York at Stony Brook, Chang C. Hang and Tong H. Lee 
of National University of Singapore, Uy-Loi Ly of University of Washington, 

Yaling Chen of Xiamen University, Anton Stoorvogel of Eindhoven University 
of Technology, and Steve Weller of University of Newcastle, for their various 
contributions to certain results presented in this book. Also, I am thankful to 
Professors Pedda Sannuti of Rutgers University, Dazhong Zheng of Tsinghua 

University, Cishen Zhang of University of Melbourne, and Shuzhi S. Ge of 
National University of Singapore for many beneficial discussions over the past 
few years, and to Drs. Teck-Seng Low, Tow-Chong Chong and Guoxiao Guo 
of the Data Storage Institute of Singapore for their generous support to my 

research project on the dual actuator systems of hard disk drives. 
I am particularly thankful to my current and former graduate students, 

especially Boon-Choy Siew, Yi Guo, Jun He, Kexiu Liu, Zhongming Li and 
Teck-Beng Goh, for their contributions and for applying and testing parts of 
the results of this book to real life problems such as gyro-stabilized mirror 
platform, piezoelectric actuator, and dual actuator systems of hard disk drives. 
I am also indebted to Andra Leo, my good friend and English teacher at the 
National University of Singapore, for her kindest help in correcting English 
errors throughout the preliminary edition of this manuscript. 

This work was completed mainly using my 'spare' time, i.e., evenings, week­

ends and holidays. I owe a debt of deepest gratitude to my parents, my wife 

Feng, and my children Andy, Jamie and Wen, for their sacrifice, understanding 

and encouragement. Last but certainly not the least, I would like to give my 

hearty thanks to my grand uncle, Very Reverend Paul Chan, and to his Sino­

American Amity Fund and Chinese Catholic Information Center, New York. It 
would not have been possible for me to build my academic career without the 

spiritual and financial support that I received from them during my course of 
studies at Gonzaga University and Washington State University. It is natural 
that I dedicate this work to all of them. 

Ben M. Chen 
Singapore, 2000 
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Chapter 1 

Introduction 

1.1. Introduction 

THE ULTIMATE GOAL of a control system designer is to build a system that will 

work in a real environment. Since the real environment may change and oper­
ating conditions may vary from time to time, the control system must be able 
to withstand these variations. Even if the environment does not change, other 
factors of life are the model uncertainties as well as noises. Any mathematical 
representation of a system often involves simplifying assumptions. Nonlineari­

ties are either unknown and hence unmodeled, or are modeled and later ignored 
in order to simplify analysis. High frequency dynamics are often ignored at the 
design stage as well. In consequence, control systems designed based on simpli­
fied models may not work on real plants in real environments. The particular 
property that a control system must possess for it to operate properly in re­
alistic situations is commonly called robustness. Mathematically, this means 
that the controller must perform satisfactorily not just for one plant, but for a 
family of plants. If a controller can be designed such that the whole system to 
be controlled remains stable when its parameters vary within certain expected 
limits, the system is said to possess robust stability. In addition, if it can satisfy 

performance specifications such as steady state tracking, disturbance rejection 

and speed of response requirements, it is said to possess robust performance. 
The problem of designing controllers that satisfy both robust stability and per­

formance requirements is called robust control. Optimization theory is one of 

the cornerstones of modern control theory and was developed in an attempt to 

solve such a problem. In a typical control system design, the given specifica­
tions are at first transformed into a performance index, and then control laws 
which would minimize certain norm, say H2 or Hoc norm, of the performance 
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index are sought. This book focuses on the Hoo optimal control theory, and its 
related problems such as the H00 almost disturbance decoupling problem, and 
the robust and perfect tracking problem. 

Over the past decades we have witnessed a proliferation of literature on Hoo 
optimal control since it was first introduced by Zames [139]. The main focus 
of the work has been and continues to be on the formulation of the problem 
for robust multivariable control and its solution. Since the original formula­

tion of the Hoo problem in Zames [139], a great deal of work has been done 
on finding the solution to this problem. Practically all the research results of 
the early years involved a mixture of time-domain and frequency-domain tech­
niques including the following: 1) Interpolation approach (see e.g., Limbeer and 

Anderson [77]); 2) Frequency domain approach (see e.g., Doyle [47], Francis [54] 
and Glover [57]); 3) Polynomial approach (see e.g., Kwakernaak [69]); and 4) ]­

spectral factorization approach (see e.g., Kimura [67]). Recently, considerable 
attention· has been focussed on purely time-domain methods based on algebraic 
Riccati equations (ARE) (see e.g., Chen, Guo and Lin [21], Chen, Saberi and 

Ly [31], Doyle and Glover [48], Doyle, Glover, Khargonekar and Francis [49], 
Khargonekar, Petersen and Rotea [65], Petersen [103], Saberi, Chen and Lin 
[108], Sampei, Mita and Nakamichi [115], Scherer [117-119], Stoorvogel [124], 
Stoorvogel, Saberi and Chen [125], Tadmor [129], Zhou, Doyle and Glover [140], 
and Zhou and Khargonekar [141]). Along this line of research, connections are 
also made between Hoo optimal control and differential games (see e.g., B~ar 
and Bernhard [4], and Papavassilopoulos and Safonov [100]). 

Most of the results in the literature are restricted to the so-called regular H00 

control problem (see Definition 1.3.13). Unfortunately, many real life problems 
do not satisfy these conditions and must be formulated in terms of the regular 

case by adding some dummy controlled outputs and/or disturbances in order 

to apply the theory that deals with only the regular problem. The problem 

we treat in this book is general, i.e., it does not necessarily satisfy the reg­

ularity assumptions. The existence conditions for H00 suboptimal controllers 

for this type of problem are well studied in Stoorvogel [124] and Scherer [119]. 
The main focus of this book is, however, very different. We concentrate on 

1) the computation of infimum of H00 optimization problems, which must be 
known before one can carry out any meaningful design; 2) solutions to general 
Hoo optimization problems; 3) solutions to general Hoo disturbance decoupling 
problems, which themselves are a very important subject; 4) solutions to ro­
bust and perfect tracking problems; and 5) the practical applications of these 
theories. 
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Most of the results presented in this book are from research carried out by 

the author and his co-workers over the last decade. The purpose of this book 

is to discuss various aspects of the subject under a single cover. 

1.2. Notations 

Throughout this book, we shall adopt the following notations: 

ll := the set of real numbers; 

C := the entire complex plane; 

C 0 := the set of complex numbers inside the unit circle; 

C® := the set of complex numbers outside the unit circle; 

C 0 := the unit circle in the complex plane; 

C- := the open left-half complex plane; 

c+ := the open right-half complex plane; 

C0 := the imaginary axis in the complex plane; 

I ·- an identity matrix; 

h := an identity matrix of dimension k x k; 

X' := the transpose of X; 

XH := the complex conjugate transpose of X; 

det(X) := the determinant of X; 

rank( X) := the rank of X; 

Im (X) := the range space of X; 

Ker (X) := the null space of X; 

xt := the Moore-Penrose (pseudo) inverse of X; 

A(X) := the set of eigenvalues of X; 

Amax(X) := the maximum eigenvalues of X where A(X) C ll; 

CTmax(X) := the maximum singular value of X; 

p(X) := the spectral radius of X which is equal to maxi IAi(X)I; 

lXI := the usual 2-norm of a matrix X; 

lxl := the Euclidean norm of a vector x; 

IIGI!z := the Hz-norm of a stable system G(s) or G(z); 

I!YIIz := the lz-norm of a signal g(t) or g(k); 

L2 := the set of all functions whose l2 norms are finite; 
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JlgiiP := the lp-norm of a signal g(t) or g(k); 

Lp := the set of all functions whose lp norms are finite; 

JIGII.c"" := the .C00-norm of a system G(s) or G(z); 

IIGIIoo := the H00-norm of a stable system G(s) or G(z); 

dim (X) := the dimension of a subspace X; 

X.L := the orthogonal complement of a subspace X of Rn; 

c-1{X} :={xI Cx EX}, where X is a subspace and Cis a matrix; 

1:. := a linear system characterized by (A., B., C., D.); 

1:: := a dual system of 1:. & is characterized by (A~,C~,B~,D~); 

gJ := the end of an algorithm or assumption; 

@I := the end of a corollary; 

IQl := the end of a definition; 

~ := the end of an example; 

~ := the end of a lemma; 

I2J := the end of an observation; 

~ := the end of a property or proposition; 

l!!l := the end of a remark; 

1TI ·- the end of a theorem; 

~ := the end of the proof of an interim result; 

~ ·- the end of a proof. 

Finally, we denote normrank {X ( c;)} the rank of X ( c;) with entries in the field 
of rational functions of c;. 

1.3. The Standard Hoo Optimization Problem 

We consider a generalized system l: with a state-space description, 

{ 
t5(x) = A x + B u + E w, 

l: : y = cl X + Du u + Dl w, 

h = c2 x + D2 u + D22 w, 

(1.3.1) 

where t5(x) = :i:(t) if l: is a continuous-time system, or t5(x) = x(k+l) if l: is 
a discrete-time system. As usual, x E Rn is the state, u E Rm is the control 
input, w E Rq is the external disturbance input, y E :JRP is the measurement 
output, and h E Rl is the controlled output of 1:. They represent x(t), u(t), 
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w(t), y(t) and h(t), respectively, if~ is of continuous-time, or represent x(k), 

u(k), w(k), y(k) and h(k), respectively, if~ is of discrete-time. For the sake 

of simplicity in future development, throughout this book, we let ~P be the 

subsystem characterized by the matrix quadruple (A, B, C2, D2 ) and ~Q be the 

subsystem characterized by (A,E,C1,Dt). 

Generally, we can assume that matrix D11 in (1.3.1) is zero. This can be 

justified as follows: If D 11 -1- 0, we define a new measurement output, 

(1.3.2) 

which does not have a direct feedthrough term from u. Suppose we carry on our 

control system design using this new measurement output to obtain a proper 

control law, say, 

U = K.(c;)Ynew, (1.3.3) 

where c; = s, the Laplace transform operator, if ~ is a continuous-time sys­

tem, or c; = z, the z-transform operator, if ~ is a discrete-time one. Then, 

it is straightforward to verify that the control law (1.3.3) is equivalent to the 

following one, 
(1.3.4) 

provided that [I +K.(c;)D11]-1 is well posed, i.e., the inverse exists for almost all 

c; E C. Thus, for simplicity, we will assume throughout the book that Dn = 0. 

The standard H00 optimal control problem is to find an internally stabilizing 

proper measurement feedback control law, 

{ 
5(v) = Acmp V + Bcmp y, 

~cmp : 
U = Ccmp V + Dcmp y, 

(1.3.5) 

such that the H00-norm of the overall closed-loop transfer matrix function from 

w to h is minimized (see also Figure 1.3.1). To be more specific, we will say 

that the control law ~cmp of (1.3.5) is internally stabilizing when applied to the 

system~ of (1.3.1), if the following matrix is asymptotically stable: 

BCcmp]' 
Acmp 

(1.3.6) 

i.e., all its eigenvalues lie in the open left-half complex plane for a continuous­

time system or in the open unit disc for a discrete-time system. It is straight­

forward to verify that the closed-loop transfer matrix from the disturbance w 

to the controlled output h is given by 

(1.3. 7) 
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w h 

u I; y 

I:cmp 

Figure 1.3.1: The standard H00-optimization problem. 

where 

(1.3.8) 

and 

(1.3.9) 

It is simple to note that if L:cmp is a static state feedback law, i.e., u = Fx, 
then the closed-loop transfer matrix from w to h is given by 

(1.3.10) 

Similarly, if L:cmp is given by u = Fix + F2w, i.e., a static full information 
feedback control law, then we have 

The following definitions will be convenient in our future development. 

Definition 1.3.1. (Euclidean norm and 2-norm). Given a vector X E en 
with entries XI, x2, · · ·, Xn, its Euclidean norm is defined as, 

(1.3.12) 

Given a matrix A E cnxm, its 2-norm is defined as, 

IAxl V H IAI =sup -1-1 =max A;(A A). 
x#O X t 

(1.3.13) 

The 2-norm of the matrix A is also called its spectral norm. 
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Definition 1.3.2. (Z2-norm). The Z2-norm of a continuous-time signal g(t), 
which is either a column vector or a row vector, is defined as 

IIYII2 := (trace [100 
g(t)g(t)' dt])! (1.3.14) 

Similarly, for a discrete-time signal vector g(k), we have 

(1.3.15) 

The square of the Z2-norm of g(t) or g(k) is commonly termed the total energy in 

the signal g(t) or g(k). In many areas of engineering, energy or Z2-norm is used 

as a measure of the size of a transient signal g(t) or g(k) which decays to zero 

as timet or shift k progresses towards infinity. By Parseval's theorem, IIYII2 can 
also be computed in the frequency domain as follows: for the continuous-time 

case, 

IIYII2 = ( 2~trace [1.: G(jw)G(jw)HcU.J])!, (1.3.16) 

where G(jw) is the Fourier transform of g(t); similarly, for the discrete-time 

case, 
1 

IIYII2 = ( 2~trace [1.: G(eiw)G(eiw)HcU.J]) 2
, 

where G(z) is the z-transform of g(k). 

(1.3.17) 

~ 

Definition 1.3.3. (lp-norm and Lp)• Let p E [1, oo). The lp-norm of a 

continuous-time vector signal g(t) is defined as 

( roo ) 1/p 
IIYIIP := Jo lg(t)IPdt (1.3.18) 

Similarly, for a discrete-time signal vector g(k), we define, 

( 

00 ) 1/p 

IIYIIP := {; lg(k)IP (1.3.19) 

For p = 2, the above definitions coincide with those in Definition 1.3.2. Also, 

Lp denotes the set of vector functions, whose Zp-norms are bounded. ~ 

Definition 1.3.4. (Z00-norm and L00 ). The Z00-norm of a continuous-time 

signal vector g(t) is defined as 

IIYIIoo := ess sup lg(t)l. 
t~O 

(1.3.20) 
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Similarly, for a discrete-time signal vector 9(k), we define, 

ll9lloa :=sup l9(k)i. 
k~O 

(1.3.21) 

Also, Loa denotes the set of vector functions, whose loa-norms are bounded. 10 

Definition 1.3.5. (H2-norm). The H2-norm of an asymptotically stable and 
proper continuous-time transfer matrix G(s) is defined as 

1 

11~112 := ( 2~trace [}~: G(jw)G(jw(~]) 2 (1.3.22) 

By Parseval's theorem, IIGII2 can equivalently be defined as 

1 

IIGII2 = (trace [fooa 9(t)9(t)'dt]) 2 , (1.3.23) 

where 9(t) is the unit impulse response matrix of G(s). Thus, IIGII2 = 119112· 
Similarly, the H2-norm of an asymptotically stable and proper discrete-time 
transfer matrix G(z) is defined as 

(1.3.24) 

Again, by Parseval's theorem, IIGII2 can equivalently be defined as 

1 

IIGII2 = (trace[~ 9(k)9(k)']) 
2

, 

where 9(k) is the unit impulse response matrix of G(k). 
continuous-time case, IIGII2 = 119112· 

(1.3.25) 

Thus, as in the 
10 

Definition 1.3.6. (Hoa-norm). The Hoa-norm of an asymptotically stable 

and proper continuous-time transfer matrix G(s) is defined as 

. llhll2 
IIGIIoa := sup O"max[G(Jw)] = sup -,, -,, , 

wE[O,oa) llwll2=l W 2 
(1.3.26) 

where w and h are respectively the input and output of G(s). Similarly, the 

Hoa-norm of an asymptotically stable and proper discrete-time transfer matrix 
G(z) is defined as 

''Gil ·- [G( jw)] _ llhll2 oa .- sup O"max e - sup -,,-,-, , 
wE[0,27r] llwll2=l W 2 

(1.3.27) 

where w and hare respectively the input and output of G(z). 
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Definition 1.3.7. (.C00-norm). The .C00-norm of a continuous-time transfer 
matrix G(s), which is not necessarily stable, is defined as 

IIGIIcoo := sup O'max[G(jw)]. 
wE(O,oo) 

(1.3.28) 

Similarly, the .C00-norm of a discrete-time transfer matrix G(z), which is not 
necessarily stable, is defined as 

IIGIIcoo := sup O'max[G(eiw)]. (1.3.29) 
wE[0,211'] 

Obviously, if G is stable, its .C00-norm coincides with its H 00-norm. IE:J 

Definition 1.3.8. ('y-Suboptimal Controller). Consider the given system 

~ of (1.3.1) and the controller ~cmp of (1.3.5). ~cmp is said to be an H 00 -y­
suboptimal controller, or in short a -y-suboptimal controller, for ~ if, when ~cmp 
is applied to ~. the resulting closed-loop is internally stable and the H 00-norm 
of the closed-loop transfer matrix is less than 'Y· IE] 

Definition 1.3.9. (Infimum -y*). Consider the given system~ of (1.3.1) and 
the controller ~cmp of (1.3.5). The infimum of the H 00-norm of the closed-loop 
transfer matrix Thw(~ x ~cmp) over all stabilizing controllers ~cmp is denoted 
by -y*, namely, 

-y* := inf { IIThw(~ X ~cmp)lloo I ~cmp internally stabilizes ~ } . (1.3.30) 

Obviously, -y* ~ 0. Occasionally, when it is clear in the context, we may also 
say that -y* is the infimum of the given system ~. IE:J 

Definition 1.3.10. (Hoo Optimal Controller). Consider the given system 
~ of (1.3.1) and the controller ~cmp of (1.3.5). ~cmp is said to be an Hoo 

optimal controller for ~if, when ~cmp is applied to~' the resulting closed-loop 
is internally stable and the H 00-norm of the closed-loop transfer matrix is equal 
to -y*. IE:J 

Definition 1.3.11. (Full Information Feedback Case). Consider the 

given system ~ of (1.3.1). The Hoo optimization problem for ~ is called a full 
information feedback case if 

y = (:) , i.e., C1 = ( ~) , D1 = ( ~) . (1.3.31) 

We will also call such a system ~ a full information feedback system. IE:J 
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Definition 1.3.12. (Full State Feedback Case). Consider the given system 
~of (1.3.1). The H00 optimization problem for~ is called a full state feedback 
case if y = x, i.e., C1 =I and D 1 = 0. We will also call such a system ~ a full 
state feedback system. l!2l 

Definition 1.3.13. (Regular Case). Consider the given system~ of (1.3.1). 
The H 00 optimization problem for ~ is said to be a regular case or a regular 
problem provided that: 

1. The following conditions are satisfied if~ is a continuous-time system, 

(a) D2 is of full column rank and ~P is free of imaginary invariant zeros; 

(b) D1 is of full row rank and ~Q is free of imaginary invariant zeros. 

2. The following conditions are satisfied if~ is a discrete-time system, 

(a) ~P is left invertible and is free of unit circle invariant zeros; 

(b) ~Q is right invertible and is free of unit circle invariant zeros. 

Also, we will call such a system ~ a regular system. We note that the charac­
terizations of the regular case for discrete-time systems precisely correspond to 
those for continuous-time systems under a bilinear mapping. This will be seen 
clearly in Chapters 3 and 5. l!2l 

Definition 1.3.14. (Singular Case). Consider the given system~ of (1.3.1). 
The H 00 optimization problem for ~ is said to be a singular case or a singular 
problem if it is not a regular one. We will occasionally call such a system ~ a 
singular system. l!2l 

1.4. Some Common Robust Control Problems 

There are many common robust control problems that can be converted into 
the standard H 00 optimization problem. Once a problem is translated into the 
standard one, it can be readily solved using the results of the coming chapters. 
For example, Figure 1.4.1 illustrates the robust stability problem for an unstruc­
turally perturbed system: Suppose that ~cmp is an Hoo ')'-suboptimal controller 
for the nominal system ~of the uncertain plant, i.e., IIThw(~ X ~cmp)lloo < 1'· 
Then, by the well-known Small-Gain Theorem, the overall closed-loop system 
in Figure 1.4.1 will remain stable for all possible perturbations of the plant, 
i.e., ~' with ll~lloo < 1h. Thus, by pushing ')' closer to ')'* of the nominal 
system, the overall system will be more robust with respect to the perturbation 
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I ~ I 
I I 

w h 
~ 

u y 

I ~cmp I 
I I 

Figure 1.4.1: Robust stability problem of unstructurally perturbed systems. 

~- Similarly, robust stabilization problems for systems with structural pertur­

bations such as additive perturbation and multiplicative perturbation can also 

be easily converted into a standard Hoo control problem. In what follows, we 
will show how to cast the following four common problems into the standard 

H00 optimization problem: 

• The mixed-sensitivity problem; 

• Maximization of complex stability radius; 

• Robust stabilization with additive perturbations; 

• Robust stabilization with multiplicative perturbations. 

1.4.1. The Mixed-sensitivity Problem 

The mix-sensitivity problem is associated with a widely used control system 
configuration as depicted in Figure 1.4.2. In the author's opinion, such a con­

figuration is definitely not a good structure to design a tracking control system, 

because it feeds only the error signal e into the controller ~F· As it will be 

seen later in Chapters 9 and 13, a controller structure, which utilizes both the 

reference r and the measurement y independently, will in general yield a much 

better performance. Anyhow, it is up to readers to make their own judgment. 

We note that ~m in Figure 1.4.2 represents the nominal model of a given 

plant. Let the transfer matrix of ~m be given as 

(1.4.1) 
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r + 

Figure 1.4.2: The configuration associated with the mix-sensitivity problem. 

with (Am, Bm) being stabilizable and (Am, Cm) being detectable. Let the trans­
fer matrix of :EF, which is the controller to be designed, be given as 

(1.4.2) 

and the minimal realizations of the weighting functions v' wl and w2 be 
respectively given as 

V(s) = Cv(sl- Av)- 1 Bv + Dv, 

and 

(1.4.3) 

(1.4.4) 

(1.4.5) 

We note that the choices of these weighting functions V, W1 and W2 are subject 
to the design specifications of the overall system. Then, the sensitivity function 
S and the complementary sensitivity function T are respectively defined as 

(1.4.6) 

It is simple to see that the sensitivity function S and the complementary sen­
sitivity function T are respectively the transfer matrices from r to e, and from 
r to u, if the disturbance w = 0. Clearly, a small S would yield a small e, 
i.e., a good tracking performance, while a small T would yield a small control 
u. Unfortunately, it is clear from the definitions of S and T that we can never 
make them both small simultaneously. In general, some kinds of trade-offs (by 
properly choosing weighting functions v' wl and w2) are always needed in 
practical situations. Next, we note that if r = 0, then the transfer matrices 
from w to h1 and from w to h2 are respectively given by -W1TV and W2SV. 
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The mixed-sensitivity problem is to find an internally stabilizing control law 
L:F such that the H00-norm of the closed-loop system from the disturbance w 

to the controlled output h = (h~, h~)', i.e., 

(1.4. 7) 

is minimized. Such a problem can be translated into a state-space setting 
as a special case of the standard H 00 optimization problem. The problem is 
equivalent to design an internally stabilizing control law 

for the following auxiliary system, 

where 

and 

{ 
X = A X + B u + E w, 

L:mix y = cl X + Du u + Dl w, 

h = c2 x + D2 u + D22 w, 

0 
0 

Awl 
0 

Cwl 
0 

0 l [ Bm l 0 0 
0 ' B= B ' 

Aw2 Bw2~m 

0 ] D _ [ Dw1 ] 
Cw2 ' 2 - Dw2Dm . 

(1.4.8) 

(1.4.9) 

(1.4.10) 

(1.4.11) 

(1.4.12) 

(1.4.13) 

such that when L:F is applied to L:mix, the H00-norm of the resulting closed-loop 
system from w to h is minimized. Obviously, depending on the choices of the 
weighting functions, the above problem can be either a regular or a singular one. 
All results for the standard H 00 optimization problem in the coming chapters 
can be utilized to solve this mixed-sensitivity problem. 
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1.4.2. Maximization of Complex Stability Radius 

We introduce in this subsection the problem of the maximization of complex 
stability radius for uncertain systems. Let us consider an uncertain linear time­
invariant system E~ characterized by 

x = Ax+ Bu + EtlCx, (1.4.14) 

where A E 1Rnxn, B E 1Rnxm, E E 1Rnxl and C E 1Rpxn are given constant 

matrices while tl expresses the uncertainty which is structured by the matrices 
E and C. Moreo.ver, we assume that (A, B) is stabilizable. For any stabilizing 
state feedback law 

u=Fx, (1.4.15) 

with F E Rmxn, the complex stability radius for E~ is defined as (see e.g., 

Hinrichsen and Pritchard [62]), 

'Yc(E~, F) := inf{ Ill I : tl E ctxp such that A+BF+EtlC is unstable}· 

(1.4.16) 
The supremum of the complex stability radii that can be achieved over the 
stabilizing linear state feedback law of the form (1.4.15) is defined as 

-y~(E~) =sup{ 'Yc(E~, F) : FE Rmxn and A+ BF is stable}· (1.4.17) 

At a first glance, it seems that the complex perturbation is not natural and 
should not play a role in robustness analysis. However, it turned out that 
the complex stability radius is important for two good reasons: First of all, 
it provides a lower bound for the real stability radius (defined as the complex 
stability radius but with the restriction that tl be a real matrix), and there 
are important special cases where the real and complex stability radii coincide. 
Moreover, there are elegant results for the complex stability radii while that is 
not the case for the real stability radii. Secondly, it turned out that the complex 
stability radii are equivalent to the real dynamic stability radii, i.e., tl is a real 
dynamic perturbation (see Hinrichsen and Pritchard [62] for further details and 

a survey of the literature). Following the result of [62], i.e., 

(1.4.18) 

where GF(s) = C(sl- A- BF)-1 E, we can show that the supremum of the 
complex stability radii is given by 

'Y~(E~) = ~*' (1.4.19) 
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'Ee 

u --0 y 
'Em 

Figure 1.4.3: Plant with additive perturbations. 

where "Y* is the infimum of the following standard state feedback H 00 optimiza­
tion problem, 

{ 
i; = A X + B u + E w, 

y= X 

h = C X + 0 U + 0 W. 

(1.4.20) 

Clearly, the above problem belongs to the singular case. The computation of 

"Y* and thus "Y;('Ec,.) can be done using algorithms given later in Chapter 6. 

1.4.3. Robust Stabilization with Additive Perturbations 

We consider the problem of robust stabilization for plants with additive per­
turbations. To be more specific, we consider a stabilization problem for an 
uncertain system described in Figure 1.4.3, in which 'Em is the nominal model 
of the given plant and 'Ee is the unknown perturbation. We assume that 'Em 
and :Em + :Ee have the same number of unstable poles. Let the transfer matrix 
of :Em be characterized by 

(1.4.21) 

with (Am, Bm) being stabilizable and (Am, Cm) being detectable. Given a 
scalar "Ya > 0, the problem of robust stabilization for the plant with additive 
perturbations is to find a controller of the form (1.3.5) such that when it is 

applied to the uncertain system of Figure 1.4.3, the resulting closed-loop system 

is internally stable for all possible perturbations 'Ee with their £ 00 -norm less 

than or equal to "'fa· 

Following the result of Vidyasagar [132] (see also [124]), we can show that 
the above problem is equivalent to find an Hoo "'(-suboptimal controller (with 

""( = 1ha) for the following auxiliary system, 

{ 
X = Am X + Bm U + 0 w, 

:Eadd : Y = Cm X + Dm u + I w, 

h = 0 X + I u + 0 w. 

(1.4.22) 
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Ee 

u G-
y 

Em 

Figure 1.4.4: Plant with multiplicative perturbations. 

It is straightforward to see that both subsystems characterized respectively by 

(Am, Bm, 0, I) and (Am, 0, Cm, I) are invertible. In fact, both subsystems share 
common invariant zeros, which coincide with the eigenvalues of Am. The results 
of Chapter 6 can be utilized to exactly compute the infimum 'Y* for Eadd without 
imposing any additional condition. The result of [124] requires Am to be free 
of eigenvalues on the imaginary axis. 

We note that 1/'Y* is corresponding to the largest possible £ 00-norm bound 
on Ee for which the uncertain system of Figure 1.4.3 can still be made asymp­
totically stable. 

1.4.4. Robust Stabilization with Multiplicative Perturbations 

In this subsection, we consider the problem of robust stabilization for plants 
with multiplicative perturbations, i.e., we consider a stabilization problem for 
an uncertain system described in Figure 1.4.4, in which Em is the nominal model 
of the given plant and Ee is the unknown perturbation. We assume that Em, 
and the uncertain system comprising Em and Ee as in Figure 1.4.4, have the 
same number of unstable poles. Let the transfer matrix of Em be characterized 
by 

(1.4.23) 

with (Am, Bm) being stabilizable and (Am, Cm) being detectable. Given a scalar 
'Ym > 0, the problem of robust stabilization for the plant with multiplicative 
perturbations is to find a controller of the form (1.3.5) such that when it is 
applied to the uncertain system of Figure 1.4.4, the resulting closed-loop system 
is internally stable for all possible perturbations Ee with their £ 00-norm less 
than or equal to 'Ym. 



1.5. Preview of Each Chapter 17 

Similarly, following the result of Vidyasagar [132) (see also [124)), we can 
show that the above problem is equivalent to find an Hoo ')'-suboptimal con­
troller (with 'Y = 1hm) for the following auxiliary system, 

{ 
X = Am X + Bm U + Bm W, 

:Emulti : Y = Cm X + Dm U + Dm W, 

h = 0 X + I u + 0 w. 

(1.4.24) 

Here we note that the above system always satisfies those conditions posed in 
Chapter 6. An exact computation of the infimum 'Y* for :Emulti is always feasible 
without imposing any additional condition. Again, 1h* is corresponding to 
the largest possible .C00-norm bound on :Ee for which the uncertain system of 
Figure 1.4.4 can still be made asymptotically stable. 

1.5. Preview of Each Chapter 

A preview of each chapter is given next. The book can naturally be divided into 
three parts. The first part consists of Chapters 1 to 5 and contains some prelim­
inary results and background materials. Chapter 2 recalls some linear system 
tools such as the Jordan and real Jordan canonical forms and several structural 
decompositions of linear systems such as the controllability structural decom­
position and the special coordinate basis. The latter has the distinct feature of 
explicitly displaying the finite and infinite zero structures of a given system. It 
plays a dominant role in the development of the whole book. Chapter 3 presents 
a comprehensive study on the structural mapping of bilinear and inverse bilin­
ear transformations. Chapter 4 recalls results on the existence conditions of H 00 

suboptimal controllers for both continuous- and discrete-time systems, which 
are to be used in the proofs of results developed in the second part of the book. 
Finally, Chapter 5 provides solutions to several types of discrete-time Riccati 
equations. Results in Chapters 3 and 5 are instrumental in the development of 
main results in discrete-time H 00 optimization problems. 

The second part of the book consists of Chapters 6 to 13 and is also the heart 
of the book. Chapter 6 deals with the computation of infimum in continuous­
time H00 optimization problems. For a fairly large class of singular problem 
in which the given system satisfies certain geometric conditions, we present a 
non-iterative procedure that computes its infimum exactly. For the case when 
the geometric conditions are not satisfied, we modify our algorithm to yield an 
iterative scheme for approximating this infimum based on an auxiliary reduced 
order regular system, which generally has a much smaller dynamical order than 
that of the original system. Chapter 7 deals with finding H 00 ')'-suboptimal 
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controllers for the state feedback case, and the full order and reduced order 
measurement feedback cases. We provide closed-form solutions to the H00 sub­
optimal control problem for the class of singular systems which satisfy the above 
mentioned geometric c_onditions. Here by closed-form solutions we mean solu­

tions which are explicitly parameterized in terms of 'Y and are obtained without 
explicitly requiring a value of 'Y· Hence, one can easily tune the parameter 'Y 

in order to obtain the desired level of disturbance attenuation. This method 
will be adapted to find "(-suboptimal control laws for general systems when the 
geometric conditions are not satisfied. Chapter 8 gives solutions to the gen­

eral H00 almost disturbance decoupling problem with either state feedback or 
measurement feedback and with internal stability for plants whose subsystems 
have invariant zeros on the imaginary axis of the complex plane. Some newly 
developed results on a so-called robust and perfect tracking problem are pre­
sented in Chapter 9. The problem is to design a family of appropriate control 
laws for a given plant and a given reference such that the resulting closed-loop 
system is asymptotically stable and the controlled output of the given plant 
is capable of tracking the reference arbitrarily fast from any initial condition 

in face of external disturbances. We will first derive a set of necessary and 
sufficient conditions under which robust and perfect tracking performance for 
a given continuous-time system can be achieved. Constructive algorithms will 
then be given to realize the required controllers. Similarly, Chapters 10 to 13 
focus on the discrete-time counterparts of Chapters 6 to 9, respectively. 

The last part of the book concerns with some real-life applications. Chap­
ter 14 studies a servo system design for a voice-coil-motor actuator of computer 
hard disk drives. The purpose of this chapter is to challenge the widely used 
PID structure with our newly developed robust and perfect tracking approach. 
It turns out that the robust and perfect tracking controller, which has a dy­

namical order of 1, beats the conventional PID one in every category examined. 

Chapter 15 deals with a case study on a piezoelectric actuator control system 
design using the H00 almost disturbance decoupling approach. Such a piezo­

electric actuator system has a potential application in forming a dual actuator 

system for the hard disk drives of the next generation. Chapter 16 presents 

another case study on a gyro-stabilized mirror targeting system design using 

the robust and perfect tracking approach. The gyro-stabilized system has some 
crucial military applications. Finally, we note that all these designs are car­
ried out with a clear understanding of the theories and the properties of the 
given systems. Simulation and real implementation results show that these 
applications turn out to be very satisfactory. 



Chapter 2 

Linear System Tools 

2.1. Introduction 

As WILL BE evident in the coming chapters, the finite and infinite zero struc­
tures as well as the invertibility structures of the given system play dominant 
roles in the computation of the infima and the solutions to both continuous­

time and discrete-time H00 optimization problems. Thus a good non-ambiguous 
understanding of linear system structures is essential for our study. In our opin­
ion, the best way to display all the structural properties of linear systems is to 
transform them into a so-called special coordinate basis (SCB) developed by 
Sannuti and Saberi [116] and Saberi and Sannuti [111]. However, quite often it 
happens that the original special coordinate basis of Sannuti and Saberi is not 
fine enough to characterize all the details of the properties of linear systems. In 
order to see all the fine points of a given system, we would have to further de­
compose certain subsystems of its SCB using some well-known canonical forms 

such as the Jordan canonical form and controllability structural decomposition. 

Keeping this in mind, we recall in this chapter the following results: 1) the 

Jordan and real Jordan canonical forms for a square constant matrix; 2) the 
controllability structural decomposition and block diagonal control canonical 

form for a constant matrix pair; and 3) the special coordinate basis of a lin­
ear time invariant system characterized by either a matrix triple or a matrix 

quadruple. These canonical forms and the special coordinate basis will form a 
transformer for linear systems. Once a system is touched by this transformer, 
all its structural properties become clear and transparent. 
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2.2. Jordan and Real Jordan Canonical Forms 

We recall in this section the Jordan canonical form and the real Jordan canonical 
form of a square constant matrix. We first have the following theorem. 

Theorem 2.2.1. Consider a constant matrix A E Rnxn. There exists a non­

singular transformation T E cnxn and an integer k such that 

(2.2.1) 

where Ji, i = 1, 2, · · ·, k, are some ni x ni Jordan blocks, i.e., 

1 

(2.2.2) 

Obviously, >.i E >.(A), i = 1, 2, · · ·, k, and E~=l ni = n. 

The result of the above theorem is very well-known. The realization of this 

Jordan canonical form in MATLAB can be found in Chen [14]. The following 
theorem is to find a nial Jordan canonical form. 

Theorem 2.2.2. Consider a constant matrix A E Rnxn. There exists a non­
singular transformation P E Rnxn and an integer k such that 

(2.2.3) 

where each block h i = 1, 2, · · ·, k, has the following form: if >.i E >.(A) is real, 

1 

(2.2.4) 

or if Ai = J.Li + jwi E >.(A) and xi = J.Li - jwi E >.(A) with Wi "I 0, 

(2.2.5) 

The above structure of p-l AP is called the real Jordan canonical form. l!l 
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The proof of the above theorem can be found in many texts (see e.g., Won­

ham [138]). The following is a constructive algorithm for obtaining the transfor­

mation P that will transform the given matrix A into the real Jordan canonical 

form. First, we compute a non-singular transformation T E 1Rnxn such that 

r-1 AT = blkdiag{ A1 , A2, · · ·, At}, (2.2.6) 

where sub-matrices A; E 1Rn' xn,, i = 1, 2, · · ·, f, have either a single or one 

repeated (if n; > 1) eigenvalue A;, if A; is real, or two or two repeated (if 

n; > 2) eigenvalues A; and 5.;, if A; is not real. Also, we have A; f: Aj, if 

i f: j. Note that such a transformation T can easily be obtained using some 

numerically very stable algorithms such as the real Schur decomposition. 

For each A; with its corresponding A; being a real number, we use the result 

of Theorem 2.2.1 to obtain a non-singular transformation S; = S; E 1Rn' xn; 

such that A; can be transformed into the Jordan canonical form. For each A; 

which has eigenvalues A; = J.L; + jw; and 5.; = J.L; - jw; with w; > 0, we follow 
the result of Fama and Matthews [51] to define a new (2n;) x (2n;) matrix, 

Z; := [ A~~~~~n, A; u:;:In,] . (2.2.7) 

It is simple to show that Z; has n; real eigenvalues at 0 and n; purely imaginary 

eigenvalues at ±j2w;. Then, we use the real Schur decomposition technique to 
find a non-singular transformationS? E 1R(2n;)x(2n;) such that 

(S?)- 1 Z;S? = [ ~0 ~x] , (2.2.8) 

where Z;o has all its eigenvalues at 0 while Zix has no eigenvalue at 0. Next, 

we utilize the result of Theorem 2.2.1 to obtain a non-singular transformation 
Sf E 1Rn' xn; such that 

(sf)-1 ziOsf = blkdiag{ JJ, JJ, J5, J5, · · ·, Jg•, Jg•}, 

where J0 , m = 1, 2, ···,a;, have the form, 

1m= [0 ln;"'-1] 
"O 0 0 . 

Let us partition 

[ s~ ~~.] [ s'·' s1,n;t x1.1 

S; :=S? ~ 
t,1 i,1 i,1 

82,1 s2,n;t x2.1 
i,l i,1 i,1 

8~,1 
?.,Ui 

s~,niui 
t,u i 

x~·1 
t,Ui 

82,1 
t,Ui 

s~,niui 
'l.,Ui 

x~·1 
l,Ui 

x~,niai 
t,O'i 

X~'ni"'i 
t,Ui 

(2.2.9) 

(2.2.10) 

**]' (2.2.11) 
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h s1,k s2,k x1,k d x2,k - 1 2 d k - 1 2 were i,m' i,m• i,man i,m,m- ',···,aian - ',···,nim,are 
ni x 1 column vectors. In fact, they are all real-valued. Next, define an ni x ni 
real-valued matrix, 

Finally, let 

(2.2.12) 

and P = TS E 1Rnxn_ It is now straightforward to show that p-1 AP is in the 
real Jordan canonical form as described in Theorem 2.2.2. The algorithm has 
been implemented in Chen [14]. 

2.3. Structural Decompositions of Matrix Pairs 

In this section, we will first recall the controllability structural decomposition 
(CSD) for a linear system characterized by a matrix pair (A, B), which was 
called a Brunovsky canonical form by many researchers in the literature (see 
e.g., [64]), as well as in the preliminary edition of this book [18]. However, it 
is noted that such a decomposition was actually first discovered by Luenberger 
[89] in 1967, which was three years earlier than the publication of Brunovsky's 
results (7] in 1970. As such, we rename such a canonical form the controllability 
structural decomposition, since it has a direct connection with the controllabil­
ity structure of (A, B). We will next introduce a so-called block diagonal control 
canonical form (BDCCF) for a controllable matrix pair (A, B). Both the CSD 
and BDCCF will be the keys in the derivations of some important results later 
in the book. The derivation of the former is well-known in the literature and 
its software realization can be found in Chen [14]. We will give an explicit 
constructing algorithm for the latter to find non-singular transformations, say 
Ts and Ti, such that T8-

1 ATs has a special block diagonal form and T8-
1 BTi 

has an upper block triangular form. Such special forms of A and B will play an 
important role in constructing solutions to the general H 00 almost disturbance 
decoupling problems later in this book. The existence of this block diagonal 
control canonical form was proved by Wonham [138]. 

We have the following theorems regarding the controllability structural de­
composition and the block diagonal control canonical form for a given matrix 
pair. 

Theorem 2.3.1. Consider a constant matrix pair (A, B) with A E 1Rnxn and 
B E 1Rnxm with B being of full rank. There exist nonsingular state and in-
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put transformations Ts and T; such that (A, B) := (rs-1 ATs, rs- 1 BT;) has the 

following form, 

Ao 0 0 0 0 0 0 
0 0 h,-1 0 0 0 0 

* * * ... * * 1 0 
(2.3.1) 

0 0 0 0 hm-1 0 0 

* * * ... * * 0 1 

where k; > 0, i = 1, · · ·, m, A 0 is of dimension n 0 := n- 2.:.:~ 1 k; and its eigen­

values are the uncontrollable modes of (A, B). Moreover, the set of integers, 

C := { n 0 , k1 , · · ·, km }, is called the controllability index of (A, B). ITJ 

Proof. See Luenberger [89]. The software realization of such a canonical form 

can be found in Chen [14]. ~ 

Theorem 2.3.2. Consider a constant matrix pair (A, B) with A E m,nxn and 

B E m,nxm and with (A, B) being completely controllable. Then there exist an 

integer k ~ m, a set of"' integers k1 , k2 , · · ·, k", and nonsingular transformations 

T 8 and T; such that 

A1 0 0 

JJ 
0 A2 0 

T 8-
1 ATs = 0 0 A3 

0 0 0 

(2.3.2) 

and 
B1 * * * * 
0 B2 * * * 

T8- 1 BT; = 0 0 B3 * * (2.3.3) 

0 0 0 B" * 
where *S represent some matrices of less interest, and A; and B;, i = 1, 2, · · ·, "'' 

have the following control canonical form, 

0 1 0 0 0 

0 0 1 0 0 

A;= ) B;= (2.3.4) 

0 0 0 1 0 
-ai i -ai -ai 1 

k; -ak;-1 k;-2 1 

for some scalars ai, a~, · · ·, ai.. Obviously, 2.:.:~= 1 k; = n. We call the above 

structure of A and B a block diagonal control canonical form. IT] 
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Proof. The existence of the block diagonal control canonical form was shown 
in [138]. In what follows, we will give an explicit constructing algorithm for 
realizing such a canonical form. First, we follow Theorem 2.2.2 to find a non­
singular transformation Q E Rnxn such that matrix A is transformed into a 
real Jordan canonical form, i.e., 

A = Q-1 AQ = blkdiag{ J~ . . . ]~1 J~ . . . J~2 • • • • • • J~ . . . ]""t} 
"1 ' ' "1 ' "2 ' ' "2 ' ' "t ' ' At ' 

(2.3.5) 

where Ai = J.Li + jwi E A(A) with Wi ~ 0, and also Ai1 # Ai2 , if i 1 # i 2 . 

Moreover, for each i E {1, 2, · · ·, f} and s = 1, 2, · · ·, ai, J)., E Rn'• xn;, has the 
following real Jordan form, 

1 

1 l ' 
f..Li 

(2.3.6) 

if wi = 0, or 

J!, = • [

A· 

(2.3.7) 

if wi > 0. For the sake of easy presentation later, we arrange the Jordan blocks 
in the way that nil ~ ni2 ~ · · · ~ niu;. Next, compute 

Btl B~l Bi'i 

Btul B~ITI B~l 

B~l B~1 B¥i_ 

iJ = Q-lB = B~IT2 B~IT2 B~2 (2.3.8) 

B}O't Bzut B''l;t 

It is straightforward to verify that the controllability of (A, B) implies: there 
exists a Bf1 with v E {1, 2, .. ·, m} such that (Jf,, Bf1) is completely control­
lable, which is equivalent to the last row of Bf1 being nonzero if Ai is real, or 



2.3. Structural Decompositions of Matrix Pairs 25 

at least one of the last two rows of Bf1 being nonzero if .X; is not real. Thus, it 

is simple to find a vector 

(2.3.9) 

and partition 

(2.3.10) 

such that ( Jl, , ..8~1 ) is completely controllable. Because of the special structure 

of the real Jordan form and the fact that ni1 :2': n;2 :2': · · · :2': n;u,, the eigenstruc­

tures associated with J{. with s > 1 are totally uncontrollable by ..81. Thus, 

it is straightforward to show that there exist nonsingular transformations r;1, 
i = 1, 2, · · ·, £, such that 

and 

JO"i 
A; 

(r;1)-1 

l [Jl A; 

r;1 = 

-1 

"'] 
Bi1 

Bf , -1 
Bi2 

-1 
Biu; 

JO"i l , 
A; 

(2.3.11) 

(2.3.12) 
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with {Jl;, .B!1) being completely controllable. This can be done by utilizing 
the special structure of the controllability structural decomposition (see Theo­
rem 2.3.1). Next, perform a permutation transformation P81 such that 

= blkdiag{ Jt, · · ·, Jt, J~1 , • • ·, Jf:, · · · · · ·, J~t, · · ·, Jf: }, (2.3.13) 

and 

[Ti1 r [lu 
0 ... 

~] r;l - t21 1 ... 
{Psl)-l 

r:1 B ~~~ 0 
0 ... 

-1 
En 

-2 
En 

-m 
En 

-1 
Ell 

-2 
Ell 

-m 
Ell 

0 
-2 

B12 B~ 

0 
-2 -m (2.3.14) = B1u1 E1u1 

0 

0 

Because Ai, i = 1, 2, · · ·, l, are distinct, the controllability of {Jl;, .B!1) implies 

that the pair 

(2.3.15) 
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is completely controllable. Hence, there exists a nonsingular transformation 

X 1 E ll kt x kt, where k1 = I:;= I nil, such that 

0 1 0 0 
0 0 1 0 

-1 -
X 1 A1X1 = A1 = (2.3.16) 

0 0 0 1 
-al 

kt 
-al 

kt-1 
-al 

kt-2 -a~ 

and 

X>'B, ~ B, ~ I! (2.3.17) 

Next, repeating the above procedure for the following pair 

-2 -m 
~12 ~12 

blkdiag{ J~ . . . jU1 • • • • • • J~ . . . jUt} 
1\}' ' AI ' ' 1\f' ' At ' 

(2.3.18) 

one is able to separate (A2,~2). Keep repeating the same procedure for l'i.- 2 

more steps, where l'i. = max{a1 ,a2 ,···,at}, one is able to obtain the block 

diagonal control canonical form as in Theorem 2.3.2. This completes the proof 

of the theorem. The result has been implemented in Chen (14]. ~ 

We illustrate the above results in the following example. 

Example 2.3.1. Consider a matrix pair (A,~) characterized by 

1 1 0 0 0 0 0 0 1 8 
0 1 0 0 0 0 0 0 2 7 
0 0 1 1 0 0 0 0 3 6 

A= 
0 0 0 1 0 0 0 0 

~= 
4 5 

(2.3.19) 
0 0 0 0 0 1 1 0 ' 5 4 ' 
0 0 0 0 -1 0 0 1 6 3 
0 0 0 0 0 0 0 1 7 2 
0 0 0 0 0 0 -1 0 8 1 
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where matrix A is already in the form of the real Jordan canonical form with 

>.1 = 1, cr1 = 2 and >.2 = j, cr2 = 1. Following the proof of Theorem 2.3.2, we 
obtain 

0.1508 0.1508 0.3015 0.3015 0.1508 0.1508 -0.4002 1.8189 
-0.3015 0.3015 -0.6030 0.6030 -0.3015 0.3015 -1.4188 1.4188 

0.1508 0.4523 0.3015 0.9045 0.1508 0.4523 0.3274 -1.1641 

Ts= 
-0.6030 0.6030 -1.2061 1.2061 -0.6030 0.6030 0.8367 -0.8367 
-0.1508 3.4674 -4.5227 0 0.4523 0.7538 0 0 , 

-1.9598 2.7136 0.9045 -1.2061 -1.3568 0.9045 0 0 
1.2061 -1.3568 0.3015 -0.3015 -0.9045 1.0553 0 0 

-1.0553 3.3166 -4.5227 4.5227 -3.4674 1.2061 0 0 

Ti = [ 0.150~ 0.408~ ], 

and 

0 1 0 0 0 0 0 0 0 -1.4368 
0 0 1 0 0 0 0 0 0 -0.2982 
0 0 0 1 0 0 0 0 0 0.5207 

T; 1AT8 = 
0 0 0 0 1 0 0 0 T8-

1BTi= 0 1.3969 
0 0 0 0 0 1 0 0 

, 
0 2.8085 

-1 2 -3 4 -3 2 0 0 1 4.6900 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 -1 2 0 1 

This verifies the results of Theorem 2.3.2. ~ 

2.4. Special Coordinate Basis 

Let us consider a general proper linear time-invariant (LTI) system ~., which 
could be of either continuous-time or discrete-time, characterized by a matrix 
quadruple (A., B., C., D.) or in the state space form, 

{ 6(x) = A. x + B. u, 
~. : 

y =c. X+ D. u, 
(2.4.1) 

where 6(x) = x(t), if ~* is a continuous-time system, or 6(x) = x(k + 1), if 
~* is a discrete-time system. Similarly, x E Rn, u E Rm and y E :JRP are 

the state, the input and the output of~ •. They represent x(t), u(t) and y(t), 
respectively, if the given system is of continuous-time, or represent x(k), u(k) 
and y(k), respectively, if E. is of discrete-time. Without loss of any generality, 

we assume that both [ B~ D~ 1 and [C. D. 1 are of full rank. The transfer 
function of~. is then given by 

(2.4.2) 
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where <; = s, the Laplace transform operator, if :E* is of continuous-time, or 

<; = z, the z-transform operator, if :E* is of discrete-time. It is simple to verify 

that there exist nonsingular transformations U and V such that 

UD V = [Imo OJ * 0 0 ) (2.4.3) 

where mo is the rank of matrix D*. In fact, U can be chosen as an orthogonal 

matrix. This fact will be used later in the computation of 'Y* throughout this 
book. Hence hereafter, without loss of generality, it is assumed that the matrix 

D* has the form given on the right hand side of (2.4.3). One can now rewrite 

system :E* of (2.4.1) as, 

{ 

J(x) 

(~~) 

B*,t] ( ~~) ' 

~ ] ( ~~)' 
(2.4.4) 

where the matrices B*,o' B*,1 , C*,o and C*, 1 have appropriate dimensions. We 
have the following theorem. 

Theorem 2.4.1 (SCB). Given the linear system :E* of (2.4.1), there exist 

1. Coordinate free nonnegative integers n;;, n~, nt, nb, nc, nd, md :S m-mo 

and qi, i = 1, · · · , md, and 

2. Non-singular state, output and input transformations r Sl r 0 and ri which 
take the given I:* into a special coordinate basis that displays explicitly 

both the finite and infinite zero structures of :E*. 

The special coordinate basis is described by the following set of equations: 

(2.4.5) 

(2.4.6) 

(2.4. 7) 

and 

(2.4.8) 
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and for each i = 1, · · ·, md, 

(2.4.9) 

(2.4.10) 

(2.4.11) 

(2.4.13) 

6(xi) = Aq; Xi+ LiOYO + LidYd + Bq; [ui + EiaXa + EibXb + EicXc + ~ EijXjl , 
J=1 

(2.4.14) 

Yi = Cq,xi, Yd = Cdxd. (2.4.15) 

Here the states x;;, x~, x~, Xb, Xc and xd are respectively of dimensions n;;, n~, 

n~, nb, nc and nd = I:~1 Qi, while Xi is of dimension Qi for each i = 1, · · ·, md. 

The control vectors uo, ud and Uc are respectively of dimensions mo, md and 

me = m- mo- md while the output vectors Yo, Yd and Yb are respectively of 

dimensions Po= mo, Pd = md and Pb = p- Po- Pd· The matrices Aq,, Bq, and 
Cq, have the following form: 

Aq, = [ ~ Iq0-1 ] , Bq, = [ ~ ] , Cq, = [1, 0, · · ·, 0]. (2.4.16) 

Assuming that Xi, i = 1, 2, · · ·, md, are arranged such that Qi ~ Qi+l, the matrix 
Lid has the particular form 

Lid= [Lil Li2 · · · Lii-1 0 · · · OJ. (2.4.17) 

The last row of each Lid is identically zero. Moreover, 

1. If I:. is a continuous-time system, then 

(2.4.18) 

2. If I:. is a discrete-time system, then 

(2.4.19) 

Also, the pair (Acc,Bc) is controllable and the pair (Abb,Cb) is observable. l!l 
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Proof. For strictly proper systems, using a modified structural algorithm of 
Silverman [122], an explicit procedure of constructing the above special coordi­
nate basis is given in [116]. The required modifications for non-strictly proper 
systems are given in [111]. 

Here in Theorem 2.4.1 by another change of basis, the variable Xa is further 
decomposed into x;, x~ and xt. For continuous-time systems, one can use the 
real Schur algorithm to obtain such a decomposition. For discrete-time systems, 
the algorithm of Chen [13] can be used. 

The software toolboxes that realize the continuous-time SCB can be found 
in LAS by Chen [11] or in MATLAB by Lin [79]. The realization of this unified 
SCB can be found in Chen [14]. A numerical example will be given at the end 
of this section to illustrate the procedure of constructing the SCB and all its 
associated properties. ~ 

We can rewrite the special coordinate basis of the quadruple (A*, B*, C*, D*) 
given by Theorem 2.4.1 in a more compact form, 

- -1 
A* = r. (A*- B*,oC*,o)r. 

A;a 0 0 L-;;bcb 
0 A~a 0 L~bcb 
0 0 At a L~bcb 
0 0 0 Abb 

BeE -:a BcE~a Be Eta LcbCb 

BdE:ia BdE~a BdEda BdEdb 

- -1 
B*=f8 [B*,o B*,I]f;= 

[c ·] [Coa - -1 *,0 c* = ro r. = 0 
C*,1 0 

Baa 0 

B8a 0 

B(ja 

Bob 
Boc 
Bod 

ega 

0 

0 

0 

0 

0 

Bd 

eta 
0 

0 

_ _ 1 [Im~o 0~ 0o0] D* = f 0 D*f; = 

0 L-;;dcd 
0 L~dcd 
0 L~dcd , (2.4.20) 
0 Lbdcd 

Ace LcdCd 
BdEdc Add 

0 

0 

(2.4.21) 
0 

0 

Be 
0 

Cob Coc 

0 0 

cb 0 

Cod] 
~d , (2.4.22) 

(2.4.23) 

A block diagram of the special coordinate basis of Theorem 2.4.1 is given 
in Figure 2.4.1. In this figure, a signal given by a double-edged arrow is some 
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~ 
uo-+()- Yo Output 

Note that a signal given by a double-edged arrow with a solid dot is some linear 
combination of all the states, whereas a signal given by a simple double-edged 
arrow is some linear combination of only output Yd· Also, matrices Boa, Lab, 
Lad and Eca are to be defined in Property 2.4.1. 

Figure 2.4;1: A block diagram representation of the special coordinate basis. 
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linear combination of outputs y;, i = 0 to md , where as a signal given by 

the double-edged arrow with a solid dot is some linear combination of all the 

states. Also, the block [> is either an integrator if~. is of continuous-time or 

a backward shifting operator if~. is of discrete-time. 

We note the following intuitive points regarding the special coordinate basis. 

1. The variable u; controls the output Yi through a stack of q; integrators (or 

backward shifting operators), while x; is the state associated with those 

integrators (or backward shifting operators) between u; and Yi· More­

over, (Aq;, Bq,) and (Aq;, Cq,) respectively form controllable and observ­

able pairs. This implies that all the states x; are both controllable and 

observable. 

2. The output Yb and the state Xb are not directly influenced by any inputs, 

however they could be indirectly controlled through the output Yd· More­

over, (Abb, Cb) forms an observable pair. This implies that the state Xb is 

observable. 

3. The state Xc is directly controlled by the input uc, but it does not directly 

affect any output. Moreover, (Ace, Be) forms a controllable pair. This 

implies that the state Xc is controllable. 

4. The state Xa is neither directly controlled by any input nor does it directly 

affect any output. 

In what follows, we state some important properties of the above special 

coordinate basis which are pertinent to our present work and will be used 

throughout this book. The proofs of these properties will be given in the next 

section. 

Property 2.4.1. The given system~. is observable (detectable) if and only if 

the pair (Aobs,Cobs) is observable (detectable), where 

Aobs := 0 ] C [ Coa 
Ace ' obs := Eda (2.4.24) 

and where 

[A~, 0 
0 l Aaa := ~ A~a 0 , Coa := [GOa_ ega eta], 

0 A~a 
(2.4.25) 

Eda := [Eia E~a EJaJ, Eca := [E,; E~a EtJ. (2.4.26) 
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Also, define 

(2.4.27) 

(2.4.28) 

Similarly, L:* is controllable (stabilizable) if and only if the pair (Aeon, Bcon) is 
controllable ( stabilizable). lfl 

The invariant zeros of a system L:* characterized by (A*, B*, C*, D*) can be 
defined via the Smith canonical form of the (Rosenbrock) system matrix [107] 
of L:*, 

(2.4.29) 

We have the following definition for the invariant zeros (see also [91]). 

Definition 2.4.1. (Invariant Zeros). A complex scalar a: E C is said to be 
an invariant zero of L:* if 

rank {PE. (a:)}< n + normrank {H*(()}, (2.4.30) 

where normrank{H*(()} denotes the normal rank of H*((), which is defined as 
its rank over the field of rational functions of ( with real coefficients. I!2J 

The special coordinate basis of Theorem 2.4.1 shows explicitly the invariant 
zeros and the normal rank of L:*. To be more specific, we have the following 
properties. 

Property 2.4.2. 

1. The normal rank of H*(() is equal to mo + md. 

2. Invariant zeros of L:* are the eigenvalues of Aaa, which are the unions of 
the eigenvalues of A;;-a, A~a and Ata· Moreover, the given system L:* is of 
minimum phase if and only if Aaa has only stable eigenvalues, marginal 
minimum phase if and only if Aaa has no unstable eigenvalue but has 
at least one marginally stable eigenvalue, and nonminimum phase if and 
only if Aaa has at least one unstable eigenvalue. 
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In order to display various multiplicities of invariant zeros, let Xa be a 

nonsingular transformation matrix such that Aaa can be transformed into a 

Jordan canonical form (see Theorem 2.2.1), i.e., 

(2.4.31) 

where J;, i = 1, 2, · · ·, k, are some n; x n; Jordan blocks: 

J d. { } [0 In -l] i = 1ag a;, a;, · · · , a; + 0 0 . (2.4.32) 

For any given a E ,\(Aaa), let there be To: Jordan blocks of Aaa associated with 

a. Let no:,l, no:, 2 , · · ·, no:,Ta be the dimensions of the corresponding Jordan 

blocks. Then we say a is an invariant zero of ~. with multiplicity structure 

S~(~.) (see also [109]), 

(2.4.33) 

The geometric multiplicity of a is then simply given by To:, and the algebraic 

multiplicity of a is given by 2::~~ 1 no:,i· Here we should note that the invariant 

zeros together with their structures of ~. are related to the structural invariant 

indices list I 1 (~.) of Morse [94]. 
The special coordinate basis can also reveal the infinite zero structure of ~ •. 

We note that the infinite zero structure of~. can be either defined in association 

with root-locus theory or as Smith-McMillan zeros of the transfer function at 

infinity. For the sake of simplicity, we only consider the infinite zeros from 

the point of view of Smith-McMillan theory here. To define the zero structure 

of H.(<;) at infinity, one can use the familiar Smith-McMillan description of 

the zero structure at finite frequencies of a general not necessarily square but 

strictly proper transfer function matrix H.(<;). Namely, a rational matrix H.(<;) 

possesses an infinite zero of order k when H. (1/ z) has a finite zero of precisely 

that order at z = 0 (see [42], [104], [107] and [131]). The number of zeros 

at infinity together with their orders indeed defines an infinite zero structure. 

Owens [97] related the orders of the infinite zeros of the root-loci of a square 

system with a nonsingular transfer function matrix to C* structural invariant 

indices list I 4 of Morse [94]. This connection reveals that even for general 

not necessarily strictly proper systems, the structure at infinity is in fact the 

topology of inherent integrations between the input and the output variables. 

The special coordinate basis of Theorem 2.4.1 explicitly shows this topology of 

inherent integrations. The following property pinpoints this. 
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Property 2.4.3. ~. has m0 = rank (D.) infinite zeros of order 0. The infinite 
zero structure (of order greater than 0) of~. is given by 

(2.4.34) 

That is, each qi corresponds to an infinite zero of~. of order qi. Note that for 
a single-input-single-output system ~.' we have s~ (~.) { ql}' where q1 is 
the relative degree of ~ •. 

The special coordinate basis can also exhibit the invertibility structure of a 
given system ~ •. The formal definitions of right invertibility and left invertibil­
ity of a linear system can be found in [95). Basically, for the usual case when 
[ B: D:) and [C. D.] are of maximal rank, the system ~. or equivalently 
H.(c;) is said to be left invertible if there exists a rational matrix function, say 
L.(c;), such that 

(2.4.35) 

~. or H. ( c;) is said to be right invertible if there exists a rational matrix function, 
say R. ( c;), such that 

(2.4.36) 

~. is invertible if it is both left and right invertible, and ~. is degenerate if it 
is neither left nor right invertible. 

Property 2.4.4. The given system ~. is right invertible if and only if Xb (and 
hence Yb) are non-existent, left invertible if and only if Xc (and hence uc) are 
non-existent, and invertible if and only if both Xb and Xc are non-existent. 
Moreover, ~. is degenerate if and only if both Xb and Xc are present. ~ 

The special coordinate basis can also be modified to obtain the structural 
invariant indices lists Iz and I3 of Morse [94) of the given system 2:.. In 
order to display Iz(~.), we let Xc and Xi be nonsingular matrices such that 
the controllable pair (Ace, Be) is transformed into the controllability structural 
decomposition (see Theorem 2.3.1), i.e., 

0 le1-1 0 0 0 0 

* * ... * * 1 0 

X,;- 1 AccXc = X,;- 1BcXi = 
0 0 0 ltmc-1 0 0 

* * ... * * 0 1 
(2.4.37) 

where *S denote constant scalars or row vectors. Then we have 

(2.4.38) 
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which is also called the controllability index of (Ace, Be)· Similarly, we have 

(2.4.39) 

where {I-Ll,···, P,pb} is the controllability index ofthe controllable pair (A~b' q). 

By now it is clear that the special coordinate basis decomposes the state­

space into several distinct parts. In fact, the state-space X is decomposed as 

(2.4.40) 

Here xa- is related to the stable invariant zeros, i.e., the eigenvalues of A~a are 

the stable invariant zeros of~ •. Similarly, X~ and x: are respectively related to 

the invariant zeros of~. located in the marginally stable and unstable regions. 

On the other hand, Xb is related to the right invertibility, i.e., the system is 

right invertible if and only if Xb = {0}, while Xc is related to left invertibility, 

i.e., the system is left invertible if and only if Xc = {0}. Finally, Xd is related 

to zeros of ~. at infinity. 

There are interconnections between the special coordinate basis and various 

invariant geometric subspaces. To show these interconnections, we introduce 

the following geometric subspaces: 

Definition 2.4.2. (Geometric Subspaces vx and sx). The weakly un­

observable subspaces of ~., vx, and the strongly controllable subs paces of ~., 

sx, are defined as follows: 

1. vx(~.) is the maximal subspace oflR.n which is (A.+B.F.)-invariant and 

contained in Ker (C. +D.F.) such that the eigenvalues of (A. +B.F.)IVx 
are contained in C x ~ C for some constant matrix F •. 

2. sx(~.) is the minimal (A.+ K.C.)-invariant subspace of lR.n containing 

Im (B. + K.D.) such that the eigenvalues of the map which is induced 

by (A. + K.C.) on the factor space lR.n ;sx are contained in ex ~ C for 

some constant matrix K •. 

Moreover, we let v-=vx and s-=SX, if Cx=c- u C0 ; v+=vx and s+=SX, 

if C x = C +; V0 = vx and S0 = sx, if C x = C 0 U C 0 ; V® = vx and S® = sx, if 

Cx=C®; and finally V*=Vx and S*=SX, if ex= C. 1m 

Various components of the state vector of the special coordinate basis have 

the following geometrical interpretations. 
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if :E* is of continuous-time, 

if :E* is of discrete-time. 

if :E* is of continuous-time, 

if :E* is of discrete-time. 

3. xa- EB X~ EB x: EB Xc spans V* (I:*). 

+ { s-(:E*), if I;* is of continuous-time, 
4. Xa EB Xc EB Xd spans S0 (~*), ~ if :E* is of discrete-time. 

{ s+ (:E*), if I;* is of continuous-time, 
5. Xa- EB X~ EB Xc EB Xd spans 

S®(I;*), if :E* is of discrete-time. 

Finally, for future development on deriving solvability conditions for H 00 

almost disturbance decoupling problems, we introduce two more subspaces of 
:E*. The original definitions of these subspaces were given by Scherer [118,119]. 

Definition 2.4.3. (Geometric Subspaces V>. and S>.)· For any .A E C, we 
define 

and 

S>.(:E*) := { ( E en 13 wE cn+m : ( ~) = [A*~ .AI ~:] w}. (2.4.42) 

V>.(:E*) and S>.(:E*) are associated with the so-called state zero directions of :E* 
if .A is an invariant zero of :E*. f!2J 

These subspaces S>.(:E*) and V>,(:E*) can also be easily obtained using the 
special coordinate basis. We have the following new property of the special 
coordinate basis. 

Property 2.4.6. 

{ [
.AI- Aaa 

s,(E,) =1m r, ~ 

where 

0 
Yb>. 

0 
0 

(2.4.43) 

(2.4.44) 
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and where Kb is any appropriately dimensional matrix subject to the constraint 

that Abb + KbCb has no eigenvalue at A. We note that such a Kb always exists 

as (Abb, Cb) is completely observable. 

(2.4.45) 

where Xa.x is a matrix whose columns form a basis for the subspace, 

(2.4.46) 

and 
(2.4.47) 

with Fe being any appropriately dimensional matrix subject to the constraint 

that Ace + BcFc has no eigenvalue at A. Again, we note that the existence of 

such an Fe is guaranteed by the controllability of (Ace, Be)· ~ 

Clearly, if A¢ .\(Aaa), then we have 

(2.4.48) 

and 
(2.4.49) 

Next, we would like to note that the subspaces vx(I;.) and sx(I;.) are 

dual in the sense that vx(I;Z) = sx(I;.)l., where I;Z is characterized by the 

quadruple (A~, C~, B:, n:). Also, S.x(I:.) = V::x,(I:Z)J.. 

We illustrate the procedure for constructing the special coordinate basis and 

all its associated properties in the following numerical example. 

Example 2.4.1. Consider a linear time-invariant system I;* characterized by 

where 

and 

{ 
J(x) = A. x + B. u, 

y = c* x +D. u, 
(2.4.50) 

(2.4.51) 

(2.4.52) 

The procedure for constructing the special coordinate basis of I:* proceeds as 

follows: 
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Step 1. Differentiating (shifting) the output of the given system. It involves the 

following sub-steps. 

1. Since D. = 0, we have 

cS(y) = C.cS(x) = c.A.x + C.B.u = [ -2 -1 0 1] X+ 0. u. 

2. Since C.B. = 0, we compute 

c52(y)=C.A;x+C.A.B.u=[1 -1 -3 1]x+O·u, 

where J?(·) = c5(c5(·)). 

3. Since C.A.B. = 0, we continue on computing 

c53 (y)=C.A~x+C.A;B.=-[8 10 12 17]x-6·u, 

where c53 (-) = c5(c5(c5(·))). Step 1 stops here as C.A;B. f. 0. 

Step 2. Constructing a preliminary state transformation. Let X0 be an appropri­

ately dimensional matrix such that 

T = [c~~.] , 
c.A; 

(2.4.53) 

is nonsingular. Then, define a new set of state variables x, 

x= (;:) :=Tx= [c~~.] x= (2:) · 
x4 c.A; c52(y) 

(2.4.54) 

It is simple to verify that T with X 0 = [ 1 0 0 0] is a nonsingular 

matrix. Furthermore, 

J:(-) 8- - 8_ 5_ 
u X1 = X1 + X2 + 3X3 - 3X4 + U, 

cS(x2) = x3, 

cS(x3) = x4, 

cS(x4) = -12x1 - 9x2 - 21x3 + 1ox4 - 6u. 

(2.4.55) 

(2.4.56) 

(2.4.57) 

(2.4.58) 

(2.4.59) 
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Substituting this into (2.4.55), we obtain 

'(v ) v L 1L 1 '(v ) u X1 = -4Xl - -X2 - -X3 - -u X4 . 
2 6 6 

(2.4.60) 

We have got rid of u in J(xl). Unfortunately, we have also introduced an 
additional 6(x4 ) in (2.4.60). 

Step 4. Eliminating J(x4 ) in J(xl). Define a new variable x1 as follows, 

(2.4.61) 

We have 

(2.4.62) 

and 

(2.4.63) 

Step 5. Eliminating x3 and x4 in 6(x1). This step involves two sub-steps. 

1. Letting 

(2.4.64) 

we have 

(2.4.65) 

and 

(2.4.66) 

2. Letting 

(2.4.67) 

we have 

(2.4.68) 

and 

(2.4.69) 

Step 6. Forming the nonsingular state, output and input transformations. Let 

(2.4. 70) 

or equivalently let 

(2.4.71) 
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with 

r.=m 
9/2 -2/3 

Tl [- ~ 
0 0 

~Jr 1 0 3 -2 
(2.4.72) 

0 1 -1 0 
0 0 -1 -3 

Also, let 
1 

u = riu = -6u, y = foii = 1· y. (2.4.73) 

Finally, we o~tain the dynamic equations of the transformed system, 

-'(- ) 4- 35 -
u X1 =- X1 + 2X2, 

8(x2) = X3, ii = x2, 

8(x3) = x4, 
8(x4) = -72xl + 315x2- 75x3 + 22x4 + u. 

(2.4.74) 

(2.4. 75) 

(2.4.76) 

(2.4. 77) 

The above structure is now in the standard form of the special coordinate 

basis. x1 is associated with Xa and x2, x3 and X4 are associated with Xd. 

Both Xb and Xc are non-existent for the given ~*. 

Let us now examine the properties of I;*. Following Properties 2.4.1 to 2.4.6 

of the special coordinate basis, it is simple to verify that ~* is controllable and 

observable, and has an invariant zero at -4 as well as an infinite zero (relative 

degree) of order 3. It is obvious that the given system is invertible as both Xc 

and Xb are non-existent. 

The geometric subspaces V,\ (~*) and S >. (~*) can be obtained as follows: for 

A= -4, 

(2.4. 78) 

(2.4. 79) 

and for A:/; -4, 

(2.4.80) 

The geometric subspaces vx(~*) and sx(~*) of~* can also be easily computed: 
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1. If 1:. is a continuous-time system, then 

(2.4.81) 

and 

s- (~,) ~ S'(E,) = Im { l! ~ m } , s+(E,) ~ R'. (2.4.82) 

2. If 1:. is a discrete-time system, then 

v•(E.) ~ V'(~.) ~ Im { m}, V0 (~.) = {0}, (2.4.83) 

and 

s•(~.) ~ S'(~.) = Im { l~ 2 27]} 2 16 0 - 4 
3 27 , s (I:.) - 1R 0 

9 70 

(2.4.84) 

Here we would like to note that the computation of the special coordi­

nate basis for a multiple-input-multiple-output system is of course much more 

complicated than that for a single-input-single-output system, but the idea is 

basically the same. 

Finally, we conclude this section by summarizing in a graphical form in Fig­

ure 2.4.2 some major properties of the tools of linear systems, which combines 

the mechanisms of the special coordinate basis, the Jordan canonical form and 

the controllability structural decomposition (CSD). Such tools has been used 

in the literature to solve many system and control problems such as the squar­

ing down and decoupling of linear systems (see e.g., Sannuti and Saberi [116]), 

linear system factorizations (see e.g., Chen et al. [35], and Lin et al. [85]), 

blocking zeros and strong stabilizability (see e.g., Chen et al. [36]), zero place­

ments (see e.g., Chen and Zheng [41]), loop transfer recovery (see e.g., Chen 

[12], Chen and Chen [20], and Saberi et al. [110]), H2 optimal control (see e.g., 

Chen et al. [37,39], and Saberi et al. [114]), disturbance decoupling with static 

measurement feedback (see e.g., Chen [16] and Chen et al. [27]), and control 

with saturations (see e.g., Lin [80,82]), to name a few. These tools will be used 

intensively throughout this book to solve problems related to H00 control. 
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Figure 2.4.2: Tools and structural properties of linear time-invariant systems. 
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2.5. Proofs of Properties of Special Coordinate Basis 

In this section, we provide detailed proofs for all the properties of the special 

coordinate basis listed in the previous section. Somehow, these proofs were 

missing in the original work of Sannuti and Saberi [116]. We would like to 

note that although some of the properties of the special coordinate basis, e.g., 

the controllability and observability, are quite obvious, some of them, e.g., the 

interconnections between the geometric subspaces and the subsystems of the 

special coordinate basis, are not transparent at all to general readers. The 

results of this section were reported in Chen [17]. It is to give rigorous proofs 

to all these properties. 

We recall the following two lemmas whose results are quite well-known in 

the literature. The first lemma is about the effects of state feedback laws. 

Lemma 2.5.1. Consider a given system~. characterized by a constant matrix 

quadruple (A., B., C., D.) or in the state space form of (2.4.1). Also, consider 
a constant state feedback gain matrix F. E Rmxn. Then, ~*F as characterized 

by the quadruple (A. +B.F.,B.,C. +D.F.,D.) has the following properties: 

1. ~*F is a controllable (stabilizable) system if and only if~. is a controllable 

(stabilizable) system; 

2. The normal rank of ~*F is equal to that of ~.; 

3. The invariant zero structure of ~*F is the same as that of ~.; 

4. The infinite zero structure of 'E.F is the same as that of E.; 

5. E.F is (left- or right- or non-) invertible if and only if ~. is (left- or right­

or non-) invertible; 

6. vx(~*F) = vx(~.) and sx(~*F) = SX(~.); and 

7. V.~(~*F) = V>.(~.) and S>.(~*F) = S>.(~.). 

Proof. Item 1 is obvious. Items 3, 4 and 5 are well-known as all the lists of 

Morse, i.e., I 1 to I 4 , are invariant under any state feedback laws. Furthermore, 

Items 2 and 5 can be seen from the following simple manipulations: 

H.F(c;) := (C.+ D.F.)(c;I- A. - B.F.)-1 B.+ D. 

= (C.+ D.F.)(c;I- A.)-1[!- B.F.(c;I- A.)-1t 1 B.+ D. 

= (C.+ D.F.)(c;I- A.)-1 B.[I- F.(c;I- A.)-1 B.t1 +D. 

= [C.(d- A.)- 1 B.+ D.][I- F.(c;I- A.)- 1 B.]-1 

= H.(c;)[I- F.(c;I- A.)-1 B.t1 • (2.5.1) 
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Since [I -F.(r;I -A.)-1 B.)-1 is well-defined almost everywhere on the complex 
plane, the results of Items 2 and 5 follow. 

For Item 6, it is obvious from the definition of vx, it is invariant under 

any state feedback laws. Next, for any subspace S that satisfies the following 

conditions: 

(A. + K.C.)S ~ S, 

Im (B. + K.D.) ~ S, 

(2.5.2) 

(2.5.3) 

we have 

(A.+K.C.+B.F.+K.D.F.)S = (A.+K.C.)S+(B.+K.D.)F.S ~ S. 

Thus, sx is invariant under any state feedback laws as well. 

Let us now prove Item 7. Recalling the definition of VA, we have 

Then, for any ( E VA(~.F), there exist an wE em such that 

O = [A. + B. F. - AI B. ] ( ( ) = [A. - AI B. ] [ I 0] ( ( ) , 
C. + D.F. D. w C. D. F. I w 

or 

O = [A*- AI B.] ( ~), 
C. D. w 

where w =F.(+ w. Thus, (EVA(~.) and hence VA(~.F) ~VA(~.). Similarly, 
one can show that VA(~.)~ VA(~.F), and hence VA(~.)= VA(~.F)· The result 
that SA(~.F) =SA(~.) can be shown using the similar arguments. 1!1 

The following lemma is about the effects of output injection laws. 

Lemma 2.5.2. Consider a given system ~. characterized by a constant matrix 

quadruple (A., B., c., D.) or in the state space form of (2.4.1). Also, consider a 
constant output injection gain matrix K. E Rnxp. Then, ~*K as characterized 

by the quadruple (A. +K.C., B. +K.D., C., D.) has the following properties: 

1. :E*K is an observable (detectable) system if and only if~. is an observable 
(detectable) system; 

2. The normal rank of ~.K is equal to that of~.; 

3. The invariant zero structure of ~*K is the same as that of ~.; 
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4. The infinite zero structure of :E.K is the same as that of :E.; 

5. :E.K is (left- or right- or non-) invertible if and only if :E. is (left- or right­
or non-) invertible; 

6. vx(:E.K) = vx(:E.) and SX(:E.K) = SX(:E.); and 

7. V>.(:E.K) = V>.(:E.) and S>.(:E.K) = S>.(:E.). 

Proof. It is the dual version of Lemma 2.5.1. 

Now, we are ready to prove the properties of the special coordinate basis. 
Without loss of any generality but for simplicity of presentation, we assume 
throughout the rest of this section that the given system :E. has already been 

transformed into the special coordinate basis of Theorem 2.4.1 or into the com­
pact form of (2.4.20) to (2.4.23), i.e., 

0 

0 

[Bo, 0 

~l B.= [B.,o B J = Bob 0 
•,1 B 0 Oc 

Bod Bd 
and 

[c ] [c,, Cob Coc c.,] [Imo 0 0] c.= •,O = 0 0 0 cd , D.= ~ 0 0 . c.,l 0 cb 0 0 0 0 

We further note that A:Jd, Bd and Cd have the following forms, 

A:ld = blkdiag { Aq1 , • • • , Aq,.d } , 

and 

Bd = blkdiag { Bq1 , • • ·, Bq,.d}, Cd = blkdiag { Cq1 , • • ·, Cq,.d}, 

where Aq;, Bq; and Cq;, i = 1, 2, · · ·, md, are defined as in (2.4.16). 

(2.5.4) 

(2.5.5) 

(2.5.6) 

(2.5.7) 

(2.5.8) 

Proof of Property 2.4.1. Let us define a state feedback gain matrix F. as 

follows: 

(2.5.9) 
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Then, we have 

[A .. LabCb 0 L.,c, l 
A. +B.F. ~ ~ Abb 0 Lbdcd 

{2.5.10) 
LcbCb Ace LcdCd . 

0 0 Add+ LddCd 

Noting that (Ace, Be) is completely controllable, we have for any >. E C, 

rank [A.+ B.F. ->.I B.] 

[A··c 
LabCb 0 Laded Boa 0 

n =rank 
Abb->.I 0 Lbdcd Bob 0 

LcbCb Ace->.! LcdCd Boc 0 

0 0 Add+LddCd->.I Bod Bd 

[A .. ~M LabCb 0 Laded Boa 0 

~' l Abb->.I 0 Lbdcd Bob 0 
=rank 

0 0 Ace->.! 0 0 0 

0 0 0 Add+LddCd->.I Bod Bd 

[ A, •• -M 0 BeonlCd BeonO 0 

~' l (2.5.11) =rank 0 Acc->.I 0 0 0 

0 0 A~d+LddCd->.I Bod Bd 

where 

[ Aaa Aeon= O 
LabCb] 

Abb ' 
Beon = ( BeonO Beond = [ ~~: Lad] 

Lbd . {2.5.12) 

Also, noting the special structure of (Add> Bd, Cd), it is simple to verify that 

[A.+ B.F.- >.I B.] is of maximal rank if and only if [Aeon- >.I Beon] is of 

maximal rank. By Lemma 2.5.1, we have that (A, B) is controllable (stabiliz­

able) if and only if (Aeon, Beon) is controllable {stabilizable). 

Similarly, one can show that (A, C) is observable {detectable) if and only if 

(Aobs, Cobs) is observable {detectable). ~ 

Proof of Property 2.4.2. Let us define a state feedback gain matrix F. as in 

{2.5.9) and an output injection gain matrix K. as follows: 

[
Boa Lad Lab l 

K * = _ Bob Lbd 0 . 
Boc Led Lcb 
Bod Ldd 0 

{2.5.13) 
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We have 

rT 
0 0 0 

iL =A. +B. F. + K.C. + K.D.F. = 
Abb 0 

0 l (2.5.14) 
0 Ace 0 ' 
0 0 A;td 

r~ 
0 

~l B.= B.+ K.D. = 
0 
0 

Bd 

(2.5.15) 

[~ 
0 0 

id l' 6. =C.+ D.F. = 0 0 
cb 0 

(2.5.16) 

and 

no 0 

~] fJ. =D.= 0 
0 

(2.5.17) 

Let f:. be characterized by the quadruple (A., iJ., 6., i5.). It is simple to 
verify that the transfer function of t. is given by 

Furthermore, we can show that 

(2.5.19) 

By Lemmas 2.5.1 and 2.5.2, we have 

normrank {H.(c;)} = normrank {H .(c;)} = mo + md. (2.5.20) 

Next, it follows from Lemmas 2.5.1 and 2.5.2 that the invariant zeros of 
~. and f:. are equivalent. By the definition of the invariant zeros of a linear 
system, i.e., a complex scalar a is an invariant zero oft. if 

[ A -a! iJ ] v rank •6• jj: <n+normrank{H.(c;)}=n+m0 +md, (2.5.21) 
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and also noting the special structure of (A:id, Bd, Cd) and the facts that (Abb, Cb) 
is observable, and (Ace, Be) is controllable, we have 

{ ( ) } [ A. -a! B * ] 
rank Pt. a =rank 6. f5. 

Aaa-al 0 0 0 0 
0 Abb-a! 0 0 0 
0 0 Acc-al 0 0 

=rank 0 0 0 A:id-al 0 
0 0 0 0 lm0 

o o o cd o 
o cb o o o 

= nb + nc + nd + mo + md +rank {Aaa -a!}. 

0 0 
0 0 
0 Be 

Bd 0 
0 0 
0 0 
0 0 

(2.5.22) 

Clearly, the rank of Pt. (a) drops below n + m0 + md if and only if a E .X(Aaa)· 
Hence, the invariant zeros of 'E., or equivalently the invariant zeros of E., are 

given by the eigenvalues of Aaa, which are the union of .X(A;a), .X(A~a), and 

.X(Ata)· This completes the proof of Property 2.4.2. ~ 

Proof of Property 2.4.3. It follows from Lemmas 2.5.1 and 2.5.2 that the 

infinite zeros of E. and 'E. are equivalent. It is clear to see from (2.5.18) and 

(2.5.19) that the infinite zeros of 'E., or equivalently the infinite zeros of E., of 
order higher than 0, are given by 

(2.5.23) 

Furthermore, 'E. or E. has m0 infinite zeros of order 0. 

Proof of Property 2.4.4. Again, it follows from Lemmas 2.5.1 and 2.5.2 that 

E. or H.(c;) is (left- or right- or non-) invertible if and only if 'E. or H.(c;) is 

(left- or right- or non-) invertible. The results of Property 2.4.4 can be seen 

from the transfer function H.(c;) in (2.5.18). ~ 

Proof of Property 2.4.5. We will only prove the geometric subspace V*(E.), 
i.e., 

I~]} (2.5.24) 

Here r s = In as the given system E. is assumed to be already in the form of 

the special coordinate basis. It follows from Lemma 2.5.2 that V* is invariant 
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under any output injection laws. Let us choose an output injection gain matrix 

K. as in (2.5.13). Then, we have 

[ A., 
0 0 0 

A 0 Abb 0 
0 l A. = A. + K.C. = BcEca 0 Ace 0 ' 

BdEda BdEdb BdEdc A;id + BdEdd 

(2.5.25) 

and 

[
0 0 

A ~ 0 0 
B.= B.+ K.D. =B.= O O 

0 Bd 

(2.5.26) 

Let f;. be a system characterized by (A., B., C., D.). Then it is sufficient to 

shOw the property of V*('E.) by showing that 

(2.5.27) 

First, let us choose a matrix F. as given in (2.5.9). Then, we have 

[T 
0 0 0 

A..+ B.F. = 
Abb 0 

0 l 0 Ace 0 ' 

0 0 A;td 

(2.5.28) 

and 

[~ 
0 

0 0 l C.+ D.F. = 0 o cd . 
cb 0 0 

(2.5.29) 

It is now simple to see that for any 

{ [I,. 
( E X, <ll X, ~ Im ~ I~.]}' (2.5.30) 

we have 

(2.5.31) 
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and 

(2.5.32) 

and 

(C.+ D.F.)( = 0. (2.5.33) 

Clearly, Xa EB Xc is a (A.+ B.F.)-invariant subspace of 1Rn and is contained in 

Ker (C.+ D.F.). By the definition of V*, we have 

(2.5.34) 

Conversely, for any ( E V*(f:.), by Definition 2.4.2, there exists a gain 

matrix F • E 1Rmxn such that 

(A.+ B.F.)( E V*(f:.), 

and 

(C.+ D.F.)( = o. 

(2.5.35) and (2.5.36) imply that for any ( E V*(f:.), 

~ ~ ~ ~ k 
(C.+D.F.)(A.+B.F.) (=0, k=O,l,···,n-1. 

Thus, (2.5.34) and (2.5.37) imply that 

} ] = 0, k = 0, 1, · · ·, n- 1. 
nc 

0 

Next, let us partition this F. as follows: 

[ 
Fao - Goa Fbo - Cob Fco - Coc Fdo - Cod l 

F.= Fad- Eda Fbd- Edb Fed- Edc Fdd- Edd · 

Fac - Eca Fbc Fcc Fdc 

We have 

[
Fao 

c.+ D.F. = ~ 

(2.5.35) 

(2.5.36) 

(2.5.37) 

(2.5.38) 

(2.5.39) 

(2.5.40) 
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and 

[ Ann 
0 0 

~ A A 

Bc~ac 
Abb 0 

A.+B.F. = 
BcFbc Acc+BcFcc 

BdFad BdFbd BdFcd 
B<t,<]· 

A:i:i 

(2.5.41) 

where A:f:i = A:fd + BdFdd· Then, using (2.5.38) with k = 0, we have 

A 0 [In. 
(C.+D.F.) ~ I~< l = 0, (2.5.42) 

which implies 

Fao = 0, Fco = 0, (2.5.43) 

and 

C, +D,F, ~ [~ * 0 

~d l' 0 0 

cb 0 
(2.5.44) 

where *S are some matrices of not much interest. Using (2.5.38) with k = 1 
together with (2.5.44), we have 

and 

In general, one can show that for any positive integer k, 

Cd(A:f:f)k- 1 BdFad = 0, Cd(A:f:f)k- 1 BdFcd = 0, 

and 

(C.+ D.F.)(A. + fJ.ft.)k = [ 000 
* 
* 0 * l 0 C (A**)k d dd . 

0 0 

(2.5.45) 

(2.5.46) 

(2.5.47) 

(2.5.48) 

As a by-product, we can easily show that Fad = 0 and Fed = 0, because of 
the fact that (A:f:f, Bd, Cd) is controllable, observable, invertible and is free of 
invariant zeros. Now, for any 

(2.5.49) 
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it follows from (2.5.37) and (2.5.48) that 

Cb(Abb)k(b = 0, k = 0, 1, · · ·, n- 1, (2.5.50) 

which implies (b = 0 because (Abb, Cb) is completely observable, and 

(2.5.51) 

which implies (d = 0 because (A;t;t, Cd) is also completely observable. Hence, 

(2.5.52) 

and 

V*(f:*) ~ Xa EB Xc. (2.5.53) 

Obviously, (2.5.34) and (2.5.53) imply the result. 

Similarly, one can follow the same procedure as in the above to show the 
properties of the other subspaces in Property 2.4.5. ~ 

Proof of Property 2.4.6. Let us prove the property of V.>.(E.). It follows 
from Lemmas 2.5.1 and 2.5.2 that V>. is invariant under any state feedback and 
output injection laws. Thus, it is sufficient to prove the property of V.>.(E.) by 
showing that 

(2.5.54) 

where i:* is as defined in the proof of Property 2.4.2, Xa>. is a matrix whose 

columns form a basis for the subspace, 

(2.5.55) 

and 

(2.5.56) 

with Fe being an appropriately dimensional matrix such that Ace + BcFc - >.I 
is invertible. 

For any ( E V.>.(E.), by Definition 2.4.3, there exists a vector wE em such 
that 

[A.:- >.I ~·] ( () = o, 
C. D. w 

(2.5.57) 
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or equivalently, 

Aaa->..1 0 0 0 0 0 

0 Abb- >..I 0 0 0 0 
0 0 Acc->..1 0 0 0 

0 0 0 A:id->..1 0 Bd 

0 0 0 0 1mo 0 

0 0 0 cd 0 0 

0 cb 0 0 0 0 

Hence, we have 

(Aaa - >..I)(a = 0, 

which implies that (a E Im {Xa.>.}, 

[ Abb;: >..!] (b = O, 

0 

0 

Be 
0 

0 

0 

0 

(a 

(b 

(c 

(d = 0. 

wo 
Wd 
We 

which implies that (b = 0 as (Abb, Cb) is completely observable, and 
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(2.5.58) 

(2.5.59) 

(2.5.60) 

(2.5.61) 

which implies that (d = 0 and wd = 0 as (Add> Bd, Cd) is square invertible and 

free of invariant zeros. We also have 

which implies that 

or 

(c = (Ace+ BcFc- >..1)-l Bc(Fc(c- We) = Xc>.(Fc(c- We)· 

Hence (c E Im {Xc.>.}· Clearly, 

(2.5.62) 

(2.5.63) 

(2.5.64) 

{ [

Xa.>. 

( E 1m ~ ~']} (2.5.65) 

Conversely, for any 

(2.5.66) 
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we have (b = 0, (d = 0, (a E Im {Xa.x}, which implies that (AI- AaaKa = 0, 
and (e E Im {Xe.x}, which implies that there exists a vector We such that 

(2.5.67) 

Thus, we have 

(2.5.68) 

or 

(2.5.69) 

Let 

w = (::) = ( ~ ) . 
We Fe(e- We 

(2.5.70) 

It is now straightforward to verify using (2.5.58) that 

(2.5.71) 

By Definition 2.4.3, we have 

{ [
Xa.x 

( E V,(i':.) ==> Im ~ (2.5.72) 

Finally, (2.5.65) and (2.5.72) imply the result. 

The proof of S.x(~.) follows from the same lines of reasoning. 



Chapter 3 

Structural Mappings of 
Bilinear Transformations 

3.1. Introduction 

WE RECALL IN this chapter the work of Chen and Weller [40) on bilinear and 
inverse bilinear transformations of linear time-invariant systems. Their result 
presents a comprehensive picture of the mapping of structural properties as­
sociated with general linear multivariable systems under bilinear and inverse 
bilinear transformations. They have completely investigated the problem of 
how the finite and infinite zero structures, as well as invertibility structures 

of a general continuous-time (discrete-time) linear time-invariant multivariable 
system are mapped to those of its discrete-time (continuous-time) counterpart 
under the bilinear (inverse bilinear) transformation. It is worth noting that 
we have added in this chapter some new results on the mapping of geometric 
subspaces under the bilinear (inverse bilinear) transformation. 

The bilinear and inverse bilinear transformations have widespread use in 
digital control and signal processing. As will be seen shortly, the bilinear 
transformation actually plays a crucial role in the computation of infima for 

discrete-time systems as well as in finding the solutions to discrete-time Riccati 

equations. The results presented in this section were first reported in Chen and 

Weller [40). In fact, the need to perform continuous-time to discrete-time model 

conversions arises in a range of engineering contexts, including sampled-data 

control system design, and digital signal processing. As a consequence, numer­

ous discretization procedures exist, including zero- and first-order hold input 
approximations, impulse invariant transformation, and bilinear transformation 
(see, for example [2] and [55]). Despite the widespread use of the bilinear trans-
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form, however, a comprehensive treatment detailing how key structural proper­

ties of continuous-time systems, such as the finite and infinite zero structures, 

and invertibility properties, are inherited by their discrete-time counterparts 

is lacking in the literature. Given the important role played by the infinite 

and finite zero structures in control system design, a clear understanding of the 

zero structures under bilinear transformation would be useful in the design of 

sampled-data control systems, and would complement existing results on the 

mapping of finite and infinite zero structures under zero-order hold sampling 

(see, for example, [1] and [60]). 

In this chapter, we present a comprehensive study of how the structures, 

i.e., the finite and infinite zero structures, invertibility structures, as well as 

geometric subspaces of a general continuous-time (discrete-time) linear time­

invariant system are mapped to those of its discrete-time (continuous-time) 

counterpart under the well known bilinear (inverse bilinear) transformations 

( z -1) s=a --
z+1 

respectively. 

and 
a+s z=--, 
a-s 

3.2. Mapping of Continuous-time to Discrete-time 

(3.1.1) 

In this section, we will consider a continuous-time linear time-invariant system 

~c characterized by 
~c : { X = A X + B u, 

y = c X+ D u, 
(3.2.1) 

where x E R. n, y E RP, u E R m and A, B, C and D are matrices of appropriate 

dimensions. Without loss of any generality, we assume that both matrices 

[ C D] and [ B' D' ] are of full rank. ~c has a transfer function 

Gc(s) = C(sl- A)-1 B +D. (3.2.2) 

Let us apply a bilinear transformation to the above continuous-time system, by 

replacing s in (3.2.2) with 

_ 2 (z-1) _ (z-1) s-- -- -a -- , 
T z+1 z+1 

(3.2.3) 

where T = 2/a is the sampling period. As presented in (3.2.3), the bilinear 

transformation is often called Tustin's approximation [2], while the choice 

(3.2.4) 
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yields the pre-warped Tustin approximation, in which the frequency responses 

of the continuous-time system and its discrete-time counterpart are matched at 

frequency w1 . In this way, we obtain a discrete-time system 

Gd(z) = C a=-=-_ I- A B +D. ( 1 ) -l 

z+1 
(3.2.5) 

The following lemma provides a direct state-space realization of G d ( z). 

While this result is well known (see for example [55]), the proof is included 

as it is brief and self-contained. 

Lemma 3.2.1. A state-space realization of Gd(z), the discrete-time counter­

part of the continuous-time system :Ec of (3.2.1) under the bilinear transforma­

tion (3.2.3), is given by 

where 

or 

:Ed : { x(k+1) = ~ x(k) + ~ u(k), 
y(k) = C x(k) + D u(k), 

A (ai + A)(ai- A)-1, 

B ffa (a!- A)- 1 B, 

6 ffa C(al- A)-1, 

D = D + C ( al - A) -l B, 

A = (al + A)(ai- A)-1, 

iJ = B, 
6 = 2a C(al- A)- 2 , 

D = D + C(al- A)- 1 B. 

} 

} 
Here we clearly assume that matrix A has no eigenvalue at a. 

Proof. First, it is straightforward to verify that 

G d ( z) = C (a z - 1 I - A) -l B + D 
z+1 

= (z + l)C[a(z-:- l)I- (z + l)Ar1 B + D 

= (z + l)C(ai- A)- 1 [zi- (a!+ A)(ai- A)- 1r 1 B + D 

(3.2.6) 

(3.2.7) 

(3.2.8) 

= zC(ai -A)- 1 (zl -A) -1B+ [c(al -A)- 1 (zl -A) -1B+D]. (3.2.9) 

If we introduce Gd(z) = zC(ai- A)- 1 (zl- A:) -1 B, it follows that 

{ x
(k+l) = A'x(k) + (al- A')- 1C'u(k), 

fj(k) = B'x(k+l) = B'A'x(k) + B'(al- A')-1C'u(k), 
(3.2.10) 
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. _, 
is a state-space realization of Gd(z), from which 

Gd(z) = C(al- A)-1 ( zl- A.) - 1 AB + C(al- A)-1 B. (3.2.11) 

Substituting (3.2.11) into (3.2.9), we obtain 

Gd(z) = C(al- A)-1 (zl- A.) - 1 (A+ I)B + [C(al- A)-1 B + D] 

=6(zi-A.)-1 B+D, 

and the rest of Lemma 3.2.1 follows. 

The following theorem establishes the interconnection of the structural prop­
erties of Ec and Ed, and forms the major contribution of this chapter. 

Theorem 3.2.1. Consider the continuous-time system Ec of (3.2.1) character­
ized by the quadruple (A, B, C, D) with matrix A having no eigenvalue at a, 
and its discrete-time counterpart under the bilinear transformation (3.2.3), i.e., 
Ed of (3.2.6) characterized by the quadruple (A, B, 6, D) of (3.2.7). We have 
the following properties: 

1. Controllability (stabilizability) and observability (detectability) of Ed: 

(a) The pair (A, B) is controllable (stabilizable) if and only if the pair 
(A, B) is controllable (stabilizable). 

(b) The pair (A, C) is observable (detectable) if and only if the pair 
(A, C) is observable (detectable). 

2. Effects of nonsingular state, output and input transformations, together 
with state feedback and output injection laws: 

(a) For any given nonsingular state, output and input transformations 
T8 , To and Ti, the quadruple 

(3.2.12) 

is the discrete-time counterpart under the bilinear transformation 
(3.2.3), of the continuous time system 

(3.2.13) 
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(b) For any FE Rmxn with A+ BF having no eigenvalue at a, define 
a nonsingular matrix 

Ti :=I+ F(al- A- BF)-1 B 

= [J- F(al- A)-1 Bt1 E Rmxm, (3.2.14) 

and a constant matrix 

F := ffa F(al- A- BF)-1 E Rmxn. (3.2.15) 

Then a continuous-time system l:cF characterized by 

(A+ BF,B,C + DF,D), (3.2.16) 

is mapped to a discrete-time system l:dF, characterized by 

(3.2.17) 

under the bilinear transformation (3.2.3). Here we note that l:cF is 
the closed-loop system comprising l:c and a state feedback law with 
gain matrix F, and l:dF is the closed-loop system comprising l:d and 
a state feedback law with gain matrix F, together with a nonsingular 
input transformation Ti. 

(c) For any K E Rnxp·with A+ KG having no eigenvalue at a, define 
a nonsingular matrix 

(3.2.18) 

and a constant matrix 

k := ffa (a!- A- KC)-1 K. (3.2.19) 

Then a continuous-time system l:cK characterized by 

(A+ KC,B + KD,C,D), (3.2.20) 

is mapped to a discrete-time system l:dK, characterized by 

- - - - - - --1- --1-
(A+KC,B+KD,To C,T0 D), (3.2.21) 

under the bilinear transformation (3.2.3). We note that l:cK is the 
closed-loop system comprising l:c and an output injection law with 
gain matrix K, and l:dK is the closed-loop system comprising l:d 

and an output injection law with gain matrix k, together with a 
nonsingular output transformation T 0 • 
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3. Invertibility and structural invariant indices lists I2 and I3 of l:d: 

(a) I2(l:d) = I2(l:c), and I3(l:d) = I3(l:c)· 

(b) l:d is left (right) invertible if and only if l:c is left (right) invertible. 

(c) l:d is invertible (degenerate) if and only if l:c is invertible ( degener-

ate). 

4. The invariant zeros of l:d and their associated structures consist of the 

following two parts: 

(a) Let the infinite zero structure (of order greater than 0) of l:c be given 

by S~ (l:c) = { Ql, q2, · · · , Qmd}. Then z = -1 is an invariant zero of 
l:d with the multiplicity structure s::l (l:d) = { Ql, Q2, ... , Qmd }. 

(b) Let 8 = a =f. a be an invariant zero of l:c with the multiplicity struc­

ture S~(l:c) = {na,l, na,2, · · ·, na,r" }. Then z = (3 = (a+ a)f(a- a) 
is an invariant zero of its discrete-time counterpart l:d with the mul­

tiplicity structure S~(l:d) = {na,l,na,2, · · · ,na,r"}. 

5. The infinite zero structure of l:d consists of the following two parts: 

(a) Let m0 = rank (D), and let md be the total number of infinite 
zeros of Ec of order greater than 0. Also, let Ta be the geometric 

multiplicity of the invariant zero of l:c at 8 = a. Then we have 

rank (D) = mo + md- Ta· 

(b) Let 8 = a be an invariant zero of the given continuous-time system l:c 

with a multiplicity structure s:(l:c) = {na,b na,2, · · ·, na,rJ· Then 
the discrete-time counterpart l:d has an infinite zero (of order greater 

than 0) structure S~(l:d) = {na,l,na,2, · · · ,na,ra}. 

6. The mappings of geometric subspaces: 

(a) v+ (l:c) = S0 (l:d). 

(b) s+(l:c) = V0(l:d)· 

Proof. See Section 3.4. 

We have the following two interesting observations. The first is with regard 
to the minimum phase and nonminimum phase properties of l:d, while the 
second concerns the asymptotic behavior of l:d as the sampling period T tends 

to zero (or, equivalently, as a-too). 
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Observation 3.2.1. Consider a general continuous-time system Ec and its 

discrete-time counterpart Ed under the bilinear transformation (3.2.3). Then 

it follows from 4(a) and 4(b) of Theorem 3.2.1 that 

1. Ed has all its invariant zeros inside the unit circle if and only if Ec has 
all its invariant zeros in the open left-half plane and has no infinite zero 

of order greater than 0; 

2. Ed has invariant zeros on the unit circle if and only if Ec has invariant 

zeros on the imaginary axis, and/or Ec has at least one infinite zero of 

order greater than 0; 

3. Ed has invariant zeros outside the unit circle if and only if Ec has invariant 
zeros in the open right-half plane. IQl 

Observation 3.2.2. Consider a general continuous-time system Ec and its 

discrete-time counterpart Ed under the bilinear transformation (3.2.3). Then 

a consequence of Theorem 3.2.1, Ed has the following asymptotic properties as 
the sampling period T tends to zero (but not equal to zero): 

1. Ed has no infinite zero of order greater than 0, i.e., no delays from the 

input to the output; 

2. Ed has one invariant zero at z = -1 with an appropriate multiplicity 

structure if Ec has any infinite zero of order greater than 0; and 

3. The remaining invariant zeros of Ed, if any, tend to the point z = 1. 

More interestingly, the invariant zeros of Ed corresponding to the stable 
invariant zeros of Ec are always stable, and approach the point z = 1 from 

inside the unit circle. Conversely, the invariant zeros of Ed corresponding 
to the unstable invariant zeros of Ec are always unstable, and approach 
the point z = 1 from outside the unit circle. Finally, those associated 

with the imaginary axis invariant zeros of Ec are always mapped onto the 
unit circle and move towards to the point z = 1. IQl 

The following example illustrates the results in Theorem 3.2.1. 

Example 3.2.1. Consider a continuous-time system Ec characterized by the 

quadruple (A,B,C,D) with 

1 1 0 0 1 0 0 0 
0 1 1 0 1 0 0 0 

A= 
0 0 1 0 1 0 

B= 
0 0 

(3.2.22) 
0 0 0 3 1 0 ' 1 0 ' 
0 0 0 0 0 1 0 0 
1 1 1 1 1 1 0 1 
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and 

[ 0 0 0 1 0 0] 
C= 0 0 0 0 1 0 ' D=[~ ~]· (3.2.23) 

We note that the above system Ec is already in the form of the special coordinate 

basis as in Theorem 2.4.1. Furthermore, Ec is controllable, observable and 

invertible with one infinite zero of order 0, and one infinite zero of order 2, i.e., 

S~(Ec) = {2}. The system Ec also has two invariant zeros at s = 2 and s = 1, 

respectively, with structures S;(Ec) = {1} and St(Ec) = {3}. 

1. If a= 1, we obtain a discrete-time system Ed characterized by the quadru­

ple (A,iJ,6,iJ), with 

2. 

1 2 -3 1 
-2 -1 2 0 

0 -2 1 0 
0 0 1 -2 
0 0 -2 0 
0 0 -2 0 

0 -2 
0 0 
0 0 
0 0 ' 

-1 0 
-2 -1 

6 = ../2 [0 0 1 -1 0 0] 
2 0 0 -2 0 0 0 ' 

1 
0 

- ../2 0 
B=2 -1 

0 
0 

-2 
0 
0 
0 ' 
0 
0 

- 1 [1 0] D=2 0 0. 

Utilizing either the toolbox of Chen [11] or that of Lin [79], we find that 

Ed is indeed controllable, observable and invertible, with one infinite zero 
of order 0 and one infinite zero of order 3, i.e., S~ (Ed) = {3}. Ed also has 

two invariant zeros at z = -3 and z = -1 respectively, with structures 

S~3 (Ed) = {1} and S~1 (Ed)= {2}. 

If a= 2, we obtain another discrete-time system Ed, characterized by 

0 -2 -5 3 -3 -3 3 -3 
-2 -1 -2 2 -2 -2 2 -2 

A= -1 -2 0 1 -1 -1 - 1 1 -1 
1 2 3 -6 1 1 ' B=- -5 1 ' 2 

-1 -2 -3 1 -2 -1 1 -1 
-2 -4 -6 2 -6 -3 2 -2 

and 

C=- D=-- 1 [ 1 2 3 -5 1 1] - 1 [ -1 1] 
2 -1 -2 -3 1 -1 -1 ' 4 1 -1 ' 

which is controllable, observable and invertible with one infinite zero of 

order 0 and one infinite zero of order 1, i.e., S~(Ed) = {1}. It also has 

two invariant zeros at z = 3 and z = -1 respectively, with structures 

S3(Ed) = {3} and S~ 1 (Ed) = {2}, in accordance with Theorem 3.2.1. ~ 
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3.3. Mapping of Discrete-time to Continuous-time 

We present in this section a similar result as in the previous section, but for the 
inverse bilinear transformation mapping a discrete-time system to a continuous­

time system. We begin with a discrete-time linear time-invariant system f;d 

characterized by 

f;d : { x(k+1) = ~ x(k) + ~ u(k), 
y(k) = C x(k) + D u(k), 

(3.3.1) 

where x E Rn, y E RP, u E Rm and A, iJ, 6 and b are matrices of appropriate 

dimensions. Without loss of any generality, we assume that both matrices 
[ 6 b] and [ iJ' jj'] are of full rank. ~d has a transfer function 

(3.3.2) 

The inverse bilinear transformation corresponding to (3.2.3) replaces z in the 
above equation (3.3.2) with 

a+s z=--, 
a-s 

to obtain the following continuous-time system: 

( )
-1 - a+s - - -

Hc(s)=C --I-A B+D. 
a-s 

(3.3.3) 

(3.3.4) 

The following lemma is analogous to Lemma 3.2.1, and provides a state­
space realization of Hc(s). 

Lemma 3.3.1. A state-space realization of Hc(s), the continuous-time coun­
terpart of the discrete-time system f;d of (3.3.1) under the inverse bilinear 
transformation (3.3.3), is given by 

where 

or 

- {'X = A X + B u, 
~c : y = c X+ D u, 

A= a(A+I)-1(A-I), 

B.= ffa (A+ I)-1 iJ, 
c = ffa 6(A + I)-1 , 

D = b- C(A + I)-1 iJ, 

A = a(A + I)-1(A- I), 

B iJ, 
c = 2a 6(A + I)-2 , 

D = jj- C(A + I)-1 iJ. 

} 

} 

(3.3.5) 

(3.3.6) 

(3.3.7) 

Here we clearly assume that the matrix A has no eigenvalue at -1. 1!;1 
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The following theorem is analogous to Theorem 3.2.1. 

Theorem 3.3.1. Consider the discrete-time system td of (3.3.1) characterized 

by the quadruple (A, B, 6, D) with matrix A having no eigenvalue at -1, and its 

continuous-time counterpart under the inverse bilinear transformation (3.3.3), 

i.e., tc of (3.3.5) characterized by the quadruple (A, B, C, D) of (3.3.6). We 

have the following properties: 

1. Controllability ( stabilizability) and observability ( detectability) of tc: 

(a) The pair (A, B) is controllable (stabilizable) if and only if the pair 

(A, B) is controllable (stabilizable). 

(b) The pair (A, C) is observable (detectable) if and only if the pair 

(A, C) is observable (detectable). 

2. Effects of nonsingular state, output and input transformations, together 

with state feedback and output injection laws: 

(a) For any given nonsingular state, output and input transformations 

T8 , To and Ti, the quadruple 

(3.3.8) 

is the continuous-time counterpart of the inverse bilinear transfor­

mation, i.e., (3.3.3), of the discrete-time system 

(3.3.9) 

(b) For any FE lRmxn with A+BF having no eigenvalue at -1, define 

a nonsingular matrix 

(3.3.10) 

and a constant matrix 

(3.3.11) 

Then a discrete-time system tdF characterized by 

(A+ iJP, iJ, 6 + DP, D), (3.3.12) 

is mapped to a continuous-time counterpart tcF characterized by 

(A+ BF, BTi, C + DF, DTi), (3.3.13) 
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under the inverse bilinear transformation (3.3.3). Note that 'tdF is 
the closed-loop system comprising i;d and a state feedback law with 
gain matrix F, and 'tdF is the closed-loop system comprising i;d and 
a state feedback law with gain matrix F, together with a nonsingular 
input transformation Ti. 

(c) For any k E lRnxp with A+ KG having no eigenvalue at -1, define 
a nonsingular matrix 

(3.3.14) 

and a constant matrix 

K == v'2ll (I+ A+ kc)-1 k. (3.3.15) 

Then a discrete-time system i;dK characterized by 

(3.3.16) 

is mapped to a continuous-time 'tcK, characterized by 

(3.3.17) 

under the inverse bilinear transformation (3.3.3). We note that i;dK 
is the closed-loop system comprising i;d and an output injection law 
with gain matrix k, and 'tcK is the closed-loop system comprising 
'tc and an output injection law with gain matrix K, together with a 
nonsingular output transformation T0 • 

3. Invertibility and structural invariant indices lists I 2 and I 3 of 'tc: 

(a) I2(f:c) = I2('td), and I3('tc) = I3('td). 

(b) 'tc is left (right) invertible if and only if i;d is left (right) invertible. 

(c) 'tc is invertible (degenerate) if and only if i;d is invertible ( degener-
ate). 

4. Invariant zeros of I:c and their structures consist of the following two 
parts: 

(a) Let the infinite zero structure (of order greater than 0) of i;d be given 
by S:X, ('td) = { q1, q2, · · · , qmd}. Then s = a is an invariant zero of 
'tc with the multiplicity structure s~ ('tc) = { ql, q2, ... , qmd}. 
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(b) Let z = o: =I -1 be an invariant zero of Ed with the multiplicity 

structure S~(Ed) = {na,1,na,2, ... ,na,r.,}· Then s = {3 = a:+i 
is an invariant zero of its continuous-time counterpart Ec with the 

multiplicity structure S~(Ec) = {na,1, n 0 ,2, · · ·, na,r., }. 

5. The infinite zero structure of Ec consists of the following two parts: 

(a) Let m0 = rank (D), and let md be the total number of infinite 

zeros of Ed of order greater than 0. Also, let r_ 1 be the geometric 

multiplicity of the invariant zero of Ed at z = -1. Then we have 

rank (D)= mo + md- L1. 

(b) Let z = -1 be an invariant zero of the given discrete-time system Ed 

with the multiplicity structure S~1 (Ed)= {n-1,1, n-1,2, · · ·, n-1,r_J. 

Then Ec has an infinite zero (of order greater than 0) structure 

S~(Ec) = {n-1,1, n-1,2, · · ·, n-1,r_ 1 }. 

6. The mappings of geometric subspaces: 

(a) V0 (Ed) = s+(Ec)· 

(b) S0 (Ed) = v+(Ec)· l!l 

Proof. The proof of this theorem is similar to that of Theorem 3.2.1. ~ 

We illustrate the result above with the following example. 

Example 3.3.1. Consider a discrete-time linear time-invariant system Ed char­

acterized by the quadruple (A,iJ,C,iJ) with 

-1 0 0 1 0 1 0 0 0 0 

0 -1 1 1 0 1 1 0 0 0 

0 0 -1 1 0 1 1 0 0 0 

A= 0 0 0 1 0 1 1 B= 0 0 0 (3.3.18) 

1 1 1 1 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 0 0 

0 1 1 1 1 1 1 0 1 0 

and 

c = [~ 
0 0 1 0 0 

~]' D= [~ 
0 

~]. 0 0 0 0 1 0 (3.3.19) 

0 0 0 0 0 0 

Again the above system is already in the form of the special coordinate basis. 

It is simple to verify that Ed is controllable, observable and is degenerate, 
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i.e., neither left nor right invertible, with two infinite zeros of order 1, i.e., 

S~(Ed) = {1, 1}, I2(Ed) = {1} and I3(Ed) = {1}. It also has one invariant 
zero at z = -1 with a structure of s:1 (Ed) = {1, 2}. Applying the result in 
Lemma 3.3.1 (with a= 1), we obtain Ec which is characterized by (A, B, C, D) 
with 

5 0 0 -2 0 -2 2 
0 3 4 -2 2 -2 -2 
0 -2 3 0 0 0 0 

A= 0 0 2 -1 0 0 0 
-2 0 -2 2 -1 2 0 
-2 0 -2 2 0 1 0 

2 0 -2 0 0 0 1 

[ 
0 0 

C=h 1 0 
-1 0 

-1 1 0 0 0] 
1 -1 0 0 00 , 
1 0 0 0 

1 -1 0 
1 1 -1 
0 0 0 

B=vf2 0 0 0 
-1 0 1 

0 0 0 
0 0 0 

D = [~ ~ ~] 
Then, it is straightforward to verify, using the software toolboxes of Chen [11] 
or Lin [79], for example, that Ec is controllable, observable and degenerate with 

an infinite zero structure of S~(Ec) = {1,2}, I2(Ec) = {1} and I3(Ec) = {1}. 
Furthermore, Ec has one invariant zero at s = 1 with associated structure 
St(Ec) = {1, 1}, in accordance with Theorem 3.3.1. ~ 

Finally, we conclude this section by summarizing in a graphical form in 
Figures 3.3.1 the structural mappings associated with the bilinear and inverse 

bilinear transformations. 

3.4. Proof of Theorem 3.2.1 

We present in this section the detailed proof of Theorem 3.2.1. For the sake of 
simplicity in presentation, and without loss of any generality, we assume that 
the constant a in (3.2.3) is equal to unity, i.e., a = 2/T = 1, throughout this 
proof. We will prove this theorem item-by-item. 

1{a). Let f3 be an eigenvalue of A, i.e., /3 E >.(A). It is straightforward to verify 

that f3 :f; -1, provided A has no eigenvalue at a = 1 and a = (/3 - 1) J (/3 + 1) 
is an eigenvalue of A, i.e., a E >.(A). Next, we consider the matrix pencil 

[f3I- A B] = [f3I- (I- A)-1 (I +A) /2(I- A)-1B] 

=(I- A)-1 [/3(/- A)- (I+ A) /2 BJ 

=(I- A)-2 [ (/3- 1)I- (/3 + 1)A J2 B] 

=(I- A)-2 [ai- A B] [ (,8 +Ol)In /20Im]. 
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r-eP=~~ 
invariant -~- V. invariant 

zero ·-.:"· .> zero 

structure ..... 8!::\ structure 

=-~ 

infinite zero 

structure 

infinite zero 

structure 

IDv&tibility 0--------+-8'. invertibility 

structures < _..> structures 8 ' 
G-0 

geometric _../ \ .... geometric 

subspaces ;··.. ./ subspaces 8 , .. 
Continuous-time System Discrete-time System 

Figure 3.3.1: Structural mappings of bilinear transformations. 
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Clearly, rank [.BI-A B] =rank [al-A B], and the result 1(a) follows. ~ 

1(b). Dual of 1(a). 

2( a). It is trivial. 

2(b). It follows from Lemma 3.2.1 that the discrete-time counterpart r:dF of 
the bilinear transformation of r:cF, characterized by (A+ BF, B, C + DF, D), 
is given by (AF, .BF,(';F,fJF) with 

AF = (I+ A+ BF)(I- A- BF)-1 ' 

BF = ..J2 (I- A- BF)-1 B, 

CF = ..j2 (C + DF)(I- A- BF)-1, 

iJF = D + (C + DF)(I- A- BF)-1 B. 
} (3.4.1) 

We first recall from the Appendix of Kailath [64) the following matrix identities 
that are frequently used in the derivation of our result: 

(3.4.2) 

and 
[I+ X(sl- z)-1Yr1 =I- X(sl- Z + YX)- 1Y. (3.4.3) 

Next, we note that 

AF = (I+ A+ BF)(I- A- BF)-1 

and 

=(I+ A+ BF)(I- A)-1[!- BF(I- A)-1r 1 

=[A+ BF(I- A)-1)[!- BF(I- A)-1r 1 

=[A+ BF(I- A)-1)[! + BF(I- A- BF)-1) 

=A+ ABF(I- A- BF)-1 + BF(I- A)-1[! + BF(I- A- BF)-1] 

=A+ ABF(I- A- BF)-1 + BF(I- A)-1(!- A) (I- A- BF)-1 

=A+ ABF(I- A- BF)-1 + BF(I- A- BF)-1 

=A+ (A+ I)BF(I- A- BF)-1 

=A+ 2(!- A)-1 BF(I- A- BF)-1 

= A+BF, 

BF = .J2 (I- A- BF)-1 B 

= J2 [I- (I- A)- 1 BF]-1(!- A)- 1 B 

= .J2 (I- A)- 1 B [I- F(I- A)- 1 B] - 1 = BTi. 
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Also, we have 

6F = J2 (C + DF)(I- A- BF)-1 

and 

= J2 (C + DF)(I- A)-1[I- BF(I- A)-1t 1 

= J2 (C + DF)(I- A)-1 [I + BF(I- A- BF)-1] 

= J2 C(I- A)-1 + J2 DF(I- A)-1 

+ J2 (C + DF)(I- A)-1 BF(I- A- BF)-1 

= 6 + J2 [DF(I- A)-1(!- A- BF) 

+ (C + PF)(I- A)-1 BF] (I- A- BF)-1 

= 6 + J2 [DF-DF(I- A)-1 BF+C(I- A)-1 BF+DF(I- A)-1 BF] 

X (I- A- BF)-1 

= 6 + [D + C(I- A)- 1 B]J2 F(I- A- BF)-1 

= 6+fXF, 

DF = D + (C + DF)(I- A- BF)-1 B 

= D + (C + DF) [I- (I- A)-1 BF] - 1 (I- A)-1 B 

= D + (C + DF)(I- A)-1 B [I- F(I- A)-1 Br1 

= { D [I- F(I- A)-1 B] + (C + DF)(I- A)-1 B} ti 

= {D- DF(I- A)-1B + C(I- A)-1B + DF(I- A)-1B} Ti 

=Di'i, 

which completes the proof of 2(b). 

2{c). Dual of 2(b). 

With the benefit of properties of 2(a)-2(c), the remainder of the proof is 
considerably simplified. It is well known that the structural invariant indices 
lists of Morse, which correspond precisely to the structures of finite and infinite 
zeros as well as invertibility, are invariant under nonsingular state, output and 
input transformations, state feedback laws and output injections. We can thus 
apply appropriate nonsingular state, output and input transformations, as well 
as state feedback and output injection, to Ec and so obtain a new system, say 
E~. If this new system has E:t as its discrete-time counterpart under bilin­
ear transformation, then from Properties 2(a)-2(c), it follows that ~d and ~d 
have the same structural invariant properties. It is therefore sufficient for the 
remainder of the proof that we show that 3(a)-6(b) are indeed properties of E:J. 
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Let us first apply nonsingular state, output and input transformations r 8 , 

r 0 and r i to Ec such that the resulting system is in the form of the special 
coordinate basis as in Theorem 2.4.1, or, equivalently, the compact form in 
(2.4.20)-(2.4.23) with Aaa and Goa being given by (2.4.25), Eda and Eca being 
given by (2.4.26), and Boa, Lab and Lad being given by (2.4.28). We will further 
assume that Aaa is already in the Jordan form of (2.2.1) and (2.4.32), and that 

matrices Aaa 1 Lad, Bao, Eda, Goa, Eca and Lab are partitioned as follows: 

Eda = [ Eda Eda ] ' Goa = [ G8a Goa ] ' Eca = [ E~a E~a ) , (3.4.5) 

where matrix A~a has all its eigenvalues at a= 1, i.e., 

0 ln,., 1 -l 0 0 
0 0 0 0 

A~a =I+ (3.4.6) 

0 0 0 ln4 ,.,.4 -1 

0 0 0 0 

and A~a contains the remaining invariant zeros of Ec. Furthermore, we as­
sume that the pair (Ace, Be) is in the controllability structural decomposition 
of (2.4.37), as is the pair (A~b• q). Next, define a state feedback gain matrix 

(3.4.7) 

and an output injection gain matrix 

(3.4.8) 

Here, Ecc is chosen such that all *S in (2.4.37) are cleaned out, i.e., 

(3.4.9) 

is in Jordan form with all diagonal elements equal to 0. Similarly, Lbb is chosen 
such that 

(3.4.10) 
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is in Jordan form with with all diagonal elements equal to 0. Likewise, Edd and 

Ldd are chosen such that 

(3.4.11) 

is in Jordan form with all diagonal elements equal to 0, which in turn implies 

(3.4.12) 

The matrices Bf, B~, Cf and C~ are chosen in conformity with A~a of (3.4.6) 
as follows: 

0 0 0 
0 1 0 

Ba := [B~ Ba]·-1 .- (3.4.13) 

0 0 0 
0 0 1 

and 

c• o= [~~] o= [I 
0 0 

!l 0 0 
(3.4.14) 

0 1 

This can always be done, as a consequence of the assumption that the matrix 
A has no eigenvalue at a= 1, which implies that the invariant zero at a= 1 of 
Ec is completely controllable and observable. 

Finally, we obtain a continuous-time system E~ characterized by the quadru­
ple (A*,B*,C*,D*), where 

A*= p-1r;1(A + BF +KG+ KDF)rsP 

[
A~a 0 0 0 

0 Abb 0 0 
= 0 0 A~c 0 

0 0 0 Add 
0 0 0 BfCd 

(3.4.15) 

[1 

0 

1l 0 
B* = p-1r;1(B + KD)ri = 0 

Bd 
0 

(3.4.16) 

C' = r;'(G + DF)r,P = [~ 0 0 0 G~l 0 0 cd 0 ' cb 0 0 0 
(3.4.17) 
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and 

[lm0 0 0] 
D* = r; 1 nri = o o o , 

0 0 0 
(3.4.18) 

where P is a permutation matrix that transforms A~a from its original position, 
i.e., Block (1, 1), to Block (5, 5) in (3.4.15). 

Next, define a subsystem (As, B 8 , C8 , D8 ) with 

(3.4.19) 

and 

C [ 0 C2] D [ lmo 0] 
s ·- cd o ' s ·- o o · (3.4.20) 

It is straightforward to verify that with the choice of Ba and ca as in (3.4.13) 

and (3.4.14), As has no eigenvalue at a = 1. Hence A* has no eigenvalue 

at a = 1 either, since both Ai;b and A~c have all eigenvalues at 0, and A~a 
contains only the invariant zeros of :Ec which are not equal to a = 1. Applying 
the bilinear transformation (3.2.3) to :E~, it follows from Lemma 3.2.1 that we 
obtain a discrete-time system :Ed, characterized by (A.*, jj*, c*, b*), with 

(3.4.22) 

(3.4.23) 

and 
D- * _ [Ds + Cs(I -As)-1 Bs 0] 

- 0 0 . (3.4.24) 

Our next task is to find appropriate transformations, state feedback, and output 

injection laws, so as to transform the above system into the form of the special 

coordinate basis displaying the Properties 3(a)-6(b). 

To simplify the presentation, we first focus on the subsystem (As, B8 , C 8 , D8 ) 

with 

(3.4.25) 
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and 

(3.4.26) 

Using (3.4.12) in conjunction with Appendix A.22 of Kailath [64], it is straight­

forward to compute (I- As)-1 = 

[ X1 (I -A:ld)-1 BdCf(I -Aaa -Baca)-1 ] 

(I -Aaa -Baca)-1 BfCd(I -A:ld)-1 (I -Aaa -Baca)-1 ' 
(3.4.27) 

where 

and hence 

where 

and 

jj _ [I+C~(I-A~a-Baca)-1B~ C~(I-A~a-Baca)-1Bf ] 
8 - Cf(I-A~a-Baca)-1 B~ I+Cf(I-A~a-Baca)- 1 Bf · 

(3.4.31) 

Noting the structure of A~a in (3.4.6), and the structures of Ba and ca in 

(3.4.13) and (3.4.14), we have 

0 -1 0 0 
-Ina,l-1 0 0 0 

(I- Aaa- BaCa)-1 = (3.4.32) 

0 0 0 -1 
0 0 -In •. ~. -1 0 
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Cf(I- Aaa- Baca)-1 B?, = 0, C?,(I- Aaa- Baca)-1 Bf = 0, (3.4.33) 

and 

Thus, B s, 6 s and iJ s reduce to the following forms: 

and 

c.= /2 [[I+Cf(I-A~a-BaC~)-1 Bf]Cd(I-A;[d)- 1 
Cg(I -A~a- saca)-1] 
Cf(I -A~a -Baca)-1 , 

(3.4.34) 

(3.4.36) 

iJ _ [l+C2(I-A~a-Baca)- 1 B2 0 ] 
s- 0 l+Cf(I-A~a-Baca)-1Bf . 

(3.4.37) 

Next, define 

(3.4.38) 

and 

(3.4.39) 

from which it follows that 

where 

A:::= (I+A;td)(I-A;td)- 1 - 2(I-A;td)-1BdCd(I-A;td)-1, (3.4.40) 

Esc= B.+ f<jjs = /2 [(I -A~a -~aca)-1 B2 (I -A~a -~aca)-1 Bf] ' 

and - - - - rn[O ca(I-Aa -Baca)-1] 
Csc = Cs + DsFs = v2 O c}(I-A~:-saca)-1 · 

Next, repartition sa and ca of (3.4.13) and (3.4.14) as follows: 

(3.4.41) 
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where both Ea. and Ca. are of maximal rank. We thus obtain 

and 

Using (3.4.6) and (3.4.32), straightforward manipulations yield 

0 

1
1 
0 

- - 1 -
(I-A:O-B.c.)- B.~- ~ 

and 

[
0 1 ... 

c (I- A(l - B c )-1 = - : : .. 
0. 0.0. 0. 0. • • • 

0 0 ... 

Moreover, it can be readily verified that each subsystem (Aa.i, Ba.i, Ca.i), i = 
1, · · ·, Ta., with 

- [ 0 Aa.i = -In,.,; + -2I 
nG,i-1 

-2] - [-1] 0 ' Ba.i = 0 ' 

has the following properties: 

and 
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It follows from Theorem 2.4.1 that there exist nonsingular transformations f 8 a, 

r oa and ria such that 

and 

Ad= r;-a1 [(I+ A~a + iJai5a)(I- A~a- BaCa)- 1]fsa 

* fna,t-1 0 0 
* * 0 0 

0 
0 

0 
0 

0 
0 

0 
1 

!l 

(3.4.42) 

(3.4.43) 

(3.4.44) 

Now, let us return to I;d characterized by (A*, iJ*, 6*, iJ*) as in (3.4.21) to 
(3.4.24). Using the properties of the subsystem (A 8 , B8 , 0 8 , Ds) just derived, 
we are in a position to define appropriate state feedback and output injection 

- * - * gain matrices, say F and K , together with nonsingular state, output and 
-* -* -* input transformations r 8' r 0 and r i ' such that 

~ 1 ,(3.4.45) 

Ad 

with A:: given by (3.4.40), and 

0 

(I-A~)- 1 B,l, 0 
0 (3.4.46) 
0 

Bd 

0 0 0 

~ l' Cb(I- Abb)-1 0 0 
0 0 0 cd 

(3.4.4 7) 
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and 

(3.4.48) 

-· - * -· - * Clearly, E;cs characterized by (Ascs• Bscs• Cscs• Dscs) has the same structural 
invariant indices lists as E;j does, which in turn has the same structural invari­

ant indices lists as Ed. Most importantly, E;cs is in the form of the special 
coordinate basis, and we are now ready to prove Properties 3(a)-6(b) of the 

theorem. 

3(a). First, we note that I2(Ed) = I2(E;c5 ). From (3.4.45) to (3.4.48) and the 
properties of the special coordinate basis, we know that I2(E;cs) is given by 

the controllability index of the pair 

((I+ A;e)(I- A;e)-1 , (I- A;e)-1 Be) or ((I+ A;e)(I- A;e)-1 , Be). 

Recalling the definitions of A~e and Be: 

0 Itl-1 0 0 0 0 
0 0 0 0 1 0 

A;e = , Be= 
0 0 0 Ilm 0 -1 0 0 
0 0 0 0 0 1 

it is straightforward to verify that the controllability index of 

((I+ A;e)(I- A;e)-1, Be) 

is also given by {l1, · · · ,lm.}, and thus I2(Ed) = I2(Ee). 

Likewise, the proof that I 3(Ed) = I3(Ee) follows along similar lines. ~ 

3(b)-3(c). These follow directly from 3(a). ~ 

4(a). It follows from the properties of the special coordinate basis that the 
-* invariant zero structure of Escs• or equivalently Ed, is given by the eigenvalues 

of A.:: and (I+ A~a)(I- A~a)- 1 , together with their associated Jordan blocks. 

Property 4(a) corresponds with the eigenvalues of A.:: of (3.4.40), together with 

their associated Jordan blocks. First, we note that for any z E C, 

zi- A:: = [(z- l)I- (z +!)Add+ 2(1- Add)-1 BdCd] (I- Add)-1 . {3.4.49) 

Recall the definitions of Add• Bd and Cd: 

0 Inn-1 0 

I,_:_J 
0 0 

0 0 0 1 0 

Add= Bd= 
0 0 0 0 0 
0 0 0 0 1 



3.4. Proof of Theorem 3.2.1 81 

and 

c, ~ [l 0 0 

rJ 0 1 

It can be shown that 

where Q;(z) E en•; xn•; is given by 

z+1 -(z + 1) 0 0 0 
2 z-1 -(z + 1) 0 0 

Q;(z) = 2 0 z-1 0 0 (3.4.50) 

2 0 0 z-1 -(z + 1) 
2 0 0 0 z-1 

for i = 1, · · ·, md. It follows from (3.4.49) that the eigenvalue of A:: is the 
scalar z that causes the rank of 

to drop below nd = I:~d1 q;. Using the particular form of Q;(z), it is clear 
that the only such scalar z E C which causes Q;(z) to drop rank is z = -1. 
Moreover, rank {Q;(-1)} = nq; -1, i.e., Q;(-1) has only one linearly indepen-

-.. 
dent eigenvector. Hence, z = -1 is the eigenvalue of Aaa, or equivalently the 
invariant zero of I;d, with the multiplicity structure 

thereby proving 4(a). 

4(b). This part of the infinite zero structure corresponds to the invariant zeros 
of the matrix (I+ A~a)(I- A~a)- 1 . With A~a in Jordan form, Property 4(b) 
follows by straightforward manipulations. ~ 

5(a). It follows directly from (3.4.48). 

5(b). This follows from the structure of (Ad, Ed, Cd) in (3.4.42) to (3.4.44), in 
conjunction with Property 2.4.3 of the special coordinate basis. ~ 

6(a)-6(b). We let the state space of the system (3.2.1) be X and be partitioned 
in its SCB subsystems as follows: 

(3.4.51) 
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We further partition x: as 

(3.4.52) 

where X,;'i is associated with the zero dynamics of the unstable zero of (3.2.1) 

at s = a = 1 and Xct. is associated with the rest of unstable zero dynamics of 

(3.2.1). Similarly, we let the state space of the transformed system (3.2.6) be 

X and be partitioned in its SCB subsystems as follows: 

- -- -o -+ - - -
X=Xa EBXaEBXa EBXbEBXcEBXd (3.4.53) 

with X~ being further partitioned as 

-o -o -o 
X a = X al EB X a•' (3.4.54) 

where x~l is associated with the zero dynamics of the invariant zero of (3.2.6) 

at z = -1 and x~. is associated the rest of the zero dynamics of the zeros of 

(3.2.6) on the unit circle. Then, from the above derivations of l(a) to 5(b), we 

have the following mappings between the subsystems of Ec of (3.2.1) and those 

of Ed of (3.2.6): 
x-a {==:::} x~, 

xd 
-o 

{==:::} Xal• 

xo -0 
a {==:::} X a•• 

xct. 
-+ (3.4.55) {==:::} Xa, 

xb {==:::} xb, 
Xc {==:::} Xc, 

X,;'i {==:::} X d· 

Noting that both geometric subspaces vx and sx are invariant under any non­

singular output and input transformations, as well as any state feedback and 

output injection laws, we have 

(3.4.56) 

and 

Unfortunately, other geometric subspaces do not have such clear relationships 

as~~- ~ 

This concludes the proof of Theorem 3.2.1 and this chapter. 



Chapter 4 

Existence Conditions of H00 

Suboptimal Controllers 

4.1. Introduction 

THE FIRST FUNDAMENTAL issue one faces in an Hoo optimization problem, is 
when, or under what conditions a 'Y suboptimal controller exists. Fortunately, 
the problem regarding the existence conditions of "(-suboptimal controllers for 
either the regular or singular type of continuous-time or discrete-time systems 
has almost been completely solved in the literature. As it was mentioned in the 
introduction, there were four main different approaches developed in early years, 
which include: 1) Interpolation approach (see e.g., Limbeer and Anderson [77]); 
2) Frequency domain approach (see e.g., Doyle [47], Francis [54] and Glover 
[57]); 3) Polynomial approach (see e.g., Kwakernaak [69]); and 4) J-spectral 
factorization approach (see e.g., Kimura [67]). All these techniques mainly deal 
with the regular problem. 

We recall in this chapter the existence conditions of 'Y suboptimal controllers 
for the H00 optimization problem derived from the pure time-domain methods 
based on algebraic Riccati equations or linear matrix inequalities. For the 
regular continuous-time systems, the problem was solved by Doyle, Glover, 
Khargonekar and Francis [49], i.e., DGKF, and Tadmor [129]. For general 
singular continuous-time systems with no invariant zero on the imaginary axis, 
the problem was solved by Stoorvogel and Trentelman [127] and Stoorvogel 
[124]. In the situation when systems have invariant zeros on the imaginary 
axis, the result was derived by Scherer [117-119]. The existence conditions of 
"(-suboptimal controllers for discrete-time systems were reported in Stoorvogel 
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[124] and Stoorvogel, Saberi and Chen [125]. These results will form a base for 
the results reported in the coming chapters. 

4.2. Continuous-time Systems 

We consider in this section a general continuous-time linear time-invariant {LTI) 

system E with a state-space description, 

{ 
:i; = A X + B u + E w, 

E y = c1 x + D1 w, 

h = c2 x + D2 u + D22 w, 

(4.2.1) 

where x ERn is the state, u ERmis the control input, wE Rq is the external 

disturbance input, y E RP is the measurement output, and h E Rt is the 
controlled output of E. We also consider the following proper measurement 
feedback control law, 

.. { V = Acmp V + Bcmp y, 
Ecmp 

U = Ccmp V + Dcmp Y· 
{4.2.2) 

For simplicity of presentation, we will first set the direct feed through term from 

the disturbance w to controlled output h in {4.2.1) to be equal to zero, i.e., 
D22 = 0. For easy reference, we define EP to be the subsystem characterized 
by the matrix quadruple (A, B, C2, D2), and EQ to be the subsystem character­
ized by the matrix quadruple (A, E, C1, D1), which respectively have transfer 
functions: 

{4.2.3) 

and 

(4.2.4) 

We recall in this section some important results in the literature regarding the 
existence conditions of -y-suboptimal control laws for the continuous-time H00 

optimization problem. 

The first result given below is due to [124]. Before we introduce the theorem, 
let us define the following quadratic matrices, 

F (P) := [A' P + P A + qc2 + 7- 2 PEE' P P B + Cf;p2] 
-r B' P + D2C2 D2D2 ' 

(4.2.5) 

and 

G-y{Q) := [AQ + QA' + EE' + -y~2QC?,C2Q QCf + ~D~]. 
C1Q + D1E D1D1 

(4.2.6) 
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It should be noted that the above matrices are dual of each other. In addition 
to these two matrices, we define two polynomial matrices whose roles are again 
completely dual: 

Ly(P,s) :=[sf- A- 'Y-zEgp -B], (4.2.7) 

and 

M (Q ) ·- [sf- A- 'Y-2QqCz] 
"' 's .- c . 

- 1 
( 4.2.8) 

Now we are ready to introduce the following theorem which gives a set of 
necessary and sufficient conditions for the existence of a "(-suboptimal controller 
for the continuous-time system (4.2.1) with D22 = 0 and with both subsystems 
~P and ~Q having no invariant zero on the imaginary axis. 

Theorem 4.2.1. Consider the continuous-time linear time-invariant system of 

(4.2.1) with D22 = 0. Assume that ~P and ~Q have no invariant zero on the 

imaginary axis. Then the following statements are equivalent: 

1. There exists a linear time-invariant and proper dynamic compensator 
~cmp of (4.2.2) such that when it is applied to (4.2.1), the resulting 
closed-loop system is internally stable. Moreover, the H 00-norm of the 
closed-loop transfer function from the disturbance input w to the con­
trolled output h is less than 'Y· 

2. There exist positive semi-definite matrices P and Q such that the following 
conditions are satisfied: 

(a) F"~(P) ~ 0. 

(b) rank{F'Y(P)} = normrank {GP(s)}. 

(c) rank [ L.F~[.P))] = n + normrank {Gp(s)}, Vs E C0 U c+. 

(d) G"~(Q) ~ 0 .. 

(e) rank{G'Y(Q)} = normrank {GQ(s)}. 

(f) rank[M'Y(Q, s), G'Y(Q)] = n + normrank{GQ(s)}, "'s E C0 U c+. 
(g) p(PQ) < 'Yz. 

Here Gp(s) and GQ(s) are respectively the transfer function of ~P and 
~Q' and "normrank" denotes the rank of a matrix with entries in the field 
of rational functions. I!J 
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The following remark concerns the full information feedback and full state 

feedback cases. It turns out that for the system with D22 = 0, the existence 
conditions of -y-suboptimal controllers for the full information feedback case and 

for the full state feedback case are identical. 

Remark 4.2.1. For the special cases of full information and full state feed­

back, the solution to the linear matrix inequality (LMI), i.e., Condition 2.(d) 
of Theorem 4.2.1, which satisfies Conditions 2.(e) and 2.(f), is identically zero. 

This implies that Condition 2.(g) is automatically satisfied. Hence, the exis­

tence conditions of -y-suboptimal controllers for both the full information and 

the full state feedback cases reduce to Conditions 2.(a)-2.(c). Moreover, it can 

be shown that a -y-suboptimal static control law exists. !ill 

The following corollary deals with the regular systems or regular case. It 

was first reported in Doyle et al. [49] and Tadmor [129]. 

Corollary 4.2.1. Consider the continuous-time linear time-invariant system 

of (4.2.1) with D22 = 0. Assume that :EP and :Eq have no invariant zero on the 

imaginary axis, D2 is of full column rank and D1 is of full row rank. Then the 
following statements are equivalent: 

1. There exists a linear time-invariant and proper dynamic compensator 
~cmp of (4.2.2) such that when it is applied to (4.2.1), the resulting 
closed-loop system is internally stable. Moreover, the H 00-norm of the 
closed-loop transfer function from the disturbance input w to the con­
trolled output h is less than 'Y. 

2. There exist positive semi-definite matrices P and Q such that the following 
conditions are satisfied: 

(a) P is the solution of the Riccati equation: 

A'P + PA + C~C2 +-y2PEE'P 

-(PB + C~D2)(D~D2)- 1 (B'P + D~C2) = 0. (4.2.9) 

(b) Ac1P is asymptotically stable, where 

Ac1P :=A+ -y-2 EE' P- B(D~D2)-1 (B' P + D~C2). (4.2.10) 

(c) Q is the solution of the Riccati equation: 

AQ + QA' + EE' + -y2QC~C2Q 

-(QCf + ED~)(D1DD- 1 (C1Q + D1E') = 0. (4.2.11) 
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(d) Ac1q is asymptotically stable, where 

(e) p(PQ) < 12 . @J 

If the given system (4.2.1) with nonzero D 22 term, then the general condi­

tions for the existence of 1-suboptimal controllers are rather complicated. We 

will derive these conditions later in Chapter 6. In what follows, we recall a 

corollary that deals with a special full information feedback case when D2 is of 

full column rank and ~P has no invariant zero on the imaginary axis. 

Corollary 4.2.2. Consider the continuous-time linear time-invariant system 

of (4.2.1) with y = ( x' w' )' and D2 being of full column rank. Assume that 

~P has no invariant zero on the imaginary axis. Then the following statements 

are equivalent: 

1. There exist constant gain matrices F1 and F2 such that when the control 

law u = F1x + F2w is applied to (4.2.1), the resulting closed-loop system 

is internally stable. Moreover, the H00-norm of the closed-loop transfer 

function from the disturbance input w to the controlled output h is less 

than 'Y· 

2. The following conditions are satisfied: 

(a) D~2 (I- D2(D~D2)-1 D~) D22 < 1 2 I. 

(b) There exists a positive semi-definite solution P to the Riccati equa­

tion: 

A A, c'c [ B'P+D~C2 ]'a-1 [ B'P+D~c] 
0 = p + p + 2 2 - E' P + D~2 C2 E' P + D~2C ' 

where 

such that the matrix, 

is asymptotically stable. 
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Note that the existence conditions of a !'-suboptimal controller for the full 
state feedback case with D2 being of full column rank and ~P having no invari­
ant zero on the imaginary axis, are similar to those in Item 2 of Corollary 4.2.2 
except that one has to replace 2.(a) by D~2D22 < 1'2 I. 

Next, we will remove the restrictions on the invariant zeros of the subsystems 
~P and ~Q' i.e., we will allow both ~P and ~Q to have invariant zeros on the 
imaginary axis. The following theorem is due to Scherer [119). 

Theorem 4.2.2. Consider the continuous-time linear time-invariant system of 
(4.2.1) with D22 = 0. Then the following statements are equivalent: 

1. There exists a linear time-invariant and proper dynamic compensator 
~cmp of (4.2.2) such that when it is applied to to (4.2.1), the result­
ing closed-loop system is internally stable. Moreover, the H 00-norm of 
the closed-loop ·transfer function from the disturbance input w to the 
controlled output his less than I'· 

2. There exist appropriate dimensional constant matrices F and K, and pos­
itive definite matrices P > 0 and Q > 0 such that the following conditions 
are satisfied: 

(a) (A+BF)'P+P(A+BF)+f'-2PEE'P+(C2+D2F)'(C2+D2F) < 0. 

(b) (A+KCt)Q+Q(A+KC1 )'+!'-2QqC2Q+(E+KDl)(E+KDt)' < 0. 

(c) p(PQ) < f'2 . ITI 

The above Conditions 2.(a) and 2.(b) in Theorem 4.2.2 can be converted 
into conditions of the existences of positive definite solutions for some reduced 
order algebraic Riccati inequalities, which are independent ofF and K. This 

can be done by transforming the subsystems ~P and ~Q of the given system 
into the special coordinate basis as in Chapter 2. 

4.3. Discrete-time Systems 

We now consider in this section a general discrete-time linear time-invariant 
(LTI) system ~ with a state-space description 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

~ y(k) = C1 x(k) + D1 w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(4.3.1) 
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where x E Rn is the state, u E Rm is the control input, w E Rq is the 
disturbance input, y E ]RP is the measurement output, and h E Rl is the 

controlled output of~. The following ~cmp is the controller considered: 

~cmp : { v(k+1) = Acmp v(k) + Bcmp y(k), 

u(k) = Ccmp v(k) + Dcmp y(k). 
(4.3.2) 

We would like to note that in principle, one could transfer all the results in the 

continuous-time case to the discrete-time one using the bilinear and the inverse 
bilinear transformations of Chapter 3. For the regular full information feedback 
case, the interconnection between the continuous-time and discrete-time Hoo 
optimization problems as well as the relationship between the continuous-time 
and discrete-time H00 algebraic Riccati equations will be explicitly established 
later in Chapter 5. 

Again, as in the continuous-time case, we define ~p to be the subsystem 
characterized by the matrix quadruple (A, B, C2, D2), and ~Q to be the subsys­
tem characterized by the matrix quadruple (A,E,C1,D1), which respectively 
have transfer functions: 

(4.3.3) 

and 
Gq(z) = C1(zi- A)-1 E + D1 . (4.3.4) 

The following result is due to Stoorvogel, Saberi and Chen [125). 

Theorem 4.3.1. Consider the system (4.3.1). Assume that the subsystems 
~P and ~Q have no invariant zero on the unit circle. Then the following two 
statements are equivalent: 

1. There exists a linear time-invariant and causal dynamic compensator ~cmp 
of (4.3.2) such that when it is applied to (4.3.1), the resulting closed loop 
system is internally stable and the closed loop transfer matrix from the 

disturbance input w to the controlled output h is less than I· 

2. There exist symmetric matrices P 2: 0 and Q 2: 0 such that 

(a) The following matrix R is positive definite, 

R := r2I- D~2D22- E'PE 

+ (E'PB+D~2D2)Vt(B'PE+D~D22) > 0, (4.3.5) 

where 
(4.3.6) 
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(b) P satisfies the discrete algebraic Riccati equation: 

where 

[ D~D2 +B'PB D~D22+B'PE ] 
G := D~2D2+E'PB E'PE+D~2D22-!'2I . 

(4.3.8) 

(c) For all z E C with jzj :::: 1, we have 

= n + q + normrank{GP(z)}. 

(d) The following matrix S is positive definite, 

S := l I- D22D;2 - C2QC~ 

+ (C2QC~ + D2zDDWt(C1QC~ + D1D~2 ) > 0, (4.3.9) 

where 

(e) Q satisfies the following discrete algebraic Riccati equation: 

where 

[ D1D~ +C1QCf D1D~2 +C1Qq ] 
H := D22D~ +CzQCf C2Qq+D22D~2-'"Y2 I . 

(f) For all z E C with jzj :::: 1, we have 

[
zi -A AQGf +ED~ 

rank - C1 C1QCf +D1D~ 

- C2 C2QC~ +D22D~ 

AQq+ED~2 l 
C1Qq+D1D~2 

CzQC~+DzzD~2 -')'2 I 

(4.3.10) 

(4.3.12) 

n + e + normrank{Gq(z)}. 

(g) p(PQ) < 1'2. 
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Here we should note that Condition 2.(b) is the standard Riccati equation 

used in discrete-time H00 optimization except that the inverse is replaced by a 

generalized inverse. Condition 2.(c) is nothing other than the requirement that 

P must be a stabilizing solution of the Riccati equation. Conditions 2.(b) and 

2.(c) uniquely determine, if it exists, the matrix P. A similar comment can 

be made about Conditions 2.(d)-2.(f). Condition 2.(g) is as usual the coupling 

condition. The solutions to the above mentioned P and Q can be obtained 

by transforming the subsystems l":p and l":q into the special coordinate basis 

as in Chapter 2 and then solving two standard discrete-time Riccati equations 

without generalized inverses. These will be given later in Chapter 10. 

The following remark concerns the full information feedback and full state 

feedback cases. 

Remark 4.3.1. For the special cases offull information and full state feedback 

we can dispense with the second Riccati equation. More specifically: 

1. Full information feedback case: In this case we know both the state and 

the disturbance of the system at time k. It is easy to check that Q = 0 

satisfies Conditions 2.(d)-2.(f). Moreover this guarantees that the cou­

pling Condition 2.(g) is automatically satisfied. Therefore there exists 

a stabilizing controller which yields a closed loop system with the H00 

norm strictly less than 1 if and only if there exists a positive semi-definite 

matrix P satisfying Conditions 2.(a)-2.(c). 

2. Full state feedback case: In this case, it is easy to see that a necessary 

condition for the existence of a positive semi-definite matrix Q satisfying 

Conditions 2.(d)-2.(f) is that IDd <I· It is also easy to check that for 

the full state feedback case, 

(4.3.13) 

satisfies Conditions 2.(d)-2.(f). Condition 2.(g) then reduces to 

(4.3.14) 

Moreover, Condition ( 4.3.14) implies that Condition 2.(a) is automatically 

satisfied. Therefore there exists a stabilizing controller which yields a 

closed loop system with the Hoo norm strictly less than 1 if and only if 

there exists a positive semi-definite matrix P satisfying Conditions 2.(b), 

2.(c) and additionally Condition (4.3.14). 
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Furthermore, it can be shown that either in the full information case or in the 
full state feedback case, there always exists a 'Y-suboptimal static control law 
whenever the above-mentioned conditions are satisfied. 

The following corollary deals with the regular case in discrete-time H00 

optimization and is due to [124]. 

Corollary 4.3.1. Consider the system (4.3.1). Assume that the subsystem EP 
is left invertible and has no invariant zero on the unit circle, and the subsystem 

EQ is right invertible and has no invariant zero on the unit circle. Then the 
following two statements are equivalent: 

1. There exists a linear time-invariant and causal dynamic compensator Ecmp 

of (4.3.2) such that when it is applied to (4.3.1), the resulting closed loop 
system is internally stable and the closed loop transfer matrix from the 

disturbance input w to the controlled output h is less than 'Y· 

2. There exist symmetric matrices P ~ 0 and Q ~ 0 such that 

(a) The following matrices V and R are positive definite, 

(4.3.15) 

and 

R := 'Y2l- D~2D22- E'PE 

+ (E'PB + D~2D2)V-1 (B'PE + D~D22) > 0. (4.3.16) 

(b) P satisfies the discrete algebraic Riccati equation: 

where 

G(P) := [ ~~D2+B',PB D~D22 +B'PE ] 
D22 D2+E PB E'PE+D~2D22-'Y2I . 

(4.3.18) 

(c) The following matrix Ac1P is asymptotically stable, 

AI :=A-[B E]G(P)-l[B'PA+D~C2]· 
CP E'PA+D~2c2 

(4.3.19) 



4.3. Discrete-time Systems 93 

(d) The following matrices W and S are positive definite, 

W := DrD~ + CrQCf > 0, (4.3.20) 

and 

S := '"'(2 I - D22D;2 - C2QC~ 

+ (C2QC~ +D22DDW_1 (CrQC~ +DrD;2) > 0. (4.3.21) 

(e) Q satisfies the following discrete algebraic Riccati equation: 

Q=AQA' EE' _ [CrQA'+DrE']'H(Q)_ 1 [CrQA'+D1E'] 
+ C2QA' +D22E' C2QA' +D22E' ' 

(4.3.22) 
where 

DrD~2 +CrQC~ ] 
C2Qq + D22D~2 -'"'(2 I . 

(4.3.23) 

(f) The following matrix Ac1q is asymptotically stable, 

[CrQA'+DrE']' _1 [Cr] 
Ac1q :=A- C2QA' +D22E' H(Q) C2 . (4.3.24) 

(g) p(PQ) < 'Y2. 

It is interesting to note that all the conditions in Corollary 4.3.1 are related 
to those in Corollary 4.2.1 by a properly defined bilinear transformation. This 
will be shown later in Chapter 5 in more details. In fact, following the result of 
Glover [57], we can show that the continuous-time H 00 optimization problem 
and the discrete-time Hoo optimization problem are equivalent under the bilin­
ear transformation (see the detailed properties of the bilinear transformation in 
Chapter 3). Thus, all the results for the discrete-time case can be derived from 
those of its continuous-time counterpart. 



Chapter 5 

Solutions to Discrete-time 
Riccati Equations 

5.1. Introduction 

THE DISCRETE-TIME algebraic Riccati equation (DARE) has been investigated 
extensively in the literature (see, for example [9,68,72,101,105,123]). Here, most 
of the work was based on the discrete-time algebraic Riccati equation appearing 

in a linear quadratic control problem (hereafter we will refer to such a DARE 
as the H2-DARE). Recently, the problem of H00 control and that of differential 
games for discrete-time systems, have been studied by a number of researchers 

including [4,63,78]. This work gives rise to a different kind of algebraic Riccati 
equation (hereafter we call it an H00-DARE). Analyzing and solving such an 
H00-DARE are very difficult primarily because of an indefinite nonlinear term 
and because we cannot a priori guarantee the existence of solutions. In this 
chapter, we recall the results of Chen et al. [38] on non-recursive methods for 

solving general DAREs, as well as H2-DAREs and H00-DAREs. In particular, 

we will cast the problem of solving a given H00-DARE to the problem of solv­

ing an auxiliary continuous-time algebraic Riccati equation associated with the 
continuous-time H00 control problem (H00-CARE) for which the well known 
non-recursive solving methods are available. The advantages of this approach 

are: it reduces the computation involved in the recursive algorithms while giv­
ing much more accurate solutions, and it readily provides the properties of the 

general H00-DARE. More importantly, the results given in this chapter build an 
interconnection between the discrete-time and continuous-time H00 optimiza­

tion problems. 
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5.2. Solution to a General DARE 

We first introduce in this section a non-recursive method for solving the follow­
ing discrete-time algebraic Riccati equation, which is even more general than 
the H 00-DARE and which plays a critical role in solving the H00-DARE, 

P = A'PA- (A' PM+ N)(R + M'PM)- 1(M'PA + N') + Q, (5.2.1) 

where A, M, N, R and Q are real matrices of dimensions n x n, n x m, n x m, 
m x m and n x n, respectively, and with Q and R being symmetric matrices. 
We will show that the DARE of (5.2.1) can be converted to a continuous-time 
Riccati equation. Assume that matrix A has no eigenvalue at -1. We define 

F := (A+I)- 1(A-I), 

G := 2(A +I)- 2M, 

W := R + M'(A' + I)- 1Q(A +I)-1M 

-N'(A +I)-1M- M'(A' + I)-1 N, 

H := -Q(A+I)-1M+N. 

(5.2.2) 

Note that matrices F, G, Wand Hare in fact defined using the inverse bilinear 
transformation. 

We have the following theorem. 

Theorem 5.2.1. Assume that matrix A has no eigenvalue at -1. Then the 
following two statements are equivalent. 

1. P is a symmetric solution to the DARE (5.2.1) and W is nonsingular. 

2. P is a symmetric solution to the continuous algebraic Riccati equation, 

FF + F'F- (FG + H)W- 1 (FG +H)'+ Q = 0, 

and R + 2G'(I- F')-1 F(I- F)-1G is nonsingular. 

Moreover, p and pare related by p = 2(A' + I)-1 F(A + I)-1. 

Proof. See Subsection 5.4.A. 

(5.2.3) 

We would like to note that Theorem 5.2.1 can be regarded as a bridge 
connecting discrete-time algebraic Riccati equations and continuous-time alge­
braic Riccati equations. The result of Theorem 5.2.1 shows that any discrete­
time Riccati equation of the form (5.2.1) can be converted into an equivalent 
continuous-time Riccati equation of (5.2.3) for which many numerically stable 
non-recursive solving methods are available. Thus, in our opinion, there is no 
need to develop separate techniques for solving discrete-time algebraic Riccati 
equations. 
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5.3. Solution to an H 00-DARE 

In this section we present a non-recursive procedure that generates symmetric 
positive semi-definite matrices P such that 

V := B'PB + n;n2 > 0, (5.3.1) 

R := 'ii- n;2D22- E'PE 

+ (E' PB + D;2D2)V- 1(B' PE + n;n22) > 0, (5.3.2) 

and such that the following discrete-time algebraic Riccati equation (DARE) is 
satisfied: 

p = A'PA C'C _ [ B'PA + D~C2 ]' c-l [ B'PA + D~C2 ] 
+ 2 2 E'PA + DbC2 E'PA + D~2C2 ' 

(5.3.3) 

where 
G·- [D~D2 +B'PB D~D22+B'PE ] (534) 

.- D~2D2 + E' PB E'PE + D~2D22- 1 2 I . . . 

The conditions of (5.3.1) and (5.3.2) guarantee that the matrix G is invertible. 
We are particularly interested in solutions P of (5.3.1), (5.3.2) and (5.3.3) such 
that all the eigenvalues of the matrix Ac1 are inside the unit circle, where 

·-A [ JG-1 [B'PA+D~C2] Ac1 .- - B E E'PA + D~2 C2 . (5.3.5) 

The interest in this particular Riccati equation stems from the discrete­
time Hoc control theory (see Corollary 4.3.1). Also, it is simple to see that 
by letting E = 0 and D22 = 0, (5.3.1), (5.3.2) and (5.3.3) reduce to the well­
known Riccati equation from linear quadratic control theory. For clarity, we 
first recall the relation between the above Riccati equation and the discrete­
time full information feedback Hoc control problem. Let us define a system ~FI 
by 

{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

~FI y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) C2 x(k) + D2 u(k) + D22 w(k), 

(5.3.6) 

where x E 1Rn is the state, u E 1Rm is the control input, w E 1Rq the disturbance 
input, h E 1Rl the controlled output andy E 1Rn+q the measurement. Then the 
following lemma follows from Corollary 4.3.1. 

Lemma 5.3.1. Consider a given system (5.3.6). Assume that (A, B, C2, D2) is 
left invertible and has no invariant zero on the unit circle. Then the following 
two statements are equivalent: 
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1. There exists a static feedback u = K1x + K2w, which stabilizes EF1 and 
makes the Hoo norm of the closed-loop transfer function from w to h less 

than 'Y· 

2. There exists a symmetric positive semi-definite solution P to (5.3.1), 
(5.3.2) and (5.3.3) such that matrix Ac1 of (5.3.5) has all its eigenvalues 
inside the unit circle. 

In what follows, we provide a non-recursive method for computing the sta­
bilizing solution to the H00-DARE for the full information problem, i.e., (5.3.1), 
(5.3.2) and (5.3.3). We first define an auxiliary H00-CARE from the given sys­
tem data and we connect the stabilizing solution for the given H00-DARE to 
the stabilizing solution for the auxiliary H00-CARE, for which non-recursive 
methods of obtaining solutions are available. 

We first choose any constant matrix F such that A+ BF has no eigenvalue 
at -1. We note that this can always be done as (A, B) is stabilizable with 
respect to C0 U C0 • Next, define an auxiliary H00-CARE, 

with the associated condition 

where 

and 

A := (A+BF+I)- 1(A+BF-I), 

B := 2(A + BF + I)-2 B, 

E := 2(A+BF+I)-2E, 

C2 := C2 + D2F, 

D2 := D2- (C2 + D2F)(A + BF + I)-1 B, 

D22 := D2- (C2 + D2F)(A + BF + I)-1 E, 

G := [ g;;2~22 D;2~:~~ 72 I] . 

(5.3.8) 

(5.3.9) 

(5.3.10) 

If matrix D2 is injective, then Condition (5.3.8) implies G in (5.3.10) is invert­
ible. Again, we are particularly interested in solution P of (5.3.7) such that the 
eigenvalues of Ac1 are in the open-left plane, where 

(5.3.11) 
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We note that under the conditions when D2 is injective, (A, iJ, 62, D2) has 

no invariant zero on the jw axis, and (5.3.8), the above H00-CARE (5.3.7) 

is related to the continuous-time H00 ~-suboptimal full information feedback 

control problem for the following system, 

F: (~): + 

iJ u+ E w, 

tFI + (~) w, (5.3.12) 

h c2 X+ iJ2 u + iJ22 w. 

The following lemma follows from Corollary 4.2.2. 

Lemma 5.3.2. Consider a given system (5.3.12). Assume that D2 is injective 

and (A, B, 62, D2) has no invariant zero on the jw axis. Then the following 
two statements are equivalent: 

1. There exists a static feedback law u = k 1 x + k 2w, which stabilizes i:F1 
and makes the H00 norm of the closed-loop transfer function from w to h 

less than f. 

2. Condition (5.3.8) holds and there exists a symmetric P ;::: 0 such that 

(5.3.7) is satisfied and such that the matrix Ac1 of (5.3.11) has all its 

eigenvalues in the open left-half plane. 

Now, we are ready to present our main results. 

Theorem 5.3.1. The following two statements are equivalent: 

1. (A, B) is stabilizable and (A, B, C2 , D2 ) is left invertible with no invariant 
zero on the unit circle. Moreover, there exists a symmetric positive semi­

definite matrix P such that (5.3.1), (5.3.2) and (5.3.3) are satisfied along 

with the matrix Ac1 of (5.3.5) having all its eigenvalues inside the unit 
circle. 

2. (A, B) is stabilizable, D2 is injective and (A,B,62,D2) has no invariant 

zero on the jw axis, and (5.3.8) holds. Moreover, there exists a symmetric 

positive semi-definite solution P of the H00-CARE (5.3.7) such that the 

eigenvalues of Ach where Ac1 is as in (5.3.11), are in the open left-half 

complex plane. 

Moreover, P and Pare related by P = 2(A' + F' B' + J)- 1 F(A + BF + J)-1 . 1!1 

Proof. See Subsection 5.4.B. 
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Remark 5.3.1. We should point out that the left invertibility of (A, B, C2 , D2) 

is a necessary condition for the existence of the stabilizing solution to the Boo­

DARE for the full information problem (see [124]). Moreover, following the 

proof of Theorem 5.3.1 and the properties of the continuous-time algebraic 

Riccati equation, it is easy to show that the condition that (A, B, C2 , D2 ) has 

no invariant zero on the unit circle is also necessary for the existence of the 

stabilizing solution to the B 00-DARE for the full information problem. I!D 

Remark 5.3.2. From Theorem 5.3.1, a non-iterative method of obtaining the 

stabilizing solution P to the B 00-DARE for the full information problem can 

be established as follows: 

1. Obtain the auxiliary B 00-CARE; 

2. Obtain the stabilizing solution P to the B 00-CARE using some well­

known non-iterative methods. For clarity, we recall in the following a 

so-called Schur method (see e.g., [73,114]): Define a Hamiltonian matrix 

where 

B _ [Bn 
m- B21 

Hn =A- [.B E] G-1 [D2 .b22 ]' Ch 

B12=-[B E)G-1[B E]', 

B21 = -6~{!- [f:>2 Dn)G-1 [f:>2 i>n]'}C2, 

B22=-{A-[B E)G-1[D2 f:>22]'62}'. 

(5.3.13) 

(5.3.14) 

Find an orthogonal matrix Tm E 1R2nx 2n that puts Bm in the real Schur 

form 

T' B T = [511 
m m m O (5.3.15) 

where Sn E 1Rnxn is a stable matrix and S22 E 1Rnxn is an anti-stable 

matrix. Partition T m into four n x n blocks: 

(5.3.16) 

3. The stabilizing solution to the B 00-DARE for the full information problem 

is given by P = 2(A' + F' B' + I)-1 F(A + BF + I)-1 . I!D 
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It is well-known that the H00-DARE is the generalization of the H2-DARE. 
Namely, by letting 1 = oo, or equivalently E = 0 and D22 = 0, we obtain 
the general H2-DARE. For completeness, we give the following corollary that 
provides a non-iterative method of solving the general H2-DARE. 

Corollary 5.3.1. The following two statements are equivalent: 

1. (A, B) is stabilizable and (A, B, C2, D2) is left invertible with no invariant 
zero on the unit circle. Moreover, there exists a positive semi-definite 
matrix P such that 

B'PB + D~Dz > 0, (5.3.17) 

P = A'PA+C~C2- (A'PB+C~D2)(D~D2 +B'PB)-1 (A'PB+C~D2)' 
(5.3.18) 

and such that the eigenvalues of the matrix Ac1 are inside the unit circle, 
where 

(5.3.19) 

2. (A, B) is stabilizable, fh is injective and (A,B,C2,D2 ) has no invariant 
zero on the jw axis. Moreover, there exists a positive semi-definite solution 
P of the following CARE 

- - -I - -I - - - -I - -I - 1 - - -I -
O=PA+A P+C2Cz-(PB+C2Dz)(D2Dz)- (PB+C2D2)', (5.3.20) 

such that the eigenvalues of Ac1 are in the open left-half complex plane, 
where 

(5.3.21) 

Moreover, P and Pare related by P = 2(A' +F'B' +I)-1F(A+BF+I)-1 . 1£1 

Lemmas 5.3.1 and 5.3.2, and Theorem 5.3.1 show the interconnection be­
tween the H00 [-suboptimal control problem for the discrete-time system ~FI 
and the continuous-time system tFI· This connection is formalized in the fol­

lowing lemma. 

Lemma 5.3.3. Assume that (A, B) is stabilizable and (A, B, C2, D2 ) is left in­

vertible with no invariant zero on the unit circle. Then the following statements 
are equivalent: 

1. The full information feedback discrete-time system ~FI of (5.3.6) has at 

least one [-suboptimal control law. Namely, for a given [, there exists a 
static full information feedback u = K 1x + K 2w such that the closed-loop 

transfer function from w to h has an H00-norm less than I· 



102 Chapter 5. Solutions to Discrete-time Riccati Equations 

2. The full information feedback continuous-time system tF. of (5.3.12) has 
at least one ')'-suboptimal control law. Namely, for a given')', there exists a 
static full information feedback u = K1x+K2w such that the closed-loop 
transfer function from w to h has an Hoc-norm less than 'Y· 

Remark 5.3.3. The results of Lemma 5.3.3 can easily be obtained by a dif­

ferent route. It is well known that the Hankel norm and the H00 norm of a 
transfer function are invariant under a bilinear transformation (see e.g., Glover 

[57]). Hence one can recast the Hoc ')'-suboptimal control problem for the 
discrete-time system ~FI into an equivalent Hoc ')'-suboptimal control problem 
for an auxiliary continuous-time system obtained by performing bilinear trans­
formation on ~FI· It can be shown that one of the state space realizations of 
this auxiliary continuous-time system, ~sL, is given by 

(5.3.22) 

where fh -(A+ BF + I)-1B, D4 =-(A+ BF + I)-1E, and A, B, E, 
62 , D2 and D22 are as defined in (5.3.9). Consequently the Hoo ')'-suboptimal 
control problem for the discrete-time ~FI has a solution if and only if the Hoc ')'­
suboptimal control problem for the continuous-time system ~BL has a solution. 
However, we note that ~BL is not completely in the full information form. This 
difficulty can easily be removed by redefining the measurement output in ~sL 
as 

(5.3.23) 

It is now obvious that ~sL with the new measurement output y is in fact the 

same as tFI. Also, it is easy to show that the Hoc ')'-suboptimal problem for ~BL 
has a solution if and only if the Hoc ')'-suboptimal problem for ~FI has a solution 
and hence the result of Lemma 5.3.3 follows. It is important to note that 

the bilinear transformation approach does not establish a relationship between 
the stabilizing solution of the H00-CARE associated with the continuous-time 
system :EFI> obtained by performing a bilinear transformation on discrete-time 
system ~FI and defining the new measurement as in (5.3.23), and the Hoc­
DARE associated with the given discrete-time system ~FI· In fact, the main 
contribution of Theorem 5.3.1 is to establish such a relationship. 1!!1 
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We present in the following a numerical example to illustrate our results. 

Example 5.3.1. Let us consider a discrete-time H00-DARE for the full infor­
mation problem with 

1 0 1 0] [1 0] [ 1] 
1100 01 0 
1 0 1 0 , B = 1 0 , E = -1 , 
0111 01 0 

-1 0 1 1 1 0 1 

(5.3.24) 

C2 = [~ ~ ~ ~ ~] , D2 = [~ ~] , D22 = [ ~ l , 
0 1 0 1 0 0 0 0.5 

(5.3.25) 

and 'Y = 1. It is simple to verify that (A, B, C2, D2) is left invertible with an 
invariant zero at 0. Following (5.3.9), we obtain the auxiliary H00-CARE with 

6 -4 
-1 3 -8 6 -3 -92 68 28 

A= 2 -4 

[ 1 -2 

11 -8 4 , iJ = 128 -94 , E = -40 , 
2] [ 68 -50] [ -20] 

-1 2 -4 3 -1 -52 38 16 
0 0 -2 2 -1 -18 14 6 

[0 0 0 0 0] 
b, ~ [ 1~ -~ l , [ 0.0] 62 = 1 0 1 0 1 ' D22 = -4.0 . 

0 1 0 1 0 -9 6 • 3.5 

Solving (5.2.3) in MATLAB, we obtain the stabilizing solution to the auxiliary 
Hcxo-CARE as 

[ 

0. 767767 1.110081 0.180720 -0.307296 -0.617828] 
1.110081 1.607297 0.260775 -0.448623 -0.897322 

F = 103 X 0.180720 0.260775 0.046343 -0.064704 -0.139318 , 
-0.307296 -0.448623 -0.064704 0.143150 0.264285 
-0.617828 -0.897322 -0.139318 0.264285 0.511644 

and the stabilizing solution to the H00-DARE for the full information problem 

is given by, 

[ 

127.143494 187.057481 1 -84.671880 -134.864680] 
187.057481 278.730887 0 -124.061419 -201.396153 

P= 1 0 1 0 1 . 
-84.671880 -124.061419 0 61.078015 92.569717 

-134.864680 -201.396153 1 92.569717 147.982935 

It is straightforward to verify that the above P satisfies (5.3.1), (5.3.2) and 
(5.3.3). Moreover, the eigenvalues of Acl are given by {0.4125 ±j0.0733, 0, 0, 0}, 
which are inside the unit circle. liD 
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5.4. Proofs of Main Results 

The proofs of the main results of this chapter are given in the next. 

5.4.A. Proof of Theorem 5.2.1 

First, let us consider the following reductions: 

A' PA-p+ Q = 2A'(A' + I)-1 F(A + I)-1 A- 2(A' + J)-1 F(A + I)-1 + Q 

= 2(A' + I)-1 A' P A( A+ J)-1 - 2(A' + I)-1 F(A + J)-1 + Q 

=(A'+ J)-1(2A' FA- 2F)(A + I)-1 + Q 

=(A'+ J)-1[(A' + I)F(A- I)+ (A'- I)F(A + I)](A + J)-1 + Q 

= F(A- I)(A + J)-1 +(A'+ I)-1(A'- I)F + Q 

= FF+F'F+Q. (5.4.1) 

(1. => 2.) Let us start with the following trivial equality, 

A' P A - P + (A' + I)P(A +I) - (A' + I)P A- A' P(A +I) = 0, 

which implies that 

P- PA(A + I)-1 - (A'+ J)-1 A'P 

+(A'+ J)-1 A' PA(A + J)-1 -(A'+ J)- 1 P(A + I)-1 = 0. 

Then we have 

W = R+M'(A' +I)-1Q(A+I)-1 M -N'(A+I)-1 M -M'(A' +I)-1 N 

= R+M'(A' +I)-1Q(A+I)-1 M -N'(A+I)-1 M -M'(A' +I)-1 N 

+ M' PM- M' P A(A +I)-1M- M'(A' + I)-1 A' PM 

+M'(A'+I)-1 A'PA(A+I)-1 M -M'(A'+I)-1 P(A+I)-1 M 

= R+M'PM -(M'PA+N')(A+I)-1 M -M'(A' +I)-1(A'PM +N) 

+M'(A' +I)-1 (A' PA+Q-P)(A+I)-1 M (5.4.2) 

= R+ M' PM- (M' P A+ N')(A+ I)-1M- M'(A' +I)-1 (A' PM +N) 

+M'(A' +I)-1 (A' PM +N)(R+M'PM)-1 (M'PA+N') 

x (A+I)- 1 M (5.4.3) 

=[I -M'(A' +I)-1(A' PM +N)(R+M'PM)-1] 

x (R+M'PM)[I -(R+M'PM)-1 (M' PA+N')(A+I)-1 M]. (5.4.4) 
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Here we note that we have used (5.2.1) to get (5.4.3) from (5.4.2). By the 

assumption that W is nonsingular, we have 

R + M'PM = [/- M'(A' + I)- 1(A'PM + N)(R + M'PM)- 1t 1W 

X[/- (R + M'PM)- 1 (M'PA + N')(A + I)-1 M]-1. 

Hence, 

(A' PM +N)(R+M'PM)- 1 (M'PA+N') 

=(A' PM +N)[I -(R+M'PM)-1(M'PA+N')(A+I)- 1 M]W- 1 

X [/ -(R+M'PM)- 1(M'PA+N')(A+I)- 1 M]'(M'PA+N') 

=[A' PM -(A'PM +N)(R+M'PM)- 1(M'PA+N')(A+I)- 1 M +N]W-1 

X [A'PM-(A'PM+N)(R+M'PM)- 1(M'PA+N') 

X (A+/)-1 M +N]' (5.4.5) 

=[A' PM +(P-A' PA-Q)(A+I)-1 M +N]W-1 

x [A' PM +(P-A'PA-Q)(A+I)-1 M +N]' (5.4.6) 

=[(A' P+P-Q)(A+I)-1 M +N]W-1[(A' P+P-Q)(A+I)-1 M +N]' 

=[(A' +I)P(A+I)(A+I)-2 M -Q(A+I)-1 M +N]W-1 

X [(A' +l)P(A+I)(A+I)-2 M -Q(A+I)-1 M +N]' 

(5.4.7) 

Again, we have used (5.2.1) to get (5.4.6) from (5.4.5). Finally, (5.2.1), (5.4.1) 

and (5.4. 7) imply that 

PF + F'P- (FG + H)W- 1 (FG +H)'+ Q = o. 

(2. =} 1.) It follows from (5.2.2) that 

A= (I+ F)(!- F)-I, 

M = 2(/- F)-2G, 

H = -Q(I- F)-1G + N, 

P = (I- F')F(I- F)/2, 

W = R + G'(I- F')- 1Q(I- F)-1G 

-N'(I -F)-1G-G'(I -F')-1N, 

R + M'PM::::: R + 2G'(I- F')- 1F(I- F)-1G. 

(5.4.8) 
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Then we have 

R+M'PM = R+G'(I-F')-1 [Q+(F-PF-Q) 

+ (F-F'F-Q)+(FF+F'F+Q)](I-F)- 1G 

= R+G'(I -F')-1Q(I -F)-1G-N'(I -F)-1G-G'(I -F')-1 N 

+ G' (I- F')-1 [FG- Q(I- F)-1G+ N] + [FG -Q(I-F)-1G + N]' 

X (I -F)-1G+G'(I -F')-1(FF+F'F+Q)(I -F)-1G (5.4.9) 

= W +G'(I -F')-1(FG+H)+(FG+H)'(I -F)-1G 

+ G'(I -Fi)-1(FG+H)W- 1(FG+H)'(I -F)-1G (5.4.10) 

=[I +W-1(FG+H)'(I -F)-1G]'W[I +W-1 (FG+H)'(I -F)-1G]. (5.4.11) 

Here we note that we have used (5.2.3) to get (5.4.10) from (5.4.9). 

By assumption, we haveR+ M'PM nonsingular. Thus, we can rewrite 
(5.4.11) as, 

W =[I+ G'(I- F')-1 (FG + H)W- 1t 1(R + M'PM) 

x [I+ w-1 (PG + H)'(I- F)-1Gt1 . 

We have the following reductions, 

(FG+H)W- 1(FG+H)' 

= (FG+H)[I+W- 1(FG+H)'(I-F)- 1G] 

X (R+M' PM)-1[I +W-1(FG+H)'(I -F)-1G]'(FG+H)' 

= [FG+H +(FG+H)W-1(FG+H)'(I -F)-1G](R+M'PM)- 1 

x [PG+H +(FG+H)W-1(PG+H)'(I -F)-1GJ' (5.4.12) 

= [PG-Q(I -F)-1G+(FF+F'P+Q)(I -F)-1G+N](R+M'PM)-1 

X [PG-Q(I -F)-1G+(FF+F'P+Q)(I -F)-1G+N]' (5.4.13) 

=[(I +F')F(I -F)-1G+N](R+M'PM)-1 [G'(I -F')-1 P(I +F)+N'] 

=(A' PM +N)(R+M'PM)-1 (M' PA+N'). (5.4.14) 

Again, we have used (5.2.3) to get (5.4.13) from (5.4.12). Finally, it follows 
from (5.2.3), (5.4.1) and {5.4.14) that 

A'PA- (A' PM+ N)(R+ M'PM)- 1(M'PA + N') + Q- P = 0. 

This completes the proof of Theorem 5.2.1. 
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5.4.B. Proof of Theorem 5.3.1 

We note that the constant matrix F, a pre-state feedback, is introduced merely 

to overcome the situation when A has eigenvalues at -1. It is well-known 

in the literature that a pre-state feedback law does not affect the solution of 

the Riccati equation (5.3.3). Hence, for simplicity of presentation, we prove 

Theorem 5.3.1 for the case that F = 0 and 1 = 1. 

(1. =} 2.) It follows from Lemma 3.3.1 that the quadruple (A, B, C2 ,ih) is 
an inverse bilinear transformation of the quadruple (A, B, C2, D2) with a= 1. 

Hence, it follows from Theorem 3.3.1 that (A, B) is stabilizable (see Item l.a of 

Theorem 3.3.1) and (A, B, 62, D2 ) is left invertible (see Item 3.b of Theorem 

3.3.1) with no invariant zero on the jw axis (see Item 4 of Theorem 3.3.1) and 

with no infinite zero of order higher than 0 (see Item 5 of Theorem 3.3.1). 

Hence, D2 is injective as (A,B,C2 ,D2 ) has no invariant zero at -1. 

Next, we will show that (5.3.8) holds. Let 

M := [B E], 

N := q(D2 D22], 

R ·- [ D~D2 D~D22 ] 
.- D~2D2 D~2D22- I ' 

Q := qc2, 

F :=A, 
G := 2(A + J)-2 M, 

H := -Q(A +I)-1 M+ N, 

W := R + M'(A' + I)- 1Q(A + J)- 1 M- N'(A + J)- 1 M 

- M'(A' + J)- 1 N, 

X := I- (R+ M'PM)- 1(M'PA + N')(A +I)-1M. 

It is simple to verify that 

w = [ ~~D_2 iJ~iJ22 ] 

D22D2 D~2D22 - I . 

(5.4.15) 

Then, (5.3.3) and (5.3.7) reduce to (5.2.1) and (5.2.3), respectively, and (5.3.5) 

and (5.3.11) can be written, respectively, as 

Ac1 =A- M(R + M'PM)- 1(M'PA + N'), (5.4.16) 

and 
Ac1 = F- cw-1 (FG +H)'. (5.4.17) 
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Noting that 

det [X]= det [I- (R + M'PM)- 1(M'PA + N')(A +I)-1M] 

= det [I- M(R + M'PM)-1(M'PA + N')(A + I)-1) 

= det [I+ Ac!] · det [(A+ I)-1], 

it follows that X is nonsingular provided that the eigenvalues of Ac1 are inside 
the unit circle. Recalling (5.4.4) in the proof of Theorem 5.2.1, we have W 
nonsingular and 

(5.4.18) 

which implies that the inertia of w-1 is equal to the inertia of (R + M' P M)-1 

(see e.g., Theorem 4.9 of [3)). Again, noting that 

and 

(R+M'PM)-1=[~ ~][V~1 -~-1 ][~ ~]'. 
where Y = -(D;D2)-1 D;D22 and Z = -v-1B' PE, together with (5.4.18) 
and the facts that V > 0 and R > 0, it follows that 

D;2 (I- D2(D;D2)-1 b;) D22 < I. 
Using the fact that W is nonsingular, it follows from Theorem 5.2.1 that Pis 
a positive semi-definite solution of (5.3.7). 

Finally, we are ready to prove that Ac1 has all its eigenvalues in the open 
left-half complex plane. It follows from (5.4.7) in the proof of Theorem 5.2.1 

that 

Ac1 = F- cw-1(PG +H)'= F- cx-1(R+ M'PM)-1(M'PA +N') 

=(A+ I)-1(A- I)- 2(A + I)-2 M[I- (R + M'PM)- 1(M'PA + N') 

x (A+ I)-1 Mt 1(R + M'PM)-1(M'PA + N') 

=(A+ I)-1{A- I- 2[I- (A+ I)-1 M(R + M'PM)- 1(M'PA + N')t1 

X (A+I)-1M(R+M'PM)-1(M'PA+N')} 

=(A+ I)-1 { A- I- 2[I +A- M(R + M'PM)- 1(M' PA + N')t1 

X M(R+M'PM)-1(M'PA+N')} 
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=(A+ I)-1 (Ac1 + I)-1 {[I+ A- M(R + M'PM)- 1(M' PA + N')J 

X (A- I)- 2M(R+ M'PM)- 1 (M'PA + N')} 
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=(A+ I)-1 (Ac1 + I)-1 (Ac1- I) (A+ I), (5.4.19) 

which implies that the eigenvalues of Ac1 are in the open left-half plane provided 
that the eigenvalues of Ac1 are inside the unit circle. 

(2. :::} 1.) First, following the results of Theorem 3.2.1, it is straightforward 
to show that (A, B) is stabilizable and (A,B,C2,D2) is left invertible with no 
invariant zero on the unit circle, provided that (A, B) is stabilizable, fh is 

injective and (A,B,C2 ,ih) has no invariant zero on the jw axis. Next, noting 

that 

det [I+ w-1(FG + H)'(I- F)-1G) 

= det [I+ cw-1(FG + H)'(I- F)-1) 

= det [I-F+ GW-1(FG +H)']· det ((I- F)-1) 

= det [I- Ac~] · det [(I- F)-1], 

and Ac1 has all its eigenvalue in the open left-half plane, it follows from (5.4.11) 

that R+M'PM is nonsingular. Thus, the condition in Part 2 of Theorem 5.2.1 

holds. The rest of the proof in the reverse direction of Theorem. 5.3.1 follows 

from an almost identical procedure as (1. :::} 2.). This completes our proof. 1!1 



Chapter 6 

Infima in Continuous-time 
H 00 Optimization 

6.1. Introduction 

IN THIS CHAPTER, we address the problem of computing infima in B 00 opti­
mization for continuous-time systems. The B 00-CARE based approach to this 
problem simply provides an iterative scheme of approximating the infimum, '"Y*, 

of the B 00-norm of the closed-loop transfer function. For example, in the regu­

lar measurement feedback case and utilizing the results of Doyle et al. [49] (see 

also Corollary 4.2.1), an iterative procedure for approximating '"Y* would pro­
ceed as follows: one starts with a value of 'Y and determines whether 'Y > 1* by 

solving two "indefinite" algebraic Riccati equations and checking the positive 
semi-definiteness and stabilizing properties of these solutions. In the case when 
such positive semi-definite solutions exist and satisfy a coupling condition, then 
we have 1 > 'Y* and one simply repeats the above steps using a smaller value 
of '"Y· In principle, one can approximate the infimum '"Y* to within any degree 
of accuracy in this manner. However this search procedure is exhaustive and 

can be very costly. More significantly, due to the possible high-gain occurrence 

as 'Y gets close to 'Y*, numerical solutions for these B 00-CAREs can become 
highly sensitive and ill-conditioned. This difficulty also arises in the coupling 

condition. Namely, as 'Y decreases, evaluation of the coupling condition would 

generally involve finding eigenvalues of stiff matrices. These numerical difficul­
ties are likely to be more severe for problems associated with the singular case. 
Thus, in general, the iterative procedure for the computation of '"Y* based on 
AREs is not reliable. 
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Our goal here is to develop a non-iterative procedure to compute exactly 

the value of 'Y* for a fairly large class of systems, which are associated with the 

singular case and satisfy certain geometric conditions. The computation of 'Y* 

in our procedure involves solving two well-defined Riccati and two Lyapunov 

equations, which are independent of 'Y· The algorithm has been implemented 

efficiently in a MATLAB-software environment for numerical solutions. The 

results of this chapter are based on those reported in Chen [15) and Chen et al. 

[28,30-32). 

The outline of this chapter is as follows: In Section 6.2, we will present a 

non-iterative algorithm that computes the infimum, 'Y*, for the continuous-time 

H00 optimization problem under full information feedback, which is equivalent 

to that under full state feedback if the direct feedthrough term from the dis­

turbance to the controlled output is equal to zero. Section 6.3 deals with the 

computation of 'Y* for the measurement feedback case. Both Sections 6.2 and 6.3 

require the given systems to have no invariant zero on the imaginary axis and 

satisfying certain geometric conditions. Finally, in Section 6.4, we will remove 

the constraints on the imaginary axis invariant zeros, i.e., we will present a 

non-iterative computational algorithm for finding 'Y* for systems with invariant 

zeros on the imaginary axis. 

6.2. Full Information Feedback Case 

We consider in this section the Hoo optimization problem for the class of 

continuous-time systems characterized by 

E w, 

(~) w, (6.2.1) 

where x ERn is the state, u ERmis the control input, wE Rq is the external 

disturbance input, y E Rn+q is the measurement output, and h E Rl is the 

controlled output of 'E. It is labelled a full information problem in the literature 

because all information about the system, i.e., both x and w, are available for 

feedback. For the purpose of easy reference in future developments, we define 

'EP to be the subsystem characterized by the matrix quadruple (A, B, 0 2 , D2). 

We first make the following assumptions: 

Assumption 6.F.1: (A, B) is stabilizable; 

Assumption 6.F.2: 'EP has no invariant zero on the imaginary axis; 
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Assumption 6.F.3: Im (E) c v-(Ep) + s-(Ep); and 

Assumption 6.F.4: D22 = 0. 
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Remark 6.2.1. Here we note that the first assumption, i.e., (A, B) is stabi­

lizable, is necessary for the existence of any stabilizing controller. The second 

assumption will be removed in Section 6.4. Also, Assumption 6.F.3 will be 

automatically satisfied if EP is right invertible. In fact, in this case, Assump­

tion 6.F.4 will no longer be necessary. This will be treated as a special case at 

the end of this section (see Remark 6.2.4). lffi 

We have the following non-iterative algorithm for computing the infimum, 
'Y*, of the full information system (6.2.1). 

Step 6.F.l. Without loss of generality, we assume that (A, B, C2 , D2), i.e., Ep, 
has been partitioned in the form of (2.4.4). Then, transform EP into the 

special coordinate basis as described in Chapter 2 (see also (2.4.20) to 

(2.4.23) for the compact form of the special coordinate basis). In this 

algorithm, for easy reference in future developments, we introduce an 

additional permutation matrix to the state transformation r 8 such that 
the new state variables are ordered as follows: 

(6.2.2) 

We also choose the output transformation r o to have the following form: 

r _ [Imo 0 ] 
0- 0 ror ' 

where m0 = rank (Dz). Next, we compute 

E;J 
Eb 

r- 1E= E-
8 a 

Ec 
Ed 

(6.2.3) 

(6.2.4) 

It is simple to verify from the properties of the special coordinate basis 

that Assumption 6.F.3 is equivalent to Eb = 0. Also, for economy of 

notation, we denote nx the dimension of Rn Is+ (Ep)' which is equivalent 

to nt + nb. We note that nx = 0 if and only if the system EP is right 
invertible and is of minimum phase. 
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Step 6.F.2. Next, we define 

and 

A ·- aa ab Bl ·= Oa A13 ·= ad [A+ L+ Cb] [B+] [L+] 
11 .- 0 Abb ' 1 . Bob ' . Lbd ' 

A., :=An- A13(C~3C23)-1 C~3C21, 

B.,B~ := BnB~1 + A13(C~3 C23)- 1 A~ 3 , 

c~c., := c~l c21 - c~l c23(c~3c23)- 1 C~3c21· 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.8) 

(6.2.9) 

Then we solve for the positive definite solution S., of the algebraic Riccati 

equation, 

A.,S., + S.,A~ - B.,B~ + S.,C~C.,Sx = 0, (6.2.10) 

together with the matrix Tx defined by 

(6.2.11) 

where Tax is the unique solution of the algebraic Lyapunov equation, 

(6.2.12) 

Here we should note that (-A.,, Cx) is detectable since - Ata is stable 

and (Abb, Cb) is observable. Furthermore, Assumption 6.F.1 implies that 

(Ax, Bx) is stabilizable. Hence the existence and uniqueness of the solu­

tions S., and Tax follow from the results of Richardson and Kwong [106). 

Step 6.F.3. The infimum, 'Y*, is given by 

(6.2.13) 

It can be shown using the result of Wielandt [135) that all the eigenvalues 

of T.,S; 1 are real and nonnegative. ~ 

We have the following theorem. 

Theorem 6.2.1. Consider the full information system given by (6.2.1). Then 

under Assumptions 6.F.1 to 6.F.4, 

1. 'Y* given by (6.2.13) is indeed its infimum, and 
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2. for"' > "'*, the positive semi-definite matrix P("!) given by 

o] r-1 0 s , (6.2.14) 

is the unique solution that satisfies Conditions 2.(a)-2.(c) of Theorem 
4.2.1. Moreover, such a solution P("!) does not exist when"'<"!*· EB 

Proof. As stated in Step 6.F.1 of the algorithm, we assume that :EP has been 

partitioned as in (2.4.4). Hence, the full information system of (6.2.1) can be 
rewritten as 

(6.2.15) 

where in this proof, we consider both D22,o = 0 and D 22,1 = 0. Let us apply a 
pre-feedback law, 

Uo = -C2,0 X+ Vo, (6.2.16) 

to the above system. Then it is trivial to write the new system as, 

=(A-BoC2,o)x+[Bo B!] (~~) +Ew, 

[ 0 ] X + [ lm0 0] ( Vo ) • 
C2,1 0 0 u1 

(6.2.17) 

It follows from the theorem of the special coordinate basis, i.e., Theorem 2.4.1, 
that there exist nonsingular transformations, r s, r 0 and r i such that 

X~ 

G:) =r, (~). 

By Assumption 6.F.2, i.e., :EP has no invariant zero on the imaginary axis, the 

state component x~ is nonexistent and the transformed system is given by 

·+ X a A~a L~bcb 0 0 L~dcd x+ a 

xb 0 Abb 0 0 Lbdcd Xb 
±;;: 0 L;;bcb A;a 0 L;;dcd x;;: 

Xc Be Eta LcbCb BeE;;. Ace LcdCd Xc 
xd BdEda BdEdb BdEia BdEdc Add Xd 
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Bta 0 0 E+ a 
Bob 0 0 

G)+ 
Eb 

+ Boa 0 0 E- w, (6.2.18) a 
Boc 0 Be Ec 
Bod Bd 0 Ed 

where Eb = 0, and 

C") [I 0 l[o 0 
0 0 0 l ( ~:) [ lm0 

0 

~](~:) hd - mo 0 0 0 0 cd x; + 0 0 
hb 0 .ror 0 cb 0 0 0 Xc 0 0 

Xd 
(6.2.19) 

The above transformation of the system with a pre-state feedback law, 

uo = -Cz,o x + vo, 

along with the nonsingular state and control input transformations does not 
change our solution since it does not affect the value of 'Y*. We need to introduce 
the following lemmas in order to prove the theorem. 

Lemma 6.2.1. Given the system of (6.2.1), which satisfies Assumptions 6.F.1, 

6.F.2 and 6.F.4, and 'Y > 0, then there exists a full information feedback con­
trol law u = F1x + Fzw such that when it is applied to (6.2.1), the resulting 

IIThwlloo < 'Y and .A( A+ BF) C c-, if and only ifthere exists a real symmetric 
solution Px > 0 to the algebraic Riccati equation 

PxAx + A~Px + PxExE~Pxh2 - PxBxB~Px + C~Cx = 0, (6.2.20) 

where Ax, Bx and Cx are as defined in (6.2. 7) to (6.2.9), and 

Ex = [ i] , (6.2.21) 

with no restriction on Eb. Note that Eb = 0 if Assumption 6.F.3 holds. [!;] 

Proof. Without loss of generality, we assume that the given system has been 

transformed into the form of (6.2.18) and (6.2.19). Now let us define the new 
state variables, 

(6.2.22) 

where x 3 contains only the md states of xd which are directly associated with 

the controlled output hd while Xz contains x;, Xc and the remaining states of 
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xd. Hence, the dynamics of the transformed system in (6.2.18) and (6.2.19) can 

be partitioned as follows, 

(6.2.23) 

A2I] ( Vo) + [Ez] w, 
A3I XI E3 

(6.2.24) 

( ho ) _ [ 0 ] + [ I mo 0 ] ( Vo ) 
hi - C2I XI 0 C23 X3 ' 

(6.2.25) 

where Au, Bu, A13, C2I and C23 are as defined in (6.2.5) to (6.2.6), while 

A22, A23, · · ·, E3 are the matrices with appropriate dimensions. It is now 

straightforward to verify using the properties of the special coordinate basis 

that the quadruple characterized by 

(6.2.26) 

is right invertible and of minimum phase. Moreover, the state space X2 EBX3 

spans the strongly controllable subspace s+ (~p). On the other hand, the sub­

system characterized by the quadruple 

(6.2.27) 

is left invertible with no infinite zero and with no stable invariant zero. The 

result of Lemma 6.2.1 follows from Corollary 5.2 and Theorem 6.2 of [127). ~ 

Lemma 6.2.2. Given the system of (6.2.1) which satisfies Assumptions 6.F.1 

to 6.F.4, then the algebraic Riccati equation of (6.2.20) has a symmetric solution 

Px > 0 if and only if Sx > Tx/r 2 , where Sx and Tx are respectively given by 

(6.2.10) and (6.2.11). IIl 

Proof. First, we note that Tx of (6.2.11) is in fact the solution to the following 

Lyapunov equation 

(6.2.28) 

where 

since Assumption 6.F.3 holds. Also note that 

(6.2.29) 
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Now, suppose that S., > T.,f'y2 and define a positive definite matrix, 

It follows from (6.2.10), (6.2.28) and (6.2.29) that 

A.,X + XA~ + ExE~h2 - B.,B~ + XC~C.,X = 0. (6.2.30) 

Now, let us pre- and post-multiply (6.2.30) by Px := x-1 , we obtain 

(6.2.31) 

Hence, P., > 0 is a solution to (6.2.20). 

Conversely, suppose that (6.2.20) has a solution P., > 0. Let X := P;1 > 0. 

We have 

A.,X + XA~ + E.,E~J-·?- B.,B~ + XC~C.,X = 0. (6.2.32) 

Also, let T., be the solution to the Lyapunov equation 

A.,T., + T.,A~ = E.,E~, (6.2.33) 

which has the special form as in (6.2.11). Thus, (6.2.29) holds. Next, we define 
- 2 - 2 -S., = T.,f'y +X. Clearly, we have Sx > T.,f'y and S., ~X > 0. Then, we 

have 

--, I-,- 2 
A.,S., + S.,A.,- B.,B., + S.,C.,C.,S., = A.,(T.,f'y +X) 

+ (T.,f'·? + X)A~- B.,B~ + (T.,f'y2 + X)C~C.,(Txf''? +X) 

= (A.,T., + T.,A~- E.,E~)/'·? 

+ AxX + XA~ + E.,E~J-·?- B.,B~ + XC~C.,X 
=0, 

which implies that S., > 0 is a solution of the Riccati equation (6.2.10). Since 

(6.2.10) can only have one positive definite solution, thus we haveS., = S., and 

S., > T.,f'y2• This completes our proof of Lemma 6.2.2. [!] 

Now, let us get back to the proof of Theorem 6.2.1. Suppose that 'Y > -y*. 

It is easy to verify that 

P("y) = (r;-1)' [(S., -T~/-.. ?)-1 ~] r;-1, 

satisfies Conditions 2.(a)-2.(c) of Theorem 4.2.1. Hence, there exists a state 

feedback law u = Fx with FE Rmxn (and obviously there exists a full infor­

mation feedback law u = F1x + F2w) such that the H 00-norm of the resulting 
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closed-loop system from the disturbance w to the controlled output h, Thw(s), 
is less than 'Y and .X(A + BF) c C-. 

The converse part of the theorem follows immediately from Lemmas 6.2.1 

and 6.2.2 since the condition "( > Pmax (TxS; 1)}! is equivalent to Sx > Tx h 2 • 

This completes our proof of Theorem 6.2.1. ~ 

The following remarks are in order. 

Remark 6.2.2. For the continuous-time systems, the infimum for the full in­
formation system of (6.2.1) with D22 = 0 is equivalent to the infimum for the 
full state feedback system, i.e., 

{ 
X = A X + B u + E w, 

y = X 

h = c2 x + D2 u + o w. 

(6.2.34) 

Thus, the infimum for the above full state feedback system is also given by 'Y* 

in (6.2.13). I!D 

Remark 6.2.3. If Assumption 6.F.3, i.e., the geometric condition, is not satis­

fied, then an iterative scheme might be used to determine the infimum. This can 

be done by finding the smallest scalar, say i*, such that the Riccati equation 

(6.2.35) 

has a positive definite solution P x > 0. One could also apply the result of 

Scherer [117] directly to the Riccati equation (6.2.20) to develop an iterative al­
gorithm of the Newton type to compute an approximation of 'Y*. The algorithm 
of Scherer has a quadratic convergent rate. I!D 

Remark 6.2.4. If EP is right invertible, then Assumption 6.F.3 is automat­
ically satisfied. Moreover, Assumption 6.F.4 is no longer necessary and the 
infimum 'Y* for the full information feedback system (6.2.1) can be obtained as 
follows: 

~· = (Am~ W"'':"·' T .~~·]} t (6.2.36) 

where 'i' x and Bx are the positive semi-definite and positive definite solutions 

of the following Lyapunov equations, 

A+ T- T- (A+ )1 - (E+ B+ D L+ r-1D ) aa x + x aa - a - Oa 22,0 - ad or 22,1 

x (Ed - Bit D22,o - L ~dr~r1 D22,r) 1 , (6.2.37) 

(6.2.38) 
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respectively, and D22 ,0 and D22,1 are as defined in (6.2.15) but for nonzero D 22 . 

On the other hand, the infimum for the full state feedback system (6.2.34) is 
different from (6.2.36) and is given by 

(6.2.39) 

where T z and S:z: are again the pos}tive semi-definite and positive definite so­
lutions of the Lyapunov equations (6.2.37) and (6.2.38), respectively. These 
claims can be verified using similar arguments as in the proof of Theorem 6.2.1. 
The detailed proofs can be found in Chen [15]. lffi 

We conclude this section with the following illustrative examples. 

Example 6.2.1. Consider a full information system (6.2.1) and a full state 

feedback system (6.2.34) characterized by 

A~[! 
1 1 0 

1] [0 0 0] [5 1] 1 0 0 1 0 0 0 0 0 
1 1 0 1 , B= 1 0 0 , E= 0 0 , (6.2.40) 
1 1 1 1 0 0 1 2 3 
1 1 1 0 0 1 0 1 4 

and 

[0 0 • 0 OJ r 0 OJ 00001 000 
(6.2.41) C2 = 0 1 0 0 0 ' D2 = 0 0 0 ' D22 = 0. 

0 0 1 0 0 0 0 0 

It is simple to verify that the subsystem (A,B,C2 ,D2) is neither left- nor right­
invertible with one unstable invariant zero at s = 1. Moreover, it is already in 
the form of special coordinate basis with 

fs =Is, for= h, nz =3, 

A.~[~ 
1 

~], [l 
1 

~]· c;c. ~ [~ 
0 

~], 1 BxB~ = 1 1 
1 1 0 

and 

A~a = 1, E;}" = [5 1]. 

Then solving equations (6.2.10) and (6.2.12), we obtain 

[ 0.556281 0.185427 -0.305593] [13 0 

~] , Sx = 0.185427 0.395142 0.231469 ' Tz = ~ 0 
-0.305593 0.231469 1.217984 0 
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and for both systems (6.2.1) and (6.2.34), the infima are given by 

Example 6.2.2. Consider a full information system (6.2.1) and a full state 
feedback system (6.2.34) characterized by 

(6.2.42) 

and 

[1 0 0 OJ [1 0 OJ [2J C2 = 0 0 0 1 ' D2 = 0 0 0 ' D22 = 1 . (6.2.43) 

It is simple to verify that the subsystem (A, B, C2, D2) or 'Ep is controllable 
and right invertible with one unstable invariant zero at 2 and one infinite zero 
of order 2. Following Remark 6.2.4, we obtain 

L~d = 1, E;t = 4, D22,o = 2, D22,1 = 1, 

and 

Sx = 0.5, T x = 0.25. 

Then, the infimum for the full information feedback system is given 

I D l 1 

* ( {[D22 ,1 22,1 0 J}) 2 
( {[1 0 J})2 'Y = Amax O TxS~l = Amax O 0.5 = 1, 

and the infimum for the full state feedback system is 

Clearly, they are different. 

Finally, we conclude this section by posting an open problem related to the 

exact computation of the infimum, 'Y*, for the full information feedback system 

of (6.2.1). The algorithm that yields the exact value of 'Y* for this type of 
problem was built based on the following crucial assumption, 

(6.2.44) 
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and some minor ones. As will be seen shortly in an example, the assumption of 
(6.2.44) is not a necessary condition for obtaining the exact value of 'Y*. Here 
is the open problem. 

Open Problem. How to compute the exact value of the infimum, i.e., 'Y*, 

associated with the full information feedback system of (6.2.1) without imposing 
the condition as given in (6.2.44)? 

We believe that the above problem is solvable or at least partially solvable. 
The following is an example for which we are able to obtain the exact value of 
'Y* without imposing the condition of (6.2.44). 

Example 6.2.3. Consider a full information feedback system of (6.2.1) with 

A= [~ ~]' B = [~ ~]' E= [~ ~] ' (6.2.45) 

and 

c, = [~ ~] ' D, = [~ ~], D22 = 0. (6.2.46) 

It is simple to check using the linear system tools of Chapter 2 that 

(6.2.47) 

and hence the condition of (6.2.44) is not valid. It is also straightforward to 
verify that the existence of a "(-suboptimal control law with 'Y > 'Y* ~ 0 for 
(6.2.1) is equivalent to the existence of a positive definite solution P for the 
following algebraic Riccati equation, 

Let 

PA+A'P+PEE'P!"f2 - PBB'P+ C~C2 = 0. 

p := [~~ ~~] and 
1 1 
- := 2-1. 
Q 'Y 

Then (6.2.48) is equivalent to 

or 

[ PJ + P[ + 2aP1 + a 
Po (PI+ P2 + 2a) 

Po (P1 + P2 + 2a) ] _ 0 
PJ + P:j + 2aP2 + 4a - ' 

Po(Pl + P2 + 2a) = 0, 

PJ + P[ + 2aP1 + a = 0, 

PJ + Pi + 2aP2 + 4a = 0. 

(6.2.48) 

(6.2.49) 

(6.2.50) 

(6.2.51) 

(6.2.52) 

(6.2.53) 
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(6.2.51) implies that either 

Po = 0 or P1 + P2 + 2a = 0. (6.2.54) 

If we choose P1 + P2 + 2a = 0, then we have 

(6.2.55) 

which together with (6.2.52) imply that 

P~ + Pi + 2aP2 + a = 0. (6.2.56) 

Clearly, (6.2.53) and (6.2.56) imply that a = 0 or equivalently 'Y = 0. Note that 

'Y > 'Y* 2: 0. Hence, it is a contradiction. Thus, we will have to choose Po = 0. 
Then (6.2.52) and (6.2.53) reduce to 

P12 + 2aP1 + a = 0, 

Pi + 2aP2 + 4a = 0. 

(6.2.57) 

(6.2.58) 

It can be readily verified that the above equations have positive solutions P1 

and P2 if and only if a < 0, or equivalently 'Y > 1. Therefore, the exact value 
of the infimum is given by 'Y* = 1. Moreover, the positive definite solution P 

of (6.2.48) is given by 

[ 
_'Y_ (J2'Y2- 1 + 'Y) 
'Y2- 1 

P= 
0 

for any given 'Y > 'Y* = 1. 

(6.2.59) 

In general, we feel that there is a large class of systems that do not necessarily 
satisfy the geometric condition (6.2.44) but their infima are exactly computable. 
It is an interesting and of course very challenging problem. 

6.3. Output Feedback Case 

We present in this section an elegant well-conditioned non-iterative algorithm 

for the exact computation of 'Y* of the following measurement feedback system, 

{ 
:i; = A X + B u + E w, 

~ y = c1 x + D1 w, 

h = c2 x + D2 u + D22 w, 

(6.3.1) 

where x E R.n is the state, u E Rm is the control input, w E R.q is the external 

disturbance input, y E RP is the measurement output, and h E R.l is the 
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controlled output of~. Again, for the purpose of easy reference, we define ~P 

to be the subsystem characterized by the matrix quadruple (A, B, C2, D2) and 

~q to be the subsystem characterized by the matrix quadruple (A,E,C1 ,D1). 

We first make the following assumptions: 

Assumption 6.M.1: (A, B) is stabilizable; 

Assumption 6.M.2: ~P has no invariant zero on the imaginary axis; 

Assumption 6.M.4: (A, Cl) is detectable; 

Assumption 6.M.5: ~q has no invariant zero on the imaginary axis; 

Assumption 6.M.7: D22 = 0. 

Remark 6.3.1. Here we note that Assumptions 6.M.1 and 6.M.4, i.e., (A, B) 

is stabilizable and (A, C1) is detectable, are necessary for the existence of any 

stabilizing controller. Assumptions 6.M.2 and 6.M.5 will be removed later in 

Section 6.4. Also, Assumptions 6.M.3 and 6.M.6 will be automatically satisfied 

if ~P is right invertible and if ~Q is left invertible. Moreover, in this case, 

D22 = 0, i.e., Assumption 6.M. 7, can be removed without any difficulties (see 

Remark 6.3.3 later in this section). I!D 

We have the following non-iterative algorithm for computing the infimum, 

'Y*, of the general measurement feedback system (6.3.1). 

Step 6.M.l. Define an auxiliary full information system 

{ 

X = A X + B u + E w, 

: : ~! : +D, u : Q: :: (6.3.2) 

and perform Steps 6.F.1 and 6.F.2 of the algorithm as given in Section 6.2. 

For easy reference in future development, we append a subscript 'p' to all 

sub-matrices and transformations in the special coordinate basis associ­

ated with the system (6.3.2). In particular, we rename the state transfor­

mation of the special coordinate basis for ~P as r sP, and the dimension 

of 1Rn jS+(~P) as nxP· Furthermore, S, of (6.2.10) and T, of (6.2.11) are 

respectively renamed to SxP and T,P. 
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Step 6.M.2. Define another auxiliary full information system 

(6.3.3) 

and again perform Steps 6.F.1 and 6.F.2 of the algorithm as given in Sec­
tion 6.2 one more time but for this auxiliary system. To all sub-matrices 

and transformations in the special coordinate basis of 1::~, where 1::~ is 
the dual system of 1:q and is characterized by quadruple (A', Cf, E', D~), 
we append a subscript 'q' to signify their relation to the system 1::~. In 

particular, we rename the state transformation of the special coordinate 

basis for this case as r SQ, and the dimension of R n Is+ (1:~) as nxQ. As 
in Step 6.M.1, we also rename Sx of (6.2.10) and Tx of (6.2.11) as Sxq 
and Txq, respectively. 

Step 6.M.3. Partition 

r-1(r-1)' = [r *] 
SP SQ * * ' (6.3.4) 

where f is a nzp X nxq matrix, and define a constant matrix 

[ TxPS;i + f S;J f' S;i 
M= 

T S-1r's-1 
- ZQ ZQ ZP 

(6.3.5) 

Step 6.M.4. The infimum 'Y* for the measurement feedback system (6.3.1) is 
then given by 

"(
0 = J>.max(M). (6.3.6) 

It will be shown later in Proposition 6.3.4 that the matrix M of (6.3.5) 
has only real and nonnegative eigenvalues. ~ 

The proof of the above algorithm is rather involved. We would have to 

introduce several lemmas before proceeding to its final proof. Let us first define 

(6.3.7) 

(6.3.8) 

and 
Q('Y) := (r;~)' [ (Sxq- T;Qh2)-1 ~] r;~. (6.3.9) 

We have the following lemma. 
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Lemma 6.3.1. Consider the system (6.3.1), which satisfies Assumptions 6.M.1 
to 6.M.7. Then we have 

1. For 'Y > "(;, the positive semi-definite matrix P('Y) given by (6.3.8) is 
the unique solution to the matrix inequality F"Y(P) ~ 0, i.e., Condition 
2.(a) of Theorem 4.2.1, and satisfies both rank Conditions 2.(b) and 2.(c) 
of Theorem 4.2.1. Moreover, such a solution P('Y) does not exist when 

'Y < 'Y;. 

2. For 'Y > "(~, the positive semi-definite matrix Q('Y) given by (6.3.9) is 

the unique solution to the matrix inequality G"Y(Q) ~ 0, i.e., Condition 
2.(d) of Theorem 4.2.1, and satisfies both rank Conditions 2.(e) and 2.(f) 
of Theorem 4.2.1. Moreover, such a solution Q('Y) does not exist when 

'Y < 'Y~· 

Proof. It follows from Theorem 6.2.1. 

The next lemma gives an equivalence of the infimum, 'Y*, for the measure­
ment feedback system (6.3.1). 

Lemma 6.3.2. Let 'Y;Q := max{'Y;, 'Y~}. Then the infimum for the given 
measurement feedback system (6.3.1) is equivalent to 

(6.3.10) 

where the scalar function 

J('Y) := p{P('Y)Q('Y)}, (6.3.11) 

and P('Y) and Q('Y) are given by (6.3.8) and (6.3.9) respectively. 

Proof. It follows Lemma 6.3.2 that 'Y* ~ 'Y;q. Next, for any 7 E ('Y;Q, oo) such 

that J(7) < 12 , i.e., p{P(7)Q(1)} < 72 , then the corresponding P(1) and Q(7) 
as given in (6.3.8) and (6.3.9) satisfy the conditions of Theorem 4.2.1. Hence, 

1 > 'Y* and 'Y* is equivalent to that of (6.3.10). f!l 

It is then straightforward to show that the scalar function J('Y) of (6.3.11) 
is given by 

(6.3.12) 

The function J('Y) of (6.3.12) is a well-defined mapping from ('Y;q, oo) to [0, oo). 
Its evaluation involves the computation of the maximum eigenvalue of a matrix 
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of dimension nxP x nxP, which is normally of a much smaller dimension than 

the original product P('r)Q('r). We establish some important properties of the 

function f('r) in the following propositions. 

Proposition 6.3.1. f ( 'Y) is a continuous, nonnegative and non-increasing func­

tion of 'Y on ( 'Y;q, oo). lfl 

Proof. We first show that Px('r) := (SxP- "(-2TxP)-l is non-increasing, i.e., if 

'Y2 > 'Yl then Px ('r2) :::; Px ('ri) . Recall that SxP > 0 and TxP 2:': 0, we have for 

all 'Y2 > "(1 > 'Y;q 

which implies that 

Hence, 

Px b2) :S Px ("(I), for 'Y2 > 'Yl. 

Similarly, one can show that Qxb) := (Sxq_"(- 2Txq)- 1 is non-increasing. This 

implies that rQx('Y)r' is also non-increasing. Then clearly f('r) is a continuous, 

nonnegative and non-increasing function of 'Yon ('r;Q, oo). ~ 

The function f('r) defined above can be extended as a mapping from ['Y;q, oo) 

to [0, oo) by setting 

(6.3.13) 

It follows from Proposition 6.3.1 that the limit J('Y;q) exists and could be finite 
or infinite. 

Proposition 6.3.2. f('r) = "(2 has either no solution or a unique solution in 

the interval ( 'Y;q, oo). lfl 

Proof. The result follows from Proposition 6.3.1 and the fact that "(2 is strictly 

increasing for positive 'Y· ~ 

Proposition 6.3.3. If f('r) = "(2 has no solution in the interval ('r;Q, oo) then 

'Y* is equal to 'Y;q. Otherwise, 'Y* is equal to the unique solution of f ( 'Y) = "(2 

in the interval ('r;Q, oo). lfl 

Proof. If f ( 'Y) = 12 has no solution in the interval ( 'Y;q, oo), then f ( 'Y) < "(2 

for all 'Y E ('r;Q, oo) and hence according to Lemma 6.3.2, 'Y* = 'Y;q. On the 
other hand, it is obvious that 'Y* is equal to the unique solution of f('Y) = "(2 

when such a solution exists. ~ 
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At first glance, it seems that the solution of f(T) = 1 2 would involve the 

rooting of a highly nonlinear algebraic equation in 'Y· Actually its solution can 

be achieved in one step. Namely the problem of solving f(T) = 12 , if such 

a solution exists in the interval (I;Q, oo), can be converted to the problem of 

calculating the maximum eigenvalue of a constant matrix, i.e., M of (6.3.5). In 

fact, we would also show that, when f('Y) = 1 2 has no solution in the interval 

(T;Q, oo), the maximum eigenvalue of this matrix M is equal to 'Y;q, which is 

'Y* as well. To prove this, we would have to introduce a matrix function of 'Y, 

(6.3.14) 

We have the following propositions on the properties of the matrices M and 

N(T). 

Proposition 6.3.4. The eigenvalues of the matrix M of (6.3.5) are real and 

nonnegative. 

Proof. First, we have 

(6.3.15) 

Now, it is trivial to verify that both sub-matrices in (6.3.15) are symmetric and 

positive semi-definite. Then, using the result of Wielandt (135] (i.e., Theorem 

3), it is simple to show that the eigenvalues of M are real and nonnegative. ~ 

Proposition 6.3.5. 

1. N ('Y) has real eigenvalues for all 'Y E ('Y;Q, oo). 

2. Amax{N('Y)} = f('Y)- 12 is a continuous and strictly decreasing function 

of 'Y in ('Y;Q, oo). fEI 

Proof. Note that both (SxP -'Y-2TxP)-1 and (Sxq -'Y-2Txq)-1 are symmetric 

and positive definite for all 'Y E ('Y;Q, oo ). Hence, all the eigenvalues of N(T) 

are real for 'Y E ('Y;Q, oo). The second item follows from Proposition 6.3.1. ~ 

Proposition 6.3.6. The roots of det (N(I)] = 0 are real. Moreover, the largest 

root of det [ N ( 'Y)] = 0 in the interval ( 'Y;q, oo) is equal to {A max ( M)} ~ . fEI 
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Proof. Using the definition of N(-y) in (6.3.14), we have 

det [N('y)) = ( -1)nzp . det [12 I- (SxP -~-2TxP)- 1 r(SxQ -~-2TxQ)- 1 r') 

( -1)nzp d [ 2S T 2r( 2S T )-lr'] = d [S __ 2T ) · et I xP- xP-1 I xQ- xQ 
et XP I XP 

(6.3.16) 

Now it is simple to see that the roots of det [N('r)) = 0 are real since all the 

roots of det [12 SxP - TxP] = 0, det [12 SxQ - TxQ] = 0 and det [12 I - M] = 0 
are real. Clearly, det [SxP - ~-2TxP] f. 0 and det [12SxQ - TxQ] f. 0 for all 
1 E ('r;Q, oo). Hence the largest root of det [N('r)) = 0 in ('r;Q, oo) is equal to 
the largest root of det [12 I - M] = 0, which is equal to Pmax ( M)}!. ~ 

Finally, we are ready to prove our algorithm for computing the infimum 1* 
for measurement feedback systems. We have the following theorem. 

Theorem 6.3.1. Consider the measurement feedback system (6.3.1), which 

satisfies Assumptions 6.M.1 to 6.M.7. Then 

(6.3.17) 

where M as defined in (6.3.5), is indeed its infimum. 

Proof. First, we will show that 1* is equal to the largest root of det [N(1)] = 0 
when f ( 1) = 12 has a unique solution in ( 1;Q, oo). It is simple to observe that 
det [N(I*)J = 0 since Amax[N('r*)J = f(l*)- (1*)2 = 0. Now suppose that there 
exists a 11 such that det [N ( 11)) = 0 and 11 > 1*. This implies that there exists 
an eigenvalue of N('r1), say >.i[N('r1)], such that >.i[N(II)) f. Amax[N(Il)) and 
>.i[N('r1)] = 0. Thus, we have 

(6.3.18) 

contradicting the findings in Proposition 6.3.5 that Amax[N(I)] must be a non­

increasing function. Hence, 1* is the largest root of det [N(1)) = 0 and it is 

equal to Pmax(M)} t as shown in Proposition 6.3.6. 

Now we consider the situation when f('y) = 12 has no solution in the interval 

('r;Q, oo). In this case, clearly we have 1* = 1;Q and 0 ~ f ( 1;Q) ~ ( 1;Q) 2. The 
last inequality and the definition of N(1) in (6.3.14) imply that 

(6.3.19) 
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Thus, the determinant of N('y;q) is bounded. Evaluating equation (6.3.16) at 

'Y = 'Y;q, we have 

det [N{'y;Q)]· det [SzP- {'r;q)-2Tzp]· det [('Y;q) 2 Sxq- Txq] 

= (-1)nzp · det [Szp]· det [Szq]· det [('Y;q)2 I- M]. (6.3.20) 

Note that from (6.3.7) and the definition of 'Y;q, we have 

(6.3.21) 

and since det [N('r;q)] is bounded, it follows from (6.3.20) that 

(6.3.22) 

or ('r;q)2 is an eigenvalue of M. Furthermore since det [N(7)] = 0 and similarly 

det ['Y2 I - M] = 0 do not have a root in ('Y;Q, oo), hence "f;q = {A max ( M)} i. 
This completes the proof of Theorem 6.3.1. 1!1 

The following remarks are in order. 

Remark 6.3.2. If Assumptions 6.M.3 and 6.M.6, i.e., the geometric condi­
tions, are not satisfied, then an iterative scheme might be used to determine 
the infimum. This can be done by finding the smallest scalar, say i"*, such that 
the Riccati equation 

has a positive definite solution P z > 0, the Riccati equation 

has a positive definite solution Oz > 0, and 

(6.3.25) 

Here r is as defined in (6.3.4). Also, all sub-matrices with subscript 'p' are re­

lated to the special coordinate basis decomposition of EP and the system (6.3.2), 
and all sub-matrices with subscript 'q' are related to the special coordinate basis 
decomposition of E~ and the system (6.3.3). liD 

Remark 6.3.3. If EP is right invertible and Eq is left invertible, then As­
sumptions 6.M.3 and 6.M.6, i.e., the geometric conditions, are automatically 
satisfied. Moreover, Assumption 6.M.7, D22 = 0, is no longer necessary and 
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the infimum ry* for the measurement feedback system (6.3.1) can be obtained 
as follows: 

0 0 

where r is as defined in (6.3.4), TxP and SxP are the positive semi-definite and 
positive definite solutions of the following Lyapunov equations, 

A+ T- T- (A+ ) ' - (E+ s+ D L+ r- 1 D ) aaP xP + xP aaP - aP - OaP 22,0P - adP orP 22,1P 

x (E;tp- BriapD22,0P- L~dPr;;-/pD22,1P)', (6.3.26) 

(6.3.27) 

and T xo and S xo are the positive semi-definite and positive definite solutions 
of the following Lyapunov equations, 

(6.3.28) 

(6.3.29) 

Here again all sub-matrices with subscript 'p' are related to the special coordi­
nate basis decomposition of ~P and the system (6.3.2), while all sub-matrices 
with subscript 'o' are related to the special coordinate basis decomposition of 
~~ and the system (6.3.3). The detailed proof of the above claim is similar to 
that of Theorem 6.3.1. It can be found in Chen [15]. ~ 

We illustrate our results in the following examples. 

Example 6.3.1. We consider a measurement feedback system (6.3.1) with A, 
B, E, C2 , D2, D22 being given as in Example 6.2.1 of Section 6.2 and 

-2 
2 

-3 
3 

-2 
2 (6.3.30) 

Step 6.M.l. It was computed in Example 6.2.1 that rsP = h, nxp = 3 and 

[ 
0.556281 0.185427 

SxP = 0.185427 0.395142 
-0.305593 0.231469 

-0.305593] [13 0 0] 
0.231469 , TxP = 0 0 0 . 
1.217984 0 0 0 
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Step 6.M.2. The subsystem (A, E, C1 , Dl) is invertible and of nonminimum 
phase with invariant zeros at { -1.630662, -3.593415, 0.521129 ± j0.363042}. 
Following our algorithm, we obtain 

[ 

-0.011218 -0.106028 -0.906482 -0.212184 0.090909] 
0.185213 -0.745725 0.194520 -0.119195 0.181818 

r sQ = -0.919232 o.o96732 0.326906 -0.603079 0.272727 , 
0.279141 0.532936 0.087364 -0.581308 0.181818 

-0.206551 -0.373195 0.161098 0.489027 0.090909 

- - + - [0.433179 -0.253237] -
forQ- 1• AQ- AaaQ- 0.551005 0.609080 ' nxQ- 2' 

I [ 0.033508 -0.018630] I [0 OJ 
BQBQ = -0.018630 0.030289 ' CQCQ = 0 0 ' 

E+ = [ -0.769496 0.010023 0.448951 -0.769496] 
aQ -0.090061 0.655677 -1.044466 -0.090061 ' 

and 

[ 0.026333 -0.021114] [ 1.274771 -0.555799] 
BxQ = -0.021114 0.043965 ' TxQ = -0.555799 1.764580 · 

Step 6.M.3. The nzp X nxQ matrix r is then given by 

r = 0.185213 -0.745725 , [ 
-0.011218 -0.106028] 

and 

M = 102 X 0.616882 [ 

0.500695 
-0.442374 

1.074941 
-0.583103 

-0.919232 0.096732 

-0.334250 0.245016 0.082332 0.052125] 
0.992368 -0.260321 0.032515 0.253182 

-0.513348 0.588766 0.501907 0.261525 . 
-1.295698 0.921909 0.622391 0.172484 

1.526365 -0.286520 0.180099 0.487850 

Step 6.M.4. Finally, the infimum for the measurement feedback system is given 
by 

'Y* = 13.638725. 

Example 6.3.2. We consider a measurement feedback system (6.3.1) with A, 
B, E, C2, D2, D22 being given as in Example 6.2.2 of Section 6.2 and 

(6.3.31) 

It is again simple to verify that the subsystem (A, E, C1 , DI), i.e., EQ, is ob­
servable and invertible with two unstable invariant zeros at 0.5 ± j0.5916 and 
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one infinite zero of order two. Hence, all assumptions are satisfied. Following 

Remark 6.3.3, we obtain 

nxp = 1, SxP = 0.5, T XP = 0.25, 

forQ = 1, nxq = 2, 

+ - [ -1.2230247 -0.5241535] + - [ -0.6289841] 
EaQ - 1.1679942 0.9408842 ' LadQ - 1.3756377 ' 

+ - [0.8842105 -0.5101735] 
AaaQ - 0.9753892 0.1157895 ' 

Btaq = 0, D22,oq = 0, D22,1q = [ 2 I] , 

- [0.5274947 0.5264991] - [0.5810175 0.9950273] 
s XQ = 0.5264991 3. 7365053 ' T XQ = 0.9950273 3.2589825 ' 

r = [ -1.2230247 1.1679942], 

[

1 0 0 
0 9. 7252904 3.0610640 

M = 0 2.0766328 0.9724337 
0 1.2428740 1.1820112 
0 0 0 

-0.7439148 0 0 0] 
0.1292764 005 ' 
0.7056473 

0 

and finally the infimum for the given system, 

-y* = 3.2088448. 

6.4. Plants with Imaginary Axis Zeros 

We present in this section a non-iterative algorithm for computing -y* of the 

measurement feedback system (6.3.1) whose subsystems EP and/or Eq have 
invariant zeros on the imaginary axis. The procedure is similar to the algorithm 
of the previous section, although it is slightly more complicated. It involves 

finding eigenspaces for the imaginary axis invariant zeros of EP and Eq and 

finding solutions to two extra Sylvester equations. We consider the system 

(6.3.1) which satisfies the following assumptions: 

Assumption 6.Z.l: (A, B) is stabilizable; 

Assumption 6.Z.2: lm (E) C v-(EP) + s-(EP); 

Assumption 6.Z.3: (A, C1) is detectable; 

Assumption 6.Z.4: Ker(C2) ::::> v-(Eq) ns-(Eq}; and 

Assumption 6.Z.5: D22 = 0. 
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We have the following step-by-step algorithm for computing 'Y*. We note that 

it has some overlaps with that in the previous section. However, this is merely 

for completeness and to properly define matrices required in the computation 

of the infimum 'Y*. 

Step 6.Z.l. Transform the subsystem system I:p, i.e., (A, B, C2, D 2 ) into the 

special coordinate basis described in Theorem 2.4.1. To all sub-matrices 

and transformations in the special coordinate basis of I:P, we append the 

subscript 'p' to signify their relation to the system I:p. We also introduce 

an additional permutation matrix to the original state transformation 

such that the transformed state variables are arranged as 

xtp 

Xbp 

Xp = x~P 
x;;P 

(6.4.1) 

Xcp 
Xdp 

Next, we compute 
E;tp 

EbP 

r:;p1 E = E~p 

E~ 
(6.4.2) 

EcP 
EdP 

Note that Assumption 6.Z.2 implies EbP = 0. Then define the following 

matrices: 

[At,, L~bpcbp 
0 l [st., L~" l Ap := 0 AbbP 0 ' BP := BobP LbdP ' 

0 L~bpcbp A~aP B8aP L~dP 

(6.4.3) 

[ Et, l Ep := E~p , 

EaP 

(6.4.4) 

and 

c, = r, [~ 0 

~] , [lm0 , 

c":Cd,] 0 Dp:=foP ~ 
cbP 

(6.4.5) 
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By some simple algebra, it is straightforward to show that 

[~ 
0 0] _, -

c~[I- DP(D~Dp)- 1 D~]cp = cbpcbP 0 , (6.4.6) 

0 0 

for some full row rank 6 bP, 

[At., -+ -
LabpcbP 

0 l Ap- BP(D~DP)-l D~Cp = ~ AbbP 0 , (6.4.7) 
-o -

A~aP LabpcbP 

and 

[ Bri,, -+ l [ + -+ l ~adP BOaP ~adP 
BP(D~DP)- 1 B~ = BobP LbdP · BobP LbdP (6.4.8) 

B8aP 
-0 0 -0 
LadP BoaP LadP 

- -o -+ - -o 
for some appropriate LabP, LabP' LadP' LbdP and Ladp· Here we note that 
it can easily be verified that the pair (AbbP,CbP) is observable provided 
that ( AbbP, cbP) is observable. 

Step 6.Z.2. Define 

A ·- [AtaP XP .-

0 
(6.4.9) 

and 

CxP := [0 (6.4.10) 

Then we solve for the unique positive definite solution SxP of the Riccati 
equation, 

(6.4.11) 

together with the matrix TxP defined by 

T ·- [TaxP 0] XP .- 0 0 l 

where TaXP is the unique solution to the Lyapunov equation, 

(6.4.12) 

Next, solve the unique solution YxP of the following Sylvester equation, 

(AxP +SxPC~pCxP )YxP + YxP(A~aP)' +SXPC~P(L~bP)' 
-B [Bo XP OaP -o ]' ( ) LadP = 0. 6.4.13 
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Let us denote the set of eigenvalues of A~aP with a nonnegative imaginary 

part as {jwp1, · · ·, jwPkp} and for i = 1, · · ·, kp, choose complex matrices 

YiP, whose columns form a basis for the eigenspace, 

{X E cn~p I xH(jwpJ- A~aP) = 0 }, (6.4.14) 

where n~P is the dimension of A~aP. Then define 

H ( [ -0 ] [ 0 -0 ] I L 0 (L 0 ) I 
FiP := ~P B8aP LadP BoaP LadP + abP abP 

fori= 1, · · · ,"kp, and 

FP := blkdiag { F1P, · · ·, FkpP }· (6.4.16) 

It is shown in [118] that FP > 0. Also, define 

GP := blkdiag { V1:E~P(E~p) 1 VIp, · · ·, Vk:PE~P(E~p) 1VkpP }· (6.4.17) 

Step 6.Z.3. Transform the subsystem :E~, i.e., (A', Cf, E', DD, into the special 

coordinate basis described in Theorem 2.4.1. Again we add here the sub­

script 'q' to all sub-matrices and transformations in the special coordinate 

basis of the system :E~ and rearrange the transformed state variables as 

Next, we compute 

r- 1c' = SQ 2 

E;iQ 

Ebq 

E~Q 
E~ 

EcQ 

Edq 

(6.4.18) 

(6.4.19) 

Note that Assumption 6.Z.4 implies Ebq = 0. Then define the following 
matrices: 

LtbqcbQ 

AbbQ 

L~bqcbQ 

(6.4.20) 
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(6.4.21) 

and 

(6.4.22) 

By some simple algebra, it is straightforward to show that 

(6.4.23) 

for some full row rank cbQ, and 

0 l 0 ' 
A~aQ 

(6.4.24) 

and 

(6.4.25) 

- -o -+ - -o 
for some appropriate LabQ, LabQ> LadQ> LbdQ and LadQ" Here we note that 
it can easily be verified that the pair (AbbQ, cbQ) is observable provided 

that (AbbQ, CbQ) is observable. 

Step 6.Z.4. Define 

A ·- [AtaQ L~b_QcbQ] , B ·- [BtaQ L~dQ] 
:Z:Q .- :Z:Q .- - ' 

0 AbbQ BobQ LbdQ 
(6.4.26) 

and 

CxQ := [0 (6.4.27) 

Then we solve for the unique positive definite solution S:z:Q of the Riccati 

equation, 

(6.4.28) 
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together with the matrix Tzq defined by 

[TazQ 
T:~:Q := 0 ~] ' 

where Tazq is the unique solution to the Lyapunov equation, 

AtaqTazQ + Tazq(AtaQ)' = Edq(Edq)'. (6.4.29) 

Next, solve the unique solution Yzq of the following Sylvester equation, 

(Azq +S:~:qC~qCzq)Yzq + Yzq(A~aq)' +S:~:qC~q(t~bq) 1 

-BzQ [B8aQ t~dQ]' = 0.(6.4.30) 

Let us denote the set of eigenvalues of A~aq with a nonnegative imaginary 

part as {jwq1, · · · , jwQkq} and for i = 1, · · · , kq, choose complex matrices 

l/iq, whose columns form a basis for the eigenspace, 

{X E cn~Q I xH(jwqil- A~aQ) = 0 }. (6.4.31) 

where n~Q is the dimension of A~aQ. Then define 

R ·-v:H([ o -o ][ o -o ]' to (to )' 
IQ ·- iQ Boaq LadQ BoaQ LadQ + abQ abQ 

- [(t~bQ)' + CqYq]' [(t~bq)' + CqYq])l/iq, (6.4.32) 

for i = 1, · · ·, kq, and 

Fq := blkdiag { F1q, · · ·, FkqQ }· 

Again, it can be shown that Fq > 0. Also, define 

(6.4.33) 

Gq := blkdiag { ~~E~q(E~Q)'V!q, · · ·, Vk~QE~q(E~q)'VkqQ }· (6.4.34) 

Step 6.Z.5. Define 

(6.4.35) 

and 

(6.4.36) 

and partition 

r-1(r-1)' = [r *] 
SP SQ * * l 

(6.4.37) 

where r is of dimension nzp X n:~:Q• Finally, define a constant matrix 

[G F-' 
0 0 0 p p 

0 Tzp s;p1 + r s;~ r' s;p1 -rs-1 G~_J M·- ZQ 
(6.4.38) .- 0 T s-1r's-1 T:~:QS;~ - ZQ ZQ :I:P 

0 0 0 Q Q 
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Step 6.Z.6. The infimum '"Y* is then given by 

(6.4.39) 

This will be justified in Theorem 6.4.1 below. 

We have the following main theorem. 

Theorem 6.4.1. Consider the given measurement feedback system (6.3.1). 
Then under Assumptions 6.Z.1 to 6.Z.5, its infimum is given by (6.4.39). l!l 

Proof. Following the results of Scherer [119], it can be show that 

(6.4.40) 

if and only if the following algebraic Riccati inequality, 

[AP- BP(D~DP)- 1 DPCP]X + X[AP- BP(D~Dp)-1 DPCP]' 

+ 1 - 2 EPE~ + xcp [I- Dp(D~DP)-1 D~] cpx- BP(D~DP)- 1 B~ < o, 

has a positive definite solution. Then it follows from the results of [118] and 
[119] (see also Theorem 4.2.2) and some simple algebraic manipulations that 

for '"'( > '"'(;, the positive semi-definite matrix P('"Y) given by 

(6.4.41) 

is the lower limit point of the set 

{ P > 0 I3F : (A + BF)' P + P(A + BF) + '"Y- 2 PEE' P 

+ (C2 + D2F)'(C2 + D2F) < 0 }. 

Moreover, such a P('"Y) does not exist when '"'( < '"'(;. By dual reasoning, one can 

show that 

(6.4.42) 

if and only if the following algebraic Riccati inequality, 

[Aq- Bq(D~Dq)- 1 DqCq]Z + Z[AQ- BQ(D~Dq)-1 DqCQ]' 

+ '"'f- 2 EqE~ + ZCq [I- Dq(D~DQ)- 1 D~] CqZ- BQ(D~DQ)- 1 B~ < 0, 
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has a positive definite solution. For 'Y > 'Y~, the positive semi-definite matrix 
Q('Y) given by 

(6.4.43) 

is the lower limit point of the set 

{ Q > 0 j3K : (A+ KCl)Q + Q(A + KCI)' + 'Y-2QC~C2Q 

+(E+KDl)(E+KDl)' <0}. 
Again, such a Q('Y) does not exist when 'Y < 'Y~· Now, let us define 

(6.4.44) 

and 

(6.4.45) 

where P('Y) and Q('Y) are as given in (6.4.41) and (6.4.43), respectively. Then 
following the results of Scherer [119], it can easily be shown that 

(6.4.46) 

Also, it follows from Theorem 6.3.1 that 

* _{A [Tzps;p1 + rs;~r's;p1 
"'coup - max - T s-1 r' s-1 

ZQ ZQ ZP 

(6.4.47) 

Hence, the result of Theorem 6.4.1 follows. 

We illustrate our main result of this section in the following example. 

Example 6.4.1. Consider a given system characterized by 

1 1 -1 1] 0 0 0 1 
1 0 0 1 ' 
1 1 0 1 
1 1 1 0 

(6.4.48) 

[ -1 11 -21.876238 -4.2239 -2.425699] D = [1 OJ 
01 = 1 2 3 2 1 ' 1 o o ' 

(6.4.49) 
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and 

[
0 0 1 0 0] [1 0] 00001 00 

Cz = 0 1 0 0 0 ' Dz = 0 0 ' Dzz = 0. 

00100 00 

(6.4.50) 

First, it is simple to verify that the subsystem ~P is left invertible with two 
invariant zeros at ±j and Assumption 6.Z.2 is satisfied. Applying the special 
coordinate basis transformation to ~P, we have 

[ 

0 0 0 -1 OJ 1.3660254 0.3660254 0 0 0 
rsP = 0.1988066 1.9900945 Q 0 Q , 

0 0 1 0 0 
0 0 0 0 1 

. [ -0.1614784 0.2246812] 
AxP = 0.6026457 -0.8385216 ' 

[ 0.6040578 -0.1762197] 
BxP = 0.4723969 0.4878984 ' 

[ 1.3544397 0.2665382] 
cxP = o.2665382 2.0058434 ' 

[ 0 1] -0 [ 0.9489977 1.0485243] A~aP = 1 -0 ' LabP = -0.9489977 -1.0485243 ' 

and 

[B8aP L~dP] = [~ -~J' E~P = [ -i -~J · • 
Following Step 6.Z.2, we obtain 

[ 0.6180716 -0.2516670] 
SxP = -0.2516670 0.7339429 ' 

[ -0.6928337 -0.0822109] 
YxP = -0.3161228 0.3068152 ' 

and 

Fp = 2.3885733, Gp = 3.5. 

Next, the subsystem ~q is invertible and of nonminimum phase with invariant 
zeros at { 0.078944, ±j2.302011, -4.095803 }. Hence, Assumption 6.Z.4 is au­
tomatically satisfied. Applying the special coordinate basis transformation to 

~~, we obtain 

0.2148444 0.0018481 0.2169145 0.0698280 02] 0.5503097 0.6645646 -0.6352193 0.8023543 0.4 
fsq = -0.7990597 -0.7456317 -0.5938518 -0.5805731 0.6 ' 

-0.0941402 -0.0440333 0.3437855 0.0892284 0.4 
-0.0603521 0.0210926 -0.2803500 -0.0795282 0.2 
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AxQ = A~aQ = 0.0789442, BxQ = [ 2.3596219 -0.1725085) , CxQ = 0, 

E;tQ = [ 0.1593412 0.0009204 0.0116587 0.1593412) 

and 
Ao = [0.8733954 -14.3566212] 

aaQ 0.4222493 -0.8733953 ' 

[ 0 -0 ] - [ 13.8502316 -10.8089077] 
BoaQ LadQ - 0.3251762 -1.3752299 ' 

Eo = [ -1.9958628 6.3511003 -0.7973732 -1.9958628] 
aQ -Q.5082606 0.0920508 -0.4908900 -0.5082606 ' 

Following Step 6.Z.4, we have 

SxQ = 35.4527292, TxQ = 0.3224810, YxQ = [ -5.2529064 93.6614674), 

and 
Fq = 8.4694885, Gq = 35.4527292. 

Finally, evaluate 

[1.465309~ 0 0 0 

0] -0.0000103 -0.0000451 0.0003744 0 
M= 0 0.0000632 0.0002763 -0.0022958 0 . 

0 -0.0002503 -0.0010946 0.0090961 
0.211028~ 0 0 0 0 

We obtain 

"(* = VAmax(M) = 1.2104998. 

Finally, we conclude this chapter by noting that it can readily be verified 

now that the auxiliary systems associated with the the problem of maximization 

of complex stability radius in Subsection 1.4.2, the robust stabilization prob­

lem for plants with additive perturbations in Subsection 1.4.3 and the robust 

stabilization problem for plants with multiplicative perturbations in Subsec­

tion 1.4.4, all in Chapter 1, satisfy Assumptions 6.Z.1 to 6.Z.5. Hence, their 

infima are exactly computable. 



Chapter 7 

Solutions to Continuous­
time H00 Problem 

7.1. Introduction 

THE MAIN CONTRIBUTION of this chapter is to provide closed-form solutions 
to the H 00 suboptimal control problem for continuous-time systems. Here by 
closed-form solutions we mean solutions which are explicitly parameterized in 

terms of 'Y and are obtained without explicitly requiring a value for 'Y· Hence 
one can easily tune the parameter 'Y to obtain the desired level of disturbance 
attenuation. Such a design can be called a 'one-shot' design. We provide these 
closed-form solutions for a class of singular H 00 suboptimal control problems 
for which the subsystem from the control input to the controlled output and 
the subsystem from the disturbance to the measurement output satisfy certain 
geometric conditions and some other minor assumptions, namely, Assumptions 
6.M.l to 6.M. 7 of Chapter 6. Moreover, for this class of systems we also provide 
conditions under which the Hoo optimal control problem via state feedback has 
a solution. Explicit expressions for the solutions will also be given. Finally the 

issue of pole-zero cancellations in the closed-loop system resulting from the H00 

optimal or suboptimal state or output feedback control laws is examined. 

Some significant attributes of our method of generating the closed-form 
solutions in the H00 suboptimal control problem are as follows: 

1. No H 00-CAREs are solved in generating the closed-form solutions. As a 
result, all the numerical difficulties associated with the H 00-CAREs are 
alleviated. 
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2. The value for '"Y can be adjusted on line when the closed-form solution to 
the Hoo suboptimal control problem is implemented using either software 
or hardware. Since the effect of such a 'knob' on the performance and the 
robustness of the closed-loop system is straightforward, it should be very 

appealing from a practical point of view. 

3. Having closed-form solutions to the Hoo suboptimal control problem en­
ables us to understand the behavior of the controller (i.e., high-gain, band­
width, etc.) as the parameter '"Y approaches the infimum value of the Hoo 
norm of Thw over all stabilizing controllers. 

The above mentioned results were reported in Saberi, Chen and Lin [108]. In 
the case when Assumptions 6.M.1 and 6.M.7 are not satisfied, a similar method 
will also be adapted to compute '"'{-suboptimal solutions. It is, however, no 
longer a closed-form one. The outline of this chapter is as follows: Section 7.2 
gives a closed-form solution to the H00 suboptimal state feedback control prob­

lem, while Section 7.3 provides a closed-form solution (full order controller) to 
the Hoo suboptimal measurement feedback control problem. A reduced order 
'"'{-suboptimal controller design method is introduced in Section 7.4. Finally, all 
main results are to be proved in Section 7.5. 

7 .2. Full State Feedback 

We consider in this section the H 00 optimization problem for the following full 
state feedback systems characterized by 

{ 
:i; = A X + B u + E w, 

:E y = X 

h = c2 x + D2 u + D22 w, 

(7.2.1) 

where x ERn is the state, u ERmis the control input, wE Rq is the external 

disturbance input, and h E Rt is the controlled output of :E. Again, we let :EP 
be the subsystem characterized by the matrix quadruple (A, B, C2 , D2). As in 

Section 6.2 of Chapter 6, we first make the following assumptions: 

Assumption 7.F.1: (A, B) is stabilizable; 

Assumption 7.F.2: EP has no invariant zero on the imaginary axis; 

Assumption 7.F.4: D22 = 0. 
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We introduce a procedure for obtaining the closed-form solutions for the 
H00 suboptimal state feedback control problem utilizing an asymptotic time­
scale and eigenstructure assignment (ATEA). The concept of the ATEA design 
procedure was proposed originally in Saberi and Sannuti [112) and its complete 
time-scale properties and Lyapunov stability analysis were done in Chen [12). 

It uses the special coordinate basis of the given system (See Theorem 2.4.1). 
We also give conditions under which the Hoo optimal control problem has a 
solution. Furthermore, explicit expressions for these optimal solutions will be 
given. The following is a step-by-step algorithm to construct the closed-form 

of the !'-suboptimal state feedback laws, which are explicitly parameterized by 
'Y > 'Y* and a tuning parameter c:. 

Step 7.F.l: Transform the system :EP into the special coordinate basis as given 
by Theorem 2.4.1 in Chapter 2. To all sub-matrices and transformations 
in the special coordinate basis of :EP, we append a subscript P to signify 
their relation to the system :Ep. We also choose the output transformation 
r OP tO have the fOllOWing form: 

r _ [Imop 0 ] 
OP- 0 rorP ' 

where moP = rank (D2). Next, we compute 

E;tp 
EbP 

- -1 
E = r sP E = E;;p 

EcP 

EdP 

(7.2.2) 

(7.2.3) 

Note that Assumption 7.F.3 implies EbP = 0. Also, for economy of no­
tation, we denote nXP the dimension of nn;s+(:Ep). Note that no;p = 0 
if and only if the system :Ep is right invertible and is of minimum phase. 
Next, define 

[AtaP 
Anp = 0 

C21P = rorP [~ 
and 

Azp = AnP- Al3P(C~3pC23P)- 1 C~3pC21P, 

BzpB~p = BnPB~ 1p + Al3P(C~3pC23P)- 1 A~ 3p, 

C~pC;cp = C~lpC21P- C~lpC21P(C~3pC23P)- 1 C~3PC21P· 
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Step 7.F.2: Solve for the unique positive definite solution SxP of the algebraic 
matrix Riccati equation, 

(7.2.4) 

together with the matrix TxP defined by 

T _ [TaaP 0] 
XP- 0 0 7 

(7.2.5) 

where TaaP is the unique semi-positive solution of the algebraic matrix 
Lyapunov equation, 

(7.2.6) 

Then it was shown in Section 6.2 of Chapter 6 that the infimum for the 
given system (7.2.1) is given by 

'Y* = J A max (TxP s;p1). (7.2.7) 

Then, for any 'Y > 7*, we define 

( ) [ F~('y) Fu 'Y := F~('Y) 

where 
P ·- (S -2T )-1 X ,- XP- "Y XP 7 (7.2.9) 

and define 

Ahp := A up - [ Bup A13p ] Fu ('y). 

We will show later on that the eigenvalues of Ailp are in c-. Let us 

partition [ F~ ("f) Fb1 ( "Y) ] as, 

[ 
F~ 1 ('y) Fbll ('y) l 

[F~('Y) Fb1('y)] = F~~('y) Fb12('y) , (7.2.10) 

F~mc1p ('y) Fblmc~p ('y) 

where F~i('Y) and Fbli('y) are of dimensions 1 x n;!'P and 1 x nbp, respec­
tively. 

Step 7.F.3: Let .L\cP be any arbitrary mcP x ncp matrix subject to the constraint 
that 

(7.2.11) 

is a stable matrix. Note that the existence of such a .L\cP is guaranteed 

by the property that (AccP, BcP) is controllable. 
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Step 7.F.4: This step makes use of subsystems, i = 1 to mdp, represented by 

(2.4.14) of Chapter 2. Let A; = { A;1, A;2, · · ·, A;q, }, i = 1 to mdP, be the 
sets of q; elements all in C-, which are closed under complex conjugation, 

where q; and mdp are as defined in Theorem 2.4.1 but associated with the 

special coordinate basis of ~P. Let AdP := A1 U Az U · · · U AmdP. For i = 1 
to mdP, we define 

qi 

p;(s) :=IT (s- A;j) = sq' + Filsq,-l + · · · + F;q,-ls + F;q,, (7.2.12) 
j=l 

and 

(7.2.13) 

Step 7.F.5: In this step, various gains calculated in Steps 7.F.2 to 7.F.4 are 
put together to form a composite state feedback gain for the given system 

~P· Let 

and 

Fb1z ( 'Y )F2q2 / c:q2 [ 

Fbll ('y )Flq1 / cq1 1 

Fbl ffidP ( 'Y )F m:dP qmdP I cqmdP 

Then define the state feedback gain F('y, c, AdP, D.cP) as 

[ 
F::0 ('y) Ho ('y) 

p ~1 ('y' c' AdP) p bl ('y' c' AdP) 0 
0 0 

0 0 

0 

[ 
ctaP CobP Coap CocP 

Fo = EJaP EdbP EdaP EdcP 

E;t,P EcbP E~P 0 

(7.2.14) 

(7.2.15) 

(7.2.16) 
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and where 

(7.2.17) 

and 

This completes the algorithm. 

We have the following theorem. 

Theorem 7.2.1. Consider the full state feedback system (7.2.1) which satisfies 

Assumptions 7.F.1 to 7.F.4. Then with state feedback gain given by (7.2.14), 
we have the following properties: 

1. For any 'Y > 'Y*, for any AdP C C- which is closed under complex con­

jugation and for any ~cP subject to the constraints that A~cP is stable, 
there exists an c:* > 0 such that for all 0 < c: ~ c:*, the state feedback 
control law, 

(7.2.19) 

with F( 'Y, c:, AdP, ~cP) being given as in (7.2.14) is a "(-suboptimal control 
law for the given system (7.2.1). Namely, the closed-loop system com­
prising EP and the state feedback law (7.2.19) is internally stable and the 
Hoc-norm of the closed-loop transfer function from the disturbance w to 

the controlled output h is less than"(, i.e., I!Thwlloc < "f· 

2. Moreover as c: -t 0, the poles of the closed-loop system, i.e., the eigenval­
ues of A+ BF('Y, c:, Adp, ~cP ), are given by 

AdP + 0(1) 
c: , 

Clearly, there are at least ndP poles of the closed-loop system have infinite 
negative real parts as c: -t 0. 

Proof. See Subsection 7.5.A. 

The following remarks respectively deal with 1) the interpretations of the 
parameters c:, ~dP and ~cPi 2) solutions to the regular problem; and 3) solutions 
to the general problem when the geometric condition (Assumption 7.F.3) is not 
satisfied. 
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Remark 7.2.1. (Interpretations of£, AdP and ~cP)· Theorem 7.2.1 shows 

that the closed-loop system under H 00 suboptimal state feedback laws, i.e., 

Thw, has fast eigenvalues Adp/£. So the set of parameters AdP in the Hoo 
suboptimal gain F('y, £, AdP, ~cP) of(7.2.14) represents the asymptotes of these 

fast eigenvalues while £ represents their time-scale. The closed-loop system 

also has .X(A~cP) as slow eigenvalues. These eigenvalues can be assigned to 
any desired locations in C- by choosing an appropriate ~cP. Hence, the set 

of parameters ~cP in the H00 suboptimal state feedback gain prescribes the 

locations of these slow eigenvalues. 

Remark 7.2.2. (Regular Case). If D2 is injective, it is obvious from our 

algorithm that F('y, £, Adp, ~cP) = F('y) does not depend on £, AdP and ~cP, 
and is given by 

This corresponds to the regular case, and is the central controller given in Doyle 

et al. [49]. I!D 

Remark 7.2.3. Finally, we would like to note that if Assumption 7.F.3, i.e., 

the geometric condition, is not satisfied, one can use the iterative procedure 

in Chapter 6 to find an approximation of the infimum, say i'*. Moreover, 

the algorithm for finding the ')'-suboptimal state feedback laws can be slightly 

modified to handle this situation. To be more specific, one only needs to modify 

Step 7.F.2 slightly as follows: 

Step 7.F.2m: For any 1 > 'Y*, we define 

F ( ) ·- [ FdQ('Y) Fbo('Y)] _ [ B~ 1pPx ] 
11 'Y .- Fdi('Y) Fb1('y) - (ChpC23P)- 1 [A~3pPx+ChpC21P] ' 

where Px is the positive definite solution of the Riccati equation, 

and define 

A~ 1 p := A11P- [BuP Al3P]Fu('Y). 

Let us partition [ Fdi ('y) Fbl ('y)] as, 

[ 

Fdi1 (!') 

[ Fdi ('y) Fb1 ('y)] = Fdi~ ('y) 

F;!i ffidP ('y) 

Fbll (I) l 
Fb12('y) 

FblmdP ('y) 
7 

where F;!ii('Y) and Fbli('y) are of dimensions 1 x ntP and 1 x nbP· 
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The rest steps of the algorithm, i.e., Steps 7.F.1, 7.F.3 to 7.F.5, remain un­
changed. All results in Theorem 7.2.1 are valid for this situation as well. The 
only difference is that the control law is no longer of closed-form. 

The following theorem deals with pole-zero cancellations in the closed-loop 
system Thw under the state feedback law. 

Theorem 7.2.2. (Pole-zero Cancellations). Consider the full state feed­
back system (7.2.1) which satisfies Assumptions 7.F.1 to 7.F.4. Then with 
state feedback gain given by (7.2.14), the resulting closed-loop system has the 
following property: >.(A;;-aP), the stable invariant zeros of the system EP, and 
>.(A~cP) are the output decoupling zeros of the closed-loop transfer matrix Thw· 
Hence, they cancel with the poles of Thw· l!l 

Proof. See Subsection 7.5.B. 

We illustrate our algorithm in the following example. 

Example 7.2.1. Reconsider the system in Example 6.2.1, i.e., a full state feed-
back system characterized by 

A=[~ 
1 1 0 

I] [0 
0 

!J ' E = [~ ~] ' 

1 0 0 1 0 0 
1 1 0 1 , B= 1 0 (7.2.20) 
1 1 1 1 0 0 
1 1 1 0 0 1 

and 

[
0 0 1 0 0] [1 0 0] [0 0] 00001 000 00 

C2 = 0 1 0 0 0 ' D2 = 0 0 0 ' D22 = 0 0 . 
00100 000 00 

(7.2.21) 

It is easy to verify that (A, B) is stabilizable, and the system EP is neither 
right nor left invertible and is of nonminimum phase with an invariant zero at 

s = 1. Moreover, it is already in the form of the special coordinate basis with 
n;!"P = 1, n;;-p = n~p = 0, nbP = 2 and ncP = ndP = 1. Also, it is simple to 
see that Im (E) r; v- (EP) u s- (EP) since Ebp = 0. Hence, all Assumptions 
7.F.1 to 7.F.4 are satisfied. Moreover, it was obtained in Example 6.2.1 that 
the infimuni is given by 

'Y* = 6.4679044. 
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Figure 7.2.1: Maximum singular values of Thw (state feedback case). 
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Following the algorithm in this section, we obtain the closed-form solution of 

the 1-suboptimal state feedback gains, F('Y, c, Adp, LlcP ), which is given by 

-0.163673l 
0.132909,2 - 5.560084 

0.185427l- 3.009097 
0.132909,2 - 5.560084 

-0.318336y2 + 10.696930 
0.132909,2 - 5.560084 

0 

0 

1 0. 294 790]2 Adp 
- + (0.132909,2 - 5.560084)€ 

-1 + (0.102145/2 - 12.824695)Adp 
(0.132909,2 - 5.560084)€ 

_ 1 + (0.163673/2 - 2.127749)Adp 
(0.132909,2 - 5.560084)€ 

-1 

k 
c 

-1 

-1 

-1 

0 
(7.2.22) 

where the scalars Adp < 0 and LlcP > 1 (note that LlcP must be greater than one 
in order to have stable A~cP). We demonstrate our results in Figure 7.2.1 by the 
plots of maximum singular values of the closed-loop transfer function matrix 

for several values of 'Y and c. Note that in Figure 7.2.1, we choose parameters 



152 Chapter 7. Solutions to Continuous-time H00 Problem 

7 .3. Full Order Output Feedback 

This section deals with H 00 suboptimal and optimal design using full order 
measurement output feedback laws, i.e., the dynamical order of these control 
laws will be exactly the same as that of the given system. To be more specific, 
we consider the following measurement feedback system 

{ 
X = A X + B u + E w, 

E y = c1 x + D1 w, 

h = c2 x + D2 u + D22 w, 

(7.3.1) 

where x ERn is the state, u E :nm is the control input, wE Rq is the external 

disturbance input, y E RP is the measurement output, and h E Rl is the 

controlled output of E. Again, we let EP be the subsystem characterized by the 
matrix quadruple (A, B, C2, D2) and EQ be the subsystem characterized by the 
matrix quadruple (A, E, C1 , Dl). The following assumptions are made first: 

Assumption 7.M.1: (A, B) is stabilizable; 

Assumption 7.M.2: EP has no invariant zero on the imaginary axis; 

Assumption 7.M.3: Im (E) C v-(EP) + s-(Ep); 

Assumption 7.M.4: (A, Cl) is detectable; 

Assumption 7.M.5: EQ has no invariant zero on the imaginary axis; 

Assumption 7.M.7: D22 = 0. 

The class of output feedback controllers that we consider in this section are 
basically observer based control laws and can be regarded as an extension of the 

central output feedback controller that was proposed in Doyle et al. [49] for the 
regular case. We have modified the central output feedback controller of the 

regular case to deal with the singular case. This modification will be discussed 
later on. We assume that the infimum 1* has been obtained using methods 

given in Section 6.3 of Chapter 6. The procedure for obtaining the closed-form 

of the H 00 suboptimal output feedback laws for any 1 > 1* proceeds as follows. 

Step 7. M .1: Define an auxiliary full state feedback system 

{ 
X = A X + B u + E w, 

y = X 

h = c2 x + D2 u + D22 w, 
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and proceed to perform Steps 7.F.l to 7.F.5 of Section 7.2 to obtain the 

gain matrix F('y, e, AdP, ~cP). Also, define 

(7.3.2) 

Step 7.M.2: Define another auxiliary full state feedback system as follows, 

{ 
x =A' x + Cf u + c~ w, 

y = X 

h = E' X+ D~ u + D~2 w, 

(7.3.3) 

and proceed to perform Steps 7.F.l to 7.F.5 of Section 7.2 but for this 

auxiliary system to obtain a gain matrix F('y, e, AdQ, ~cQ)· Let us define 

K(")',e,AdQ,~cQ) := F('y,e,AdQ,~cQ)'. Also, define 

(7.3.4) 

Step 7.M.3: Construct the following full order observer based controller, 

where 

{ V = Acmp V + Bcmp Y, 
I;cmp : 

U = Ccmp V + 0 y, 

Acmp =A+ 'Y-2 EE' P('y) + BF('Y,e, Adp, ~cP) 

(7.3.5) 

+ [I- .,-2Q('Y)P('Y)r1 { K('Y, e, AdQ, ~cQ)[C1 + 'Y-2 D1E' P('Y)] 

+ .,-2Q('y) [A' P('Y) + P('Y)A + C~C2 + .,-2 P('y)EE' P('Y)] 

+ 'Y-2Q('y) [P('Y)B + C~D2] F('Y, e, Adp, ~cP)}, (7.3.6) 

Bcmp =-[I- .,-2Q('Y)P('Y)r1 K('Y, e, AdQ, ~cQ), (7.3.7) 

(7.3.8) 

It is to be shown that I;cmp is indeed a ")'-suboptimal controller. Clearly, 

it has a dynamical order of n, i.e., it is a full order output feedback 

controller. 

We have the following theorem. 

Theorem 7.3.1. Consider the given measurement feedback system (7.3.1) sat­

isfying Assumptions 7.M.l to 7.M.7. Then for any 'Y > ..,. ' for any AdP c c­
and AdQ c C-, which are closed under complex conjugation, and for any ~cP 
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and ~cQ subject to the constraints that A~cP and A~cQ are stable matrices, 
there exists an c* > 0 such that for all 0 < c ~ c*, the control law Ecmp 

as given in (7.3.5) is 'Y-suboptimal controller, namely, the closed-loop system 
comprising E and the output feedback controller Ecmp, is internally stable and 
the H 00-norm of the closed-loop transfer matrix from the disturbance w to the 

controlled output h is less than 'Y, i.e., IIThwlloo < 'Y· If! 

Proof. See Subsection 7.5.C. 

The following theorem deals with the issue of pole-zero cancellations and 
the closed-loop eigenvalues in the 'Y-suboptimal output feedback control. 

Theorem 7.3.2. Consider the given measurement feedback system (7.3.1) sat­
isfying Assumptions 7.M.1 to 7.M.7 with the 'Y-suboptimal control Ecmp as given 
in (7.3.5). Then the following properties hold: 

1. >.(A;;-aP), the stable invariant zeros of the system Ep, and >.(A~cP) are the 
output decoupling zeros of the closed-loop system Thw. Hence they cancel 

with the poles of Thw· 

2. >.(A;;-aQ), the stable invariant zeros of the system EQ, and >.(A~cQ) are the 
input decoupling zeros of the closed-loop system Thw· Hence they cancel 
with the poles of Thw· 

3. As c --+ 0, the fast eigenvalues ofthe closed-loop system are asymptotically 

given by Adp/c + 0(1) and AdQ/c + 0(1). If! 

Proof. See Subsection 7.5.D. 

The following remarks are in order. 

Remark 7.3.1. (Interpretations of c, AdP' AdQ' ~cP and ~cQ)· Again, as 
in Remark 7.2.1, the set of parameters AdP and AdQ represent the asymptotes 

of the fast eigenvalues of the closed-loop system while c represents their time­

scale. The set of parameters ~cP and ~cQ prescribe the locations of the slow 

eigenvalues of the closed-loop system corresponding to >.(A~cP) and >.(A~cQ). 
The eigenvalues can be assigned to any desired locations in C- by choosing 
appropriate ilcP and ilcQ. 

Remark 7.3.2. (Regular Case). For the regular problem when D1 is sur­
jective and D2 is injective, which implies that EP does not have Xc and Xd and, 
EQ does not have Xb and xd in their SCB decompositions, it is straightforward 
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to verify that both F('y, E, AdP, I::J.cP) 
depend only on r· Moreover, we have 

Hence, ~cmp reduces to 

where 

~cmp { V = Acmp V + Bcmp y, 

U = Ccmp V + 0 y, 

Acmp =A+ ,-2 EE' P(r) + BF('y) 

+ [I- ,-2Q(r)P(r)r1 K(r) (C1 + r-2 D1E' P(r)], 

Bcmp =- [I- ,-2Q(,)P(r)r1 K(1), 

Ccmp = F(r)· 
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K(r) 

This corresponds to the regular case, and is the central controller given in Doyle 
et al. [49]. 1!!1 

Remark 7.3.3. Finally, we would like to note that if Assumptions 7.M.3 and 

7.M.6, i.e., the geometric conditions, are not satisfied, one can use the itera­
tive procedure in Chapter 6 to find an approximation of the infimum, say i'*. 
Moreover, the algorithm for finding the ~-suboptimal output feedback laws can 
also be modified to handle this situation. To be more specific, one only needs 
to modify Steps 7.M.l and 8.M.2 slightly as follows: 

Step 7.M.lm: Define an auxiliary full state feedback system 

{ 
:i; = A X + B u + E w, 

y = X 

h = c2 x + D2 u + D22 w, 

and proceed to perform Steps 7.F.l, 7.F.2m, and 7.F.3 to 7.F.5 of Sec­

tion 7.2 to obtain the gain matrix F("f,E, AdP, I::J.cP) and Px. Let PxP := Px. 
Also, define 

P( ) ·= (r-1)' [PxP OJ r-1 f ' SP 0 Q SP' (7.3.9) 

Step 7.M.2m: Define another auxiliary full state feedback system as follows, 

{ 
x =A' x + c~ u + C2 w, 

~Q: y = X 

h = E' X + D~ u + D~2 w' 
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and proceed to perform Steps 7.F.1, 7.F.2m, and 7.F.3 to 7.F.5 of Sec­

tion 7.2 but for this auxiliary system to obtain F('y,c,AdP,tl.cP) and Px. 

Let K('y,c,AdQ,tl.cQ) := F(/,E,AdQ,tl.cQ)' and QxQ := Px. Also, define 

(7.3.10) 

The last step of the algorithm, i.e., Step 7.M.3, remains unchanged. All results 

in Theorems 7.3.1 and 7.3.2 are valid for this situation as well. However, the 

output feedback control law is not of closed-form any more. l!iJ 

Again, we illustrate our results in the following example. 

Example 7.3.1. Consider a given measurement feedback system characterized 

by matrices A, B, E, C2, D2 and D22 as given in Example 7.2.1 of the previous 

section and 

[0 -2 -3 -2 -1] [1 0] c1 = 1 2 3 2 1 ' D 1 = o o · (7.3.11) 

We first note that the pair (A, C1 ) is detectable, and the system (A, E, C1 , D1) 

is invertible (hence Assumption 7.M.6 is satisfied) and of nonminimum phase 

with invariant zeros at { -1.630662, -3.593415, 0.521129±j0.363042 }. It was 

obtained in Example 6.3.1 that 

"Y* = 13.638725. 

The closed-form to the output feedback suboptimal controllers as in (7.3.5) to 

(7.3.8) with F('y,c,Adp,tl.cP) given by (7.2.22), 

where 

Ko= 

-43.9114 + 4257.86,2 -97026.13 
1.121 - 790.4212 + 19405.23 

-12.45y4 + 372.65y2 - 0.02 
7.12,4 - 790.42,2 + 19405.23 

-48.44y4 + 1803.08y2 + 0.02 
7.12,4 - 790.42,2 + 19405.23 

62.57y4 - 1212.58/ - 38810.46 
7.12'l- 790.42')' + 19405.23 

17.80/ - 83.04l- 19405.21 
7.12' - 790.42,2 + 19405.23 

(7.3.12) 
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and 

-5 + 0.090909Adg - (0.241'4- 10.14!'2)Adg 
c (7.12')'4 - 790.42')'2 + 19405.23)c 

( -2.39')'4 + 190.91')'2)Adg 
- 0·363636 - (7.12')'4 - 790.42')'2 + 19405.23)c 

- 0.382726- (2.04')'4 - 108.95!'2)Adg 
(7.12')'4 - 790.42')'2 + 19405.23)c 

-2.545451 + 0.272727Adg- (-1. 13~'4 + 14·861'2)Adg 
c (7.12')'4 - 790.42')'2 + 19405.23)c 

- 1.272726 + 0.363636Adg - (0.69')'4- 74.56!'2)Adg 
c (7.12')'4 - 790.42')'2 + 19405.23)c 

with Adg < 0, and 

1 
P(l') = 0.132909')'2 - 5.560084 X 

[ 0.42770~' -0.29658')'2 0.16367')'2 0 

!l' 
-0.29658')'2 -15.8338 + 0.58415')'2 3.0091- 0.18543')'2 0 

0.16367')'2 3.0091 - 0.18543')'2 -5.1368 + 0.18543')'2 0 

0 0 0 0 
0 0 0 0 

where 

[ 0.083104 0.124442 0.484459 -0.768087 -0.249208] 
0.124423 1.778706 0.340500 -1.759522 -1.184163 

Ql = 0.484459 0.340500 2.917279 -4.330299 -1.256601 , 
-0.768087 -1.759522 -4.330299 7.332315 2.613520 
-0.249208 -1.184163 -1.256601 2.613520 1.160281 

and 

[ -3.0576430 -3.7265760 -18.030782 27.934279 
8.7345960] 

-3.7265760 -122.50790 6.5460280 79.188507 70.727376 
Qo = -18.030781 6.5460280 -113.22255 153.81266 36.981101 . 

27.934279 79.188509 153.81266 -272.47959 -102.79025 
8.7345960 70.727376 36.981101 -102.79025 -55.552230 

As in the previous example, we demonstrate our results in Figure 7.3.1 by the 

plots of maximum singular values of the closed-loop transfer function matrix 

for several values of I' and c. Note that in Figure 7.3.1, we choose Adp = -1, 

LlcP = 3 and Adg = -1. Note that since ~9 for this example is left invertible, 
the gain K (/', c, Adg, Llcg) depends only on ')', c and Adg. liD 
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Figure 7.3.1: Maximum singular values of Thw (output feedback case). 

7 .4. Reduced Order Output Feedback 

In this section, the H 00 control problem with reduced order measurement output 

feedback is investigated. For the case that some entries of the measurement vec­

tor are not noise-corrupted, we show that one can find dynamic compensators 

of a lower dynamical order. More specifically, we will show that there exists a 

time-invariant, finite-dimensional dynamic compensator r:cmp of the form 

{ V = Acmp V + Bcmp Y, 
r;cmp : 

U = Ccmp V + Dcmp y, 
(7.4.1) 

and with a McMillan degree n- rank[C1 , Dl] + rank(Dl) ~ n for r: of (7.3.1) 

such that the resulting closed loop system is internally stable and the closed loop 

transfer function from w to h has an Hoo norm less than 'Y > 'Y*. Moreover, we 
give an explicit construction of such a reduced order compensator. The result 

of this section was previously reported in [126) while the original idea for how 

to construct a reduced order observer for a general system was given by Chen 

et al. [29). 
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Let 'Y* be the infimum for the given system ~ of (7.3.1) and let 'Y > 'Y* be 
given. Using the result of the previous section, one can easily find two positive 
semi-definite matrices P and Q which satisfy 

F (P) ·- [A'P + PA + qc2 + PEE'P/'Y2 PB + C~D2] > O 
'"~ .- B' P + D~C2 D~D2 - ' 

and 

G (Q) := [AQ + QA' + EE' + QqC2Qh2 

-y CIQ +DIE' 
I I > 0 QC' +ED'] 
DID~ - , 

respectively, i.e., P and Q are the solutions of the quadratic matrix inequalities 
F-y(P) 2: 0 and G-y(Q) 2: 0. Next, we define an auxiliary system, 

where 

and 

{ 
Xpq = APQ Xpq + BPQ u + EPQ Wpq, 

~PQ : y = ciP Xpq + DIPQ Wpq, 
hpq = c2P Xpq + D2P u, 

APQ :=A+ EE'Ph2 + ('Y2I- QP)-IQC~pc2P, 

BPQ := B + ('Y2 I- QP)-IQqpD2p, 

EPQ := (I- QP/'Y2)-I Eq, 

ciP := ci + DIE'P/'Y2. 

(7.4.2) 

) (7.4.3) 

It can be shown (see e.g., [124]) that i) (Apq,Bpq,C2p,D2P) is right invertible 
and of minimum phase; and ii) (Apq,Epq,CIP,DIPq) is left invertible and of 
minimum phase. 

We will build the reduced order compensator upon the above auxiliary sys­
tem and show later that it works for the original system ~ of (7.3.1) as well. 
Let us first eliminate states which can be directly observed and concentrate on 
those states which still need to be observed. In order to do this, we need to 
choose a suitable basis. Without loss of generality, but for simplicity of pre­
sentation, we assume that the matrices CIP and D 2 pq are transformed in the 
following form: 

(7.4.4) 
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Thus, the system l:pq as in (7.4.2) can be partitioned as follows, 

[ ~~~ ~~~] 
[ ~ Crio2] 

C2P 

( ~~) + [ ~~] 

(~~) 

U + [~~] Wpq, 

+ [ D~,o] Wpq, 
(7.4.5) 

where (x~, x~)' = Xpq and (yb, y~)' = y. We observe that Y1 = x1 is already 

available and need not be estimated. Thus we need to estimate only the state 

variable x2. We first rewrite the state equation for x1 in terms of the output 

Y1 and state x2 as follows, 

(7.4.6) 

where y1 and u are known signals. Then, (7.4.6) can be rewritten as 

(7.4.7) 

Thus, observation of x2 is made via (7.4. 7) as well as by 

Now, a reduced order system suitable for estimating the state x 2 is given by 

{ (:;) 
A22 X2 + [A21 B2] ( ~) + E2 Wpq, 

(7.4.8) 

[ C1,o2] [~t] = A12 
X2 + Wpqo 

Before we proceed to construct the reduced order observer, we present in the 

following a key lemma which plays an important role in our design. 

Lemma 7.4.1. Let l:R denote the subsystem characterized by 

Then we have 

1. l:R is (non-)minimum phase if and only if (APQ, EPQ, clP, DlPQ) is (non-) 

minimum phase. 

2. I;R is detectable if and only if (Apq, EPQ> clp, DlPQ) is detectable. 

3. l:R is left invertible if and only if (APQ> EPQ> clp, DlPQ) is left invertible. 
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4. Invariant zeros of I:R are the same as those of (Apq, EPQ, C1P, D1pq). 

5. Orders of infinite zeros of the reduced order system, I:R, are reduced by 

one from those of (Apq, Epq, clp, DlPQ)· ~ 

Proof. It follows from Proposition 2.2.1 of Chen [12]. 

Now, based on (7.4.8), we can construct a reduced order observer of x2 as, 

and 

~ [ 0 ] ~ [h] Xpq = In-k X2 + 0 Yl, 

where KR is the observer gain matrix for the reduced order system and is chosen 

such that 

A22 - KR [ ~~~2 ] , 

is asymptotically stable. In order to remove the dependency on y1 , let us 

partition KR = [KR0, KRd to be compatible with the dimensions of the output 

(yb, YD'· Then (see e.g., [71]), one can define a new variable v := x2 - KRlYl 
and obtain a new dynamic equation, 

iJ = (A22 - KRoC1,02- KR1A12)v + (B2- KR1B1)u 

+ [KRo, A21- KR1A11 + (A22- KRoC1 02- KR1A12)KR1] (Yo). (7.4.9) 
' Y1 

Thus by implementing (7.4.9), x2 can be obtained without generating ill· 

Theorem 7.4.1. Let I:PQ be given by (7.4.2). Then there exist for every c > 0, 

a state feedback gain F and a reduced order observer gain matrix KR such that 

the following reduced order observer based controller, 

iJ = (A22 - KRoC1,02- KR1A12)v + (B2 - KR1Bl)u 

(7.4.10) 

when applied to I:PQ is internally stabilizing and yields an H00 norm of the 

closed-loop transfer matrix from Wpq to hpq strictly less than c. Moreover, if 

I:cmp is applied to the original system I: of (7.3.1), then the resulting closed­

loop system comprising E and Ecmp is internally stable and the H 00 norm of 

the closed-loop transfer matrix from w to h is less than "f· ffl 

~ [ 0 ] [0 Ik ] 
U = -FXpq = -F In-k V- F 0 KRl y, 
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Proof. See Subsection 7.5.E. 

Remark 7.4.1. The gain matrix F and Ka can be found using a systematic 
procedure given in Chapter 8. lEI 

Remark 7.4.2. In the case that the given system E of (7.3.1) is regular, then 
the controller (7.4.10) reduces to the well-known full order observer based con­
trol design for the regular H00-optimization as given in [49]. lEI 

We illustrate the above result with a numerical example. 

Example 7.4.1. We again consider a given measurement feedback system char­
acterized by matrices A, B, E, C2, D2 as in Example 7.2.1 and C1 , D1 as in 
Example 7.3.1. The infimum for this problem is "/* = 13.638725. In what fol­
lows, we will construct a reduced order measurement output feedback control 
law that makes the H00 norm of the resulting closed-loop transfer matrix from 
w to h strictly less that 'Y = 14. Following the procedure, we obtain an auxiliary 
system EPQ of the form (7.4.2) with 

and 

[ 

4.2254 
-11.8293 

APQ = 19.4695 
-17.4591 

1.2144 

[ 

0.9327 0 
-4.4755 0 

BPQ = 7.8569 0 
-6.3735 0 

0.1940 1 

-0.7415 
7.6804 

-9.0672 
10.0905 
0.5197 

4.1946 0 1.4335] 
-13.7917 0 -0.7102 

22.8277 0 4.0975 , 
-19.5135 1 -2.1038 

1.4176 1 -0.0983 

0] [ 18.5391 0 -62.8474 
0 , EPQ = 102.9481 
1 -97.9601 
0 -0.0958 

0.8299] -29.3560 
28.5462 , 

-22.3008 
3.1029 

-2.9601 -2 
3 2 

c - [0.1044 -2.0724 
lP- 1 2 -1] 1 , 

c - [ 3.0616 -0.9592 2.8464 0 0.6772] 
2p- -1.0146 -1.3601 0.6330 0 -0.7358 ' 

D _ [0.9409 -0.3383] D _ [0.9409 -0.3383] 
lP - 0 0 ' 2PQ - 0 0 . 

It is simple to show that the transformation T8 and T0 , 

0.1044] 
1 , 
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will transform C1 and D1 to the following form, 

r-lc T = [ o c1,o2 ] = [ o ~-2.2811 -3.2732 -2.2087 -1.~044 ] 
0 lP S h 0 1 0 0 0 

and 

T -ln = [ D1,o ] = [ 0.9409 -0.3383 ] 
o lPQ 0 0 0 . 

Moreover, we have 

and 

I 52714 
-2.4247 

-11.8293 31.3390 
= 19.4695 -48.0062 

-17.4591 45.0087 
1.2144 -1.9092 

-8.3291 -7.5428 
21.6962 23.6586 

-35.5807 -38.9390 
32.8639 35.9182 
-2.2257 -1.4289 

2.9993 1 2 
-4.4755 0 0 

7.8569 0 0 
-6.3735 0 1 

0.1940 1 0 

5.6724 -13.74251 
-62.8474 -29.3560 
102.9481 28.5462 ' 

-97.9601 -22.3008 
-0.0958 3.1029 

2.72831 11.1191 
-15.3720 ' 

15.3553 
-1.3127 

c = [ -2.2811 -3.2732 -2.2087 -1.1044] 
R -2.4247 -8.3291 -7.5428 2.7283 ' 

[ 0.9409 -0.3383] 
DR= 5.6724 -13.7425 . 

Using the algorithm given in Chapter 8, we obtain a gain matrix F, 

and 

[ 
-1.5656 4.7579 2.1737 3.1311 1.5656] 

FTs = -299.4859 555.2644 742.6408 597.9718 189.8014 , 
7.4811 -14.6842 -19.0100 -16.9623 -5.3773 

[ 
93.5515 -4.4388] 

-143.1777 5.6013 
KR = [ KRo I KRl ] = 133.7360 -4.9145 · 

-1.4788 0.2622 
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Finally, we obtain a reduced order output feedback controller of the form (7.4.1) 
with 

and 

[ 
-2.5903 -3.4139 -2.7089 -0.9269] 

A = 103. 3.3280 4.3868 3.4717 1.1995 
cmp -2.9478 -3.8917 -3.0775 -1.0641 ' 

0.6986 0.9299 0.7488 0.2393 

[ 
4.7579 2.1737 3.1311 1.5656] 

Ccmp = 555.2644 742.6408 597.9718 189.8014 , 
-14.6842 -19.0100 -16.9623 -5.3773 

[
-0.0936 -4.1798] [0 22 3556] 

3 0.1432 5.3492 . 
Bcmp = 10 · _ 0.1337 _ 4.7217 , Dcmp = 0 894.3952 , 

0.0015 1.1362 ° -33·1683 

which yields the poles of the closed-loop system, when it is applied to the given 

system, at 

-97.337,-34.72, -3.591, -1.848, -1.632, -0.248, -1.346, -0.765, -1. 

Obviously, they are in the stable region. The singular value plots of the resulting 

closed-loop transfer matrix Thw in Figure 7.4.1 also show that IIThwlloo is indeed 
less than 14, the given 'Y· 

7.5. Proofs of Main Results 

7.5.A. Proof of Theorem 7.2.1 

We need to recall the following two lemmas in order to proceed with our proof 

of Theorem 7.2.1. 

Lemma 7.5.1. Let an auxiliary system Eaux be characterized by 

(7.5.1) 

where 

and 
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Figure 7.4.1: Max. singular values of Thw under reduced order output feedback. 

Then ~aux comprising the state feedback law Uz = - Fu ('y)xx is internally 
stable, i.e., 

and the resulting closed-loop transfer function from Wx to hx has Hoo norm less 
than "(, i.e., 

(7.5.3) 

That is Uz = - F11 ('y )xx is a "(-suboptimal control law for ~aux. 

Proof. We first note that r OP is nonsingular and cdPC~p = I which implies 
that Dx is injective. Furthermore, it is simple to verify that the invariant 

zeros of (Ax,Bx,Cx,Dx) are given by A(AtaP), and are not on the imaginary 

axis. Hence ~aux satisfies the assumptions of the regular Hoc control problem. 
Moreover, it is straightforward to verify that for any 'Y > 'Y*, 

Px = (Szp- "(-2Tzp)-l > 0, 

is the solution of the following well-known Hoc-CARE: 

PxAx + A~Px + 'Y-2 PxExE~Px + C~Cx 
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with 

Then the results of Lemma 7.5.1 follow. 

Lemma 7.5.2. Let (A,B,C), where A E 1Rnxn, BE 1Rnxm and C E 1Rpxn, 

be right invertible and of minimum phase. Let F(c:) E Rmxn be parameterized 
in terms of c: and be of the form, 

F(c:) = N(c:)f(c:)T(c:) + R(c:), (7.5.5) 

where N(c:) E Rmxp, r(c:) E :JRPXP, T(c:) E :JRPXn and R(c:) E Rmxn. Also, 

f(c:) is nonsingular. Moreover, assume that the following conditions hold: 

1. A+ BF(c:) is asymptotically stable for all 0 < c: ~ c:* where c:* > 0; 

2. T(c:) -+we as c:-+ 0 where w is some p X p nonsingular matrix; 

3. as c:-+ 0, N(c:) tends to some finite matrix N such that C(sl- A)-1 BN 
is invertible; 

4. as c: -+ 0, R(c:) tends to some finite matrix R; and 

5. r-1 (c:)-+ 0 as c:-+ 0. 

Then as c:-+ 0, we have IIC[sl- A- BF(c:)t1 lloo-+ 0. 

Proof. This is a dual version of Lemma 2.2 given by Saberi and Sannuti [113]. 
The proof of this lemma follows from similar arguments as in [113]. IRl 

Now we are ready to proceed with the proof of Theorem 7.2.1. Note that 

F('y, c:, AdP, lldP) is constructed under the standard ATEA procedure. It can 
be shown using the techniques of the well-known singular perturbation theory 

as in Chen [12] that as c:-+ 0, the eigenvalues of A+ BF('"'f,C:,Adp,!ldP) are 

given by >.(A;;aP) E c-, >.(A~cP) E c-, Adp/c E c- and >.(AhP) E c- (see 
Lemma 7.5.1). Hence the closed-loop is internally stable. Moreover, following 
the results of Chen [12], it can be shown that for any >.d E AdP/c: E c-, the 
corresponding right eigenvector, say W ( c:), satisfies 

(7.5.6) 
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In fact, following the same arguments, one can show that as c: -? 0, the eigenval­
ues of A+,-2 EE' P('Y)+BF('Y, c:, Adp, 6.dp), where P(r) is as defined in (7.3.2), 
are given by A(A;;aP) E c-, A(A~cP) E c-, AdP/c: E c- and A(A~x) E c-. We 
will use these properties later on in our proofs of other theorems. This proves 
the second part of Theorem 7.2.1. 

Next, we show that the state feedback law u = F(,,c:,AdP,6.dP)x yields 

IIThwlloo = II[C2 + D2F('y, C:, Adp, 6.dP)][si- A- BF(!, C:, Adp, 6.dP)t1 E"
00 

< 'Y· 

Without loss of generality but for simplicity of presentation, we assume that 

the nonsingular transformations rsP =I and riP= I, i.e., we assume that the 
system (A, B, r;;-p1C2 , r;;-p1 D2 ) is in the form of the special coordinate basis. In 
view of (7.2.14), let us partition F('y,c:,AdP,6.dP) as, 

where 

_ [ctap +Fda b) 
Fob)=- 0 

0 

and 

Then we have 

and 

A= A+ BFo(r), 

EdaP EdcP 

E~P 6.cP 

0 
0 

B= 0 
0 

BdP 

With these definitions, we can write Thw as 

CiJap 
0 
0 

CocP 
0 
0 

CodP] 
0 ' 
0 

-Fbob) 0 0 

0 0 0 

cbP o o 

0 
0 
0 (7.5.8) 

BcP 
0 
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Then in view of (7.5.7), it can easily be seen that F(J, E, Adp, 6dP) has the form, 

where 

and 

while T ( E:) satisfies 

as E: -+ 0, where 

and 
(7.5.9) 

Using the same arguments as in Chen et al. [35], it is straightforward to show 

that the triple (A, fJ, Cm) is right invertible and of minimum phase. Thus, it 

follows from Lemma 7.5.2 that 

as E: -+ 0. We should also note that following the same line of reasoning, one 

can show that the triple (A+ ,-2 EE' P(J), fJ, Cm) is right invertible and of 

minimum phase, and moreover as E: -+ 0, 

(7.5.10) 

Next, let 

C = r •• [ ~m] + C., 

where 
[ ~Fj,(1) -Fbo(l') 0 0 

~] Ce = roP - F~~(J) -Fb1(J) 0 0 

cbP 0 0 

We have 
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as c -+ 0. Following the procedures of Chen [12] or Saberi, Chen and Sannuti 
[110], it can be shown that 

pointwise ins as c -+ 0. Hence, the results of Theorem 7.2.1 follow readily from 
Lemma 7.5.1. ~ 

7.5.B. Proof of Theorem 7.2.2 

Without loss of generality but for simplicity of presentation, we assume that 

the nonsingular state and input transformations r SP = I and riP = I, i.e., 

the system (A,B,r;;;c2,r;;P1D2) is in the form of the special coordinate basis. 
Th.en it is trivial to show that 

A+BF(1,<,A,.,,Ll.~) = [~ 
0 0 

~]' A;;-aP 0 

0 A~CP 
0 0 

and 

C, + D,F(1,<,A,.,,Ll.~) = r,. [~ 0 0 

~]' 0 0 
0 0 

where *S represent some sub-matrices which are of no interest to our proof. 

Hence, for any a: E >.(A;;-aP) U >.(A~cP), the corresponding right eigenvector is 
in the kernel of C2 + D2F('y, c, AdP, i:l.cp). This proves that a is an output 
decoupling zero of Thw· ~ 

7.5.C. Proof of Theorem 7.3.1 

For the sake of simplicity in presentation, we drop in the following proof the 

arguments of F("f, c, Adp, D..cP) and K('Y, c, AdQ, ~cQ)· Also, we assume without 
loss of generality that 'Y = 1. Thus, we will drop the dependency of 'Y in all the 
variables. 

First, it is simple to verify that the positive semi-definite matrices P of 

(7.3.2) and Q of (7.3.4) satisfy 

F(P) := [A'P+PA+qC2 +PEE'P PB+qD2 ] > O 
~ FP+~~ ~~ - ' 

and 
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respectively, i.e., P and Q are the solutions of the quadratic matrix inequalities 
F-y(P) ~ 0 and G-y(Q) ~ 0. Moreover, the following auxiliary system, 

where 

and 

{ 
XpQ = APQ XpQ + BPQ u + EPQ WpQ, 

EPQ : y = clP xPQ + DlPQ wPQ, 

hPQ = C2P xPQ + D2P u, 

APQ :=A+ EE'P +(I- QP)-1Qqpc2p, 

BPQ := B +(I- QP)-1 QC~pD2p, 

EPQ := (I- QP)-l EQ, 

clP := c1 + D1E'P, 
} 

(7.5.11) 

(7.5.12) 

has the following properties: 1) the subsystem ( APQ' BPQ' c2P' D2P) is right 
invertible and of minimum phase; and 2) the subsystem (APQl EPQl clp, DlPQ) 
is left invertible and of minimum phase. 

The following lemma is due to [124]. 

Lemma 7.5.3. For any given compensator Ecmp of the form 

{ V = Acmp V + Bcmp Y, 
Ecmp : 

U = Ccmp V + Dcmp Y· 

The following two statements are equivalent: 

1. Ecmp applied to the system E defined by (7.3.1) is internally stabilizing 
and the resulting closed-loop transfer function from w to h has an H00 

norm less than 1, i.e., IIThwlloo < 1. 

2. Ecmp applied to the new system EPQ defined by (7.5.11) is internally 
stabilizing and the resulting closed loop transfer function from wPQ to 

hPQ has an H00 norm less than 1, i.e., IIThPQWPQ lloo < 1. [!;] 

Hence, it is sufficient to show Theorem 7.3.1 by showing that Ecmp of (7.3.5) 
to (7.3.8) applied to EPQ achieves almost disturbance decoupling with internal 
stability. Observing that 
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it is simple to rewrite Acmp of (7.3.6) as 

Now it is trivial to see that I:cmp of (7.3.5) is simply the well-known full order 
observer based controller for the system I:PQ with state feedback gain F and 
observer gain (I- QP)- 1 K. Hence the well-known separation principle holds. 
Also, noting the facts that (Apq, Bpq, c2p, D2P) and (Apq, Epq, c1p, D1PQ) are 
of minimum phase, and right invertible and left invertible, respectively, it is 
sufficient to prove Theorem 7.3.1 by showing that as c: --+ 0, 

1. Apq + BPqF is asymptotically stable; 

2. II(C2P + D2PF)(sl- APQ- BPqF)-1 IIoo--+ 0; 

3. Apq +(I- QP)-1 KC1P is asymptotically stable; and 

We shall introduce the following lemma for further development. 

Lemma 7.5.4. As c:--+ 0, we have 

1. A+ EE' P + BF is asymptotically stable and 

(7.5.13) 

2. A+ QC~C2 + KC1 is asymptotically stable and 

Note that the roles of the above two statements are dual one another. l9 

Proof. It is shown in the proof of Theorem 7.2.1 that for c: --+ 0, the matrix 
A+EE'P+BF is asymptotically stable. In what follows, we will show (7.5.13). 
By some elementary algebra, it can be shown that 

and 

COaP 
0 

0 

CocP 

0 

0 
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Moreover, 

[C,e+D,eF][si-A-EE'P-BFt' ~ [ ~m] [sl-A-EE'P-.8 FT', 

where A and f3 are as in (7.5.8), F is as in (7.5.7) and Cm is given by (7.5.9). 

In view of (7.5.10), we have the result. 

Item 2 of Lemma 7.5.4 is the dual version of Item 1. Hence, the results 

follow. This completes the proof of Lemma 7.5.4. ~ 

Next, we will first show that APQ + BPQF is asymptotically stable for some 

sufficiently small £ and 

as £ -+ 0. In view of Lemma 7.5.4, we have 

si - APQ- BpqF 

= si -A-EE'P-BF-(1 -QP)- 1 QC~P[C2P+DxPF] 

= {I -(I -QP)- 1 QC~p[C2P+DxPF][si -A-EE'P-BFt1} 

·[si -A-EE'P-BF] 

-+ sl-A-EE'P-BF pointwise ins as c-+ 0. 

This implies that APQ + BPQF is asymptotically stable for sufficiently small c, 

and 

[C2P + D2PF][si-APq-BpqFt1 

= [C2P+D2PF][si -A-EE' P-BFt1 

· {I -(I -QP)-1 QC~p[C2P+DxPF][si -A-EE' P-BFt1} -l 

-+ 0, pointwise in s as£ -+ 0. (7.5.15) 

Again, in view of Lemma 7.5.4 and 

EQE~ = AQ+QA'+EE'+QC~C2Q, 

we have the following induction: 

(I- QP)[si-Apq-(I-QP)-1LC1PJ 

= [(I -QP)(si -A-EE'P)-QC~pC2P-LC1-LD1E'P] 
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= [si -A-EE'P-QC~pC2P-LC1-LD1E'P-sQP 

+QPA+QPEE'P] 

= [si -A-EE'P-Q (A'P+PA+C~Cz+PEE'P) 

-LC1-LD1E'P-sQP+QPA+QPEE'P] 

= [si -A-QC~C2 -LC1 -EE' P-LD1E' P-QA' P-sQP] 

= [si -A-QC~Cz-LC1- (EqE~ -AQ-QA'-QC~CzQ) P 

-LD1E'P-QA'P-sQP] 
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= [si -A-QC~C2-LC1 -sQP+AQP+QC~C2QP-EqE~LD1 E'P] 

= [(si -A-QC~C2 -LCI) (I -QP)-(Eq+LD1pq) E~P] 

= [si -A-QC~C2 -LC1] 

[(I -QP)-(si -A-QC~C2 -LC1)-1 (Eq+LD1pq) E~P] 

--+ [si -A-QC~C2 -LC1] (I -QP), pointwise ins as E:--+ 0. (7.5.16) 

Hence, Apq+(I-QP)-1KC1P is asymptotically stable for sufficiently small c. 

Now it follows from (7.5.16) that 

[si - APQ- (I -QP)-1 LC1Pt1[Epq+(I -QP)-1 LD1PQ) 

--+ (I -QP)-1 [si -A-QC~C2 -LC1t1 (I -QP)[Epq +(I -QP)-1 LD1pqj 

= (I -QP)-1[si -A-QC~C2 -LCI)-1[Eq+LD1PQ] 

--+ 0, pointwise in s as E --+ 0. 

This completes the proof of Theorem 7.3.1. 

7.5.D. Proof of Theorem 7.3.2 

As in the previous proofs, for simplicity, we will assume that 'Y = 1 and let 

F = F('Y, E:, Adp, ~cP) and K = K('Y, E:, Adq, ~cq). Then the closed loop system 

Thw(s) is given by 

It follows from the proof of Theorem 7.2.2 that for any 

the corresponding right eigenvector, say W, i.e., (A+ BF)W = aW, satisfies 

(C2 + D2F)W = 0. Moreover, it is simple to verify that (C2P + D2PF)W = 0 

and PW = 0. 
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By duality, one can show that for any {3 E .\(A,:;-aq)U.\(A~cq), {3 E .\(A+KCr) 
and the corresponding left eigenvector, say V, i.e., VH(A + KC1 ) = {3VH, 
satisfies VH(E + KD1) = 0 and VHQ = 0. In view of (7.3.6), we have 

and 

AcmpW =[A+ EE'P + BF +(I- QP)-1 QC~p(C2P + D2PF) 

+(I- QP)- 1 KC1 +(I- QP)-1 KD1E'P]W 

=(I- QP)- 1 KC1 W +(A+ BF)W, 

VH Acmp = VH(I ·_ QP)[A + EE' P + BF +(I- QP)-1 QC~P(C2P + D2PF) 

+(I- QP)-1KC1 +(I- QP)-1KD1E'P] 

= VH BF + VH(A + KCI). 

Therefore, 

and 

This shows that a is an output decoupling zero of Thw(s). Similarly, 

and 

-VH] [ A _1 BF] 
- (I- QP) KC1 Acmp 

= [ VH(I- QP)[A +(I- QP)-l KCl] 

= {3 [ VH - VH l, 

[VH -VH] [-(I- Q~)-lKDJ = VH(E + KDl) = 0. 

This implies that {3 is an input decoupling zero of Thw(s). 

The first part of Item 3 in Theorem 7.3.2 can be verified easily by using 

(7.5.6) and the fact that 

The second part is the dual of the first case. This completes the proof of 

Theorem 7.3.2. ~ 
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7.5.E. Proof of Theorem 7.4.1 

First, note that the subsystem i) (Apq,Bpq,C2p,D2P) is right invertible and of 

minimum phase; and ii) the subsystem (Apq, Epq, clp, DlPQ) is left invertible 

and of minimum phase. It follows from Theorem 8.4.2 that there indeed exist 

gain matrices F and KR such that the resulting reduced order output feedback 

control law (7.4.10) internally stabilizes ~PQ and makes the H 00 norm of the 

closed-loop transfer matrix strictly less than any given c. The second result of 

Theorem 7.4.1 follows from Lemma 7.5.3. ~ 



Chapter 8 

Continuous-time H 00 

Almost Disturbance 
Decoupling 

8.1. Introduction 

WE CONSIDER IN this chapter the problem of Hoo almost disturbance decou­
pling with measurement feedback and internal stability for continuous-time lin­
ear systems. Although in principle it is a special case of the general Hoo control 
problem, i.e., the case that 'Y* = 0, the problem of almost disturbance decou­
pling has a vast history behind it, occupying a central part of classical as well 
as modern control theory. Several important problems, such as robust control, 
decentralized control, non-interactive control, model reference or tracking con­
trol, H2 and H00 optimal control problems can all be recast into an almost 
disturbance decoupling problem. Roughly speaking, the basic almost distur­
bance decoupling problem is to find an output feedback control law such that 

in the closed-loop system the disturbances are quenched, say in an Lp sense, 
up to any pre-specified degree of accuracy while maintaining internal stability. 

Such a problem was originally formulated by Willems ([136] and [137]) and 

labelled ADDPMS (the almost disturbance decoupling problem with measure­

ment feedback and internal stability). In the case that, instead of a measure­
ment feedback, a state feedback is used, the above problem is termed ADDPS 

(the almost disturbance decoupling problem with internal stability). The prefix 
H00 in the acronyms H00-ADDPMS and H00-ADDPS is used to specify that 
the degree of accuracy in disturbance quenching is measured in L2-sense. 
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There is extensive literature on the almost disturbance decoupling prob­
lem (See, for example, the recent work [134), [98) and [99) and the references 
therein). In [134), several variations of the disturbance decoupling problems 
and their solvability conditions are summarized, and the necessary and suffi­
cient conditions are given, under which the H 00-ADDPMS and H 00-ADDPS 
for continuous-time linear systems are solvable. These conditions are given in 
terms of geometry subspaces and for strictly proper systems (i.e., without di­
rect feedthrough terms from the control input to the output to be controlled 
and from the disturbance input to the measurement output). Under these 
conditions, [98) constructs feedback laws, parameterized explicitly in a single 
parameter 6, that solve the H 00-ADDPMS and the H 00-ADDPS. These results 
were later extended to proper systems (i.e., with direct feedthrough terms) in 
[99). We emphasize that in all the results mentioned above, the internal stability 
was always with respect to a closed set in the complex plane. Such a closeness 
restriction, while facilitating the development of the the above results, excludes 
systems with disturbance affected purely imaginary invariant zero dynamics 
from consideration. Only recently was this "final" restriction on the internal 
stability restriction removed by Scherer [119), thus allowing purely imaginary 
invariant zero dynamics to be affected by the disturbance. More specifically, 
Scherer [119) gave a set of necessary and sufficient conditions under which the 
H 00-ADDPMS and the H 00-ADDPS, with internal stability being with respect 
to the open left-half plane, is solvable for general proper linear systems. When 
the stability is with respect to the open left-half plane, the H00-ADDPMS and 
the H 00-ADDPS will be referred to as the general H 00-ADDPMS and the gen­
eral H 00-ADDPS, respectively. The explicit construction algorithm for feedback 
laws that solve these general H 00-ADDPMS and H 00-ADDPS under Scherer's 
necessary and sufficient conditions has only appeared in a very recent paper of 
Chen, Lin and Hang [24). The objective of this chapter is to present: 1) easily 
checkable conditions for the general H 00-ADDPS and H 00-ADDPMS; and 2) 
explicit algorithms to construct solutions that solve these problems. The latter 
were reported in Chen, Lin and Hang [24). 

More specifically, we consider the general H00-ADDPMS and the general 

H 00-ADDPS, for the following general continuous-time linear system, 

{ 
:i; = A X + B u + E w, 

~ y = c1 x + D1 w, 

h = c2 x + D2 u + D22 w, 

(8.1.1) 

where x E Rn is the state, u E Rm is the control input, y E Rl is the mea­
surement, w E Rq is the disturbance and h E RP is the output to be con-
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trolled. As usual, for convenient reference in future development, throughout 
this chapter, we define :EP to be the subsystem characterized by the matrix 
quadruple (A, B, C2, D2) and :EQ to be the subsystem characterized by the ma­
trix quadruple (A, E, C1 , DI). The following dynamic feedback control laws are 

investigated: 

{ V = Acmp V + Bcmp Y, 
:Ecmp : 

U = Ccmp V + Dcmp Y· 
(8.1.2) 

The controller :Ecmp of (8.1.2) is said to be internally stabilizing when applied 

to the system :E, if the following matrix is asymptotically stable: 

BCcmp] 
Acmp ' 

(8.1.3) 

i.e._, all its eigenvalues lie in the open left-half complex plane. Denote by Thw 
the corresponding closed-loop transfer matrix from the disturbance w to the 
output to be controlled h. Then the general H00-ADDPMS and the general 
H00-ADDPS can be formally defined as follows. 

Definition 8.1.1. The Hoo almost disturbance decoupling problem with mea­
surement feedback and with internal stability (the H00-ADDPMS) for the con­
tinuous time system (8.1.1) is said to be solvable if, for any given positive scalar 
"f > 0, there exists at least one controller of the form (8.1.2) such that, 

1. in the absence of disturbance, the closed-loop system comprising the sys­

tem (8.1.1) and the controller (8.1.2) is asymptotically stable, i.e., the 
matrix Ac1 as given by (8.1.3) is asymptotically stable; and 

2. the closed-loop system has an £2-gain, from the disturbance w to the 
controlled output h, that is less than or equal to"(, i.e., 

llhl12 ~ 'YIIwl12, Vw E L2 and for (x(O), v(O)) = (0, 0). (8.1.4) 

Equivalently, the H00-norm of the closed-loop transfer matrix from w to 

h, Thw, is less than or equal to"(, i.e., IIThwlloo ~ "f· 

In the case that C1 = I and D1 = 0, the general H00-ADDPMS as defined 
above becomes the general H00-ADDPS, where only a static state feedback, 

instead the dynamic output feedback (8.1.2) is necessary. liD 

Clearly, the H00-ADDPMS for :E of (8.1.1) is equivalent to the general H00 

control problem for :E with 'Y* = 0. As stated earlier, one of the objectives 

of this chapter is to construct families of feedback laws of the form (8.1.2), 
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parameterized in a single parameter, say c, that, under the necessary and suffi­
cient conditions of Scherer [119], solve the above defined general H00-ADDPMS 
and H00-ADDPS for general systems whose subsystems ~P and ~Q may have 
invariant zeros on the imaginary axis. The feedback laws we are to construct 

are observer-based. A family of static state feedback laws parameterized in a 

single parameter is first constructed to solve the general H00-ADDPS. A class 
of observers parameterized in the same parameter c is then constructed to im­
plement the state feedback laws and thus obtain a family of dynamic measure­
ment feedback laws parameterized in a single parameter c that solve the general 

H00-ADDPMS. The basic tools we use in the construction of such families of 
feedback laws are: 1) the special coordinate basis, developed by Sannuti and 
Saberi [116] and Saberi and Sannuti [111] (see also Chapter 2), in which a linear 
system is decomposed into several subsystems corresponding to its finite and 
infinite zero structures as well as its invertibility structures; 2) a block diagonal 
control canonical form (see also Chapter 2) that puts the dynamics of imag­
inary invariant zeros into a special canonical form under which the low-gain 
design technique can be applied; and 3) the Hoo low-and-high gain design tech­

nique. The development of such an Hoo low-and-high gain design technique was 
originated in [81] and [83] in the context of H00-ADDPMS for special classes 
of nonlinear systems that specialized to a SISO (and hence square invertible) 
linear system having no invariant zero in the open right-half plane. 

8.2. Solvability Conditions 

In this section, we first recall the necessary and sufficient conditions of Scherer 

[119] under which the general H00-ADDPMS and H 00-ADDPS are solvable. 
Then we will convert the geometric conditions of Scherer into easily checkable 
ones using the properties of the special coordinate basis. The following result 
is a slight generalization of Scherer [119]. 

Theorem 8.2.1. Consider the general measurement feedback system (8.1.1). 

Then the general H00 almost disturbance decoupling problem for (8.1.1) with 
internal stability (H00-ADDPMS) is solvable, if and only if the following con­
ditions are satisfied: 

1. (A, B) is stabilizable; 

2. (A, C1 ) is detectable; 
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4. Im (E +ESDI) c s+(~p) n { nAEcoSA(~P) }; 

5. Ker (C2 + D2SCI) :::> v+(~q) u {uAECO VA(~q) }; and 

6. v+(~q) c s+(~p). 

Remark 8.2.1. Note that if ~P is right invertible and of minimum phase, 
and ~Q is left invertible and of minimum phase, then Conditions 4 to 6 of 
Theorem 8.2.1 are automatically satisfied. Hence, the solvability conditions of 
the H 00-ADDPMS for such a case reduce to: 

1. (A, B) is stabilizable; 

2. (A, CI) is detectable; and 

3. D22 + D2SD1 = 0, where S = -(D~D2)t D~D22D~ (D1DDt. 

Remark 8.2.2. It is simple to verify that for the case when all states of the 
system (8.1.1) are fully measurable, i.e., C1 = I and D 1 = 0, then the solvability 
conditions for the general H 00-ADDPS reduce to the following: 

1. (A, B) is stabilizable; 

2. D22 = 0; and 

Moreover, in this case, a static state feedback law, i.e., u = Fx, where F is 
a constant matrix and might be parameterized by certain tuning parameters, 
exists that solves the general H 00-ADDPS. lffi 

Theorem 8.2.1 is quite elegant as it is expressed in terms of the well-known 
geometric conditions. However, it might be hard to verify these geometric 
conditions numerically. In what follows, we will present a simple method to 
check the solvability conditions for the H 00-ADDPMS for general continuous­
time systems. 

Step 8.2.0: Let S = -(D~D2)t D~D22D~ (D1DDt. If D22 + D2SD1 :I 0, the 
algorithm stops here. Otherwise, go to Step 8.2.1. 

Step 8.2.1: Compute the special coordinate basis of ~p, i.e., the quadruple 
(A, B, C2, D2). For easy reference, we append a subscript 'p' to all sub­
matrices and transformations in the SCB associated with ~p, e.g., r SP is 
the state transformation of the SCB of ~P, and A~aP is associated with 
invariant zero dynamics of ~P on the imaginary axis. 
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Step 8.2.2: Next, we denote the set of eigenvalues of A~aP with a nonnegative 
imaginary part as {wpl,Wp2,···,Wpkp} and fori= 1,2,···,kp, choose 
complex matrices ViP, whose columns form a basis for the eigenspace 

{X E cn~p I xH(Wpi[- A~aP) = 0}' 
where n~p is the dimension of X~p. Then, let 

vp := [ Vip V2P · · · vkpP ]. 

We also compute nxP :=dim (Xct,) +dim (Xbp), and 

E;;p 

E~p 
E;ip 

EbP 

EcP 

EdP 

(8.2.1) 

(8.2.2) 

(8.2.3) 

Step 8.2.3: Let E~ be the dual system of EQ and be characterized by a quadru­

ple (A', Cf, E', DD. We compute the special coordinate basis of E~. 
Again, for easy reference, we append a subscript 'Q' to all sub-matrices 
and transformations in the SCB associated withE~, e.g., fsQ is the state 
transformation of the SCB of E~, and A~aQ is associated with invariant 
zero dynamics of E~ on the imaginary axis. 

Step 8.2.4: Next, denote the' set of eigenvalues of A~aQ with a nonnegative 
imaginary part as {wQ1 ,wQ2,···,WQkQ} and fori= 1,2,···,kQ, choose 
complex matrices ViQ, whose columns form a basis for the eigenspace 

{X E cn~Q I xH(wQJ- A~aQ) = 0}' 
where n~Q is the dimension of X~Q· Then, let 

vQ := [vlQ V2Q · · · vkQQ ]. 

We next compute nxQ :=dim (XdQ) +dim (XbQ), and 

E;;Q 

E~Q 
E;iQ 

EbQ 

EcQ 

EdQ 

(8.2.4) 

(8.2.5) 

(8.2.6) 
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Step 8.2.5: Finally, compute 

[
x;o * * l 

r-l(r-1)' = 
SP SQ * r * l 

* * Xed 

(8.2.7) 

where X;0 and Xed are of dimensions (n;P + n~P) x (n;Q + n~Q) and 
(neP + ndp) X (neQ + ndQ), respectively, and finally f iS a SUb-matriX Of 
dimension nxP X nxQ. ~ 

We have the following proposition. 

Proposition 8.2.1. Consider the general measurement feedback continuous­

time system (8.1.1). Then the H00 almost disturbance decoupling problem for 

(8.1.1) with internal stability (H00-ADDPMS) is solvable, i.e., 7* = 0, if and 

only if the following conditions are satisfied: 

1. (A, B) is stabilizable; 

2. (A, Cl) is detectable; 

3. D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~(D1 D~)t; 

4. E;t"P = 0, EbP = 0 and VPH E~P = 0; 

5. E;tQ = 0, EbQ = 0 and v; E~Q = 0; and 

6. r = o. 
Proof. It is simple to see that the first three conditions are necessary for 
the H 00 -ADDPMS for (8.1.1) to be solvable. Next, it follows trivially from 
the properties of the special coordinate basis of Chapter 2 that the geometric 

condition, Im (E + BSDl) c s+p:~P) n { n>.EcoS>.(~P)}' is equivalent to the 
following conditions: E;tp = 0, EbP = 0 and VPH E~P = 0. Dually, the geometric 
condition, Ker (C2 + D2SC1) :J v+(:~::Q) U { U>.E co V>.(~Q)}, is equivalent to the 

following conditions: E;t"Q = 0, EbQ = 0 and v; E~Q = 0. 
Again, following the properties of the special coordinate basis, we have 

s+(Ee) = Ker { [0 In.e OJ r;,;' }, v+(EQ) = Im { (r;~ )' [ I~Q]}. 
Hence, it is straightforward to verify that v+ (~Q) c s+ (~P) is equivalent to 

[0 In.e O]r;,;' (r;~)' [ In~Q l = r = 0. 

Thus, the result follows. 
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8.3. Solutions to Full State Feedback Case 

In this section, we consider feedback law design for the general H00 almost 
disturbance decoupling problem with internal stability and with full state feed­
back, where internal stability is with respect to the open left-half plane, i.e., 
the general H00-ADDPS. More specifically, we present a design procedure that 
constructs a family of parameterized static state feedback laws, 

u = F(c)x, 

that solves the general H00-ADDPS for the following system, 

{:: 
h = 

A X+ B u + E w, 
X 

c2 x + D2 u + D22 w. 

(8.3.1) 

(8.3.2) 

That is, under this family of state feedback laws, the resulting closed-loop 
system is asymptotically stable for sufficiently small c and the H00-norm of the 
closed-loop transfer matrix from w to h, Thw(s, c), tends to zero as c tends to 
zero, where 

(8.3.3) 

Clearly, D 22 = 0 is a necessary condition for the solvability of the general 
H00-ADDPS. We present an algorithm for obtaining this F(c), following the 
asymptotic time-scale and eigenstructure assignment (ATEA) procedure. We 
first use the special coordinate basis of the given system (See Theorem 2.4.1) to 
decompose the system into several subsystems according to its finite and infinite 
zero structures as well as its invertibility structures. The new component here is 

the low-gain design for the part of the zero dynamics corresponding to all purely 

imaginary invariant zeros. As will be clear shortly, the low-gain component is 

critical in handling the case when the zero dynamics corresponding to purely 

imaginary invariant zeros is affected by disturbance. It is well-known that the 

disturbance affected purely imaginary zero dynamics is difficult to handle and 
has always been excluded from consideration until recently. 

We have in the following a step-by-step algorithm. 

Step 8.5.1: (Decomposition of Ep). Transform the subsystem Ep, i.e., the 
quadruple (A, B, C2, D2), into the special coordinate basis (SCB) as given 
by Theorem 2.4.1 of Chapter 2. Denote the state, output and input 

tranSfOrmatiOn matriceS aS r SP > r oP and riP> respeCtively. 
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Step 8.S.2: (Gain matrix for the subsystem associated with Xc). Let Fe be any 

arbitrary me x nc matrix subject to the constraint that 

(8.3.4) 

is a stable matrix. Note that the existence of such an Fe is guaranteed by 

the property of the special coordinate basis, i.e., (Ace, Be) is controllable. 

Step 8.S.3: (Gain matrix for the subsystems associated with x: and Xb)· Let 

(8.3.5) 

be any arbitrary (mo + md) x (n;t" + nb) matrix subject to the constraint 

that 

[ A;t"a L~bCbl [Bria L~dl A+c ·- F+ ab ·- - ab> 
0 Abb Bob Lbd 

(8.3.6) 

is a stable matrix. Again, note that the existence of such an Fab is guar­

anteed by the stabilizability of (A, B) and Property 2.4.1 of the special 

coordinate basis. For future use, let us partition [ F:tt Fbd] as, 

F:ttl Fbdl 

[F:tt Fbd] = F:tt2 Fbd2 (8.3.7) 

F:ttmd Fbdmd 

where F:tti and Fbdi are of dimensions 1 x n;t" and 1 x nb, respectively. 

Step 8.S.4: (Gain matrix for the subsystem associated with X~). The construc­

tion of this gain matrix is carried out in the following sub-steps. 

Step 8.S.4.1: (Preliminary coordinate transformation). Recalling the defi­

nition of (Aeon, Bcon), i.e., (2.4.27), we have 

where 

(8.3.9) 

(8.3.10) 
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and 
(8.3.11) 

Clearly (Aeon- BconF:,, Bcon) remains stabilizable. Construct the 
following nonsingular transformation matrix, 

[
J-na 

fab = ~ 

0 

0 (8.3.12) 

where T~ is the unique solution to the following Lyapunov equation, 

Ao yo TOA+c _ Ao a a a - a ab - aab · (8.3.13) 

We note here that such a unique solution to the above Lyapunov 

equation always exists since all the eigenvalues of A~a are on the 
imaginary axis and all the eigenvalues of A~bc are in the open left­
half plane. It is now easy to verify that 

[ 
Boa L-;d l 

f~b1 Bean = B;jab L;!""bd · 

Bga + T~BrJab L~d + T~L7;bd 
Hence, the matrix pair (A~a, B~) is controllable, where 

B~ = [B8a + T~BrJab L~d + T~L~bd]. 

(8.3.14) 

(8.3.15) 

Step 8.5.4.2: (Further coordinate transformation}. Following the proof 

of Theorem 2.3.2, find nonsingular transformation matrices r~a and 

r?a such that (A~a, B~) can be transformed into the block diagonal 
control canonical form, 

0 l 0 
. . ' 
.. : Az 

{8.3.16) 

0 

and 

{8.3.17) 

0 Bz 
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where l is an integer and fori= 1, 2, · · ·, l, 

0 1 0 0 0 
0 0 1 0 0 

A;= , B;= 
0 0 0 1 0 

-ai i i 
n, -an,-1 -an,-2 -ai 1 

We note that all the eigenvalues of A; are on the imaginary axis. 
Here the *S represent sub-matrices of less interest. 

Step 8.S.4.3: (Subsystem design). For each (A;,B;), let F;(c:) E ll1 xn, 

be the state feedback gain such that 

A{ A;- B;F;(c:)} = -c: + A(A;) E C (8.3.18) 

Note that F;(c:) is unique. 

Step 8.S.4.4: (Composition of gain matrix for subsystem associated with 
X~). Let 

F1 (c:) 0 0 0 
0 F2 (c:) 0 0 

F~(c:) := r?a 
0 0 Ft-1(c:) 0 

(ro )-1 
sa ' 

0 0 0 Fl(c:) 
0 0 0 0 

(8.3.19) 
where c: E (0, 1] is a design parameter whose value is to be specified 
later. 

Clearly, we have 

IF~(c:)/ :::; f~c:, c: E (0, 1], (8.3.20) 

for some positive constant fg, independent of c:. For future use, we define 
and partition Fab ( ~) E ll ( mo +md) X ( na +nb) as 

Fab(c:) = [ Fabo(c:)] [0 - omox(nt+nb) F2o(<) l = moXna. 
o r;;}, (8.3.21) 

Fabd(c:) 0 - omd X (nt +nb) Fad(c:) ffidXna 

and 

[ Fobdl(<) l 
Fabd(c) = 

Fabd2 (c:) 
(8.3.22) 

Fabd~d ( C:) ' 
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where F~0 (c:) and F~d(c:) are defined as 

F~(c:) = [F~0 (c:)] . 
Fad(c:) 

(8.3.23) 

We also partition F~d(c:) as, 

(8.3.24) 

Step 8.S.5: (Gain matrix for the subsystem associated with Xd). This step makes 

use of subsystems, i = 1 to md, represented by (2.4.14) of Chapter 2. Let 

A; = { .\;1, .\;2, · · ·, A;q, }, i = 1 to md, be the sets of q; elements all in 

C-, which are closed under complex conjugation, where q; and md are as 

defined in Theorem 2.4.1 but associated with the special coordinate basis 

of I:p. Let Ad:= A1 U A2 U · · · U Amd· Fori= 1 to md, we define 

q; 

Pi(s) :=IT (s- Aij) = sq' + Filsq;-l + .. · + Fiq,-ls + Fiq., (8.3.25) 

j=l 

and 
(8.3.26) 

where 

F; = [F;q, F;q,-1 · · · Fil], S;(c:) = diag{ 1,c:,c:2,. · · ,c:q•-1 }, 

(8.3.27) 

Step 8.S.6: (Composition of parameterized gain matrix F(c:)). In this step, 

various gains calculated in Steps 8.8.2 to 8.8.5 are put together to form 

a composite state feedback gain matrix F(c:). Let 

Fabdl (c: )Flq1 I C:q1 

Fabdmd (c:)Fmdqmd lc:qmd 

F;1dl Flql I c;Ql 

(8.3.28) 

(8.3.29) 
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and 
Fbdl F1 q1 I cq1 I 
Fbd2F2q2 I cq2 

Fbdmd F m~qmd I cqmd 

Then define the state feedback gain F(c) as 

where 

Ct,. + F:0 Cob+ Fbo 
+ -+ -

Eda + F ad(c) Edb + Fbd(c) 

Ej;. 0 

and where 

Ed = [ E;n E1~d l ' 
Emdl Emdmd 

Fd(c) = diag{ F1(c), F2(c), · · ·, F mAc)}· 

We have the following theorem. 

189 

(8.3.30) 

(8.3.31) 

Cod l 
Fd(c~+Ed , 

(8.3.32) 

(8.3.33) 

(8.3.34) 

(8.3.35) 

~ 

Theorem 8.3.1. Consider the given system (8.3.2) that satisfies all the con­
ditions in Remark 8.2.2. Then the closed-loop system comprising (8.3.2) and 
the static state feedback law u = F(c)x, with F(c) given by (8.3.31), has the 
following properties: For any given 'Y > 0, there exists a positive scalar c* > 0 

such that for all 0 < c ~ c*, 

1. the closed-loop system is asymptotically stable, i.e., >.{A+BF(c)} c c-; 

2. the H 00-norm of the closed-loop transfer matrix from the disturbance w 
to the controlled output h is less than"(, i.e., IIThw(s, c)lloo < "f· 

Hence, by Definition 8.1.1, the control law u = F(c)x solves the general H00 -

ADDPS for the given system (8.3.2). EEl 

Proof. See Subsection 8.5.A. 
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We illustrate the above result in the following example. 

Example 8.3.1. Let us consider a given system of (8.1.1) characterized by 

C1 =I, D1 = 0 and 

A= 

0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
1 2 3 

0 0 
0 0 
0 0 

-1 3 
0 4 
4 5 

1 
2 
3 
4 
5 
6 

' B= 

0 0 
0 0 
0 0 
0 0 
1 0 
0 1 

' E= 

1 0 
2 0 
0 0 
0 0 ' 
0 0 
3 1 

(8.3.36) 

The subsystem ~P is already in the form of the special coordinate basis. It is 
simple to verify that: i) (A, B) is stabilizable; ii) ~P has three invariant zeros 
at 0 and one stable invariant zero at -1; iii) ~P has one infinite zero of order 
zero and one infinite zero of order one; iv) ~P is left invertible; and v) 

1 0 0 0 0 
0 1 0 0 0 

s+(~p) = Im 
0 0 1 0 0 
0 0 0 1 0 

(8.3.38) 

0 0 0 0 0 
0 0 0 0 1 

and 
1 0 0 0 
0 1 0 0 

n.xEccoS,x(I:P) = Im 
0 0 0 0 
0 0 1 0 

(8.3.39) 

0 0 0 0 
0 0 0 1 

Hence, 

1 0 0 0 
0 1 0 0 

s+(~P) n {n.xEccoS,x(~P)} = Im 
0 0 0 0 
0 0 1 0 

(8.3.40) 

0 0 0 0 
0 0 0 1 
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Figure 8.3.1: Max. singular values of Thw -State feedback. 

Obviously, Im (E) C s+(~p) n {n>.EcoS>.(~p)} and by Remark 8.2.2, the H 00 -

ADDPS is achievable for the given system. Following our algorithm, we obtain 
a state feedback gain matrix 

F( ) _ [ 0 0 0 0 -6 -2] 
E - -c2 /3-1 2c2 /9-c-2 2c/3-c2/27-4 -4 -5 -1/c-6 ' 

(8.3.41) 
which places the closed-loop poles of A+BF(c) asymptotically at -1, -2, -E, 

-E, -E and -1/c. The maximum singular value plots of the corresponding 
closed-loop transfer matrix Thw(s,c) in Figure 8.3.1 clearly show that the H00 -

ADDPS is attained as c tends smaller and smaller. @ 

8.4. Solutions to Output Feedback Case 

We present in this section the designs of both full order and reduced order 
output feedback controllers that solve the general H00-ADDPMS for the given 
system (8.1.1). Here, by full order controller, we mean that the order of the 
controller is exactly the same as the given system (8.1.1), i.e, is equal to n. 
A reduced order controller, on the other hand, refers to a controller whose 
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dynamical order is less than n. We will assume without loss of any generality 

that D 22 = 0 in the given system (8.1.1) throughout this section. 

8.4.1. Full Order Output Feedback 

The following is a step-by-step algorithm for constructing a parameterized full 

order output feedback controller that solves the general H 00-ADDPMS: 

Step 8.F.C.l: (Construction of the gain matrix Fp(c)). Define an auxiliary 

system 

{ 
:i; = A X + B u + E w, 

y = X 

h = c2 x + D2 u + D22 w, 

(8.4.1) 

and then perform Step 8.S.l to 8.S.6 of the previous section to the above 

system to obtain a parameterized gain matrix F(€). We let FP (c) = F(c-). 

Step 8.F.C.2: (Construction of the gain matrix KQ(c-)). Define another auxiliary 

system 

{ 
:i; = A' X + Cf u + q w, 
y= X 

h = E' X+ D~ u + D~2 w, 

(8.4.2) 

and then perform Step 8.8.1 to 8.S.6 of the previous section to the above 

system to get the parameterized gain matrix F(c-). We let KQ(c-) = F(c-)'. 

Step 8.F.C.3: (Construction of the full order controller EFc(c-)). Finally, the 

parameterized full order output feedback controller is given by 

where 
AFc(c) :=A+ BFp(c) + KQ(c-)C1, 

BFc(c) := -KQ(c-), 
CFc(c) := Fp(c), 

DFc(c) := 0. 

(8.4.3) 

} (8.4.4) 

This concludes the algorithm for constructing the full order measurement 

feedback controller. 
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We have the following theorem. 

Theorem 8.4.1. Consider the given system (8.1.1) with D22 = 0 satisfying 
all the conditions in Theorem 8.2.1. Then the closed-loop system comprising 
(8.1.1) and the full order output feedback controller (8.4.3) has the following 
properties: For any given 1 > 0, there exists a positive scalar c* > 0 such that 

for all 0 < c ~ €*, 

1. the resulting closed-loop system is asymptotically stable; and 

2. the H00-norm of the resulting closed-loop transfer matrix from the distur­

bance w to the controlled output his less than/, i.e., IIThw(s,c)lloo < r· 

By Definition 8.1.1, the control law (8.4.3) solves the general H00-ADDPMS for 
the given system (8.1.1). I!J 

Proof. See Subsection 8.5.B. 

We illustrate the above result in the following example. 

Example 8.4.1. We reconsider the system (8.1.1) with A, B, E, C2, D2 and 
D22 as in Example 8.3.1 but with 

[ 
-1 -1 0 

c1 = o o o 
0 0 0 

1 1 1] [ 1 0] 0 1 0 , D1 = 0 0 . 
0 0 1 0 0 

(8.4.5) 

Using the software toolboxes of Chen [11] and Lin [79], we can easily obtain 
the following properties of EQ: i) (A, Cl) is detectable; ii) EQ has two stable 
invariant zeros at -1 and -0.5616, one imaginary axis invariant zero at 0, and 
one unstable invariant zero at 3.5616; iii) EQ has one infinite zero of order zero 

and one infinite zero of order one; iv) EQ is left invertible; and v) 

1 
1.2808 

0 
0 
0 
0 

-2 
1 
2 
0 
0 
0 

(8.4.6) 

It is straightforward to see that Ker(C2) :J v+(EQ) U {U>.EcoV>.(EQ)} and 
v+(EQ) c s+(Ep). By Theorem 8.2.1, the H00-ADDPMS is solvable for the 
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Figure 8.4.1: Max. singular values of Thw - Full order output feedback. 

given system. Following our algorithm, we obtain a full order output feedback 
controller of the form (8.4.3) with Fp(c) as given in (8.3.41) and 

2.4375 1 0.1813 
2.4028 2 -0.0808 

Kq(c) = 0 0 -3.1758 
(8.4. 7) 

0 -3 -4 ' 
0 -8.2462 -5 

-3 -2 -1/c:- 3 

which places the closed-loop eigenvalues of A+ Kq(c)C1 asymptotically at 
-0.5616, -1, -4.2462, -4.2787, -c; and -1/c. The maximum singular value 
plots of the corresponding closed-loop transfer matrix Thw(s, c) in Figure 8.4.1 
show that the H00-ADDPMS is attained as c tends to zero. 

8.4.2. Reduced Order Output Feedback 

In this subsection, we follow the procedure of Chen et al. [33,34] to design a 
reduced order output feedback controller. We will show that such as a controller 
structure with appropriately chosen gain matrices also solves the general H 00 -

ADDPMS for the system (8.1.1). First, without loss of generality and for 
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simplicity of presentation, we assume that the matrices CI and DI are already 

in the form, 

ci = [ 0 
h 

C6o2] and D = [ DI,o] 
I 0 ' (8.4.8) 

where k = £- rank(DI) and DI,o is of full rank. Then the given system (8.1.1) 

can be written as 

(!~) [An 
A21 

AI2] 
A22 ( ~~) + [ ~~] u+ [ ~~] w, 

(~~) [1 C6o2] ( ~~) + [ D~,o] w, (8.4.9) 

h = [C2,I C2,2] ( ~~) + D2 u+ Dn w, 

where the original state x is partitioned into two parts, XI and x2; and y is 

partitioned into Yo and YI with YI = XI. Thus, one needs to estimate only 

the state x2 in the reduced order controller design. Next, define an auxiliary 

subsystem :EqR characterized by a matrix quadruple (AR, ER, CR, DR), where 

(8.4.10) 

The following is a step-by-step algorithm that constructs the reduced order 

output feedback controller for the general H 00-ADDPMS. 

Step 8.R.C.l: (Construction of the gain matrix Fp(c)). Define an auxiliary 

system 

{ 
X = A X + B u + E w, 

y= X 

h = c2 x + D2 u + D22 w, 

(8.4.11) 

and then perform Step 8.8.1 to 8.S.6 of Section 8.3 to the above system 

to get the parameterized gain matrix F(c). We let Fp(c) = F(c). 

Step 8.R.C.2: (Construction of the gain matrix KR(c)). Define another auxiliary 

system 

A~ x + c~ u + q,2 w, 

X 

E~ X + D~ u + Db w' 

(8.4.12) 

and then perform Step 8.S.1 to 8.S.6 of Section 8.3 to the above system 

to get the parameterized gain matrix F(c). We let KR(E) = F(E)'. 



196 Chapter 8. Continuous-time H00 Almost Disturbance Decoupling 

Step 8.R.C.3: (Construction of the reduced order controller ERc(c)). Let us 
partition Fp(c) and KR(c) as, 

in conformity with the partitions of x = ( ~~ ) and y = ( ~~) , respec­

tively. Then define 

GR(c) = [ -KRo(c), A21 + KRl (c)Au - (AR + KR(c)CR)KRl (c)]. 
(8.4.14) 

Finally, the parameterized reduced order output feedback controller is 
given by 

(8.4.15) 

where 

ARc(c) := AR + B2FP2(c) + KR(c)CR + KRl(c)BlFP2(c), 

BRc(c) := GR(c) + [B2 + KRl(c)Bl] [0, FPl(c)- FP2(c)KR1(c)], 

CRc(c) := FP2(c), 

DRc(c) := [ 0, FPl (c) - FP2(c)KR1 (c)]. 
(8.4.16) 

This concludes the algorithm for constructing the reduced order measure­
ment feedback controller. ~ 

We have the following theorem. 

Theorem 8.4.2. Consider the given system (8.1.1) with D22 = 0 satisfying 
all the conditions in Theorem 8.2.1. Then the closed-loop system comprising 

(8.1.1) and the reduced order output feedback controller (8.4.15) has the fol­
lowing properties: For any given 'Y > 0, there exists a positive scalar c* > 0 
such that for all 0 < c ~ c• , 

1. the resulting closed-loop system is asymptotically stable; and 

2. the H00-norm of the resulting closed-loop transfer matrix from the distur­

bance w to the controlled output his less than "f, i.e., IIThw(s,c)lloo < 'Y· 

By Definition 8.1.1, the control law (8.4.15) solves the general H00-ADDPMS 
for the given system (8.1.1). ffl 

Proof. See Subsection 8.5.C. 
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We illustrate the above result in the following example. 

Example 8.4.2. We again consider the given system as in Examples 8.3.1 
and 8.4.1. As all the five conditions of Theorem 8.2.1 are satisfied, the H00 -

ADDPMS for the given system can be solved using a reduced order output 
feedback controller. We will construct such a controller in the following. First, 
it is simple to show the transformation T8 and T0 , 

0 0 1 0 0 0 
0 0 0 1 0 0 

To~[~ 
1 

~], 0 0 0 0 1 0 
Ts = 0 0 0 0 0 1 

, 1 

1 0 0 0 0 0 
0 

(8.4.17) 

0 1 0 0 0 0 

will transform C1 and D 1 to the form of (8.4.8), i.e., 

(8.4.18) 

and 

T0_, D, ~ [ D~,o l ~ [ ~ ~ l . (8.4.19) 

Moreover, we have 

4 5 0 0 0 0 
5 6 1 2 3 4 

r-IAT = [An A12 ] = 0 1 0 1 0 0 
s s A21 A22 0 2 0 0 1 0 

(8.4.20) 

0 3 0 0 0 0 
3 4 0 0 0 -1 

1 0 0 0 
0 1 3 1 

T- 1B = [~] = 
0 0 

T8-
1 E = [ ~~ J = 

1 0 
s B2 0 0 

, 
2 0 

(8.4.21) 

0 0 0 0 
0 0 0 0 

and AR = A22, ER = E2, and 

(8.4.22) 
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Figure 8.4.2: Max. singular values of Thw - Reduced order output feedback. 

Following our algorithm, we obtain 

and 

0 
2c:2/9-£-2 

[ 

1.2000+0.1219£ 

K.(e) = [ K.o(e) I K., (e) ] = 0.8187 =~:~~~;~ 

0 0 ] 
2c:/3-c:2/27-4 -4 ' 

(8.4.23) 

0 -0.6663+0.4025£ l 
0 -0.8534-0.2012£ 
0 -0.4025£ ' 
0 0 

(8.4.24) 

which place the eigenvalues of AR + KR(c:)CR at -0.5616, -1, -3.8303 and-£. 
Also, we obtain a reduced order output feedback controller of the form (8.4.15) 

with all sub-matrices as defined in (8.4.18) to (8.4.24), and with BRc(c) and 

DRc(c:) being slightly modified to 

BRc(c:) = GR(c:)T0-
1 + [B2 + KR1(c:)B1] [ 0, FPl (c:)- FP2(c:)KR1 (c)] T0-

1, 
(8.4.25) 

and 
(8.4.26) 
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respectively. The maximum singular value plots of the corresponding closed­
loop transfer matrix Thw(s,c) in Figure 8.4.2 also show that the H00-ADDPMS 
is attained as c tends to zero. 

8.5. Proofs of Main Results 

We present the proofs of all the main results of this chapter in this section. 

8.5.A. Proof of Theorem 8.3.1 

Under the feedback law u = F(c)x, the closed-loop system on the special coor­
dinate basis can be written as follows, 

(8.5.1) 

(8.5.2) 

x~b = A~bcx~b- BciabF~0 (c)[x~ + T~x~b] + L~bd[F~, Fbd]x~b + L~bdhd + E:bw, 
(8.5.3) 

hb = [Ombxn;t,Cb]X~b> (8.5.4) 

Xc = A~c + Lcoho + Lcbhb + Lcdhd + Ecw, (8.5.5) 

ho = -[F,;t, Fbo]x~b- F~0 (c)(x~ + T~x~b), (8.5.6) 

. - 1 [ + + Xi - Aq, X; + Lioho + L;dhd - E:q' Bq, FadiFiq; X a + FbdiFiq; Xb 

+ F~di(c)F;q, [x~ + T~x~b] + FiSi(c)xi] +E;w, (8.5.7) 

h; = Cq,Xi, i = 1,2,···,md, (8.5.8) 

where 

x+=(xt) ab Xb ' (8.5.9) 

and Bciab and L~bd are as defined in Step 8.8.4.1 of the state feedback design 
algorithm. We have also used Condition 2 of Remark 8.2.2, i.e., D22 = 0, and 
E;;, E~, E:b, Eb, Ec and E;, i = 1, 2, · · ·, md, are defined as follows, 

Condition 4 of the theorem then implies that 

E~ =0, 

E' 2 ... E' ]' 
ffid • (8.5.10) 

(8.5.11) 
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and 
(805012) 

To complete the proof, we will make two state transformations on the closed­
loop system (80501)-(80508)0 The first state transformation is given as follows, 

- r-1 Xab = ab Xab, (805013) 

fori= 1,2, 0 0 0 ,md, 

(805014) 

and for j = 2, 3, 0 0 0, qi, i = 1, 2, 0 0 0, md, 

(805015) 

where 

x •• = (;D and ••• = ( :D (805016) 

In the new state variables (805013)-(805015), the closed-loop system becomes, 

x: = A;;ax;; + A~abxtb- [Boa• L~d]F~(c)x~ + L~iid + E;;w, 

x~b = Atbextb- [Btab• Ltbd]F~(c)x~ + Ltbdhd, 

x~ = [A~a- B~F~(c)]x~ + (L~d + TgLtbd)hd + E~w, 

xe = A~exe + ( Leb[O, Cb]- [Leo, Led]F~ )xtb 

-[Leo, Led]Fg(c)x~ + Ledhd + Eew, 

ho = -[F,;o, Fbo]xtb- F~0 (c)x~, 

hi= hi+ [Fddi• Fbdi]xtb + F~dix~ = Cq,xi, i = 1, 2, o o o, md, 

hd = [h1,h2, 000 ,hmJ', 

(805017) 

(805018) 

(805019) 

(805020) 

(805021) 

(805022) 

(805023) 

(805024) 

where matrices A;:;,b, A~ab• B~ and Ltbd are as defined in Step 8oS.4o1 of the 
state feedback law design algorithm, and L'tb(c), L?~(c), L?;(c), Lid(c) and 
Ei(c) are defined in an obvious way and, by (803020), satisfy 

(805025) 
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and 
(8.5.26) 

for some nonnegative constants l~b• l?~, z?; ei and lid, independent of e. 
We now proceed to construct the second transformation. We need to recall 

the following preliminary results from [83]. 

Lemma 8.5.1. Let the triple (Ai,Bi,Fi(e)) be as given in Steps 8.8.4.2 and 
8.8.4.3 of the state feedback design algorithm. Then, there exists a nonsingular 
state transformation matrix Qi(e) E Rn;xn, such that 

1. Qi(e) transforms Ai- BiFi(e) into a real Jordan form, i.e., 

Qi1(e) [Ai- BiFi(e)] Qi(e) = Ji(e) 

= blkdiag{ JiO (e), Jil (e), Ji2 (e), · · · , Jip; (e)}, {8.5.27) 

where 
1 

1 l ' 
-e 

TiQ XTiQ 

{8.5.28) 
-e 

and for each j = 1 to Pi, 

Jt(e) = [ -e f3ii], 
3 -f3ii -e 

{8.5.29) 
with f3ii > 0 for all j = 1 to Pi and f3ii "1- f3ik for j "1- k. 

2. Both IQi(e)l and 1Qi1(e)l are bounded, i.e., 

(8.5.30) 

for some positive constant Bi, independent of e. 

3. If Ei E Rn' xq is such that 

(8.5.31) 

then, there exists a c5i ~ 0, independent of e, such that 

{8.5.32) 
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and, if we partition Qi1(c)Ei according to that of Ji(c) as, 

(8.5.33) 

and 

Ei;(c) = [ ~:;:~:l] , 
Eijr;; (c) 2r;; x 1 

(8.5.34) 

then, there exists a /3i ~ 0, independent of c, such that, for each j = 0, to 

4. If we define a scaling matrix Sai(c) as 

where 
Saio(c) = diag{ cr;o-1 ,cr;o-2 , · • ·, c, 1 }, 

and for j = 1 to Pi, 

Sai;(c) = blkdiag{ cr;;-1 /2, cr;;-2 h, · · · ,cl2, h }. 

then, there exists a Ki ~ 0 independent of c such that, 

(8.5.35) 

(8.5.36) 

(8.5.37) 

(8.5.38) 

(8.5.39) 

Proof. This is a combination of the results of (83], and (2.2.13) of (80]. 119 

Lemma 8.5.2. Let 

(8.5.40) 

where 

[

-1 

lw = 

1 

1 l 
-1 rio X rio 

-1 
(8.5.41) 
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and for each j = 1 top;, 

1 ' h 
}"!' E 

tJ ( ) 2r;j x 2r;j 

(8.5.42) 
with {J;j > 0 for all j = 1 top; and {Ji -:J fJk for j -:J k. Then the unique positive 
definite solution F; to the Lyapunov equation, 

(8.5.43) 

is independent of E. 

Proof. See [83). 

We now define the following second state transformation on the closed-loop 
system, 

with 

and 

x-;; = x-;;, 
-o [ ( -o ) 1 ( - o ) 1 ( - o ) 1]1 5 ( ) Q -1 ( ) (ro ) -1 -o Xa = Xa1 ' Xa2 '· · · Xal = a E E sa Xa, 

Sa(E) = blkdiag{ Sal( E), Sa2(E), · · ·, Sat(E)}, 

Q(c) = blkdiag{ Q1(c), Q2(c), · · ·, Qt(E) }, 

x; = S;(E)x;, i = 1, 2, · · ·, md, 

under which the closed-loop system becomes, 

.:.+ - A+c-+ A+0 ( )- 0 L+ h-xab - ab Xab + aba E Xa + abd d, 

i~ = l(c)x~ + B(c)x~ + L~d(c)hd + E~(E)w, 

ic = A~cXc + E[A~abi;~b + A~a(E)x~ + Lcdhd + EcwJ, 

ho = -[F,;o, Fbo]x~b- F~0 (E)x~, 

(8.5.44) 

(8.5.45) 

(8.5.46) 

(8.5.47) 

(8.5.48) 

(8.5.49) 

(8.5.50) 

(8.5.51) 

(8.5.52) 

(8.5.54) 
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and 

where 

A;;-~(c) = -[B;ia, L~d)F~(c)r~aQ(c)S~ 1 (c), 

Atb0a(E) = -[Btab' Ltbd]F~(c)r~aQ(c)S~ 1 (E), 

](E)= blkdiag{ cJI(c),cJz(c), · · · ,E]!(E) }, 

[

0 Ehz(c) ~13(c) ~ll(c)l 
_ 0 0 Bz3(E) Bzl(E) 

B(c) = . . . . , . . . . . . 
0 0 0 0 

with j = 1, 2, · · ·, l and k = j + 1,j + 2, · · ·, l, 

and 

L~d(c) = Sa(c)Q- 1 (c)(r~a)- 1 (L~d + T~Ltbd), 

·[E~1 (c) l 
E:(o) = S,(o)Q-1 (o)(~,)-1 ~ = E:~k) , 

. ~~~(c) 

A~ab = Leb[O, Cb]- [Leo, Led]F~, 

A~a(c) =-[Leo, Led)F~(c)r~aQ(c)S~ 1 (c), 

F~0 (c) = F~0 (c)S~ 1 (c)Q(c)r~a' 

L?a(c) = Si(c)[L?I(c)F~(c) + L?;(c)F~(c)A~aJr~aQ(c)S~ 1 (c), 

tid(c) = Si(c)Lid(c), Ei(c) = Si(c)Ei(c), 

(8.5.55) 

(8.5.56) 

(8.5.57) 

(8.5.58) 

(8.5.59) 

(8.5.60) 

(8.5.61) 

(8.5.62) 

(8.5.63) 

(8.5.64) 

(8.5.65) 

(8.5.66) 

(8.5.67) 

(8.5.68) 

and where, for i = 1 to l, Ji(c) is as defined in Lemma 8.5.2. By (8.3.20), 
(8.5.25), (8.5.26), and Lemma 8.5.1, we have that, for all c E (0, 1], 

(8.5.69) 

IA;;-~(c)l ::; a;;-~c, IAtb0a(c)l ::; at~E, IA~a(E)I ::; a~aE, IF~o(c)l ::; f~oc, 
(8.5.70) 

for i = 1 to md, 

(8.5.71) 
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and 
(8.5.72) 

fori= 1 to l, 
(8.5.73) 

and finally, for j = 1 to l, k = j + 1 to l, 

(8.5.74) 

- -o + -o +O -o o -o -+ -o - -o - -
where aaab' lad' acab' aaa' aaa' ea, acal lao' lab' la, ld, fad' e and bjk are some 
positive constants, independent of c. 

We next construct a Lyapunov function for the closed loop system (8.5.48)­
(8.5.55). We do this by composing Lyapunov functions for the subsystems. For 
the subsystem of x;;, we choose a Lyapunov function, 

where pa- > 0 is the unique solution to the Lyapunov equation, 

and for the subsystem of x~b' choose a Lyapunov function, 

V +(-+)- (-+ )'P+ -+ 
ab Xab - Xab abxab' 

where P:, > 0 is the unique solution to the Lyapunov equation, 

(A+c)'P+ p+A+c- I 
ab ab + ab ab - - · 

(8.5.75) 

(8.5.76) 

(8.5.77) 

(8.5.78) 

The existence of such Pa~ and P:, is guaranteed by the fact that both A;;a and 
A~bc are asymptotically stable. For the subsystem of 

-o [(-o )' (-o )' (-o )']' 
Xa = Xal ' Xa2 '· · · ' Xal ' (8.5.79) 

we choose a Lyapunov function, 

(8.5.80) 

where a~ is a positive scalar, whose value is to be determined later, and each 
Pgi is the unique solution to the Lyapunov equation, 

(8.5.81) 
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which, by Lemma 8.5.2, is independent of c. Similarly, for the subsystem Xc, 
choose a Lyapunov function, 

(8.5.82) 

where Pc > 0 is the unique solution to the Lyapunov equation, 

(8.5.83) 

The existence of such a Pc is again guaranteed by the fact that A~c is asymp­
totically stable. Finally, for the subsystem of xd, choose a Lyapunov function 

ffid 

Vd(xd) = 2:: x~Pixi, (8.5.84) 
i=l 

where each Pi is the unique solution to the Lyapunov equation 

(8.5.85) 

Once again, the existence of such Pi is due to the fact that Aq; - Bq; Fi is 
asymptotically stable. 

We now construct a Lyapunov function for the closed-loop system (8.5.48)­
(8.5.55) as follows. 

V(x;:, xtb, x~, Xc, xd) = Va- (x;:) + atb Vat (xtb) + Va0 (x~) + Vc(xc) + adVd(xd), 
(8.5.86) 

where atb = 2IP;I2(a;;ab)2 and the value of ad is to be determined. 
Let us first consider the derivative of Va0 (x~) along the trajectories of the 

subsystem x~ and obtain that, 

(8.5.87) 

Using (8.5.74), it is straightforward to show that there exists an a~ > 0 such 
that, 

. o(-o) 31-ol2 all-ol 1- I I 2 Va Xa ~ -4 Xa + ~ Xa . hd + a2 wl ' (8.5.88) 

for some nonnegative constants a1 and a 2, independent of c. 
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In view of (8.5.88), the derivative of V along the trajectory of the closed-loop 
system (8.5.48)-(8.5.55) can be evaluated as follows, 

V ~ -(x;;:)'x;;: + 2(x;;:)'Pa- A;ab(t:)x~b + 2(x;;:)'P; A;;:~(t:)x~ 

+ 2(x;;)' pa-L;i'-d + 2(x;;)' P; E;;w- a~b(x~b)'x~b 
2 + ( + )'P+A+0 ( )-0 2 + ( + )'P+L+ h-+ aab Xab ab aba € Xa + aab Xab ab abd d 
3 1-0 12 a1 1-ol lh- I I 12 _,_ -4 Xa + £ Xa · d + a2 W - XcXc 

+2€X~Pc[Atabx~b + A~a(t:)x~ + Lcdhd + Ecw] 
ffid 

'"'[ 1_,_ 2-'p£-+ ( )-+ +ad~ --xixi + Xi i iab € xab 
i=l € 

+ 2x;Pd-?a(t:)x~ + 2x;PiLid(t:)hd + 2x;PiEi(t:)w]. (8.5.89) 

Using the majorizations (8.5.69)-(8.5.73) and noting the definition of a~b 
(8.5.86), we can easily verify that, there exist an ad> 0 and an c~ E (0, 1] such 
that, for all c E (0, ci], 

. 11--12 11-+ 12 11-o 12 1 1- 12 I 12 V ~ -2 X a - 2 Xab - 2 X a - 2€ Xd + a3 W , (8.5.90) 

for some positive constant a3, independent of €. 
From (8.5.90), it follows that the closed-loop system in the absence of dis­

turbance w is asymptotically stable. It remains to show that, for any given 
'Y > 0, there exists ant:* E (0, ci] such that, for all € E (0, t:*], 

(8.5.91) 

To this end, we integrate both sides of (8.5.90) from 0 to oo. Noting that V ~ 0 
and V(t) = 0 at t = 0, we have, 

(8.5.92) 

which, when used in (8.5.88), results in, 

(8.5.93) 

Viewing hd as disturbance to the dynamics of x~b also results in, 

(8.5.94) 

for some positive constant a 4 , independent of €. 
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Finally, recalling that 

(8.5.95) 

where 

[ 

F~dl (e) l 
F~d(e) = F~d~(e) ' 

F~dmd(e) 

(8.5.96) 

with each Fadi(e) satisfying (8.5.71) and (8.5.72), we have, 

for some positive constant a 5 independent of e. 

To complete the proof, we choose e* E (0, ei] such that, 

(8.5.98) 

For use in the proof of measurement feedback results, it is straightforward to 
verify from the closed-loop equations (8.5.48)-(8.5.55) that the transfer function 

from E~w to h is given by 

(8.5.99) 

where Tao(s,e)-+ 0 pointwise ins as e-+ 0. 

8.5.B. Proof of Theorem 8.4.1 

It is trivial to show the stability of the closed-loop system comprising the given 

plant (8.1.1) and the full order output feedback controller (8.4.3). The closed­

loop poles are given by >.{A+ BFp(e)}, which are in(;- for sufficiently small 

e as shown in Theorem 8.3.1, and >.{A+KQ(e)C!}, which can be dually shown 
to be in (;- for sufficiently small e as well. In what follows, we will show that 
the full order output feedback controller achieves the H00-ADDPMS for (8.1.1), 
which satisfies all 5 conditions of Theorem 8.2.1. Without loss of any generality 

but for simplicity of presentation, hereafter we assume throughout the rest of 

the proof that the subsystem :Ep, i.e., the quadruple (A, B, C2, D2), has already 
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been transformed into the special coordinate basis as given in Theorem 2.4.1. 

To be more specific, we have 

A~a 0 0 L~bcb 0 L~dcd 
0 A~a 0 L~bcb 0 L~dcd 

A= BoC2,o + 0 0 At a L~bcb 0 L~dcd 
0 0 0 Abb 0 LbdCd 

BeE~ BcE~a BcE"ta LcbCb Ace LcdCd 

BdEia BdE~a BdEda BdEdb BdEdc Add 

:= BoC2,o +A, (8.5.100) 

Boa 0 0 Boa 

B8a 0 0 B8a 

B= Bta 0 0 
Bo = Bria 

Bob 0 0 
, 

Bob 
(8.5.101) 

Boc 0 Be Boc 
Bod Bd 0 Bod 

C2,o =[Goa C8a eta Cob Coc Cod], (8.5.102) 

[co. C8a eta Cob Coc G"] [I G ~]' c2 = ~ 0 0 0 0 cd , D2= 0 0 (8.5.103) 

0 0 cb 0 0 0 0 

I 0 0 0 
0 I 0 0 

s+(~P) = Im 0 0 0 0 (8.5.104) 
0 0 0 0 
0 0 I 0 
0 0 0 I 

It is simple to note that Condition 4 of Theorem 8.2.1 implies that 

E-a 
Eo a 

E= 0 (8.5.105) 
0 

Ec 
Ed 
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Next, for any ( E V.~(EQ) with A E C0 , we partition (as follows, 

(;; 

(~ 

(= 
(d' 

(8.5.106) 
(b 

(c 

(d 

Then, Condition 5 of Theorem 8.2.1 implies that C2( = 0, or equivalently 

(8.5.107) 

By Definition 2.4.3, we have 

(8.5.108) 

for some appropriate vector"'· Clearly, (8.5.108) and (8.5.105) imply that 

* 
* 
0 
0 ' 

* 
* 

(8.5.109) 

where *S are some vectors of not much interests. Note that (8.5.107) implies 

(A - AI)( = (BoC2,o +A- AI)( = (A - AI)( 

= 

= 

* 
* 

(Ada - AI)(d' + L~bCb(b + L~dCd(d 
(Abb - AI)(b + LbdCd(d 

* 
* 

(At a - AI)(;[ 

(Abb- AI)(b 

* 
* 

* 
* 

(8.5.109) and (8.5.110) imply 

(A~a- AI)(;I- = 0 and (Abb- AI)(b = 0. 

(8.5.110) 

(8.5.111) 
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Since Ata is unstable, (Ata - M)(;[ = 0 implies that (;[ = 0. Similarly, since 

(Abb, Cb) is completely observable, (Abb- )..J)(b = 0 and Cb(b = 0 imply (b = 0. 

Thus, ( has the following property, 

(;; 

(~ 

(= 0 
0 

(8.5.112) 

(c 

(d 

Obviously, (8.5.112) together with Condition 6 of Theorem 8.2.1 imply 

(8.5.113) 

Next, it is straightforward to verify that A - sl can be partitioned as 

A- si = X1 + X2C2 + X3 + X4, (8.5.114) 

where 

A;a- sl 0 0 L-;;bcb 0 L-;;dcd 

0 0 0 0 0 9 

x1 := 
0 0 0 0 0 0 
0 0 0 0 0 0 

BeE;;. BcE~a BeEt.. LcbCb Ace- sl LcdCd 

BdEia BdE~a BdEda BdEdb BdEdc Add- sl 
(8.5.115) 

Boa 0 0 

B8a L~d L~b 

X2= Bria L~d L~b (8.5.116) 
Bob Lbd 0 

Boc 0 0 

Bod 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 Ata- sl 0 0 0 

x3 = 
0 0 0 Abb- sl 0 0 

, (8.5.117) 

0 0 0 0 0 0 
0 0 0 0 0 0 
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and 
0 0 0 0 0 0 
0 A~a- sl 0 0 0 0 

x4 = 0 0 0 0 0 0 
0 0 0 0 0 0 

(8.5.118) 

0 0 0 0 0 0 
0 0 0 0 0 0 

It is simple to see that 

Im (X1) c s+cr:p) n { n>-E{:!oS>-(L:p)}, (8.5.119) 

and 

(8.5.120) 

It follows from the proof of Theorem 8.3.1 that as E:-+ 0 

(8.5.121) 

where 1\,p is a finite positive constant and is independent of E:. Moreover, under 

Condition 4 of Theorem 8.2.1, we have 

(8.5.122) 

and 

(8.5.123) 

pointwise in s as E:-+ 0. By (8.5.99), we have 

(8.5.124) 

pointwise in s as E: -+ 0. Dually, one can show that 

(8.5.125) 

where 1\,q is a finite positive constant and is independent of e. If Condition 5 of 

Theorem 8.2.1 is satisfied, the following results hold, 

(8.5.126) 

and 

(8.5.127) 

pointwise in s as e -+ 0. 
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Finally, it is simple to verify that the closed-loop transfer matrix from the 
disturbance w to the controlled output h under the full order output feedback 
controller (8.4.3) is given by 

Thw(s, c) = [C2+D2Fp(c)][sf -A-BFp(c)t1 E 

+ C2[sf -A-Kq(c)C1t1[E+Kq(c)D1]+[C2+D2Fp(c)] 

·[sf -A-BFp(c)t1(A-sl)[sf -A-Kq(c)Clt1 [E+Kq(c)D!]. 

Using (8.5.114), we can rewrite Thw(s,c) as 

Thw(s,c) = [C2+D2Fp(c)][sf-A-BFp(c)t1E 

+ C2[sf -A-Kq(c)C!]-1 [E+Kq(c)D!] 

+ [C2+D2Fp(c)][sf -A-BFp(c)t1 (Xl +X2C2+X3+X4) 

·[sf -A-Kq(c)Cl]-1 [E+Kq(c)Dl]. 

Following (8.5.121) to (8.5.127), and some simple manipulations, it is straight­

forward to show that as c --+ 0, Thw(s, c) --+ 0, pointwise in s, which is equiva­
lent to IIThwlloo --+ 0 as c--+ 0. Hence, the full order output feedback controller 
(8.4.3) solves the H00-ADDPMS for the given plant (8.1.1), provided that all 
five conditions of Theorem 8.2.1 are satisfied. ~ 

8.5.C. Proof of Theorem 8.4.2 

Again, it is trivial to show the stability of the closed-loop system comprising 
the given plant (8.1.1) and the reduced order measurement feedback controller 
(8.4.15) as the closed-loop poles are A{A+BFp(c)} and A{AR+KR(c)CR}, which 
are asymptotically stable for a sufficiently small c. Next, it is easy to compute 
the closed-loop transfer matrix from the disturbance w to the controlled output 
h under the reduced order output feedback controller, 

Thw(s,c) = [C2 + D2Fp(c)][sf- A- BFp(c)t1 E 

+ [C2 -f D2Fp(c)][sf- A- BFp(c)t1(A- sf) ( fn~k) 
·[sf- AR- KR(c)CRt1 [ER + KR(c)DR] 

+ c2 ( fn~k) [sf- AR- KR(c)CRt 1[ER + KR(c)DRl· 

It was shown in Chen [12] (i.e., Proposition 2.2.1) that 

( fn~k) v+p:QR) = v+(~q). (8.5.128) 
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Following the same lines of reasoning as in Chen (12], one can also show that 

(8.5.129) 

Hence, we have 

( In~k) (v+(~QR) u { U>.E co V\(~QR)}) = v+(~q) u { U>.E co V>. (~q)} . 
(8.5.130) 

The rest of the proof follows from the same lines as those of Theorem 8.4.1. ~ 



Chapter 9 

Robust and Perfect 
Tracking of 
Continuous-time Systems 

9.1. Introduction 

IN THIS CHAPTER, we present a so-called robust and perfect tracking (RPT) 
problem, which was proposed and solved by Liu, Chen and Lin (87]. The devel­

opment of this chapter follows closely from the results of (87]. The robust and 

perfect tracking problem is to design a controller such that the resulting closed­

loop system is asymptotically stable and the controlled output almost perfectly 
tracks a given reference signal in the presence of any initial conditions and ex­

ternal disturbances. By almost tracking we mean the ability of a controller to 
track a given reference signal with arbitrarily fast settling time in the face of 

external disturbances and initial conditions. More specifically, we consider in 
this chapter the following multi variable linear 'time-invariant system, 

{ 

:i; = A X + B u + E w, 

~ y = c1 x + D1 w, 

h = c2 x + D2 u + D22 w, 

x(O) = xo, 

(9.1.1) 

where x E R.n is the state, u E R.m is the control input, wE Rq is the external 

disturbance, y E Rp is the measurement output, and h E R.l is the output to 

be controlled. We also assume that the pair (A, B) is stabilizable and (A, C1) 
is detectable. For future references, we define ~P and ~Q to be the subsys­

tems characterized by the matrix quadruples (A, B, C2, D2) and (A, E, cl, DI), 
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respectively. Given the external disturbance wE Lp, p E [1, oo), and any refer­
ence signal vector, r E :Rl with r, r, · · ·, r("-1), K. ~ 1, being available, and r(") 

being either a vector of delta functions or in Lp, the robust and perfect track­

ing (RPT) problem for the system (9.1.1) is to find a parameterized dynamic 

measurement control law of the following form 

{ v = Acmp(c)v + Bcmp(c)y + Go(c)r + · · · + G,.-1 (c)r("-1), 

u = Ccmp(c)v + Dcmp(c)y + Ho(c)r + · · · + H,.-1 (c)r("-1), 

such that when (9.1.2) is applied (9.1.1), we have 

(9.1.2) 

1. There exists an c* > 0 such that the resulting closed-loop system with 

r = 0 and w = 0 is asymptotically stable for all c E (0, c*]; and 

2. Let h(t, c) be the closed-loop controlled output response and let e(t, c) be 

the resulting tracking error, i.e., e(t,c) := h(t,c)- r(t). Then, for any 

initial condition of the state, x0 E :Rn, 

Jp(xo, w, r, c) := lleiiP --t 0 as c --t 0. (9.1.3) 

We introduce in the above formulation some additional information besides the 

reference signal r, i.e., r, f, · · ·, r("- 1), as additional controller inputs. Note that 

in general, these additional signals can easily be generated without any extra 
costs. For example, if r(t) = t 2 • l(t), where l(t) is a unit step function, then 

one can easily obtain its first order derivative 

r(t) = 2t. 1(t) + e . 8(t) = 2t. 1(t), (9.1.4) 

where 8(t) is a unit impulse function, and the second order derivative 

r(t) = 2. 1(t). (9.1.5) 

These r(t) and f(t) can be used to improve the overall tracking performance, 

while r(3) (t) = 2 · 8(t) does not exist in the real world and hence cannot be 

used. We also note that our formulation covers all possible reference signals 

that have the form, r(t) = tk, 0 ~ k < oo. Thus, our method could be applied 

to approximately track reference signals, which have a Taylor series expansion 

at t = 0. This can be done by truncating the higher order terms of the Taylor 

series of the given signal. Also, it is simple to see that when r(t) = 0, the 

proposed problem reduces to the well known perfect regulation problem with 

measurement feedback. 

It is appropriate to trace a short history of the literature that dealt with ( al­

most) perfect regulation and (almost) perfect tracking problems. The problem 
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of perfect regulation and its related topics were heavily investigated by many 
researchers in the 1970's and early 1980's. The perfect regulation problem via 

state feedback was studied by Kwakernaak and Sivan [70], Francis [53], Kimura 
[66], and Scherzinger and Davison [120], and was completely solved by Lin et 

al. [86] (see also Lin [82]). The solution to the problem of perfect regulation 
via measurement output feedback for general linear systems has only been re­
ported recently by Chen et al. [26]. There were, however, a couple of different 

formulations for perfect tracking (see e.g., Lawrence and Rugh [74], Davison 
and Chow [44], which mainly dealt with state feedback case, and Davison and 

Scherzinger [45], and the references therein). Their problem formulations are 
quite different from the RPT problem, as pointed out in details in [87]. 

In this chapter, we derive a set of necessary and sufficient conditions under 
which the proposed robust and perfect tracking problem has a solution, and 
under these conditions, develop algorithms for the construction of parameter­
ized feedback laws that solve the proposed problem. We would like to point 

out that our problem formulation and design algorithms are capable of tracking 
any polynomial signals without actually augmenting any additional integrator 
to the given plant. This is because we have utilized all possible information from 

the reference r(t). This technique has successfully been used to solve quite a 
number of practical problems, such as the designs of a hard disk servo system 
and a gyro mirror targeting system, which will be reported later in Chapters 14 
and 16, respectively. 

9.2. Solvability Conditions and Solutions 

We are now ready to present our main results. We will first derive a set of 
necessary and sufficient conditions under which the proposed robust and perfect 

tracking (RPT) problem is solvable for the given plant (9.1.1). In fact, we will 
show the sufficiency of these conditions by explicitly constructing two types of 
parameterized control laws: one is offull order, i.e., its dynamical order is equal 

ton, the order of the plant, and the other is of reduced order, i.e., its dynamical 

order is less than n. 

We have the following theorem. 

Theorem 9.2.1. Consider the given system (9.1.1) with its external distur­

bance wE Lp, p E [1,oo), and its initial condition x(O) = x0 • Then, for any 
reference signal r(t), which has all its i-th order derivatives, i = 0, 1, · · ·, K- 1, 
K ~ 1, being available and r(~<l(t) being either a vector of delta functions or in 



218 Chapter 9. Robust and Perfect Tracking of Continuous-time Systems 

Lp, the proposed robust and perfect tracking (RPT) problem is solvable by the 
control law of (9.1.2) if and only if the following conditions are satisfied: 

1. (A, B) is stabilizable and (A, CI) is detectable; 

2. D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~(D1DDt; 

3. :Ep, i.e., (A,B,C2 ,D2 ), is right invertible and of minimum phase; 

Proof. We first show that Conditions 1 to 4 in the theorem are necessary. Let 
us consider the case when r(t) = 0, which of course has all its derivatives of any 
order being available. It is simple to see that the proposed robust and perfect 
tracking problem then reduces to the perfect regulation problem. Following the 
results of Chen et al. (26), we can reformulate the perfect regulation problem 
for the given system (9.1.1) as the well studied almost disturbance decoupling 
problem (see Willems (136,137) for the original formulation of this problem) for 
the following system, 

{ 

;i; = A X+ B u + [E I] w, 
y = c1 x + [D1 o) w, 
h = c2 x + D2 u + [ D22 o J w. 

x(O) = 0, 

(9.2.1) 

For easy reference, we let i:;Q be the subsystem characterized by the matrix 
quadruple (A, ( E I) , C1, [ D1 0)). Following the results of the well-known 
almost disturbance decoupling problem (see e.g., Chapter 8), we can show that 
if the almost disturbance decoupling problem for the above system is solvable, 
then the following conditions hold: 

1. (A, B) is stabilizable and (A, CI) is detectable; 

2. D22 + D2SD1 = 0, where S = -(D~D2)t D~D22D~ (D1DDt; 

3. Im([E+BSD1 J))cS+(:EP); 

4. Ker (C2 + D2SC1) :::> v+(tq). 

Clearly, Item 3 above implies that s+ (:Ep) = 1R n, which implies that :Ep is 
right invertible without invariant zeros in C +. Due to the special form of i:;q, 
it is simple to show that v+(tq) = C!1{Im(D1)}. Hence, Items 3 and 4 are 
respectively equivalent to: 

1. :EP is right invertible without invariant zeros in C +; 
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Thus, it remains to show that if the proposed RPT problem is solvable, the 
subsystem ~P must be of minimum phase. In what follows, we proceed to show 
such a fact. 

First, we note that second condition, i.e., D22 + D2SD1 = 0, implies that if 
we apply a pre-output feedback law 

u= Sy, (9.2.2) 

to the system (9.1.1), the resulting new system will have a direct feedthrough 
term from w to h equal to 0. Hence, without loss of any generality, we hereafter 
assume that matrix D22 = 0 throughout the rest of the proof. 

Next, we show that if the robust and perfect tracking problem is solvable for 
general nonzero reference r(t), ~P must be of minimum phase, i.e., ~P cannot 
have any invariant zeros on the imaginary axis. In fact, this condition must 

hold even for the case when w = 0 and x0 = 0, i.e., for the robust and perfect 
tracking of the following system, 

{
x=Ax+Bu 

y = c1 x 

e = c2 X + D2 u - r = h - r. 

(9.2.3) 

Now, if we treat r as an external disturbance, then the above problem is again 

equivalent to the well-known almost disturbance decoupling problem with mea­
surement feedback and with internal stability for the following system, 

x=Ax+Bu 

( 
C1x ) 

y = r(LJ (9.2.4) 

e = c2 X + D2 u - r. 

Without loss of generality, we assume that the quadruple (A, B, C2 , D2 ) has 

been transformed into the form of the special coordinate basis of Theorem 2.4.1, 
i.e., we have 

x = GJ x. = ( :D , h = ( ~) , r = ( ~:) , 

e = ( ~) = ( ~ = ~:) , u = (::) , 

(9.2.5) 

(9.2.6) 



220 Chapter 9. Robust and Perfect Tracking of Continuous-time Systems 

and 

x; = A;ax; + B0aho + L;:dhd, 

. o - Ao o Bo h Lo h Xa - aaXa + Oa 0 + ad d, 

Xc = AccXc + Bocho + Lcdhd +Be [E;,x; + E~ax~] + Bcuc, 

eo = Ci;oax; + cg,oaX~ + Cz,ocXc + Cz,odXd + Uo- ro, 

and for each i = 1, ... , md, 

(9.2.7) 

(9.2.8) 

(9.2.9) 

(9.2.10) 

(9.2.11) 

(9.2.12) 

X;= Aq,Xi + Lwho + L;dhd + Bq, [ui + E;aXa + E;cXc +I: E;jXjl , (9.2.13) 
J=l 

(9.2.14) 

and finally, 

(9.2.15) 

Let us define a set of new state variables, i.e., for i = 1, 2, · · ·, md, we define 

if"'~ q;, or 

x; := 

if "' < q;. Then, we have 

Xit r; 

(t<-1) 
T; 

0 

0 

(9.2.16) 

(9.2.17) 

(9.2.18) 
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for an appropriate dimensional matrix C2,od> and for i = 1, 2, · · ·, md, 

221 

(9.2.19) 

(9.2.20) 

Lcd]r, 
(9.2.21) 

(9.2.22) 

x; = Aq;Xi + L;oeo + L;ded + Bq; [u; + E;aXa + E;cXc + ~ E;jXjl 
J=l 

(9.2.23) 

for an appropriate dimensional matrix Eq;. Note that the disturbances r0 and 

rd in (9.2.22) can be washed out by the following pre-output feedback, 

(9.2.24) 

Moreover, the subsystem from the controlled input, i.e., ( u~ u~ u~ )', to the 

error output, i.e., ( e~ ed )', is now in the standard form the special coordi­

nate basis of Theorem 2.4.1. It then follows from the result of Chapter 8 (i.e., 

Proposition 8.2.1) that if the almost disturbance decoupling problem with mea­

surement feedback and with internal stability for the system (9.2.4) is solvable, 

there must exist a nonzero vector ~ such that 

(9.2.25) 

which is implies that (A~ a, [ B8a L~d)) is not completely controllable. Following 

Property 2.4.1 of the special coordinate basis of Chapter 2, the uncontrollability 

of (A~a, [ B8a L~d)) implies the unstabilizability of the pair (A, B), which is 

obviously a contradiction. Hence, x~ must be non-existent. It then follows 

from Property 2.4.2 of the special coordinate basis that :EP is of minimum 

phase. This completes the proof of the necessary part. ~ 

We note that for the case when D1 = 0, then the direct feedthrough term 

D22 must be a zero matrix as well, and the last condition, i.e., Item 4, of 

Theorem 9.2.1 reduces to Ker (C2 ) :J Ker (CI). 
We will show the sufficiency of those conditions in Theorem 9.2.1 by explic­

itly constructing parameterized controllers which solve the proposed robust and 

perfect tracking problem under Conditions 1 to 4 of Theorem 9.2.1. This will 
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be done in the following subsequent subsections. First, we have the following 
corollary that deals with the state feedback case. 

Corollary 9.2.1. Consider the given system (9.1.1) with its external distur­
bance w E Lp, p E [1, oo), its initial condition x(O) = xo. Assume that all 
its states are measured for feedback, i.e., C1 = I and D1 = 0. Then, for any 
reference signal r(t), which has all its i-th order derivatives, i = 1, 2, · · ·,"'- 1, 

"' ?: 1, being available and rC~<) ( t) being either a vector of delta functions or in 
Lp, the proposed robust and perfect tracking (RPT) problem is solvable by the 
control law of (9.1.2) if and only if the following conditions are satisfied: 

1. (A, B) is stabilizable; 

2. Dzz = 0; 

3. :Ep, i.e., (A, B, C2 , D2 ), is right invertible and of minimum phase. @J 

9.2.1. Solutions to State Feedback Case 

When all states of the plant are measured for feedback, the problem can be 
solved by a static control law. We construct in this subsection a parameterized 
state feedback control law, 

u = F(c)x + H0 (c)r + · · · + H 110 _ 1 (c)r(~<- 1 ), (9.2.26) 

which solves the robust and perfect tracking (RPT) problem for (9.1.1) under 
the conditions given in Corollary 9.2.1. It is simple to note that we can rewrite 
the given reference in the following form, 

(9.2.27) 

Combining (9.2.27) with the given system, we obtain the following augmented 
system, 

{
x=Ax+Bu+Ew 

:EAUG: y = X 

e = Cz x + Dz u 

(9.2.28) 

where 

w := (r~l), x := (,(:-2) l , 
rC~<-1) 

X 

(9.2.29) 
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0 Ie 0 0 0 0 0 

A= 0 0 Ie 0 , B= 0 , E= 0 0 (9.2.30) 

0 0 0 0 0 0 Ie 
0 0 0 A B E 0 

and 

C2 = ( --Ie 0 0 ... 0 C2], D2 = D2. (9.2.31) 

It is then straightforward to show that the subsystem from u to e in the aug­
mented system (9.2.28), i.e., the quadruple (A, B, C 2 , D 2 ), is right invertible 
and has the same infinite zero structure as that of I;P. Furthermore, its invari­
ant zeros contain those of I;P and £ x "' extra ones at s = 0. We are now ready 
to present a step-by-step algorithm to construct the required control law of the 
form (9.2.26). 

Step 9.S.l. This step is to transform the subsystem from u to e of the aug­
mented system (9.2.28) into the special coordinate basis of Theorem 2.4.1, 
i.e., to find nonsingular state, input and output transformations r 8> ri 
and r 0 to put it into the structural form of Theorem 2.4.1 as well as in 
a small variation of the compact form of (2.4.20) to (2.4.23). It can be 
shown that the compact form of (2.4.20) to (2.4.23) for the subsystem 
from u to e of (9.2.28) can be written as, 

and 

0 

A;;-a 
BeE~ 

BdEia 

0 

0 

. B-
.·· Ie ' - Boc 

0 
0 

0 
~ l -[B~~ 

· · · 0 Bod Bd 

C = [ega Goa Coe Cod] jj = [lm0 0 OJ. 
o o o cd ' o o o 

Step 9.S.2. Choose an appropriate dimensional matrix Fe such that 

(9.2.32) 

(9.2.33) 

(9.2.34) 

(9.2.35) 

is asymptotically stable. The existence of such an Fe is guaranteed by the 
property that (Ace, Be) is completely controllable. 
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Step 9.S.3. For each xi of xd, which is associated with the infinite zero structure 

of EP or the subsystem from u toe of (9.2.28), we choose an Fi such that 

q; 

Pi(s) = IT(s-Aij) =sq; +Filsq;-l +···+Fiq;_1s+Fiq; (9.2.36) 
i=l 

with all Aij being in C-. Let 

Fi = [Fiq; Fiqi-1 Fi1], i = 1, · · ·, md. 

Step 9.S.4. Next, we construct 

Goa Coc Cod l 
Eia Edc Ed+ Fd(e) r;1 , 

E;_ Fe 0 

and where 
Si(e) = diag { 1, e, e2 , • • ·, eq;-l}. 

Step 9.S.5. Finally, we partition 

F(e) = [Ho(e) · · · H~t-l(e) F(e)], 

(9.2.37) 

(9.2.38) 

(9.2.39) 

(9.2.40) 

(9.2.41) 

(9.2.42) 

where Hi(e) E Rmxl and F(e) E Rmxn. This ends the constructive 

algorithm. 

We have the following result. 

Theorem 9.2.2. Consider the given system (9.1.1) with its external distur­

bance w E Lp, p E [1, oo), its initial condition x(O) = x0 . Assume that all its 

states are measured for feedback, i.e., C1 = I and D1 = 0. If Conditions 1 

to 3 of Corollary 9.2.1 are satisfied, then, for any reference signal r(t), which 

has all its i-th order derivatives, i = 0, 1, · · ·,"'- 1, "' ;::: 1, being available and 
r(~t) (t) being either a vector of delta functions or in Lp, the proposed robust and 

perfect tracking (RPT) problem is solved by the control law of (9.2.26) with 

F(e) and Hi(e), i = 0, 1, · · ·,"'- 1, as given in (9.2.42). f!:l 

Proof. See Subsection 9.4.A. 
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The following remark gives an alternative approach for solving the proposed 
robust and perfect tracking problem via full state feedback. We leave the proof 
of this method to readers as an exercise. 

Remark 9.2.1. Note that the required gain matrices for the state feedback 
RPT problem might be computed by solving the following Riccati equation, 

PA.+A.'P+c;c2- (Pn+c;n2 )( v;n2) -l(Pn+c;n2 )' =o, (9.2.43) 

for a positive definite solution P > 0, where 

C,= [<I~:.], D,= [11 (9.2.44) 

- [ Ao 0 ] - [ ~ ~t : : : ~ ] A = 0 A , Ao = -~;lt<t + . . . , 
0 0 · · · It 
0 0 ... 0 

(9.2.45) 

and where B, C 2 and D 2 are as defined in (9.2.30) and (9.2.31). The required 
gain matrix is then given by 

F(c)=-(n;n2)-1(PB+c;n2)' =[Ho(c) ... Ht<-l(c) F(c)], 
(9.2.46) 

where Hi(c) E Rmxl and F(c) E Rmxn. Finally, we note that solutions to 

the Riccati equation (9.2.43) might have severe numerical problems as c tends 
smaller and smaller. 

9.2.2. Solutions to Measurement Feedback Case 

We will consider two types of measurement feedback control laws, one is of 
full order controllers whose dynamical order is equal to the order of the given 
system and the other reduced order controllers with a dynamical order that is 

less than the order of th~ given system. Without loss of generality, we assume 

throughout this subsection that D22 = 0. If it is nonzero, it can always be 
washed out by the following pre-output feedback, 

u= Sy, (9.2.47) 

with S as given in the second item of Theorem 9.2.1. The following are con­

structive algorithms for both full and reduced order measurement feedback 
controllers, which, under the conditions of Theorem 9.2.1, solve the proposed 
robust and perfect tracking problem. 
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A. Full Order Measurement Feedback 

The following is a step-by-step algorithm for constructing a parameterized full 

order measurement feedback controller, which solves the robust and perfect 

tracking problem. 

Step 9.F.l. For the given reference r(t) and the given system (9.1.1), we first 

assume that all the state variables of (9.1.1) are measurable and follow 

the procedures of the previous subsection to define an auxiliary system, 

{
x=Ax+Bu+Ew 
y = X 

e = c2 X+ D2 u 
(9.2.48) 

Then, we follow Steps 9.8.1 to 9.8.5 of the algorithm of the previous 

subsection to construct a state feedback gain matrix 

F(e) = [Ho(e) · · · HK-1(€) F(e) ]. (9.2.49) 

Step 9.F.2. Let ~qa be characterized by a matrix quadruple 

(9.2.50) 

This step is to transform this ~qa into the special coordinate basis of 

Theorem 2.4.1. Because of the special structure of the matrix Eqa, it is 

simple to show that ~Qa is always right invertible and is free of invariant 

zeros. Utilize the results of Theorem 2.4.1 to find nonsingular state, input 

and OUtpUt transformation r sQ l r iQ and r OQ SUCh that 

r -1E r [Bocq 
sQ Qa iq = Bodq h 

0 

and 

r -1c r [Cocq 0] r-1 [D 
OQ 1 SQ = 0 h l OQ 1 

In-k 

0 

(9.2.51) 

(9.2.52) 

0 0 OJ 
0 0 0 ' 

(9.2.53) 

where k = p - rank(D!). It can be verified that the pair (A, C!) is 

detectable if and only if the pair 

(9.2.54) 

is detectable. 
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Step 9.F.3. Let Kcq be an appropriate dimensional constant matrix such that 

the eigenvalues of the matrix 

A~cQ = AccQ- Kcq [ ~~::] = Accq- [ Kcoq KcdQ] [ ~~::] (9.2.55) 

are all in C-. Next, we define a parameterized observer gain matrix, 

(9.2.56) 

Step 9.F.4. Finally, we obtain the following full order measurement feedback 

control law, 

{ 
v = Acmp(e) v- K(e) y + BHo(t:) r + · · · + BH~<- 1 (e) r(~<- 1 ), 

(9.2.57) 
u = F(e) v + Ho(e) r + · · · + H~<-1(e) r(~<- 1 ), 

where Acmp(e) =A+ BF(e) + K(e)C1. This completes the construction 
of the full order measurement feedback controller. IEl 

We have the following theorem. 

Theorem 9.2.3. Consider the given system (9.1.1) with its external distur­
bance wE Lp, p E [1, oo), its initial condition x(O) = x0 . If Conditions 1 to 4 of 
Theorem 9.2.1 are satisfied, then, for any reference signal r(t), which has all its 

i-th order derivatives, i = 0, 1, · · ·, ~~:-1, ~~: 2:: 1, being available and r(~<) (t) being 

either a vector of delta functions or in Lp, then the proposed robust and perfect 
tracking (RPT) problem is solved by the parameterized full order measurement 
feedback control laws as given in (9.2.57). 1!1 

Proof. See Subsection 9.4.B. 

The following remark yields an alternative way to compute the gain matrix 

K(e) in Step 9.F.3. 

Remark 9.2.2. The gain matrix K(e) in Step 9.F.3 can also be computed by 

solving the following Riccati equation, 

AQ+QA'+(EE' +1)-(QCf +ED~)(D1 D~ +el)-1(C1Q+D1E') = 0, (9.2.58) 

for a positive definite solution Q > 0. The required gain matrix K(e) is then 

given by 
(9.2.59) 

Again, this approach might have some numerical problems when e is small. 1!!1 
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B. Reduced Order Measurement Feedback 

We now present solutions to the robust and perfect tracking problem via re­

duced order measurement feedback control laws. For simplicity of presentation, 

we assume that matrices C1 and D1 have already been transformed into the 
following forms, 

C = [ 0 C1,o2] 
1 h 0 

and D = [D1,o] 
1 0 ' (9.2.60) 

where D1,0 is of full row rank. Before we present a step-by-step algorithm to to 

construct a parameterized reduced order measurement feedback controller, we 

first partition the following system 

{
x=Ax+Bu+[E In]w, 

. y = c1 x + [D1 o] w, 
in conformity with the structures of C1 and D1 in (9.2.60), i.e., 

{ (;:) = [Au A12] (~~) + [~~] u + [ E1 Ik 0 ] 
A21 A22 E2 0 In-k 

(~~) [ 0 C1,o2] (~~) + [ D~,o 0 ~] = h 0 0 

where 

w = ( xo ~(t)) · 

(9.2.61) 

w, 

(9.2.62) 

w, 

(9.2.63) 

Obviously, Y1 = x1 is directly available and hence need not to be estimated. 
Next, we define ~QR to be characterized by 

(AR,ER,CR,DR) = ( A22,[E2 0 In-k], [~~~2 ], [~~o ~ ~]). 
(9.2.64) 

It is again straightforward to verify that ~QR is right invertible with no finite 

and infinite zeros. Moreover, (AR, CR) is detectable if and only if (A, Ct) is 

detectable. We are ready to present the following algorithm. 

Step 9.R.l. For the given reference r(t) and the given system (9.1.1), we again 

assume that all the state variables of (9.1.1) are measurable and follow 
·the procedures of the previous subsection to define an auxiliary system, 

{
x=Ax+Bu+Ew 
y = X 

e = c2 X+ D2 u 

(9.2.65) 
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Then, we follow Steps 9.S.1 to 9.S.5 of the algorithm of the previous 
subsection to construct a state feedback gain matrix 

F(c) = [Ho(c) .. · H,._I(c) F(c) ]. (9.2.66) 

Let us partition F(c) in conformity with x1 and x2 of (9.2.62) as follows, 

F (E) = [ F1 (E) F2 (E) ] . (9.2.67) 

Step 9.R.2. Let KR be an appropriate dimensional constant matrix such that 
the eigenvalues of 

are all in C-. This can be done because (AR, CR) is detectable. 

Step 9.R.3. Let 

and 

Acmp(c) = AR + B2F2(c) + KRCR + KR1B1F2(c), 

Bcmp(c) = GR + (B2 + KR1Br) [ 0, F1 (c)- F2(c)KRl), 

Ccmp(c) = F2(c), 

Dcmp(c) = [0, FI(c)- F2(c)KR1]. 

(9.2.68) 

(9.2.69) 

(9.2.70) 

Step 9.R.4. Finally, we obtain the following reduced order measurement feed­
back control law, 

{ 
v = Acmp(c)v + Bcmp(c)y + Go(c)r + · · · + G,.-1 (c)r(~<-1), 

(9.2. 71) 
u = Ccmp(c)v + Dcmp(c)y + Ho(c)r + · · · + H,._l (c)r(~<-1), 

where fori= 0, 1, · · ·,"'- 1, 

(9.2. 72) 

This completes the construction of the reduced order measurement feed­
back controller. g) 

Theorem 9.2.4. Consider the given system (9.1.1) with its external distur­
bance wE Lp, p E [1,oo), its initial condition x(O) = x0 . If Conditions 1 to 4 
of Theorem 9.2.1 are satisfied, then, for any reference signal r(t), which has all 
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its i-th order derivatives, i = 0, 1, · · ·,"'- 1, "'2:: 1, being available and r("'l(t) 
being either a vector of delta functions or in Lp, then the proposed robust and 
perfect tracking (RPT) problem is solved by the parameterized reduced order 
measurement feedback control laws of (9.2.71). ITI 

Proof. See Subsection 9.4.C. 

By now, the sufficiency of Theorem 9.2.1 is obvious in view of the results of 
Theorems 9.2.3 and 9.2.4. The proof of Theorem 9.2.1 is thus completed. ~ 

9.3. Robust and Perfect Tracking for Other References 

It is very often in practical control system design to track some references such 
as sinusoidal functions, which is in £ 00 • It is obvious that we could not make 
the £ 00 norm of the tracking error arbitrarily small if there is a mismatch in 
the initial value of the output to be controlled and that of the reference signal. 
Another very common situation could be that the references r(t) might have 
some entries belonging to one set, say Lp1 , and some belonging to another set, 
say Lp2 , for some PI E [1, oo] and P2 E [1, oo]. Thus, for this class of references, 
we will have to modify our original problem formulation a little bit in order to 
obtain some meaningful results. Again, we consider a linear system as given in 
(9.1.1) with an external disturbance 

(9.3.1) 

where w; E LPw;, Pw; E [1, oo], i = 1, 2, · · ·, q. We also consider a reference 

(9.3.2) 

which has the following properties: fori= 1, 2, · · ·, f, we haver;, i'i, · · ·, ri"';-l), 
"'i 2:: 1, being available, and ri"';) being a delta function or in Lp"' for some 
Pr, E [1, oo]. Then, the general robust and perfect tracking (GRPT) problem 
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for this type of references is to find a parameterized dynamic measurement 
feedback control law of the form 

Kl-1 Kl-1 

V = Acmp(c:)v + Bcmp(c:)y + L Gl,i(c:)r~i) + · · · + L Gt,i(c:)r~i), 
i=O i=O 

(9.3.3) 

i=O i=O 

such that when (9.3.3) is applied to (9.1.1), we have 

1. There exists an c:* > 0 such that the resulting closed-loop system with 
r = 0 and w = 0 is asymptotically stable for all c: E (0, c:*]; and 

·2. The resulting closed-loop error signal e, which is obviously a function of 
c:, can be decomposed as 

(9.3.4) 

and as c: -t 0, 

l q 

J(xo, w, r, c:) = L iler, llvr; + L I lew, llv .. , + lleollp -t 0, (9.3.5) 
i=1 i=1 

for all 1 ~ p < oo and for any Xo E Rn. Roughly, e0 is the error due 
to mismatch in initial conditions of the controlled output and reference, 
while er., i = 1, 2, · · ·, l, and ew., i = 1, 2, · · ·, q, are corresponding to the 
steady state error. 

We have the following result. 

Theorem 9.3.1. Consider the given system (9.1.1) with its initial condition 
x(O) = x0 . Also, consider the external disturbance w with its entries wi E Lp,.,, 
Pw, E [1, oo], i = 1, 2, · · ·, q. Then, for any reference signal r(t) of the form 
(9.3.2) with ri, ri, · · ·, r~K;- 1 ), r;,i 2': 1, being available, and riK•) being a delta 

function or in LPr;, Pr; E [1, oo], i = 1, 2, · · ·, l, the general robust and perfect 
tracking (GRPT) problem is solvable by the control law of (9.3.3) if and only 
if all the same four conditions of Theorem 9.2.1 hold. III 

Proof. The proof of this theorem follows from similar lines of reasoning as those 
of Theorem 9.2.1 with some minor fine tuning. The constructive algorithms of 
the previous section should be modified as follows: 
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1. State Feedback Case. For the state feedback case, one first needs to obtain 

an augmented system, 

_ {x=Ax+Bu+Ew 
~AUG: y = X 

e = Cz x + Dz u 

(9.3.6) 

with 

( 
r; ) 

r; = : . (9.3.7) 
r(tt;-1} 

t 

Then, follow the same procedures as in Steps 9.S.1 to 9.S.4 of the previous 

section to obtain a gain matrix F(c:), and partition it as follows, 

F(c:)=[H1,o(c:) ··· H1,tt 1 -1(c:) ··· He,o(c:) ··· Ht,ttt-1(c:) F(c:)]. 
(9.3.8) 

The state feedback controller is given by 

Kt-1 Kt-1 
u = F(c:)x + L H1,;(c:)r~i) + · · · + L He,;(c:Hi}. (9.3.9) 

i=O 

2. Full Order Measurement Feedback Case. One only needs to replace Step 

9.F.1 of the algorithm in the previous section with Item 1 above to obtain 

the desired F(c:). Steps 9.F.2 and 9.F.3 remain unchanged, and the full 

order measurement feedback controller is given by, 

Kt-1 Kt-1 
iJ = AcmpV- K(c:)y + L BH1,;(c:)rii) + · · · + L BHe,;(c:)r~i) 

i=O i=O 
(9.3.10) 

Kt-1 Kt-1 
u = F(c:) v + L H1,;(c:)rii) + · · · + L He,;(c:)r~i}, 

i=O i=O 

where Acmp =A+ BF(c:) + K(c:)C1. 

3. Reduced Order Measurement Feedback Case. Similarly, one again needs 

only to replace Step 9.R.1 in the algorithm of the previous section with 

Item 1 above. Steps 9.R.2 and 9.R.3 remain the same, and the reduced 

order measurement feedback control is given in the form of (9.3.3) with 

parameterized gain matrices Acmp(c:), Bcmp(c:), Ccmp(c:), Dcmp(c:), being 
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given as in (9.2.70), Hj,i(e), j = 1, 2, ···,land i = 0, 1, · · ·, /'i,i- 1, being 
given as in (9.3.8), and 

(9.3.11) 

j = 1, 2, ···,land i = 0, 1, · · ·, /'i,i - 1. 

This completes the proof of Theorem 9.3.1. 

Next, we note that in general, it requires infinite gain to achieve the robust 
and perfect tracking performance. In practical situations, one would have to 
make some trade-offs between the tracking performance and other requirements 
in order to design a physically implementable control law. This can be done by 
adjusting the tuning parameter e. 

Finally, we present a numerical example to illustrate the results of the gen­
eral robust and perfect tracking design. The plant considered have two con­
trolled outputs. We are going to design a GRPT controller such that when it is 
applied to the given plant, the first controlled output will robustly and almost 
perfectly track a ramp signal, while the second one will robustly and almost 
perfectly track a sinusoidal function. 

Example 9.3.1. Consider a linear system given in the form of (9.1.1) with 

A = [ ~ ~ ~] , B = [ ~ ~] , E = [ ~ i] , xo = m , (9.3.12) 

and 

[ 1 1 0] [1 0] C2 = O 1 O , D2 = O O , D22 = 0. (9.3.13) 

For easy verification, we assume that the external disturbance w is given by 

w = [ sin~1rt)] · 1(t) E L 00 • (9.3.14) 

Let the reference input be given as, 

r = ( ~~) = [ cos~2t)] · 1(t). (9.3.15) 

We note that ·ft = 1(t) E £ 00 • Thus, we can achieve the GRPT for the above 
system and reference without using additional information r1. 

A. State Feedback Case. We first consider the case when all the state variables 
of the given system are measurable, i.e., C1 = I and D1 = 0. It is simple 
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Figure 9.3.1 : Tracking error e2 under state feedback. 

to verify that the subsystem ~P is invertible and of minimum phase with one 
invariant zero at s = -1 and two infinite zeros of orders 0 and 2, respectively. 
Hence, the general robust and perfect problem for the system with the given 
reference is solvable. Following the constructive algorithm for the state feedback 

case, we obtain a parameterized control law, 

u = [ 1 ~1 ~ _ 1~ ~ _0~] x + [ _ ~ ~] r. (9.3.16) 

The poles of the closed-loop system comprising the given plant and the above 
control law are located at -1, -1/c: ± jfc:. Hence, the closed-loop system is 
stable for any positive c: . Figure 9.3.1 shows the responses of the error signal 

e2(t) = h2(t) -r2(t), corresponding to c: = 0.1, 0.05 and 0.01, respectively. Note 
that e1 (t) = h1 (t) - r1 (t) = 0 for all t 2: 0. The results clearly show that the 
general robust and perfect tracking is achieved. 

We next consider the robust and perfect tracking with measurement feed­
back. Let the measurement output y = C1x + D1w with 

c1 = [ ~ ~ ~] , D1 = [ ~ ~] . (9.3.17) 

It is simple to see that Ker(C2 ) = Ker(Cl) = C11{Im(Dl)} and hence the 
general robust and perfect tracking problem is solvable via measurement feed­
back laws. It is interesting to note that the subsystem ~q, i.e., the quadruple 
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(A, E, C1 , Dl) is of nonminimum phase with an invariant zero at s = 1. Thus, 
the subsystem ~Q is not necessary to be of minimum phase and/ or left invertible 
for the solvability of the robust and perfect tracking problem via measurement 
output feedback, as one would expect from the well-known separation principle 
arguments. 

B.l. Full Order Measurement Feedback Case. Following the constructive algo­
rithm, we obtain the following full order measurement feedback control law, 

v = [ ~ ~ l y, 

0 1 ~ t 
U= [ 

-1 

1- ~ 
E 

(9.3.18) 
It is straightforward to verify that the closed-loop poles are asymptotically 
located at -1, -1/e±j/E, -1, -1/e and -1/e. Hence, the closed-loop system 
comprising the given plant and the full order measurement feedback control law 
is asymptotically stable for all E > 0. Figure 9.3.2 shows the resulting tracking 
errors under the full order measurement feedback control law with E = 0.05, 
0.01 and 0.001, respectively. Again, it is clear that the general robust and 
perfect tracking is achieved. 

B.2. Reduced Order Measurement Feedback Case. Again, following our con­
structive algorithm for the reduced order measurement feedback case, we obtain 
the following first order dynamic controller, 

-1-~-~] E E 
y+ [-1 ~] r, 

-1 ] [- ~ ;J -1- ~- ~ 
y+ 

E E 

(9.3.19) 
r. 

The poles of the closed-loop system comprising the given plant and the above 
control law are precisely placed at -1, -1/ E ± j / E and -1. Hence, the closed­
loop system is asymptotically stable for all E > 0. Figure 9.3.3 shows the 
responses of the error signal e2(t) withE= 0.1, 0.05 and 0.01, respectively. As 
in the state feedback case, the resulting e1 (t) under the reduced order measure­
ment feedback law is identically zero for all t ~ 0. The results again clearly 
show that the general robust and perfect tracking is achieved. 
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Figure 9.3.2: Tracking errors under full order measurement feedback. 
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9.4. Proofs of Main Results 

9.4.A. Proof of Theorem 9.2.2 

It was mentioned in the constructive algorithm of Subsection 9.2.1 that, fol­

lowing the structural algorithms of Sannuti and Saberi [116], and Saberi and 
Sannuti [111], one can transform the system (9.2.28) into the special coordinate 

basis as given in the compact form of (9.2.32) to (9.2.34). That is there exist 
nonsingular state, input and output transformation r 8) ri and r 0 such that 

(9.4.1) 

(9.4.2) 

(9.4.3) 
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and 

[ ~ ~l ·.:: 
r = . . 

0 0 
0 0 

and for each i = 1, · · ·, md, 

(9.4.4) 

(9.4.5) 

(9.4.6) 

(9.4.8) 

x; = Aq,Xi + L;oeo + L;ded + B9, [u; + Ff!ar + E;;.x-;; + E;cXc + ~ E;jXJ] 
J=l 

+ E;w + G;r(~<), (9.4.9) 

(9.4.10) 

Now, it is straightforward to see that if r(~<) is a vector of delta functions, then 
the terms G;;r(~<), Gcr(~<) and G;r(~<) can be treated as some additional initial 
conditions added to the original ones of the states variables, x~, Xc and xd, 

respectively. If r(~<) is in Lp, p E [1,oo), it can be treated as an additional 
disturbance and can be merged with the original disturbance w. Thus, in both 
cases, we can write (9.4.6), (9.4. 7) and (9.4.9) as 

(9.4.11) 

(9.4.12) 

and 

x;=Aq,x; + L;oeo + L;ded + Bq, [u;+E?ar+Eiax-;; +E;cxc+ ~ E;jXJ] +E;w, 
J=l 

(9.4.13) 
with wE Lp, p E [1, oo), and .E;;, Ec and E; being some appropriate constant 
matrices, and with a new but again bounded initial condition, say x0 • 
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Next, we note that the control law u = Fx with the gain matrix F given in 
(9.2.38) can be rewritten as, 

(9.4.14) 

(9.4.15) 

and 

(9.4.16) 

Hence, the closed-loop system comprising the given system and the above con­
trol law can be expressed as follows, 

eo= 0, 

Xc = (Ace - BcFc)Xc + Lcded + Ecw = A~cXc + Lcded + Ecw, 

. Fi - _ 
xi= Aq,Xi- Bqi 10q, Si(c)xi + Lided + Eiw, ei = Cq,xi. 

Let us define a new state transformation as, 

(9.4.17) 

(9.4.18) 

(9.4.19) 

(9.4.20) 

x;; := x;;' Xc := Xc, Xd := ( -~· ) ' Xi := Si(c)Xi, i = 1, ... 'md. (9.4.21) 
Xmd 

Then, we have eo = 0, and 

It is simple to show that, for c E (0, 1], 

for some positive constant ld and (}i, which are independent of c. 

(9.4.22) 

(9.4.23) 

(9.4.24) 

(9.4.25) 

(9.4.26) 

(9.4.27) 
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We next construct a Lyapunov function for the closed loop system (9.4.22) 

to (9.4.24). We do this by composing Lyapunov functions for the subsystems. 

For the subsystem of x;;-, we choose a Lyapunov function, 

(9.4.28) 

where P;; > 0 is the unique solution to the Lyapunov equation, 

(9.4.29) 

and for the subsystem of Xc, we choose a Lyapunov function, 

(9.4.30) 

where Pc > 0 is the unique solution to the Lyapunov equation, 

(9.4.31) 

Finally, for the subsystem of xd, we choose a Lyapunov function 

md 

vd(xd) = L x~Pixi, (9.4.32) 
i=l 

where Pi is the unique solution to the Lyapunov equation, 

(9.4.33) 

Since Aq, - Bq, Fi is asymptotically stable, the existence of Pi is guaranteed. We 

now choose a Lyapunov function for the closed-loop system (9.4.22) to (9.4.24) 

as follows, 
(9.4.34) 

where the value of ad is to be determined. The derivative of V along the 

trajectory of the closed-loop system (9.4.22) to (9.4.24) can be evaluated as 

follows, 

It is straightforward to see now that there exist an ad > 0 and c* E (0, 1] such 

that for all c E (0, c*], 

. 11- 12 11- 12 1 1- 12 I -1 2 V ~ -2 X a - 2 Xc - 2€ Xd + a1 w , (9.4.36) 
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for some positive constant o:1 , independent of e. Thus, the closed-loop system 
in the absence of disturbance w and reference input r is asymptotically stable. 

It remains to show that the resulting tracking error e, which is a function 
of e, has the following property, 

Jp(xo,w,r,E) = lleiiP -t 0, as e -t 0. (9.4.37) 

We first assume that the disturbance w is nonexistent. It follows from (9.4.36) 
that 

(9.4.38) 

for some positive scalar o:2 , independent of E. Noting the transformation of 
(9.4.21), we have 

(9.4.39) 

for some positive o:o > 0, independent of e, where x0 is the combination of 
the initial condition of the original system, i.e., xo, and the additional ones 
introduced by r(~<). Thus, 

(9.4.40) 

where o:3 > 0 and is independent of e. By the standard comparison theorem, 
it follows from (9.4.38) that, 

(9.4.41) 

which together with (9.4.40) imply that 

(9.4.42) 

and thus, 

(9.4.43) 

for some positive scalars o:4 and o:5 , independent of e. Now viewing ed as an 
input to the subsystem Xi of (9.4.24), one can show that 

(9.4.44) 

and 

(9.4.45) 

for some positive scalars 0:5, 0:7, o:s and /31 , which are all independent of e. 
Noting that 

(9.4.46) 
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where e0 = 0 and ed = ed, we then have 

(9.4.47) 

Thus, for all 1 ::; p < oo, we have, as e -+ 0, 

(9.4.48) 

Next, we take into consideration the disturbance w E Lp, p E [1, oo ), but 

with x0 = 0. Noting that ed in (9.4.24) is a part of the state variables of the 

system and eiid(e) is negligible compared to Aq. - Bq.Fi for sufficiently small 

e, the subsystem (9.4.24) can then be approximated as, 

. 1 -
Xi= [(Aq. - Bq.Fi)Xi + Ei(e)w, (9.4.49) 

where w E Lp. Thus, we have 

leil =lei I::; lot lcq.exp [ -~(Aq. - Bq.Fi)T] Ei(e)w(t- T)l dT 

::; /33100 
e-f34 r/elw(t- T)idT, (9.4.50) 

for some positive scalars (33 and (34 , independent of e. The result for p = 1 is 

obvious. We proceed to show the case when 1 < p < oo. Using the well-known 

Holder Inequality, i.e., 

llfglh ::; 11/llp. ll9llp•' 1/p + 1/p* = 1, (9.4.51) 

we have 

(9.4.52) 

Thus, 

lleill~::; f3f (;J pfp*1oo [100 
e-f34 r/elw(t- T)IPdT] dt 

= f3f (;Jp/p*1oo e-f34 r/e [100 lw(t- T)IPdt] dT (9.4.53) 
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(9.4.54) 

(9.4.55) 

Note that we have used the property w(t) = 0, t < 0, to get (9.4.54) from 
(9.4.53). We would also like to note that the above proof from (9.4.52) to 
(9.4.55) was inspired by similar arguments reported in Desoer and Vidyasagar 
(46]. It is now clear, 

( ) 
1/p+l/p* ({3 ) 

iiei/IP -::; !33 ; 4 llwiiP = {3: c:ilwiiP -+ 0, (9.4.56) 

as c: -+ 0. In view of (9.4.48) and (9.4.56), the robust and perfect tracking 
problem is then solved. This completes the proof of Theorem 9.2.2. ~ 

9.4.B. Proof of Theorem 9.2.3 

First, let us define a new state variable, 

Xv =X-V. (9.4.57) 

Then, it is straightforward to verify that the closed-loop system comprising the 
given system (9.1.1) and the full order measurement feedback control law of 
(9.2.57) can be rewritten as follows, 

xv =[A+ K(c:)C1]xv + [E + K(c:)D1]w, (9.4.58) 

x = [A+BF(c:)]x-BF(c:)xv+BHo(c:)r+· · ·+BHI<_ 1 (c:)r(~<-l)+Ew, (9.4.59) 

and 

h = [c2+D2F(c:)]x-D2F(c:)xv+D2Ho(c:)r+· ··+D2H~<-l(c:)r(~<-l). (9.4.60) 

It is simple to see now the eigenvalues of the closed-loop system are given by 
A{A + BF(c:)}, which have been shown to be in c- in Theorem 9.2.2, and 
A{ A+ K(c:)Cr}, which are equivalent to 

A { [AccQ- KcoqCocq -Kcdq/c]}-+ A (Ac ) U {-~ ... -~} (9 4 61) 
E I I "' ceQ ' ' ' · · dcQ - k c. c c 

as c: -+ 0. Thus, the closed-loop system is asymptotically stable for sufficiently 
small c:, when the external disturbance w = 0 and reference r = 0. 
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Next, we intend to investigate the properties of Xv in the subsystem (9.4.58). 

Let us transform the subsystem (9.2.50) into the special coordinate basis of 

Theorem 2.4.1 with nonsingular state, input and output transformations f 8 q, 

riQ and rOQ> as given in Step 9.F.2 of Subsection 9.2.2. Also, let 

Xv = f sQ ( Xcq ) · 
Xdq 

Then, we can rewrite (9.4.58) as, 

and 

Xdq = _!Xdq + EdcqXcq + EdqW, 
c 

for some appropriate dimensional matrices Ecq and Edq, 

Now, let 

Thus, (9.4.63) and (9.4.64) can be rewritten as, 

and 

(9.4.62) 

(9.4.63) 

(9.4.64) 

independent of c. 

(9.4.65) 

(9.4.66) 

(9.4.67) 

It is clear to see that as c -+ 0, the poles of the above system are asymptotically 

given by >.(A~cq) and k repeated ones at -1/c. This confirms with what we 

have claimed earlier in (9.4.61). Following similar arguments as in (9.4.37) to 

(9.4.56), we can show that for any bounded initial condition and for w E Lp, 

pE[1,oo), 
(9.4.68) 

for some positive scalars f3c and (3d, independent of c. Thus, there exists a scalar 

f3v, independent of c, such that 

(9.4.69) 

Following (9.2.53), it is simple to verify that 

and 

([ 0 O]r-t)xv= [0 OJ (Xcq) = ( 0) 
0 Ik SQ 0 h Xdq Xdq . 

(9.4.71) 
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Thus, the last condition of Theorem 9.2.1, i.e., Ker (C2 ) :::) C1 1{Im (D1 )}, 

implies that 

(9.4. 72) 

for some appropriate constant matrix M and positive scalar f3m, independent 
of €. In fact, for any appropriate matrix N with Ker (N) :::) Ker (C2), we have 

(9.4. 73) 

for some positive scalar !3n (independent of c). 
We are now ready to show that the full order measurement feedback control 

law of (9.2.57) solves the RPT problem. It is straightforward to verify that 
(9.4.59) and (9.4.60) can be rewritten as 

{ 
X= (A+ BF) X- BF(c) Xv + E W 

e = (C2 + D2F) X- D2F(c) Xv 
(9.4.74) 

where A, B, E, C 2 and D 2 are as defined in (9.2.30) and (9.2.31). Without 
loss of any generality, we assume hereafter that the quadruple (A, B, C 2 , D 2 ) is 
in the form of the special coordinate Following the same procedures as in (9.4.1) 
to (9.4.20), we can transform (9.4.74) with some appropriate transformations 
into the following form, 

(9.4. 75) 

(9.4. 76) 

Fi ] Bq; -. Si(€) Xv, 
€q, 

(9.4.77) 

(9.4. 78) 

for some appropriate dimensional matrices N;, Nc and Ni, which are all inde­
pendent of €. First, it is simple to see that 

(9.4. 79) 

In view of (9.4.73), we have 

lleoiiP --+ 0, as €--+ 0. (9.4.80) 

Next, let us define a new state transformation as in (9.4.21), i.e., 

x;; := x;;, Xc := Xc, Xd := ( _'' ) ' Xi:= Si(t)X;, i = 1, ... ,md. (9.4.81) 

Xmd 
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Then, 

i; = A;ax; + L~ded + [E;; N;;] ( ~) , 

ic = A~cXc + Lcded + ( Ec Nc] ( ~ ) , 

(9.4.82) 

(9.4.83) 

ii = ~(Aq; -Bq;Fi)xi+Lid(e)ed+[Ei(e) Ni(e)] ( ~) - (0 0 Mi(e)] xv, 

(9.4.84) 

ei = ei = Cq;xi, ed = ed = Cdxd, (9.4.85) 

where 

(9.4.86) 

and 

(9.4.87) 

It is clear that the 2-norms of Lid(e), Ni(e) and Ei(e) are all bounded, and in 

view of the special structure of Bq;, Si(e) and Fi of (9.2.37), we have 

0 0 

0 0 

(9.4.88) 

where IMi(e)l ~ ~i for some positive scalar ~i, independent of e. Thus, (9.4.84) 

can be rewritten as, 

(9.4.89) 

for some bounded Ni(e). It is clear that 

Ker ((o 0 Cq; l) :J Ker (C2). (9.4.90) 

In view of (9.4.73), we have 

(9.4.91) 
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for some positive scalar TJ; (independent of c:). Hence, we can view 

and (9.4.92) 

as some Lp signals, whose lp norms are bounded by some E independent scalars. 

Then, following the similar procedures as in (9.4.28) to (9.4.56), it is straight­

forward to show that, 

(9.4.93) 

In view of (9.4.80) and (9.4.93), it is clear that the RPT problem is solved by 

the full order measurement feedback control law (9.2.57). f!l 

9.4.C. Proof of Theorem 9.2.4 

We first define a new state variable, 

(9.4.94) 

Again, it is straightforward to verify that the closed-loop system comprising 

the given system (9.1.1) and the reduced order measurement feedback control 

law of (9.2.71) can be rewritten as follows, 

X8 = (AR + KRCR)Xs + ( E2 + KR [ ~t]) W, (9.4.95) 

x = [A+BF(c:)]x-BF2(c:)xs+BHo(c:)r+· · ·+BHK-l(c:)r(~<-l)+Ew, (9.4.96) 

and 

Thus, it is simple to see that the closed-loop system is asymptotically stable 

for sufficiently small c:, as the closed-loop poles are given by the eigenvalues of 

A+ BF(c:) and AR + KRCR. 
Since AR + KRCR is asymptotically stable, it follows that for any initial 

condition, Xs E Lp provided that w E LP' Next, we rewrite 

BF2(c:)xs = BF(c:) ( ~s) and D2F2(c:)xs = D2F(c:) ( ~s) . (9.4.98) 

It follows from (9.2.60) that 

(9.4.99) 
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and 

[ 0 OJ ( 0 ) _ O h 0 Xs - • 
(9.4.100) 

Thus, the last condition of Theorem 9.2.1, i.e., Ker (C2 ) :J C:l1{Im (Dl)}, 
implies that 

(9.4.101) 

for any appropriate dimensional matrix N with Ker (N) :J Ker (C2 ). Following 

the same procedures as in (9.4.74) to (9.4.93), we can show that 

lleiiP -+ 0, as c: -+ 0. (9.4.102) 

Hence, the RPT problem is solved by the reduced order measurement feedback 

control law (9.2.71). filSl 



Chapter 10 

Infima in Discrete-time H 00 

Optimization 

10.1. Introduction 

IN THIS CHAPTER, we present computational methods for evaluating the infima 
of discrete-time Hoo optimal control problems. The main contributions of this 

chapter are the non-iterative algorithms that exactly compute the values of 
infima for systems satisfying certain geometric conditions. If these conditions 

are not satisfied, one might have to use iterative schemes based on certain 
reduced order systems for approximating these infima. Most of the results of 
this chapter were reported earlier in Chen [19], and Chen et al. [21]. 

10.2. Full Information Feedback Case 

The main result of this section deals with the non-iterative computation of 
the infimum for the following full information feedback discrete-time system 

characterized by: 

{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

E : y(k) = ( ~) x(k) + (~) w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(10.2.1) 

where x ERn is the state, u ERmis the control input, wE Rq is the external 
disturbance input, y E Rn+q is the measurement output, and h E RL is the 

controlled output of E. For ease of reference in future development, we define 
:EP to be the subsystem characterized by the matrix quadruple (A, B, C2, D2). 
We first make the following assumptions: 
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Assumption 10.F.1: (A, B) is stabilizable; 

Assumption 10.F.2: ~P has no invariant zero on the unit circle; 

Assumption 10.F.3: Im (E) c V0 {~P) + S0 (~P)i and 

Assumption 10.F.4: D22 = 0. 

In what follows, we state a step-by-step algorithm for the computation of 

the infimum 'Y*. 

Step 10.F.l: Without loss of generality but for simplicity of presentation, we 

assume that the quadruple (A, B, C2, D2), i.e., ~p, has been partitioned 

in the form of {2.4.4). Then, transform ~P into the special coordinate 

basis as described in Chapter 2 (see also {2.4.20) to {2.4.23) for the com­

pact form of the special coordinate basis). In this algorithm, for ease of 

reference in future development, we introduce an additional permutation 

matrix to the state transformation r s such that the new state variables 

are ordered as follows: 

Next, we compute 
Ec 
E;; 

r- 1E = E+ s a 

Ed 
Eb 

{10.2.2) 

(10.2.3) 

Note that Assumption 10.F.3 is equivalent to Eb = 0. Also, for economy of 

notation, we denote nx the dimension of Rn /V0 {~P ), which is equivalent 

to nx = nt + nd + nb. We note that nx = 0 if and only if the system ~P 
is right invertible and is of minimum phase with no infinite zero of order 

higher than zero. 

Step 10.F.2: Define Ax, Bx, Bxo, Bx1, Ex, Cx and Dx as follows: 

(10.2.4) 

{10.2.5) 
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and 

(10.2.6) 

It follows from the property of the special coordinate basis that the pair 
(Ax, Bx) is stabilizable. Next, we find a matrix Fx such that Ax+ BxFx 
has no eigenvalue at -1. Then define Ax, Bx, Ex, Cx, Dx and D22 as: 

Ax :=(Ax+ BxFx + I)- 1(Ax + BxFx- I), 

Bx := 2(Ax + BxFx + n-2 Bx, 

Ex := 2(Ax + BxFx + n-2 Ex, 

Cx := Cx + DxFx, 

Dx := Dx- (Cx + DxFx)(Ax + BxFx + I)-1 Bx, 

D22 := D22- (Cx + DxFx)(Ax + BxFx + /)"- 1 Ex. 

(10.2.7) 

Step 10.F.3: Solve the following continuous-time algebraic Riccati equation 
and algebraic Lyapunov equation, both independent of "( 

o = [Ax-Bx(D~Dx)- 1 b~tx) Bx+Bx [Ax -Bx(D~Dx)- 1 b~tx )' 

-Ex (D~Dx)- 1 B~ +Sx [ C~C x- C~Dx(D~Dx)- 1 D~C x] Sx, (10.2.8) 

0 = [Ax-Bx(D~Dx)- 1 D~Cx] T x+Tx [Ax -Bx(D~Dx)- 1 D~Cx] 1 

- [Ex-Bx(D~Dx)- 1 D~b22] [Ex-Bx(D~Dx)- 1 .0~.022]', (10.2.9) 

for positive definite solution Bx and positive semi-definite solution Tx. 
For future use, we define 

(10.2.10) 

and 

(10.2.11) 

Step 10.F.4: The infimum, 'Y*, is given by 

(10.2.12) 

This completes the algorithm for computing 'Y* for the full information 
feedback case. 

We have the following theorem. 
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Theorem 10.2.1. Consider the full information system given by (10.2.1). Then 
under Assumptions 10.F.1 to 10.F.4, 

1. 'Y* given by (10.2.12) is indeed its infimum, and 

2. for 'Y > 'Y*, the positive semi-definite matrix P('Y) given by 

(10.2.13) 

is the unique solution that satisfies Conditions 2.(a)-2.(c) of Theorem 

4.3.1. Moreover, such a solution P('Y) does not exist when 'Y < 'Y*· l!l 

Proof. First, we note that it follows from Theorem 2.4.1 and Property 2.4.4 of 
Chapter 2 that (Az, Bx, Cz, Dz) is left invertible with no invariant zeros on the 
unit circle. Following the results of Stoorvogel et al. [125] and Lemma 5.3.3, it 

is straightforward to show that the following three statements are equivalent: 

1. There exists a 'Y suboptimal controller for the full information system 
(10.2.1). 

2. There exists a 'Y suboptimal controller for the following auxiliary system 

{ 

Xz(k + 1) = Ax Xz(k) + Bx Ux(k) + Ex Wx(k), 

Yx(k) = ( ~) Xz(k) + ( ~) Wx(k), 

hz(k) = Cz Xz(k) + Dz Uz(k) + D22 Wz(k), 

(10.2.14) 

where Az, Bz, Ex, Cz and Dz are defined as in (10.2.4) to (10.2.6). Note 
that D22 = 0 by the assumption. 

3. There exists a 'Y suboptimal controller for the following auxiliary system 

(10.2.15) 

For future use, we denote :Ex and Ez the matrix quadruples (Az, Bz, Cz, Dz) 
and (Az, iJ~, Cx, Dz), respectively. Note that by Theorems 4.2.1 and 4.3.1, 
Items 2 and 3 above are also equivalent to the following: 
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1. There exists a solution Px > 0 to the following discrete-time algebraic 

Riccati equation, 

where 

such that the following conditions are satisfied 

Vx := B~PxBx + D~Dx > 0, 

Rx := l I- E~PxEx + E~PxBx vx- 1 B~PxEx > 0. 

(10.2.17) 

(10.2.18) 

(10.2.19) 

2. There exists a solution P x > 0 to the following continuous-time algebraic 

Riccati equation, 

with 
(10.2.21) 

and 

(10.2.22) 

Furthermore, the solutions to the above Riccati equations, if they exist, are 

related by 
(10.2.23) 

Thus, it is equivalent to show that 'Y* given by (10.2.12) is the infimum for 

the full information system (10.2.1) by showing that it is an infimum for the 

auxiliary system in (10.2.15). This can be done by first showing the properties 

of the auxiliary system of (10.2.15) and then applying the results of Chapter 6. 

We note that the matrix Fx in Step 10.F.2 of the algorithm is a pre-state 

feedback gain, which is introduced merely to deal with the situation when Ax 

has eigenvalues at -1 and the inverse of I + Ax does not exist. For the sake 

of simplicity but without loss of generality, we will hereafter assume that Ax 

has no eigenvalue at -1 and Fx = 0. We will first show the following two facts 
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associated with the auxiliary system (10.2.15): There exists a pre-disturbance 
feedback to the system in (10.2.15) in the form of, 

(10.2.24) 

such that 

In fact, we will show that such an F w is given by 

(10.2.25) 

In order to make our proof simpler, we first apply a pre-state feedback law 

[ 0 0 0 ] Ux = FxXx + Vx = - E+ O E Xx + Vx, 
da db 

(10.2.26) 

to the system in (10.2.14) such that the resulting dynamic matrix Ax + BxFx 
has the following format, 

(10.2.27) 

while the rest of the system matrices in (10.2.14) remain unchanged. Hence, it 
is without loss of generality that we assume that Ax is already in the form of 
(10.2.27). Also, we assume that both Add and Abb have no eigenvalue at -1. 
Then it is simple to verify that 

(Ax+ I)-1 = 0 

x1 
(Add+ n-1 

[ 
(Ata + I)-1 

0 -(Abb + I)-1 LbdCd(Add + I)-1 

where 

and 

- -1 Dx = Dx- Cx(Ax +I) Bx 

= r o [ - Cd(Addi+ I)-1 Bod 

x3 

x2 l 0 , 

(Abb + n-1 

(10.2.28) 

(10.2.30) 
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where 

Define 

to = r o [ - C d (Ad/+ I) - 1 Bod 
x3 

255 

We note that t 0 is nonsingular. This follows from the property of the special 

coordinate basis (see Theorem 2.4.1) that the triple (Add, Bd, Cd) is square and 

invertible with no invariant zero, and hence Cd(Add + I)- 1 Bd is nonsingular. 

Then we have 

(10.2.33) 

and 

where 
(10.2.35) 

It is now obvious to see that the following pre-disturbance feedback law to 

(10.2.15) 

Ux = FwWx +flx =- [~J Wx +'Vx, 

guarantees that Dzz + DxF w = 0. We also have 

where 

(10.2.36) 

(10.2.38) 

This shows the first fact. Since Dx is of maximal column rank, it follows that - _, __ ,_ 
the above Fw is also equivalent to -(DxDx)-1DxDzz. Next, let us proceed to 

prove the second fact, i.e., 
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We will have to apply several nonsingular state transformations to the system 

{ 
x_.:. z = A_-z x_x + B_-z v_z + CEz + BxF w) Wz, 
hz = Cz Xz + Dz Vz , 

(10.2.39) 

and transform it into the form of the special coordinate basis as given in The­

orem 2.4.1. First let us define a state transformation 

- -2 Tz = (Az +I) . (10.2.40) 

In view of (10.2.28), it is straightforward, although tedious, to verify that 

[
(Ata + I)-2 * * l 

Tz = 0 (Add+ I)-2 0 , 

0 Xs (Abb + I)-2 

(10.2.41) 

where *S are matrices of not much interest and 

Xs = -(Abb + I)-1[LbdCd(Add + I)-1 + (Abb + I)-1 LbdCd](Add + I)-1, 

(10.2.42) 

and 

{10.2.43) 

[
(Ata -I)(Ata +I)-1 * 2(Ata +I)-1 LtbCb(Abb+I)-1 ] 

= 0 (Add-I)(Add+I)- 1 0 , 

0 2(Abb + I)-1 LbdCd(Add+ I)-1 (Abb- I) (Abb + I)-1 

[Bit. 0 l Bz := T~1 Bz = 2Bz = 2 Bod Bd , 
·Bob 0 

{10.2.44) 

E, ,; :t;'(li, + ii,P w) ; 2 [ !n , where E, ; o, (10.2.45) 

= f'o [~O -[Cd(Add+I)-1~]-1 Cd(Add+I)-2 ~ ](10.2.46) 

-Cb(Abb +I)-2 LbdCd(Add+I)- 1 Cb(Abb+I)-2 

D, ,; D,; r, u ~] {10.2.47) 
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In order to bring the system of (10.2.39) into the standard form of the special 
coordinate basis, we will have to perform another state transformation that will 
cause the (3, 2) block of Cx in the right hand side of (10.2.46) to vanish. The 
following transformation f'x will do the job, 

(10.2.48) 

It is quite easy to verify this time that 

(10.2.49) 

[ 
(A;!"a -I)(A;!"a +I)-1 * 2(A;!"a +I)-1 L;!"bCb(Abb+I)l 

= 0 (Add-I)(Add+I)- 1 0 , 
0 2(Abb+I)-2 LbdCd(Add+I)-2 (Abb+I)- 1 (Abb- I) 

Then we have 

A A A - [ (Ata- I)(Ata + n-1 

Ax-BxoCxo- 0 

0 

* 

{10.2.51) 

{10.2.52) 

{10.2.53) 

2{A;!"a + I)-1 L;!"bCb(Abb +I)] 
0 ' 

(Abb + I)- 1(Abb- I) 
{10.2.54) 
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where 

A;a =(Add- I)(Add + I)-1 + 2Bd[Cd(Add + I)-1 Bdt1Cd(Add + I)-2 . 

(10.2.55) 

Define another nonsingular state transformation, 

[
I 0 T.l 

Tx = 0 I 0 , 
0 0 I 

(10.2.56) 

with T * being a solution to the following general Lyapunov equation 

It follows from Kailath [64] that such a solution always exists and is unique if 

A~a and Abb have no common eigenvalue. Then it is straightforward to verify 

that it would transform the (1, 3) block of Ax- BxoCxo in (10.2.54) to 0 while 

not changing the structures of other blocks. Hence, T x would also transform 

the system (Ax, Bx, Cx, Dx) and Ex into the standard form of the special coor­

dinate basis as given in Theorem 2.4.1 since the pair { (Abb + I)-1 (Abb- I), Cb} 
is completely observable due to the complete observability of (Abb, Cb)· It is 

now clear from the properties of the special coordinate basis that 

where Ex is characterized by (Ax,Bx,Cx,Dx), which is equivalent to 

This proves the second fact. 

Next, let us apply a pre-disturbance feedback law, 

(10.2.57) 

to the auxiliary system (10.2.15). Again, this pre-feedback law will not affect 

solutions to the H 00 problem for (10.2.15) or to the solution P x of (10.2.20)­

(10.2.22). After applying this pre-feedback law, we obtain the following new 

system 

Xx = Ax Xx + Bx Vx +[Ex -Bx(D~Dx)- 1 D~D22] Wx, 

Yx=(~)xx + (~) Wx, (10.2.58) 

0 
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Then it follows from Corollary 4.2.1 that the existence condition of a 'Y subop­

timal controller for (10.2.58) is equivalent to the existence of a matrix P x > 0 

such that 
- - -1 - -I - - - -I - -I - 1 - - -I -

0 = PxAx + AxPx + CxCx- (PxBx + CxDx)(DxDx)- (PxBx + CxDx) 1 

+Fx [ex- Bx(D~Dx)- 1 b~b22] [ex- Bx(D~Dx)- 1 b~b22 ]' Pxh2 , 

is satisfied. Note that the solution P x to the above Riccati equation is identical 

to the solution that satisfies (10.2.20)-(10.2.21). 

Now, it follows from Theorem 3.3.1 that (Ax, Bx, Cx, Dx) is left invertible, 

and is free of infinite zeros and stable invariant zeros as well as invariant zeros 

on the unit circle. Also, in view of the second fact of the auxiliary system of 

(10.2.58), it satisfies Assumptions 6.F.1 to 6.F.4 of Chapter 6. Following the 

results of Chapter 6, we can easily show that 

"(* = V Amax('f xS~\ (10.2.59) 

and for any 'Y > 'Y*, the positive definite solution P x of (10.2.20)-(10.2.22) is 

given by 
(10.2.60) 

It then follows from (10.2.23) that for any 'Y > "(*, the positive definite solution 

Px of (10.2.16)-(10.2.19) is given by 

and hence 'Y* can also be obtained from the following expression, 

"(* = V Amax(TxS; 1), 

(10.2.61) 

(10.2.62) 

where Sx and Tx are as defined in (10.2.10) and (10.2.11), respectively. More­

over, it is straightforward to verify that 

P('Y) = (r:;1 )I [ ~ (Sx - ~h2)-1] r;1' 

is the unique solution that satisfies Conditions 2.(a)-2.(c) of Theorem 4.3.1. 

Finally, note that (Ax, B x, C x, D x) is left invertible, and is free of infinite 

zeros and stable invariant zeros as well as invariant zeros on the unit circle. It 

follows from Richardson and Kwong [106] that the solution Sx to the Riccati 

equation (10.2.8) is positive definite because (Ax, Bx) is controllable, and the 

solution T x to the Lyapunov equation (10.2.9) is positive semi-definite. In fact, 

both of them are unique. This completes the proof of our algorithm. ~ 

The following remarks are in order. 



260 Chapter 10. Infima in Discrete-time Hoo Optimization 

Remark 10.2.1. For the case when D22 =f. 0, Assumption 10.F.3 should be 

replaced by the following conditions: 

1. D22 := D22- Cx(Ax + I)-1Ex is in the range space of Dx, and 

2. Im [.E:c - Bx(D~Dx)-1 iJ~iJ22] ~ V0(t:c) + S 0(t:c)-

Then our algorithm would carry through without any problems. We would also 

like to note that if (A,B,C2,D2) is right invertible, then (Ax,B:c,C:c,D:c) is 
invertible and Dx is square and nonsingular, and V0(tx) + S0(t:c) = Rnz. 

Hence, the above two conditions will be automatically satisfied. Such a result 

was first reported in Chen [19). !!!l 

Remark 10.2.2. If Assumptions 10.F.3 and 10.F.4 are not satisfied, then one 

might have to approximate iteratively the infimum "Y* by finding the smallest 

nonnegative scalar, say i'* ~ 0, such that the lliccati equation (10.2.20) and 

(10.2.21) are satisfied. !!!l 

We illustrate the above results in the following example. 

Example 10.2.1. Consider a full information system (10.2.1) characterized by 

and 

1 1 1 1] 0 0 1 1 

0 1 1 1 ' 
1 1 1 1 
0 0 1 1 

c2 = o o o 1 o , [0 0 -1 0 0] 
0 0 0 0 1 

[
0 0 1] 0 0 0 

B= 1 0 0 , 
0 1 0 
0 0 0 

[ 1 0 0] 
D2 = 0 0 0 , 

0 0 0 

(10.2.63) 

Dn ~ m . (10.2.64) 

It is can be verified that (A, B) is controllable and (A, B, C2, D2) is neither right 

nor left invertible, and is of nonminimum phase with two invariant zeros at 0 

and 2, respectively. Moreover, it is already in the form of the special coordinate 

basis as given in Theorem 2.4.1 and Assumption 10.F.3 is satisfied as Eb = 0. 

Hence, Assumptions 10.F.1 to 10.F.4 are all satisfied. Following the algorithm, 

we obtain 

rs=ls, n:c=3, 
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C, ~ [~ ~ ~] , D, ~ [~ ~] , 

[ 
0.25 0.25 0.25] 

Ax = 0.50 -0.50 0.50 , 
-0.25 0.75 -0.25 

[ 
0.3125 -0.1875] 

Bx = -0.6250 1.3750 , 
0.4375 -1.0625 

[ 
0.125] 

Ex= 0.750 
-0.625 

and 

[ 
1.000 0.000] 

Dx = 0.250 -0.750 , 
-0.125 0.375 

[ 
0.00] 

D22 = -0.50 . 
0.25 

It is simple to verify that (Ax, iJ x, C x, iJ x) is left invertible with two invariant 
zeros at 1 and 1/3, respectively. Solving Riccati equations (10.2.8) and (10.2.9), 
we obtain 

[ 
0.227615 -0.207890 0.019725] 

Sx = -0.207890 1.202254 -1.005636 , 
0.019725 -1.005636 1.014089 

and 

[ 
0.09375 -0.062500 0.031250] 

T X = -0.06250 0.041667 -0.020833 . 
0.03125 -0.020833 0.010417 

Finally, we get 

[ 
0.562306 -0.145898 -0.145898] 

Sx = -0.145898 0.618034 -0.381966 , 
-0.145898 -0.381966 0.618034 

and the infimum 

,. = 0.934173. 

10.3. Output Feedback Case 

We present in this section a well-conditioned non-iterative algorithm for the 
exact computation of 1* of the following measurement feedback discrete-time 
system I;, 

{ 
x(k + 1) = A x(k) + B u(k) + E w(k), 

I; : y(k) = C1 x(k) + D1 w(k), 
h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(10.3.1) 
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where x E Rn is the state, u E Rm is the control input, w E Rq is the 
external disturbance input, y E RP is the measurement output, and hE Rl is 
the controlled output of E. Again, for easy reference, we define :EP to be the 
subsystem characterized by the matrix quadruple (A, B, C2, D2) and :EQ to be 

the subsystem characterized by the matrix quadruple (A, E, C1, DI). We first 
make the following assumptions: 

Assumption lO.M.l: (A, B) is stabilizable; 

Assumption 10.M.2: :EP has no invariant zero on the unit circle; 

Assumption 10.M.3: Im (E) C V0(:EP) + S0(:EP); 

Assumption 10.M.4: (A, CI) is detectable; 

Assumption 10.M.5: :EQ has no invariant zero on the unit circle; 

Assumption 10.M.6: Ker (C2) :::> V0(:EQ) n S0(:EQ); and 

Assumption 10.M.7: D22 = 0. 

As in the previous section, we outline a step-by-step algorithm for the com­
putation of 7* below: 

Step 10.M.1: Define an auxiliary full information problem for 

{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(10.3.2) 

and perform Steps 10.F.1 to 10.F.3 of the algorithm given in the previous 
section. For future use and in order to avoid notational confusion, we 

rename the state transformation of the special coordinate basis for :EP as 

fsP and the dimension of Ax as nxP· Also, rename Sx of (10.2.10) and Tx 
of (10.2.11) as SxP and TxP, respectively. 

Step 10.M.2: Define another auxiliary full information problem for 

{ 

x(k + 1) = A' x(k) + Cf u(k) + q w(k), 

y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) = E' x(k) + D~ u(k) + D~2 w(k), 

(10.3.3) 

and again perform Steps 10.F.1 to 10.F.3 of the algorithm given in Sec­

tion 10.2 one more time, but for this auxiliary system. Let :E~ be the 
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dual system of :Eq and be characterized by (A', C~, E', Dl.). We rename 

the state transformation of the special coordinate basis for :E~ as r sQ and 

the dimension of Ax as nxq, and Sx of (10.2.10) and Tx of (10.2.11) as 

Sxq and Txq, respectively. 

Step 10.M.3: Partition 

r-l(r-1)' = [* *] 
SP SQ * r > 

(10.3.4) 

Where f is a nxP X nxq matrix, and define a COnStant matriX 

(10.3.5) 

Step 10.M.4: The infimum 'Y* is then given by 

(10.3.6) 

where M has only real and nonnegative eigenvalues. 

Proof of the Algorithm. Once the result for the full information case is 

established, the proof of this algorithm is similar to the one given in Section 6.3 

of Chapter 6. ~ 

The following remarks are in order. 

Remark 10.3.1. Consider the given discrete-time system (10.3.1) that satisfies 
Assumptions lO.M.l to lO.M. 7. Then for any 'Y > 'Y*, where 'Y* is given by 
(10.3.6), the following P('Y) and Q('Y), 

P('Y) := (r;pl)' [~ (SxP- ~ph2)-l J r;Pl' 

and 

Q('Y) := (r;~)' [~ (Sxq -~Qh2)-l] r;~, 
satisfy Conditions 2.(a)-2.(g) of Theorem 4.3.1. 

(10.3.7) 

(10.3.8) 

liD 

Remark 10.3.2. For discrete-time H00 control, 'Y* for the full information 

feedback system is in general different from that of the full state feedback system 

regardless of D22 = 0 or not. For the state feedback case, i.e., C1 = I and 

D 1 = 0, we note that the subsystem :Eq is always free of invariant zeros (and 
hence free of unit circle invariant zeros) and left invertible. Thus, as long as :EP 
is free of unit circle invariant zeros and satisfies Assumption lO.M.l to 10.M.3, 
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one can apply the above algorithm to get the infimum, 'Y*. For this special 
case rSQ> nxQ, SxQ and TxQ in Step 10.M.2 of the above algorithm can be 
directly obtained using the following simple procedure: Compute a nonsingular 
transformation r SQ SUCh that 

(10.3.9) 

where E is a nxQ x nxQ nonsingular matrix. Then SxQ and TxQ are respectively 
given by 

( A-1)' A-1 
SxQ = E E and TxQ = 0, (10.3.10) 

and hence 
1 

'Y* = [.\max(TxPS;p1 + rs;~r'S;i))2. (10.3.11) 

Note that in general, 'Y* ~ {.\max (TxPS;P1)}!. 

Remark 10.3.3. For the case when D22 ::J 0, Assumptions 10.M.3 and 10.M.6 
should be replaced by the conditions given in Remark 10.2.1, which is associated 
with the full information system of (10.3.2), and a set of conditions similar to 
those in that remark, but for the full information system of (10.3.3). Then our 
procedure would again carry through and yield the correct result. Note that if 
~P is right invertible and ~Q is left invertible, then all these conditions will be 
automatically satisfied. The result will then reduce to that of Chen (19). lEI 

Remark 10.3.4. If Assumptions 10.M.3 and 10.M.6, i.e., the geometric condi­
tions, and Assumption 10.M. 7 are not satisfied, then an iterative scheme might 
be used to determine the infimum. This can be done by finding the smallest 
scalar, say ,:Y*, such that all the following conditions are satisfied: 

1. The Riccati equation 

-- _,- _,- [i/Px+D'6p]' O=PxAxP+AxpPx+CxPCXP- _,xP __ ,xP _x. 
ExpPx+D22pCxP 

[ b~pbxP b~pb22P l-1 [ B~pPx+D~pCxP] 
X D~2pDxP D~2PiJ22P-(,:Y*) 2 J E~pf>x+D~2pCxP ' 

has a positive definite solution P x > 0, which satisfies 

Here we note that all the sub-matrices in the above Riccati equation are 
defined as in (10.2.7) but for the auxiliary system (10.3.2) of Step 10.M.l. 
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2. The Riccati equation 

Similarly, we note that all the sub-matrices in the above Riccati equation 

are defined as in (10.2.7) but for the auxiliary system (10.3.3) of Step 

10.M.2. 

3. Finally, the coupling condition holds, i.e., 

Amax{ PxrOxr' }< ('=Y*) 2 , (10.3.12) 

where r is as defined in (10.3.4). 

The following example illustrates our computational algorithms. 

Example 10.3.1. We consider a discrete-time measurement feedback system 

(10.3.1) with A, B, E, C2, D2 and D22 being given as those in Example 10.2.1 

of the previous section. We consider the full state feedback case first, i.e., 

C1 = I and D1 = 0. Following the algorithm and the simplified procedure in 
Remark 10.3.2, we obtain those matrices as in the full information case and 

[ I 
1 1 0 I] -1 0 0 0 0 r,o ~ ~ -1 0 0 0 , nxQ = 1, 
0 -1 0 0 
0 0 1 0 

BxQ = 1, TxQ = 0, r~[~], 
and 

'Y* = 3.181043. 

Now, we consider the computation of 'Y* for the given system with an output 

measurement characterized by 

c1 = [ o o o o 1 J , D1 = o. (10.3.13) 
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It can be shown that (A, Ct) is detectable and (A, E, C1 , Dt) is invertible with 
three invariant zeros at 0, 0.618 and -1.618, respectively, and one infinite zero 

of order 2. Hence, Assumption 10.M.6 is automatically satisfied. Following the 

algorithm, we obtain 

52.08746 76.55250 66.46233 -0.95905 2.61803 -4.23607 
92.57546 138.46401 120.13777 -1.65303 5.23607 -7.85410 

M= 
28.03444 42.12461 36.88854 -0.69398 2.61803 -2.61803 
19.20270 29.28949 24.96658 0 0 -1.44097 , 

0 0 0 0 0 0 
-46.97871 -70.77709 -61.686918 0.95905 -3.61803 4.23607 

and 

'Y* = 15.16907. liD 

10.4. Plants with Unit Circle Zeros 

We discuss in this section a non-iterative algorithm for computing 'Y* of the 

measurement feedback system (10.3.1) whose subsystems ~P and/or ~Q have 

invariant zeros on the unit circle. We assume that (A, B) is stabilizable and 
(A, Ct) is detectable. Let F and K be matrices of appropriate dimensions such 

that A+ BF and A+ KC1 have no eigenvalue at -1 and define 

and 

Ap :=(A+ BF + I)- 1(A + BF- I), 

Bp := 2(A + BF + I)- 1 B, 

Ep := 2(A + BF + I)-1 E, 

C2P := (C2 + D2F)(A + BF + I)-1, 

- 1 D2P := D2- (C2 + D2F)(A + BF +I)- B, 

D22P := D22- (C2 + D2F)(A + BF + I)-1 E, 

AQ :=(A+ KC1 + I)-1(A + KC1- I), 

C1Q := 2C1(A + KC1 + I)'- 1, 

C2Q := 2C2{A + KC1 + I)'-1, 

EQ :=(A+ KC1 + I)-1(E + KDI), 

D1Q := D1- C1(A + KC1 + I)-1(E + KDI), 
- 1 D22Q := D22- C2(A + KC1 +I)- (E + KDI). 

(10.4.1) 

(10.4.2) 

- - - - - -* Let ~P denote the system characterized by (Ap,Bp,C2p,D2P) and ~Q denote 
_, _, _, -1 

the system characterized by (AQ, C1Q, EQ, D1Q). We also make the following 
assumptions: 
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Assumption 10.Z.1: Im (D22P) C Im (D2P); 

Assumption 10.Z.2: Im [.Ep-Bp(tJ;ptJ2P)ttJ;ptJ22P] cv-(i:P)+S-(i:P); 

_, _, 
Assumption 10.Z.3: Im (D22q) C Im (D1q); 

Assumption 10.Z.4: Im [ c;Q- C~Q (D 1qD~Q)t D1qD;2Q] c v- (t;) +S- (t;). 
~ 

It can be shown that Assumptions 10.Z.1-10.Z.4 are independent of the 

choice ofF and K in (10.4.1) and (10.4.2). The computation of 'Y* for a plant 
whose subsystems have invariant zeros on the unit circle can be done by slightly 
modifying the algorithm given in Section 6.4 of Chapter 6. In particular, ~P in 
Steps 6.Z.1 and 6.Z.5 should be replaced by i;p and (6.4.2) should be replaced 
by the following 

E;}"p 

EbP 

E~p 
E;;p 

EcP 

Edp 

(10.4.3) 

-* Also, ~~ in Steps 6.Z.2 and 6.Z.5 should be replaced by ~Q and (6.4.19) should 

be replaced by 

The rest of the algorithm remains the same. 

E;}"q 

Ebq 

E~Q 
E~ 

EcQ 

Edq 

(10.4.4) 



Chapter 11 

Solutions to Discrete-time 
H00 Problem 

11.1. Introduction 

THIS CHAPTER IS concerned with the discrete-time Hoc control problem with 
full state feedback, full information feedback and general measurement feed­
back. The objective is to present a solution to the discrete-time• Hoc control 
problem. One way to approach this problem is to transform the discrete-time 

Hoc optimal control problem into an equivalent continuous-time Hoc control 
problem via bilinear transformation (see Chapter 3). Then the continuous-time 
controllers that are solutions to the auxiliary problem can be obtained and 
transformed back to their discrete-time equivalent using inverse bilinear trans­
formation (see again Chapter 3). Another way is to solve this problem directly 
in discrete-time setting and in terms of the performance of the original system. 
This approach leaves the possibility of directly observing the effect of certain 
physical parameters. Finally, a novel aspect of this chapter is that we show 

that if certain states or disturbances are observed directly, then this yields the 

possibility of deriving a reduced order controller. This result corresponds with 

the continuous-time reduced order controller structure of Chapter 7. In fact, all 

results presented in this chapter can be regarded as the counterparts of those 

in Chapter 7. 

The main results of this chapter are similar to those in [125], but our pre­
sentation is quite different. We arrange them in a way so that it is easier for 
software implementation. 
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11.2. Full Information and State Feedbacks 

We first consider in this section the following full information feedback system, 

{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

~ : y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(11.2.1) 

where x ERn is the state, u ERmis the control input, wE Rq is the external 
disturbance input, y E Rn+q is the measurement output, and h E Rl is the 

controlled output of~- As usual, we define ~P to be the subsystem characterized 
by the matrix quadruple (A, B, C2, D2). We assume that ~P has no invariant 
zero on the unit circle and its infimum is given by 7*. We are interested in 
designing a full information feedback control law 

(11.2.2) 

such that when it is applied to the given system (11.2.1), the resulting closed­
loop system is asymptotically stable and the resulting closed-loop transfer ma­
trix from w to h has an H00-norm less than a given"'> 7*. 

In what follows, we state a step-by-step algorithm for the computation of 

F1 and F2. 

Step ll.F.l: Without loss of generality but for simplicity of presentation, we 
assume that the quadruple (A, B, C2, D2), i.e., ~p, has been partitioned 
in the form of (2.4.4). Then, transform ~P into the special coordinate 
basis as described in Chapter 2, i.e., find nonsingular transformations r 8 , 

r i and r 0 such that 

Ace BeE~ BcEda LcdCd LcbCb 
0 A;;-a 0 L;_dcd L;_bcb 

r;-1(A- BoC2,o)r, = 0 0 At a L~dcd L~bcb 
BdEdc BdEia BdEta Add BdEdb 

0 0 0 Lbdcd Abb 

[c ] [Co, CiJa eta Cob c,.l r;;-1 2,o r, = o 0 0 cd 0 ' C2,1 0 0 0 0 cb 
Boc 0 Be 
BiJa 0 0 no 0 

~] r-1 [B Bl] ri = Bria 0 0 r;;-1 D2ri = 0 8 0 ' 
Bod Bd 0 0 

Bob 0 0 
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Note that an additional permutation matrix to the state transformation 

has been introduced here to the original SCB such that the new state 

variables are ordered as follows: 

(11.2.3) 

Next, we compute 

(11.2.4) 

Step ll.F.2: Let Fe be any appropriate dimensional constant matrix such that 

all the eigenvalues of Ace - BcFc are on the open unit disc. This can be 

done as (Ace, Be) is completely controllable. 

Step ll.F.3: Define Ax, Bx, Ex, Cx and Dx as follows: 

(11.2.5) 

(11.2.6) 

and 

(11.2.7) 

Step ll.F.4: Solve the following discrete-time algebraic Riccati equation: 

where 

Gx := [D~Dx + B~PxBx 
E~PxBx 

B~PxEx ] 
E~PxEx + D~2xD22x- I ' 

(11.2.9) 

for Px > 0. Note that because (Ax,Bx,Cx,Dx) is left invertible and 

only has unstable invariant zeros, such a Px always exists provided that 
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'Y > 'Y*. In fact, one can use the very accurate method given previously in 

Chapter 3 to obtain this Pz. For future use in the output feedback case, 

we compute 

o] r-1 
Pz s . (11.2.10) 

Step ll.F.5: Next, compute 

(11.2.11) 

and 

(11.2.12) 

Then, partition F1z as follows: 

(11.2.13) 

Step ll.F.6: Finally, the gain matrices F1 and F2 are respectively given by 

[Co, CiJa Cria +F~z Cod+ Fodz Co.+Fo'"] 
F1 = -ri Edc Eda Fd;.z Fddz Fdbz r;1, 

Fe * * * * (11.2.14) 

and 

[ F2z] F2 = -ri * 'Y· (11.2.15) 

where *S are some arbitrary matrices with appropriate dimensions. ill 

We have the following theorem. 

Theorem 11.2.1. Consider the full information feedback discrete-time system 

(11.2.1). Then under the full information feedback law, 

(11.2.16) 

with F1 and F2 given by (11.2.14) and (11.2.15), respectively, the closed-loop 

system is asymptotically stable and the H00-norm of the closed-loop transfer 

matrix from the disturbance w to the controlled output h is less than 'Y. l!l 
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Proof. It is straightforward to verify that the poles of the closed-loop sys­

tem comprising the given full information system (11.2.1) with the control law 

(11.2.16) are given by Ace- BcFc, A;;-a and Ax - BxFlx· We note that both 
Ace - BcFc and A;;-a are asymptotically stable. Hence, the closed-loop system 
is stable if and only if Ax- BxFlx is stable. Moreover, it is also simple to show 
that its closed-loop transfer matrix from w to h, say Thw, is equal to "(Th.w., 

where Th.w. is the transfer matrix from Wx to hx of the closed-loop system 
comprising the following auxiliary system, 

(11.2.17) 

with a full information control law, 

(11.2.18) 

Because (Ax, Bx, Cx, Dx) is left invertible and has only unstable invariant zeros, 
it follows from the result of [124] that the solution to the Riccati equation 

(11.2.8) is indeed a positive definite one provided that 'Y > 'Y*· Moreover, we 

also have Ax - BxFlx is asymptotically stable and IITh.w.lloo < 1. Hence, the 
result of Theorem 11.2.1 follows. f!l 

We illustrate the above result with a numerical example. 

Example 11.2.1. Consider a discrete-time full information system (11.2.1) 
with matrices A, B, E, C2, D2 and D22 are as given in Example 10.2.1 of 
the previous chapter. The infimum for this problem was computed in Example 
10.2.1 to be 'Y* = 0.934173. Let us choose a 'Y = 0.934174, which is slightly 
larger than 'Y*. Following the above algorithm, we obtain 

and 

0 -0.745354 
-1 -1.412022 

0 0 

-1.078688 -1.078688] 
-1.872678 -1.872678 ' 

0 0 

[ 
-0.872677] 
-1.20601~ . 

The closed-loop poles, i.e., .X(A+BFI) = {0, 0, 0, 0, 0.38197}. The singular value 
plot ofthe closed-loop transfer matrix from w to h in Figure 11.2.1 clearly shows 
that its H00-norm is less than the given 'Y = 0.934174. liD 
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Figure 11.2.1: Singular values of Thw under full information feedback. 

As was shown in Chapter 10, for discrete-time systems, the infimum associ­
ated with the given full information feedback system is in general different from 
that associated with its corresponding full state feedback system, i.e., 

{ 
x(k + 1) = A x(k) + B u(k) + E w(k), 

y(k) = x(k) 

h(k) = C2 x(k) + D2 u(k) + D22 w(k) . 

(11.2.19) 

Let 'Y* be the infimum associated with the full state feedback problem. Then, for 
any given 'Y > 'Y*, the following algorithm will produce a static state feedback 

law that achieves the closed-loop stability as well as the required H00-norm 

bound of the closed-loop transfer matrix from w to h. 

Step 1l.S.1 to 11 .S.4: These steps are identical to Step ll.F.1 to ll.F.4, re­

spectively. 

Step 11.S.5: Compute 

Hx := B~PxBx + D~Dx + (B~PxEx + D~D22x) 
x (I- D~2xD22x- E~PxEx)- 1 (E~PxBx + D~2xDx), (11.2.20) 

Fx := H; 1 [n~PxAx + D~Cx + (B~PxEx + D~D22x) 

X (I- n;2xD22x- E~PxEx)- 1 (E~PxAx + n;2xCx)]. (11.2 .21) 
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Then, partition Fx as follows: 

F _ [Fdax 
X- + 

Fdax 

Step 11.5.6: The gain matrix F is given by 

Fobx]. 
Fdbx 

275 

(11.2.22) 

[ 
Coc Goa C;ia + Fd;.x Cod + Fodx 

F = - r; Edc Eia F;tx Fddx 

Fe * * * 

Cob+ Fobxl 
Fdbx r;1 , 

* (11.2.23) 

where *S are some arbitrary matrices with appropriate dimensions. ~ 

Following the lines of reasoning similar to the proof of Theorem 11.2.1, one 
can show that the static control law, 

u(k) = Fx(k), (11.2.24) 

with F given by (11.2.23), will i) achieve the closed-loop stability, and ii) make 
the H00-norm of the resulting closed-loop transfer matrix from w to h less than 

the given "Y· We illustrate this in the following example. 

Example 11.2.2. Let us consider a discrete-time full state feedback system 

(11.2.19) with matrices A, B, E, C2 , D2 and D22 are as given in Example 
10.2.1 of Chapter 10. The infimum for this problem was computed·in Example 

10.3.1 and is given by "Y* = 3.181043. Let us choose a "Y = 3.181044, which is 
slightly larger than "Y*. Following the above algorithm, we obtain 

[ 
0 0 -0.432563 -0.885373 -0.885373] 

F = -1 -1 -1.479753 -1.914538 -1.914538 . 
-1 0 0 0 0 

The closed-loop poles, i.e., .X(A + BF) = {0, 0, 0, 0.27093, 0.38197} and the 
singular value plot of the closed-loop transfer matrix from w to h in Figure 11.2.2 

clearly shows that its H00-norm is less that the given""(= 3.181044. ~ 

11.3. Full Order Output Feedback 

We construct solutions to the discrete-time H00 control problem for the follow­

ing measurement feedback discrete-time system, 

{ 
x(k + 1) = A x(k) + B u(k) + E w(k), 

E : y(k) = C1 x(k) + D1 w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(11.3.1) 
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Figure 11.2.2: Singular values of Thw under full state feedback. 

where x ERn is the state, u E Rm is the control input, wE Rq is the external 
disturbance input, y E RP is the measurement output, and h E Rl is the 
controlled out~ut of~ - Again, for the purpose of easy reference, we define ~P 

to be the subsystem characterized by the matrix quadruple (A, B , C2 , D 2 ) and 
l:Q to be the subsystem characterized by the matrix quadruple (A, E, C1 , DI). 
We assume in this section that both subsystems l:P and l:Q have no invariant 
zero on the unit circle. 

Let 'Y* be the infimum for the given 1: of (11.3.1). Given a positive scalar 
'Y > 'Y*, the following algorithm will produce a measurement feedback control 
law that achieves i) internal stability for the closed-loop system, and ii) the 

resulting IIThwlloo < 'Y· 

Step 11 .M.l : Define an auxiliary full information problem for 

{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) = C2 x(k) + D 2 u(k) + D 22 w(k), 

(11.3.2) 

and perform Steps 1l.F.1 to 1l.F.4 of the algorithm given in the previous 
section to get a positive semi-definite matrix X. Let P :=X and compute 

(11.3.3) 
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and 

R :=--?I- D~2D22- E'PE + (E'PB + D~2D2)Vt(B'PE + D~D22), 
(11.3.4) 

where t denotes the Moore-Penrose (pseudo) inverse. It can be shown 

that R > 0. Next, compute 

and calculate 

1 
Ep:=ER-2, 

As := A- Bvt (B' P A+ D~C2), 

Cs := C2- D2 vt (B' PA + D~C2). 

C1P :=C1 +DlR-1 (E'PAs+D~2 Cs), 

(11.3.5) 

(11.3.6) 

C2P := (V~)t (B'PA+D~C2+(B'PE+D~D22)R- 1 (E' PAs+D~2Cs)], 

Step ll.M.2: Define another auxiliary full information problem for 

{ 

x(k + 1) = A' x(k) + Cf u(k) + q w(k), 

y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) = E' x(k) + D~ u(k) + D22 w(k), 

(11.3.7) 

and again perform Steps 1l.F.1 to 1l.F.4 of the algorithm in the previous 
section to get another positive semi-definite matrix X and let Q := X. 
Also, let 

Step ll.M.3: Next, compute 

wp := D1PD~p + clPYCfp, 

sp := (C2PYC1P + n22PD~p)wJ(clPYc2P + D1Pn22P) 

+, ... pI- D22Pn22P- c2Pyqp, 

Az := Ap- (APYCfp + EPD~p)wjclp, 

Ez := EP- (APYCfP + EPD~P)WJDlP' 

(11.3.8) 

(11.3.9) 
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and 

APv :=Ap+(AzYqp+EzDbp)S;1C2p, 

BPv := B+(AzYC2P+EzD~2P)S; 1 D2P, 

EPY := [(AzYC2P+EzD~2P)S; 1 (C2PYC1P+D22PD~P) 

+ APYC~p+EPD~p](wht, 
_l 

c2PY := sp 2 C2P, 
1 

DlPY :=W~, 
_l 

D2PY := sp 2 D2p, 
1 1 

v22PY := s; 2 (C2PYc~p +D22PD~p)(wnt. 

(11.3.10) 

It can be shown that i) the quadruple (Apy,Bpv,C2Pv,D2Pv) is right in­

vertible and of minimum phase with no infinite zero, and ii) the quadruple 

(Apy, Epy, clPl DlPY) is left invertible and of minimum phase with no in­

finite zero. Moreover, there exists an appropriate constant matrix XPv 

Step ll.M.4: Let 

F1pv := -D~pc2P +(I- D~pD2P)Fo, 

F2PY := -D~pyD22PYl 

(11.3.11) 

(11.3.12) 

where Fo is such that AP + BF1Pv = APv + BPvFlPv has all its eigenvalues 

inside the unit circle. Also, let 

(11.3.13) 

(11.3.14) 

where Ko is such that APv + KlPvClP is stable. We would like to note 

that a more systematic procedure to compute the above gain matrices 

will be given in the next chapter. 

Step 11.M.5: Finally, we obtain a measurement output feedback control law, 

with 

I:cmp : { v(k + 1) = Acmp v(k) + Bcmp y(k), 

u(k) = Ccmp v(k) + Dcmp y(k), 

Dcmp := -F2PYK2PY 1 

Ccmp := FlPY- DcmpC1P 1 

Bcmp := BPvDcmp- K1PY 1 

Acmp := APv + BPvCcmp + KlPvClP· 

(11.3.15) 

(11.3.16) 



11.3. Full Order Output Feedback 279 

Clearly, v E 1Rn, i.e., the obtained controller Ecmp has the same dynamical 
order as that of the given system E. ~ 

We have the following theorem. 

Theorem 11.3.1. Consider the given discrete-time system E of (11.3.1) and 

the controller Ecmp of (11.3.15) with Acmp, Bcmp, Ccmp and Dcmp being given 
by (11.3.16). Also, let "( > "(* be given. Then, we have 

1. the resulting closed-loop system comprising E and Ecmp is asymptotically 
stable; and 

2. the H 00-norm of the closed-loop transfer matrix from the disturbance w 

to the controlled output h is less than 'Y· lfl 

Proof. The proof of the above theorem can be carried out in two stages: The 

first stage involves showing that the following two statements are equivalent: 

1. The closed-loop system comprising the given system E of (11.3.1) and the 

controller Ecmp of (11.3.15) is internally stable and its transfer matrix 

from w to h, Thw(E x Ecmp), has an H00-norm less than 'Y· 

2. The closed-loop system comprising an auxiliary system Epv, where EPv 
is given by 

{ 
Xpv(k + 1) = APv Xpv(k) + BPv u(k) + EPv Wpv(k), 

y(k) = clP Xpv(k) + DlPY Wpy(k), 

hpv(k) = c2PY Xpv(k) + D2PY u(k) + D22PY Wpv(k), 

(11.3.17) 

and the controller Ecmp of (11.3.15) is internally stable and its transfer 

matrix from Wpy to hpv, Thpywpy (EPv X Ecmp), has an H 00-norm less 

than 'Y· 

The second stage involves showing that the transfer matrix from Wpy to hPv 
of the closed-loop system comprising EPv and Ecmp is internally stable and is 

in fact identically zero for all frequencies, i.e., Thpywpy (EPv x Ecmp) = 0. It is 

obvious that JJThpywpv(EPv X Ecmp)lloo = 0 < "(. Hence, EX Ecmp is internally 

stable and Jlnw(E x Ecmp)lloo < "f· We refer interested readers to [125] for 
more detailed proofs of the above two facts (stages). 1!1 

Remark 11.3.1. It is clear from the above proof that the design of a "(-sub­

optimal control law for the original system (11.3.1) is equivalent to finding a 

control law that solves the Hoo disturbance decoupling problem with internal 
stability for the auxiliary system (11.3.17). One can use a more systematic 

procedure given in Chapter 12 to find such a control law. 1!!1 
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The following is an illustrative example. 

Example 11.3.1. Let us consider a discrete-time system (11.3.1) with matrices 

A, B, E, C2 , D 2 and D 22 are as given in Example 10.2.1 of Chapter 10 and 

c1 = [ o o o o 11 , D1 = o. (11.3.18) 

The infimum for this problem was computed in Example 10.3.1 and is given 

by 'Y* = 15.16907. Let us choose a positive scalar 'Y = 15.17. Following our 

algorithm, we obtain a full order output feedback control law (11.3.15) with 

and 

l 0 1 1.005710 
0 0 0.005710 

Acmp = 0 0 0.691710 
0 0 -0.310193 
0 0 0 

1.003529 -9.516228] 
1.003529 -3.303781 
0.191432 -1.876073 ' 

-0.8097 44 3.217071 
1 -3.281899 

[ 

1~:~~~~~~] [ -4.043756] 
Bcmp = 2.067505 , Dcmp = -14.546573 , 

-4.026815 0 
4.281899 

[ 
0 0 -0.314000 -0.812097 3.231659] 

Ccmp = -1 -1 -1.315903 -1.813273 12.733300 . 
-1 0 0 0 0 

The plot of the singular values of the closed-loop transfer matrix from w to h 

in Figure 11.3.1 shows that 

\\Thw(~ X ~cmp)l!oc < "( = 15.17. (11.3.19) 

The poles of the closed-loop system are given by 

-0.596025, 0.618045, 0.433068, 0.382376, -0.237186, -0.000212, 0, 0, 0, 0, 

which are all inside the unit circle. 

11.4. Reduced Order Output Feedback 

In this section we show that for the singular Hoc control problem, we can 

always find a suboptimal solution which has a dynamical order less than that 

of the plant and is of a reduced order observer-based structure. This result 

is analogous to that obtained in Chapter 7 for the continuous-time problems. 
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Figure 11.3.1: Singular values of Thw under full order output feedback. 

Without loss of generality, we develop such a reduced order observer-based 
controller for the system ~PY defined in the previous section, i.e., 

{ 
Xpv(k + 1) = APv Xpv(k) + BPv u(k) + EPY Wpv(k), 

y(k) = clP Xpy(k) + DlPY Wpy(k), 

hpv(k) = c2PY Xpv(k) + D2PY u(k) + D22PY Wpy(k). 

(11.4.1) 

There exists a constant output pre-feedback law XPvY such that after applying 
this pre-feedback law, namely setting 

(11.4.2) 

the direct feed-through term from Wpy from hPv disappears. Hence without 

loss of generality, hereafter we assume that D22PY = 0. 
There exists an 'optimal ' state feedback gain FPv in the sense that 

with APv + BPvFPv stable. We need to construct an observer of lower order. 
Without loss of generality but for simplicity of presentation, we assume that 

the matrices clP and DlPY are already in the form 

clP = [ lp~mo c~02 ] and DlPY = [ D~,o] , (11.4.3) 
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where mo is the rank of DlPY and D1,o is of full rank. Then the given system 

~PY can be written as, 

J ( ~~ ) = [ ~~~ ~~~ ] ( :~ ) + [ ~~ ] Wpy + [ ~~ ] u, 

( ~~) = [ Ip~mo C~o2] ( ~~) + [ D~,o] Wpy ( 11 .4.4) 

where 

(11.4.5) 

We note that y1 = x1 . Thus, one needs to estimate only the state x2 in the 

reduced order estimator. Then following closely the procedure given in [29], we 

first rewrite the state equation for x1 in terms of the measured output y1 and 

state x2 as follows, 

where Y1 and u are known. Observation of x2 is made via y0 and 

A reduced order system for the estimation of state x2 is given by 

{ 
x2(k + 1) = AR x2(k) + ER Wpy(k) + [A21 

YR(k) = CR x2(k) + DR Wpy(k), 

where 

B ] (Yl(k)) 
2 u(k) ' 

AR := A22, ER := E2, CR := [ ~~~2 ]' DR:= [ ~~0 ] . 

(11.4.6) 

(11.4.8) 

(11.4.9) 

Based on (11.4.8), one can construct a reduced order observer for x2 as, 

where KR is the observer gain matrix which must be chosen such that AR+KRCR 

is asymptotically stable and 

(11.4.11) 

Following the result of Chen [12], i.e., Proposition 2.2.1, one can show that the 

quadruple (AR, ER, CR, DR) is left invertible and of minimum phase with no 



11.4. Reduced Order Output Feedback 283 

infinite zero, provided that the quadruple (APv,EPv,ClPv,DlPv) is left invert­
ible and of minimum phase with no infinite zero. The computation of KR can 
systematically be done using the procedure given in the next chapter. 

At this moment we have a reduced order observer and an optimal state 
feedback. However, YR contains a future measurement, i.e., the term y1 (k + 1) 
in (11.4.7). We apply a transformation to remove this term. We partition the 
reduced order observer gain KR = (KR0, KRr) compatible with the dimensions 
of the outputs (yb, y~ )', and at the same time define a new variable, 

We then obtain the following reduced order estimator based controller, 

{ 

v(k+1) = (AR +KRCR) v(k) + (B2+KR1B1) u(k)+GR y(k), 

Xpv(k) = [r 0 J v(k) + [0° -KI J y(k), (11.4.12) 
n-p+mo Rl 

u(k) FPv Xpv(k) + Xpy y(k), 

where 

and Fpy is state feedback gain and XPv is the output pre-feedback gain. 

Remark 11.4.1. It is interesting to point out that the state space representa­

tion of the reduced order estimator based controller in (11.4.12) might not be 
minimal and hence the McMillan degree of this controller might be less than the 
dynamical order of its state space representation (11.4.12). This is mainly due 
to the stable dynamics which becomes unobservable in the controlled output 
hPv after the preliminary output feedback law (11.4.2). 

A very interesting example is the state feedback case for C1 =I and D1 = 0. 
In this case, the preliminary output feedback XPv in (11.4.2) can be chosen 

such that after this preliminary feedback c2PY = 0 and Apy is stable. Hence 
we can choose FPv = 0 but this implies that the reduced order estimator based 

controller (11.4.12) has a McMillan degree equal to zero and it reduces to the 

static state feedback solution, u = XPvY· liD 

Finally, we note that the reduced order output feedback control law (11.4.12) 

can be written in the following standard form, 

Ecmp : { v(k + 1) = Acmp v(k) + Bcmp y(k), 

u(k) = Ccmp v(k) + Dcmp y(k), 
(11.4.13) 
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with 

Acmp := (AR + KRCR) + (B2 + KR1B1)FPY [ ~] , 

Bcmp := (B2 +KR1Bl) (FPv [~ _iRl] +XPv) +GR, 

Ccmp := FPv [~], 
(11.4.14) 

Dcmp := FPv [~ -iRl] +XPv· 

We have the following theorem. 

Theorem 11.4.1. Consider the given discrete-time system~ of (11.3.1). Also, 

let 'Y > 'Y* be given. Then, there exist gain matrices Xpv, FPv and KR such 

that the resulting controller ~cmp of (11.4.13) with Acmp, Bcmp, Ccmp and Dcmp 

being given as in (11.4.14) has the following properties: 

1. the resulting closed-loop system comprising~ and ~cmp is asymptotically 

stable; and 

2. the H00-norm of the resulting closed-loop transfer matrix from the dis-

turbance w to the controlled output h is less than 'Y· I!J 

Proof. It is quite obvious because ~Pv has the following properties: 

1. There exists a constant matrix XPv such that D2Pv + D2PvXPvD1Pv = 0; 

2. (Apy, Bpy, c2py, D2PY) is right invertible and of minimum phase with no 

infinite zero; 

3. (Apy, Epy, clP, DlPY) is left invertible and of minimum phase with no 

infinite zero. 

A systematic procedure for computing the gain matrices Xpv, FPv and KR can 

be found in Chapter 12. 1!1 

The following example illustrates the result of this section. 

Example 11.4.1. Consider a discrete-time system of the form (11.3.1) with 

A= [ ~ ~] , B = [ -n , E = [ n , 
c1 = [ ~ ~] , D1 = [ ~] , 

(11.4.15) 

(11.4.16) 
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and 

C2 = [0.8 0.9], D2 = 0, Dn = 1. (11.4.17) 

It is simple to verify that the subsystem (A, B, C2 , D2 ) is invertible with an 
unstable invariant zero at 1.5714 and the subsystem (A, E, C1 , D 1 ) is left in­
vertible with an unstable invariant zero at 2. By utilizing the algorithm for 
computing 1* in the previous chapter, we obtain an exact value of the infimum 

,. = 3.9631638. 

In what follows, we will design a 1-suboptimal measurement output control law 
with 1 = 3.963164. Following the above procedures, we obtain an auxiliary 
system (11.4.1) with 

[ 1.14353033 1.18520854] [ -2] 
APY = 2.34861499 3.46328599 ' Bpy = 0.96422578 ' 

E = 103 . [ 1.65382390] C = [ 0.14353033 1.18520854] 
py 4.83262217 > lP 1 0 > 

DlPY = 103 . [ 1.6538239~] ' D22PY = -3297.4252, 

c2PY = [ -1.74280115 -2.36309110], D2PY = o.30400789, 

and finally the controller parameters, 

Acmp = 0, Bcmp = [ 0.06254887 0.05328328] , 

and 

Ccmp = 0, Dcmp = [6.55844429 4.79141397]. 

The poles of the closed-loop system comprising the given plant and the above 
controller are given by 0 and 0.4878 ± j0.1199. Clearly, they are stable. The 
plot of the singular values of the closed-loop transfer matrix from w to h in 

Figure 11.4.1 shows that IIThw(I: x I:cmp)lloo is indeed less than the given I·~ 
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Figure 11.4.1: Singular values of Thw under reduced order output feedback. 



Chapter 12 

Discrete-time H 00 Almost 
Disturbance Decoupling 

12.1. Introduction 

IN THIS CHAPTER, we consider the problem of H00 almost disturbance decou­
pling for general discrete-time plants whose subsystems are allowed to have 

invariant zeros on the unit circle of the complex plane. The stability region 

of a discrete-time system considered in this chapter is defined as usual as the 
open unit disc. In contrast to the continuous-time case, the problem of almost 

disturbance decoupling for general discrete-time systems is less studied in the 
literature. In 1996, Chen, Guo and Lin [21] gave a set of solvability conditions 
for the H 00-ADDPMS for the special case when a given plant whose subsys­
tems do not have invariant zeros on the unit circle. Only very recently, has the 
necessary and sufficient conditions under which the H 00-ADDPMS for general 
discrete-time systems been derived by Chen, He and Chen (22]. Solutions to 
such a general problem have just been reported by Lin and Chen (84]. The 
results of [22] and [84] form the core of this chapter. 

To be more specific, we consider the following standard linear time-invariant 

discrete-time system E characterized by 

{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

y(k) = C1 x(k) + D1 w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(12.1.1) 

where x E Rn is the state, u E llm is the control input, y E Rl is the measure­
ment, w E Rq is the disturbance and h E RP is the output to be controlled. 
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As usual, we denote EP and EQ as the subsystems characterized by matrix 
quadruples (A,B,C2,D2) and (A,E,C1 ,Dt), respectively. The following dy­
namic feedback control laws are investigated: 

Ecmp : { 
v(k + 1) = Acmp v(k) + Bcmp y(k), 

u(k) = Ccmp v(k) + Dcmp y(k), 
(12.1.2) 

The controller Ecmp of (12.1.2) is said to be internally stabilizing when applied 
to the system E, if the following matrix is asymptotically stable: 

A ·- [A+ BDcmpCl BCcmp] 
cl .- B C A ' cmp 1 cmp 

(12.1.3) 

i.e., all its eigenvalues lie inside the open unit disc of the complex plane. Denote 
by Thw the corresponding closed-loop transfer matrix from the disturbance w 

to the controlled output h. Then, the solvability of the H00 almost disturbance 
decoupling problem for general discrete-time systems can be defined as follows. 

Definition 12.1.1. The general Hoo almost disturbance decoupling problem 
with measurement feedback and with internal stability (H00-ADDPMS) for 
(12.1.1) is said to be solvable if, for any given positive scalar 'Y > 0, there exists 
at least one controller of the form (12.1.2) such that, 

1. in the absence of disturbance, the closed-loop system comprising the sys­
tem (12.1.1) and the controller (12.1.2) is asymptotically stable, i.e., the 
matrix Ac1 as given by (12.1.3) is asymptotically stable; 

2. the closed-loop system has an £ 2-gain, from the disturbance w to the 
controlled output h, that is less than or equal to "f, i.e., 

llhll2:::; 'YIIwll2, 'r/w E £2 and for (x(O),v(O)) = (0,0). (12.1.4) 

Equivalently, the H00-norm of the closed-loop transfer matrix from w to 

h, Thw, is less than or equal to"'(, i.e., IIThwlloo:::; 'Y· (Q] 

The problem of H00 almost disturbance decoupling with state feedback or 
with full information feedback can be defined in a similar and obvious way. The 
goal of this chapter is to identify the solvability conditions for these problems 
and to construct their solutions, if they are existent. The rest of this chapter 
is organized as follows: In Section 12.2, we give solvability conditions under 
which the proposed H00-ADDPMS for general discrete-time systems is solvable. 
Sections 12.3 and 12.4 give constructive algorithms that would yield solutions 
to the general discrete-time H00-ADDPMS, if such solutions exist. All proofs of 
the main results of this chapter are given in Section 12.5 for the sake of clarity 
in presentation. 
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12.2. Solvability Conditions 

We give in this section the solvability conditions for the general Hoo almost 
disturbance decoupling problems with internal stability for the following three 
cases: the full information feedback, the full state feedback and the measure­
ment feedback. These conditions are characterized in terms of geometric sub­

spaces. We also develop a numerical algorithm that will check these conditions 
without actually computing any geometric subspaces. The proofs of the main 
results of this section are given in Section 12.5. 

Let us first examine the full information case. We have the following result. 

Theorem 12.2.1. Consider the given discrete-time linear time-invariant sys­
tem ~ of {12.1.1) with the measurement output being 

{12.2.1) 

i.e., all the state variables and the disturbances (full information) are mea­
surable and available for feedback. The Hoo almost disturbance decoupling 
problem with full information feedback and with internal stability for the given 

system is solvable if and only if the following conditions are satisfied: 

(a) (A, B) is stabilizable; 

{b) Im {D22) c Im {D2), i.e., D22 + D2S = 0, where S = -(D~D2)t D~D22i 

(c) Im (E + BS) c { V0 (~P) + BKer (D2)} n { niAI=l SA(~P) }· 

Proof. See Subsection 12.5.A. 

The result for the general proper measurement feedback case is given in the 

following theorem. 

Theorem 12.2.2. Consider the given discrete-time linear time-invariant sys­

tem ~of {12.1.1). The H00 almost disturbance decoupling problem with mea­

surement feedback and with internal stability (H00-ADDPMS) for (12.1.1) is 
solvable if and only if the following conditions are satisfied: 

(a) (A, B) is stabilizable; 

(b) (A, CI) is detectable; 

{c) D22 + D2SD1 = 0, where S = -(D2D2)tD2D22D~(D1DUt; 
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(d) Im (E +ESDI) C { V0('EP) + BKer (D2)} n { ni-XI=l S_x('Ep) }; 

(e) Ker(C2 + D2SCI):) {S0 ('Eq) nC11 {Im(DI)}} U {UI-XI=l V_x('Eq) }; 

(f) S 0 ('Eq) c V0('Ep). ITJ 

Proof. See Subsection 12.5.B. tl9 

The following theorem deals with the case when the controller structure is 
restricted to be a strictly proper one, i.e., it is in the form of (12.1.2) with 
Dcmp := 0. 

Theorem 12.2.3. Consider the given discrete-time linear time-invariant sys­
tem 'E of (12.1.1). The Hoo almost disturbance decoupling problem with strictly 
proper measurement feedback and with internal stability for (12.1.1) is solvable 
if and only if the following conditions are satisfied: 

(a) (A, B) is stabilizable; 

(b) (A, C1) is detectable; 

(c) D22 = 0; 

(d) lm (E) C V0('Ep) n {ni-XI=l S,x('EP) }; 

(e) Ker ( C2) :) S 0 ('Eq) u { ui-XI=l V,x ('Eq)}; 

(f) S0 ('Eq) c V0('EP); 

(g) AS0('Eq) c V0('Ep). 

Proof. See Subsection 12.5.E. 

The following remarks are in order. 

Remark 12.2.1. Note that if 'EP is of minimum phase and right invertible 
with no infinite zeros, and 'Eq is of minimum phase and left invertible with no 
infinite zero, then Conditions (d) to (f) of Theorem 12.2.2 are automatically 
satisfied. Hence, the solvability conditions of the H 00-ADDPMS for such a case 
reduce to: 

(a) (A, B) is stabilizable; 

(b) (A,C1) is detectable; and 

(c) D22 + D2SD1 = 0, where S = -(D~D2)t D~D22D~ (D1DDt. 
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Remark 12.2.2. For the special case when all the states of the system (12.1.1) 

are measurable and available for feedback, i.e., y = x, it can be easily derived 
from Theorem 12.2.2 that the H 00 almost disturbance decoupling problem with 

full state feedback and with internal stability for such a system is solvable if 
and only if the following conditions are satisfied: 

(a) (A, B) is stabilizable; 

(b) D22 = 0; and 

(c) Im (E) c V0 (~p) n {ni-XI=l S,x(~p) }· 

Next, we proceed to develop a numerical algorithm for verification of the 

solvability conditions of Theorem 12.2.2 without computing any geometric sub-

spaces of ~P or ~Q. 

Step 12.2.0: Let S = -(D~D2 )t D~D22D~ (D1DUt. If D22 + D2SD1 -::J 0, the 
H00-ADDPMS for (12.1.1) is not solvable and the algorithm stops here. 

Otherwise, go to the next step. 

Step 12.2.1: Compute the special coordinate basis of ~P, i.e., the quadruple 
(A, B, C2 , D2). For easy reference, we append a subscript 'p' to all sub­

matrices and transformations in the SCB associated with ~P, e.g., r sP 

is the state transformation of the SCB of ~P, BdP is replacing the sub­

matrix Bd, and A~aP is associated with invariant zero dynamics of ~P on 

the unit circle. 

Step 12.2.2: Next, we denote the set of eigenvalues of A~aP with a nonnegative 
imaginary part as {wpl,wp2,···,wpkp} and fori= 1,2,···,kp, choose 

complex matrices Yip, whose columns form a basis for an appropriate 
0 

eigenspace {x E cnaP I xH(wpJ- A~aP) = 0}, where n~p is the dimension 

of X~p. Then, let 

We also compute nxP :=dim (Xd;,) +dim (XbP) +dim (Xdp), and 

EcP 

E;;p 

E~p 

E;t"p 

Ebp 

Edp 

(12.2.2) 

(12.2.3) 



292 Chapter 12. Discrete-time H00 Almost Disturbance Decoupling 

Step 12.2.3: Let I:~ be the dual system of I:Q and be characterized by a 
quadruple (A', Of, E', DU. We compute the special coordinate basis of 

I:~. Again, for easy reference, yte append a subscript 'Q' to all sub­
matrices and transformations in the SCB associated with I:~, e.g., r SQ 

is the state transformation of the SCB of I:~, BdQ is replacing the sub­

matrix Bd, and A~aQ is associated with invariant zero dynamics of I:~ on 
the unit circle. 

Step 12.2.4: Similarly, we denote the set of eigenvalues of A~aQ with a non­

negative imaginary part as { wQ1, wQ2, · · · , wQkQ} and for i = 1, 2, · · · , kQ, 
choose complex matrices ViQ, whose columns form a basis for an eigenspace 

0 
{x E cnBQ I x8 (wQJ- A~aQ) = 0}, where n~Q is the dimension of x~Q" 
Then, let 

(12.2.4) 

We next compute nxq :=dim (Xdq) +dim (Xbq) +dim (XdQ), and 

Step 12.2.5: Finally, compute 

EcQ 

E;;Q 

E~Q 

E;f:Q 

EbQ 

EdQ 

r-l(r-1)'= [* *] 
SP BQ * r l 

where f is a nxp X nxQ constant matrix. 

(12.2.5) 

(12.2.6) 

The following proposition summaries the result of the above algorithm. It 

also gives a set of necessary and sufficient conditions, in terms of sub-matrices 

associated with the SCBs of I:P and I:q, for the solvability of the H00-ADDPMS 

for the general discrete-time system I: of (12.1.1). 

Proposition 12.2.1. Consider the given discrete-time linear time-invariant 
system I: of (12.1.1). The H 00 almost disturbance decoupling problem with 

measurement feedback and with internal stability (H00-ADDPMS) for (12.1.1) 

is solvable if and only if the following conditions are satisfied: 

(a) (A, B) is stabilizable; 
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(b) (A, Cl) is detectable; 

(f) r = o. 

Note that all the matrices in (d)-(f) are well-defined in Steps 12.2.0 to 12.2.5 of 
the algorithm. 

The above result can be directly verified using the properties of the special 
coordinate basis of Chapter 2 and the result of Theorem 12.2.2 (see also Chapter 
8 for a similar result for continuous-time systems). 

12.3. Solutions to State and Full Information Feedback 
Cases 

In this section, we consider feedback control law design for the general H00 

almost disturbance decoupling problem with internal stability as well as with 

both full state feedback and full information feedback, where internal stability 
is with respect to the open unit disc. More specifically, we will first present a 
design procedure that constructs a family of parameterized static state feedback 
control laws, 

u(k) = F(c:)x(k), 

which solves the general H00-ADDPMS for the following system, 

{ 
x(k+ 1) = A x(k) + B u(k) + E w(k), 

y(k) = x(k) 

h(k) = C2 x(k) + D2 u(k) + D22 w(k). 

(12.3.1) 

(12.3.2) 

That is, under this family of state feedback control laws, the resulting closed­

loop system is asymptotically stable for sufficiently small c: and the H00-norm 
of the closed-loop transfer matrix from w to h, Thw(z, c:), tends to zero as c: 
tends to zero, where 

(12.3.3) 

We have the following algorithm for constructing such an F(c:). 
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Step 12.S.l: (Decomposition of ~p). Transform the subsystem ~p, i.e., the 

matrix quadruple (A,B,C2,D2), into the special coordinate basis (SCB) 

as given by Theorem 2.4.1. Denote the state, output and input transfor­

mation matriceS as r SP, r OP and riP, reSpectively. 

Step 12.S.2: (Gain matrix for the subsystem associated with Xc). Let Fe be any 

constant matrix subject to the constraint that 

(12.3.4) 

is a stable matrix. Note that the existence of such an Fe is guaranteed by 

the property of the special coordinate basis, i.e., (Ace, Be) is controllable. 

Step 12.S.3: (Gain matrix for the subsystem associated with x:, Xb and Xd). 
Let 

where 

Fabd := [ 0_ 
Eda 

F;lQ 
F~ 

+ ·- [F;lQ Fbo Fdo] 
Fabd .- + ' 

Fad Fbd Fdd 

is any constant matrix subject to the constraint that 

[ 
A;!"a L~bcb L~dcdl [Bta 0 l 

A~bcd := 0 Abb LbdCd - Bob 0 F~d 
BdEda BdEdb Add Bod Bd 

(12.3.5) 

(12.3.6) 

(12.3.7) 

is an asymptotically stable matrix. Again, the existence of such an F~d 

is guaranteed by the property of the special coordinate basis. 

Step 12.S.4: (Gain matrix for the subsystem associated with A~a)· The construc­

tion of this gain matrix is carried out in the following sub-steps. 

Step 12.S.4.1: (Preliminary coordinate transformation). Noting that 

we have 

0 A~bdl [ Boa 
A~bd ' Bean = B8a 
A+c B+ abd Oabd 

~ l ' 
Bd 

(12.3.8) 
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where 

[ Bt. l [lJ B+ - Bob , iJd= Oabd-
Bod 

(12.3.9) 

A~bd = [0 L~bcb L~dcd] - [ B8a 0] F;j,d, (12.3.10) 

and 

A;;bd = [0 L;;bcb L;;dcd l - [Boa 0] F;j,d. (12.3.11) 

Clearly, the pair (Aeon- BeanFabd, Bean) remains stabilizable. Construct 
the following nonsingular transformation matrix, 

0 

0 (12.3.12) 

where T~ is the unique solution to the following Lyapunov equation, 

Ao To TOA+c _ Ao aa a - a abd - abd· (12.3.13) 

We note here that such a unique solution to the above Lyapunov equation 
always exists since all the eigenvalues of A~a are on the unit circle and all 
the eigenvalues of A~bcd are on the open unit disc. It is now easy to verify 
that 

and 

r;;b1dBeon = [ :t:d ;d ]· 
B8a + T~ Briabd T~ iJ d 

Hence, the matrix pair (A~a, B~) is controllable, where 

B~ = [B8a + T~Briabd T~Bd]· 

(12.3.14) 

(12.3.15) 

(12.3.16) 

Step 12.5.4.2: (Further coordinate transformation). Use the results of Chap­
ter 2 to find nonsingular transformation matrices r~a and r?a such that 
(A~a, B~) can be transformed into the block diagonal control canonical 
form, 

[ A1 
0 

~], (r~.)-1 A:.r~. = ! Az 
(12.3.17) 

0 ... At 
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and 

[ B, 
B12 ... Bu ], 0 -1 0 0 - 0 B2 ... B21 

(rsa) Bafia- b (12.3.18) 

0 ... B1 

where l is an integer and for i = 1, 2, · · ·, l, 

11 
1 0 

IJ 
0 

0 1 0 

Ai= Bi= (12.3.19) 

0 0 0 
i i -ai 1 -an,-1 -an;-2 

We note that all the eigenvalues of Ai are on the unit circle. Here, the *S 

represent sub-matrices of less interest. 

Step 12.S.4.3: (Subsystem design). For each (Ai, Bi), let Fi(c) E R1 xn; be the 

state feedback gain such that 

.X{Ai- BiFi(c)} = { (1- c)ejiJo, · · ·, (1- c)ejiJ;n; }, 

where eJ9•t, £ = 1, 2, · · ·, ni, are the eigenvalues of Ai· Clearly, all the 

eigenvalues of Ai + BiFi(c) are on the open unit disc and Fi(c) is unique. 

Step 12.S.4.4: (Composition of gain matrix for subsystem associated with xg). 
Let 

0 
0 
0 

0 
0 
0 

0 
0 

0 
0 

· · · Fl-1 (c) 0 
0 F1(c) 
0 0 

(ro )-1 
sa > (12.3.20) 

where c E (0, 1] is a design parameter whose value is to be specified later. 

For future use, we partition 

(12.3.21) 

and 

(12.3.22) 
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Step 12.5.5: (Composition of parameterized gain matrix F(e)). In this step, 
various gains calculated in Steps 12.S.3 to 12.S.5 are put together to form 
a composite state feedback gain matrix F(e). It is given by 

(12.3.23) 

where 

[co. C8a eta+ F:O Cob+ Fbo Coc 
C" +F., l 

Fo = E:ia E~a F~ Fbd Edc Fdd , 
E;_ E~a Eta 0 Fe 0 

(12.3.24) 
and 

F.(e)~ [~ 
F~0 (e) F~0+(e) Fgob (e) 0 I'!'"'( e) l 
Fgd(e) Fgd+(e) Fgdb(e) 0 Fgd~(e) . (12.3.25) 

0 0 0 0 

This completes the construction of the parameterized state feedback gain 

matrix F(e). ~ 

We have the following theorem. 

Theorem 12.3.1. Consider the given system (12.3.2) in which all the states 
are available for feedback. Assume that the problem of H00 almost disturbance 
decoupling with internal stability for (12.3.2) is solvable, i.e., the solvability con­

ditions of Remark 12.2.2 are satisfied. Then, the closed-loop system comprising 
(12.3.2) and the full state feedback control law, 

u(k) = F(e)x(k), (12.3.26) 

with F(e) given by (12.3.23), has the following properties: For any given 'Y > 0, 
there exists a positive scalar E:* > 0 such that for all 0 < E: $ E:*, 

1. the closed-loop system is asymptotically stable, i.e., .X{A + BF(e)} are on 

the open unit disc; and 

2. the H 00-norm of the closed-loop transfer matrix from the disturbance w 
to the controlled output his less than"(, i.e., IIThw(z,e)lloo < 'Y· 

Hence, by Definition 12.1.1, the control law of (12.3.26) solves the H 00-ADDPMS 

for (12.3.2). 1!1 

Proof. See Subsection 12.5.C. 
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Next, we proceed to design a parameterized control law, 

u(k) = Fz(c)x(k) + Fww(k), (12.3.27) 

which solves the H00 almost disturbance decoupling problem with internal sta­

bility for the following full information system, 

{ 

x(k+1) = A x(k) + B u(k) + E w(k), 

~(k) = ( ~) x(k) + ( ~) w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k). 

(12.3.28) 

That is, under the above full information feedback control law, the resulting 

closed-loop system is asymptotically stable for sufficiently small c and the H 00 -

norm of the closed-loop transfer matrix from w to h, Thw(z,c-), tends to zero 

as c tends to zero, where 

The following is a step-by-step algorithm for constructing Fz(c) and Fw. 

Step 12.F.l: (Computation of S). Compute 

(12.3.29) 

Step 12.F.2: (Computation of F~(c-)). Follow Steps 12.8.1 to 12.8.5 of the 
previous algorithm to yield a gain matrix F(c-). Then, let 

Fz(c) = F(c-). (12.3.30) 

Also, we need to retain the transformation matrices r SP and riP' as well 

as the sub-matrix Bd of the SCB of :EP in order to compute Fw in the 

next step. 

Step 12.F.3: (Construction of gain matrix Fw}· Let 

(12.3.31) 
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Then, the gain matrix Fw is given by 

(12.3.32) 

It is interesting to note that the first portion of matrix Fw is used to clean 

up the disturbance associated with Ed and in the range space of Bd, while 

the second portion is used to reject disturbance entering into the system 

through D22. 1!9 

We have the following result. 

Theorem 12.3.2. Consider the given system (12.3.28) in which all the states 

and the disturbances are available for feedback. Assume that the problem 

of Hoc almost disturbance decoupling with internal stability for (12.3.28) is 
solvable, i.e., the solvability conditions of Theorem 12.2.1 are satisfied. Then, 

the closed-loop system comprising (12.3.28) and the full information feedback 

control law, 

u(k) = Fx(c)x(k) + Fww(k), (12.3.33) 

with Fx(c) and Fw being given by (12.3.30) and (12.3.32), respectively, has the 

following properties: For any given "( > 0, there exists a positive scalar c* > 0 

such that for all 0 < c :::; c*, 

1. the closed-loop system is asymptotically stable, i.e., .X{ A+ BFx(c)} are 

on the open unit disc; and 

2. the Hoc-norm of the closed-loop transfer matrix from the disturbance w 

to the controlled output his less than"(, i.e., IIThw(z,c)lloc < "f· 

Hence, by Definition 12.1.1, the control law of (12.3.33) solves the Hoc-ADDPMS 

for (12.3.28). l!l 

Proof. See Subsection 12.5.D. 

We illustrate the results of this section with the following example. 

Example 12.3.1. Consider a discrete-time system characterized by (12.1.1) 

with 

r 
1 1 1 
0 1 1 

A= 0 0 0.1 
0 0 0 

0.1 0.1 0.1 
1 ~l ' B = r~J ' E = r ~ ~l ' 

0.1 0.1 1 O:e 0 

(12.3.34) 
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where O:e is a scalar, and 

(12.3.35) 

We will consider both the state feedback case and the full information feedback 

case in this example. Using the toolbox of Chen [14], we can verify that (A, B) 

is controllable and ~p, i.e., (A, B, C2, D2), is left invertible with two invariant 

zeros at z = 1 and one infinite zero of order 2. Moreover, 

(12.3.36) 

and 

n S,(Ee) = lm { r~ 
0 

m 
0 
0 (12.3.37) 

IAI=l 0 1 
0 0 

Also, we have 

V0 (Ee)n{ n S,(Ee)}=hn{[~]}, 
IAI=l 0 

0 

and 

{v0 (Ep)+BKer(D2)}n{ n SA(Ep)} =lm {[H]}· 
IAI=l 0 0 

0 1 

It is clear to see now that the Hoo almost disturbance decoupling problem 

with internal stability (H00-ADDPS) using state feedback for the given system 

is solvable if and only if O:e = 0 and the H00-ADDPS using full information 

feedback for the given system is always solvable. Following the algorithms of 

this section, we obtain the following parameterized gain matrices, 

[

-0.526316(e- 1)2 -1.052632(e -1)- 0.626316]' 
-0.775623(e- 1)2 - 2.603878(e- 1)- 1.928255 

Fx(e) = -0.798061(€- 1)2 - 2.763490(€- 1)- 2.066429 , 
-(e- 1)2 - 4.2(e- 1)- 3.31 

-2(e- 1) - 2.2 

(12.3.38) 
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Figure 12.3.1: Max. singular values of Thw -Full information case. 

which places the eigenvalues of A+ BFx(E) around at 0, 0, 0, 1-£ and 1-£, 
and 

Fw = [ -O:e OJ. (12.3.39) 

The maximum singular value plots of the corresponding closed-loop transfer 

matrix Thw(z,£) in Figure 12.3.1 clearly show that the H00-ADDPS using full 
information feedback (or state feedback when O:e = 0) is attained as c tends 
smaller and smaller. liD 

12.4. Solutions to Measurement Feedback Case 

We present in this section the design of both full order and reduced order 

output feedback controllers that solve the general H 00-ADDPMS for the given 

system (12.1.1) . Here, by a full order controller, we mean that the order of 
the controller is exactly the same as the given system (12.1.1), i.e, is equal to 

n. A reduced order controller, on the other hand, refers to a controller whose 

dynamical order is less than n. 

12.4.1. Full Order Output Feedback 

In this subsection, we focus on the design of a full order proper measurement 

feedback control law, which solves the H 00-ADDPMS for the given system 
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(12.1.1) under the solvability conditions of Theorem 12.2.2. For the case when 

the given system satisfies the conditions listed in Theorem 12.2.3, a slight mod­

ification on the algorithm below, i.e., letting N = 0 in Step 12.F.C.1, would 

yield a strictly proper solution. The following is a step-by-step algorithm for 

constructing a parameterized full order output feedback controller that solves 

the H00-ADDPMS for (12.1.1). 

Step 12.F.C.1: (Computation of N). Utilize the properties of the special co­

ordinate basis to compute two constant matrices X and Y such that 

V0 (~P) = Ker (X) and S0 (~q) = Im (Y). Then, compute 

N=-(B'X'XB+D~D2 )t [B'X' D~] [ ~:; ~~] 

X [y~~~] (ClYY'C~ + DlD~)t. (12.4.1) 

Step 12.F.C.2: (Construction of the gain matrix Fp(c:)). Define an auxiliary 

system 

where 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = x(k) 

h(k) = 62 x(k) + D2 u(k) + 0 w(k), 

A:= A+ BNC1, 

E :=E+BNDl, 

62 := C2 + D2NC1, 

(12.4.2) 

(12.4.3) 

(12.4.4) 

(12.4.5) 

and then perform Steps 12.S.1 to 12.S.5 of the previous section to the 

above system (12.4.2) to obtain a parameterized gain matrix F(c:). We 

let Fp(e) = F(c:). 

Step 12.F.C.3: (Construction ofthe gain matrix Kq(c:)). Define another auxiliary 

system 

{ 
x(k+1) = A' x(k) + C~ u(k) + 6~ w(k), 

y(k) = x(k) 
-I 

h(k) = E x(k) + D~ u(k) + 0 w(k), 

(12.4.6) 

and then perform Steps 12.S.1 to 12.S.6 of the previous section to the 

above system to get the parameterized gain matrix F(c:). Similarly, we 

let Kq(c:) = F(c:)'. 
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Step 12.F.C.4: (Construction of the full order controller EFc(c:)). Finally, the 
parameterized full order output feedback controller is given by 

where 

·. { v(k + 1) = AFc(c:) v(k) + BFc(c:) y(k), 
EFc(c:) 

u(k) = CFc(c:) v(k) + DFc(c:) y(k), 

AFc(c:) :=A+ BNC1 + BFP(c:) + KQ(c:)C1, 

BFc(c:) := -KQ(c:), 

CFc(c:) := FP(c:), 

DFc(c:) := N. 

(12.4. 7) 

(12.4.8) 

Note that if the given system satisfies all conditions of Theorem 12.2.3, 
then one can choose matrix DFc(c:) = N = 0 and obtain a strictly proper 
controllaw. ~ 

We have the following theorem. 

Theorem 12.4.1. Consider the given system E of (12.1.1). Assume that the 
problem of H00 almost disturbance decoupling with internal stability for (12.1.1) 

is solvable, i.e., the solvability conditions of Theorem 12.2.2 are satisfied. Then, 
the closed-loop system comprising (12.1.1) and the full order measurement feed­

back controller (12.4. 7) has the following properties: For any given 'Y > 0, there 
exists a positive scalar c:* > 0 such that for all 0 < c: :S c:*, 

1. the closed-loop system is asymptotically stable; and 

2. the H 00-norm of the closed-loop transfer matrix from the disturbance w 

to the controlled output his less than"(, i.e., IIThw(z,c:)lloo < 'Y· 

Hence, by Definition 12.1.1, the control law of (12.4.7) solves the H 00-ADDPMS 
for (12.1.1). l!l 

Proof. See Subsection 12.5.E. 

We illustrate the above result in the following example. 

Example 12.4.1. We now consider a discrete-time system characterized by 

(12.1.1) with A, B, E, C2, D2 and D22 being given as in Example 12.3.1, and 

C _ [0.5 0.1 0.5 0.2 0.1] D = [1 OJ 
1 - 1 0 0 0 0' 1 0 0. (12.4.9) 
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For simplicity, we let O:e = 1 in matrix E. Using the toolbox of Chen [14] 

again, one can verify that (A, CI) is observable and :Eq, i.e., (A, E, C1, D1), is 

invertible with one infinite zero of order one and four invariant zeros at -0.6554, 

0.3777 ± j0.6726, and 1. Moreover, 

(12.4.10) 

and 

U Vx(:Eq) = Im { [~] } · 
1-XI=l 0 

0 

(12.4.11) 

Hence, 

It is ready to see now that all conditions in Theorem 12.2.2 are satisfied. Hence, 

the H00-ADDPMS for the given system is solvable. Following the algorithm of 

this subsection, we obtain a full order output feedback controller of the form 

(12.4.7) with 
N = [ -1 0.4], 

[ 

-0.526316(c- 1)2 - 1.052632(c- 1)- 0.5263161' 
-0. 775623(c- 1)2 - 2.603878(c- 1) - 1.828255 

Fp(c) = -0.798061(c- 1)2 - 2.763490(c- 1)- 1.566429 , 
-(E- 1)2 - 4.2(c- 1)- 3.11 

-2(c- 1) - 2.1 

(12.4.13) 

(12.4.14) 

which places the eigenvalues of A+ BFp(c) around at 0, 0, 0, 1- c and 1- E, 

and 

K0(e)~ [ ~t H (12.4.15) 

which places the eigenvalues of A+ Kq(c)Cl at -0.6554, 0.3777 ± j0.6726, 0 

and 1 - c. The maximum singular value plots of the corresponding closed-
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Figure 12.4.1: Max. singular values of nw -Full order output feedback. 

loop transfer matrix Thw(z,c) in Figure 12.4.1 show that the H 00-ADDPMS is 

attained as c tends to zero. 

12.4.2. Reduced Order Output Feedback 

In this subsection, we follow the procedure of Chapter 8 to design a reduced 

order output feedback controller. We will show that such a controller structure 

with appropriately chosen gain matrices also solves the general H 00-ADDPMS 

for the discrete-time system (12.1.1) . First of all, without loss of generality 

but for simplicity of presentation, we assume that the matrices C1 and D1 are 

already in the form , 

and D _ [D1,o] 
1- 0 , (12.4.16) 

where k = e- rank(D1 ) and D1,0 is of full rank. Next, we follow Steps 12.F.C.1 

and 12.F.C.2 of the previous subsection to compute the constant matrix N, and 

form the following system, 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = C1 x(k) + D1 w(k), 

h(k) = 62 x(k) + D2 u(k) + 0 w(k), 

(12.4.17) 
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where A, E and 62 are defined as in (12.4.3)-(12.4.5). Then, partition (12.4.17) 
as follows, 

( Xl(k+1)) = 
X2(k+1) 

[An A12] 
A21 A22 

(x1(k)) 
X2(k) + [~~] u(k) + [~~] w(k), 

( Yo(k)) 
Y1 (k) 

[ 0 C1,o2] 
h 0 

( x1(k)) 
x2(k) + [ D~,o] w(k), 

h(k) = [ C2,1 C2,2] (x1(k)) 
X2(k) + D2 u(k) + 0 w(k), 

where the state x of (12.4.17) is partitioned to two parts, x1 and x2; and y 
is partitioned to Yo and Y1 with Y1 = x1. Thus, one needs to estimate only 
the state x2 in the reduced order controller design. Next, define an auxiliary 
subsystem ~QR characterized by a matrix quadruple (AR, ER, CR, DR), where 

(12.4.18) 

The following is a step-by-step algorithm that constructs the reduced order 
output feedback controller for the general discrete-time H00-ADDPMS. 

Step 12. R. C.l: (Construction of the gain matrix Fp (c)). Define an auxiliary 
system 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = x(k) 
h(k) = 62 x(k) + D2 u(k) + 0 w(k), 

(12.4.19) 

and then perform Steps 12.S.1 to 12.S.5 of the previous section to the 
above system to obtain a parameterized gain matrix F(c;). Furthermore, 

we let Fp(c) = F(c). 

Step 12.R.C.2: (Construction of the gain matrix KR(c)). Define another auxil­
iary system 

{ 
x(k + 1) = A~ x(k) + C~ u(k) + q,2 w(k), 

y(k) = x(k) 
h(k) = E~ x(k) + D~ u(k) + 0 w(k), 

(12.4.20) 

and then perform Steps 12.S.1 to 12.S.5 of the previous section to the 
above system to obtain a parameterized gain matrix F(c). Similarly, we 
let KR(c) = F(c;)'. 
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Step 12.R.C.3: (Construction of the reduced order controller :ERc(c:)). Let us 

partition Fp(c:) and KR(c:) as, 

FP(c:) = [FP1(c:) FP2(c:)] and KR(c:) = [KRo(c:) KRl(c:)] 
(12.4.21) 

in conformity with the partitions of x = ( :~ ) and y = ( ~~) , respec­

tively. Then define 

GR(c:) = [ -KRo(c:), A21 + KRl(c:)An- (AR + KR(c:)CR)KRl (c:) ]. 
(12.4.22) 

Finally, the parameterized reduced order output feedback controller is 

given by 

where 

{ 
v(k + 1) = ARc(c:) v(k) + BRc(c:) y(k), 

:ERc(c:) : 
u(k) = CRc(c:) v(k) + DRc(c:) y(k), 

(12.4.23) 

ARc(c:) := AR + B2FP2(c:) + KR(c:)CR + KR1(c:)B1FP2(c:), ) 

BRc(c:) := GR(c:) + [B2 + KR1(c:)B1] [0, FP1(£)- FP2(c:)KR1(c:)], 

CRc(c:) := FP2(c:), 

DRc(c:) := [0, FPl(£)-FP2(c:)KRl(c:)]+N. 
(12.4.24) 

Note that the reduced order control law in general has a nonzero direct 

feedthrough term from y to u. ~ 

We have the following theorem. 

Theorem 12.4.2. Consider the given system :E of (12.1.1). Assume that the 

problem of H 00 almost disturbance decoupling with internal stability for (12.1.1) 

is solvable, i.e., the solvability conditions of Theorem 12.2.2 are satisfied. Then, 

the closed-loop system comprising (12.1.1) and the reduced order measurement 

feedback controller (12.4.23) has the following properties: For any given 1 > 0, 

there exists a positive scalar c:* > 0 such that for all 0 < c: s c:*, 

1. the closed-loop system is asymptotically stable; and 

2. the H 00-norm of the closed-loop transfer matrix from the disturbance w 

to the controlled output his less than"(, i.e., IIThw(z,c:)lloo < r· 

Hence, by Definition 12.1.1, the control law of (12.4.23) solves the H 00-ADDPMS 

for (12.1.1). QB 

Proof. See Subsection 12.5.F. 
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We illustrate the above result in the following example. 

Example 12.4.2. We again consider the system as given in Example 12.4.1. 

In what follows, we will construct a reduced order output feedback controller. 
We first partition 

1 1 1 1 0 

A= [Au A12 ] _ 
0 1 1 1 0 
0 0 0.1 1 0 

A21 A22 -
0 0 0 0 1 
0 0 -0.4 -0.1 0 

0 0 1 

B = [ ~~ ] = 

0 
E=[!~]= 

0 0 
0 

' 
0 0 

0 0 0 
1 0 0 

and Aa = A22, Ea = E2, and 

Ca= [ 0·! 0.5 0.2 0.1] Da = [~ ~] . 1 1 0 ' 

Following our algorithm, we obtain 

and 

F, ( )'- [ FPl(c:)' ] 
p c - FP2(c:)' 

I -0.526316(c:- 1)2 - 1.052632(c:- 1) - 0.526316 
-0.775623(c:- 1)2 - 2.603878(c:- 1) - 1.828255 

= -0.798061(c:- 1)2 - 2.763490(c:- 1) - 1.566429 
-(c:- 1)2 - 4.2(c:- 1) - 3.11 

-2(c:- 1) - 2.1 

[ 
0 -c: l 

K.(o) = [ Kao(o) I K.,(o) ] = ~ ~ , 

(12.4.25) 

(12.4.26) 

(12.4.27) 

' (12.4.28) 

(12.4.29) 

which places the eigenvalues of Aa + Ka(t:)Ca at -0.6554, 0.3777 ± j0.6726, 
and 1 - c:. Also, we obtain a reduced order output feedback controller of the 
form (12.4.23) with all sub-matrices as defined in (12.4.24). The maximum 
singular value plots of the corresponding closed-loop transfer matrix Thw(z,c:) 
in Figure 12.4.2 show that the H 00-ADDPMS is attained as c: tends to zero. liD 
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Figure 12.4.2: Max. singular values of Thw - Reduced order output feedback. 

12.5. Proofs of Main Results 

12.5.A. Proof of Theorem 12.2.1 

We show the result of Theorem 12.2.1, i.e., the solvability conditions of the 
H00-ADDPMS for the following full information system, 

I;FI 
{ 

x(k + 1) = A x(k) + B u(k) + E w(k), 

y(k) = ( ~) x(k) + ( ~) w(k), 

h(k) · = C2 x(k) + D2 u(k) + D22 w(k). 

(12.5.1) 

We first define the following auxiliary continuous-time system, 

E w, 

(~) w, (12.5.2) 
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where A, B, E, Cz, 152 and 1522 are defined as 

A = (A+ BFo + I)- 1 (A + BFo- I), 

B = J2(A + BFo + J)- 1 B, 

E = J2(A + BFo + J)- 1 E, 

Cz = J2(Cz + DzFo)(A + BFo + n-t, 

15z = Dz- (Cz + DzFo)(A + BFo + J)-1 B, 
v -1 

Dzz = Dzz- (Cz + DzFo)(A + BFo +I) E, 

(12.5.3) 

and where F0 is chosen such that A+ BF0 has no eigenvalue at -1. This 

can always be done provided that (A, B) is stabilizable. For future use, we 

denote ~Pas the subsystem characterized by (A,B,C2 ,152 ). It was shown in 

Glover (57] (see also Chapter 3) that the infimum of H00 optimization for the 

discrete-time system (12.5.1) is equivalent to that of H 00 optimization for the 

auxiliary continuous-time system (12.5.2). Thus, as a direct consequence, the 

H 00-ADDPMS for the discrete-time system (12.5.1) is solvable if and only if 

the H00-ADDPMS for the continuous-time system (12.5.2) is solvable. Follow­

ing the results of Scherer (118,119], one can show that the H00-ADDPMS for 

(12.5.2) is solvable if and only if the following conditions are satisfied: 

(a) (A, B) is stabilizable; 

(b) there exists a matrix S such that 1522 + 15zS = 0; and 

It is simple to show that (A, B) is stabilizable if and only if (A, B) is stabilizable. 

Hence, it is sufficient to show Theorem 12.2.1 by showing that the following two 

statements are equivalent: 

1. The first statement: 

(a) There exists aS such that D22 + D2S = 0; 

(b) Im (E + BS) C { V0 (1:P) + BKer (D2)} n { nl>-l=1 S>.(l:p) }· 

2. The second statement: 

(a) There exists aS such that 15z2 + 15zS = 0; 

(b) Im (E + BS) c s+(~P) n { n>.Eco S>.(~p)}. 
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Statement 1 =:? Statement 2: It is without loss of any generality to assume that 

matrix D22 in (12.5.1) is equal to 0. Also, by the definitions of the geometric 

subspaces vx, SX, VA and SA, it is simple to verify that they are all invariant 

under any state feedback, output injection laws, and nonsingular input as well 

as nonsingular output transformations. Hereafter, we will assume that the 

subsystem L:p, i.e., the quadruple (A,B,C2,D2), is in the form of the special 

coordinate basis of Theorem 2.4.1. For easy reference in future development, 

we further assume that the state space of L:P has been decomposed as follows: 

(12.5.4) 

where X~1 is corresponding the zero dynamics of L:P associated with the in-

variant zero at z = -1 and X~* is corresponding to the zero dynamics of L:P 

associated with the rest invariant zeros on the unit circle. More specifically, we 

let 

Ao* a a 0 0 0 L~i;Cb L~;pd 0 

0 A;;,-a 0 0 L-;:bcb L-;:dcd 0 

BeE~~ BeE~ Ace BcE"ta LcbCb LcdCd BeE~~ 

A= 
0 0 0 At a L~bcb L~dcd 0 + BoC2,o, 
0 0 0 0 Abb Lbdcd 0 

BdE~; BdEia BdEdc BdEda BdEdb Add BdE~! 

0 0 0 0 L~~cb L~~cd AOl a a 

(12.5.5) 

Bo* Oa 0 0 Eo* a 

Boa 0 0 E-a 

Boc 0 Be Ec 

B = [Bo BI]= B6a 0 0 E= E+ a (12.5.6) 

Bob 0 0 Eb 

Bod Bd 0 Ed 

BOl Oa 0 0 Em a 

D, ~ [~ 
0 

~] , 0 
0 

(12.5. 7) 
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and 

Goa Coc C~ Cob Cod C8~ l 
o o o o cd o , (12.5.8) 

o o o cb o o 

where A~~ has all its eigenvalues at -1 and A~~ has all its eigenvalues on the 

unit circle, but excluding the point -1. Then, the condition in Statement 1(b) 

is equivalent to that 

(12.5.9) 

for some appropriately dimensional X~1 and Xd, and 

(12.5.10) 

where Y~; is a matrix whose columns span naEA(A~;.)Im (o:J- A~~) and X~* is 

an appropriately dimensional matrix. 

Let us now choose F0 as, 

[~· Goa Coc c~ Cob Cod ~1 l Oa Oa 

Fo =- E~~ Eia Edc EJa Edb 0 
01 AOl 

(12.5.11) Eda: Eda · 
Eo* E~ 0 E~ 0 0 ca 

Then, we have 

AD* a a 0 0 0 L~bcb L~~cd 0 

0 A;;-a 0 0 L-;;,bcb L-;;,dcd 0 

0 0 Ace 0 LcbCb LcdCd 0 

A= A+BFo = 0 0 0 At a L~bcb L~dcd 0 

0 0 0 0 Abb Lbdcd 0 

0 0 0 0 0 Add 
AOl 

BdEda 

0 0 0 0 L~~cb L~~cd AOl a a 
(12.5.12) 

and 

[: 

0 0 0 0 0 

:J C2 = C2 + D2Fo = 0 0 0 0 cd (12.5.13) 

0 0 0 cb 0 

For simplicity, we further assume that Ace, Abb and Add have no eigenvalue 

at -1. Otherwise, some additional pre-state feedback will relocate them to 
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A01 A 
somewhere else. Also, E da is chosen such that A has no eigenvalue at -1. 
Next, it can be computed that 

(I +A~~)- 1 o o o X15 X16 X11 

0 (I +A;;-a)- 1 0 0 X25 X26 X21 

0 0 (I +Acc)- 1 0 X35 X36 X31 

(A+ BFo + I)-1 = 0 0 0 (I +Ata)-1 X45 X46 X41 , 

o o o o X55 x56 X51 

o o o o x65 x66 x67 
o o o o x75 X16 X11 

(12.5.14) 
where 

(12.5.17) 

and 

x11 = .6. - 1 , (12.5.23) 

X15 = -(I+ A~:)- 1 (L~bcbx55 + L~~cdx65), (12.5.24) 

X16 =-(I+ A~:)- 1 (L~bcbx56 + L~~cdx66), (12.5.25) 

x11 = -(I+ A~:)- 1 (L~bcbx57 + L~~cdx67), (12.5.26) 
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and where 

X36 =-(I+ Acc)- 1 (LcbCbX56 + LcdCdX66), 

X31 =-(I+ Acc)- 1 (LcbCbX57 + LcdCdX67), 

Furthermore, we have 

(I+ A~~)- 1 B8~ + X15Bob +X 16Bod + X11B8~ x16Bd 

(I +A;;-a)- 1 Boa +X25Bob+X26Bod+X21B8~ x26Bd 

(I +Acc)- 1 Boc+X35Bob+X36Bod+X31B8~ x36Bd 

fJ = V2 (I +Ata)-1 Bcia +X45Bob+X46Bod+X41B8~ x46Bd 

X55Bob+X56Bod+X51B8~ x56Bd 

X65Bob+X66Bod+X67B8~ x66Bd 

X75Bob+X16Bod+X77B8~ X76Bd 

where Xcc = (I+ Acc)- 1 Be, 

(I +A~~)- 1 Ya0; X2*+X16BdXd+X17(I +A~~JX21 

(I +A;;-a)- 1 E;; +X26BdXd+X21(I +A~~)X21 

(I +Acc)- 1 Ec+X36BdXd+X37(I +A~~)X21 

(12.5.28) 

(12.5.29) 

(12.5.30) 

(12.5.31) 

(12.5.32) 

(12.5.33) 

(12.5.34) 

(12.5.35) 

0 

0 

Xcc 

0 

0 

0 

0 
(12.5.37) 

X46BdXd + X41(I + A~~,)X~1 , (12.5.38) 

X56BdXd+X57(I +A~~)X21 

X66BdXd+X67(I +A~~)X21 

X16BdXd+X77(I +A~~)X21 
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and 

D2 = [ - Cd(X65Bob+~66Bod+X67B8~) 
- Cb(X55Bob+X56Bod+X51B8~) 

0 

-CdX66Bd 

-CbX56Bd 

D22 = [ - Cd[X66BdXd +
0
X67(I + A~~)X~1 ]]. 

- Cb[X56BdXd + X57(I + A~~)X~ 1 ] 

Next, let us define 

Noting that 

it is straightforward to verify that 

which shows that Statement 2(a) holds, and 

* 
* 
0 

0 

0 

* 

315 

0] 
0 ' 
0 

(12.5.39) 

(12.5.40) 

(12.5.41) 

= 0, (12.5.43) 

(12.5.44) 
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where *S are matrices of not much interest. Let the state space of 'Ep, i.e., the 

matrix quadruple (A, B, 62, D2), be decomposed as follows: 

(12.5.45) 
vQ v- v v v 

where X a, X a , X c, X b and X d are the usual subspaces defined in the special 

coordinate basis of 'Ep, while X~1 is corresponding to the zero dynamics of 'Ep 
associated with the invariant zero at s = 1, and x~* is corresponding to the 

zero dynamics of 'EP associated with the rest unstable invariant zeros (excluding 

the points= 1). It was shown in Chapter 3, i.e., (3.4.55), that X of 'EP and X 

of ~P are related by 

(12.5.46) 

and 
(12.5.47) 

Moreover, the zero dynamics of 'EP corresponding to the imaginary axis invari­

ant zeros are fully characterized by the eigenstructure of the following matrix, 

A~a :=(A~:+ I)- 1 (A~:- J). (12.5.48) 

Noting (12.5.10), it is ready to verify that 

n (12.5.49) 
,6E>.(A~a) 

It is now straightforward to see from (12.5.44) and the properties of the special 

coordinate basis that 

Im (E + BS) c s+(f::P) n { n>.EcoS>.('EP)}' 

i.e., Statement 2(b) holds. 

(12.5.50) 

Statement 2 =} Statement 1: It follows by reversing the above arguments using 

the well-known bilinear transformation and the results of Chapter 3. Thus, it 

is omitted. This completes the proof of Theorem 12.2.1. ~ 

12.5.B. Proof of Theorem 12.2.2 

For simplicity of presentation, we assume throughout this proof that matrix A 

has no eigenvalue at -1. Then, we define the following auxiliary continuous-

time system, 

{ 
i = A x + .B u + E w, 
y = 61 x + D1 w, 
z = 62 x + ih u + .622 w, 

(12.5.51) 
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where A, B, E, 61, fh, 62, D2 and D22 are defined as 

A =(A+ I)-1(A- I), 

iJ = J2(A + J)-1 B, 

E = J2(A + /)-1 E, 

61 = v'2C1 (A+ /)-1, 

jj1 = D1- C1(A + /)-1 E, 
(12.5.52) 

62 = J2C2(A + /)-1, 

D2 = D2- C2(A + J)-1 B, 
v -1 D22 = D22 - C2(A +I) E. 

For easy reference later on, we let tP denote the subsystem characterized by 

(A, iJ, 62 , D2 ) and tQ denote the subsystem characterized by characterized by 
(A, E, 61 , DI), respectively. Following the result of Glover [57], one can show 

that the following two statements are equivalent: 

1. The H00-ADDPMS for the originally given discrete-time system E of 
(12.1.1) is solvable. 

2. The H00-ADDPMS for the auxiliary continuous-time system t of (12.5.51) 

is solvable. 

It follows from Theorem 8.2.1 (see also Scherer [118,119]) that the second state­

ment above is also equivalent to the following conditions: 

(a) (A, B) is stabilizable. 

(b) (A, 61) is detectable. 

(c) D22 + D2Si51 = 0, where S = -(i5~i52)t i5~i522D~ (D1 D~)t. 

(d) Im (E +ESDI) c s+(tP) n {n.>.Eco S>.(tP) }· 

(e) Ker (62 + i52s61) :J v+(tq) u { U>.Eco V>.(tq) }· 

(f) v+(tq) c s+(tp). 

First, it is simple to check that the triple (A,B,61) is stabilizable and de­
tectable if and only if the triple (A, B, C) is stabilizable and detectable. Next, 
following the proof in Subsection 12.5.A, we have the following equivalent state­
ments: 
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1. Statement 1: 

(a) D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~(D1DDt; 

(b) Im(E+BS) C {V0 (~P)+BKer(D2)}n{ni-'I=1 S,x(~p)}. 

2. Statement II: 

(a) D22 + tJ2stJ1 = o, where s = -(D;D2)t v;v22D~ (D1D~)t; 

(b) Im CE + iJsiJ1) c s+(f:P) n {n-'Eco S,x(Ep) }· 

Dualizing the arguments of Subsection 12.5.A, we can show that the following 
two statements are also equivalent: 

1. Statement A: 

(a) D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~(D1DDt; 

(b) Ker(C2+D2SC1) :J {S0 (~q)nC1 1 {Im(Dl)}}u{U 1 "I=l V,x(~q)}. 

2. Statement B: 

(a) D22 + tJ2stJ1 = o, where s = -(v;v2)tv;v22D~(D1D~)t; 

(b) Ker (62 + D2SCI) :J v+(Eq) u { u,\E£0 V,x(Eq) }· 

Finally, it was shown in Chapter 3 that 

(12.5.53) 

and 

(12.5.54) 

Hence, the following two statements are equivalent: 

Thus, the result of Theorem 12.2.2 follows. 
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12.5.C. Proof of Theorem 12.3.1 

Under the feedback control law u = F(c:)x, the closed-loop system on the special 
coordinate basis can be written as follows, 

6(x;;-) = A;;-ax;;- + B0aha + L~hd + L-;:bhb + E;;w, (12.5.55) 

6(x~) = A~ax? + B8aha + L~dhd + L~bhb + E~w, (12.5.56) 

6(x~bd) = A~bcdx~bd + [Btabd' Bdbd]F~(c:)[x~ + T~x~bd] + E~dw, (12.5.57) 

Xc + = A~cXc +Bacha + Lcbhb + Lcdhd + Ecw, (12.5.58) 

ha = [F:O, Fba, Fda]x~bd + F~a(c:)(x~ + T~x~bd), (12.5.59) 

hb = [ombxn;!:> cb, Ombxnd]x~bd> hd = [ombxn;!:> OmbXnb,cd]x~bd (12.5.60) 

where 

x;bd~ (;} (12.5.61) 

and Bciabd is as defined in Step 12.8.4.1 of the state feedback design algorithm. 
We have also used Condition (b) of Remark 12.2.2, i.e., D22 = 0, and E;;, E~, 
Edbd> Eb and Ec are defined as follows, 

r;p1 E = [ (E;;)' (E~)' (E~)' E~ E~ r, Edbd = [ (E~)' E~ ]'. (12.5.62) 

Condition (c) of Remark 12.2.2 then implies that 

(12.5.63) 

and 

(12.5.64) 

To complete the proof, we will make two state transformations on the closed­
loop system (12.5.55)-(12.5.60). The first state transformation is given as fol­
lows, 

(12.5.65) 

where 

Xobd ~ GU Md Xobd ~ ( ~} (12.5.66) 

In the new state variables (12.5.65), the closed-loop system becomes, 

6(x;;-) = A;;-ax;;- + A-;:abd+x~bd + B0aF~a(c:)x~ + E;;w, (12.5.67) 
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6(x~) = (A~a + B~F~(c))x~ + E~w, (12.5.69) 

6(xc) = A~cXc + Acabd+X~bd + BocF~0 (c)x~ + Ecw, (12.5.70) 

ho = [F,;o, Fbo, Fdo]x~bd + F~0 (c)x~, (12.5.71) 

hb = [om&Xnd' cb, Om&Xnd]x~bd> hd = [ombxn;t> Om&Xn&,cd]x~bd> (12.5.72) 

where 

and 

We now proceed to construct the second transformation. We need to recall 

the following preliminary results from Lin (82]. 

Lemma 12.5.1. Consider a single input pair (A, B) in the form of (12.3.19) 

with all eigenvalues of A on the unit circle. Let F(c) E Rlxn be the unique 

matrix such that .A{ A+ BF(c)} = (1- c).A(A), c E (0, 1]. Then, there exists a 

nonsingular transformation matrix Q(c) E Rnxn such that 

1. Q(c) transforms A+ BF(c) into a real Jordan form, i.e., 

Q-1 (c)(A + BF(c)]Q(c) = J(c) 

:= blkdiag { L1 (c), J+l (c), J1 (c), .. ·, Jt(c)}, (12.5.75) 

where 

[

-(1-c) 

Lt(c)= 

1 

-(1- c) 

1 

1-c 

-(!'- Jn '" 
-1 -1 

(12.5.76) 

(12.5.77) 
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and for each i = 1 to l, 

Jt(e) h l 
Jt(e) 2n;x2n; 

(12.5.78) 

Jt ( €) = ( 1 - €) [ ~~i ~: ] , (12.5.79) 

with a~ + /31 = 1 for all i = 1 to l and O:i -:f:. ai for i -:f:. j. 

2. Both IQ(e)l and IQ-1 (e)l are bounded, i.e., 

IQ(e)l:::; B, IQ- 1 (e)l:::; B, e E (0, 1) (12.5.80) 

for some positive constant (}, independent of e. 

3. Let E E Rnxq is such that 

Im(E) c nwEA(A)Im(wi- A), (12.5.81) 

where q is any integer. Then, there exists a rJ 2: 0, independent of e, such 
that 

IQ-1(e)EI:::; rJ, e E (0, 1), (12.5.82) 

and, if we partition Q-1(e)E according to that of J(e) as, 

(12.5.83) 

[ 
E01(e) l Eo2(e) 

Eo(e) = . , 

Eon~ (e) no xq 

(12.5.84) 

then, there exists a /3 2: 0, independent of e, such that, for each i = 0, to 
l, 

IEin; (e)l :::; /3e. (12.5.85) 

4. Let 

(12.5.86) 
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where 
s_1(c) = diag{cn_ 1 - 1,cn- 1 - 2 , .•. ,c, 1}, 

SH(c) = diag{cn+ 1 - 1 ,cn+1 - 2 , • · • ,c, 1}, 

and for each i = 1 to l, 

(12.5.87) 

(12.5.88) 

S;(c) = blkdiag{ cn'-1 12, cn'-2 12, · · ·, cl2, 12}· (12.5.89) 

Then, 

(a) 

S(c)J(c)S-1 (c) = i(c) := blkdiag { L1 (c), JH (c), J1 (c),···, it(c)} 

(12.5.90) 

where 

_ [-(1-c) 

J_1(c) = 

and for each i = 1 to l, 

_ [Jt(c) ~12 
J;(c) = .. 

-(1- c) 

-(1 '_ £J n_' ••-• 
(12.5.91) 

(1- c) 
(12.5.92) 

Jt(c) £!, l 
Jt (c) 2n, x2n; 

(12.5.93) 

Ji(c) = (1- c) [ ~~i ~:], (12.5.94) 

with {3; > 0 for all i = 1 to l and {3; -=f. {3j for i -=f. j. 

(b) The unique positive definite solution F(c) to the Lyapunov equation 

]'(c)PJ(c)- P = -cl, (12.5.95) 

is bounded, i.e., there exist positive definite matrices F1 and P2 , 

independent of c, such that 

(12.5.96) 

for some c* E (0, 1]. 
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5. There exist a, f3 2: 0, independent of e, such that 

(12.5.97) 

and 

(12.5.98) 

for all e E (0, 1]. 

We now define the following second state transformation on the closed-loop 
system, 

x;; = x;;, (12.5.99) 

and 

-o [(-o )' (-o )' (-o )']' s ( )Q-1( )(ro )-1-o Xa = Xa1 ' Xa2 ' ... Xal = a e a e sa Xa, (12.5.100) 

with 

Sa(e) = blkdiag{Sal{e), Sa2(e), · · ·, Sat(e)}, (12.5.101) 

and 

Qa(e) = blkdiag{Qa1(e), Qa2(e), · · ·, Qat(e)}, (12.5.102) 

where Qai(E) and Sai(E) are the Q(e) and S(e) of Lemmas 12.5.1 for the triple 
(Ai, Bi, Fi)· Hence, the properties of Lemma 12.5.1 all apply. In these new 
state variables, the closed-loop system becomes, 

and 

(12.5.104) 

(12.5.105) 

6(xc) = A~cxc + e [Acabd+x;:-bd + BocF~0 (e)f~aQa(e)S;; 1 (e)x~ + Ecw], 
(12.5.106) 

ho = [F,1o, Fbo, Fdo]x;:-bd + F~0 (e)f~aQa(e)S;; 1 (e)x~, (12.5.107) 

hb = [ombxnt' cb, Ombxnd]x;:-bd' hd = [ombxnt' OmbXnb,cd]x;:-bd' (12.5.108) 

where 

la(e) = blkdiag{da1(e),eJa2(e), · · · ,elat(e)}, (12.5.109) 

_ [~ ih~(e) ~~:~:~ ~~:~:~] 
BW= . . ' . . . . 

0 0 0 0 

(12.5.110) 
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with for i = 1, 2, · · ·, l and j = i + 1, i + 2, · · ·, l, 

(12.5.111) 

and finally 

(12.5.112) 

and where, for i = 1 to l, lai(c:) is the ](c:) of Lemma 12.5.1 for the matrix 

triple (Ai, Bi, Fi)· 
By Lemma 12.5.1, we have that, for all c: E (0, 1], 

(12.5.113) 

fori= 1 to l, 
-o -o 

IEai(c:)l::; eat:, (12.5.114) 

and finally, for i = 1 to l, j = i + 1 to l, 

(12.5.115) 

where j~0 , e~ and bii are some positive constants, independent of c:. 
We next construct a Lyapunov function for the closed loop system (12.5.103)­

(12.5.108). We do this by composing Lyapunov functions for the subsystems. 

For the subsystem of x;;, we choose a Lyapunov function, 

where P;; > 0 is the unique solution to the Lyapunov equation, 

and for the subsystem of xtbd' choose a Lyapunov function, 

V+ (-+ ) (-+ )'p+ -+ abd Xabd = Xabd abdxabd' 

where P;ibd > 0 is the unique solution to the Lyapunov equation, 

(A+c )'P+ A+c p+ - I abd abd abd - abd - - · 

(12.5.116) 

(12.5.117) 

(12.5.118) 

(12.5.119) 

The existence of such P;; and P;ib is guaranteed by the fact that both A;;a and 

Atbcd are asymptotically stable. For the subsystem of 

-0 [(-0 )' (-0 )' (-0 )']' X a = Xal ' Xa2 '· · · ' Xal ' (12.5.120) 
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we choose a Lyapunov function, 

l 0 . 1 

V o ( -o) "" ( o:a)'- ( -o )'Po ( ) -o a Xa = ~ Xai ai E Xai> 
i=l c 

(12.5.121) 

where o:~ is a positive scalar, whose value is to be determined later, and each 
Pgi(c) is the unique solution to the Lyapunov equation, 

(12.5.122) 

which, by Lemma 12.5.1, satisfies, 

(12.5.123) 

for some Pai independent of c. Similarly, for the subsystemic, choose a Lya­
punov function, 

(12.5.124) 

where Pc > 0 is the unique solution to the Lyapunov equation, 

(12.5.125) 

The existence of such a Pc is again guaranteed by the fact that A~c is asymp­
totically stable. 

We now construct a Lyapunov function for the closed-loop system (12.5.103)­
(12.5.108) as follows, 

V(x;:;, i~bd' i~, ic) = va- (x;:;) + o:~bd Vatd(x~bd) + V~(i~) + Vc(ic), (12.5.126) 

where o:~bd = 2IPa-112IA;a12 + 1. 
Let us first consider the difference of V~(x~) along the trajectories of the 

subsystem x~ and obtain that, 

(12.5.127) 
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Using (12.5.114), (12.5.115) and Lemma 12.5.1, it is straightforward to show 

that, there exists an a~ > 0 such that, 

(12.5.128) 

for some nonnegative constants a 1 , independent of E. 

In view of (12.5.128), the difference of V along the trajectory of the closed­

loop system (12.5.103)-(12.5.108) can be evaluated as follows, 

~v:::; -(x;;)'x;; + 2(x;;)'(A;;a)'P; 

x[A~abd(E)x;bd + B0aF~0 (E)f~aQa(E)S,;- 1 (E)x~ + E;w] 

-a;bd(x;bd)' x;bd + 2a;bd(x;bd)' (A;bcd)' P;li,d 

x [Briabd• B:bd]F~(E)f~aQa(E)S,;- 1 (E)x~ 

3 ~-o 12 I 12 _, - 2 _, (A+c)'P [A -+ -4 Xa + a1 W - XcXc + EXc cc c cabd+Xabd 

+BocF~0 (c)f~aQa(E)S,;- 1 (E)x~ + Ecw] (12.5.129) 

Using (12.5.113) and noting the definition of a;b (12.5.126), we can easily 

verify that, there exists an Ei E (0, 1] such that, for all E E (0, E;'], 

(12.5.130) 

for some positive constant a 2 , independent of E. 

From (12.5.130), it follows that the closed-loop system in the absence of 

disturbance w is asymptotically stable. It remains to show that, for any given 

'Y > 0, there exists an E* E (0, Ei] such that, for all E E (0, E*], 

(12.5.131) 

To this end, we sum both sides of (12.5.130) from 0 to oo. Noting that V ~ 0 

and V(k) = 0 at k = 0, we have, 

(12.5.132) 

which, when used together with (12.5.113) in (12.5.104), results in, 

(12.5.133) 

for some positive constant a3, independent of E. 

Finally, recalling that 

(12.5.134) 
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where h0 , hd, hb are as defined in the closed-loop system (12.5.103)-(12.5.108), 

we have, 

(12.5.135) 

for some positive constant 0:4 independent of e. 

To complete the proof, we choose e* E (0, ei] such that, 

(12.5.136) 

Finally, for the use in the proof of Theorem 12.4.1, it is straightforward 

to verify from the closed-loop system equations (12.5.103)-(12.5.108) that the 

transfer function from E~w to h is given by 

(12.5.137) 

where Tao(z,e)-+ 0 pointwise in z as e-+ 0. 

12.5.D. Proof of Theorem 12.3.2 

Without loss of any generality, but for simplicity of presentation, we assume that 

the matrix quadruple (A, B, C2 , D2 ) is in the form of the special coordinate basis 

of Theorem 2.4.1. It is simple to verify that if Condition (b) of Theorem 12.2.1 

holds, we have 

Also, Condition (c) of Theorem 12.2.1 implies that 

E-a 

E+BS= (12.5.139) 

with an appropriately dimensional xd, and 

(12.5.140) 
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where Ya0 is a matrix whose columns span naE.X(A2.,)Im (a!- A~a) and X~ is 
an appropriately dimensional matrix. Next, it is simple to verify that 

E+BFw = 
Ec Ec 

BdXd - Bd(B~Bd)- 1 B~BdXd 0 

Hence, we have 

and the result follows from Theorem 12.3.1. 

12.5.E. Proof of Theorems 12.2.3 and 12.4.1 

(12.5.141) 

(12.5.142) 

~ 

In what follows, we are mainly to examine the result of Theorem 12.4.1. How­
ever, the result of Theorem 12.2.3 will become very obvious as we proceed. 

Let us first apply a pre-output feedback control law, 

u = Sy+u, (12.5.143) 

with S = -(D~D2 )t D~D22D~ (D1 DDt, to the given system~ of (12.1.1). Under 
Condition (c) of Theorem 12.2.2, we have D22 + D2SD1 = 0. We also have a 
new system, 

{ 
x(k+1) = (A+BSC1) x(k) + B u(k) + (E+BSDI) w(k), 

y(k) = C1 x(k) + D 1 w(k), (12.5.144) 

h(k) = (C2+D2SD1) x(k) + D2 u(k) + 0 w(k). 

We denote f;P and f;Q the subsystems characterized by the matrix quadru­

ples (A+ BSC1,B,C2 + D2SC1,D2) and (A+ BSC1,E + BSD1,Cl,D1), re­
spectively. Recalling the definitions of V0 and S 0 , which are invariant un­
der any state feedback and output injection laws, we have V0 (EP) = V0 (f;P), 
S0 (Eq) = V0 (f;q), and 

[ A+BSC1 ] V0(EP) c (V0(EP) EB {0}) + lm { [ B ] } , 
C2+D2SC1 D2 

(12.5.145) 

as well as 

[A+BSC1 E+BSDd{(S0 (Eq)EBntq) nKer{[C1 D!]}} cS0 (Eq). 
(12.5.146) 
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Furthermore, it can be easily verified that Condition (d) of Theorem 12.2.2 
implies 

(12.5.147) 

and that Condition (e) of Theorem 12.2.2 implies 

(12.5.148) 

Next, it is ready to show that (12.5.145) and (12.5.147) together with Condition 
(f) of Theorem 12.2.2 imply that 

[ A+BSC1 E+BSDt] (s0(~q) EBRq) C (v0(~P) EB {o}) +lm { [ B]}, 
C2+D2SC1 0 D2 

(12.5.149) 

and that (12.5.146) and (12.5.148) together with Condition (f) of Theorem 12.2.2 

imply that 

E+~SDt] {(s0 (~q)EBRq) nKer{[Ct Dt]}} 

c (v0 (~P) EB {o} ).(12.5.150) 

Finally, (12.5.149) and (12.5.150) imply that there exists a matrix N, which 
satisfies the following condition, 

([ A+BSCt E+BSDt]+[B]N[Ct Dtl)(s0 (~q)EBRq) 
C2+D2SD1 0 D2 

c (V0 (~p)EB{O} ). (12.5.151) 

It is simple to verify that matrix N := N- S, where N is given as in (12.4.1), 

is one of the solutions to (12.5.151). Following the result of [128], one can show 
that matrix N of (12.4.1) or N = N +S with N being any solution of (12.5.151) 
has the following properties: 

and 

lm (E + BNDl) c V0 (~p), 

Ker (C2 + D2NC1) :::> S0 (~q), 

(12.5.152) 

(12.5.153) 

(12.5.154) 

Noting that D2N D1 = 0, it can be further showed using the compact form of 
the special coordinate basis that 

(12.5.155) 
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and 
(12.5.156) 

Now, let us apply the following pre-output feedback law, u = Ny +u, to the 

system (12.1.1). We obtain 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = C1 x(k) + D1 w(k), 

h(k) = 62 x(k) + D2 U(k) + 0 w(k), 

(12.5.157) 

where A, E and 6,2 are as defined in (12.4.3) to (12.4.5). Clearly, it is sufficient 

to prove Theorem 12.4.1 by showing the following controller 

_ { v(k + 1) = AFc(c) v(k) + BFc(c) y(k), 
:EFc(c) : 

u(k) = CFc(c) v(k) + 0 y(k), 
(12.5.158) 

with AFc(c), BFc(c) and CFc(c) being given as in (12.4.8), solves the H00 -

ADDPMS for (12.5.157). For simplicity of presentation, we denote EP the 

subsystem, 

(12.5.159) 

and denote Eq the subsystem, 

(12.5.160) 

It is simple to see that (A, B, C1 ) remains stabilizable and detectable. Also, it 

is trivial to show the stability of the closed-loop system comprising the given 

plant (12.5.157) and the controller (12.5.158). The closed-loop eigenvalues are 

given by .\{A+ BFp(c)}, which are in C 0 for sufficiently small cas shown in 

Theorem 12.3.1, and .X{ A+ Kq(c)C!}, which can be dually shown to be in C 0 

for sufficiently small c as well. In what follows, we will show that the controller 

(12.5.158) achieves the H00-ADDPMS for (12.5.157), under all the conditions 

of Theorem 12.2.2. By (12.5.154)-(12.5.156), and the fact that V 0 , S0 , v.~ as 

well as S>.. are all invariant under any state feedback and output injection laws, 

we have that Conditions (d) to (f) of Theorem 12.2.2 are equivalent to the 

following conditions: 

(d). lm (E) c V0(Ep) n {nl>..l=l S>..(EP) }; 

(e). Ker(C2) :::>S0(Eq)u{UI>..I=l V>..(Eq)}; 

(]). S0(Eq) c V0(EP); and 
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In view of the above, the result of Theorem 12.2.3 is obvious. We will continue 

on the proof of Theorem 12.4.1. 

Next, without of loss any generality but for simplicity of presentation, we as­

sume throughout the rest of the proof that the subsystem f:P, i.e., the quadruple 

(A, B, 62, D2), has already been transformed into the special coordinate basis 
as given in Theorem 2.4.1. To be more specific, we have 

A;;-a 0 0 L-;:bcb 0 L-;:dcd 
0 A~a 0 L~bcb 0 L~dcd 

A= BoC2,o + 
0 0 At a L~bcb 0 L~dcd 
0 0 0 Abb 0 Lbdcd 

BeE~ BcE~a BeEt,. LcbCb Ace LcdCd 

BdEia BdE~a BdEda BdEdb BdEdc Add 

:= BoC2,o +A, (12.5.161) 

Boa 0 0 Boa 

B8a 0 0 B8a 

B= Bta 0 0 
Bo = Bta (12.5.162) 

Bob 0 0 ' Bob 
Boc 0 Be Boc 
Bod Bd 0 Bod 

[cf ega eta Cob Coe C"] 62 = 0 0 0 0 cd , (12.5.163) 

0 0 cb 0 0 

D, = [~ 
0 

~]' c2,o = [co;. ega eta Cob Coc Cod], 0 (12.5.164) 
0 

and 

I 0 0 
0 I 0 

V0(f:p) = Im 
0 0 0 

(12.5.165) 
0 0 0 
0 0 I 
0 0 0 
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It is simple to note that Condition (d) implies that 

E-
a 

Eo 
a 

E= 0 
0 

(12.5.166) 

Ec 
0 

Next, for any ( E V.x(f:q) with,\ E C 0 , we partition (as follows, 

(;; 

(~ 

(= 
(;t 

(12.5.167) 
(b 

(c 

(d 

Then, Condition (e) implies that C2 ( = 0, or equivalently 

(12.5.168) 

By Definition 2.4.3, we have 

(12.5.169) 

for some appropriate vector ry. Clearly, (12.5.169) and (12.5.166) imply that 

(A- .\I)(= -Ery = 

* 
* 
0 
0 

* 
0 

(12.5.170) 

where *S are some vectors of not much interests. Note that (12.5.168) implies 

(A- AI)( = (BoC2,o +A- AI)( = (A- .\I)( 

* 
* 

(Ata - AI)(;t + L~bCb(b + L~dCd(d 
(Abb - .\I)(b + LbdCd(d 

* 
(Add - .\I)(d + Bd(x 
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= 

* 
* 

(Ata- AI)(;t 

(Abb- AI)(b 

* 
(Add- >-.I)(d + Bd(x 

where 

(12.5.170) and (12.5.171) imply 

(Ata - AI)(d = 0, (Abb - >-.I)(b = 0, 

and 
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(12.5.171) 

(12.5.172) 

(12.5.173) 

(12.5.174) 

Since Ata has all its eigenvalues in(;®, (Ata- >-.I)(;t = 0 implies that (;t = 0. 
Similarly, since (Abb, Cb) is completely observable, (Abb->-.I)(b = 0 and Cb(b = 0 
imply (b = 0. Also, (12.5.174) and Cd(d = 0 imply that 

(12.5.175) 

Because (Add, Bd, Cd) is invertible and is free of invariant zeros, (l2.5.175) im­
plies that (d = 0 and (x = 0. Thus, we have 

and hence 

Moreover, ( has the following property, 

(;; 

(~ 

(= 0 E V0 (f:p). 
0 
(c 

0 

Obviously, (12.5.178) together with Condition (]) imply 

V0 (f:P) :::> S0 (f:q) U { U>.Eco V>.(f:q)}. 

(12.5.176) 

(12.5.177) 

(12.5.178) 

(12.5.179) 
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Similarly, for any ( E S0 (tq), Conditions (e) and (g) imply that C2 ( = 0 and 

Now, it is straightforward to show that 

* 
* 
0 
0 

* 
0 

( E K~r { Bd [Eia E~a Eta Edb Edc OJ}, 

and hence 

S0 (tq) c Ker { Bd [ Eia E~a Eta Edb Edc 0 J}. 
(12.5.177) and (12.5.182) imply that 

(12.5.180) 

(12.5.181) 

(12.5.182) 

Ker { Bd [Eia E~a Eta Edb Edc OJ} :::> S0 (tq) U { U-\ECo V,\(tq)}. 
(12.5.183) 

Next, we partition A - zl as follows, 

(12.5.184) 

where 

A;;a- zl 0 0 L-;;,bcb 0 L-;;,dcd 

0 0 0 0 0 0 

x1 := 
0 0 0 0 0 0 (12.5.185) 
0 0 0 0 0 0 

) 

BeE~ BcE~a Be Ed;. LcbCb Ace- zl LcdCd 

0 0 0 0 0 0 

Boa 0 0 

B8a L~d L~b 

X2= 
Bria Ltd Ltb 

Bob Lbd 0 
(12.5.186) 

Boc 0 0 

Bod 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 A;[a- zl 0 0 0 
X3= 

0 0 0 Abb- zl 0 0 
(12.5.187) 

0 0 0 0 0 0 

0 0 0 0 0 Add- zl 
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0 0 0 0 0 0 
0 A~a- zl 0 0 0 0 

x4 = 0 0 0 0 0 0 
0 0 0 0 0 0 

(12.5.188) 

0 0 0 0 0 0 
0 0 0 0 0 0 

and 

0 0 0 0 0 0 
0 0 0 0 0 0 

X5= 
0 0 0 0 0 0 
0 0 0 0 0 0 

(12.5.189) 

0 0 0 0 0 0 
BdEia BdE~a BdEda BdEdb BdEdc 0 

It is simple to see that 

Im (XI) c V0 (i::P) n { nl>-l==lS>.(i::P)}' (12.5.190) 

Ker (X3) :J V0 (f::P) :J S 0 (f::q) U { Ul>.l==l V>.(f::q)}. (12.5.191) 

Also, (12.5.183) implies that 

Ker (X5 ) :J S0 (i::q) U { Ul>-1==1 V>. (i::q)} . (12.5.192) 

It follows from the proof of Theorem 12.3.1 that as E ~ 0 

(12.5.193) 

where lip is a finite positive constant and is independent of E. Moreover, under 
Condition (d), we have 

(12.5.194) 

and 

(12.5.195) 

pointwise in z as E ~ 0. Following (12.5.137), we can show that 

(12.5.196) 

pointwise in z as E ~ 0. Dually, one can show that 

(12.5.197) 
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where Kq is a finite positive constant and is independent of c. If Condition (e) 

is satisfied, the following results hold, 

and 

pointwise in z as c -t 0. 

(12.5.198) 

(12.5.199) 

(12.5.200) 

Finally, it is simple to verify that the closed-loop transfer matrix from the 

disturbance w to the controlled output h of the closed-loop system comprising 

the system (12.5.157) and the controller (12.5.158) is given by 

Thw(z, c) = [C2+D2Fp(c)][zl -A-BFp(c)t1 E 
- - 1 - -

+ C2[zl -A-Kq(c)C1t [E+Kq(c)D1]+[C2+D2Fp(c)] 

· [zl -A-BFp(c)t1 (A-zi)[zi -A-Kq(c)C1t1[E+Kq(c)D1]· 

Using (12.5.184), we can rewrite Thw(z, c) as 

- - 1 -
Thw(z,c) = [C2+D2Fp(c)][zi-A-BFp(c)t E 

- - 1 -+ C2 [zl -A-KQ(c)CI]- [E+KQ(c)D1] 

+ [C2+D2Fp(c)][zl -A-BFp(c)t1(X1 +X2C2+X3+X4+X5) 

· [zi -A-Kq(c)C1t 1[E+Kq(c)D1]· 

Following (12.5.193) to (12.5.200), and some simple manipulations, it is straight­

forward to show that as c -t 0, Thw(z,c) -t 0, pointwise in z, which is equiva­

lent to IIThwlloo -t 0 as c -t 0. Hence, the full order output feedback controller 

(12.4.7) solves the H00-ADDPMS for the given plant (12.1.1), provided that all 

the conditions of Theorem 12.2.2 are satisfied. ~ 

12.5.F. Proof of Theorem 12.4.2 

It is sufficient to show Theorem 12.4.2 by showing that the following controller, 

_ { v(k + 1) = ARc(c) v(k) + BRc(c) y(k), 
1:RC (c) : -

u(k) = CRc(c) v(k) + DRc(c) y(k), 
(12.5.201) 

with ARc(c), BRc(c), CRc(c) being given as in (12.4.24), and 

(12.5.202) 
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solves the H 00-ADDPMS for (12.5.157). Again, it is trivial to show the sta­
bility of the closed-loop system comprising with (12.5.157) and the controller 
(12.5.201) as the closed-loop poles are A{ A+ BFp(e)} and A{AR + KR(e)CR}, 
which are asymptotically stable for sufficiently small e. Next, it is easy to com­
pute the corresponding closed-loop transfer matrix from the disturbance w to 
the controlled output h, 

Following the result of Chen [12] (i.e., Proposition 2.2.1), one can show that 

(12.5.203) 

and 

( In~k) ul\l=l VA(~QR) = ul\l=l VA(tq). (12.5.204) 

Hence, we have 

( In~k) (so (~QR) u { ul\l=l VA (~QR)} ) 
= { S 0 (i:q) n C1 1{Im (Dl)}} u { ul\l=l VA(tq)} 

c so (tq) u { u1\l=l h (tq)} . (12.5.205) 

The rest of the prooffollows from the same lines as those of Theorem 12.4.1. ~ 



Chapter 13 

Robust and Perfect 
Tracking of Discrete-time 
Systems 

13.1. Introduction 

THIS CHAPTER IS a counterpart of Chapter 9. We present in this chapter (see 
also [25]) the robust and perfect tracking problem for the following discrete-time 
system, 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), x(O) = x0 , 

:E : y(k) = C1 x(k) + D 1 w(k), (13.1.1) 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

where x ERn is the state, u E Rm is the control input, w E R• is the external 
disturbance, y E R• is the measurement output, and h E Rl is the output to 
be controlled. We also assume that the pair (A, B) is stabilizable and (A, C1) 

is detectable. For future references, we define :EP and :Eq to be the subsystems 
characterized by the matrix quadruples (A, B, C2 , D2) and (A, E, C1 , D1), re­
spectively. Given the external disturbance w E Lp, p E [1, oo], and any reference 
signal vector r E Rl, the robust and perfect tracking (RPT) problem for the 
discrete-time system (9.1.1) is to find a parameterized dynamic measurement 
feedback control law of the following form 

{ 
v(k+1) = Acmp(c)v(k) + Bcmp(E)y(k) + G(c)r(k), 

u(k) = Ccmp(c)v(k) + Dcmp(E)y(k) + H(c)r(k), 

such that when (13.1.2) is applied to (13.1.1), 

(13.1.2) 
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1. There exists an g* > 0 such that the resulting closed-loop system with 

r = 0 and w = 0 is asymptotically stable for all e E (0, e*]; and 

2. Let h(k,e) be the closed-loop controlled output response and let e(k,e) 

be the resulting tracking error, i.e., e(k,e) := h(k,e)- r(k). Then, for 

any initial condition of the state, x0 E Rn, 

(13.1.3) 

In this chapter, we will derive a set of necessary and sufficient conditions 

under which the proposed robust and perfect tracking problem has a solution, 

and under these conditions, develop algorithms for the construction of feedback 

laws that solve the proposed problem. It turns out that the solvability condition 

for the above proposed RPT problem is quite restrictive compared to its coun­

terpart in the continuous-time case (see Chapter 9). We will later introduce a 
modified problem, which can be solved for a much larger class of discrete-time 

systems. This modified formulation will yield internally stabilizing control laws 

that are capable of tracking reference signals with some delays. If we know the 

reference signal few steps ahead, the modified tracking control scheme will then 
track the reference precisely after certain steps, provided that the given plant 

satisfies a new set of more relaxed conditions. 

13.2. Solvability Conditions and Solutions 

The following theorem gives a set of necessary and sufficient conditions under 
which the proposed robust and perfect tracking (RPT) problem is solvable for 

the given plant (13.1.1). As in Chapter 9, we will show the sufficiency of these 

conditions by explicitly constructing the required control laws. It turns out that 
for the discrete-time robust and perfect tracking problem, the required control 

laws can be chosen to be independent of any tuning parameter. 

Theorem 13.2.1. Consider the given system (13.1.1) with its external distur­

bance w E Lp, p E [1, oo], and its initial condition x(O) = x0 • Then, for any 

reference signal r(k), the proposed robust and perfect tracking (RPT) problem 

is solvable by the control law of (13.1.2) if and only if the following conditions 

are satisfied: 

1. (A, B) is stabilizable and (A, Ct) is detectable; 

2. D22 + D2SD1 = 0, where S = -(D~D2)t D~D22D~ (D1Di)t; 

3. EP is right invertible and of minimum phase with no infinite zeros; 

4. Ker (C2 + D2SC1) :::> C11{1m (D1)}. 1!1 
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Proof. We first show that Conditions 1 to 4 in the theorem are necessary. 
Let us consider the case when r(k) = 0. Then, the proposed robust and perfect 
tracking problem reduces to the perfect regulation problem. Following along the 
same idea as in Chapter 9, we can reformulate the perfect regulation problem 
for the given system (13.1.1) as the well studied almost disturbance decoupling 
problem for the following system, 

{ 
x(k+1) = A x(k) + B u(k) + [E I] w(k), 

y(k) = C1 x(k) + [D1 0] w(k), 

h(k) = C2 x(k) + D2 u(k) + [D22 0] w(k). 

x(O) = 0, 

(13.2.1) 

For easy reference, we let f;Q be the subsystem characterized by the matrix 

quadruple (A, [ E I], C1, [ D1 0 ]). Following the results of the discrete-time 
almost disturbance decoupling problem of Chapter 12, we can show that if the 

almost disturbance decoupling problem for the above system is solvable, then 
the following conditions hold: 

1. (A, B) is stabilizable and (A, C1) is detectable; 

2. D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~ (D1DDt; 

3. Im ([E + BSD1 I]) C V0(EP) + BKer (D2); 

4. Ker (C2 + D2SCI) :J S 0 (f;Q) n C!1{Im (D1)}; 

5. S0 (f;Q) c V0 (Ep). 

Next, it is simple to see that S 0 (EQ) = Rn and hence Item 5 implies that 
V0 (EP) = :Rn, or equivalently, EP is right invertible with on infinite zeros 
and no invariant zeros in C®. Furthermore, Item 4 reduces to the condition 
Ker(C2 + D2SC1) :J C!1{Im(DI)}. Thus, it remains to show that if the 
proposed RPT problem is solvable, the subsystem EP must be of minimum 
phase. In what follows, we proceed to show such a fact. 

First, we note that the second condition, i.e., D22 + D2SD1 = 0, implies 

that if we apply a pre-output feedback law 

u(k) = Sy(k), (13.2.2) 

to the system (13.1.1), the resulting new system will have a zero direct feed­
through term from w to h. Hence, without loss of any generality, we hereafter 

assume that D22 = 0 throughout the rest of the proof. 
Next, we show that if the robust and perfect tracking problem is solvable for 

general nonzero reference r(k), EP must be of minimum phase, i.e., EP cannot 
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have any invariant zeros on the unit circle. In fact, this condition must hold 

even for the case when w = 0 and Xo = 0, i.e., for the robust and perfect 

tracking of the following system, 

{ 
x(k+1) = A x(k) + B u(k) 

y(k) = cl x(k) 

e(k) = C2 x(k) + D2 u(k) - r(k) = h(k)- r(k). 

(13.2.3) 

Now, if we treat r as an external disturbance, then the above problem is again 

equivalent to the well-known almost disturbance decoupling problem with mea­

surement feedback and with internal stability for the following system, 

{ 

x(k+1) =A x(k) + B u(k) 

_(k) _ (C1x(k)) 
Y - r(k) 

e(k) = C2 x(k) + D2 u(k)- r(k). 

(13.2.4) 

Without loss of generality, we assume that the quadruple (A, B, C2 , D2 ) has 

been transformed into the form of the special coordinate basis of Theorem 2 .4.1, 

i.e., we have 

( x-;;) 
X= ~: ' 

h = ho, r = ro, e =eo = ho - ro, u = ( ~~) , (13.2.5) 

and 
(13.2.6) 

x~(k+1) = A~ax~(k) + Bgaho(k), (13.2.7) 

Xc(k+1) = AccXc(k)+Bocho(k)+Bc [E~x;:;(k)+E~ax~(k)] +Bcuc(k), (13.2.8) 

(13.2.9) 

In order to bring the subsystem from u to e into the standard form of the special 

coordinate basis, we need to change h0 in (13.2.6) to (13.2.8) to e0 + r0 , i.e., 

(13.2.10) 

x~(k+1) = A~ax~(k) + Bgaeo(k) + Bgaro(k), (13.2.11) 

Xc(k+1) = AccXc(k) +Boceo(k) +Be [E~x;:; (k) + E~aX~ (k)] + Bcuc(k) + Bocro(k). 
(13.2.12) 

It is simple to see that the subsystem from the controlled input, i.e., ( uh u~ )', 
to the error output, i.e., e0 , is now in the standard form of the special coordinate 
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basis of Theorem 2.4.1. It then follows from the result of Chapter 12 (i.e., 

Proposition 12.2.1) that if the almost disturbance decoupling problem with 

measurement feedback and with internal stability for the system (13.2.4) is 

solvable, there must exist a nonzero vector ~ such that 

H 0 
~ Boa= 0, (13.2.13) 

which implies that the matrix pair (A~a' B8a) is not completely controllable. 

Following Property 2 .4.1 of the special coordinate basis of Chapter 2, the uncon­

trollability of (A~a' B8a) implies the unstabilizability of the pair (A, B), which 

is obviously a contradiction. Hence, x~ must be non-existent. It then follows 

from Property 2.4.2 of the special coordinate basis that :EP is of minimum phase. 

This completes the proof of the necessary part. 

We note that for the case when D1 = 0, then the direct feedthrough term 

D22 must be a zero matrix as well, and the last condition, i.e., Item 4, of 

Theorem 13.2.1 reduces to Ker (C2 ) :::::> Ker (C1 ). 

We will show the sufficiency of those conditions in Theorem 13.2.1 by ex­

plicitly constructing controllers which solve the proposed robust and perfect 

tracking problem under Conditions 1 to 4 of Theorem 13.2.1. This will be done 

in the following subsequent subsections. It turns out that the control laws, 

which solve the robust and perfect tracking for the given plant (13.1.1) under 

the solvability of Theorem 13.2.1, need not be parameterized by any tuning 

parameter. Thus, (13.1.2) can be replaced by 

{ 
v(k+1) = Acmpv(k) + BcmpY(k) + Gr(k), 

u(k) = Ccmpv(k) + DcmpY(k) + Hr(k), 
(13.2.14) 

and furthermore, the resulting tracking error e(k) can be made identically zero 

for all k 2:: 0. We first have the following corollary that deals with the state 

feedback case. 

Corollary 13.2.1. Consider the given system (13.1.1) with its external dis­

turbance w E Lp, p E [1, oo], its initial condition x(O) = xo. Assume that all 

its states are measured for feedback, i.e., C1 = I and D1 = 0. Then, for any 

reference signal r(k), the proposed robust and perfect tracking (RPT) problem 

is solvable by the control law of (13.2.14) if and only if the following conditions 

are satisfied: 

1. (A, B) is stabilizable; 

2. D22 = 0; 

3. :EP is right invertible and of minimum phase with no infinite zeros. 1£1 
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13.2.1. Solutions to State Feedback Case 

When all states of the plant are measured for feedback, the problem can be 

solved by a static control law. We construct in this subsection a state feedback 

control law, 

u=Fx+Hr, (13.2.15) 

which solves the robust and perfect tracking (RPT) problem for (13.1.1) under 

the conditions given in Corollary 13.2.1. We have the following algorithm. 

Step 13.S.l. This step is to transform the subsystem from u to h of the given 

system (13.1.1) into the special coordinate basis of Theorem 2.4.1, i.e., to 

find nonsingular state, input and output transformations r s, ri and r 0 to 

put it into the structural form of Theorem 2.4.1 as well as in the compact 

form of (2.4.20) to (2.4.23), i.e., 

(13.2.16) 

- -1 -1 [Boa o J B=fs Bfi=fs [Bo B1]fi= , 
Boc Be 

(13.2.17) 

(13.2.18) 

and 
(13.2.19) 

Step 13.S.2. Choose an appropriate dimensional matrix Fe such that 

(13.2.20) 

is asymptotically stable. The existence of such an Fe is guaranteed by the 

property that (Ace, Be) is completely controllable. 

Step 13.S.3. Finally, we let 

F = -ri 2,oa 2,oc r-1 [c- c ] 
E~ Fe s 

(13.2.21) 

This ends the constructive algorithm. 

We have the following result. 

Theorem 13.2.2. Consider the given discrete-time system (13.1.1) with any 

external disturbance w(k) and any initial condition x(O). Assume that all its 
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states are measured for feedback, i.e., C1 = I and D1 = 0. If Conditions 1 

to 3 of Corollary 13.2.1 are satisfied, then, for any reference signal r(k), the 

proposed robust and perfect tracking (RPT) problem is solved by the control 

law of (13.2.15) with F and Has given in (13.2.21). ffi 

Proof. It is straightforward to verify that the closed-loop system comprising 

the given plant (13.1.1) and the control law (13.2.15) with F and H being given 

as in (13.2.21) can be written as, 

[
A-

x(k+1) = rs ~a ~ ] r:; 1x(k) + fs [Boa] r;;- 1r(k) + Ew(k), (13.2.22) 
Ace Boc 

and 

h(k) = r(k). (13.2.23) 

Clearly, the resulting closed-loop system is asymptotically stable and e(k) = 0 

for all k ~ 0. Thus, the robust and perfect tracking problem is solved. ~ 

13.2.2. Solutions to Measurement Feedback Case 

Without loss of generality, we assume throughout this subsection that matrix 

D22 = 0. If it is nonzero, it can always be washed out by the following pre­

output feedback, 

u(k) = Sy(k), (13.2.24) 

with S as given in the second item of Theorem 13.2.1. It turns out that for 

discrete-time systems, the full order observer based control law is not capable of 

achieving the robust and perfect tracking performance, because there is a delay 

of one step in the observer itself. Thus, we will focus on the construction of 

a reduced order measurement feedback control law to solve the RPT problem. 

For simplicity of presentation, we assume that matrices C1 and D 1 have already 

been transformed into the following forms, 

and D = [D1,0] 
1 0 ' (13.2.25) 

where D1,0 is of full row rank. Before we present a step-by-step algorithm to 

construct a reduced order measurement feedback controller, we first partition 

the following system 

{ 
x(k+1) = A x(k) + B u(k) + [E In] w(k), 

y(k) = C1 x(k) + [D1 0] w(k), 
(13.2.26) 
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in conformity with the structures of C1 and D1 in (13.2.25), i.e., 

{ (~~:~D = [~~~ ~~:] (:~) + [~~] u + [~~ 1o In~J w, 

( ~~) = [ ~ Cbo2] ( :~) + [ D~,o ~ ~] w, 
(13.2.27) 

where 8(xl) = x1(k + 1) and 8(x2) = x2(k + 1). Obviously, Yl = x1 is directly 
available and hence need not be estimated. Next, let EQa to be characterized 
by 

(Aa,Ea,Ca,Da) = ( A22, [E2 0 In-~J, [ ~~~2 ], [ ~~0 ~ ~]). 
(13.2.28) 

It is straightforward to verify that EQa is right invertible with no finite and infi­
nite zeros. Moreover, (Aa, Ca) is detectable if and only if (A, Cl) is detectable. 
We are ready to present the following algorithm. 

Step 13.R.l. For the given system (13.1.1), we again assume that all the state 

variables of (13.1.1) are measurable and then follow Steps 13.8.1 to 13.8.3 

of the algorithm of the previous subsection to construct gain matrices F 
and H. We also partition Fin conformity with x1 and x2 of (13.2.27) as 
follows, 

(13.2.29) 

Step 13.R.2. Let Ka be an appropriate dimensional constant matrix such that 
the eigenvalues of 

Aa + KaCa = A22 + [Kao Kal) [ ~~~2 ] 
are all in C0 . This can be done because (Aa, Ca) is detectable. 

Step 13.R.3. Let 

and 

Ga = [ -Kao, A21 +KalAn- (Aa + KaCa)Kal), 

Acmp = Aa + B2F2 + KaCa + Ka1B1F2, 

Bcmp = Ga + (B2 + Ka1Bl) [ 0, F1 - F2Ka1) , 

Ccmp = F2, 

Dcmp = [0, F1- F2Ka1), 

(13.2.30) 

(13.2.31) 

(13.2.32) 

(13.2.33) 
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Step 13.R.4. Finally, we obtain the following reduced order measurement feed­
back control law, 

{ 
v(k+1) = Acmp v(k) + Bcmp y(k) + G r(k), 

u(k) = Gcmp v(k) + Dcmp y(k) + H r(k). 
(13.2.34) 

This completes the construction of the reduced order measurement feed-
back controller. 

Theorem 13.2.3. Consider the given system (13.1.1) with any external dis­
turbance w(k) and any initial condition x(O). If Conditions 1 to 4 of Theorem 
13.2.1 are satisfied, then, for any reference signal r(k), the proposed robust and 
perfect tracking (RPT) problem is solved by the reduced order measurement 
feedback control laws of (13.2.34). ~ 

Proof. We first define a new state variable, 

(13.2.35) 

It is straightforward to verify that the closed-loop system comprising the given 
system (13.1.1) and the reduced order measurement feedback control law of 
(13.2.34) can be rewritten as follows, 

and 

x.(k+ 1) = (AR + KRCR)x.(k) + ( E2 + KR [ ~~0 ]) w(k), 

x(k+1) =(A+ BF)x(k)- BF2xs(k) + BHr(k) + Ew(k), 

(13.2.36) 

(13.2.37) 

(13.2.38) 

Thus, it is simple to see that the closed-loop system is asymptotically stable, as 
the closed-loop poles are given by the eigenvalues of A+ BF and AR + KRCR. 

Next, if follows from (13.2.18), (13.2.19), (13.2.21) and (13.2.29) that 

D2F2xs = D2F ( O ) = -G2 ( O ) . (13.2.39) 
. Xs Xs 

Also, it follows from (13.2.25) that 

Gi 1 {Im (D1)} = Ker ( [ J~ ~]) and [ f ~] ( ~.) = 0. (13.2.40) 

Therefore, the last condition of Theorem 13.2.1, i.e., Ker ( G2 ) :J Gi1 {Im (D1) }, 

implies that 

(13.2.41) 
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and D2F2xs(k) = 0 for all k ~ 0. It is now simple to show that {13.2.38) 
reduces to 

h(k) = r(k). {13.2.42) 

Hence, the RPT problem is solved by the reduced order measurement feedback 
control law {13.2.34). ~ 

The sufficiency of Theorem 13.2.1 is obvious now in view of the result of 
Theorem 13.2.3. The proof of Theorem 13.2.1 is thus completed. ~ 

We illustrate the results of this section in the following examples. 

Example 13.2.1. Consider a discrete-time system characterized by {13.1.1) 
with 

A= [~ ~ ~] , B = [~ ~] , E = [;] , 
1 -0.5 1 1 -1 3 

{13.2.43) 

{13.2.44) 

and any disturbance w(k) and any initial condition x(O). It can readily be 
verified that (A, B) is completely controllable and the subsystem EP is invertible 
and of minimum phase with three invariant zeros at 0, -...ti/2, ...ti/2, and with 
no infinite zero. 

A. State Feedback Case. Let us first assume that all the state variables of 
the given plant are available for feedback, i.e., C1 = I and D1 = 0. Clearly, 
all conditions in Corollary 13.2.1 are satisfied and hence the RPT problem is 
solvable. Following the constructive algorithm for the state feedback case, we 
obtain 

[ 1 0 1] [1 0] u(k) = Fx(k) + Gr(k) = - 0 1 0 x(k) + 0 1 r{k). {13.2.45) 

It is straightforward to verify that the closed-loop system comprising the given 
plant and the above control law is internally stable and the resulting output to 

be controlled h(k) = r(k) for all k ~ 0. Thus, the robust and perfect tracking 
performance is achieved. 

B. Measurement Feedback Case. Let the measurement output be given as 

y(k) = C1x(k) +D1w(k) = [~ ; ~] x(k) + [~] w(k). (13.2.46) 
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It is again simple to verify that (A, CI) is observable and Ker (C2 ) = Ker (CI). 
Thus, all conditions of Theorem 13.2.1 hold and the RPT problem for the 
given plant is solvable via a measurement feedback controller. Let us first 
perform some appropriate state and output transformations such that C1 can 
be converted into the form of (13.2.25). This can be done by the following 
transformations, 

and r _ [1 OJ_ Y = oY = 0 2 y. (13.2.47) 

Then, we have 

x(k+1) = [~1 -1.~ ~1 x(k) + [~ -~] u(k) + [~] w(k), 
-1.5 0 1 -1 3 

(13.2.48) 

and 

y(k)=[~ ~ ~]x(k)+[~]w(k). (13.2.49) 

Following the constructive algorithm of the measurement feedback case, we 
obtain a reduced order measurement feedback law of the form (13.2.34) with 

Acmp = 0, Bcmp = [ 0 0.25] , G = [ 1 -1] , (13.2.50) 

and 

[ OJ [-1 0.5J [1 OJ Ccmp = 0 ' Dcmp = 0 -0.5 ' H = 0 1 . (13.2.51) 

It happens for this particular example that the obtained measurement feedback 
control law is equivalent to the following static measurement feedback law, 

[ -1 0.5J [1 OJ u(k) = 0 -0.5 y(k) + 0 1 r(k). (13.2.52) 

It is straightforward to show that the closed-loop comprising the given plant and 
the above static feedback law is asymptotically stable with its closed-loop poles 
being placed at 0, V'i/2 and -V'i/2, and the resulting output to be controlled 
h(k) = r(k) for all k 2: 0. Hence, the RPT problem for the given plant is solved 
by the control law (13.2.52). ~ 

13.3. An Almost Perfect '!racking Problem 

As it has been seen in the previous section, the solvability conditions for the ro­
bust and perfect tracking problem, especially the restriction on the infinite zeros 
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of the given system, are too strong to be satisfied in most practical situations. 
We introduce in this section a modified problem, the so-called almost perfect 

tracking problem, which can be solved for a much larger class of discrete-time 

systems with any infinite zero structure. This modified formulation will yield 

internally stabilizing control laws that are capable of tracking reference signal 

r(k) with some delays. If we know the reference signal few steps ahead, the 

modified tracking control scheme will then track the reference precisely after 

certain steps. 

For simplicity, we consider in this section the discrete-time system (13.1.1) 

without external disturbances, i.e., 

{ 
x(k+ 1) = A x(k) + B u(k), 

E : y(k) = C1 x(k) 

h(k) = C2 x(k) + D2 u(k). 

x(O) = xo, 

(13.3.1) 

Let us first consider the reference r(k) E Rl to be tracked is a known vector 

sequence, which implies that r(k +d), 0 ~ d ~ K.d, is known for some integer 
"'d 2: 0. This is a quite reasonable assumption in most practical situations 

when one wants to track references such as step functions, ramp functions and 

sinusoidal functions. We will later deal with the case when r(k +d), d > 0, is 

unknown. We are ready to formally define the almost perfect tracking problem. 
Given the discrete-time system (13.3.1) with initial condition x(O) = xo and 

the reference r(k) with r(k +d), 0 ~ d ~ K.d, being known for a nonnegative 

integer "'d' the (K.d, K.o) almost perfect tracking problem, where K.o is another 
nonnegative integer, is to find a dynamic measurement feedback control law of 

the following form, 

{ 
v(k+1) = Acmpv(k) + BcmpY(k) + Gor(k) + · · · + Gndr(k + K.d), 

(13.3.2) 
u(k) = Ccmpv(k) + DcmpY(k) + Hor(k) + · · · + Hndr(k + K.d), 

such that when (13.3.2) is applied to (13.3.1), 

1. The resulting closed-loop system is internally stable; and 

2. For any initial condition x0 E Rn, the resulting tracking error satisfies: 

00 

J(xo, u, "'d' K.o) := L le(k)l = 0, (13.3.3) 
k=no 

i.e., e(k) = 0, or h(k) = r(k), for all k 2: K.o. 
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We have the following theorem. 

Theorem 13.3.1. Consider the discrete-time plant (13.3.1) with x(O) = x0 , 

and with i) (A, B) being stabilizable and (A, CI) being observable; and ii) ~P 
being right invertible and of minimum phase. Let the infinite zero structure (see 
Chapter 2 for its definition) of ~p be given as S~ (~p) = { q1, · · · , qmJ, with 
q1 ~ · · · ~ qmd, and let the controllability index of (A', CD be C = { k1, · · ·, k.}, 
with k1 ~ · · · ~ k.. Then, the (K-d, "-o) almost perfect tracking problem is 
solvable for any reference with "-d = qmd and "-o = qmd + k. - 1. lfl 

Proof. We prove this theorem by explicitly constructing the required control 
law. Let us first construct the special coordinate basis of ~P. It follows from 
Theorem 2.4.1 that there exist nonsingular state, output and input transforma­
tions r s, r 0 and r i, which will take ~p into the standard format of the special 
coordinate basis, i.e., 

X= f 8 X, h = f)i, U = f(U, r = f 0 f, 

and 

ho = C2,0ax;; + C2,ocXc + C2,odXd + Uo, Uo E :Rmo, 

and for each i = 1, · · ·, md, Xi E :Rqi and 

(13.3.4) 

(13.3.5) 

(13.3.6) 

(13.3. 7) 

(13.3.8) 

(13.3.9) 

(13.3.10) 

J(xi) =Aqi Xi+Lioho+Lidhd+Bqi [ui+Ei~x;; +EicXc+ ~ EijXjl , (13.3.11) 
J=l 



352 Chapter 13. Robust and Perfect Tracking of Discrete-time Systems 

where 6(*) = *(k + 1), the triple (Aq.,Bq.,Cq.) has the special structure as 

given in (2.4.16). It follows from Theorem 2.4.1 that Lid has the following 

special format, 

Lid= [Li1 Li2 .. · Lii-1 0 .. · 0], 

with its last row always being identically zero. Next, we partition LiO and Lid, 

i = 1, · · ·, md, as follows: 

[ 
Li0,1 l [ Lid,1 l 

LiD = ; , Lid = ; , 
Lio,q. Lid,q• 

(13.3.13) 

and define a new controlled output, 

ho(k) 
ql 

h1(k+ql)- L[LlO,i L1d,j]h(k+q1-j) 
j=1 

(13.3.14) 

q,.d 

hmd (k + QmJ - L [ LmdO,j Lmdd,j] h(k + Qmd - j) 
j=1 

Then, it is straightforward to verify that Yn can be expressed as 

hn(k) = C2x(k) + D2u(k), (13.3.15) 

with 

- [C2oa C2,0c C2,od] and [)2 _ [ lmo 0 ~]' c2 = · lmd Eda Edc Edd 
- 0 (13.3.16) 

where 

(13.3.17) 

and 

(13.3.18) 

- 1 - 1 - ----
Let A = r; Ar s and B = r; Br i, and let ~p characterized by (A, B, C2 , D2 ). 

It is simple to show that the auxiliary system tP is right invertible and of 

minimum phase with no infinite zeros. 

We first assume that C1 =I and follow Steps 13.8.1 to 13.8.3 of the previous 

section to obtain a state feedback control law 

u(k) = Fx(k) + Hfn(k), (13.3.19) 
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where 

ro(k) 
ql 

rl(k + qt) - L [ Lw,j L1d,j] f(k + Q1 - j) 
j=l 

(13.3.20) 

q=d 

rmd (k + QmJ - L [ LmdO,j Lmdd,j] f(k + Qmd - j) 
j=l 

which has the following properties: i) A+ BF is asymptotically stable, and ii) 
the resulting hn(k) = fn(k). This implies that the actual controlled output his 
capable of precisely tracking the given reference r(k) after Qmd steps. Rewriting 
(13.3.19), we obtain 

u(k) = riu(k) = ri [Px(k) + Hrn(k)] 

= ri [Px(k) + HLof(k) + HLlr(k+1) + · · · + HLmdf(k+qmd)] (13.3.21) 

for some appropriate matrices L0 , £ 1 , · · ·, Lmd. Let F = r iPr; 1 , and 

(13.3.22) 

for j = 0, 1, · · ·, md. We have 

(13.3.23) 

Next, we proceed to construct a reduced order measurement feedback con­
troller. We follow Steps 13.R.1 to 13.R.3 of the previous section to obtain 
matrices B1, B2, F1, F2 and gain matrices Acmp, Bcmp, Ccmp and Dcmp as 
given in (13.2.32). Noting that the pair (A, CI) is observable and (A', CD has a 
controllability index { k1, · · ·, k.}, it is simple to show that (AR, CR) is also ob­
servable and the controllability index of (A~, C~) is given by { k1 -1, · · · , k. -1}. 
It follows from Theorem 2.3.1 of Chapter 2 that there exists a gain matrix KR 
such that AR + KRCR has all its eigenvalues at the origin and 

(13.3.24) 

We thus choose such a KR in constructing gain matrices Acmp, Bcmp, Ccmp and 
Dcmp· The reduced order measurement feedback law is then given by 

ffid 

v(k+1) = Acmpv(k) + Bcmpy(k) + L Gjr(k + j), 
j=O 
ffid 

u(k) = Ccmpv(k) + DcmpY(k) + L Hjr(k + j), 
j=O 

(13.3.25) 
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Let x8 (k) = x2(k) -v(k) +KRxl (k). It is straightforward to verify that the 
closed-loop system comprising the given system (13.3.1) and the reduced order 
measurement feedback control law of (13.3.25) can be rewritten as follows, 

(13.3.26) 

ffid 

x(k+1) =(A+ BF)x(k)- BF2x8 (k) + LBHjr(k+j), (13.3.27) 
j=O 

ffid 

h(k) = (C2 + D2F)x(k)- D2F2x8 (k) + L D2Hjr(k + j). (13.3.28) 
j=O 

Thus, it is simple to see that the closed-loop system is asymptotically stable as 

A+ BF and AR + KRCR have eigenvalues inside the unit circle. Clearly, for 
any initial condition, (13.3.26) implies that x 8 (k) = 0 for all k ~ kp -1. Hence, 
for k ~ kp - 1, (13.3.27) and (13.3.28) reduce to 

ffid 

x(k+ 1) = (A+ BF)x(k) + L BHjr(k+ j), (13.3.29) 
j=O 

ffid 

h(k) = (C2 +D2F)x(k) + LD2Hir(k+j), (13.3.30) 
j=O 

which are precisely the same as the closed-loop dynamics under the state feed­
back law. If we treat x(kp - 1) as a new initial condition to (13.3.29) and 
(13.3.30), it will take another Qmd steps for h to precisely track the reference r. 
Thus, we have h(k) = r(k) for all k ~ Qmd + kp- 1. Hence, the (~~:d, ~~:o) almost 
perfect tracking problem is solved by the control law (13.3.2) with ~~:d = Qmd 

and ~~:o = Qmd + kP - 1. fi!!l 

The following remarks are in order. 

Remark 13.3.1. Consider the given plant (13.3.1) which has all properties as 

stated in Theorem 13.3.1. Then, the (~~:d, ~~:0 ) almost perfect tracking problem 

is solvable by a full order measurement feedback controller of the form (13.3.2) 

with ~~:d = Qmd and ~~:o = Qmd + kp. Following the similar lines of reasoning as in 
the proof of Theorem 13.3.1, one can show that the control law given below is 
the required solution, 

md 

v(k+1) = Acmpv(k) + LBHjr(k + j)- Ky(k), 
j=O 

(13.3.31) ffid 

u(k) = F v(k) + L Hjr(k + j), 
j=O 
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where Acmp = A+BF+KC1 with K being chosen such that all the eigenvalues 
of A+ KC1 are at the origin and (A+ KCI)k·- 1 = 0. ~ 

Remark 13.3.2. For simplicity, we consider ~P being a single output system, 
i.e.,£= 1, with a relative degree q1 . Clearly, if the reference r(k+d) is unknown 
for all d > 0, then the full order measurement feedback controller (13.3.31) with 
r(k + *) being replaced by r(k) will be capable of tracking the reference with a 
delay of q1 steps after q1 + k. initial steps. Similarly, under the same situation, 
the reduced order measurement feedback controller (13.3.25) with r(k+*) being 
replaced by r(k) will track the reference with a delay of q1 steps after q1 +k.-1 
initial steps. ~ 

We illustrate the main results of this section in the following example. 

Example 13.3.1. Consider a given discrete-time system of (13.3.1) with 

1 0] [ 1 1] 0 1 , B = 0 0 , x(O) = xo, 
1 1 1 2 

(13.3.32) 

[2 1 OJ [0 OJ c 2 = 1 2 o ' D 2 = o o · (13.3.33) 

It is simple to show that ~P is invertible without any invariant zeros and with 
two infinite zeros of orders 1 and 2, respectively. Let the reference r(k) be given 

as, 

rk=[rt(k)]=[ k/4] 
( ) r2 ( k) cos ( k7r /5) · (13.3.34) 

A. State Feedback Case. We first assume that the measurement output y = x, 
i.e., C1 = I. Then, following the proof of Theorem 13.3.1 and using the software 
reported in [14], we obtain the following nonsingular state, input and output 
transformations, 

[ 
0.5 -0.59628 0] 

rs = 0 0.74536 0 ' 
-0.5 0.59628 0.74536 

(13.3.35) 

r. = [ 1.5 -o.74536J r = [1.o -0.44721J 
' -1.0 0. 7 4536 ' 0 0.5 0.89443 ' 

(13.3.36) 

which take ~P into the following special coordinate basis form, 

- -1 [ 
1 

A= rs Ars = 0 
0.67082 

0.29814 
0 

1.2 

1.19257] 
1 ' 
1 

B=r;'sr,=[~ ~], 
(13.3.37) 
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and 

(13.3.38) 

We then obtain 

(}2 = [ 0.6708~ 0.2981~~ 1.1925~] ' jj2 = [ ~ ~] ' (13.3.39) 

- [ -1 -0.29814 -1.19257] fi = [1 OJ 
F = -0.67082 -1.2 -1 ' 0 1 ' 

(13.3.40) 

and finally, we obtain the following internally stabilizing state feedback control 

law, 
u(k) = Fx(k) + H1r(k + 1) + H2r(k + 2), (13.3.41) 

with 
F = [ -3.4 -1 -1.4] 

1.6 0 0.6 ' 
(13.3.42) 

H = [ 1.2 
1 -0.8 

0.6] 
-0.4 

and 1 [ 1 
H2 = 3 -1 -2] 2 . (13.3.43) 

Simulation results in Figure 13.3.1 clearly show that the resulting controlled 

output h(k) precisely tracks the reference r(k) after two steps, i.e., the control 

law of (13.3.41) achieves an (Kd, Ko) almost perfect tracking performance with 

Kd = 2 and Ko = 2. The simulation was done with an initial condition, 

(
-1.5) 

xo = 1.2 . 
0.5 

(13.3.44) 

Next, we deal with measurement feedback cases. Let 

c1 = [ 1 o o], (13.3.45) 

which does not satisfy the condition Ker (C2 ) :J Ker (C1 ), as required in the 

RPT problem. However, for almost perfect tracking, we only need (A, CI) to 

be observable. It is ready to verify that (A, C1) is indeed observable and the 

controllability index of (A', CD is given by C = {3}. Hence, k. = 3. 

B.l. Full Order Measurement Feedback Case. Following Remark 13.3.1, we 

obtain an internally stabilizing full order measurement feedback control law, 

{ 
v(k+1) = Acmp v(k) + Bcmp y(k) + G1 r(k + 1) + G2 r(k + 2), 

(13.3.46) 
u(k) = Ccmp v(k) + Dcmp y(k) + H1 r(k + 1) + H2 r(k + 2), 
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Figure 13.3.1: Closed-loop response under state feedback. 
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where 

[
-2.8 0 -0.8] [2] 

Acmp = -2.0 0 -1.0 , Bcmp = -K = 3 , 
-3.2 0 0.8 4 

(13.3.47) 

(13.3.48) 

and where the observer gain matrix K is chosen such that all the eigenvalues 
of A+ KC1 are placed at the origin. Simulation results shown in Figure 13.3.2 

were obtained from the closed-loop system comprising the given plant and the 
above full order measurement feedback law with an initial condition, 

(
-0.1) 

xo = 0.1 . 
-0.1 

(13.3.49) 

It clearly shows that the (~~:d, ~~:0 ) almost perfect tracking problem is solved with 

~~:d = 2 and ~~:0 = 5, i.e., the closed-loop system is capable of precisely tracking 
the reference after five steps. 

B.2. Reduced Order Measurement Feedback Case. Following the proof of The­
orem 13.3.1, we obtain an internally stabilizing reduced order measurement 
feedback control law, 

{ 
v(k+l) = Acmp v(k) + Bcmp y(k) + G1 r(k + 1) + G2 r(k + 2), 

(13.3.50) 
u(k) = Ccmp v(k) + Dcmp y(k) + H1 r(k + 1) + H2 r(k + 2), 

with 

Acmp = [ ~ ;:~] , Bcmp = [ ~:~] , G1 = [ =~:~ =~:~] , (13.3.51) 

Ccmp = [-~ - ~::] , Dcmp = [-;:~] , G2 = ~ [ _ ~ ~] . (13.3.52) 

Simulation results shown in Figure 13.3.3 were obtained from the closed-loop 

system comprising the given plant and the above reduced order measurement 
feedback law with the same initial condition as in the full order measurement 
feedback case. Again, it is clear that the (~~:d, ~~:0 ) almost perfect tracking problem 
is solved with ~~:d = 2 and ~~:0 = 4. The closed-loop system is capable of precisely 
tracking the reference after four steps. 

Finally, we conclude this chapter by the following example, which illustrates 
the situation when r(k +d) is unknown for all d > 0. 
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Figure 13.3.2: Closed-loop response under full order control law. 
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Figure 13.3.3: Closed-loop response under reduced order control law. 
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Example 13.3.2. Consider a discrete-time system characterized by (13.1.1) 

with 

(13.3.53) 

and 

c1 = [ 1 o o J, c2 = [ 1 1 1], D2 = [ o o ]. (13.3.54) 

Let the reference be 
k (br) r(k) = 4cos S . (13.3.55) 

Note that ~P is right invertible and of minimum phase with one invariant zero 

at the origin and one infinite zero of order 1, i.e., the relative degree of ~P is 

equal to 1. Also, (A, Cl) is completely observable and the controllability index 

of (A', C{) is given by {3}, i.e., k. = 3. Following the result in Remark 13.3.2, 

we obtain the following full order measurement feedback controller, 

v(k+1) = [-1~~ -0.~ -o.~] v(k) + [1i] y(k) + [~] r(k), 
-1.5 -0.5 -0.5 1 1 (13.3.56) 

[ -6 -3 -2] [1] 
u(k) = -3.5 -2.5 -0.5 v(k) + 0 r(k), 

and reduced order measurement feedback controller, 

{ 
[ -4.5 -4.5] [ -18] [ 0] v(k+1) = 0.5 0.5 v(k) + 2 y(k) + 1 r(k), 

[ -3 -2] [-16] [1] u(k) = -2.5 -0.5 v(k) + -13 y(k) + 0 r(k). 

(13.3.57) 

Simulation results shown in Figures 13.3.4 and 13.3.5 clearly confirm that the 

full and reduced order control laws are capable of tracking the reference with a 

delay of one step after 4 and 3 initial steps, respectively. 
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Chapter 14 

Design of a Hard Disk 
Drive Servo System 

14.1. Introduction 

HARD DISK DRIVES (HDDs) provide important data-storage medium for com­

puters and other data-processing systems. In most hard disk drives, rotating 
disks coated with a thin magnetic layer or recording medium are written with 

data, which are arranged in concentric circles or tracks. Data are read or writ­

ten with a read/write (R/W) head, which consists of a small horseshoe-shaped 
electromagnet. Figure 14.1.1 shows a simple illustration of a typical hard disk 

servo system. The two main functions of the R/W head positioning servomech­
anism in disk drives are track seeking and track following. Track seeking moves 

the R/W head from the present track to a specified destination track in mini­
mum time using a bounded control effort. Track following maintains the head 
as close as possible to the destination track center while information is being 

read from or written to the disk. Track density is the reciprocal of the track 
width. It is suggested that on a disk surface, tracks should be written as closely 

spaced as possible so that we can maximize the usage of the disk surface. This 

means an increase in the track density, which subsequently means a more strin­

gent requirement on the allowable variations of the position of the heads from 

the true track center. 

The prevalent trend in hard disk design is towards smaller hard disks with 

increasingly larger capacities. This implies that the track width has to be 

smaller leading to lower error tolerance in the positioning of the head. The 

controller for track following has to achieve tighter regulation in the control of 
the servomechanism. Current hard disk drives use a combination of classical 
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VCM ACTUATOR 

DISK 

DATA TRACK 
RIWHEAD 

Figure 14.1.1: A hard disk drive with a VCM actuator servo system. 

control techniques, such as lead-lag compensators, PI compensators, and notch 
filters. These classical methods can no longer meet the demand for hard disk 
drives of higher performance. So many control approaches have been tried, such 
as LQG and/or LTR approach (see e.g., [61] and [133]), and adaptive control 
(see e.g., [92]) and so on. Although much work has been done to date, more 
studies need to be conducted to use more control methods to achieve better 
performance of the hard disk drives. 

The purpose of this chapter is to use the result of the robust and perfect 
tracking (RPT) control method of Chapter 9 to carry out a design of a hard 
disk drive servo system. We will first obtain a model of the VCM actuator and 
then cast the overall servo system design into an RPT design framework. A 
first order dynamic measurement feedback controller is then designed to achieve 
robust and perfect tracking for any step reference. Our controller is theoretically 
capable of making the Lp-norm of the resulting tracking error with 1 ~ p < oo 
arbitrarily small in faces of external disturbances and initial conditions. Some 
trade-offs are then made in order for the RPT controller to be implementable 
using the existing hardware setup and to meet physical constraints such as 
sampling rates and the limit of control of the system. The implementation 
results of the RPT controller are compared with those of a PID controller. The 
results show that our servo system is simpler and yet has faster seeking times, 
lower overshoot and higher accuracy. The results of this chapter were reported 
earlier by Goh et al. [59]. 
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14.2. Modeling of the VCM Actuator 

In this section, we present the modeling of the VCM actuator, which is well 

known in the research community of the hard disk drive servo systems to have 

a characteristic of a double integrator cast with some high frequency resonance, 

which can reduce the system stability if neglected. There are some bias forces 

in the hard disk drive system which will cause steady state error in tracking 

performance. Moreover, there are also some nonlinearities in the system at low 

frequencies, which are primarily due to the pivot and bearing frictions. All 

these factors should be taken into consideration when considering the design 

of a controller for the VCM. For the purpose of developing a model, we have 

to compromise between accuracy and simplicity. In this section, a relatively 

simplified model of the VCM is identified and presented. 

We will utilize the frequency response identification method (see e.g., [50]) to 

model our actuator. Such a method is applicable to minimum phase processes. 

We expect from the properties of the physical system that the VCM actuator 

should be of minimum phase. The detailed procedure proceeds as follows: We 

first assume that the transfer function of a minimum phase plant is given by 

G(s) = N(s) = bo + b1s + b2s2 + · · · + bmsm 
D(s) 1+a1s+a2s2 +···+ansn' 

(14.2.1) 

for some appropriate coefficients ak, k = 1, 2, · · ·, n, and bk, k = 0, 1, · · ·, m, 

with n 2:: m. These parameters are to be identified. Then, its corresponding 
frequency response is given by 

where 

G(jw) = a(w) + jw{3(w) = N(jw) 
o-(w) + jwr(w) D(jw)' 

a(w;) = bo - b2wl + b4wt - · · · 

{3(w;) = b1 - b3wl + b5wt - · · · 

o-(w;) = 1 - a2wl + a4wt - · · · 

r(w;) = a1 - a3wl + aswt - · · · 
} 

(14.2.2) 

(14.2.3) 

Let R(w) and I(w) be the real and imaginary part of the measured frequency 

response of the actuator system. The frequency response error between the 

model and the actual measurement data is given by 

[(jw) = [R(w) + jl(w)] - ~g:j. (14.2.4) 
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Thus, the parameters of the system can be obtained by minimizing the following 

index, 
L 

J = L \t'(jwiW, (14.2.5) 
i=1 

where L is the total number of points of the measured data. Unfortunately, this 

is a nonlinear optimization problem, and it is difficult to be solved. We then 

follow the results of [50] to modify the error norm as, 

L 

J = L \D(jwi)t'(jwiW· (14.2.6) 
i=1 

The original problem now becomes a linear optimization problem. Using (14.2.2) 

and (14.2.4), we can rewrite (14.2.6) as follows, 

L 

J = L { [X(wiW + [Y(wiW }, (14.2. 7) 
i=1 

where 

X(wi) = a(wi)R(wi) - Wir(wi)I(wi) - a:(wi), (14.2.8) 

and 
(14.2.9) 

Therefore, J can be minimized by finding bo, b1, · · ·, bm and ii1, iiz, · · ·, iin such 

that, 

8J L -I = L{2X(wi)(-1)}1 = 0 
a~ ~=~ . ~=~ 

•=1 

8J L -1 . =2:{2Y(wi)(-wi)}l .=0 
8bl bl =bl . h =bt 

•=1 

Rearranging the above equations, we obtain 

(Au A1z)(b)=(B1), 
A21 Azz a Bz 

(14.2.10) 

(14.2.11) 
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where 

An= 

and where 

Vo 0 -Vz o v4 
0 Vz 0 -V4 0 

Vz 0 -V4 o v6 
o v4 o -% 0 ... ' 

v4 o -v6 0 Vs 

T1 5z -T3 -54 Ts 
-5z T3 54 -Ts -56 
T3 54 -Ts -56 T1 

-54 Ts 56 -T1 -5s · · · , 
Ts 56 -T1 -5s Tg 

T1 -5z -T3 54 Ts 
5z T3 -54 -Ts 56 

-Ts 56 T1 T3 -54 
54 Ts 
Ts -56 

-56 -T1 5s · · · , 
-T1 5s Tg 

Uz 0 -U4 o u6 
o u4 o -U6 0 

u4 o -u6 0 Us 
o u6 o -Us 0 0 •• ' 

U6 0 -Us o u10 

L 

b= 

a= 

5k = LwfR(w;), 
i=O i=O 

L L 

bo 
bl 
bz 
b3 , 
b4 

Tk = L wf I(w;), Uk = Lwf[R2 (w;) + I 2 (w;)]. 
i=O i=O 

367 

(14.2.12) 

(14.2.13) 

(14.2.14) 

(14.2.15) 

(14.2.16) 

(14.2.17) 

The desired parameters of the corresponding transfer function model can be 
obtained by solving the above equations. 

The dynamics of an ideal VCM actuator can be formulated as a second order 
state space model as follows, 

(14.2.18) 

where u is the actuator input (in volts), y and v are the position (in tracks) 
and the velocity of the R/W head, ky is the position measurement gain and 
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Figure 14.2.1: Frequency responses of the actual and identified VCM models. 

kv = kt/m, with kt being the current-force conversion coefficient and m being 
the mass of the VCM actuator. Thus, the transfer function of an ideal VCM 
model appears to be a double integrator, i.e., 

( ) kvky 
Gv1 S = - 2-. s 

(14.2.19) 

However, if we consider also the high frequency resonance modes, a more real­

istic model for the VCM actuator should be 

(14.2.20) 

Using the algorithm presented above and the measured data from the actual 

system (see Figure 14.2.1), we obtain a fourth order model for the actuator, 

4.3817 X 1010s + 4.3247 X 1015 

Gv(s) = s2(s2 + 1.5962 x 103s + 9.7631 x 107) • 
(14.2.21) 

Figure 14.2.1 shows that the frequency response of the identified model matches 
the measured data very well for the frequency range from 0 to 104 radfsec, which 

far exceeds the working range of the VCM actuator. 
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14.3. Servo System Design and Simulation Results 

We now present the servo system design for the actuator identified in the pre­
vious section. Basically, almost all commercially available hard disk drive servo 
systems up-to-date are designed using conventional PID approach. For drives 
with a single VCM actuator, designers would encounter problems if they wish 
to push up the tracking following speed. Usually, there will be some huge peak 
overshoot in step response. Thus, in practice, one would have to make trade-offs 
between the track following speed and overshoot by selecting appropriate PID 
controller gains. We formulate our servo system design as a robust and perfect 
tracking (RPT) control problem. Such an approach will enable the designer 
to design a very low order control law, and moreover, the resulting closed-loop 
system will have fast track following speed and low overshoot as well as strong 
robustness. 

We will design a servo system that meets the following design specifications: 

1. The control input should not exceed ±2 volts due to physical constraints 
on the actual VCM actuator. 

2. The overshoot and undershoot of the step response should be kept less 
than 5% as the R/W head can start to read or write within ±5% of the 
target. 

3. The 5% settling time in the step response should be less than 2 milli 
seconds (to beat the PID controller). 

4. Sampling frequency in implementing the actual controller is 4 kHz, which 
is the sampling frequency currently used in most commercial disk drives. 

From experience that we gained in designing PID controllers, we know that 
it is quite safe to ignore the resonance models of the VCM actuator if we are 
focusing on tracking performance. Thus, we will consider only a second order 
model for the VCM actuator at this stage. We will then put the resonance 
modes back when we are to evaluate the performance of the overall design. 
Thus, in our design, we will first use the following simplified model of the VCM 
actuator, 

±=Ax+ Bu = [ ~ ~] x + [ 442~6000] u, (14.3.1) 

and 

y=C1x=[1 O]x. (14.3.2) 
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Next, we define the output to be controlled as, 

(14.3.3) 

Let the reference r(t) be a step function with a magnitude o:, i.e., r(t) = o:·1(t), 

where 1(t) is a unit step function. Then, we have 

r(t) =a. 8(t), (14.3.4) 

where 8(t) is a unit impulse function. Following the results of Chapter 9, we 

obtain a corresponding auxiliary system, 

[! 
0 0] [ 0 l m x= 0 1 X+ 0 u+ w 
0 0 44296000 

y- [1 
0 ~] X + [~] w - 0 1 

(14.3.5) 

e = [ -1 1 OJ X+ 0 u 

where 

x=(:), w = 0:. 8(t), y= (~), e=h-r. (14.3.6) 

It is simple to see that (A, B, C2 , D 2 ) is invertible and free of invariant zeros, 

and Ker (Cl) = Ker (C2 ). Hence, it follows from the result of Chapter 9 that 

the robust and perfect tracking (RPT) performance is achievable. Following the 

results of Chapter 9, one can show that there exists a family of measurement 

feedback control laws, parameterized by a tuning parameter c;, such that when 

it is applied to the given VCM actuator, 

1. The resulting closed-loop system is asymptotically stable for sufficiently 

small c:; and 

2. For any given initial condition x0i and any p E [1, oo), the lp-norm of the 

resulting tracking error, e, has the property lleiiP -+ 0, as c:-+ 0. 

Following the construction algorithm for the reduced order RPT controller in 

Chapter 9, we obtained a parameterized first order measurement feedback con­

trol law of the form 

(14.3.7) 
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with 
ARc(E) = -7800/c 

1 [ 6 BRc(E) = 2 1.62 X 10 
E 

-4.842 X 107 ] 

CRc(E) = -4.063572 X w-5 /c 
1 

DRc(E) = 2 [0.036572 -0.280386]. 
E 
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(14.3.8) 

Results in Figure 14.3.1 are obtained using a MATLAB package. They clearly 
show that the RPT problem is solved as we tune the tuning parameter E to 
be smaller and smaller. Unfortunately, due to the constraints of the physical 
system, i.e., the limits in control inputs and sampling rates, as well as resonance 
modes, it is impossible to implement a controller that will track the reference 
with zero time. We would thus have to make some compromises in the track 
following speed because of these limitations. After several trials, we found that 
the controller parameters of (14.3.8) with E = 0.9 would give us a satisfactory 
performance. We then discretize it using a bilinear transformation with a sam­
pling frequency of 4kHz. Note that it was shown in Chapter 3 that the bilinear 
transformation does not introduce additional nonminimum phase invariant ze­
ros and it preserves the invertibility structure of the system. The discretized 
controller is given by 

{ 
Xv(k+1) = -0.04 Xv(k) + 15178.933 r(k) - 453681.43 y(k), 

u(k) = -3.4267x1o-7 xv(k) + 0.03973 r(k)- 0.18421 y(k). 

Figure 14.3.2 shows that the step response of the overall system comprising 
the fourth order model of the VCM actuator (we now put the resonance modes 
back into the VCM actuator model) and the discretized RPT controller, meets 
the design specifications. In actual hard disk drive manufacturing, the resonant 
frequency Wn of the VCM actuator, see (14.2.21), for the same batch of drives 
might vary from one to the other. A common practice in the disk drive industry 
is to add some notch filters in the servo system to attenuate these resonant peaks 
as much as possible. Surprisingly, our RPT controller is capable of withstanding 
the variation of resonance frequencies as well. Figure 14.3.3 shows the step 
responses of the closed-loop systems of our RPT controller and the VCM model 

with two different resonant frequencies: one is 1.125 kHz, which is (3 = 75% of 
the nominal value, and the other is 2.25 kHz, which is (3 = 150% of the nominal 
resonant frequency. The results show that the RPT controller is very robust 
with respect to the change of resonant frequency in the actuator. 

Although we do not consider the effects of run-out disturbances in our prob­
lem formulation, it turns out that our simple first order controller is capable 
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Figure 14.3.2: Closed-loop step response with discretized RPT controller. 

of rejecting the first few modes of the run-out disturbances, which are mainly 

due to the imperfectness of the data tracks and the spindle motor speeds, and 

commonly have frequencies at the multiples of about 55 Hz. We simulate these 

run-out effects by injecting a sinusoidal signal into the measurement output, 

i.e., the new measurement output is the sum of the actuator output and the 

run-out disturbance. Figure 14.3.4 shows the simulation result of the output 

response of the overall servo system comprising the fourth order model of the 

VCM actuator model and the discretized RPT controller with a fictitious run­

out disturbance injection w(t) = 0.5 + 0.1 cos(ll01rt) + 0.05 sin(2207rt) and a 

zero reference r(t). The result shows that the effects of such a disturbance to 

the overall response are minimal. A more comprehensive test on run-out dis­

turbances, i.e., the position error signal (PES) test on the actual system will be 

presented in the next section. 

14.4. Implementation Results 

In this section, we present the actual implementation results of our design and 

their comparison with those of a PID controller. Two major tests are presented: 

one is the track following of the closed-loop systems and the other is the position 

error signal (PES) test, which is considered to be a major factor in design hard 

disk drive servo systems. Our controller was implemented on an open hard 
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disk drive with a TMS320 digital signal processor (DSP) and a sampling rate 
of 4 kHz. Closed-loop actuation tests were performed using a Laser Doppler 

Vibrometer (LDV) to measure the R/W head position. The resolution used for 

LDV was 11-Lm/Volt. This displacement output is then fed into the DSP, which 

would then generate the necessary control signal to the VCM actuator. A digital 

signal analyzer (DSA) was used to assist in obtaining the frequency response of 
the overall control system. It can inject a swept sinusoidal reference signal, then 

read the output displacement from the LDV and calculate the frequency Bode 

plot using this information. Altogether, two sets of experiment were performed, 

one using the RPT controller and the other using a PID controller reported in 

Goh [58]. 

A. Track Following Test 

The solid-line curve in Figure 14.4.1 shows the experimental step response of 

the RPT controller. In this figure, the response of the RPT controller is shown 

together with that of a PID controller of Goh [58] as a comparison. Note that 

the actual response of the closed-loop system with the RPT controller is slightly 
faster and its overshoot is slightly larger (about 7%) compared to the simulation 

results given in the previous section. The 5% settling time is about 1.6 milli 
seconds, which surely meets the design specifications. Figure 14.4.2 shows the 

experimental closed-loop Bode plot. It shows that the system has a closed loop 

bandwidth of about 500 Hz. At the roll-off frequency, there is no discernible 

resonance peak. 
The dotted-line curve in Figure 14.4.1 shows the step response of the PID 

controller of Goh [58] (again using a 4kHz sampling rate). The PID controller 
had a usual structure and was tuned such that it could have fast time response. 

It is given by 
_ 0.13z2 - 0.23z + 0.10( ) 

u- r-y. 
z2 - 1.25z + 0.25 

(14.4.1) 

Unfortunately, the overshoot of the controller is rather high, about 50% and 

this is a result of trading improved settling time at the expense of higher over­

shoot. To achieve a settling time of 4-5 mini seconds, it is necessary to tune 

the PID controller such that the overshoot is significant. Figure 14.4.3 shows 

the experimental closed-loop Bode plot of the PID controller. The closed loop 

bandwidth of this servo system is also about 500Hz, with a slight peak of about 

7 dB at the roll-off frequency. This resonance peak would result in additional 

tracking errors close to the bandwidth frequency. 
We believe that the shortcoming of the PID control is mainly due to its 

structure, i.e., it only feeds in the error signal, y- r, instead of feeding in both 
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y and r independently. We trust that the same problem might be present in 

other control methods if the only signal fed is y - r. The PID control structure 

might be simple as most of researchers and engineers have claimed. However, 

our RPT controller is even simpler, i.e., the RPT controller is of the first order 

and the PID controller is of the second order. But, we have fully utilized all 

available information associated with the actual system. 

Unfortunately, we could not compare our results with those of other meth­

ods mentioned in the introduction. Most of references we found in the open 

literature contained only simulation results in this regard. Some of implemen­

tation results we found were, however, very different in nature. For example, 

Hanselmann and Engelke of [61] reported an implementation result of a disk 

drive servo system design using the LQG approach with a sampling frequency 

of 34kHz. The overall step response of [61] with a higher order LQG controller 

and higher sampling frequency is worse than that of ours. 

B. Position Error Signal Test 

The disturbances in a real hard disk drive are usually considered as a lumped 

disturbance at the plant output, also known as run-outs. Repeatable run-outs 

(RRO) and non-repeatable run-outs (NRRO) are the major sources of track 

following errors. RRO is caused by the rotation of the spindle motor and 

consists of frequencies that are multiples of the spindle frequency. NRRO can 

be perceived as coming from three main sources: vibration shocks, mechanical 

disturbance and electrical noise. Static force due to flex cable bias, pivot-bearing 

friction and windage are all components of the vibration shock disturbance. 

Mechanical disturbances include spindle motor variations, disk flutter and slider 

vibrations. Electrical noises include quantization errors, media noise, servo 

demodulator noise and power amplifier noise. NRRO are usually random and 

unpredictable by nature, unlike repeatable run-outs. They are also of a lower 

magnitude (see e.g., [55]). A perfect servo system of hard disk drives should 

reject both the RRO and NRRO. 

In our experiment, we have simplified the system somewhat by removing 

many sources of disturbances, especially that of the spinning magnetic disk. 

Therefore, we have to actually add the run-outs and other disturbances into the 

system manually. Based on previous experiments, we know that the run-outs 

in real disk drives is mainly composed of the RRO, which is basically sinusoidal 

with a frequency of about 55 Hz, equivalent to the spin rate of the spindle motor. 

By manually adding this "noise" to the output while keeping the reference signal 

to zero, we can then read off the subsequent position signal as the expected 
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PES in the presence of run-outs. In disk drive applications, the variations of 
the R/W head from the center of track during track following, which can be 
directly read off as the position error signal (PES), is very important. Track 
following servo systems have to ensure that the PES is kept to a minimum. 
Having deviations that are above the tolerance of the disk drive would result 
in too many read or write errors, making the disk drive unusable. A suitable 
measure is the standard deviation of the readings, a. A useful guideline is to 
make the 3a value less than 5% of the track width, which is about 0.1JLm for a 
track density of 10-15 kTPI (kilo tracks per inch). 

Figures 14.4.4 and 14.4.5 show the tracking errors of the robust and perfect 

tracking controller and PID controller respectively, under the disturbance of the 

run-outs. The 3a value is about 0.095JLm for the RPT controller, and about 
0.175JLm for the PID controller. Again, the RPT controller does better than 
the PID one in the PES test. 

In conclusion, the RPT controller has a much better performance in track 
following as well as in the PES tests compared to those of the PID controller. 
The RPT controller utilized is first order. This is one order lower in comparison 
with the PID controller and would allow for quicker execution of the DSP codes 
during implementation. This would be an important consideration when the 
sampling rate of the disk drive servo is pushed higher to meet the increasing 
demands on the servo performance. The current results can be further improved 
if we used a better VCM actuator and arm assembly, with a higher resonance 
frequency. The control input limit has not been reached and theoretically, we 
should be able to tune the controller to achieve even faster settling time and 
higher servo bandwidth. 
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Chapter 15 

Design of a Piezoelectric 
Actuator System 

15.1. Introduction 

WE PRESENT IN this chapter a case study on a piezoelectric bimorph actuator 

control system design using an H00 optimization approach. This work was 

originally reported in Chen et al. [23). 

Piezoelectricity is a fundamental process in electromechanical energy con­

version. It relates electric polarization to mechanical stress/strain in piezo­

electric materials. Under the direct piezoelectric effect, an electric charge can 

be observed when the materials are deformed. The converse or the recipro­
cal piezoelectric effect is when the application of an electric field can cause 

mechanical stress/strain in the piezo materials. There are numerous piezoelec­
tric materials available today including PZT (Lead Zirconate Titanate), PLZT 
(Lanthanum modified Lead Zirconate Titanate), and PVDF (Piezoelectric Poly­
meric Polyvinylidene Fluoride) to name a few (see Low and Guo [88)). 

Piezoelectric structures are widely used in applications that require elec­

trical to mechanical energy conversion coupled with size limitations, precision, 

and speed of operation. Typical examples are micro-sensors, micro-positioners, 

speakers, medical diagnostics, shutters and impact print hammers. In most 

applications, bimorph or stack piezoelectric structures are used because of the 

relatively high stress/strain to input electric field ratio (see Low and Guo [88)). 

The present work is motivated by the possibility of applying piezoelectric 

micro-actuators in magnetic recording. The exponential growth of area densities 
seen in magnetic disk drives means that data tracks and data bits are being 

placed at closer proximity than ever before. The 25,000 TPI (tracks-per-inch) 



382 Chapter 15. Design of a Piezoelectric Actuator System 

track densities envisaged at the turn of the century mean that the positioning 
of the read/write (R/W) heads could only tolerate at most 1 to 2 micro-inch 
error in track following. The closed loop positioning servo will also be required 
to have a bandwidth in excess of 1 to 2 kHz to be able to maintain this accuracy 
at the high spindle speeds required for channel data transfer rates, which will 
be in excess of 200 Mbitsjs. Such a performance is clearly out of reach with the 
present voice coil motor (VCM) actuators used in disk drive access systems (see 
Chapter 14 for more information on hard disk drive servo systems with VCM 
actuators). 

A dual actuator was successfully demonstrated by Tsuchiura et al. of Hi­
tachi [130). In [130), a fine positioner based on a piezoelectric structure was 
mounted at the end of a primary VCM stage to form the dual actuator. The 
higher bandwidth of the fine positioner allowed the R/W heads to be accurately 
positioned. There have been other instances where electromagnetic (see Miu 
and Tai [93)) and electrostatic (see Fan et al. [52)) micro-actuators have been 
used for fine positioning of R/W heads. 

The focus of this chapter is to concentrate on the control issues involved in 
dealing with the nonlinear hysteresis behavior displayed by most piezoelectric 
actuators. More specifically, we consider a robust controller design for a piezo­
electric bimorph actuator as depicted in Figure 15.1.1. A scaled up model of 
this piezoelectric actuator, which is targeted for use in the secondary stage of 
a future dual actuator for magnetic recording, was actually built and modeled 
by Low and Guo [88). It has two pairs of bimorph beams which are subjected 
to bipolar excitation. The dynamics of the actuator were identified in [88) as a 
second order linear model coupled with a hysteresis. The linear model is given 
by 

(15.1.1) 

where m, b, k and d are the tangent mass, damping, stiffness and effective piezo­
electric coefficients, while u is the input voltage that generates excitation forces 
to the actuator system. The variable x1 is the displacement of the actuator and 
is also the only measurement we can have in this system. It should be noted 
that the working range of the displacement of this actuator is within ±1j.tm. 
The variable z is from the hysteretic nonlinear dynamics [88) and is governed 
by 

i = adu- ,Biulz- "'fuizi, (15.1.2) 
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4 

1-base; 2-piezoelectric bimorph beams; 3-moving plate; and 4-guides 

Figure 15.1.1: Structure of the piezoelectric bimorph actuator. 

where a, /3 and 1 are some constants that control the shapes of the hystere­

sis. For the actuator system that we are considering in this paper, the above 

coefficients are identified as follows: 

m= 
b 
k 
d 
a = 
/3 = 
I 

0.01595 kg, 
1.169 Ns/m, 
4385 N/m, 

8.209 x 10-7 m/V, 
0.4297, 
0.03438, 

-0.002865. 

(15.1.3) 

For a more detailed d~scription of this piezoelectric actuator system and the 

identifications of the above parameters, we refer interested readers to the work 

of Low and Guo [88]. Our goal in this chapter is to design a robust controller, 

as in Figure 15.1.2, that meets the following design specifications: 

1. The steady state tracking errors of the displacement should be less than 

1% for any input reference signals that have frequencies ranging from 0 

to 30 Hz, as the actuator is to be used to track certain color noise type of 

signals in disk drive systems. 
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Figure 15.1.2: Piezoelectric bimorph actuator plant with controller. 

2. The 1% settling time should be as fast as possible (we are able to achieve 
a 1% settling time of less than 0.003 seconds in our design). 

3. The control input signal u(t) should not exceed 112.5 volts because of the 
physical limitations of the piezoelectric materials. 

Our approach is as follows: we will first use the stochastic equivalent lin­
earization.method proposed in Chang [10] to obtain a linearized model for the 
nonlinear hysteretic dynamics. Then we reformulate our design into an Hoo 
almost disturbance decoupling problem in which the disturbance inputs are the 
reference input and the error between the hysteretic dynamics and that of its 
linearized model, while the controlled output is simply the double integration 
of the tracking error. Thus, our task becomes to design a controller such that 
when it is applied to the piezoelectric actuator, the overall system is asymptot­
ically stable, and the controlled output, which corresponds to the tacking error, 

is as small as possible and decays as fast as possible. 

The outline of this chapter is as follows: In Section 15.2, a first order lin­

earized model is obtained for the nonlinear hysteresis using the stochastic equiv­

alent linearization method. A simulation result is also given to show the match 
between the nonlinear and linearized models. In Section 15.3, we formulate 

our controller design into a standard almost disturbance decoupling problem 

by properly defining the disturbance input and the controlled output. Two 
integrators are augmented into the original plant to enhance the performance 
of the overall system. Then a robust controller that is explicitly parameterized 
by a certain tuning parameter and that solves the proposed almost disturbance 
decoupling problem, is carried out using a so-called asymptotic time-scale and 

eigenstructure assignment technique. In Section 15.4, we present the final con-
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troller and simulation results of our overall control system using MATLAB 
SIMULINK. We also obtain an explicit relationship between the peak values 
of the control signal and the tuning parameter of the controller, as well as an 
explicit linear relationship of the maximum trackable frequency, i.e, the corre­
sponding tracking error can be settled to 1%, vs the tuning parameter of the 
controller. The simulation results of this section clearly show that all the design 

specifications are met and the overall performance is very satisfactory. 

15.2. Linearization of the Nonlinear Hysteretic Dynamics 

We will proceed to linearize the nonlinear hysteretic dynamics of (15.1.2) in 
this section. As pointed out in Chang (10], there are basically three methods 
available in the literature to linearize the hysteretic type of nonlinear systems. 
These are i) the Fokker-Planck equation approach (see for example Caughey 

(8]), ii) the perturbation techniques (see for example Crandall (43] and Lyon 
(90]) and iii) the stochastic linearization approach. All of them have certain 
advantages and limitations. However, the stochastic linearization technique has 
the widest range of applications compared to the other methods. This method 
is based on the concept of replacing the nonlinear system with an "equivalent" 
linear system in such a way that the "difference" between these two systems is 
minimized in a certain sense. The technique was initiated by Booton (6]. In 
this chapter, we will just follow the stochastic linearization method given in 
Chang [10] to obtain a linear model of the following form 

(15.2.1) 

for the hysteretic dynamics of (15.1.2), where k1 and k2 are the linearization 
coefficients and are to be determined. The procedure is quite straightforward 
and proceeds as follows: First we introduce a so-called "difference" function e 

between i of (15.1.2) and i of (15.2.1), 

(15.2.2) 

Then minimizing E(e2], where E is the expectation operator, with respect to 

k1 and k2 , we obtain 

(15.2.3) 

from which the stochastic linearization coefficients k1 and k2 are determined. 
It turns out that if h and it are of zero means and jointly Gaussian, then k1 and 
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k2 can be easily obtained. Let us assume that h and it have a joint probability 
density function 

{ azz2 - 2a-uazPuzitz + a;it2 } 
exp - 2 2( 2 ) ' 2a-uaz 1- Puz 

. 1 
fuz(u, z) = 2 

2na-uaz/1- Puz 
(15.2.4) 

where Puz is the normalized covariance of it and z, and au and a z are the 
standard deviation of it and z, respectively. Then the linearization coefficients 
k1 and k2 can be expressed as follows: 

(15.2.5) 

and 

(15.2.6) 

where c1 , c2, c3 and c4 are given by 

(15.2. 7) 

c2 = 0.79788456az, C4 = 0.79788456p-uzau, (15.2.8) 

and 

(15.2.9) 

After a few iterations, we found that a sinusoidal excitation it with frequencies 
ranging from 0 to 100 Hz (the expected working frequency range) and peak 
magnitude of 50 volts, which has a standard deviation of a-u = 35, would 
yield a suitable linearized model for (15.1.2). For this excitation, we obtain 
a z = 5 X w-7' Puz = 5 X w-3 

C1 = 1.994 7 X 10-9 , C2 = 3.9894 X 10-7 , (15.2.10) 

C3 = 27.9260, C4 = 0.1396, (15.2.11) 

and 

k1 = 3.5382 x w- 7 , k2 = -0.9597. (15.2.12) 

The stochastic linearization model of the given nonlinear hysteretic dynamics 
of (15.1.2) is then given by 

; = k1 it+ k2z = 3.5382 x w-7 it - o.9597z. (15.2.13) 
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Figure 15.2.1: Responses of hysteresis and its linearized model to a sine input. 
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For future use, let us define the linearization error as 

ez = z- z. (15.2.14) 

Figure 15.2.1 shows the open-loop simulation results of the nonlinear hysteresis 
and its linearized model, as well as their error for a typical sine wave input 
signal u. The results are quite satisfactory. Here we should note that because 
of the nature of our approach in controller design later in the next section, the 
variation of the linearized model within a certain range, which might result in 
larger linearization error, ez, will not much affect the overall performance of 
the closed-loop system. We will formulate ez as a disturbance input and our 
controller will automatically reject it from the output response. 

15.3. Formulation of the Problem as an H00-ADDPMS 

This section is the heart of this chapter. We will first formulate our control 
system design for the piezoelectric bimorph actuator into a standard Hoo al­
most disturbance decoupling problem, and then apply the results of Chapter 8 
to check the solvability of the proposed problem. Finally, we will utilize the 
results in Chapter 8 to find an internally stabilizing controller that solves the 
proposed almost disturbance decoupling problem. Of course, most importantly, 
the resulting closed-loop system and its responses should meet all the design 
specifications as listed in Section 15.1. To do this, we will have to convert the 
dynamic model of (15.1.1) with the linearized model of the hysteresis into a 
state space form. Let us first define a new state variable 

(15.3.1) 

Then from (15.2.13), we have 

(15.3.2) 

Substituting (15.2.14) and (15.3.1) into (15.1.1), we obtain 

.. b . k k k( d- ki) k 
XI+ -XI+ -XI+ -V = U- -ez. 

m m m m m 
(15.3.3) 

The overall controller structure of our approach is then depicted in Figure 
15.3.1. Note that in Figure 15.3.1 we have augmented two integrators after e, 

the tracking error between the displacement XI and the reference input signal 
r. We have observed a very interesting property of this problem, i.e., the more 
integrators that we augment after the tracking error e, the smaller the tracking 
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error we can achieve for the same level of control input u. Because our control 
input u is limited to the range from -112.5 to 112.5 volts, it turns out that two 
integrators are needed in order to meet all the design specifications. It is clear 
to see that the augmented system has an order of five. Next, let us define the 
state of the augmented system as 

X = ( X1 X1 V X4 X5 )' , (15.3.4) 

and the measurement output 

(15.3.5) 

i.e., the original measurement of displacement x1 plus two augmented states. 
The auxiliary disturbance input is 

(15.3.6) 

and the output to be controlled, h, is simply the double integration of the 
tracking error. The state space model of the overall augmented system is then 
given by 

{: = 
A X+ B u + E w, 

~: c1 x + D1 w, (15.3. 7) 

h = c2 X+ D2 u 

with 

[ -k
0
jm 

1 0 0 0] -b/m -k/m 0 0 
A= 0 0 k2 0 0 

1 0 0 0 0 
0 0 0 1 0 

[ -274[2163 
1 0 0 

~] ' -73.2915 -274921.63 0 
0 -0.9597 0 (15.3.8) 
0 0 0 
0 0 1 

[ k(d _ 
0
k,)jm 1 

0 
0.12841 

B = k1k2 -3.39561 x w-7 (15.3.9) 
0 0 
0 0 
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[ -~/m ~] [ -274~2!63 ~], E= 0 0 = 0 (15.3.10) 
0 -1 0 -1 
0 0 0 0 

c, ~ [~ 
0 0 0 0] [~ ~], 0 0 1 0 , D1= (15.3.11) 
0 0 0 1 

and 

Cz = [ 0 0 0 0 1], Dz = 0. (15.3.12) 

For the problem that we are considering here, it is simple to verify that the 

system L: of (15.3. 7) has the following properties: 

1. The subsystem (A, B, Cz, Dz) is invertible and of minimum phase with 

one invariant zero at -1.6867. It also has one infinite zero of order 4. 

2. The subsystem (A, E, C1 , Dl) is left invertible and of minimum phase 

with one invariant zero at -0.9597 and two infinite zeros of orders 1 and 

2, respectively. 

Then it follows from Theorem 8.2.1 or Theorem 8.2.1 that the H00-ADDPMS 

for (15.3.7) is solvable. In fact, one can design either a full order observer based 

controller or a reduced order observer based controller to solve this problem. For 

the full order observer based controller, the order of the disturbance decoupling 

controller (see Figure 15.3.1) will be 5 and the order of the final overall controller 
(again see Figure 15.3.1) will be 7 (the disturbance decoupling controller plus 

two integrators). On the other hand, if we use a reduced order observer in the 

disturbance decoupling controller, the total order of the resulting final overall 

controller will be reduced to 4. From the practical point of view, the latter is 

much more desirable than the former. Thus, in what follows we will only focus 

on the controller design based on a reduced order observer. We can separate 

our controller design into two steps: 

1. In the first step, we assume that all five states of L: in (15.3. 7) are available 

and then design a static and parameterized state feedback control law, 

u = F(E)x, (15.3.13) 

such that it solves the almost disturbance decoupling problem for the 

state feedback case, i.e., y = x, by adjusting the tuning parameter E to 

an appropriate value. 
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2. In the second step, we design a reduced order observer based controller. 

It has a parameterized reduced order observer gain matrix K 2 (c) that 

can be tuned to recover the performance achieved by the state feedback 

control law in the first step. 

We will use the asymptotic time-scale and eigenstructure assignment (ATEA) 

design method of Chapter 8 to construct both the state feedback law and the re­

duced order observer gain. We would like to note that in principle, one can also 

apply the ARE (algebraic Riccati equation) based H00 optimization technique 

(see for example Zhou and Khargonekar [141]) to solve this problem. However, 

because the numerical conditions of our system E are very bad, we are unable 

to obtain any satisfactory solution from the ARE approach. We cannot get any 

meaningful solution for the associated H00-CARE in MATLAB. In this sense 

and at least for this problem, the ATEA method is much more powerful than 

the ARE one. The software realization of the ATEA algorithm can be found in 

the Linear Systems and Control Toolbox developed by Chen [14). The following 

is a closed form solution of the static state feedback parameterized gain matrix 

F(c) obtained using the ATEA method. 

F(c) = [ {2.1410x 106 - 62.3004/c2) (570.7619- 31.1502/c) 

2.1410 x 106 -62.3004/c3 -31.1502/c4 ], {15.3.14) 

where e is the tuning parameter that can be adjusted to achieve almost dis­

turbance decoupling. It can be verified that the closed-loop system matrix, 

A + BF(c) is asymptotically stable for all 0 < c < oo and the closed-loop 

transfer function from the disturbance w to the controlled output h, Thw(c, s), 
satisfying 

(15.3.15) 

as c-+ 0. 
The next step is to design a reduced order observer based controller that 

will recover the performance of the above state feedback control law. First, let 

us perform the following nonsingular (permutation) state transformation to the 

system E of {15.3.7), 

x=Tx, (15.3.16) 

where 

[1 0 0 0 

~], 0 0 0 1 
T= 0 0 0 0 

0 1 0 0 
0 0 1 0 

(15.3.17) 
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such that the transformed measurement matrix has the form of 

[
1 0 0 0 0] 

C1T = 0 1 0 0 0 = [/3 OJ. 
0 0 1 0 0 

(15.3.18) 

Clearly, the first three states of the transformed system, or x1 , x4 and x5 of 

the original system E in (15.3.7), need not be estimated as they are already 

available from the measurement output. Let us now partition the transformed 

system as follows: 

r-lAT = [An 
A21 

A12 ] 
A22 

0 
1 
0 

-274921.63 
0 

0 
0 
1 
0 
0 

0 
0 
0 

0 1 
0 0 
0 0 
0 -73.2915 
0 0 

0.12841 
-3.39561 x w-7 

I 0 
0 

r-1E- __§_ - o 
- [ E, ] - -274~21.63 -~I 0 . 

0 
0 

Also, we partition 

0 
0 
0 (15.3.19) 

-274921.63 
-0.9597 

(15.3.20) 

(15.3.21) 

F(c)T = [ F1(c) I F2(c) ) (15.3.22) 

= [ (2.1410 x 106 - 62.3004/c2) -62.3004/c3 -31.1502/c4 

(570. 7619- 31.1502/c) 2.1410 x 106 ]. (15.3.23) 

Then the reduced order observer based controller (see Chapter 8) is given in 

the form of 

with 

{ v = Acmp(c) v + Bcmp(c) y, 
Ecmp : 

U = Ccmp(c) V + Dcmp(c) y, 
(15.3.24) 
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Bcmp(c:) = A21 + K2(c:)An- [A22 + K2(c:)A12]K2(c:) 

+ [B2 + K2(c:)Bl] [F1(c:)- F2(c:)K2(c:)], (15.3.26) 

Ccmp(e) = F2(c:), (15.3.27) 

Dcmp(e) = F1(c:)- F2(c:)K2(c:), (15.3.28) 

where K2 (c:) is the parameterized reduced order observer gain matrix and is to 

be designed such that A22 + K 2(c:)A12 is asymptotically stable for sufficiently 

small c: and also 

(15.3.29) 

as c: ~ 0. Again, using the software package of Chen (14], we obtained the 

following parameterized reduced order observer gain matrix 

K ( ) = [73.2915-1/c: 0 OJ 
2 e 0 0 0. (15.3.30) 

Then the explicitly parameterized matrices of the state space model of the 

reduced order observer based controller are given by 

_ [ 73.2915- 4/c:- 1/c: 0 ] 
Acmp(e)- -1.9381x10-4 +1.0577x10-5/c: -1.6867 ' 

Ccmp(e) = [ 570.7619- 31.1502/c: 2140967], 

Dcmp(e) = (2099135.4+2853.81/c:-93.45/c:2 -62.3/c:3 -31.1502/c:4 ], 

[ '1/J -8/c:3 -4jc:4 J 
Bcmp(c:) = '1/J~ 2.1155xl0-5/c:3 1.0577x10-5/c:4 ' 

where 

'l/J1 = -5731.6533- 13/c:2 + 439.7492/c:, (15.3.31) 

and 
(15.3.32) 

The overall closed loop system comprising the system ~ of (15.3. 7) and the 

above controller would be asymptotically stable as long as c: E (0, oo ). In fact, 

the closed loop poles are exactly located at -1.6867, two pairs at -1/c: ±j1fc:, 

-0.9597 and -1/c:. The plots of the maximum singular values of the closed 

loop transfer function matrix from the disturbance w to the controlled output 

h, namely Thw(c:, s), for several values of c:, i.e., c: = 1/100, c: = 1/400 and 

c: = 1/3000, in Figure 15.3.2 show that as c: becomes smaller and smaller, the 
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Figure 15.3.2: Max. singular values of closed loop transfer function Thw(E, s). 

H 00 norms of Thw ( E, s) are also smaller and smaller. Hence, almost distur­

bance decoupling is indeed achieved. These are the properties of our control 

system in the frequency domain. In the next section, we will address its time 

domain properties, which are of course much more important as all the design 

specifications are in the time domain. 

15.4. Final Controller and Simulation Results 

In this section, we will put our design of the previous section into a final con­

troller as depicted in Figure 15.1.2. It is simple to derive the state space model 

of the final overall controller by observing its interconnection with the distur­

bance decoupling controller ~cmp of (15.3.24) (see Figure 15.3.1). We will also 

present simulation results of the responses of the overall design to several dif­

ferent types of reference input signals. They clearly show that all the design 

specifications are successfully achieved. Furthermore, because our controller 

is explicitly parameterized by a tuning parameter, it is very easy to adjust to 

meet other design specifications without going through it all over again from 

the beginning. This will also be discussed next. 
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As mentioned earlier, the final overall controller of our design will be of the 

order of 4, of which two are from the disturbance decoupling controller and two 

from the augmented integrators. It has two inputs: one is the displacement x1 

and the other is the reference signal r. It is straightforward to verify that the 

state space model of the final overall controller is given by 

~oc(c): { V = Aoc(c:) V + Boc(c:) X1 + Goc r, 

U = Coc(c:) V + Doc(€) X1 

where Aoc(c:) is given by 

0 -8/c:3 

(15.4.1) 

[ 73.2915- 5/£ 
-0.0002 + l.r 77 X 10 _,I, -1.6867 2.1155 x 10-5 fc: 3 1.0577 x 10-5; c:4 -4/£' l 

0 0 0 , 

0 1 0 

Goc = [ -!], B.,(£)= [~J 
with 1/;1 and 1/;2 given by (15.3.31) and (15.3.32), respectively, 

Coc(c) = [ 570.7619- 31.1502/c: 2140967 -62.3004/c:3 -31.1502/c:4 ], 

and 
Doc(€) = 2099135.4- 93.4506/£2 + 2853.8095/c:. 

There are some very interesting and very useful properties of the above param­

eterized controller. After repeatedly simulating the overall design, we found 

that the maximum peak values of the control signal u are independent of the 

frequencies of the reference signals. They are only dependent on the initial error 

between displacement, x1 , and the reference, r. The larger the initial error is, 

the bigger the peak that occurs in u. Because the working range of our actuator 

is within ±1J.Lm, we will assume that the largest magnitude of the initial error 

in any situation should not be larger that 1J.Lm. This assumption is reasonable 

as we can always reset our displacement, x1 , to 0 before the system is to track 

any reference and hence the magnitude of initial tracking error can never be 

larger than 1J.Lm. Let us consider the worst case, i.e., the magnitude of the ini­

tial error is 1J.Lm. Then interestingly, we are able to obtain a clear relationship 

between the tuning parameter 1/c and the maximum peak of u. The result is 

plotted in Figure 15.4.1. We also found that the tracking error is independent 

of initial errors. It only depends on the frequencies of the references, i.e., the 

larger the frequency that the reference signal r has, the larger the tracking error 
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Figure 15.4.1: Parameter 1/c: vs max. peaks of u in worst initial errors. 

that occurs. Again, we can obtain a simple and linear relationship between the 

tuning parameter c: and the maximum frequency that a reference signal can 

have such that the corresponding tracking error is no larger than 1%, which is 
one of our main design specifications. The result is plotted in Figure 15.4.2. 

Clearly, from Figure 15.4.1, we know that due to the constraints on the 
control input, i.e., it must be kept within ±112.5 volts, we have to select our 

controller with c: > 1/3370. From Figure 15.4.2, we know that in order to meet 
the first design specification, i.e. , the steady state tracking errors should be less 

than 1% for reference inputs that have frequencies up to 30 Hz, we have to 

choose our controller with c: < 1/2680. Hence, the final controller as given in 

(15.4.1) to (15.4) will meet all the design goals for our piezoelectric actuator 

system. i.e., (15.1.1) and (15.1.2), for all c: E (1/3370, 1/2680). Let us choose 

c: = 1/3000. We obtain the overall controller as in the form of (15.4.1) with 

[ 
-14926.7085 

A _ 0.0315 
oc- 0 

0 

0 -2.16 X 1011 

-1.6867 5. 7118 X 105 

0 0 
0 1 

3.24 X 1014 ] 
8.5677 X 108 

0 , 

0 

(15.4.2) 
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Figure 15.4.2: Parameter 1/c vs max. frequency of r that has 1% tracking error. 

[
-1.1569 X 108 ] 

Boc = 281.9699 , 
1 
0 

(15.4.3) 

Coc = ( -92879.9041 2140967 -1.6821 X 1012 -2.5232 X 1015 ), (15.4.4) 

and 

Doc = -8.3040 X 108 . (15.4.5) 

The simulation results presented in the following are done using the MATLAB 

SIMULINK package, which is widely available everywhere these days. The 

SIMULINK simulation block diagram for the overall piezoelectric bimorph ac­

tuator system is given in Figure 15.4.3. Two different reference inputs are 

simulated using the Runge-Kutta 5 method in SIMULINK with a minimum 

step size of 10 micro-seconds and a maximum step size of 100 micro-seconds 

as well as a tolerance of 10-5 . These references are: 1) a cosine signal with a 

frequency of 30 Hz and peak magnitude of 1 J.Lm , and 2) a sine signal with a 
frequency of 34 Hz and peak magnitude of 1 J.Lm. The results for the cosine 

signal are given in Figures 15.4.4 to 15.4.6. In Figure 15.4.4, the solid-line curve 

is x1 and the dash-dotted curve is the reference. The tracking error and the 

control signal corresponding to this reference are given in Figures 15.4.5 and 
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15.4.6, respectively. Similarly, Figures 15.4.7 to 15.4.9 are the results corre­

sponding to the sine signal. All these results show that our design goals are 
fully achieved. To be more specific, the tracking error for a 30 Hz cosine wave 

reference is about 0.8%, which is better than the specification, and the worst 

peak magnitude of the control signal is less than 90 volts, which is of course less 

than the saturated level, i.e., 112.5 volts. Furthermore, the 1% tracking error 
settling times for both cases are less than 0.003 seconds. 

Because the piezoelectric actuator is designed to be operated in a small 

neighborhood of its equilibrium point, the stability properties of the overall 

closed loop system of the nonlinear piezoelectric bimorph actuator should be 

similar to those of its linearized model. This fact can also be verified from 

simulations. In fact, the performance of the actual closed loop system is even 

better than that of its linear counterpart. 
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Chapter 16 

Design of a Gyro-stabilized 
Mirror Targeting System 

16.1. Introduction 

ELECTRO-OPTICAL (E-0) SENSORS that are mounted on vehicles such as air­

craft, helicopter and tanks are subjected to vibrations introduced by these plat­

forms. These vibrations cause the line-of-sight (LOS) of the E-0 sensors to shift, 

resulting in serious degradation of the image quality (see for example [5]). This 

problem is even more pronounced in systems with high magnification property. 

One way of overcoming it is to use free gyro stabilization. A gyroscope or 

gyro is basically an axially symmetrical mass rotating at a high constant speed. 
With the magnitude of the angular inertia and the speed of rotation both kept 

constant, the momentum generated is also fixed. Bearing in mind that the 

momentum is a vector quantity, this implies that the directional orientation is 

maintained. Therefore, in the absence of large external forces, a gyro is ca­

pable of maintaining the orientation of its spin axis in the inertia space. By 

choosing an appropriate high value for the speed of rotation, the vibrational 

torque produced by the platforms can be made insignificant as compared to the 

momentum generated. The LOS can thus be stabilized by simply designing a 

system such that the LOS and the gyro spin axis are parallel in space. How­

ever, a spinning gyro has another property known as precession. This means 

that if a torque is applied to one axis, it will, contrary to the intuitions of 

mechanics, rotate in the direction of another axis [102]. Thus, to enable for 

changes in the space orientation of the LOS, a gyro with at least two degrees of 

freedom is needed. This property also poses a problem in controlling the LOS 

because movement about one axis will cause a coupled movement in the other. 
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Therefore a controller has to be designed to provide the correct slewing (i.e., 
the application of a calculated torque to cause a desired precession). 

In this chapter, we consider a multivariable servomechanism gyro-stabilized 
mirror system. More specifically, it is a two-input-and-two-output system. The 
control of this multiple-input-multiple-output system is not a simple problem 
solved by using conventional PID controllers, because there exist cross-coupling 
interactions between the dynamics of the two axes. In addition, the controller 
has to maintain stable operation even when there are changes in the system 
dynamics. Over the years, many researchers have worked on this system, and 
the control methpdologies studied include adaptive with feedforward paradigm 
(see e.g., (76]), neural network control (see e.g., (56]) and fuzzy logic (see e.g., 
(75]). Unfortunately, the controllers obtained using these techniques, except the 
one of (56], are in general too complicated to be implemented in the real system. 
Here we tackle this problem using a robust and perfect tracking (RPT) approach 
to design a simple and low order controller such that the overall closed-loop 
system would have fast tracking and good robustness performance. The work 
of this chapter was originally reported in a recent work of Siew, Chen and Lee 
(121]. The outline of this chapter is as follows: In Section 16.2, the mechanical 
setup of the free gyro-stabilized mirror system as well as its dynamical equations 
are given. This is followed by Section 16.3 where we formulate our controller 
design into a robust and perfect tracking control problem. A technique based 
on the so-called asymptotic time-scale and eigenstructure assignment (ATEA) 
of Chapter 9 is then used to solve the proposed problem. Section 16.4 presents 
the simulation and implementation studies of our overall design. The results 
of both studies clearly show that all the design specifications are met and the 
overall performance is very satisfactory. 

16.2. The Free Gyro-stabilized Mirror System 

This section aims to give a brief overview of the hardware used in the whole 
free gyro-stabilized mirror system. The whole system consists of four main 
parts: a) a gyro mirror; b) a system interface assembly; c) a data acquisition 
board; and d) a personal computer. The overall hardware setup was pictured 
in Figure 16.2.1. In what follows, we give some brief descriptions of these four 
hardware parts. 

A. The Gyro Mirror 

The most crucial part of the free gyro-stabilized mirror system is naturally the 
gyro-mirror itself. Figure 16.2.2 is a schematic diagram of the gyro mirror. It 
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Figure 16.2.1: A gyro-stabilized mirror system. 

consists of the following essential components: i) a flywheel and its spin motor; 
ii) gimbals that provide two degrees of freedom to the flywheel and two torque 

motors for slewing purposes; and iii) a mirror that is geared to the gimbals 

through a 2 : 1 reduction drive mechanism. 

Because no rigid body can spin forever, a piece of a pancake spin motor 

(flywheel) is used as the gyroscope (gyro). By adjusting the input torque, the 
flywheel can be made to spin at a high constant velocity about its spin axis 

(Axis 3 in Figure 16.2.2) . The flywheel is mounted on an inner gimbal so that 
it can rotate freely up and down. This axis of rotation is called the pitch axis 

and corresponds to Axis 2 in Figure 16.2.2. The inner gimbal is in turn mounted 
on an outer gimbal, which provides another axis of freedom (the yaw axis or 
Axis 1) which moves left and right . Note that with these three axes being 

orthogonal to each other, the system line-of-sight (LOS) can be made parallel 

to Axis 3 by aligning the mirror axis to the pitch axis. 

A torque motor is attached to each of the inner and outer gimbals. These 

torque motors move the gyro either in the yaw or in the pitch direction, and are 

thus named the yaw and the pitch motors, respectively. Providing appropriate 

torque through these motors causes the system to precess relative to the inertia 

space to achieve some desired line-of-sight (LOS). Removing these input torques 

stabilizes the LOS in its new position . The angular positions about which 
the yaw and the pitch axes are defined as (}1 and (}2, respectively. 81 and 
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Figure 16.2.2: Schematic diagram of the gyroscope mirror. 
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02 can be measured through potentiometers mounted on the inner and outer 
gimbals. There are however, no velocity sensor to sense 81 and 82 • Due to 

physical constrains, the workspace for the gyro-stabilized mirror is limited to 
-50° ~ ()1 ~ 50° and -30° ~ ()2 ~ 30°. Also, the maximum torques for both 
yaw and pitch motors are physically limited to a range from -0.5Nm to 0.5Nm. 

In this particular system, a mirror is used in place of the actual electro­
optical (E-0) sensors. The advantage of doing this is that the E-0 sensors 
will not form an integral part of the system. Therefore any E-0 sensor can be 
used without affecting the system dynamics. The mirror is connected to the 
flywheel-gimbal structure via a 2 : 1 reduction drive. This 2 : 1 reduction drive 
is required because when the mirror is tilted by an angle o:, the reflected LOS 
is rotated by 2o:. 

The dynamical equations of the gyro mirror were developed by applying the 
well-known Lagrange's motion equation [96]: 

M1(0)ii1 + H1(0,8) + 01(0,8,83) = U1, 

M2(0)ii2 + H2(0,8) + G2(0,8,83) = u2, 

(16.2.1) 

(16.2.2) 

where () = ( 01, 02 )'; u1 and u2 are the actuator torques for the yaw and the 
pitch axes; 83 is the spin velocity of the flywheel. The parameters in equations 

(16.2.1)-(16.2.2) are defined as follows: 

----2 1 1 
M1 = i.i+d+(b-d+f)cos 02+ 2(e+g)+ 2(e-g)sin02, (16.2.3) 

- - -.. 1 . . -·. 
H1 = -(b-d+£)()1()2 sin202+ 2(e-g)01()2 cos02+k01()2 sin02 cos02, (16.2.4) 

G1 = kiJiJ3 cos 02, (16.2.5) 

- f -M2 = c+ '4 +f, (16.2.6) 

1 - - - "2 1 "2 - "2 
H2 = 2 (b-d+£)01 sin 202- 4(e- g)01 cos 02- k01 sin 02 cos 02, (16.2. 7) 

G2 = -k8183 cos02, (16.2.8) 

where a, b, c, d, e, f, g, l and k are all physical constants representing the 

various moment of the inertia of the system. These constants were identified 

earlier by [96] and [75], and took on the following values: 

a = o.oo4, b = 0.00128, c = 0.00098, J = 0.02, (16.2.9) 

e = 0.0049, f = 0.0025, 9 = 0.00125, l = 0.0032, k = 0.0025. (16.2.10) 

The above parameters all have units of kg·m2. As can be seen from the above 
equations, the system is highly nonlinear and there exist cross-coupling terms 
between the yaw and the pitch axes. 
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Figure 16.2.3: System interface assembly layout. 

B. The System Interface Assembly 

The torque motors and position sensors on the gyro-mirror have to be connected 
to a data acquisition board on the personal computer. This is accomplished via 
the system interface assembly. Figure 16.2.3 shows the layout of the components 
assembled in this platform. 

1. POWER SUPPLIES. The power supply Units A and Bare of single 28V DC 
regulated type. They are connected in series to give a -24V- OV- +24V 
DC supply. This combined power unit supplies all the currents required 
by the torque motors, the position sensors and the analogue filters. Unit 
C is rated 24V DC, which is used to drive the flywheel controller. 

2. FLYWHEEL CONTROLLER. This is a dedicated driver unit (model MCH20-
20-002CL). It provides adjustable speed control to the spin motor via a 
potentiometer. The spin velocity ranges from 0 up to around 5000rpm. 

3. CURRENT AMPLIFIERS. There are two current amplifiers, one for the 
yaw motor and the other for the pitch motor. The inputs of the am­
plifiers are connected directly to the D /A outputs of the AD /DA card, 
and their outputs are connected to the torque motors. They are built 
using a power operational amplifier with the outputs ranging from -25V 
to +25V. These outputs will produce the corresponding motor torques 
ranging respectively from -0.5Nm to 0.5Nm. 
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Figure 16.2.4: Block diagram of experimental setup. 

4. ANALOGUE FILTERS. The position signals from the potentiometers are 

first passed through these filters before being connected to the A/D inputs 

of the AD /DA card. They are low pass filters with cutoff frequency at 

19Hz so as to reject high frequency noises. 

C. The Data Acquisition Board 

The analog-digital and digital-analog (AD /DA) card used in our implementa­

tion has two analog input channels and two analog output channels. The analog 

inputs are the filtered position signals of the yaw and the pitch axes while the 

analog outputs are the torques to control the motors. The signals in all che:mnels 

range from -lOY to + lOV DC, with a 12 bit accuracy. 

D. The Personal Computer 

The controller is implemented on a personal computer via an AD /DA card 

mounted within. The block diagram of the experimental setup is given in 

Figure 16.2.4. The personal computer configuration is an IBM PC compatible 

with an Intel Pentium 75 Processor and an MS-DOS 6.0 Operating System. 

16.3. Controller Design Using the RPT Approach 

In this section, we formulate our controller design for the free gyro-stabilized 

mirror system as a robust and perfect tracking (RPT) control problem and then 

use the design method of Chapter 9 to carry out the design of the controller. 

Our goal is to design a simple and low order controller as structured in Figure 

16.3.1 such that the overall system will meet the following specifications: 
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contro !input Gyro-stabilized Position 
Mirror System 

Controller reference 

Figure 16.3.1: Structure of control system for gyro-stabilized mirror system. 

1. The closed-loop system should have fast tracking in both the yaw and the 
pitch axes for step input commands with small or no overshoot; 

2. The cross-coupling interactions between the yaw and the pitch axes should 
be minimized; and 

3. The overall system should be robust to external disturbances and changes 
in system parameters. 

As will be seen shortly, our controller is very simple and has low order. Thus, 
it can easily be implemented using low speed personal computers and A/D and 
D/A cards. 

First of all, we need to linearize the dynamical model given in equations 
(16.2.1)-(16.2.2) and cast it into the standard state space form. The linearized 
state space model is given as follows: 

(16.3.1) 

where 

(16.3.2) 

and w9 E £ 2 is the viscous damping coefficients for the system, which can be 
regarded as disturbances. The matrices A9 , B 9 and E9 are given by 

(16.3.3) 
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and 

0 ] [ 0 0] 0 -1 0 
0 ' Eg = 0 0 ' 

1/N2 0 -1 

(16.3.4) 

where 
_ - e+g - _ f -

N1 = a + b + - 2- + f!, N2 = c + 4 +f. (16.3.5) 

The measurement output of the free gyro-stabilized mirror system is 

(16.3.6) 

Since we are interested in the changes in the orientation of the LOS, we focus 

only on the case where the command input r(t) is a step function. To be more 

specific, we consider 

r(t) = [r1 (t)] = [7/JI] 1(t) = W · 1(t), 
r2(t) 'I/J2 

(16.3. 7) 

where 1(t) is the unit step function, and 'I/J1, 'I/J2 are some constants. Then, we 

have 

r(t) = [ ;~~~~ J = [ ~~ J o(t) = w. o(t), (16.3.8) 

where o(t) is the unit impulse function. Let us define a controlled output h as 

the difference between the actual output e and the command input r, i.e., 

( fh- r1) e=O-r= e . 2 - r2 
(16.3.9) 

Obviously, e is simply the tracking error. Finally, we obtain the following 

auxiliary system, 

(16.3.10) 

with 
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A = [ ~ 1J , B = [ ~J , E = [;g ~], (16.3.12) 

and 

[~ 
0 0 0 0 

~] , D, ~ [ ~J ~ 0, c = [ /2 0 ] 1 0 0 0 
= 1 o c1 0 1 0 0 

0 0 0 1 

(16.3.13) 

and 

(16.3.14) 

It is simple to show now that i) the subsystem (A9 , B9 , C2 , D2 ) is invertible 
with two infinite zeros of order 2, and ii) Ker (C2 ) = Ker (Cl). It follows 
from the results of Chapter 9, one can show that a robust and perfect tracking 
performance can be achieved for such a system, i.e., there exists a family of 
measurement feedback control law of the form, 

:Ecmp : { 
V = Acmp(c) V + Bcmp(c) y, 

u = Ccmp(c) V + Dcmp(c) y, 
(16.3.15) 

such that when it is applied to the gyro-stabilized mirror targeting system, 

1. The resulting closed-loop system is asymptotically stable for sufficiently 
small c:; and 

2. The resulting tracking error e which is of course depended on c: has the 
property, llell2 --+ 0, as c:--+ 0, for any initial condition xo and any distur­
bance wE L2. 

Thus, in principle, O(t) is capable of tracking the command r(t) perfectly with 

no overshoot and with no time. Of course, the price one needs to pay for this 

kind of excellent performance is that the control input must be unlimited, i.e., 

using infinite gains. This is not possible in the real world. As mentioned earlier, 

the control inputs u1 and u2 of our problem are actually bounded from -0.5Nm 

to 0.5Nm. Therefore, a trade-off is needed. 

Using the result of Chapter 9, one can either design a full order observer 
based controller or a reduced order observer based controller to solve the above 
problem. For the full order observer based controller, the order of the controller 
will be 6. On the other hand, a reduced order observer based controller will have 
an order of 2 since we only need to reconstruct the velocity states. Therefore 
from the practical point of view, a reduced order observer based controller is 
more desirable. We separate our controller design into the following two steps: 
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1. In the first step, we assume that all six states of E in (16.3.10) are available 
and then design a static state feedback control law, 

u= Fx, (16.3.16) 

such that the closed-loop system has desired properties. 

2. In the second step, we design a reduced order observer based controller. 
It has a reduced order observer gain matrix Ka that can recover the 

performance achieved by the state feedback control law in the first step. 

Using them-function atea.m of the toolbox [14] and after a few iterations, 
we obtained the following state feedback gain: 

F = _ [ -2.3732 -1.4264 2.3732 1.0271 1.4264 0.0000] (16 3 17) 
1.4264 -2.3732 -1.4264 0.0000 2.3732 1.0113 . . . 

Simulation result showed that the performance of the closed-loop system with 
the above state feedback law is quite satisfactory. Next, we follow the algorithm 
given in Chapter 9 and obtain a second order measurement feedback law of the 
form (16.3.15) with 

[ -174.3280 -74.2370] 
Acmp = 106.2743 -332.7939 ' (16.3.18) 

B _ [ 1.0269 0.6172 -83.3798 -64.5160] 
cmp- -1.4843 2.4695 11.5772 -194.7265 ' (16.3.19) 

[ - 205.4112 0] 
Ccmp = 0 -202.2678 ' (16.3.20) 

D _ [ 2.3732 1.4264 -90.1288 
cmp- -1.4264 2.3732 -20.0343 

-23.2207] 
-126.0777 . (16.3.21) 

16.4. Simulation and Implementation Results 

In order to implement -our controller designed in the previous section using our 

hardware setup, we need to discretize it. The performance of this discretized 

controller is then evaluated using MATLAB SIMULINK. Finally, it is applied 

to the actual free gyro-stabilized mirror system. Using the well-known bilinear 
transformation (see also Chapter 3) with a sampling time of 4ms, we obtained 

the following discretized controller, 

{ 
v(k+1) = Actcmp v(k) + Bctcmp y(k), 

Ectcmp : 
u(k) = Cctcmp v(k) + Dctcmp y(k), 

(16.4.1) 
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Figure 16.4.1: Simulation block patched up in SIMULINK. 

[ 0.4624 
Actcmp = 0.1866 

-0.1304] 
0.1841 , (16.4.2) 

[ 0.8476 0.2904 -61.7225 -34.4820] (16.4.3) Bctcmp = -0.7830 1.5197 -0.9257 -121.3119 , 

[ -0.6008 
Cctcmp = -0.0755 

0.0536] 
-0.4790 , (16.4.4) 

[ 2.0249 1.3072 -64.7719 -9.0547] (16.4.5) Dctcmp = -1.1097 1. 7584 -19.6598 -77.0027 . 

The SIMULINK simulation block diagram for the free gyro-stabilized mir­
ror system is given in Figure 16.4.1 (note that the inputs to the controller in 
the simulation block diagram are reordered, i.e., r 1 and 01 , and r 2 and (}2 are 
swapped, respectively). In order to achieve more accurate results, the nonlinear 
model given in equations (16.2.1)-(16.2.2) is used in the gyro block. Simula­
tions are carried out using the Runge-Kutta 5 method with both minimum and 
maximum step sizes set to be the same as the sampling period, i.e., 4ms. To 
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account for the limitations in the torque motors, a saturation block is added to 
each of them. The limits are set to be ±0.5Nm. Throughout the simulations, 
the gyro spin velocity is set to be 2500rpm. 

The gyro is first commanded to move simultaneously to (yaw, pitch) = 
(5°, -5°). On the fifth seconds, it is moved from this new position to (20°, -20°). 
A horizontal span is then carried out, i.e., the gyro is moved horizontally from 
20° to -5° while keeping the pitch position at -20°. This is followed by a 
vertical span; this time the yaw position is fixed at -5° while the pitch posi­
tion is changed from -20° to 5°. Finally, it is pushed to its extreme position 

( -50°, 30°) before returning back to its zero position. The gyro response as 
well as the torque input to each axis are plotted in Figures 16.4.2-16.4.3. 

The various set-points in the above tests are chosen such that from one 

position to another, the displacement ranges from as small as 5° up to 45°. This 

is to verify that our controller works well within the whole workspace although it 
is designed based on a linearized model. The simultaneous movement is to test 
whether our controller is capable of achieving perfect tracking in both axes while 

the spans are conducted to investigate how well does our controller 'decouple' 
the gyro-stabilized mirror system. As can be seen from the responses in Figure 
16.4.2, the gyro is able to reach all commanded positions without steady state 
errors. Furthermore, none of the responses exhibits any overshoot. The settling 
time from its extreme position back to the zero position is about 3.5 seconds. 

The maximum coupled movement in fh caused by moving 02 is around 0.15°. 
The maximum coupled movement in 02 caused by moving 01 is about 0.5°. A 
check with Figure 16.4.3 shows that all these are accomplished with the torques 
kept within the constraint of ±0.5Nm. Thus we conclude that our controller 
designed in the previous section is very satisfactory. 

Next, we implement this controller on the actual free gyro-stabilized mirror 
system via a computer (see Figure 16.2.1) and perform the whole test once 
again. The results obtained are shown in Figures 16.4.4-16.4.5. 

Comparing Figures.16.4.2-16.4.3 with Figures 16.4.4-16.4.5, we note that the 

general waveforms are the same. However, there exist steady state errors in both 

axes. Furthermore, the real system takes a slightly longer time before settling at 
its set-point. For example, it now takes about 5 seconds instead of 3.5 seconds 

to move from its extreme position back to zero. The coupled interaction caused 

by movement in the other axis is also larger than our simulation results (1.6° 

in the yaw axis and 0.55° in the pitch axis). The performance of the controller 
during the implementation is clearly not as good as in the simulation. The 
reason is due to the imperfection of the hardware system. 
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The biggest defect that the system has may be the dead zones of the torque 

motors. Studying Figure 16.4.5, we observe that although the torques are still 

nonzero, the positions have already reached their steady states. This can only 

happen if the torque motors are working within their dead zones. In fact, after 

running a few tests, we find that the dead zone in the pitch motor is more pro­

nounced and it does not remain constant throughout operation. According to 

one past documentation (see e.g., (75]), the dead zone is related to the mechan­

ical vibration on the gyro-mirror. In situations when the gyro-mirror vibrates, 

the vibrations cause the system to 'loosen up' and result in a small dead zone; 

at other times when the gyro-mirror is stabilized and spinning smoothly, a large 

dead zone exists. This behavior makes the dead zone compensation extremely 

difficult. Nevertheless through trial and error, we observe that the magnitude 

of the dead zone compensation seems to be related to the set-points in the 

following way: 

(16.4.6) 

and 

(16.4. 7) 

where Uos1 and Uos2 are the values to be added to u1 and u2, respectively. 

Various sets of ( r 1 , r 2 ) are used to tune a:1, a:2, /31 and /32 so as to obtain suitable 

offsets to be added to the control inputs such that the dead zone effects can be 
minimized. Figures 16.4.6-16.4.7 are the results we obtain from our controller 

with a dead zone compensation whose parameters are chosen as follows: 

0:1 = -0.001125, /31 = -0.000125, 0:2 = -0.0049875, /32 = -0.00059375. 
(16.4.8) 

With these results, we once again show that our controller is able to perform 

fast tracking without overshoot in both axes and minimize the coupled effect 

(0.8° in the yaw axis and 0.5° in the pitch axis). 

In order to test the robustness of this controller, we send a command to move 

the gyro simultaneously in the yaw (+20°) and pitch (-20°) direction. Then 

we purposely introduce some disturbance (through knocking on the gimbals) to 

the system. As shown in Figure 16.4.8, our controller is robust to this external 

disturbance. 

During implementation, the gyro spin velocity is controlled via a poten­

tiometer. Hence it is very difficult to set an exact speed of rotation. To make 

things worse, the gyro will vary its spinning velocity by itself. Since the free 

gyro-stabilized mirror system dynamics are dependent on its spin velocity (see 

equations (16.2.1)-(16.2.2)), the system dynamics is changed too. Furthermore, 
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the physical constants a, b, c, d, e, J, g, land k were obtained from exper­
iments conducted on the free gyro-stabilized mirror system a few years back. 
Over these years, the free gyro-stabilized mirror system has broken down and 

has been serviced for many times. Thus, these values may not be accurate 
anymore. Yet in view of these model uncertainties, the performance of our 

controller remains very satisfactory. 



426 Chapter 16. Design of a Gyro-stabilized Mirror Targeting System 

30,-----.------.----~------.-----.------.----~-----. 

. . . ' ... --.;--.---;------;------ -.-------.-.----20 

10 

I 
~-10 
:s 
~-20 

~ 
-30 

-40 

-so~----~----~----~----~~----~----~----~----~ 
0 5 1 0 15 20 25 30 35 40 

Time (seconds) 

(a) Response for fh. 

40,-----.------.----~-----..-----.-----.------.-----, 

20 

' . ' . 
- • - - - - f - • - - - - i - - - - - - 'i - - - - - - ~ - - - - - - ' - - - - - - -, - - - - -

·- ..... ·---- --·- --- ___ .,._ ___ -! 

-10 ' ' ' . . . -------------------------------------------.---. . ' . ' . 

-20 '----~--.;._-l--- ~-- .. -- ~.---.- ~----.- .: - .. ---

-30L-----~---~----~----~~----~----~----~----~ 
0 5 1 0 15 20 25 30 35 40 

Time (seconds) 

(b) Response for Oz. 

Figure 16.4.6: Implementation with dead zone compensation: 01 and Oz. 



16.4. Simulation and Implementation Results 427 

0.5.-----.-----~------r--.-,rr----.,--.---.--.---.-----. 

0.4 

0.3 

0.2 

' ' . -.- .. -- ..... ---
' ' 

-0.2 

-0.3 

-0.4 ' ' -------.------------ --------- ----------' ' 

-0.5~----~~--~------~----~----~------~~--~----~ 
0 5 10 15 20 25 30 35 40 

Time (seconds) 

(a) Control input, u1. 

0.5.-----.------.--.---r--.---.----.. ,--.--.------.-----. 

0.4 - - - - -- ~ - - - - - -

0.3 ------------- ' ' . . - - - ~ - - - - - - ·, - - - - - -. - - - - - - -... - - - -

0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -...... - ..... . 

e o.1 
~ 

---:-----.:------ -·------ _.------
' . ' ' 

"' i 
1- -0.1 - - - - - - ! . - - - - - ~ - - - - - - : - - - - - - .' - -

' ' ' ' 

' ' ' . -0.2 -.----1------ .. ------ .. -------.-- ----,--

-0.3 

-0.4 ' ' ---------------------.-------- ------- .. -. . ' . 

-0.5 L_ ____ __Ll-..----'--------'-------'-------.J'-------'---'-----'---'------' 
0 5 1 0 1 5 20 25 30 35 40 

Time (seconds) 

(b) Control input, u2. 

Figure 16.4.7: Implementation with dead zone compensation: u1 and u2. 



428 Chapter 16. Design of a Gyro-stabilized Mirror Targeting System 

25.----.-----r----.----.-----.----.----,,----.----,---~ 

20 

15 .... -:- .... -: ..... :- .... -:- .... ' ..... :- .... -: ..... ; ..... :- .... 

- . - -. - . - - - -' - - - - - '· - - - - -' - - - - - : - - - - - ·- - - - - -· - - - - - ~ - - - - - '- - - - -. ' . ' ' . . . ' 

0 ..... :. .... ; ..... : ..... .: ..... ; ..... :. .... .: ..... ; ..... :. .... 

-5L---~----~----~--~-----L----~----L---~----~--~ 
0 2 4 6 8 10 12 14 16 18 20 

Time (seconds) 

(a) Response for fh. 

5.----.-----r----.----.-----r----.-----.----.-----r----, 

. . . . 
0 ................................................ : .......... . 

. ' . ' . . ' ' . - - . - -.- - - - - -, - - - - - .- - - - - -'- - - - - ~ - - - - - .- - - - - -. - - - - - ~ - - - - -. - - - - -

~ 
-15 -·-----..!----- ·----- -·-----.:---- -·----- -·-----!.---- -·-----. . . . ' ' . . . 

-20 

-25L---~----~----~--~-----L----~--~L---~----~--~ 

0 2 4 6 8 10 12 14 16 18 20 
Time (seconds) 

(b) Response for fh 

Figure 16.4.8: Robustness test for the final system. 



Bibliography 

[1] K. J. Astrom, P. Hagander and J. Stern by, "Zeros of sampled systems," 

Automatica, Vol. 20, pp. 21-38, 1984. 

[2] K. J. Astrom and B. Wittenmark, Computer Controlled Systems: The­

ory and Design, Prentice Hall, Englewood Cliffs, 1984. 

[3] S. Barnett, Matrices in Control Theory, Robert E. Krieger Publishing 

Company, Malabar, Florida, 1984. 

[4] T. Ba§ar and P. Bernhard, H00 Optimal Control and Related Mini­

max Design Problems: A Dynamic Game Approach, Second Edition, 

Birkhiiuser, Boston, Massachusetts, 1995. 

[5] W. J. Bigley and V. J. Rizzo, "Wideband linear quadratic control of 

a gyro-stabilized electro-optical sight system," IEEE Control Systems 

Magazine, Vol. 7, pp. 20-24, 1987. 

[6] R. C. Booton, Jr., "Nonlinear control systems with random inputs," 

IRE Transactions on Circuit Theory, CT-1, pp. 9-18, 1954. 

[7] P. Brunovsky, "A classification of linear controllable systems," Kyber­

netika (Praha), Vol. 3, pp. 173-187, 1970. 

[8] T. K. Caughey, "Derivation and application of the Fokker-Planck equa­

tion to discrete nonlinear dynamic systems subjected to white random 

excitation," Journal of Acoustical Society of America, Vol. 35, pp. 1683-

1692, 1963. 

[9] S. W. Chan, G. C. Goodwin and K. S. Sin, "Convergence properties 

of the Riccati difference equation in optimal filtering of nonstabilizable 

systems," IEEE Transactions on Automatic Control, Vol. 29, pp. 110-

118, 1984. 



430 Bibliography 

[IO] T. P. Chang, Seismic Response Analysis of Nonlinear Structures Using 
the Stochastic Equivalent Linearization Technique, Ph.D. Dissertation, 
Columbia University, I985. 

[II] B. M. Chen, Software Manual for the Special Coordinate Basis of Multi­

variable Linear Systems, Washington State University Technical Report 

Number: ECE 0094, Pullman, Washington, I988. 

[I2] B. M. Chen, Theory of Loop Transfer Recovery for Multivariable Linear 

Systems, Ph.D. Dissertation, Washington State University, I991. 

[I3] B. M. Chen, "A simple algorithm for the stable/unstable decomposi­
tion of a linear discrete-time system," International Journal of Control, 

Vol. 6I, pp. 255-260, I995. 

[I4] B. M. Chen, Linear Systems and Control Toolbox, Technical Report, 
Department of Electrical Engineering, National University of Singapore, 

Singapore, I997. 

[I5] B. M. Chen, "Exact computation of infimum for a class of continuous­
time Hoo optimal control problem with a nonzero direct feedthrough 
term from the disturbance input to the controlled output," Systems & 
Control Letters, Vol. 32, pp. 99-109, I997. 

[I6] B. M. Chen, "Solvability conditions for the disturbance decoupling 
problems with static measurement feedback," International Journal of 

Control, Vol. 68, pp, 5I-60, I997. 

[I7] B. M. Chen, "On properties of the special coordinate basis of linear 

systems," International Journal of Control, Vol. 71, pp. 98I-I003, I998. 

[I8] B. M. Chen, Hoo Control and Its Applications, Lecture Notes in Control 
and Information Sciences, Vol. 235, Springer, London, I998. 

[I9] B. M. Chen, "Direct computation of infimum in discrete-time H00 -

optimization using measurement feedback," Systems & Control Letters, 

Vol 35, pp. 269-278, I998. 

[20] B. M. Chen and Y.-L. Chen, "Loop transfer recovery design via new 
observer based and CSS architecture based controllers," International 

Journal of Robust & Nonlinear Control, Vol. 5, pp. 649-669, I995. 



Bibliography 431 

(21] B. M. Chen, Y. Guo and z. L. Lin, "Non-iterative computation of in­
fimum in discrete-time B 00-optimization and solvability conditions for 

the discrete-time disturbance decoupling problem," International Jour­

nal of Control, Vol. 65, pp. 433-454, 1996. 

(22] B. M. Chen, J. He and Y.-L. Chen, "Explicit solvability conditions for 
general discrete-time Boo almost disturbance decoupling problem with 
internal stability," International Journal of Systems Science, Vol. 30, 
pp. 105-115, 1999. 

(23] B. M. Chen, T. H. Lee, C. C. Hang, Y. Guo and S. Weerasooriya, 

"An Boo almost disturbance decoupling robust controller design for a 
piezoelectric bimorph actuator with hysteresis," IEEE Transactions on 

Control Systems Technology, Vol 7, pp. 160-174, 1999. 

[24] B. M. Chen, Z. Lin and C. C. Hang, "Design for general Boo almost 

disturbance decoupling problem with measurement feedback and inter­
nal stability - An eigenstructure assignment approach," International 

Journal of Control, Vol. 71, pp. 653-685, 1998. 

[25] B. M. Chen, Z. Lin and K. Liu, "On the problem of robust and perfect 
tracking of discrete-time systems," Submitted for publication. 

(26] B. M. Chen, K. Liu and Z. Lin, "Solvability conditions and solutions 
to perfect regulation problem under measurement output feedback," 

Submitted for publication. 

(27] B. M. Chen, I. M. Y. Mareels, Y. F. Zheng and C. Zhang, "Solutions 
to disturbance decoupling problem with constant measurement feed­
back for linear systems," Proceedings of the 38th IEEE Conference on 

Control and Decision, Phoenix, Arizona, pp. 4062-4067, 1999. 

(28] B. M. Chen and A. Saberi, "Non-iterative computation of infimum in 
B 00-optimization for plants with invariant zeros on the jw axis," lEE 

Proceedings-Part D: Control Theory and Applications, Vol. 140, pp. 

298-304, 1993. 

(29] B. M. Chen, A. Saberi, S. Bingulac and P. Sannuti, "Loop transfer 
recovery for non-strictly proper plants," Control-Theory and Advanced 

Technology, Vol. 6, pp. 573-594, 1990. 

(30] B. M. Chen, A. Saberi and U. Ly, "Exact computation of the infimum 
in H 00-optimization via state feedback," Control-Theory and Advanced 

Technology, Vol. 8, pp. 17-35, 1992. 



432 Bibliography 

[31] B. M. Chen, A. Saberi and U. Ly, "Exact computation of the infimum 
in H00-optimization via output feedback," IEEE Transactions on Au­
tomatic Control, Vol. 37, pp. 70-78, 1992. 

[32] B. M. Chen, A. Saberi and U. Ly, "A non-iterative method for comput­
ing the infimum in H00-optimization," International Journal of Control, 

Vol. 56, pp. 1399-1418, 1992. 

[33] B. M. Chen, A. Saberi and U. Ly, "Closed loop transfer recovery with 
observer based controllers - Part 1: Analysis," Control and Dynamic 

Systems, Vol. 51, Part 2, pp. 247-293, 1992. 

[34] B. M. Chen, A. Saberi and U. Ly, "Closed loop transfer recovery with 
observer based controllers - Part 2: Design," Control and Dynamic 
Systems, Vol. 51, Part 2, pp. 295-348, 1992. 

[35] B. M. Chen, A. Saberi and P. Sannuti, "Explicit expressions for cascade 
factorization of general nonminimum phase systems," IEEE Transac­
tions on Automatic Control, Vol. 37, pp. 358-363, 1992. 

[36] B. M. Chen, A. Saberi and P. Sannuti, "On blocking zeros and strong 
stabilizability of linear multi variable systems," Automatica, Vol. 28, pp. 
1051-1055, 1992. 

[37] B. M. Chen, A. Saberi, P. Sannuti and Y. Shamash, "Construction 
and parameterization of all static and dynamic H2-optimal state feed­
back solutions, optimal fixed modes and fixed decoupling zeros," IEEE 
Transactions on Automatic Control, Vol. 38, pp. 248-261, 1993. 

[38] B. M. Chen, A. Saberi andY. Shamash, "A non-recursive method for 
solving the general discrete time algebraic Riccati equation related to 

the H00 control problem," International Journal of Robust and Nonlin­

ear Control, Vol. 4, pp. 503-519, 1994. 

[39] B. M. Chen, A. Saberi, Y. Shamash and P. Sannuti, "Construction and 
parameterization of all static and dynamic H2-optimal state feedback 
solutions for discrete time systems," Automatica, Vol. 30, pp. 1617-
1624, 1994. 

[40] B. M. Chen and S. R. Weller, "Mappings of the finite and infinite zero 
structures and invertibility structures of general linear multivariable 
systems under the bilinear transformation," Automatica, Vol. 34, pp. 
111-124, 1998. 



Bibliography 433 

[41] B. M. Chen and D. Z. Zheng, "Simultaneous finite and infinite zero 
assignments of linear systems," Automatica, Vol. 31, pp. 643-648, 1995. 

[42] C. Commault and J. M. Dion, "Structure at infinity of linear multi vari­
able systems: A geometric approach," IEEE Transactions on Automatic 

Control, Vol. AC-27, pp. 693-696, 1982. 

[43] S. T. Crandall, "Perturbation techniques for random vibration of non­
linear systems," Journal of Acoustical Society of America, Vol. 35, pp. 
1700-1705, 1963. 

[44] E. J. Davison and S. G. Chow, "Perfect control in linear time-invariant 
multivariable systems: The control inequality principle," Control Sys­

tem Design by Pole-Zero Assignment, pp. 1-15, Academic Press, New 
York, 1977. 

[45] E. J. Davison and B. M. Scherzinger, "Perfect control of the robust 
servomechanism problem," IEEE Transactions on Automatic Control, 

Vol. 32, pp. 689-702, 1987. 

[46] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output 

Properties, Academic Press, New York, 1975. 

[47] J. C. Doyle, Lecture Notes in Advances in Multivariable Control, ONR­
Honeywell Workshop, 1984 

[48] J. C. Doyle and K. Glover, "State-space formulae for all stabilizing 
controllers that satisfy an H 00-norm bound and relations to risk sensi­
tivity," Systems & Control Letters, Vol. 11, pp. 167-172, 1988. 

[49] J. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, "State space 
solutions to standard H2 and Hoo control problems," IEEE Transactions 

on Automatic Control, Vol. 34, pp. 831-847, 1989. 

[50] P. Eykhoff, SY,stem Identification - Parameter and State Estimation, 

John Wiley, New York, 1981. 

[51] C. Fama and K. Matthews, Linear Algebra IIH, Lecture Notes MP274, 
Department of Mathematics, The University of Queensland, 1991. 

[52] L. S. Fan, H. H. Ottesen, T. C. Reiley and R. W. Wood, "Magnetic 
recording head positioning at very high track densities using a microac­
tuator based, two stage servo system," IEEE Transaction on Industrial 

Electronics, pp. 222-233, 1995. 



434 Bibliography 

[53] B. A. Francis, "The optimal linear quadratic time-invariant regulator 
with cheap control," IEEE Transactions on Automatic Control, Vol. 24, 
pp. 616-621, 1979. 

[54] B. A. Francis, A Course in Hoc Control Theory, Lecture Notes in Con­
trol and Information Sciences, Vol. 88, Springer, Berlin, 1987. 

[55] G. F. Franklip., J. D. Powell and M. L. Workman, Digital Control of 

Dynamic Systems, Addison-Wesley, Reading, Massachusetts, 1990. 

[56] S. S. Ge, T. H. Lee and C. J. Harris, Adaptive Neural Network Control 

of Robotic Manipulators, World Scientific, Singapore, 1998. 

[57] K. Glover, "All optimal Hankel-norm approximations of linear multi­
variable systems and their £ 00 error bounds," International Journal of 

Control, Vol. 39, pp. 1115-1193, 1984. 

[58] T. B. Goh, Development of a Dual Actuator Controller in Hard Disk 

Drives, Master of Engineering Thesis, Department of Electrical Engi­

neering, National University of Singapore, 1999. 

[59] T. B. Goh, Z. Li, B. M. Chen, T. H. Lee and T. Huang, "Design and 
implementation of a hard disk drive servo system using robust and 
perfect tracking approach," Proceedings of the 38th IEEE Conference 
on Control and Decision, Phoenix, Arizona, pp. 5247-5252, 1999. 

[60] J. W. Grizzle and M. H. Shor, "Sampling, infinite zeros and decoupling 
of linear systems," Automatica, Vol. 24, pp. 387-396, 1988. 

[61] H. Hanselmann and A. Engelke, "LQG-control of a highly resonant 
disk drive head positioning actuator," IEEE Transactions on Industrial 

Electronics, Vol. 35, pp. 100-104, 1988. 

[62] D. Hinrichsen and A. J. Pritchard, "Real and complex stability radii: A 

survey," Proceedings of an International Workshop, Bremen, Germany, 

pp. 119-162, 1989. 

[63] P. A. Iglesias and K. Glover, "State space approach to discrete time H 00 

control," International Journal of Control, Vol. 54, pp. 1031-1073, 1991. 

[64] T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, 1980. 

[65] P. Khargonekar, I. R. Petersen and M. A. Rotea, "H00-optimal control 
with state feedback," IEEE Transactions on Automatic Control, Vol. 

AC-33, pp. 786-788, 1988. 



Bibliography 435 

[66] H. Kimura, "A new approach to the perfect regulation and the bounded 
peaking in linear multivariable control systems," IEEE Transactions on 

Automatic Control, Vol. 26, pp. 253-270, 1981. 

[67] H. Kimura, Chain-Scattering Approach to H 00 -Control, Birkhiiuser, 
Boston, Massachusetts, 1997. 

[68] V. Kucera, "The discrete Riccati equation of optimal control, Kyber­
netika, Vol. 8, pp. 430-447, 1972. 

[69] H. Kwakernaak, "A polynomial approach to minimax frequency domain 
optimization of multivariable feedback systems," International Journal 

of Control, Vol. 41, pp. 117-156, 1986. 

[70] H. K wakernaak and R. Sivan, "The maximally achievable accuracy of 
linear optimal regulators and linear optimal filters," IEEE Transactions 

on Automatic Control, Vol. 17, pp. 79-86, 1972. 

[71] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, John 
Wiley, New York, 1972. 

[72] P. Lancaster, A. C. M. Ran and L. Rodman, "State space approach to 
discrete time H 00 control," International Journal of Control, Vol. 44, 
pp. 777-802, 1986. 

[73] A. J. Laub, "A Schur method for solving algebraic Riccati equations," 
IEEE Transactions on Automatic Control, Vol. 24, pp. 913-921, 1979. 

[74] D. A. Lawrence and W. J. Rugh, "Almost perfect tracking for linear 
systems," Systems & Control Letters, Vol. 17, pp. 281-289, 1991. 

[75] M. W. Lee, An Investigation in Fuzzy Logic, Bachelor of Engineering 
Thesis, Department of Electrical Engineering, National University of 

Singapore, 1995. 

[76] T. H. Lee, E. K. Koh and M. K. Loh, "Stable adaptive control of mul­

tivariable servomechanisms, with application to a passive line-of-sight 

stabilization system," IEEE Transactions on Industrial Electronics, Vol. 

43, pp. 98-105, 1996. 

[77] D. J. N. Limebeer and B. D. 0. Anderson, "An interpolation theory 
approach to H 00 controller degree bounds," Linear Algebra and its Ap­

plications, Vol. 98, pp. 347-386, 1988. 



436 Bibliography 

[78] D. J. N. Limebeer, M. Green and D. Walker, "Discrete time H00 con­
trol," Proceedings of IEEE Conference on Decision and Control, Tampa, 
FL, pp. 392-396, 1989. 

[79] Z. Lin, The Implementation of Special Coordinate Basis for Linear Mul­
ti variable Systems in MATLAB, Washington State University Technical 
Report Number ECEOlOO, Pullman, Washington, 1989. 

[80] Z. Lin, Global and Semi-global Control Problems for Linear Systems 

Subject to Input Saturation and Minimum-Phase Input-Output Lin­

earizable Systems, Ph.D. Dissertation, Washington State University, 
Pullman, Washington, 1994. 

[81] z. Lin, "Almost disturbance decoupling with global asymptotic stability 
for nonlinear systems with disturbance affected unstable zero dynam­
ics," Systems & Control Letters, Vol. 33, pp. 163-169, 1998. 

[82] Z. Lin, Low Gain Feedback, Lecture Notes in Control and Information 

Sciences, Vol. 240, Springer, London, 1999. 

[83] Z. Lin, X. Bao and B. M. Chen, "Further results on almost disturbance 
decoupling with global asymptotic stability for nonlinear systems," Au­
tomatica, Vol. 35, pp. 709-717, 1999. 

[84] z. Lin and B. M. Chen, "Solutions to general H00 almost disturbance 
decoupling problem with measurement feedback and internal stability 
for discrete-time systems," Automatica, in press. 

[85] z. Lin, B. M. Chen, A. Saberi andY. Shamash, "Input-output factor­

ization of discrete-time transfer matrices," IEEE Transactions on Cir­

cuits and Systems - I: Fundamental Theory and Applications, Vol. 43, 

pp. 941-945, 1996. 

[86] z. Lin, A. Saberi, P. Sannuti and Y. Shamash, "Perfect regulation of 

linear multivariable systems- A low-and-high-gain design," Proceedings 

of the Workshop on Advances on Control and Its Applications, Lecture 
Notes in Control and Information Sciences, Vol. 208, pp. 172-193, 1996. 

[87] K. Liu, B. M. Chen and Z. Lin, "On the problem of robust and perfect 
tracking for linear systems with external disturbances," Submitted for 

publication. 



Bibliography 437 

[88] T. S. Low and W. Guo, "Modeling of a three-layer piezoelectric bi­

morph beam with hysteresis," Journal of Microelectromechanical Sys­

tems, Vol. 4, pp. 230-237, 1995. 

[89] D. G. Luenberger, "Canonical forms for linear multivariable systems," 

IEEE Transactions on Automatic Control, Vol. 12, pp. 290-293, 1967. 

[90] R. H. Lyon, "Response of a nonlinear string to random excitation," 
Journal of Acoustical Society of America, Vol. 32, pp. 953-960, 1960. 

[91] A. G. J. MacFarlane and N. Karcanias, "Poles and zeros of linear mul­

tivariable systems: A survey of the algebraic, geometric and complex 
variable theory," International Journal of Control, Vol. 24, pp. 33-7 4, 
1976. 

[92] J. McCormick and R. Horowitz, "A direct adaptive control scheme for 

disk file servos," Proceedings of the 1993 American Control Conference, 
pp. 346-351, San Francisco, California, 1993. 

[93] D. K. Miu andY. C. Tai, "Silicon micromachined SCALED technology," 

IEEE Transaction on Industrial Electronics, pp. 234-239, 1995. 

[94] A. S. Morse, "Structural invariants of linear multivariable systems," 

SIAM Journal on Control, Vol. 11, pp. 446-465, 1973. 

[95] P. Moylan, "Stable inversion of linear systems," IEEE Transactions on 

Automatic Control, Vol. 22, pp. 74-78, 1977. 

[96] W. K. Ng, Design Considerations of a Gyro-stabilized Mirror System, 

Bachelor of Engineering Thesis, Department of Electrical Engineering, 
National University of Singapore, 1986. 

[97] D. H. Owens, "Invariant zeros of multivariable systems: A geometric 
analysis," International Journal of Control, Vol. 28, pp. 187-198, 1978. 

[98] H. K. Ozcetin, A. Saberi and P. Sannuti, "Design for H00 almost dis­

turbance decoupling problem with internal stability via state or mea­

surement feedback - Singular perturbation approach," International 

Journal of Control, Vol. 55, pp. 901-944, 1993. 

[99] H. K. Ozcetin, A. Saberi and Y. Shamash, ''H00-almost disturbance 

decoupling for non-strictly proper systems - A singular perturbation 

approach," Control-Theory & Advanced Technology, Vol. 9, pp. 203-
245, 1993. 



438 Bibliography 

[100] G. P. Papavassilopoulos and M. G. Safonov, "Robust control design 
via game theoretic methods," Proceedings of the 28th Conference on 

Decision and Control, Tampa, Florida, pp. 382-387, 1989. 

[101] T. Pappas, A. J. Laub and N. R. Sandell, Jr., "On the numerical solution 
of the discrete-time algebraic Riccati equation," IEEE Transactions on 
Automatic Control, Vol. 25, pp. 631-641, 1980. 

[102] J. Perry, Spinning Tops and Gyroscopic Motion, Dover Publications, 
New York, 1957. 

[103] I. R. Petersen, "Disturbance attenuation and R 00-optimization: A de­
sign method based on the algebraic Riccati equation," IEEE Transac­
tions on Automatic Control, Vol. AC-32, pp. 427-429, 1987. 

[104] A. C. Pugh and P. A. Ratcliffe, "On the zeros and poles of a rational 
matrix," International Journal of Control, Vol. 30, pp. 213-227, 1979. 

[105] A. C. M. Ran and R. Vreugdenhill, "Existence and comparison theo­
rems for algebraic Riccati equations for continuous- and discrete-time 
systems," Linear Algebra and its Applications, Vol. 99, pp. 63-83, 1988. 

[106] T. J. Richardson and R. H. Kwong, "On positive definite solutions to 
the algebraic Riccati equation," Systems & Control Letters, Vol. 7, pp. 
99-104, 1986. 

[107] H. H. Rosen brock, State-space and Multivariable Theory, John-Wiley, 
New York, 1970. 

[108] A. Saberi, B. M. Chen and Z. L. Lin, "Closed-form solutions to a class of 
R00-optimization problem," International Journal of Control, Vol. 60, 

pp. 41-70, 1994. 

[109] A. Saberi, B. M. Chen and P. Sannuti, "Theory of LTR for nonminimum 
phase systems, recoverable target loops, recovery in a subspace- Part 1: 
Analysis and Part 2: Design," International Journal of Control, Vol. 53, 

pp. 1067-1160, 1991. 

[110] A. Saberi, B. M. Chen and P. Sannuti, Loop Transfer Recovery: Anal­
ysis and Design, Springer, London, 1993. 

[111] A. Saberi and P. Sannuti, "Squaring down of non-strictly proper sys­
tems," International Journal of Control, Vol. 51, pp. 621-629, 1990. 



Bibliography 439 

[112] A. Saberi and P. Sannuti, "Time-scale structure assignment in linear 
multivariable systems using high-gain feedback," International Journal 
of Control, Vol. 49, pp. 2191-2213, 1989. 

[113] A. Saberi and P. Sannuti, "Observer design for loop transfer recovery 
and for uncertain dynamical systems," IEEE Transactions on Auto­

matic Control, Vol. 35, pp. 878-897, 1990. 

[114] A. Saberi, P. Sannuti and B. M. Chen, B 2 Optimal Control, Prentice 
Hall, London, 1995. 

[115] M. Sampei, T. Mita and M. Nakamichi, "An algebraic approach to Boo­
output feedback control problem," Systems & Control Letters, Vol. 14, 
pp. 13-24, 1990. 

[116] P. Sannuti and A. Saberi, "A special coordinate basis of multivariable 
linear systems - Finite and infinite zero structure, squaring down and 

decoupling," International Journal of Control, Vol. 45, pp. 1655-1704, 
1987. 

[117] C. Scherer, "B00-control by state feedback and fast algorithm for the 
computation of optimal Boo norms," IEEE Transactions on Automatic 
Control, Vol. 35, pp. 1090-1099, 1990. 

[118] C. Scherer, "B00-control by state-feedback for plants with zeros on the 

imaginary axis," SIAM Journal on Control and Optimization, Vol. 30, 
pp. 123-142, 1992. 

[119] C. Scherer, "B00-optimization without assumptions on finite or infinite 
zeros," SIAM Journal on Control and Optimization, Vol. 30, pp. 143-
166, 1992. 

[120] B. M. Scherzinger and E. J. Davison, "The optimal LQ regulator with 
cheap control for not strictly proper systems," Optimal Control Appli­

cations & Methods, Vol. 6, 291-303, 1985. 

[121] B. C. Siew, B. M. Chen and T. H. Lee, "Design and implementation of 

a robust controller for a Free Gyro-stabilized Mirror System," Journal 

of Dynamic Systems, Measurement, and Control, Vol. 121, pp. 550-556, 

1999. 

[122] L. M. Silverman, "Inversion of multivariable linear systems," IEEE 
Transactions on Automatic Control, Vol. 14, pp. 270-276, 1969. 



440 Bibliography 

(123] L. M. Silverman, "Discrete Riccati equations: Alternative algorithms, 
asymptotic properties, and system theory interpretations," Control and 

Dynamical Systems, Vol. 12, pp. 313-386, 1976. 

(124] A. A. Stoorvogel, The H00 Control Problem: A State Space Approach, 

Prentice Hall, Englewood Cliffs, 1992. 

(125] A. A. Stoorvogel, A. Saberi and B. M. Chen, "The discrete-time H 00 

control problem with measurement feedback," International Journal of 

Robust and Nonlinear Control, Vol. 4, pp. 457-479, 1994. 

(126] A. A. Stoorvogel, A. Saberi and B. M. Chen, "A reduced order observer 
based controller design for H00-optimization," IEEE Transactions on 

Automatic Control, Vol. 39, pp. 355-360, 1994. 

(127] A. A. Stoorvogel and H. L. Trentelman, "The quadratic matrix in­
equality in singular H 00-control with state feedback," SIAM Journal on 

Control and Optimization, Vol. 28, pp. 1190-1208, 1990. 

(128] A. A. Stoorvogel and J. W. van der Woude, "The disturbance decou­
pling problem with measurement feedback and stability for systems 
with direct feedthrough matrices," Systems & Control Letters, Vol. 17, 
pp. 217-226, 1991. 

(129] G. Tadmor, "Worst-case design in the time domain: The maximum 
principle and the standard H00 problem," Mathematics of Control, Sig­

nals and Systems, Vol. 3, pp. 301-324, 1990. 

(130] K. M. Tsuchiura, H. H. Tsukuba, H. 0. Toride and T. Takahashi, "Disk 
system with sub-actuators for fine head displacement," US Patent No: 

5189578, 1993. 

(131] G. Verghese, Infinite Frequency Behavior in Generalized Dynamical Sys­

tems, Ph.D. Dissertation, Stanford University, 1978. 

(132] M. Vidyasagar, Control System Synthesis: A Factorization Approach, 
MIT Press, Cambridge, Massachusetts, 1985. 

[133] S. Weerasooriya and D. T. Phan, "Discrete-time LQG/LTR design and 
modeling of a disk drive actuator tracking servo system," IEEE Trans­
actions on Industrial Electronics, Vol. 42, pp. 240-247, 1995. 



Bibliography 441 

[134] S. Weiland and J. C. Willems, "Almost disturbance decoupling with 

internal stability," IEEE Transactions on Automatic Control, Vol. 34, 

pp. 277-286, 1989. 

[135] H. Wielandt, "On the eigenvalues of A + B and AB ," Journal of Re­

search of the National Bureau of Standards-B. Mathematical Science, 

Vol. 77B, pp. 61-63, 1973. 

[136] J. C. Willems, "Almost invariant subspaces: An approach to high gain 

feedback design- Part I: Almost controlled invariant subspaces," IEEE 

Transactions on Automatic Control, Vol. 26, pp. 235-252, 1981. 

[137] J. C. Willems, "Almost invariant subspaces: An approach to high gain 

feedback design - Part II: Almost conditionally invariant subspaces," 

IEEE Transactions on Automatic Control, Vol. 27, pp. 1071-1085, 1982. 

[138] W. M. Wonham, Linear Multivariable Control: A Geometric Approach, 

Springer, New York, 1979. 

[139] G. Zames, "Feedback and optimal sensitivity: Model reference trans­

formations, multiplicative seminorms, and approximate inverses," IEEE 
Transactions on Automatic Control, Vol. 26, pp. 301-320, 1981. 

[140] K. Zhou, J. Doyle and K. Glover, Robust & Optimal Control, Prentice 

Hall, New York, 1996. 

[141] K. Zhou and P. Khargonekar, "An algebraic Riccati equation approach 
to H00-optimization," Systems & Control Letters, Vol. 11, pp. 85-91, 

1988. 



Index 

£2,3 
L00 , 7 

Lp, 3, 7 
')'-suboptimal controller, 9 

l2-norm, 3 
continuous signals, 7 
discrete signals, 7 

l00-norm 

continuous signals, 7 

discrete signals, 7 

lp-norm, 3 
continuous signals, 7 

discrete signals, 7 

.C00-norm, 3 
continuous systems, 9 

discrete systems, 9 
2-norm, 6 

Almost perfect tracking 
discrete systems 

problem formulation, 350 
solutions, 353 
solvability conditions, 351 

ATEA design 

continuous systems 

H 00 control, 145 

H00-ADDPMS, 184 

RPT control, 222 

discrete systems 

Hoo control, 272 
H00-ADDPMS, 293 

RPT control, 344 
piezo actuator system, 392 

Bilinear transformation, 93 
Bilinear transformations, 57, 96, 98, 

102, 310, 371 
continuous to discrete, 58 
controllability, 60, 66 

discrete to continuous, 65 

geometric subspaces, 62, 68 
infinite zero structure, 62, 68 
invariant zero structure, 62, 67 

invertibility, 62, 67 
observability, 60, 66 
structural mapping diagram, 70 

Block diagonal canonical form, 23, 

186 

Canonical forms 
block diagonal, 23 
controllability structural decom-

position, 22 
Jordan, 20 
real Jordan, 20 
special coordinate basis, 28 

Complementary sensitivity function, 

12 

Complex stability radius, 14 

Continuous-time Riccati equations 

general CARE, 96 
H2-CARE, 101, 114, 225, 227, 

251 



444 

H00-CARE, 86, 98 

Controllability index, 23, 37, 353, 

361 

Controllability structural decompo­

sition, 22, 36, 73 

Discrete-time Riccati equations 

general DARE, 96 

H2-DARE, 101 

H00-DARE, 90, 97, 271 

Eigenstructure assignment, 145, 184, 

272, 293 

Euclidean norm, 6 

Finite zero structure (see invariant 

zeros), 29, 34, 35 

Full information case 

bilinear transformations, 99 

continuous systems 

existence conditions, 86, 87 
infimum "Y*, 112, 114 

definition, 9 

discrete systems 

existence conditions, 91 

H 00-ADDPMS, 289, 293 

infimum "Y*, 249, 251 

solutions, 270 

Full information system, 9 

Full order controllers 

continuous systems 

H00 control, 152 

H 00-ADDPMS, 192 

RPT control, 226 

discrete systems 

almost perfect tracking, 354 

Hoo control, 275 

H 00-ADDPMS, 301 

Full state feedback system, 10 

Index 

Geometric subspaces, 37 
sx,s•,s-,S0 ,S+,S0 ,37 
S>., 38 
vx,v•,v-, V0 ,V+,V0 ,37 
V>., 38 
bilinear transformation, 62, 68 

Gyro mirror system, 407 

data acquisition, 413 

dead zone compensation, 424 

design formulation, 413 

design specifications, 414 

dynamical model, 411 

hardware setup, 408 

implementation, 417 

interface assembly, 412 

introduction, 407 

simulation, 417 

zero structures, 416 

H2-norm, 3 

continuous systems, 8 
discrete systems, 8 

H 00 optimization 

1-suboptimal controller, 9 

existence conditions 

continuous systems, 85-88 

discrete systems, 89, 92 

full information case, 9, 86, 87, 

91, 97 

infimum, 9, 111, 122, 249 

measurement feedback case, 9 

optimal controller, 9 

regular case, 10, 86, 92 

singular case, 10, 88, 89 

solutions 

continuous systems, 143 

discrete systems, 269 

standard problem, 4 

state feedback case, 10, 86, 91 



Index 

H 00-ADDPMS 

continuous systems, 177 

applications, 391 

solutions, 184, 191, 194 

solvability conditions, 180, 183 

discrete systems, 287 

solutions, 293, 301, 305 

solvability conditions, 289, 293 

H 00-norm, 3 

continuous systems, 8 

discrete systems, 8 

Hamiltonian matrix, 100 

HDD VCM actuator, 364 

design specifications, 369 

dynamical model, 368 

dynamics, 367 

frequency responses, 368 

implementation, 373 

introduction, 363 

modeling, 365 

position error signal test, 376 

servo system design, 369 

simulation, 371 
track following test, 375 

Hysteresis, 382 

Infimum 'Y*, 9 
continuous systems, 111 

full information, 112, 114 

output feedback, 123, 125, 139 

discrete systems, 249 

full information, 249, 251 

output feedback, 261, 263, 267 

open problem, 122 

Infinite zero structure, 29, 35, 353 

bilinear transformation, 62, 68 

Invariant zeros, 34 

bilinear transformation, 62, 67 

multiplicity structure, 35 

445 

algebraic multiplicity, 35 

geometric multiplicity, 35 

Invertibility, 36, 62, 67 

degenerate, 36 

invertible, 36 

left invertible, 36 

right invertible, 36 

Jordan canonical form, 20, 24, 35 

real form, 20, 24, 201 

Lyapunov equations, 114, 146, 186, 

251, 258 

Lyapunov functions, 205, 206 

Mixed-sensitivity problem, 11 

Morse indices 

list I 1 , 35 

list I 2 , 37, 62, 67 

list I 3 , 37, 62, 67 

list I 4 , 35 

Normal rank, 34 

norms 

H 2-norm, 8 
H 00-norm, 8 

l2-norm, 7 

l00-norm, 7 

lp-norm, 7 

£ 00-norm, 9 

2-norm, 6 

Euclidean norm, 6 

PID controller, 375 

Piezo actuator system, 381 

design formulation, 388 

design specifications, 383 

dynamical model, 382 

hysteretic model, 382 

linearization, 385 



446 

introduction, 381 
simulations, 395 

zero structures, 391 
Pole-zero cancellations, 150, 154 

Quadratic matrix inequalities, 85, 
126, 159, 170 

Real stability radius, 14 
Reduced order controllers 

continuous systems 

H 00 control, 158 
Hoo-ADDPMS, 194 

RPT control, 228 

discrete systems 

almost perfect tracking, 353 

H 00 control, 280 

Hoo-ADDPMS, 305 
RPT control, 345 

gyro mirror design, 417 

piezo actuator design, 392 
VCM servo design, 371 

Regular case, 10 
continuous systems 

existence conditions, 86 
solutions, 149, 155 

discrete systems 

existence conditions, 92 

Relative degree, 36, 355 

Robust and perfect tracking 

applications, 369, 413, 416 

continuous systems, 215 

full order solution, 226, 232 

problem formulation, 216 
reduced order solution 228 

' ' 
232 

solvability conditions, 217 
state feedback case, 222, 231 

discrete systems, 339 

Index 

problem formulation, 340 
reduced order solution, 345 
solvability conditions, 340 
state feedback case, 344 

Robust stabilization 
additive perturbations, 15 
multiplicative perturbations, 16 

Rosenbrock system matrix, 34 

Sensitivity function, 12 
SIMULINK simulation setups 

gyro mirror system, 418 
piezo actuator system, 400 

VCM servo system, 369 

Singular case, 10, 15 
continuous systems 

existence conditions, 85 
solutions, 143 

discrete systems 

existence conditions, 89 
solutions, 269 

Special coordinate basis, 19, 28, 73, 
113,145,180,219,223,250, 
270,342,344 

block diagram, 32 
compact form, 31 
properties, 33-36, 38 

controllability, 33 

geometric subspaces, 38 

infinite zeros, 35 
invariant zeros, 34 

invertibility, 36 
normal rank, 34 

observability, 33 
state space decomposition, 37 
transformations, 29 

Sylvester equations, 133, 135, 138 
System modeling, 365 

Tustin's approximation, 58 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>

    /RUS <>
    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




