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Preface

THE FORMULATION OF the optimization theory has certainly become one of
the mile stones of modern control theory. In a typical analytical design of
control systems, the given specifications are first transformed into a performance
criterion, and then control laws which would minimize the performance criterion
are sought. Two important and well-known criteria are the Hy norm and the
H, norm of the transfer matrix from an exogenous disturbance to a pertinent
controlled output of a given linear time invariant plant. This book aims to study
the Hy control wherein the control design problem is modeled as a problem
of minimizing the Hy norm of a certain closed-loop transfer matrix under
appropriate feedback control laws. Our aim is to examine both the theoretical
and practical aspects of Ho, control from the angle of the structural properties
of linear systems. Our objectives are to provide constructive algorithms for
finding solutions to general singular H, control problems, to general Hy, almost
disturbance decoupling problems, and to newly formulated robust and perfect
tracking problems, as well as to apply these techniques to solve several practical
problems.

The preliminary edition of this work was published earlier by the publisher
under the title, H,, Control and Its Applications, Volume 235 of the Series of
Lecture Notes in Control and Information Sciences. 1 am thankful to Nicholas
Pinfield, the Engineering Editor, for urging me to upgrade it to the current
series and for his kindly assistance. I have taken this opportunity to enhance
the overall presentation of the work, and to include several newly developed
theoretical and practical results, namely, Chapters 9, 13 and 14, which deal
with the theory of robust and perfect tracking and its application to a hard
disk drive servo system design.

The intended audience of this manuscript includes practicing control engi-
neers and researchers in areas related to control engineering. An appropriate
background for this monograph would be some first year graduate courses in
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linear systems and multivariable control. A little bit of knowledge of the geo-
metrical theory of linear systems would certainly be helpful.

I have been fortunate to have the benefit of the cooperation of several co-
workers. Foremost, I am indebted to Zongli Lin of University of Virginia. Many
parts of this book were born as the result of our continual collaboration and
our numerous discussions over the past few years. In general, I would like to
thank Professors Ali Saberi of Washington State University, Yacov Shamash of
State University of New York at Stony Brook, Chang C. Hang and Tong H. Lee
of National University of Singapore, Uy-Loi Ly of University of Washington,
Yaling Chen of Xiamen University, Anton Stoorvogel of Eindhoven University
of Technology, and Steve Weller of University of Newcastle, for their various
contributions to certain results presented in this book. Also, I am thankful to
Professors Pedda Sannuti of Rutgers University, Dazhong Zheng of Tsinghua
University, Cishen Zhang of University of Melbourne, and Shuzhi S. Ge of
National University of Singapore for many beneficial discussions over the past
few years, and to Drs. Teck-Seng Low, Tow-Chong Chong and Guoxiao Guo
of the Data Storage Institute of Singapore for their generous support to my
research project on the dual actuator systems of hard disk drives.

I am particularly thankful to my current and former graduate students,
especially Boon-Choy Siew, Yi Guo, Jun He, Kexiu Liu, Zhongming Li and
Teck-Beng Goh, for their contributions and for applying and testing parts of
the results of this book to real life problems such as gyro-stabilized mirror
platform, piezoelectric actuator, and dual actuator systems of hard disk drives.
I am also indebted to Andra Leo, my good friend and English teacher at the
National University of Singapore, for her kindest help in correcting English
errors throughout the preliminary edition of this manuscript.

This work was completed mainly using my ‘spare’ time, i.e., evenings, week-
ends and holidays. I owe a debt of deepest gratitude to my parents, my wife
Feng, and my children Andy, Jamie and Wen, for their sacrifice, understanding
and encouragement. Last but certainly not the least, I would like to give my
hearty thanks to my grand uncle, Very Reverend Paul Chan, and to his Sino-
American Amity Fund and Chinese Catholic Information Center, New York. It
would not have been possible for me to build my academic career without the
spiritual and financial support that I received from them during my course of
studies at Gonzaga University and Washington State University. It is natural
that I dedicate this work to all of them.

Ben M. Chen
Singapore, 2000
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Chapter 1

Introduction

1.1. Introduction

THE ULTIMATE GOAL of a control system designer is to build a system that will
work in a real environment. Since the real environment may change and oper-
ating conditions may vary from time to time, the control system must be able
to withstand these variations. Even if the environment does not change, other
factors of life are the model uncertainties as well as noises. Any mathematical
representation of a system often involves simplifying assumptions. Nonlineari-
ties are either unknown and hence unmodeled, or are modeled and later ignored
in order to simplify analysis. High frequency dynamics are often ignored at the
design stage as well. In consequence, control systems designed based on simpli-
fied models may not work on real plants in real environments. The particular
property that a control system must possess for it to operate properly in re-
alistic situations is commonly called robustness. Mathematically, this means
that the controller must perform satisfactorily not just for one plant, but for a
family of plants. If a controller can be designed such that the whole system to
be controlled remains stable when its parameters vary within certain expected
limits, the system is said to possess robust stability. In addition, if it can satisfy
performance specifications such as steady state tracking, disturbance rejection
and speed of response requirements, it is said to possess robust performance.
The problem of designing controllers that satisfy both robust stability and per-
formance requirements is called robust control. Optimization theory is one of
the cornerstones of modern control theory and was developed in an attempt to
solve such a problem. In a typical control system design, the given specifica-
tions are at first transformed into a performance index, and then control laws
which would minimize certain norm, say Hs or Hy, norm, of the performance
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index are sought. This book focuses on the Ho, optimal control theory, and its
related problems such as the H, almost disturbance decoupling problem, and
the robust and perfect tracking problem.

Over the past decades we have witnessed a proliferation of literature on Hy,
optimal control since it was first introduced by Zames [139]. The main focus
of the work has been and continues to be on the formulation of the problem
for robust multivariable control and its solution. Since the original formula-
tion of the Hy problem in Zames [139], a great deal of work has been done
on finding the solution to this problem. Practically all the research results of
the early years involved a mixture of time-domain and frequency-domain tech-
niques including the following: 1) Interpolation approach (see e.g., Limbeer and
Anderson [77]); 2) Frequency domain approach (see e.g., Doyle [47], Francis [54]
and Glover [57]); 3) Polynomial approach (see e.g., Kwakernaak [69]); and 4) J-
spectral factorization approach (see e.g., Kimura [67]). Recently, considerable
attention has been focussed on purely time-domain methods based on algebraic
Riccati equations (ARE) (see e.g., Chen, Guo and Lin [21], Chen, Saberi and
Ly [31], Doyle and Glover [48], Doyle, Glover, Khargonekar and Francis [49],
Khargonekar, Petersen and Rotea [65], Petersen [103], Saberi, Chen and Lin
[108], Sampei, Mita and Nakamichi [115], Scherer [117-119], Stoorvogel [124],
Stoorvogel, Saberi and Chen [125], Tadmor [129], Zhou, Doyle and Glover [140],
and Zhou and Khargonekar [141]). Along this line of research, connections are
also made between H,, optimal control and differential games (see e.g., Bagar
and Bernhard [4], and Papavassilopoulos and Safonov [100]).

Most of the results in the literature are restricted to the so-called regular H,
control problem (see Definition 1.3.13). Unfortunately, many real life problems
do not satisfy these conditions and must be formulated in terms of the regular
case by adding some dummy controlled outputs and/or disturbances in order
to apply the theory that deals with only the regular problem. The problem
we treat in this book is general, i.e., it does not necessarily satisfy the reg-
ularity assumptions. The existence conditions for H,, suboptimal controllers
for this type of problem are well studied in Stoorvogel [124] and Scherer [119].
The main focus of this book is, however, very different. We concentrate on
1) the computation of infimum of H,, optimization problems, which must be
known before one can carry out any meaningful design; 2) solutions to general
H, optimization problems; 3) solutions to general H, disturbance decoupling
problems, which themselves are a very important subject; 4) solutions to ro-
bust and perfect tracking problems; and 5) the practical applications of these
theories.
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Most of the results presented in this book are from research carried out by
the author and his co-workers over the last decade. The purpose of this book
is to discuss various aspects of the subject under a single cover.

1.2. Notations
Throughout this book, we shall adopt the following notations:

R := the set of real numbers;
C := the entire complex plane;
C® := the set of complex numbers inside the unit circle;
C?® := the set of complex numbers outside the unit circle;
C° := the unit circle in the complex plane;
€™ := the open left-half complex plane;
C™* := the open right-half complex plane;
C° := the imaginary axis in the complex plane;
I := an identity matrix;
I}, := an identity matrix of dimension k X k;
X' := the transpose of X;
X" := the complex conjugate transpose of X;
(X) := the determinant of X;
(X)) := the rank of X
Im (X) := the range space of X
(X) := the null space of X;

X' := the Moore-Penrose (pseudo) inverse of X;

A(X) := the set of eigenvalues of X;
Amax(X) := the maximum eigenvalues of X where A(X) C R;
Omax(X) := the maximum singular value of X;
p(X) := the spectral radius of X which is equal to max; |A;(X)|;
|X|:= the usual 2-norm of a matrix X;
|z|] ;= the Euclidean norm of a vector z;

I|G|l2 := the Hy-norm of a stable system G(s) or G(z);
[l9ll2 := the l-norm of a signal g(t) or g(k);

Ly := the set of all functions whose I, norms are finite;
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llgllp ;== the l,-norm of a signal g(t) or g(k);
L, := the set of all functions whose [, norms are finite;
[|Gllz., := the Loo-norm of a system G(s) or G(z);
|Gl := the Hoo-norm of a stable system G(s) or G(z);
dim (X) := the dimension of a subspace X’;
X1 := the orthogonal complement of a subspace X' of R";

C~'{X}:={z|Cz € X}, where X is a subspace and C is a matrix;

n
i

a linear system characterized by (A., Bx, Cy, D.);
Y% := a dual system of £, & is characterized by (A, C., B., D.);

:= the end of an algorithm or assumption;

:= the end of a corollary;

B] := the end of a definition;

Bl := the end of an example;

:= the end of a lemma,;

© := the end of an observation;

B := the end of a property or proposition;

Bl := the end of a remark;

:= the end of a theorem,;

:= the end of the proof of an interim result;
B := the end of a proof.

Finally, we denote normrank {X(s)} the rank of X () with entries in the field
of rational functions of ¢.

1.3. The Standard H, Optimization Problem

We consider a generalized system ¥ with a state-space description,

dz)=Az+ B u+ E w,
¥ y =Ciz+ Dyyu+ D w, (131)
h =Cyxz+ Dy u+ Dy w,

where d(z) = £(t) if £ is a continuous-time system, or d(z) = z(k+1) if X is
a discrete-time system. As usual, z € R" is the state, u € R™ is the control
input, w € RY is the external disturbance input, y € R? is the measurement
output, and h € R* is the controlled output of X. They represent z(t), u(t),
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w(t), y(t) and h(t), respectively, if T is of continuous-time, or represent z(k),
u(k), w(k), y(k) and h(k), respectively, if ¥ is of discrete-time. For the sake
of simplicity in future development, throughout this book, we let ¥ be the
subsystem characterized by the matrix quadruple (4, B, C3, D2) and £ be the
subsystem characterized by (A, E, Cy, D).

Generally, we can assume that matrix Dy; in (1.3.1) is zero. This can be
justified as follows: If D;; # 0, we define a new measurement output,

Ynew =y — Dniu = C1z + Dyw, (1.3.2)

which does not have a direct feedthrough term from u. Suppose we carry on our
control system design using this new measurement output to obtain a proper
control law, say,

u = K(<)ynew, (1.3.3)

where ¢ = s, the Laplace transform operator, if ¥ is a continuous-time sys-
tem, or ¢ = z, the z-transform operator, if ¥ is a discrete-time one. Then,
it is straightforward to verify that the control law (1.3.3) is equivalent to the
following one,

u = [I 4+ K(s)D11] K(s)y, (1.3.4)

provided that [I +K(¢)D11]7! is well posed, i.e., the inverse exists for almost all
¢ € C. Thus, for simplicity, we will assume throughout the book that D;; = 0.

The standard H,, optimal control problem is to find an internally stabilizing
proper measurement feedback control law,

) =A m + ch )
Semp : { (v) = Acmp v Y (1.3.5)

U = Cemp V +Dcmp Y,

such that the Ho.-norm of the overall closed-loop transfer matrix function from
w to h is minimized (see also Figure 1.3.1). To be more specific, we will say
that the control law Y¢mp of (1.3.5) is internally stabilizing when applied to the
system ¥ of (1.3.1), if the following matrix is asymptotically stable:

A= A+ BDcmpCi BCemp , (1.3.6)

BempCi Acmp

i.e., all its eigenvalues lie in the open left-half complex plane for a continuous-
time system or in the open unit disc for a discrete-time system. It is straight-
forward to verify that the closed-loop transfer matrix from the disturbance w
to the controlled output h is given by

Thu(s) = Ce(sI — Ae) ™' Be + De, (1.3.7)
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w___, - h
Uu E Y
Ecmp

Figure 1.3.1: The standard H,-optimization problem.

where

_ A+ BDcmpCl BCcmp] B. := [E + BDcmle :| (1.3.8)

A = e 1=
€ chle

chpcl Acmp
and
Oe = [C2 + D2Dcmpcl D2Ccmp], De = D2DcmpD1 + D22- (139)

It is simple to note that if ¥cp, is a static state feedback law, i.e., u = Fz,
then the closed-loop transfer matrix from w to h is given by

Thw(§) = (Cz + D2F)(§I —A- BF)_IE + Dys. (1310)

Similarly, if ¥cmp is given by u = Fiz + Fow, i.e., a static full information
feedback control law, then we have

Thw(s) = (Cz + Do F1)(sI — A— BF)) ™ (E + BF,) + (D23 + D2 Fy). (1.3.11)
The following definitions will be convenient in our future development.

Definition 1.3.1. (Euclidean norm and 2-norm). Given a vector z € C"
with entries z1, Zs, - - -, T, its Euclidean norm is defined as,

|z| = V]z1]? + [z + - + [zl (1.3.12)

Given a matrix A € C™*™, its 2-norm is defined as,
A
|A| = sup % = max /(A" 4). (1.3.13)
T#0 ?

The 2-norm of the matrix A is also called its spectral norm. Bl
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Definition 1.3.2. (Is-norm). The l;-norm of a continuous-time signal g(t),
which is either a column vector or a row vector, is defined as

llgll2 := <trace [/OOO g(t)g(t)’dtD ’ . (1.3.14)

Similarly, for a discrete-time signal vector g(k), we have

2

llgll2 := (trace [Zg(k)g(k)’]) : (1.3.15)
k=0

The square of the l3-norm of g(t) or g(k) is commonly termed the total energy in
the signal g(t) or g(k). In many areas of engineering, energy or lp-norm is used
as a measure of the size of a transient signal g(t) or g(k) which decays to zero
as time ¢ or shift k& progresses towards infinity. By Parseval’s theorem, ||g||2 can
also be computed in the frequency domain as follows: for the continuous-time
case,

1
2

ol = ( etrace [ ctmetora)]) (1.3.16)

where G(jw) is the Fourier transform of g(t); similarly, for the discrete-time
case,

1 L . 3
llgllz = <%trace [ / G(eJ“)G(e]“’)Hde , (1.3.17)

where G(z) is the z-transform of g(k). =

Definition 1.3.3. (l,-norm and L,). Let p € [1,00). The l,-norm of a
continuous-time vector signal g(t) is defined as

ot = ([ lotorpa) " (13.18)

Similarly, for a discrete-time signal vector g(k), we define,

I~ 1/p
llgllp := (Z |g<k)|”) . (1.3.19)
k=0

For p = 2, the above definitions coincide with those in Definition 1.3.2. Also,
L, denotes the set of vector functions, whose {,-norms are bounded. =)

Definition 1.3.4. (lx-norm and Ly ). The l,-norm of a continuous-time
signal vector g(t) is defined as

llgllco := ess sup |g(¢)]- (1.3.20)
t>0
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Similarly, for a discrete-time signal vector g(k), we define,
llglloo := sup |g(k)I. (1.3.21)
k>0

Also, Ly, denotes the set of vector functions, whose lo-norms are bounded. B

Definition 1.3.5. (Hz-norm). The H-norm of an asymptotically stable and
proper continuous-time transfer matrix G(s) is defined as

61 = (etrace | [ GliGG"w|) . sz

By Parseval’s theorem, ||G/||; can equivalently be defined as

Gl = (trace [ /0 ” g(t)g(t)'dtD : (1.3.23)

where g(t) is the unit impulse response matrix of G(s). Thus, ||G|]2 = ||g]l2-
Similarly, the Hj-norm of an asymptotically stable and proper discrete-time
transfer matrix G(z) is defined as

IGllz = <%traee[ ) G(ej“’)G(ej‘”)Hde : (1.3.24)

-m

Again, by Parseval’s theorem, ||G||2 can equivalently be defined as

1G]z = <trace [Z g(k)g(k)']) , (1.3.25)

k=0

where g(k) is the unit impulse response matrix of G(k). Thus, as in the
continuous-time case, ||G||2 = ||g]|2- BJ

Definition 1.3.6. (Hy-norm). The Hy-norm of an asymptotically stable
and proper continuous-time transfer matrix G(s) is defined as

, A
IGlloo := SUP Omax[G(jw)] = sup Il ”2,
w€[0,00) fwlla=1 llwll2

(1.3.26)

where w and h are respectively the input and output of G(s). Similarly, the

H,-norm of an asymptotically stable and proper discrete-time transfer matrix
G(z) is defined as

1 h
IGlloo == sup omax[G(e?)] = sup l|Al]2

, 1.3.27
we0,27] lwllz=1 [lwl]2 ( )

where w and h are respectively the input and output of G(z). )]
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Definition 1.3.7. (Lo-norm). The L.,-norm of a continuous-time transfer
matrix G(s), which is not necessarily stable, is defined as

IGllce. ;= sup omax[G(jw)]. (1.3.28)

w€[0,00)

Similarly, the Lo-norm of a discrete-time transfer matrix G(z), which is not
necessarily stable, is defined as

[Gllce == SUD Omax[G(e7)]. (1.3.29)
w€[0,27]
Obviously, if G is stable, its L,,-norm coincides with its H,-norm. (]

Definition 1.3.8. (y-Suboptimal Controller). Consider the given system
T of (1.3.1) and the controller Ecmp of (1.3.5). Tcmp is said to be an Hy, -
suboptimal controller, or in short a y-suboptimal controller, for ¥ if, when Z¢p,
is applied to ¥, the resulting closed-loop is internally stable and the H.,-norm
of the closed-loop transfer matrix is less than 7. ]

Definition 1.3.9. (Infimum v*). Consider the given system X of (1.3.1) and
the controller E¢mp of (1.3.5). The infimum of the Hyo-norm of the closed-loop
transfer matrix Thy (X X Lemp) over all stabilizing controllers Yemp is denoted
by v*, namely,

¥ i=1nf $ || Thow (X Zemp)||oo | Zemp internally stabilizes ¥ . 1.3.30
P P

Obviously, v* > 0. Occasionally, when it is clear in the context, we may also
say that 4* is the infimum of the given system X. B

Definition 1.3.10. (H, Optimal Controller). Consider the given system
T of (1.3.1) and the controller Xcmp of (1.3.5). Zcmp is said to be an Hy,
optimal controller for ¥ if, when X, is applied to X, the resulting closed-loop
is internally stable and the H,-norm of the closed-loop transfer matrix is equal
to y*. ]

Definition 1.3.11. (Full Information Feedback Case).  Consider the
given system ¥ of (1.3.1). The Hy, optimization problem for ¥ is called a full
information feedback case if

y= (:}) ie, Cp = (é) , D, = <(1)> (1.3.31)

We will also call such a system ¥ a full information feedback system. ol
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Definition 1.3.12. (Full State Feedback Case). Consider the given system
¥ of (1.3.1). The H, optimization problem for ¥ is called a full state feedback
case if y = z, i.e,, C; = I and D; = 0. We will also call such a system ¥ a full
state feedback system. )

Definition 1.3.13. (Regular Case). Consider the given system ¥ of (1.3.1).
The H,, optimization problem for ¥ is said to be a regular case or a regular
problem provided that:

1. The following conditions are satisfied if ¥ is a continuous-time system,

(a) Dy is of full column rank and X is free of imaginary invariant zeros;

(b) Dy is of full row rank and X is free of imaginary invariant zeros.

2. The following conditions are satisfied if ¥ is a discrete-time system,

(a) Xp is left invertible and is free of unit circle invariant zeros;

(b) Xg is right invertible and is free of unit circle invariant zeros.

Also, we will call such a system X a regular system. We note that the charac-
terizations of the regular case for discrete-time systems precisely correspond to
those for continuous-time systems under a bilinear mapping. This will be seen
clearly in Chapters 3 and 5. Bl

Definition 1.3.14. (Singular Case). Consider the given system ¥ of (1.3.1).
The Hy, optimization problem for ¥ is said to be a singular case or a singular
problem if it is not a regular one. We will occasionally call such a system ¥ a
singular system. 3]

1.4. Some Common Robust Control Problems

There are many common robust control problems that can be converted into
the standard H, optimization problem. Once a problem is translated into the
standard one, it can be readily solved using the results of the coming chapters.
For example, Figure 1.4.1 illustrates the robust stability problem for an unstruc-
turally perturbed system: Suppose that E¢mp is an Hy, y-suboptimal controller
for the nominal system ¥ of the uncertain plant, i.e., || Thy(E X Semp)|loo < -
Then, by the well-known Small-Gain Theorem, the overall closed-loop system
in Figure 1.4.1 will remain stable for all possible perturbations of the plant,
ie., A, with ||Allc < 1/. Thus, by pushing 7 closer to v* of the nominal
system, the overall system will be more robust with respect to the perturbation



1.4. Some Common Robust Control Problems 11
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w h
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Uu Yy
z)cmp

Figure 1.4.1: Robust stability problem of unstructurally perturbed systems.

A. Similarly, robust stabilization problems for systems with structural pertur-
bations such as additive perturbation and multiplicative perturbation can also
be easily converted into a standard H, control problem. In what follows, we
will show how to cast the following four common problems into the standard
H, optimization problem:

e The mixed-sensitivity problem;
e Maximization of complex stability radius;

e Robust stabilization with additive perturbations;

¢ Robust stabilization with multiplicative perturbations.

1.4.1. The Mixed-sensitivity Problem

The mix-sensitivity problem is associated with a widely used control system
configuration as depicted in Figure 1.4.2. In the author’s opinion, such a con-
figuration is definitely not a good structure to design a tracking control system,
because it feeds only the error signal e into the controller ¥z. As it will be
seen later in Chapters 9 and 13, a controller structure, which utilizes both the
reference r and the measurement y independently, will in general yield a much
better performance. Anyhow, it is up to readers to make their own judgment.

We note that X, in Figure 1.4.2 represents the nominal model of a given
plant. Let the transfer matrix of ¥, be given as
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hy lw

T+ e U + Yy hs
EF Zm ‘_;é W2 P

Figure 1.4.2: The configuration associated with the mix-sensitivity problem.
with (Am, Bm) being stabilizable and (Am, Cm) being detectable. Let the trans-
fer matrix of Xz, which is the controller to be designed, be given as

and the minimal realizations of the weighting functions V', W; and W, be
respectively given as

V(s) = Cy(sI — Ay) "' By + Dy, (1.4.3)
Wi(s) = Cwi(sI — Aw1) "' Bw1 + D, (1.4.4)

and
Wa(s) = Cwa(sI — Awz) "' Bwa + Dwa. (1.4.5)

We note that the choices of these weighting functions V, W; and W are subject
to the design specifications of the overall system. Then, the sensitivity function
S and the complementary sensitivity function T are respectively defined as

S = (I + GmGF)_l and T = GF(I + GmGF)—l. (146)

It is simple to see that the sensitivity function S and the complementary sen-
sitivity function T are respectively the transfer matrices from r to e, and from
r to u, if the disturbance w = 0. Clearly, a small S would yield a small e,
i.e., a good tracking performance, while a small T' would yield a small control
u. Unfortunately, it is clear from the definitions of S and T that we can never
make them both small simultaneously. In general, some kinds of trade-offs (by
properly choosing weighting functions V', W; and W) are always needed in
practical situations. Next, we note that if r = 0, then the transfer matrices
from w to h; and from w to hs are respectively given by —~W,TV and W,SV.
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The mixed-sensitivity problem is to find an internally stabilizing control law
Y such that the Hy,-norm of the closed-loop system from the disturbance w
to the controlled output h = (h!, h})', i.e.,

_ | wv

_1 A Hoo (1.4.7)

~WATV
WasSV ||,

is minimized. Such a problem can be translated into a state-space setting
as a special case of the standard H., optimization problem. The problem is
equivalent to design an internally stabilizing control law

v =Arv - B
EF:{ ) Y (1.4.8)

u=Crv—Dpy
for the following auxiliary system,

t=Az+ B u+ E w,
Tmix : Sy=Ciz+ Dyyu+ D w, (1.4.9)
h=Cyz+ Dy u+ Dy w,

where
Am 0 0 0 Bm
a=| 7 i A(v)“ o |, B= B(v)vl . (14.10)
Bw:Cm Bw2Cy 0 Ay Bwz D
0
E= %v ,DQ2=[DWSDV], (1.4.11)
By Dy
Ci=[Cm Cy 0 0], Dy =Dm, D; =Dy, (1.4.12)
and
Cy = Dwgcm Dwgcv 05” Cm, D2=[Df;gm]. (1.4.13)

such that when Xy is applied to Xy, the Hoo-norm of the resulting closed-loop
system from w to h is minimized. Obviously, depending on the choices of the
weighting functions, the above problem can be either a regular or a singular one.
All results for the standard H., optimization problem in the coming chapters
can be utilized to solve this mixed-sensitivity problem.
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1.4.2. Maximization of Complex Stability Radius

We introduce in this subsection the problem of the maximization of complex
stability radius for uncertain systems. Let us consider an uncertain linear time-
invariant system XA characterized by

iz = Az + Bu+ EACT, (1.4.14)

where A € R™™, B € R™™, E € R"*¢ and C € RP*™ are given constant
matrices while A expresses the uncertainty which is structured by the matrices
E and C. Moreover, we assume that (4, B) is stabilizable. For any stabilizing

state feedback law
u=Fzx, (1.4.15)

with FF € R™*", the complex stability radius for ¥ is defined as (see e.g.,
Hinrichsen and Pritchard [62]),

ve(Ea, F) := inf{]Al . A € € such that A+ BF+EAC is unstable}.
(1.4.16)
The supremum of the complex stability radii that can be achieved over the
stabilizing linear state feedback law of the form (1.4.15) is defined as

Y (Za) = sup{%(ZA,F) : FeR™™ and A+ BF is stable}. (1.4.17)

At a first glance, it seems that the complex perturbation is not natural and
should not play a role in robustness analysis. However, it turned out that
the complex stability radius is important for two good reasons: First of all,
it provides a lower bound for the real stability radius (defined as the complex
stability radius but with the restriction that A be a real matrix), and there
are important special cases where the real and complex stability radii coincide.
Moreover, there are elegant results for the complex stability radii while that is
not the case for the real stability radii. Secondly, it turned out that the complex
stability radii are equivalent to the real dynamic stability radii, i.e., A is a real
dynamic perturbation (see Hinrichsen and Pritchard [62] for further details and
a survey of the literature). Following the result of [62], i.e.,

1e(Za, F) = [IG: IS (1.4.18)

where Gg(s) = C(sI — A — BF)"'E, we can show that the supremum of the
complex stability radii is given by

) 1
7 (Za) = pod (1.4.19)
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Figure 1.4.3: Plant with additive perturbations.

where v* is the infimum of the following standard state feedback H,, optimiza-

tion problem,
t=Az+Bu+ Ew,

y= =z (1.4.20)
h=Cz+ 0u+ 0w
Clearly, the above problem belongs to the singular case. The computation of
v* and thus v}(Xa) can be done using algorithms given later in Chapter 6.

1.4.3. Robust Stabilization with Additive Perturbations

We consider the problem of robust stabilization for plants with additive per-
turbations. To be more specific, we consider a stabilization problem for an
uncertain system described in Figure 1.4.3, in which ¥p, is the nominal model
of the given plant and X is the unknown perturbation. We assume that £,
and ¥, + ¥e have the same number of unstable poles. Let the transfer matrix
of ¥, be characterized by

Gm(s) = Cm(sI — Am) ™ 'Bm + D, (1.4.21)

with (Am, Bm) being stabilizable and (Am,Cm) being detectable. Given a
scalar v, > 0, the problem of robust stabilization for the plant with additive
perturbations is to find a controller of the form (1.3.5) such that when it is
applied to the uncertain system of Figure 1.4.3, the resulting closed-loop system
is internally stable for all possible perturbations ¥ with their £,-norm less
than or equal to 7,.

Following the result of Vidyasagar [132] (see also [124]), we can show that
the above problem is equivalent to find an H., <y-suboptimal controller (with
v =1/7,) for the following auxiliary system,

T =Anz+ Bnu+ 0w,
Yydd 1 Yy =Cmzxz+Dpu+Iw, (1.4.22)
h=0z+ I u+0w.
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Figure 1.4.4: Plant with multiplicative perturbations.

It is straightforward to see that both subsystems characterized respectively by
(Am, Bm,0,I) and (Am,0,Cm, I) are invertible. In fact, both subsystems share
common invariant zeros, which coincide with the eigenvalues of Ap,. The results
of Chapter 6 can be utilized to exactly compute the infimum v* for ¥,44 without
imposing any additional condition. The result of [124] requires Ay to be free
of eigenvalues on the imaginary axis.

We note that 1/+* is corresponding to the largest possible £-norm bound
on X for which the uncertain system of Figure 1.4.3 can still be made asymp-
totically stable.

1.4.4. Robust Stabilization with Multiplicative Perturbations

In this subsection, we consider the problem of robust stabilization for plants
with multiplicative perturbations, i.e., we consider a stabilization problem for
an uncertain system described in Figure 1.4.4, in which ¥, is the nominal model
of the given plant and X, is the unknown perturbation. We assume that T,
and the uncertain system comprising ¥, and X¢ as in Figure 1.4.4, have the
same number of unstable poles. Let the transfer matrix of ¥, be characterized
by

Gm(s) = Cm(sI — Am)™'Bm + D, (1.4.23)

with (Am, Bm) being stabilizable and (Am, Cm) being detectable. Given a scalar
Ym > 0, the problem of robust stabilization for the plant with multiplicative
perturbations is to find a controller of the form (1.3.5) such that when it is
applied to the uncertain system of Figure 1.4.4, the resulting closed-loop system
is internally stable for all possible perturbations ¥ with their Lo.-norm less
than or equal to v,.
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Similarly, following the result of Vidyasagar [132] (see also [124]), we can
show that the above problem is equivalent to find an H,, y-suboptimal con-
troller (with v = 1/7y,) for the following auxiliary system,

T=Amz + Bn u+ By w,
Zmutti © § ¥ =Cm =+ Dy u + Dy w, (1.4.24)
h=0z+ I v+ 0 w.

Here we note that the above system always satisfies those conditions posed in
Chapter 6. An exact computation of the infimum v* for X,,,4; is always feasible
without imposing any additional condition. Again, 1/4* is corresponding to
the largest possible L£-norm bound on X for which the uncertain system of
Figure 1.4.4 can still be made asymptotically stable.

1.5. Preview of Each Chapter

A preview of each chapter is given next. The book can naturally be divided into
three parts. The first part consists of Chapters 1 to 5 and contains some prelim-
inary results and background materials. Chapter 2 recalls some linear system
tools such as the Jordan and real Jordan canonical forms and several structural
decompositions of linear systems such as the controllability structural decom-
position and the special coordinate basis. The latter has the distinct feature of
explicitly displaying the finite and infinite zero structures of a given system. It
plays a dominant role in the development of the whole book. Chapter 3 presents
a comprehensive study on the structural mapping of bilinear and inverse bilin-
ear transformations. Chapter 4 recalls results on the existence conditions of H
suboptimal controllers for both continuous- and discrete-time systems, which
are to be used in the proofs of results developed in the second part of the book.
Finally, Chapter 5 provides solutions to several types of discrete-time Riccati
equations. Results in Chapters 3 and 5 are instrumental in the development of
main results in discrete-time H, optimization problems.

The second part of the book consists of Chapters 6 to 13 and is also the heart
of the book. Chapter 6 deals with the computation of infimum in continuous-
time H,, optimization problems. For a fairly large class of singular problem
in which the given system satisfies certain geometric conditions, we present a
non-iterative procedure that computes its infimum exactly. For the case when
the geometric conditions are not satisfied, we modify our algorithm to yield an
iterative scheme for approximating this infimum based on an auxiliary reduced
order regular system, which generally has a much smaller dynamical order than
that of the original system. Chapter 7 deals with finding H., 7y-suboptimal
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controllers for the state feedback case, and the full order and reduced order
measurement feedback cases. We provide closed-form solutions to the H, sub-
optimal control problem for the class of singular systems which satisfy the above
mentioned geometric conditions. Here by closed-form solutions we mean solu-
tions which are explicitly parameterized in terms of «y and are obtained without
explicitly requiring a value of . Hence, one can easily tune the parameter ~
in order to obtain the desired level of disturbance attenuation. This method
will be adapted to find y-suboptimal control laws for general systems when the
geometric conditions are not satisfied. Chapter 8 gives solutions to the gen-
eral H,, almost disturbance decoupling problem with either state feedback or
measurement feedback and with internal stability for plants whose subsystems
have invariant zeros on the imaginary axis of the complex plane. Some newly
developed results on a so-called robust and perfect tracking problem are pre-
sented in Chapter 9. The problem is to design a family of appropriate control
laws for a given plant and a given reference such that the resulting closed-loop
system is asymptotically stable and the controlled output of the given plant
is capable of tracking the reference arbitrarily fast from any initial condition
in face of external disturbances. We will first derive a set of necessary and
sufficient conditions under which robust and perfect tracking performance for
a given continuous-time system can be achieved. Constructive algorithms will
then be given to realize the required controllers. Similarly, Chapters 10 to 13
focus on the discrete-time counterparts of Chapters 6 to 9, respectively.

The last part of the book concerns with some real-life applications. Chap-
ter 14 studies a servo system design for a voice-coil-motor actuator of computer
hard disk drives. The purpose of this chapter is to challenge the widely used
PID structure with our newly developed robust and perfect tracking approach.
It turns out that the robust and perfect tracking controller, which has a dy-
namical order of 1, beats the conventional PID one in every category examined.
Chapter 15 deals with a case study on a piezoelectric actuator control system
design using the Hy, almost disturbance decoupling approach. Such a piezo-
electric actuator system has a potential application in forming a dual actuator
system for the hard disk drives of the next generation. Chapter 16 presents
another case study on a gyro-stabilized mirror targeting system design using
the robust and perfect tracking approach. The gyro-stabilized system has some
crucial military applications. Finally, we note that all these designs are car-
ried out with a clear understanding of the theories and the properties of the
given systems. Simulation and real implementation results show that these
applications turn out to be very satisfactory.



Chapter 2

Linear System Tools

2.1. Introduction

As WILL BE evident in the coming chapters, the finite and infinite zero struc-
tures as well as the invertibility structures of the given system play dominant
roles in the computation of the infima and the solutions to both continuous-
time and discrete-time H, optimization problems. Thus a good non-ambiguous
understanding of linear system structures is essential for our study. In our opin-
ion, the best way to display all the structural properties of linear systems is to
transform them into a so-called special coordinate basis (SCB) developed by
Sannuti and Saberi [116] and Saberi and Sannuti [111]. However, quite often it
happens that the original special coordinate basis of Sannuti and Saberi is not
fine enough to characterize all the details of the properties of linear systems. In
order to see all the fine points of a given system, we would have to further de-
compose certain subsystems of its SCB using some well-known canonical forms
such as the Jordan canonical form and controllability structural decomposition.
Keeping this in mind, we recall in this chapter the following results: 1) the
Jordan and real Jordan canonical forms for a square constant matrix; 2) the
controllability structural decomposition and block diagonal control canonical
form for a constant matrix pair; and 3) the special coordinate basis of a lin-
ear time invariant system characterized by either a matrix triple or a matrix
quadruple. These canonical forms and the special coordinate basis will form a
transformer for linear systems. Once a system is touched by this transformer,
all its structural properties become clear and transparent.
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2.2. Jordan and Real Jordan Canonical Forms

We recall in this section the Jordan canonical form and the real Jordan canonical
form of a square constant matrix. We first have the following theorem.

Theorem 2.2.1. Consider a constant matrix A € R™*"™. There exists a non-
singular transformation T' € C™*™ and an integer k such that

T-1AT = blkdiag{Jl, Jo, oo Jk}, (2.2.1)
where J;,1=1,3,---,k, are some n; x n; Jordan blocks, i.e.,
A1
Ji = : )\i‘ Ll (2.2.2)
Ai
Obviously, \; € A(4),i=1,2,---,k, and Zle n; =n.

The result of the above theorem is very well-known. The realization of this
Jordan canonical form in MATLAB can be found in Chen [14]. The following
theorem is to find a real Jordan canonical form.

Theorem 2.2.2. Consider a constant matrix A € R™*". There exists a non-
singular transformation P € R™*™ and an integer k such that

PlAP = blkdiag{Jl,Jz, . -,Jk}, (2.2.3)

where each block J;, i = 1,2, - -, k, has the following form: if \; € A(A) is real,
A1
Ji = : (2.2.4)

or if A; = p; + jw; € A(A) and \; = p; — jw; € AM(A) with w; # 0,
A LI

J; = Ha “”‘] . (2.2.5)

B y Ai = l:
A b —Wi M4
A;

The above structure of P~ AP is called the real Jordan canonical form.
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The proof of the above theorem can be found in many texts (see e.g., Won-
ham [138]). The following is a constructive algorithm for obtaining the transfor-
mation P that will transform the given matrix A into the real Jordan canonical
form. First, we compute a non-singular transformation T' € R™*™ such that

T-1AT = blkdiag{Al, Ay, -, A[}, (2.2.6)

where sub-matrices 4; € R™*™

, © = 1,2,---,¢, have either a single or one
repeated (if n; > 1) eigenvalue A;, if ); is real, or two or two repeated (if
n; > 2) eigenvalues A; and Xi, if A; is not real. Also, we have \; # Aj, if
i # j. Note that such a transformation T can easily be obtained using some
numerically very stable algorithms such as the real Schur decomposition.

For each A; with its corresponding A; being a real number, we use the result
of Theorem 2.2.1 to obtain a non-singular transformation S; = §; € R™*™
such that A; can be transformed into the Jordan canonical form. For each A;
which has eigenvalues \; = y; + jw; and i = pi — jw; with w; > 0, we follow
the result of Fama and Matthews [51] to define a new (2n;) x (2n;) matrix,

A — pildy, wiln,
Z; = { _wi’}m A /Z'Lnjl : (2.2.7)
It is simple to show that Z; has n; real eigenvalues at 0 and n; purely imaginary
eigenvalues at +j2w;. Then, we use the real Schur decomposition technique to
find a non-singular transformation S? € R(?")>*(™) sych that
Zi O
0 Ziz] ’

where Z;o has all its eigenvalues at 0 while Z;; has no eigenvalue at 0. Next,

(S9)712:8) = [ (2.2.8)

we utilize the result of Theorem 2.2.1 to obtain a non-singular transformation
S} e R™*™ such that

(SH™1Z,pS) = blkdiag{Jg, JL, J2, J2, ---,JS‘,J(‘,"'}, (2.2.9)
where J*, m =1,2,---, 0y, have the form,
0 In..-1
m __ Nim
g = [0 - ] (2.2.10)
Let us partition
1,1 1,n 1,1 1,n
JSE 0 Siy 51,'1”1 X Xi,lnl ......
Si:=5; 0 L.| 7 |c2 2nia 32,1 2,41
n: SH - SH XHoo XM
1,1 1L,nio; 1,1 1,niq;
hoio 0 Yo Xioo 0 Xio, *
1 i )1 s, , (2.2.11)
Sige 7 Sie o Xigy o Xig X
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Lk @2,k 1,k 2,k
where S, S;, Xi, and X, m =1,2,---,0; and k = 1,2,---,nip,, are
n; X 1 column vectors. In fact, they are all real-valued. Next, define an n; x n;
real-valued matrix,

S 1,1 2,1 1,141 2,141 1,1 2,1 . 1)”1'0,- 2,Niq;
Sl”[Si,l Sixoc Syt Syt o Sia S ) Sivei |

1,0; 1,0; 1,0

Finally, let
S = blkdiag{S’l, . 54} (2.2.12)

and P =TS € R™". It is now straightforward to show that P~1AP is in the
real Jordan canonical form as described in Theorem 2.2.2. The algorithm has
been implemented in Chen [14].

2.3. Structural Decompositions of Matrix Pairs

In this section, we will first recall the controllability structural decomposition
(CSD) for a linear system characterized by a matrix pair (A, B), which was
called a Brunovsky canonical form by many researchers in the literature (see
e.g., [64]), as well as in the preliminary edition of this book [18]. However, it
is noted that such a decomposition was actually first discovered by Luenberger
[89] in 1967, which was three years earlier than the publication of Brunovsky’s
results [7] in 1970. As such, we rename such a canonical form the controllability
structural decomposition, since it has a direct connection with the controllabil-
ity structure of (4, B). We will next introduce a so-called block diagonal control
canonical form (BDCCF) for a controllable matrix pair (A, B). Both the CSD
and BDCCF will be the keys in the derivations of some important results later
in the book. The derivation of the former is well-known in the literature and
its software realization can be found in Chen [14]. We will give an explicit
constructing algorithm for the latter to find non-singular transformations, say
T, and Tj, such that T; ' AT, has a special block diagonal form and T, !BT;
has an upper block triangular form. Such special forms of A and B will play an
important role in constructing solutions to the general H,, almost disturbance
decoupling problems later in this book. The existence of this block diagonal
control canonical form was proved by Wonham [138].

We have the following theorems regarding the controllability structural de-
composition and the block diagonal control canonical form for a given matrix
pair.

Theorem 2.3.1. Consider a constant matrix pair (4, B) with A € R™*" and
B € R™™ with B being of full rank. There exist nonsingular state and in-
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put transformations Ty and T; such that (4, B) := (T, AT,, T;* BT;) has the

Sy+s
following form,

rA, O 0 - 0 0 7 ro --- 07
0 0 I 0 0 0o --- 0
*  * * el % * 1 --- 0
T : .o : N A ) (2.3.1)
0 O 0 e 00 Iy, 0o -~ 0
L * % * ek * 1 LO .- 1]
where k; >0, =1,---,m, A, is of dimension n, :=n — 27;1 k; and its eigen-

values are the uncontrollable modes of (A, B). Moreover, the set of integers,
C:={no, k1, -+, km }, is called the controllability index of (A, B).

Proof. See Luenberger [89]. The software realization of such a canonical form
can be found in Chen [14]. &

Theorem 2.3.2. Consider a constant matrix pair (A4, B) with A € R**" and
B € R™™ and with (A, B) being completely controllable. Then there exist an

integer k < m, a set of x integers kq, kg, - - -, k,, and nonsingular transformations
T, and T; such that

A 0 0 0
0 A O 0
T AT, =| 0 0 43 01, (2.3.2)
0 0 O Ax
and
B, x *  *
0 By «x * ok
T;lBTi — 0 0 Bg * * , (233)
0 0 0 .- By =
where s represent some matrices of less interest, and 4; and B;, i =1,2,-- -,
have the following control canonical form,
0 1 0 - 0 0
0 0 1 e 0 0
A= : : |, Bi=|1], (2.3.4)
o0 0 1 0
_a;ﬁ —a’;c,u—l "(11]'“__2 U —a‘i 1
for some scalars ai, ab, --+, a} . Obviously, Y., ki = n. We call the above

structure of A and B a block diagonal control canonical form.
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Proof. The existence of the block diagonal control canonical form was shown
in [138]. In what follows, we will give an explicit constructing algorithm for
realizing such a canonical form. First, we follow Theorem 2.2.2 to find a non-
singular transformation Q@ € R™"™ such that matrix A is transformed into a
real Jordan canonical form, i.e.,

A=0Q74Q :blkdiag{Jil,'”,Jf\’:aj,{z»"‘,J,{':, ...... ’Jit’..,,Jf\f:},
(2.3.5)
where A\; = p; + jwi € A(A) with w; > 0, and also A;; # A, if 41 # 1o
Moreover, for each i € {1,2,---,£} and s = 1,2,---,0;, J§, € R™**™* has the
following real Jordan form,

pio 1
Ji = , (2.3.6)
pi 1
Hi
if w; = 0, or
A,’ 12
JSA = , Ai: Hi wi] s 2.3.7
A A I [—wi i 23.7)
A;

if w; > 0. For the sake of easy presentation later, we arrange the Jordan blocks
in the way that n;; > nj > -+ > n4,,. Next, compute

[ B, Bh - BRG]
B}, B - Bf
B=Q 'B= Bén ngm 35:7,2 . (2.3.8)
B:lll Btgl B:?ll
5, B, - B

It is straightforward to verify that the controllability of (A, B) implies: there
exists a B}, with v € {1,2,---,m} such that (J i;?B;jl) is completely control-
lable, which is equivalent to the last row of B, being nonzero if ); is real, or
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at least one of the last two rows of B} being nonzero if A; is not real. Thus, it

is simple to find a vector

t11
t21
hv=| . |, tu#0, (2.3.9)
tml
and partition
ro~1
By, |
-1
Blal
-1
By,
B — BT — | a1
B, =BT, = B,,, | (2.3.10)
~:1
By
L1
L BlU[ .

such that (J3 , le) is completely controllable. B

ecause of the special structure

of the real Jordan form and the fact that n;; > nis > --- > ny,,, the eigenstruc-
tures associated with J§. with s > 1 are totally uncontrollable by B;. Thus,
it is straightforward to show that there exist nonsingular transformations T7;,

1=1,2,---,£ such that
J)l\,' Ji:
T | 3
(Ts)™ n = . (2.3.11)
5 X
and
~1 .1
Bil il
~1
(Tg)™! B_” =19, (2.3.12)
B 0
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with (J/{’,,B;I) being completely controllable. This can be done by utilizing
the special structure of the controllability structural decomposition (see Theo-
rem 2.3.1). Next, perform a permutation transformation P;; such that

Ty rTh
T2 " TS
(Psl)_l . A ’ . Psl
Tsll Tsel
= bikdiag{J}, -+, Jh, Sy s IS0, B I (23.13)
and
TY i oty 0 0
T5 fta 1 0
Pa)~ B

(P Lo 0
T4 tmi O 1

- v ~ 2 “m -
Bll Bll Bll
<1 2 “m
Bll Bll Bll
~ 2 ~m
0 BIQ B12

= o Bfm BT, (2.3.14)

v.2 ~m
0 By By,
2 m

- 0 Bla¢ B[O’[ -

Because \;, i = 1,2,---, £, are distinct, the controllability of (J,{i,B:I) implies
that the pair
Ia By

5 Jl ~1
(A1, By) = te . , B , (2.3.15)
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is completely controllable. Hence, there exists a nonsingular transformation
X, € RF** where k; = Zle ni1, such that

0 1 0 0
0 0 1 0
X[VA X, =4 = : , (2.3.16)
0 0 0 1
_allcl _allcl—l ‘allcl—z -aj
and
0
0
X['B;=B;=|:]|. (2.3.17)
0
1
Next, repeating the above procedure for the following pair
- .9 e -
By, -+ By
B, - Bl
blkdiag{Jfl, LI JJ2, ,Jf\’:}, : :
~2 v‘m
By, By,
2 <m
_Bﬂag B oy J
(2.3.18)

one is able to separate (Ay, B2). Keep repeating the same procedure for x — 2
more steps, where x = max{o1,09,--,0¢}, one is able to obtain the block
diagonal control canonical form as in Theorem 2.3.2. This completes the proof
of the theorem. The result has been implemented in Chen [14]. &

We illustrate the above results in the following example.

Example 2.3.1. Consider a matrix pair (A, B) characterized by

rr10o0 00 0 07 r1 87
0100 0O OO 27
0011 00 00O 3 6
0001 00 00O 4 5
A= 060000 01 10} B= 5 41’ (2:3.19)
0000 -10 01 6 3
0000 0O0 01 7 2
L0 0 00 00 -1 0J L8 1.
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where matrix A is already in the form of the real Jordan canonical form with
A =1,01 =2 and A\, = j, 03 = 1. Following the proof of Theorem 2.3.2, we
obtain

C0.1508  0.1508 0.3015 0.3015 0.1508 0.1508 —0.4002 1.8189
—-0.3015 0.3015 —-0.6030 0.6030 —0.3015 0.3015 —1.4188 1.4188

0.1508 0.4523 0.3015 0.9045 0.1508 0.4523 0.3274 -1.1641
—0.6030 0.6030 —1.2061 1.2061 —0.6030 0.6030 0.8367 —0.8367

I,= —0.1508 3.4674 —4.5227 0 0.4523 0.7538 0 o
—1.9598 2.7136 0.9045 —1.2061 —1.3568 0.9045 0 0
1.2061 —-1.3568 0.3015 —0.3015 -0.9045 1.0553 0 0
1—1.0553 3.3166 —4.5227 4.5227 -—-3.4674 1.2061 0 (\
0.1508 0]
Ti= 0 0.4083 )
and
r o 1 0 0 0 0 0 07 [0 —1.4368 7
0 0 1 0 0 0 0 0 0 -0.2982
0 0 0 1 0 0 0 0 0 0.5207
14m_ ] 0O 0 0 0 1 0 0 0 “1pp_ |0 1.3969
Ts ATs= 0 0 0 0 0 1 0 op Ts BTi= 0 2.8085 |°
-1 2 -3 4 -3 2 0 0 1 4.6900
0 0 0 0 0 0 0 1 0 0
L O 0 0 0 0 0 -1 2] LO lj
This verifies the results of Theorem 2.3.2. El

2.4. Special Coordinate Basis

Let us consider a general proper linear time-invariant (LTI) system ¥,, which
could be of either continuous-time or discrete-time, characterized by a matrix
quadruple (A, B., C\, D,) or in the state space form,

5. - {5(x)=A,,z+B,, u,

2.4.1
y =Ciz+ D, u, ( )

where §(z) = Z(t), if X, is a continuous-time system, or §(z) = z(k + 1), if
L, is a discrete-time system. Similarly, z € R", v € R™ and y € R? are
the state, the input and the output of X,. They represent z(t), u(t) and y(t),
respectively, if the given system is of continuous-time, or represent z(k), u(k)
and y(k), respectively, if I, is of discrete-time. Without loss of any generality,
we assume that both [B, D.] and [C. D,] are of full rank. The transfer
function of X, is then given by

H,(s) = Cu(sI — A,) "B, + D., (2.4.2)
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where ¢ = s, the Laplace transform operator, if X, is of continuous-time, or
¢ = z, the z-transform operator, if ¥, is of discrete-time. It is simple to verify
that there exist nonsingular transformations U and V such that

Img 0
UD,,V_{ . 0], (2.4.3)

where mg is the rank of matrix D,. In fact, U can be chosen as an orthogonal
matrix. This fact will be used later in the computation of 4* throughout this
book. Hence hereafter, without loss of generality, it is assumed that the matrix
D, has the form given on the right hand side of (2.4.3). One can now rewrite
system X, of (2.4.1) as,

§(z) = A. z + [Buo Bui] <“°>

(1
Yo C*,O Im 0 U
() = &)=+ 1% o) ()

where the matrices By o, B« 1, Cs 0 and C, 1 have appropriate dimensions. We

(2.4.4)

Il

have the following theorem.
Theorem 2.4.1 (SCB). Given the linear system X, of (2.4.1), there exist

1. Coordinate free nonnegative integers n;, n%, n¥, ny, ne, ng, mg < m-myg
and q;,1=1,---,my, and

2. Non-singular state, output and input transformations I, I', and I'; which
take the given X, into a special coordinate basis that displays explicitly
both the finite and infinite zero structures of X,.

The special coordinate basis is described by the following set of equations:

z =%, y=T.7, u=TIa, (2.4.5)
Tq T~ z
a
. Ty 0 T2
E= | Ta=| % |, Ta= : , (2.4.6)
a:c zf )
d xmd
Y1 Uq
yO y2 UO U2
Y=Y |, Y%= : ,u=|ug ), ug= : , (247)
Yo ’ Ue .
Ymy Umgy

and
§(z7) = Az, + Boyo + Logya + Lo,us, (2.4.8)
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8(z2) = AQ.x2 + Bl,yo + L2gya + Lyys, (2.4.9)
8(z¥) = Alat + Bfyo + LY ya + LEus, (2.4.10)
6(zp) = Awwzo + Bosyo + Loaya, Yo = CoTb, (2.4.11)

8(zc) = Accx+BocyotLesyitLeaya+Be [E Ty +E% 20 +Efz}]+B.u., (2.4.12)

Yo = Cocze + Coz, + ctzl + CO+ z} + Cogzq + Copzs + uo, (2.4.13)

0a*a a*’a

and for each i =1, -, mq,

mq

6(1"1) = Aq,‘xi +Li0y0 +Lidyd +Bq.' u; + Eiaza + Eibzb + Eicflfc + Z E,;j(l?j ,
Jj=1

(2.4.14)

Yi = Cg.%iy,  Ya = Cazy. (2.4.15)

Here the states =, 20

9, zt, 2y, z. and z4 are respectively of dimensions n; , n9,

n}, np, n. and ng = ZI’;"I @i, while z; is of dimension ¢; foreach i =1,---,mq.
The control vectors ug, ug and u, are respectively of dimensions mg, mgq and
m. = m — mg — mq while the output vectors yo, yg and y, are respectively of
dimensions pg = mo, ps = mgq and py = p — po — pa. The matrices A,;, By, and
C,. have the following form:

0 I,- 0
Ay = [ o ' ! ] B, = [ 1 ] C,=11,0,---,0]. (2.4.16)
Assuming that z;, 1 = 1,2, ---,my, are arranged such that ¢; < g;+1, the matrix
L;4 has the particular form
Lig=[Lia Lip -+ Ly 0 --- 0]. (2.4.17)

The last row of each L;;4 is identically zero. Moreover,

1. If ¥, is a continuous-time system, then

MAZ)CC™, MA%)cC? xAF)ccCT. (2.4.18)

2. If ¥, is a discrete-time system, then

MA4;,) CC°, AAY,)CC° MAL)cce. (2.4.19)

Also, the pair (A..,B.) is controllable and the pair (As,Cs) is observable.



2.4. Special Coordinate Basis 31

Proof. For strictly proper systems, using a modified structural algorithm of
Silverman [122], an explicit procedure of constructing the above special coordi-
nate basis is given in [116]. The required modifications for non-strictly proper
systems are given in [111].

Here in Theorem 2.4.1 by another change of basis, the variable z, is further
decomposed into z, 0 and z}. For continuous-time systems, one can use the
real Schur algorithm to obtain such a decomposition. For discrete-time systems,
the algorithm of Chen [13] can be used.

The software toolboxes that realize the continuous-time SCB can be found
in LAS by Chen [11] or in MATLAB by Lin [79]. The realization of this unified
SCB can be found in Chen [14]. A numerical example will be given at the end
of this section to illustrate the procedure of constructing the SCB and all its
associated properties. &

We can rewrite the special coordinate basis of the quadruple (A,, B, C\, D)
given by Theorem 2.4.1 in a more compact form,

A~* = FS—I(A:& - B*,OC*,O)FS

[ AL, 0 0 L;,Cs 0 L;,C4
0 A%, 0 L%, 0 L%cCy
= Y 0 A LGG 0 LiC , (2.4.20)
0 0 0 App 0  LyCy
BcEc_a BcEga BCE;Z LepCy Ace L.4Cy
| B4E;, B4ES, B4E}, BaEw BaEs  Aga |
[Boa 0 07
By, 0 0
B.=T;'[B.y B.,|l;= B, 0 0 , (2.4.21)
By 0 0
Bo. 0 B,
LBoa By 0 J

c e Co Cf Co Coc Cod
G, =T;! [ *‘0] =0 0 0 0 0 Cg|, (2422
0 0 0 Ch 0 0

Imy 0 0
D,=T;'D.,li=| 0 0 0. (2.4.23)
0 00

A block diagram of the special coordinate basis of Theorem 2.4.1 is given
in Figure 2.4.1. In this figure, a signal given by a double-edged arrow is some
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Boayo + Lasys + Laaya

l o

Aga

Bosyo + Lpaya

Zp ys Output
Co

App

Leyys + Bocyo + Leayd

Ue + EcoTq . é ',\ z,

<

uo——O—> yo Output

U; :: : Tig; :: ’: Tigi_y :: :Iiz : Tilr =Yi
. Output

Note that a signal given by a double-edged arrow with a solid dot is some linear
combination of all the states, whereas a signal given by a simple double-edged
arrow is some linear combination of only output y4. Also, matrices Bo,, L
Loq and E., are to be defined in Property 2.4.1.

ab;

Figure 2.4.1: A block diagram representation of the special coordinate basis.
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linear combination of outputs y;, ¢ = 0 to my, where as a signal given by
the double-edged arrow with a solid dot is some linear combination of all the
states. Also, the block [> is either an integrator if ¥, is of continuous-time or
a backward shifting operator if X, is of discrete-time.

We note the following intuitive points regarding the special coordinate basis.

1. The variable u; controls the output y; through a stack of ¢; integrators (or
backward shifting operators), while z; is the state associated with those
integrators (or backward shifting operators) between u; and y;. More-
over, (Aq;, By;) and (A, Cy;) respectively form controllable and observ-
able pairs. This implies that all the states z; are both controllable and
observable.

2. The output y, and the state z; are not directly influenced by any inputs,
however they could be indirectly controlled through the output y4. More-
over, (Ag, Cp) forms an observable pair. This implies that the state zy is
observable.

3. The state z. is directly controlled by the input u., but it does not directly
affect any output. Moreover, (Ac., B.) forms a controllable pair. This
implies that the state z. is controllable.

4. The state z, is neither directly controlled by any input nor does it directly
affect any output.

In what follows, we state some important properties of the above special
coordinate basis which are pertinent to our present work and will be used
throughout this book. The proofs of these properties will be given in the next
section.

Property 2.4.1. The given system X, is observable (detectable) if and only if
the pair (Aobs, Cobs) is observable (detectable), where

— Aaf; 0 — COa COc
Aops = B.Ea Aw |’ Cobs := [ B, B ] : (2.4.24)
and where
A7, 0 0 ]
Awa:=1] 0 A% 0|, Cu:=[C;y CS Ci.l, (2.4.25)
0 0 Af,)

Es4 :=(Ej, ES, El], E.:=|E, EJ EL]. (2.4.26)



34 Chapter 2. Linear System Tools

Also, define
L Aaa Labe o BOa Lad
Acon = [ 0 A } , Beon :i= [ B Lyg |’ (2.4.27)
BO_a L;b Lz:d
Boo:= | B |, Lap:=|L% |, Laa:=|L%|. (2.4.28)
Bg, Ly, Ly,

Similarly, X, is controllable (stabilizable) if and only if the pair (Acon, Beon) is
controllable (stabilizable). E

The invariant zeros of a system X, characterized by (A., B.,C\, D,) can be
defined via the Smith canonical form of the (Rosenbrock) system matrix [107]
of .,

oI -4, _B*] . (2.4.29)

6= |0

We have the following definition for the invariant zeros (see also [91]).

Definition 2.4.1. (Invariant Zeros). A complex scalar o € C is said to be
an invariant zero of ¥, if

rank {Pg, (o)} < n+ normrank {H.(s)}, (2.4.30)

where normrank {H,(s)} denotes the normal rank of H,(s), which is defined as
its rank over the field of rational functions of ¢ with real coefficients. o)

The special coordinate basis of Theorem 2.4.1 shows explicitly the invariant
zeros and the normal rank of £,. To be more specific, we have the following
properties.

Property 2.4.2.
1. The normal rank of H,(s) is equal to mg + my.

2. Invariant zeros of ¥, are the eigenvalues of A,,, which are the unions of
the eigenvalues of A,,, A%, and A,. Moreover, the given system X, is of
minimum phase if and only if A, has only stable eigenvalues, marginal
minimum phase if and only if A,, has no unstable eigenvalue but has
at least one marginally stable eigenvalue, and nonminimum phase if and
only if Ay, has at least one unstable eigenvalue. E]
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In order to display various multiplicities of invariant zeros, let X, be a
nonsingular transformation matrix such that A,, can be transformed into a
Jordan canonical form (see Theorem 2.2.1), i.e.,

X-'AuuX, = J = blkdiag {Jl, T i), (2.4.31)
where J;, 1 =1,2,---, k, are some n; x n; Jordan blocks:
. — ] . . DY . O Inl_l

J; = dlag{a“al, ,a1}+ [O 0 ] . (2.4.32)

For any given a € A(A4.), let there be 7, Jordan blocks of A,, associated with
a. Let ng 1, Na2, -+, Na,r, be the dimensions of the corresponding Jordan
blocks. Then we say « is an invariant zero of ¥, with multiplicity structure
S*(Z.) (see also [109]),

Sy(E.) = {na,lyna,%"',na,‘ra}- (2.4.33)

The geometric multiplicity of a is then simply given by 7,, and the algebraic
multiplicity of o is given by )%, nq ;. Here we should note that the invariant
zeros together with their structures of ¥, are related to the structural invariant
indices list Z; (X.) of Morse [94].

The special coordinate basis can also reveal the infinite zero structure of X,.
We note that the infinite zero structure of X, can be either defined in association
with root-locus theory or as Smith-McMillan zeros of the transfer function at
infinity. For the sake of simplicity, we only consider the infinite zeros from
the point of view of Smith-McMillan theory here. To define the zero structure
of H.(s) at infinity, one can use the familiar Smith-McMillan description of
the zero structure at finite frequencies of a general not necessarily square but
strictly proper transfer function matrix H,(s). Namely, a rational matrix H,(s)
possesses an infinite zero of order k when H,(1/z) has a finite zero of precisely
that order at z = 0 (see [42], [104], [107] and [131]). The number of zeros
at infinity together with their orders indeed defines an infinite zero structure.
Owens [97] related the orders of the infinite zeros of the root-loci of a square
system with a nonsingular transfer function matrix to C* structural invariant
indices list Z, of Morse [94]. This connection reveals that even for general
not necessarily strictly proper systems, the structure at infinity is in fact the
topology of inherent integrations between the input and the output variables.
The special coordinate basis of Theorem 2.4.1 explicitly shows this topology of
inherent integrations. The following property pinpoints this.
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Property 2.4.3. £, has mo = rank (D,) infinite zeros of order 0. The infinite
zero structure (of order greater than 0) of X, is given by

S50 (Z4) = {qhqz,'--,qmd}. (2.4.34)

That is, each g; corresponds to an infinite zero of ¥, of order g;. Note that for
a single-input-single-output system X., we have S* (X.) = {q:}, where ¢ is
the relative degree of X,. P

The special coordinate basis can also exhibit the invertibility structure of a
given system X,. The formal definitions of right invertibility and left invertibil-
ity of a linear system can be found in [95]. Basically, for the usual case when
[B, D.]and [C. D.] are of maximal rank, the system X, or equivalently
H.,(c) is said to be left invertible if there exists a rational matrix function, say
L.(s), such that

L(s)H(s) = Inm. (2.4.35)

Y. or H,(s) is said to be right invertible if there exists a rational matrix function,
say R.(<), such that
H.(5)R.(s) = I,. (2.4.36)

Y, is invertible if it is both left and right invertible, and X, is degenerate if it
is neither left nor right invertible.

Property 2.4.4. The given system X, is right invertible if and only if z, (and
hence y;) are non-existent, left invertible if and only if z. (and hence u.) are
non-existent, and invertible if and only if both z;, and z. are non-existent.
Moreover, ¥, is degenerate if and only if both z, and z. are present. B

The special coordinate basis can also be modified to obtain the structural
invariant indices lists 7 and Z3 of Morse [94] of the given system X,. In
order to display Z,(X.), we let X, and X; be nonsingular matrices such that
the controllable pair (A, B.) is transformed into the controllability structural
decomposition (see Theorem 2.3.1), i.e.,

0 Iy - 0 0 0 - 0
* * e % * 1 --- 0

Xc_lAchc =|: ’ Xc_chxz = P I
1o 0 0 I 0 -~ 0
* * e % * 0o --- 1

(2.4.37)

where xs denote constant scalars or row vectors. Then we have

(%) = {81, o ,émc}, (2.4.38)
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which is also called the controllability index of (Ac¢, Bc). Similarly, we have

Lo(2) = {r - m, }, (2439)

where { B1, s Py } is the controllability index of the controllable pair (A4y,, C}).

By now it is clear that the special coordinate basis decomposes the state-
space into several distinct parts. In fact, the state-space X' is decomposed as

X=X0X'0X 00X, 0 X, (2.4.40)

Here X is related to the stable invariant zeros, i.e., the eigenvalues of A, are
the stable invariant zeros of .. Similarly, X2 and X} are respectively related to
the invariant zeros of ¥, located in the marginally stable and unstable regions.
On the other hand, A} is related to the right invertibility, i.e., the system is
right invertible if and only if A, = {0}, while A, is related to left invertibility,
i.e., the system is left invertible if and only if X. = {0}. Finally, X; is related
to zeros of ¥, at infinity.

There are interconnections between the special coordinate basis and various
invariant geometric subspaces. To show these interconnections, we introduce
the following geometric subspaces:

Definition 2.4.2. (Geometric Subspaces V* and §*). The weakly un-
observable subspaces of ¥,, V*, and the strongly controllable subspaces of X,
SX . are defined as follows:

1. V*(X,) is the maximal subspace of R™ which is (A.+B, Fi)-invariant and
contained in Ker (C, + D, F) such that the eigenvalues of (A, + B, F.)|V*
are contained in C* C € for some constant matrix F,.

2. §*(X,) is the minimal (A. + K.C.)-invariant subspace of R"™ containing
Im (B, + K.D.) such that the eigenvalues of the map which is induced
by (A. + K.C.) on the factor space R"/S* are contained in C* C C for
some constant matrix K,.

Moreover, we let V-=V* and S™=8%, if C*=C~ U C% V*=V* and S§t=5%,
if C*=C™*; Vo=V* and S°=8%, if C*=C° U C®; V®=V* and §®=S*, if
C*=C?; and finally V*=V* and §*=8%, if C*=C. Bl

Various components of the state vector of the special coordinate basis have
the following geometrical interpretations.
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Property 2.4.5.
L X~ @X0®X {V_(E*), if ¥, is of continuous-time,
) spans
¢ ¢ ¢ P Ve(x,), if £, is of discrete-time.

Vt(Z,), if L, is of continuous-time,
Ve(X,), if L. is of discrete-time.

3. X e X0 X @ X, spans V*(Z,).

2. X @ X, spans {

S (%.), if B, is of continuous-time,
S°(X,), if X, is of discrete-time.

'y

. X ® X, ® Xy spans {

ST (Z.), if I, is of continuous-time,
S®(%,), if X, is of discrete-time.

6. X, ® X; spans S*(X.). ®

ot

XX X, d Xy spans {

Finally, for future development on deriving solvability conditions for H.
almost disturbance decoupling problems, we introduce two more subspaces of
X.. The original definitions of these subspaces were given by Scherer [118,119].

Definition 2.4.3. (Geometric Subspaces V) and S,). Forany A € C, we
define

BwGCm:O:[A*_)‘I B*]<C>}, (2.4.41)

V() = {4 cen MBS

and

Sa(B.) = {c ecr

Jwe g™ . <6>={A*C_M g*]w}. (2.4.42)

Va(24) and Sx(X.) are associated with the so-called state zero directions of X,
if A is an invariant zero of X,. o

These subspaces Sx(Z.) and V) (2,) can also be easily obtained using the
special coordinate basis. We have the following new property of the special
coordinate basis.

Property 2.4.6.

M -4, 0 0 0

_ 0 Yo 0 O
S\(Z)=mm r, | 0 S oL ol (2.4.43)

0 0 0 I,

where
Im {YI,)\} = Ker [Cb(Abb + K, Cp — )\I)_l] , (2.4.44)
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and where K is any appropriately dimensional matrix subject to the constraint
that Ay + K3pCp has no eigenvalue at A. We note that such a Kj always exists
as (Ap, Cp) is completely observable.

Xax O
WE)=mlr,| 2 0 (2.4.45)
* 10 X ’ -
0 0
where X, is a matrix whose columns form a basis for the subspace,
{Gae €™ |- d00)Ga = 0}, (2.4.46)
and
-1
Xop = (Acc + B.F, — AI) B., (2.4.47)

with F,. being any appropriately dimensional matrix subject to the constraint
that A.. + B.F, has no eigenvalue at A\. Again, we note that the existence of
such an F, is guaranteed by the controllability of (Acc, Be). E

Clearly, if A & A(Aqq), then we have
Va(Z.) C VX(Z.), (2.4.48)

and
Sx(Z.) 2 S*(Z.). (2.4.49)

Next, we would like to note that the subspaces V*(X.) and S*(X.) are
dual in the sense that VX(X*) = SX(Z,)t, where ¥ is characterized by the
quadruple (A, C., B.,D.). Also, Sx(E.) = Vx(Z1)L.

We illustrate the procedure for constructing the special coordinate basis and
all its associated properties in the following numerical example.

Example 2.4.1. Consider a linear time-invariant system ¥, characterized by

6(z) = A, B, u,
{ (@) = A o+ Bow (2.4.50)
y =Cyz+ D, u,
where
1 2 31 1
2 3 4 5 2
Ay = 45 6 7! B, = 3| (2.4.51)
5 6 7 8 4
and
C.=[0 3 -2 0], D.=0. (2.4.52)

The procedure for constructing the special coordinate basis of X, proceeds as
follows:
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Step 1. Differentiating (shifting) the output of the given system. It involves the
following sub-steps.

1. Since D, = 0, we have
é(y) = Cu(z) =Cidiz+CBau=[-2 -1 0 1l]z+0-u.
2. Since C,B, = 0, we compute
6%(y) = CL A%z + CLABiu=[1 -1 -3 1]z+0-u,
where 6%(-) = 6(4(-)).
3. Since C,A.B. = 0, we continue on computing
6% (y) = C, A%z + C,A’B, = —[8 10 12 17]z-6-u,
where 83(-) = 8(8(8(-))). Step 1 stops here as C+A2B, # 0.

Step 2. Constructing a preliminary state transformation. Let X, be an appropri-
ately dimensional matrix such that

Xo
C.
T=|o0 | (2.4.53)

C.A2

is nonsingular. Then, define a new set of state variables z,

I Xo Xoz

v 5’2 o _ C* _ Yy

z= i | = Tz = C.A. T = 5w | (2.4.54)
T4 C.A] 8%(y)

It is simple to verify that 7 with Xo = [1 0 0 0] is a nonsingular
matrix. Furthermore,

. . . 5.
8(Z1) = 831 + T2 + gza - 33ty (2.4.55)
6(z2) = 23, (2.4.56)
6(z3) = 4, (2.4.57)
5(574) = 723, — 9.’22 — 273 + 105:4 — 6u. (2458)

Step 3. Eliminating u in §(Z1). (2.4.58) implies that

. 3. 9. 5. |
u=—12z; — 51‘2 - 51‘3 + §$4 - 65(274) (2.4.59)
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Substituting this into (2.4.55), we obtain
. . 1. 11. 1_.
5(171) = —41'1 - 522 - ‘6‘.'1:3 - 66(z4)

We have got rid of u in §(z;). Unfortunately, we have also introduced an

(2.4.60)

additional d(z4) in (2.4.60).
Step 4. Eliminating §(z4) in 6(z;). Define a new variable Z; as follows,
1
(2.4.61)

.’1_51 = il + —.’124.
6

We have ] 1 5
6(1_:1) = -4z - E-iz - ’6—.’53 + 35:4, (2.4.62)
and
(5(.’;34) = “722_31 - 9.:1:'2 - 27533 + 22.’;?4 — 6u. (2463)
Step 5. Eliminating 23 and z4 in §(%;). This step involves two sub-steps.
1. Letting
- 2.
I =31 — 51133, (2464)
we have ] 9
6(%1) = —4.’21 - 55?2 - 55}3, (2465)
and
5(5)4) = —72%1 - 952 - 75533 + 225?4 - 6u. (2466)
2. Letting
Iy := .”1\?1 + g.i2, (2467)
we have 35
(5(531) = —4%; + —é—.'i'2, (2468)
and
(2.4.69)

5(5?4) = —T2%; + 31529 — 75573 + 22534 — bu.

Step 6. Forming the nonsingular state, output and input transformations. Let

To =Ty, T3=1=3, I3=1I3, (2.4.70)
or equivalently let
Ty
e=Tg=T,| 22|, (2.4.71)
I3
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with
1 9/2 -2/3 1/6 1 0 o0 0])"!
01 0 0 0 3 =20
Fs=910 0 1 o0 -2 -1 01 (2:4.72)
00 o0 1 1 -1 -3 1
Also, let
u:I‘,ﬂ:—%ﬂ, y=Tj=1-4. (2.4.73)

Finally, we obtain the dynamic equations of the transformed system,

8(3,) = —4&1 + -323:52, (2.4.74)
§(32) = %3, § = &a, (2.4.75)
§(%3) = &4, (2.4.76)
§(34) = —T2%, + 3153, — 753 + 2254 + @ (2.4.77)

The above structure is now in the standard form of the special coordinate
basis. Z; is associated with X, and Z3, 3 and Z4 are associated with Xj.
Both X}, and X, are non-existent for the given X,.

Let us now examine the properties of ¥,. Following Properties 2.4.1 to 2.4.6
of the special coordinate basis, it is simple to verify that X, is controllable and
observable, and has an invariant zero at —4 as well as an infinite zero (relative
degree) of order 3. It is obvious that the given system is invertible as both z.
and z; are non-existent.

The geometric subspaces Vi (X.) and Sx(X.) can be obtained as follows: for
A= —4,

3
VA(Zs) = Im g , (2.4.78)
8
1 2 27
2 2 16
S\(EZ)=Imq |3 3 o ¢ (2.4.79)
4 9 70
and for \ # —4,
W(Z.) = {0}, Sr(Z.) =R" (2.4.80)

The geometric subspaces V*(X.) and S*(X.) of X, can also be easily computed:
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1. If X, is a continuous-time system, then

3
VI(E)=Vi(S) =Im g (211, VRE) = {0}, (2481)
8
and
1 2 27
ey sy 2 2 16 o o
ST(Z)=8"(E%)=Im 3 3 97 , ST(Z,)=R" (24.82)
4 9 70
2. If ¥, is a discrete-time system, then
3
ve(s.) =V (Z)=Im ¢ | 5| 4, vo(s.) = (0}, (2.4.83)
8
and
1 2 27
2 2 16
® — Q% — o] _m4
S®(%,)=8"(Z,) =Im 3 3 o7 , S°(Z.) =R*  (24.84)
4 9 70

Here we would like to note that the computation of the special coordi-
nate basis for a multiple-input-multiple-output system is of course much more
complicated than that for a single-input-single-output system, but the idea is
basically the same.

Finally, we conclude this section by summarizing in a graphical form in Fig-
ure 2.4.2 some major properties of the tools of linear systems, which combines
the mechanisms of the special coordinate basis, the Jordan canonical form and
the controllability structural decomposition (CSD). Such tools has been used
in the literature to solve many system and control problems such as the squar-
ing down and decoupling of linear systems (see e.g., Sannuti and Saberi [116]),
linear system factorizations (see e.g., Chen et al. [35], and Lin et al. [85]),
blocking zeros and strong stabilizability (see e.g., Chen et al. [36]), zero place-
ments (see e.g., Chen and Zheng [41]), loop transfer recovery (see e.g., Chen
[12], Chen and Chen [20], and Saberi et al. [110]), H> optimal control (see e.g.,
Chen et al. [37,39], and Saberi et al. [114]), disturbance decoupling with static
measurement feedback (see e.g., Chen [16] and Chen et al. [27]), and control
with saturations (see e.g., Lin [80,82]), to name a few. These tools will be used
intensively throughout this book to solve problems related to H, control.
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SCB
CSD, Jordan

HOOOOOOE

Figure 2.4.2: Tools and structural properties of linear time-invariant systems.
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2.5. Proofs of Properties of Special Coordinate Basis

In this section, we provide detailed proofs for all the properties of the special
coordinate basis listed in the previous section. Somehow, these proofs were
missing in the original work of Sannuti and Saberi [116]. We would like to
note that although some of the properties of the special coordinate basis, e.g.,
the controllability and observability, are quite obvious, some of them, e.g., the
interconnections between the geometric subspaces and the subsystems of the
special coordinate basis, are not transparent at all to general readers. The
results of this section were reported in Chen [17]. It is to give rigorous proofs
to all these properties.

We recall the following two lemmas whose results are quite well-known in
the literature. The first lemma is about the effects of state feedback laws.

Lemma 2.5.1. Consider a given system X, characterized by a constant matrix
quadruple (A, B«, Cy, D,) or in the state space form of (2.4.1). Also, consider
a constant state feedback gain matrix F, € R™*". Then, X,; as characterized
by the quadruple (A, + B.Fi, B,,C. + D,F,, D,) has the following properties:

1. X.r is a controllable (stabilizable) system if and only if ¥, is a controllable
(stabilizable) system;

2. The normal rank of ¥,r is equal to that of X,;
3. The invariant zero structure of X,z is the same as that of ¥,;
4. The infinite zero structure of ¥, is the same as that of X,;

5. ¥.r is (left- or right- or non-) invertible if and only if ¥, is (left- or right-
or non-) invertible;
6. VX(Z.¢) = VX(Z,) and S*(Z.r) = S*(Z,); and
7. VA(Zur) = Va(E4) and Sx(Bur) = Sx(Zs).
Proof. Item 1 is obvious. Items 3, 4 and 5 are well-known as all the lists of

Morse, i.e., I; to 14, are invariant under any state feedback laws. Furthermore,
Items 2 and 5 can be seen from the following simple manipulations:

H.e(s) := (Cs + D,F,)(sI — A, — B,F\)"'B, + D,

(C, + D F,)(sI = A,)"Y[I — B,F.(sI — A)"}]"'B, + D,
(Cu+ D.F,)(sI — A)7'B,[I - F.(sI — A,)7'B.] ™' + D,

= [C.(sI = A.)"'B. + D.)[I = F.(sI — A)7'B.] !

= H.(S)[I - Fu(sI — A)™'B. ™% (2.5.1)
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Since [I — Fy.(sI — A.) 71 B.]™! is well-defined almost everywhere on the complex
plane, the results of Items 2 and 5 follow.

For Item 6, it is obvious from the definition of V*, it is invariant under
any state feedback laws. Next, for any subspace S that satisfies the following
conditions:

(A. + K.C,)S C S, (2.5.2)
Im (B, + K,D.) C S, (2.5.3)

we have
(A.+K.C.+B.F.+K.D,F,)S = (A, +K.C.)S+(B.+K.D,)F.S§ C S.

Thus, S* is invariant under any state feedback laws as well.
Let us now prove Item 7. Recalling the definition of V), we have

JwelC™ : 0= [A*-'_B*F*_)‘I B*J <<>}

vA(E*F>={< €C C.+D.,F, D.|]\w

Then, for any ¢ € V)(Z.s), there exist an w € C™ such that
0= Ac+B.F, - M B.| (¢ _[Ac=X B.|[I 0]/(¢
- C. + D.F. D.|\w/ ™ C. D.||F. I|\w)’

o_ [4=A B (¢
- C. D.{\@)’
where @ = F,( +w. Thus, { € Vx(Z.) and hence V) (Z.r) C Vx(Z,). Similarly,

one can show that V) (X.) C Vx(Z.r), and hence Vx(Z.) = VA(Z.r). The result
that Sx(X+r) = SA(Z.) can be shown using the similar arguments. &

or

The following lemma is about the effects of output injection laws.

Lemma 2.5.2. Consider a given system X, characterized by a constant matrix
quadruple (A, B., C, D.) or in the state space form of (2.4.1). Also, consider a
constant output injection gain matrix K, € R™*?. Then, ,x as characterized
by the quadruple (A. + K.C., B.+ K. D.,C\,, D,) has the following properties:

1. X,k is an observable (detectable) system if and only if I, is an observable
(detectable) system;

2. The normal rank of ¥,k is equal to that of X,;

3. The invariant zero structure of ¥,k is the same as that of X,;
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4. The infinite zero structure of X,k is the same as that of X,;

5. Y.k is (left- or right- or non-) invertible if and only if ¥, is (left- or right-
or non-) invertible;

6. V¥(Z.uk) = V*¥(Z.) and S*(T.x) = S*(X,); and

7. Va(Z.x) = Va(E,) and Sa(Z.k) = Sa(Z,).
Proof. It is the dual version of Lemma 2.5.1.

Now, we are ready to prove the properties of the special coordinate basis.
Without loss of any generality but for simplicity of presentation, we assume
throughout the rest of this section that the given system X, has already been

transformed into the special coordinate basis of Theorem 2.4.1 or into the com-
pact form of (2.4.20) to (2.4.23), i.e.,

Asa LapCo 0 L.4Cy
0 Abb 0 Lded
A, = B.E,, LuC, A, LosCy +B*,0C’*’0, (254)
ByE4. B4Eg BgEse A}y + BaEaa + LagaCy
By 0 O
B.=[B.o B.)]= ggz 8 1(3)6 , (2.5.5)
B()d Bd 0
and
C.o Coa Cob Coc Cod I., 0 O
C*:{*‘]: 0 0 0 Cd}, D*:[o 0 0] (2.5.6)
Con 0 C 0 0 0 00

We further note that A%;, By and Cy4 have the following forms,

A%, = blkdiagq A,,, -+, A , 2.5.7
dd q1

1 my

and

deblkdiag{Bql,--- B } Cdzblkdiag{qu,--- C } (2.5.8)

y Pgmy 1 Ygmy,

where Ay, By, and Cy,, 1 =1,2,---,mgq, are defined as in (2.4.16).

Proof of Property 2.4.1. Let us define a state feedback gain matrix F, as
follows:

F,=-|FE4 Eag Fi FEau

E. O 0 0

Coa Cop Coc Cod
(2.5.9)
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Then, we have

Aa.a Labe 0 LadCd
0 Aw O LpaCy
0 chCb Acc Lchd
0 0 0 A;d + Lg4Cq

A*+BtFt=

(2.5.10)

Noting that (A, B.) is completely controllable, we have for any A € C,

rank [A,, 4 B.F, - \I B,]

FAga =N LgpCh 0 LadC’d Bog. O 07
|0 Aw-A 0 LyaCa B 0 0
B 0 LaCy A=Al LcaCy By 0 B,
L 0 0 0 A%+LaaCa—M Bog By 0
[ Aaa -l Labe 0 LadCd By 0 01
— rank 0 App =T 0 LygCy Bey 0 0
B 0 0 Acc—AI 0 0 0 B
L 0 0 0 A2d+deCd—)\I Bog Bs 0]
[ Acon —Al 0 Bconl Cd BconO 0 0
= rank 0 Ace—MI 0 0 0 B.| (2.5.11)
L 0 0 Azd-l-deCd ~A  Byg Bs; 0
where
_ [A,e LapCh _ _ | Boa Lea
Acon = i 0 Abb sy Beon = [BconO Bconl] = [BOb Lpa . (2-5-12)

Also, noting the special structure of (A};, B4, Cy), it is simple to verify that

[As+B.F.—XI B,]is of maximal rank if and only if [ Acon — AT

Bcon] is of

maximal rank. By Lemma 2.5.1, we have that (A4, B) is controllable (stabiliz-

able) if and only if (Acon, Beon) is controllable (stabilizable).

Similarly, one can show that (A, C) is observable (detectable) if and only if

(Aobs, Cobs) is observable (detectable).

&

Proof of Property 2.4.2. Let us define a state feedback gain matrix F, asin

(2.5.9) and an output injection gain matrix K, as follows:

BOa Lad Lab

Boy Leg O
K, =-

BOc Lcd ch

Bog Lgga O

(2.5.13)
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We have

A O 0 0
0 Ap O 0

A, =A,+B.F,+K.C, + K.D,F, = 0 o 4. o |’ (2.5.14)
0 0 0 Ay
0 0 0
. 0 0 0
B.=B.+K.D.=|q o p |, (2.5.15)
0 Bs 0
) 0 0 0 0
C.=C.+D,F,=[0 0 0 C4, (2.5.16)
0C, 0 0
and
Imy 0 0
D.=D,=|0 0 o0l. (2.5.17)
0 00

Let , be characterized by the quadruple (A*,B*,C'*,D,). It is simple to
verify that the transfer function of ¥, is given by

Imo 0 0
H.s)=C.(cI-A)"'B,+D, = [ 0 Ca(sI—A%) 1By o] . (2.5.18)
0 0 0

Furthermore, we can show that

1
o
Ca(sI - Az’;d)_le = . . (2.5.19)
1
cImg
By Lemmas 2.5.1 and 2.5.2, we have
normrank {H,(s)} = normrank {H,(5)} = mq + mq. (2.5.20)

Next, it follows from Lemmas 2.5.1 and 2.5.2 that the invariant zeros of
Y, and ¥, are equivalent. By the definition of the invariant zeros of a linear
system, i.e., a complex scalar a is an invariant zero of ¥, if

A* - al B,

rank [ G D J < n + normrank {H,(5)} = n + mg + my, (2.5.21)
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and also noting the special structure of (A%,, Bq, C4) and the facts that (Aps, Cs)
is observable, and (A.., B.) is controllable, we have

rA,,—ozl B.
rank {Py_(a)} = rank 6. D.
[Age—al 0 0 0 0 0 017
0 Ap—of 0 0 0 0 O
0 0 Ae,-al 0 0 0 B
= rank 0 0 0 Ay—-of 0 By 0
0 0 0 0 I, 0 0
0 0 0 Cq 0 0 0
L 0 off 0 0 0 0 0.
=1y 4 ne +ng + mo + mg +rank {Ag, —al}. (2.5.22)

Clearly, the rank of Py,_(a) drops below n +mg+ mg if and only if a € A(Aqq).
Hence, the invariant zeros of 3., or equivalently the invariant zeros of X,, are
given by the eigenvalues of A,q, which are the union of A(4;,), A(4%,), and
A(AY,). This completes the proof of Property 2.4.2. &

Proof of Property 2.4.3. It follows from Lemmas 2.5.1 and 2.5.2 that the
infinite zeros of £, and 3, are equivalent. It is clear to see from (2.5.18) and
(2.5.19) that the infinite zeros of ¥,, or equivalently the infinite zeros of %,, of
order higher than 0, are given by

S5(B4) = 552 = {0,424 ). (2.5.29)
Furthermore, ¥, or ¥, has my infinite zeros of order 0. &

Proof of Property 2.4.4. Again, it follows from Lemmas 2.5.1 and 2.5.2 that
%, or H.(s) is (left- or right- or non-) invertible if and only if £, or H,(¢) is
(left- or right- or non-) invertible. The results of Property 2.4.4 can be seen
from the transfer function H,(s) in (2.5.18). &

Proof of Property 2.4.5. We will only prove the geometric subspace V*(X,),

ie.,
I, O
* 0 0
V'(E)=X X =Im<T, (2.5.24)
0 I,
0 0

Here I'; = I, as the given system ¥, is assumed to be already in the form of
the special coordinate basis. It follows from Lemma 2.5.2 that V* is invariant
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under any output injection laws. Let us choose an output injection gain matrix
K, asin (2.5.13). Then, we have

Aua 0 0 0
A 0 App 0 0
A, = A, +K.C. = , (2.5.2
* BeEew 0 A 0 (25.25)
B4E4, BgEs BaEae Ay + BiEaa
and
0 0 O
A - 0 0 O
B,=B,+K.,D.,=B.= 0 0 B, (2.5.26)
0 By O
Let ¥, be a system characterized by (A*, é*,C,,,D*). Then it is sufficient to

show the property of V*(X,) by showing that

I, 0
. 0 0

Vi) =mm | o (2.5.27)
0 0

First, let us choose a matrix Fy as given in (2.5.9). Then, we have

A O 0 0
. - 0 Ap O 0
A, + B.F, = , 5.2
0 0 A. O (2:5.28)
0 0 0 Ay
and
0 0 0 O
Ci+D,F,=10 0 0 Cq]f. (2.5.29)
0 Cy 0 O
It is now simple to see that for any
I.,, 0
0 0
(eEX,® A, =1Im 0 I , (2.5.30)
0 0
we have
Ca
0
(= , (2.5.31)
Ce
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and
Aaa(a Ina 0
A+BFE)=] 0 |em{|? ?|l=rex, (532
* *L % Acc(c O Inc a CH I
0 0 0
and
(Cy + D.F,)( =0. (2.5.33)

Clearly, X, ® X, is a (/L + E*F,)-invariant subspace of R"™ and is contained in
Ker (C\ + D.F.). By the definition of V*, we have

X, & X, CV*(5.). (2.5.34)

~

Conversely, for any ( € V*(X.), by Definition 2.4.2, there exists a gain
matrix F, € R™*™ such that

(A, + B.E)C € V¥(S,), (2.5.35)

and
(Cv + D,F,)¢ =0. (2.5.36)

(2.5.35) and (2.5.36) imply that for any ¢ € V*(i*),
(C* -+ D*F*)(l&* + E*p*)kc = 0, k = 0, 1, e, — 1 (2537)

Thus, (2.5.34) and (2.5.37) imply that

I.. O

(C* +D*F*)(A* +B*ﬁ*)k 8 IO =0, k=0,1,-~-,n—1. (2538)
Ne
0 0

Next, let us partition this F, as follows:

) Fao—Coa Foo—Cop Feo—Coc Fao — Coa
F, = [Fad —FE4 Foa—Egp Fea— Eye Faa— Edd:| (2.5.39)
Fac - Eca Fbc Fcc ch
We have
Foo Fro Foo Fao
C, + D.F, = [ 0 0 0 cd] , (2.5.40)
0 C, O 0
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and
Asa 0 0 0
N A A 0 App 0 0
* *F:« = ..
A +B BcFac Bchc Acc+Bchc Bchc (2 5 41)
ByF.4 BaFyg ByFeq Ay
where A} = A}, + B4Fy4. Then, using (2.5.38) with & = 0, we have
I,, 0
A 0 0
(C. + D.F,) 0 I =0, (2.5.42)
0 0
which implies
FaO = 0, FcO = 0, (2543)
and
0 0 =«
Ci+D,F,=|0 0 0 Cq], (2.5.44)
0 C, 0 0

where *s are some matrices of not much interest. Using (2.5.38) with k = 1
together with (2.5.44), we have

CuBgFoq =0, CyByFeq =0, (2.5.45)

and
0 * 0 *
(C. + D,F,)(A, + B.F,) = [0 CaBaFpa 0 CdAfiZ] . (2.5.46)
0 CpApp 0 0

In general, one can show that for any positive integer k,
Cd(AZZ)k—leFad =0, Cd(A;;Z)k_lech =0, (2547)

and
0 * 0 *
(Cv + D,F,)(A, B FO)* = [0 * 0 Cd(A;;)"} . (2.5.48)
0 Cy(Aw)* 0 0
As a by-product, we can easily show that F,q = 0 and F.4 = 0, because of
the fact that (A}, Bq,Cq) is controllable, observable, invertible and is free of
invariant zeros. Now, for any

M>

¢= e V*(3.), (2.5.49)
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it follows from (2.5.37) and (2.5.48) that
Cy(Ap)*G =0, k=0,1,---,n—1, (2.5.50)
which implies (, = 0 because (A, Cp) is completely observable, and
Ca(AL) Ca+x- G = Ca(A5)¥¢a =0, k=0,1,---,n—1, (2.5.51)

which implies (4 = 0 because (A}};, Cy) is also completely observable. Hence,

Ca I.. 0
0 0 0
(= C. € Im 0 I, =X, 0 X, (2.5.52)
0 0 0
and
V'(E.) C A, @ X, (2.5.53)

Obviously, (2.5.34) and (2.5.53) imply the result.

Similarly, one can follow the same procedure as in the above to show the
properties of the other subspaces in Property 2.4.5. &

Proof of Property 2.4.6. Let us prove the property of Vi(X.). It follows
from Lemmas 2.5.1 and 2.5.2 that V), is invariant under any state feedback and
output injection laws. Thus, it is sufficient to prove the property of V\(2.) by
showing that

Xax 0
- 0 0

VA(E,) = Im o xal( (2.5.54)
0 0

where ¥, is as defined in the proof of Property 2.4.2, X, is a matrix whose
columns form a basis for the subspace,

{Cecm

(M = Aga)le = 0}, (2.5.55)

and
Xex = (Aee + B.F. - A\I)7'B,, (2.5.56)

with F. being an appropriately dimensional matrix such that A.. + B.F, — A\l
is invertible.
For any ¢ € VA(X.), by Definition 2.4.3, there exists a vector w € €™ such

that i\ B (
[ c. D*} (w) =0, (2.5.57)
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or equivalently,

[Age—M 0 0 0 0 0 0 Ca
0 Aw-—-A 0 0 0 0 0 G
0 0 A.-XM 0 0 0 B, Ce
0 0 0 A%-X 0 By 0 G | =0 (2.5.58)
0 0 0 0 I., 0 0 W
0 0 0 Cq4 0 0 0 wq
| O Cy 0 0 0 0 0] \we
Hence, we have
(Aga — M), =0, (2.5.59)
which implies that ¢, € Im {X,,},
App — M _
[ Cy ] G =0, (2.5.60)
which implies that ¢, = 0 as (A, Cp) is completely observable, and
AL, — M By (4 )
=0, 2.5.61
e ) @56

which implies that {4 = 0 and wq = 0 as (A4},, B4, Cq) is square invertible and
free of invariant zeros. We also have

(Aee = M)¢ + Bew, =0, (2.5.62)
which implies that
(Ace + B.F, — M), + Bo(we — Fel.) =0, (2.5.63)
or
Ce = (Acc + BeF, — M) Bo(FoCe — we) = Xea(Fele — we). (2.5.64)

Hence (. € Im {X,)}. Clearly,

Xax O Xax O
0 0 < 0 0
¢ €lm 0 X = W(Z,) CIm 0 X, (2.5.65)
0 0 0 0
Conversely, for any
Ca X 0
NES 0 0
¢ = . € Im 0 Xo , (2.5.66)
Ca 0 0
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we have (, =0, {34 = 0, {, € Im {X,,}, which implies that (A\] — A,,)(, = 0,
and (. € Im{X,,}, which implies that there exists a vector @, such that

CC = XC/\GJC = (Acc + Bch i )\I)_chL:JC.

Thus, we have
(Acc + B.F, - )‘I)Cc = Bc‘:)c,

or

(Acc - )\I)Cc + Bc(chc - ‘:Jc) =0.

wo 0
w = Wd = 0 .
We Fc(c - ‘:}c

It is now straightforward to verify using (2.5.58) that

A.-X B (¢ —o
et nl(l)=e

By Definition 2.4.3, we have

Let

Xax O
. 0 0 .
(e VX(E*) = Im 0 Xex Cc VA(E*)
0 0

Finally, (2.5.65) and (2.5.72) imply the result.

The proof of S)(Z.) follows from the same lines of reasoning.

(2.5.67)

(2.5.68)

(2.5.69)

(2.5.70)

(2.5.71)

(2.5.72)



Chapter 3

Structural Mappings of
Bilinear Transformations

3.1. Introduction

WE RECALL IN this chapter the work of Chen and Weller [40] on bilinear and
inverse bilinear transformations of linear time-invariant systems. Their result
presents a comprehensive picture of the mapping of structural properties as-
sociated with general linear multivariable systems under bilinear and inverse
bilinear transformations. They have completely investigated the problem of
how the finite and infinite zero structures, as well as invertibility structures
of a general continuous-time (discrete-time) linear time-invariant multivariable
system are mapped to those of its discrete-time (continuous-time) counterpart
under the bilinear (inverse bilinear) transformation. It is worth noting that
we have added in this chapter some new results on the mapping of geometric
subspaces under the bilinear (inverse bilinear) transformation.

The bilinear and inverse bilinear transformations have widespread use in
digital control and signal processing. As will be seen shortly, the bilinear
transformation actually plays a crucial role in the computation of infima for
discrete-time systems as well as in finding the solutions to discrete-time Riccati
equations. The results presented in this section were first reported in Chen and
Weller [40]. In fact, the need to perform continuous-time to discrete-time model
conversions arises in a range of engineering contexts, including sampled-data
control system design, and digital signal processing. As a consequence, numer-
ous discretization procedures exist, including zero- and first-order hold input
approximations, impulse invariant transformation, and bilinear transformation
(see, for example [2] and [55]). Despite the widespread use of the bilinear trans-
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form, however, a comprehensive treatment detailing how key structural proper-
ties of continuous-time systems, such as the finite and infinite zero structures,
and invertibility properties, are inherited by their discrete-time counterparts
is lacking in the literature. Given the important role played by the infinite
and finite zero structures in control system design, a clear understanding of the
zero structures under bilinear transformation would be useful in the design of
sampled-data control systems, and would complement existing results on the
mapping of finite and infinite zero structures under zero-order hold sampling
(see, for example, [1] and [60]).

In this chapter, we present a comprehensive study of how the structures,
i.e., the finite and infinite zero structures, invertibility structures, as well as
geometric subspaces of a general continuous-time (discrete-time) linear time-
invariant system are mapped to those of its discrete-time (continuous-time)
counterpart under the well known bilinear (inverse bilinear) transformations

-1
s=a<z ) and 2= a+s’ (3.1.1)
z+1 a—s

respectively.

3.2. Mapping of Continuous-time to Discrete-time

In this section, we will consider a continuous-time linear time-invariant system
Y. characterized by

zc:{‘”:‘“J"B“’ (3.2.1)

y=Cz+ D u,

wherez € R", y € R, u € R™ and A, B, C and D are matrices of appropriate
dimensions. Without loss of any generality, we assume that both matrices
[C D]and [B' D']are of full rank. £, has a transfer function

G(s) = C(sI - A)™'B + D. (3.2.2)

Let us apply a bilinear transformation to the above continuous-time system, by
replacing s in (3.2.2) with

2 (z2-1 z—1
S_T(z+1>_a<z+1>’ (32.3)

where T' = 2/a is the sampling period. As presented in (3.2.3), the bilinear

transformation is often called Tustin’s approximation [2], while the choice

w1
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yields the pre-warped Tustin approximation, in which the frequency responses
of the continuous-time system and its discrete-time counterpart are matched at
frequency w;. In this way, we obtain a discrete-time system

z—1 -1
I-A . 2.
P ) B+ D (3.2.5)

Gd(z) =C (a

The following lemma provides a direct state-space realization of Gg4(z).

While this result is well known (see for example [55]), the proof is included
as it is brief and self-contained.

Lemma 3.2.1. A state-space realization of G4(z), the discrete-time counter-
part of the continuous-time system X, of (3.2.1) under the bilinear transforma-
tion (3.2.3), is given by

k+1) = A z(k) + B u(k),
5, {z( ) = Az(k) + B u(k) (3.26)
y(k) = C o(k) + D u(k),
where -
A = (al + A)(al — A)7, )
B = V2a (al — A)7'B,
B = V2a (ol - 4) o (3.2.7)
C = V2aC(al - A)7,
D = D+C(al — A)™'B, )
or -
A = (al + A)(al - A)7, )
B=B8B
- ' 3.2.8
G = 2a Clal — A)72, ( (3:28)
D = D+C(al - A)"'B. )
Here we clearly assume that matrix A has no eigenvalue at a.

Proof. First, it is straightforward to verify that

z—1
z+1

=(z+1)Cla(z-1)I - (z+1)A] ' B+D
= (z+1)C(al — A)~[2] — (al + A)(al — A)™] 'B+D

Gd(z)zC(a I—A>—IB+D

-\ —1 -1
= 2C(al - A)~! (zI—A) B+ [C(aI—A)‘l (ZI—A) B+D] . (3.2.9)
- -\ —1
If we introduce Ga(z) = 2C(al — A)~! (zI - A) B, it follows that
(3.2.10)

{a‘c(k-l—l)

= A'#(k) + (al — A)1C"u(k),
j(k) = B'i(

k+1) = B'A'#(k) + B'(al — A')~1C"u(k),
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is a state-space realization of G’:i(z), from which

~ -1

Ga(2) = C(al — A)~? (zI _ A) AB +C(al - A)'B. (3.2.11)
Substituting (3.2.11) into (3.2.9), we obtain

-1
Ga(2) = Clal — A)~! (zI - A) (A+I)B +[C(al - A)~'B + D]
- N -
=C(zI—A) B+D,
and the rest of Lemma 3.2.1 follows. 5]

The following theorem establishes the interconnection of the structural prop-
erties of ¥, and X4, and forms the major contribution of this chapter.

Theorem 3.2.1. Consider the continuous-time system X, of (3.2.1) character-
ized by the quadruple (A, B,C, D) with matrix A having no eigenvalue at a,
and its discrete-time counterpart under the bilinear transformation (3.2.3), i.e.,
Y4 of (3.2.6) characterized by the quadruple (4, B,C, D) of (3.2.7). We have
the following properties:

1. Controllability (stabilizability) and observability (detectability) of X :

(a) The pair (A4, B) is controllable (stabilizable) if and only if the pair
(A, B) is controllable (stabilizable).

(b) The pair (4,C) is observable (detectable) if and only if the pair
(A, C) is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together
with state feedback and output injection laws:

(a) For any given nonsingular state, output and input transformations
Ts, T, and T;, the quadruple

(T7YAT,, T, ' BT, T CT,, T DT, (3.2.12)

is the discrete-time counterpart under the bilinear transformation
(3.2.3), of the continuous time system

(T;*AT,, T, 'BT;, T, 'CT,, T, ' DT3). (3.2.13)

’*o
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(b)

For any F € R™*™ with A + BF having no eigenvalue at a, define
a nonsingular matrix

T;:=I+F(al-A-BF)™'B
= [I-F(al - A)7'B]™' e R™*™, (3.2.14)
and a constant matrix
F:=V2a F(al - A- BF)™' ¢ R™*", (3.2.15)
Then a continuous-time system Y. characterized by
(A+ BF,B,C + DF, D), (3.2.16)
is mapped to a discrete-time system g4z, characterized by
(A+ BF,BT;,C + DF, DT;), (3.2.17)
under the bilinear transformation (3.2.3). Here we note that X is
the closed-loop system comprising ¥, and a state feedback law with
gain matrix F', and 4 is the closed-loop system comprising ¥, and

a state feedback law with gain matrix F', together with a nonsingular
input transformation T';.

For any K € R™™? with A + KC having no eigenvalue at a, define
a nonsingular matrix

T,:=[[+C(al - A- KC)'K]™! € RP*?, (3.2.18)
and a constant matrix
K :=V?2a(al - A- KC)™'K. (3.2.19)
Then a continuous-time system ¥ .k characterized by
(A+ KC,B+KD,C,D), (3.2.20)
is mapped to a discrete-time system Xy, characterized by
(A+KC,B+ KD, ¢, 7' D), (3.2.21)
under the bilinear transformation (3.2.3). We note that Y« is the
closed-loop system comprising £, and an output injection law with
gain matrix K, and ¥4k is the closed-loop system comprising ¥4

and an output injection law with gain matrix K, together with a
nonsingular output transformation T',.
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3. Invertibility and structural invariant indices lists Z and 73 of X4:

(a) Io(Z4) = I2(2,), and Z3(24) = Z3(Z,).
(b) X4 is left (right) invertible if and only if ¥ is left (right) invertible.

(c) Xg4 is invertible (degenerate) if and only if X. is invertible (degener-
ate).

4. The invariant zeros of ¥; and their associated structures consist of the
following two parts: '

(a) Let the infinite zero structure (of order greater than 0) of X, be given
by S*(X.) = {q1,¢2, - ,gm,}- Then z = —1 is an invariant zero of
Y4 with the multiplicity structure S*,(Z4) = {q1,¢2, ", gm.}-

(b) Let s = a # a be an invariant zero of ¥, with the multiplicity struc-
ture SX(X.) = {na,1,M0,2, ", Ma,r }- Then z =0 = (a+a)/(a—a)
is an invariant zero of its discrete-time counterpart ¥4 with the mul-
tiplicity structure SE(Ed) ={Na,1,M0,2," "y Pa,ra }-

5. The infinite zero structure of ¥, consists of the following two parts:

(a) Let mg = rank (D), and let mg be the total number of infinite
zeros of X, of order greater than 0. Also, let 7, be the geometric
multiplicity of the invariant zero of ¥, at s = a. Then we have
rank (f)) =mg+mqg — Ta.

(b) Let s = a be an invariant zero of the given continuous-time system ¥,

with a multiplicity structure S}(X.) = {nq,1,%a,2, ", a,r, }- Then
the discrete-time counterpart L4 has an infinite zero (of order greater
than 0) structure SX,(Z4) = {nqa,1,Ma,2,"**, Na,r, }-

6. The mappings of geometric subspaces:

(2) VH(Z.) = S°(Sq).
(b) ST(Ze) = VO (Za).

Proof. See Section 3.4. 5}

We have the following two interesting observations. The first is with regard
to the minimum phase and nonminimum phase properties of X4, while the
second concerns the asymptotic behavior of ¥4 as the sampling period T tends
to zero (or, equivalently, as a — 00).
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Observation 3.2.1. Consider a general continuous-time system Y. and its
discrete-time counterpart ¥4 under the bilinear transformation (3.2.3). Then
it follows from 4(a) and 4(b) of Theorem 3.2.1 that

1. ¥4 has all its invariant zeros inside the unit circle if and only if ¥, has
all its invariant zeros in the open left-half plane and has no infinite zero
of order greater than 0;

2. ¥, has invariant zeros on the unit circle if and only if ¥, has invariant
zeros on the imaginary axis, and/or . has at least one infinite zero of
order greater than 0;

3. ¥4 has invariant zeros outside the unit circle if and only if ¥, has invariant
zeros in the open right-half plane. Gl

Observation 3.2.2. Consider a general continuous-time system ¥, and its
discrete-time counterpart ¥4 under the bilinear transformation (3.2.3). Then
a consequence of Theorem 3.2.1, ¥, has the following asymptotic properties as
the sampling period T tends to zero (but not equal to zero):

1. ¥4 has no infinite zero of order greater than 0, i.e., no delays from the
input to the output;

2. L4 has one invariant zero at z = —1 with an appropriate multiplicity
structure if ¥, has any infinite zero of order greater than 0; and

3. The remaining invariant zeros of X4, if any, tend to the point z = 1.
More interestingly, the invariant zeros of ¥, corresponding to the stable
invariant zeros of . are always stable, and approach the point z = 1 from
inside the unit circle. Conversely, the invariant zeros of ¥4 corresponding
to the unstable invariant zeros of X, are always unstable, and approach
the point z = 1 from outside the unit circle. Finally, those associated
with the imaginary axis invariant zeros of X, are always mapped onto the
unit circle and move towards to the point z = 1. )]

The following example illustrates the results in Theorem 3.2.1.

Example 3.2.1. Consider a continuous-time system X, characterized by the
quadruple (A4,B,C,D) with
1

, (3.2.22)

0 O OO

—_ O O O
O O = O
- O W o oo
— O bk ped el
O O OO
OO, OO O
—_H OO0 OO
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and

fooo100 10
0_000010], D_[O 0]. (3.2.23)

We note that the above system X, is already in the form of the special coordinate
basis as in Theorem 2.4.1. Furthermore, ¥. is controllable, observable and
invertible with one infinite zero of order 0, and one infinite zero of order 2, i.e.,

S* (Xc) = {2}. The system X, also has two invariant zerosat s=2and s =1,
respectlvely, with structures S§(Z.) = {1} and S} (Z.) = {3}.
1. If a = 1, we obtain a discrete-time system X, characterized by the quadru-
ple (4,B,C,D), with
1 -3 1 0 -2 1 -2
-2 —1 2 0 0 0 s 0 O
~ 0 -2 1 0 0 O = V2 0 0
A=106 0 1 -2 0o o B=% |1 o
0 0 -2 0 -1 0O 0 0
0 0 -2 0 -2 -1 0 O
- V2[00 1 -1 0 0] - 11 0
C=%loo -2 00 0] D‘E[o 0]'

Utilizing either the toolbox of Chen [11] or that of Lin [79], we find that
¥, is indeed controllable, observable and invertible, with one infinite zero
of order 0 and one infinite zero of order 3, i.e., S* (£4) = {3}. £q4 also has
two invariant zeros at z = —3 and z = —1 respectively, with structures

S%3(Zq) = {1} and 5%,(Z4) = {2}.

2. If a = 2, we obtain another discrete-time system ¥4, characterized by

0 -2 -5 3 -3 -3 3 -3
-2 -1 -2 2 -2 -2 2 -2
;-1 -2 0o 1 -1 -1 s 1| 1 -1
A=11 2 3 6 1 10" 73|55 1]
-1 -2 -3 1 -2 -1 1 -1
-2 -4 -6 2 -6 -3 2 -2

and
s 171 2 3 -5 1 1] x_1[-1 1
C=3]-1 2 -3 1 -1 —1] D_Z[l—l]

which is controllable, observable and invertible with one infinite zero of
order 0 and one infinite zero of order 1, i.e., S* (X4) = {1}. It also has
two invariant zeros at z = 3 and z = —1 respectively, with structures
S3(Xq) = {3} and S*,(Z4) = {2}, in accordance with Theorem 3.2.1. E
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3.3. Mapping of Discrete-time to Continuous-time

We present in this section a similar result as in the previous section, but for the
inverse bilinear transformation mapping a discrete-time system to a continuous-
time system. We begin with a discrete-time linear time-invariant system ¥4
characterized by
& {z(k-H) = A z(k) + B u(k),
d

y(k) =C z(k) + D u(k), (3.3.1)

wherez € R",y € R?, u € R™ and 4, B, C and D are matrices of appropriate
dimensions. Without loss of any generality, we assume that both matrices
[C D]and [B' D'] are of full rank. £4 has a transfer function

Hy(z) =C(zI — A)"'B + D. (3.3.2)

The inverse bilinear transformation corresponding to (3.2.3) replaces z in the
above equation (3.3.2) with

a+s
= (3.3.3)
to obtain the following continuous-time system:
-1
Ha(s) =C*<Z“_L§I—A> B+D. (3.3.4)

The following lemma, is analogous to Lemma 3.2.1, and provides a state-
space realization of H(s).

Lemma 3.3.1. A state-space realization of H,(s), the continuous-time coun-
terpart of the discrete-time system 4 of (3.3.1) under the inverse bilinear
transformation (3.3.3), is given by

5 &=Az+ Bu,
Ec.{y:Cz+Du, (3.3.5)
where 3 i
A=alA+D)"YA-1), \
B .= V2 (A+I)B,
(A 3.3.6
C =+v2CA+1), ( (3.3.6)
D=D-C(A+I)B, )
or _ 5
A =a(A+D)HA-T), \
B = B,
C =2CA+D)72 ( (3.3.7)
D=D-CA+DNB. )

Here we clearly assume that the matrix A has no eigenvalue at —1.
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The following theorem is analogous to Theorem 3.2.1.

Theorem 3.3.1. Consider the discrete-time system ¥ of (3.3.1) characterized
by the quadruple (4, B, C, D) with matrix A having no eigenvalue at —1, and its

continuous-time counterpart under the inverse bilinear transformation (3.3.3),
ie., 5 of (3.3.5) characterized by the quadruple (A, B,C, D) of (3.3.6). We
have the following properties:

1. Controllability (stabilizability) and observability (detectability) of Z.:

(a)

(b)

The pair (A, B) is controllable (stabilizable) if and only if the pair
(A, B) is controllable (stabilizable).

The pair (A4,C) is observable (detectable) if and only if the pair
(A,C) is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together

with state feedback and output injection laws:

(a)

(b)

For any given nonsingular state, output and input transformations
T,, T, and T;, the quadruple

(T, AT, T, BT, T, *CTs, T, ' DT3), (3.3.8)

s "o

is the continuous-time counterpart of the inverse bilinear transfor-
mation, i.e., (3.3.3), of the discrete-time system

(T, AT, T, ' BT, T, 'CT,, T, ' DT). (3.3.9)

1" o

For any F' € R™*™ with A + BF having no eigenvalue at —1, define
a nonsingular matrix

T,:=1-FI+A+BF)"'BeR™™, (3.3.10)
and a constant matrix
F:=V2aF(I+ A+ BF)™' e R™", (3.3.11)

Then a discrete-time system 4 characterized by
(A+ BF,B,C + DF,D), (3.3.12)

is mapped to a continuous-time counterpart X characterized by

(A + BF,BT;,C + DF, DT)), (3.3.13)
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under the inverse bilinear transformation (3.3.3). Note that Zgp is
the closed-loop system comprising £4 and a state feedback law with
gain matrix F', and 4z is the closed-loop system comprising ¥4 and
a state feedback law with gain matrix F, together with a nonsingular
input transformation Tj.

(c) For any K € R™*? with A+ KC having no eigenvalue at —1, define
a nonsingular matrix

To:=[I-CI+A+KC)'K]|™! € RP*?, (3.3.14)
and a constant matrix
K:=v2a(I+A+KC) K. (3.3.15)
Then a discrete-time system Y4 characterized by
(A+ KC,B+KD,C,D), (3.3.16)
is mapped to a continuous-time ., characterized by
(A+KC,B+ KD, T, 'C,T,;' D), (3.3.17)

under the inverse bilinear transformation (3.3.3). We note that Yax
is the closed-loop system comprising £4 and an output injection law
with gain matrix K, and .4 is the closed-loop system comprising
¥. and an output injection law with gain matrix K, together with a
nonsingular output transformation 7.

3. Invertibility and structural invariant indices lists Z, and Z3 of 3,:
(a) Iz(ic) = Ig(id), and Ig(ic) = Ig(id)
(b) X, is left (right) invertible if and only if $4 is left (right) invertible.
(c) X, is invertible (degenerate) if and only if ¥4 is invertible (degener-

ate).

4. Invariant zeros of ¥, and their structures consist of the following two
parts:

(a) Let the infinite zero structure (of order greater than 0) of £, be given
by S;o(id) ={q1,92, " ,qm,}. Then s = a is an invariant zero of
3. with the multiplicity structure S*(2) = {q1, a2, amy }-
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(b) Let z = @ # —1 be an invariant zero of ¥4 with the multiplicity
structure S*(X4) = {na,1,Ma,2, " sNa,ro}- Then s =~ﬂ = ag—;}
is an invariant zero of its continuous-time counterpart ¥. with the

multiplicity structure S;;(/.‘:JC) ={na1,Ma,2, " Na,ra t
5. The infinite zero structure of ¥, consists of the following two parts:

(a) Let mp = rank (D), and let my be the total number of infinite
zeros of 4 of order greater than 0. Also, let 7_; be the geometric
multiplicity of the invariant zero of ¥4 at z = —1. Then we have
rank (D) = mg + mg — 7_3.

(b) Let z = —1 be an invariant zero of the given discrete-time system P
with the multiplicity structure S*; Ed)={n_11,n-1,2," ", 1,7, }-
Then ¥. has an infinite zero (of order greater than 0) structure

S;o(ic) = {n“l,17n“‘1,2’ T 1n—1,‘r_1}-
6. The mappings of geometric subspaces:

(a) V°(£a) = S*(S0).
(b) 8°(£4) = VH(Eo).

Proof. The proof of this theorem is similar to that of Theorem 3.2.1. &
We illustrate the result above with the following example.

Example 3.3.1. Consider a discrete-time linear time-invariant system ¥4 char-
acterized by the quadruple (4, B, C, D) with

-1 0 0 1 0 1 07 0 0 07
0 -1 11011 000
0 0 -11011 000
A={ 0 0 0101 1|, B=|00 0f, (3.3.18)
1 1 11111 001
1 1 11111 100
Lo 1 111 1 1l L0 1 0.
and
0001000 000
¢=|00000 1 0], D=0 0 0]. (3.3.19)
00000O0O0?1 000

Again the above system is already in the form of the special coordinate basis.
It is simple to verify that %4 is controllable, observable and is degenerate,
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i.e., neither left nor right invertible, with two infinite zeros of order 1, i.e.,
S%.(£4) = {1,1}, To(£q) = {1} and Z3(£4) = {1}. It also has one invariant
zero at z = —1 with a structure of $*,(£4) = {1,2}. Applying the result in
Lemma 3.3.1 (with a = 1), we obtain £, which is characterized by (4, B, C, D)
with

5 0 0 -2 0 -2 27 r 1 -1 07
0 3 4 -2 2 -2 -2 1 1 -1
0 -2 3 0 0 0 0 0 0 0
A= 0 0 2 -1 0 0 0|, B=v2| 0 0 0],
-2 0 -2 2 -1 2 0 -1 0 1
-2 0 -2 2 0 1 0 0 0 0
L2 0 -2 0 0 0 1] L 0 0 ol
00 -1 1000 00 0
cC=v2| 10 1 -1 00 0}, D=0 0 0].
-10 1 0000 000

Then, it is straightforward to verify, using the software toolboxes of Chen [11]
or Lin [79], for example, that &, is controllable observable and degenerate with

an infinite zero structure of S¥, (£,) = {1,2}, Zx(E.) = {1} and Z3(£,) = {1}.
Furthermore, £. has one mvanant zero at s = 1 w1th associated structure
S{(f]c) = {1, 1}, in accordance with Theorem 3.3.1. E

Finally, we conclude this section by summarizing in a graphical form in
Figures 3.3.1 the structural mappings associated with the bilinear and inverse
bilinear transformations.

3.4. Proof of Theorem 3.2.1

We present in this section the detailed proof of Theorem 3.2.1. For the sake of
simplicity in presentation, and without loss of any generality, we assume that
the constant a in (3.2.3) is equal to unity, i.e., a = 2/T = 1, throughout this
proof. We will prove this theorem item-by-item.

1(a). Let 3 be an eigenvalue of 4, i.e., 8 € A(A). It is straightforward to verify
that 3 # —1, provided A has no eigenvalue at a =1 and a = (8- 1)/(8 + 1)
is an eigenvalue of A, i.e., a € A(4). Next, we consider the matrix pencil

[B1-A4 B]=[pI-(- A)‘1(1+A) V(I - 4)7'B]
=(I-A)"[B( - (I+4) V2B]
=(I-A4)*[(8 ) -(B+1)A V2B
—(-A)?[al-4 B]|P+tDE O

0 V21,
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__aa
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invariant ‘ invariant

zero - Lt zero
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structure @ @ structure
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Figure 3.3.1: Structural mappings of bilinear transformations.
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Clearly, rank [8BI—A B] = rank [aI—A B], and the result 1(a) follows.
1(b). Dual of 1(a).
2(a). It is trivial. &

2(b). It follows from Lemma 3.2.1 that the discrete-time counterpart Lge of
the bilinear transformation of X.r, characterized by (A + BF, B,C + DF, D),
is given by (Ag, Bg, Cr, Dy) with

= (I+A+BF)(I-A-BF)™!
¢ =V2(I—-A-BF)!
Ce = V2(C+DF)(I - A- BF)~!
Dy = D+ (C+DF)(I — A- BF)™!

A
B (3.4.1)

We first recall from the Appendix of Kailath [64] the following matrix identities
that are frequently used in the derivation of our result:

I+XY)'X=X(I+YX)}, (3.4.2)

and

[[+X(sI-2)7'Y] " =T-X(sI - Z+YX)"Y. (3.4.3)

Next, we note that

Ar=(I+A+BF)I-A-BF)!
=(I+A+BF)I-A)™[I-BF(I- A1
=[A+BF(I-A)Y{I-BFI-A)!
=[A+BF(I~A)YI+BF(I-A-BF)™Y

=A+ABF(I- A-BF)"'+BF(I- A" [+ BF(I - A- BF)™]

+ABF(I -A-BF) '+ BF(I-A)™'(I-A(I—-A-BF)™!

+ABF(I-A-BF)™' + BF(I-A-BF)™!

(A+I)BF(I - A—- BF)™!

2(I - A)"'BF(I-A-BF)™!

BF,

T TR TR R TR
e B B B
+ + +

and

\/_(I A- BF)™!
V2T - (I-A) IBF] Y1-A)"'B
V2 (1 )lB[I F(I-A)'B]™" = BT,

I

1
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Also, we have

Ce =V2(C+DF)(I-A-BF)™!
=v2(C +DF)I - A)™'[I - BF(I - A)™']"!
=v2(C + DF)(I - A)"Y[I + BF(I - A— BF)™!]
=v2C(I -A)"+V2DF(I - A)!
+V2(C +DF)I - A)™'BF(I - A- BF)™!
=C+V2 [DF(I - A)~'(I - A- BF)
+(C + DF)(I — A)"'BF](I - A- BF)™!
=C ++V2 [DF-DF(I - A)™*BF+C(I - A)"*BF+DF(I — A)™'BF]
x (I - A-BF)™!
=C+[D+C(I-A)'BV2F(I-A-BF)™

=C + DF,
and
Dy =D+ (C+DF)I-A-BF)™'B
=D+ (C+DF)[I-(I-A)'BF|" (I-A)"'B
=D+ (C+DF)I-A)'B[I-F(I-A4)"B]"
={D[I-F(I-A)"B]+(C+DF)I-A)™B}T;
={D-DF(I-A)™'B+C(I-A)"'B+DF(I-A)™B}T;
= DT,
which completes the proof of 2(b). &
2(c). Dual of 2(b).

With the benefit of properties of 2(a)-2(c), the remainder of the proof is
considerably simplified. It is well known that the structural invariant indices
lists of Morse, which correspond precisely to the structures of finite and infinite
zeros as well as invertibility, are invariant under nonsingular state, output and
input transformations, state feedback laws and output injections. We can thus
apply appropriate nonsingular state, output and input transformations, as well
as state feedback and output injection, to X, and so obtain a new system, say
Y%, If this new system has ¥} as its discrete-time counterpart under bilin-
ear transformation, then from Properties 2(a)-2(c), it follows that ¥} and 4
have the same structural invariant properties. It is therefore sufficient for the
remainder of the proof that we show that 3(a)-6(b) are indeed properties of L.
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Let us first apply nonsingular state, output and input transformations I,
I', and I'; to . such that the resulting system is in the form of the special
coordinate basis as in Theorem 2.4.1, or, equivalently, the compact form in
(2.4.20)-(2.4.23) with A,, and Cp, being given by (2.4.25), E4, and E., being
given by (2.4.26), and By, Lep and L4 being given by (2.4.28). We will further
assume that A,, is already in the Jordan form of (2.2.1) and (2.4.32), and that
matrices Agq, Lad, Bao, Eda, Coa, Eca and L,y are partitioned as follows:

_ 4% O _ | Lad _ | Bao _ (Lo
Aa,a - [ 0 A:a] ) Lad - [L;d:I ) BaO - [B;O ) La.b - Lgb ) (344)
Edﬂ = [E:ila E&a] ’ COa = [Cga Cga] ) ECﬂ = [Ega E:a] ) (345)

where matrix A2, has all its eigenvalues at a = 1, i.e.,

0 Inyer - 0 0
0 0 -0 0
Ag, =1+ |: P : , (3.4.6)
0 0 - 0 In.
0 0 -0 0

and A}, contains the remaining invariant zeros of £.. Furthermore, we as-
sume that the pair (A, B.) is in the controllability structural decomposition
of (2.4.37), as is the pair (A;,,C}). Next, define a state feedback gain matrix

Cga - 02a Caa COb COc C’Od
F=-T,|E~-C¢ E; Es Es Eu|T;}, (3.4.7)
E2, E:x 0 E. 0

and an output injection gain matrix

Ba - Bf L3y —Bt Lg

Bz L34 L3,

K=-T, Byo Lba Ly | T2 (3.4.8)
BcO Lcd ch
Byo Lyq 0

Here, E,. is chosen such that all xs in (2.4.37) are cleaned out, i.e.,
A% = A. — B.E,., (3.4.9)

is in Jordan form with all diagonal elements equal to 0. Similarly, Ly, is chosen
such that

(Aps)' = (Awp — LnCs)', (3.4.10)
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is in Jordan form with with all diagonal elements equal to 0. Likewise, E;4 and
Lgq are chosen such that

A4y = Ada — LaaCa — ByEqa, (3.4.11)
is in Jordan form with all diagonal elements equal to 0, which in turn implies
Ca(I — A4y) !By = Iy, (3.4.12)

The matrices Bf, B3, Cf and C§ are chosen in conformity with A2, of (3.4.6)
as follows:

0 0 --- 0
0 1 --- 0
B*:=[B§ Bf]:=|: . + |, (3.4.13)
0 0 0
0 0 1
and
00 -~ 00
cg 10 - 00
ct = =1. . . . .|. 3.4.14
[C’f] A ( )
00 ---10

This can always be done, as a consequence of the assumption that the matrix
A has no eigenvalue at a = 1, which implies that the invariant zero at a = 1 of
¥, is completely controllable and observable.

Finally, we obtain a continuous-time system X} characterized by the quadru-
ple (A*B*C* D*), where

A* =P 'I';Y(A+ BF + KC + KDF)T',P

A, 0 0 0 0
0 A 0 0 0
= 0 A, 0 0 . (3.4.15)

0
0 0 0 A3,  BuCe
0 0 0 B:C, A% +BCS

B* =P I7Y(B+KD); =

0
B 0
00 0 0 C¢
C*=T;Y(C+DF)I,P=10 0 0 C; , (3.4.17)
0 0
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and

D*=T;'Dr; =

Imy O 0}
0 0 0y, (3.4.18)
0 00
where P is a permutation matrix that transforms A%, from its original position,
i.e., Block (1,1), to Block (5,5) in (3.4.15).

Next, define a subsystem (A;, Bs, Cs, D) with

— A;d BdCil o 0 Bd
As = [B?Cd AZG+B§’Cg]’ B, = [Bg o ] : (3.4.19)
and
= 0 Cél o— Img 0
Coi= [Cd 0 ]’ D, := [ 0o ol (3.4.20)

It is straightforward to verify that with the choice of B* and C* as in (3.4.13)
and (3.4.14), A, has no eigenvalue at a = 1. Hence A* has no eigenvalue
at a = 1 either, since both A;, and A}, have all eigenvalues at 0, and A},
contains only the invariant zeros of ¥, which are not equal to a = 1. Applying
the bilinear transformation (3.2.3) to X}, it follows from Lemma 3.2.1 that we
obtain a discrete-time system ¥, characterized by (A*, B*, C'*, ﬁ*), with

(I+A3)I-A%)™0 0 0 0
I 0 (I+A45)I-4;)"0 0 0
0 0 (J+AL)I-A;)™ 0 ’
0 0 0 (I+A,)(I-A4,)"
(3.4.21)
0 0
~x 0 0
B =Vv2 0 (I-A)'B, | (3.4.22)
(I-A,)"'B, 0
=0 0 0 C(I-A,)!
C —x/i[o CoI-A)" 0 0 , (3.4.23)
and .
D= [DS +Cs(IO‘As) B, 8] . (3.4.24)

Our next task is to find appropriate transformations, state feedback, and output
injection laws, so as to transform the above system into the form of the special
coordinate basis displaying the Properties 3(a)-6(b).

To simplify the presentation, we first focus on the subsystem (A, By, Cs, D)
with

Ay = (I +A)I —A)™Y, B, :=vV2(I-4,)"'B,, (3.4.25)
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and

Cy:=V2C,(I-A,)"Y, D,:=D,+Cy(I-A,) 'B,. (3.4.26)
Using (3.4.12) in conjunction with Appendix A.22 of Kailath [64], it is straight-
forward to compute (I — A,)~! =

X1 (I-A5,) 'BiCE(I-Age—BoC?)™1
[(I-—Am,—B“C"‘)‘IB{‘C’d(I-—A;al)‘1 (I-Age—BoC?)™! ’
(3.4.27)
where

Xy = (I =A™t + (I - A5) ' BaC(I — Aga — B*C*) ' BICy(I — AGy) 7Y,

and hence
i :[ X2
s = | (1= A2, — BoC%) "' BeCy(I - A%
21 A3,) " BaCE (I - A2, ~ B°C?)"
(I+AS,+BoCe)(I- A%~ Bece)-t |+ (3:428)
where

Xz = (I+430) (I-Ajg) ' +2(I-Aja) " BaC} (I-A3,~B*C*) ' Bf Ca(I-A,) ™,

= (I-—A;d)_leCf(I—Aga—B"C“)_lBg
B, =2 [ (I- A2, - B2C%)~1 Bg
(=A%) By[I+Cp (I A° ~—B“C“)"1Bi‘]]
a eraslipa , (3.4.29
(I A2, - B*C)~1 B (34.29)
o = ya| Csl-az,~BoCo) BrCy(I- 43"
* [I+CP(I-A3,~B*C*) ™' Bf|Ca(I-Ajy) "
C3 (I~ A3, — B°C*)™

G e > @499

and
D= I+Cg(I-As, —B°C*)"'B Cg(I-A%,-B°C®)~'B¢
‘ C¢(I-As,—BeC*)"'B¢ I+Cg(I-A2,—B°C*)~'B¢
(3.4.31)
Noting the structure of A%, in (3.4.6), and the structures of B® and C? in

(3.4.13) and (3.4.14), we have

0 -1 - 0 0
—Ing,-1 0 - 0 0

(I - Aw—B*CH)™ ' = : Do : Cl, (3.4.32)
0 0 0 -1
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C(I = Agg — B°C*)'B2 =0, C2(I — Aga — B°C®)™'B2 =0, (3.4.33)

and
Co(I - Aga — B*C*)~'B® = [g _‘} ] . (3.4.34)
Thus, B, Cs and D, reduce to the following forms:
3 (I~ A3) " Byll +C3 (I~ A2, — B°C*) ' Bf]
(I-A2, B“C“) ! Bg (I-As,—BsC*)"1B¢ ’
(3.4.35)
A 0
Co=V2 [U+Ci‘(1—A3a—B“C“)‘lBi‘]CdU-AEd)‘I
C3 (I~ A3, - B*C*)~"
Ciz(I_Aza_Baca)-—l ’ (3'4'36)
and
D= I+C8(I-A%,—B*C®)~'BS 0
? 0 I+C¢(I-A2,-B*C*) 1B
(3.4.37)
Next, define
o 0 0
Fy:=v2 [—Cd(I—A;d)‘l 0] , (3.4.38)
and .
K,:=V2 [8 -(I- ‘%dd) Bd] , (3.4.39)

from which it follows that

Age = A+ B Fy+K,Co+ K, D, F,

%k

_ (4 0
0 (I+A%,+BoCo)(I-A%,—B°C%)~! |’

A= T+ AL~ Ay ™ = 2(I-A3) ' BaCaI-AYy) ™, (3.4.40)

. . R 0 0

Buo= Bt Ribo =V (1_gs _pocmyis (1—ag,—5ecoy 5t
2 A = = 0 Cg(I-A2, - B*C*)™!
Csc—cs+Dst“\/§[O Ci;(I_Aga_Baca)~1

Next, repartition B* and C® of (3.4.13) and (3.4.14) as follows:

B*=[0 B.] and C°= [CO } (3.4.41)
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where both B, and C, are of maximal rank. We thus obtain

A = A .. 0 o
¢ 0 (I+A%+B,C,)(I-A2%, -B,C,)™ |’

0 0
Bi=V2 [0 (= Ag Bac"a)—léa} ’
and
oI 0 - 0 .. N — D — Imo+md—1’a 0
C”_ﬁ[o ca(I—Aaa—BaCa)‘l]’ D“_Ds_[ 0 0]
Using (3.4.6) and (3.4.32), straightforward manipulations yield
(I+ A2, + B,C,)(I — A%, — B,C,)™!
0 -2
[ [_2Ina -1 0 ~lnes 0
0 -2
0 [—2Ina',a—l 0 ] Ina,'ra
1 0
0 0
(I_Aga—éaéa)‘léa =—1: 3
0 1
0 0
and
01 --- 00
Oa(I—AZa_Baéa)-l == |: } .
00 --- 01

Moreover, it can be readily verified that each subsystem (Aa,-,Bai, Cai), 1 =
1,---, 7., with

= 0 -2 5 -1 A
Aai - —Ina_i + [_21—"“"—1 0 :! ) Bai - [ ] ) Ca,i - [O —1]7

has the following properties:

CoiBai = éaiAuiBai == Cvai(jiai)na'i_zgai =

and
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It follows from Theorem 2.4.1 that there exist nonsingular transformations I'y,,
'y and T';, such that

Ad =T (I + A2, + BoCa)(I - 42, — B,C,)™"|T.e

* Ina,l—l 0 0
* * o 0 0
= : ,  (3.4.42)
0 0 x In, . 1
0 0 * *
0 0
1 - 0
By =T [(I- A%~ BoCa) ' By]Tis = B (3.4.43)
0 0
0 1
and
10 - 00
éd=F;;[C*a(I—Aga—Baéa)-l]rsa:[; Do } (3.4.44)
00 --- 10

Now, let us return to X% characterized by (A*,B*,é*,ﬁ*) asin (3.4.21) to
(3.4.24). Using the properties of the subsystem (A, By, Cs,D,) just derived,
we are in a position to define appropriate state feedback and output injection
gain matrices, say F" and K *, together with nonsingular state, output and
input transformations I’ :, r : and f‘: , such that

*

Aoy = () (I +B'F + K¢+ K'D'F) T
0

(I+AL)I-A3)"" 0 0 0
0 (I+435)(I-Ap) " 0 0 0
= 0 0 (I+Ar)I-A:)™ 0 0 | (3.445)
0 0 0 A0
0 0 0 0 Ay
with A, given by (3.4.40), and
0 0 0
0 0 0
Biow:= () (B +K'D)E{= |0 0 (I-4y)7'B.|, (3446)
0 0 0
[0 By 0
[0 0 00 0
Crcy = (F)1 (é*+D*"*)f;’: 0 Gy(I-4;)"t 0 0 0},
K 0 00 C

—_~

3.4.47)
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o % J |:Imo+md—ra 0 0:|
D,,:=(,)'DT,; = 0 0 0f. (3.4.48)
0 00
Clearly, 3. characterized by (A;CB, B;CB, C :CB, f);CB) has the same structural
invariant indices lists as ¥ does, which in turn has the same structural invari-
ant indices lists as ¥4. Most importantly, X3, is in the form of the special
coordinate basis, and we are now ready to prove Properties 3(a)-6(b) of the
theorem.

3(a). First, we note that Zo(34) = Zo(X3.s)- From (3.4.45) to (3.4.48) and the
properties of the special coordinate basis, we know that Z5(X3_,) is given by
the controllability index of the pair

((T+ 4500 - 43)7, (1= A4)7'B) o ((T+ AL = A2)7", Be).
Recalling the definitions of A}, and B,:

0 Iy_y -+ 0 0 0 --- 0
0 0 - 0 I 0 --- 0

it is straightforward to verify that the controllability index of
(T+a:)0 - 427, B.)
is also given by {1, --,%n.}, and thus Z5(X4) = Z,(Z.).
Likewise, the proof that Z3(X4) = Z3(X,.) follows along similar lines. X
3(b)-3(c). These follow directly from 3(a).

4(a). It follows from the properties of the special coordinate basis that the
invariant zero structure of E;CB, or equivalently ¥4, is given by the eigenvalues
of A, and (I +A%,)(I —A%,)"!, together with their associated Jordan blocks.
Property 4(a) corresponds with the eigenvalues of A:Z of (3.4.40), together with
their associated Jordan blocks. First, we note that for any z € C,

dI-A,, = [(z= DI~ (2 + 1) A5+ 2(I = A%y) "' BaCa) (I- A3y ™" (3.4.49)
Recall the definitions of A};, B4 and Cyg:

0 Inql"'l -0 0 0o .-« 0
0 0 - 0 I,

o
o
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10 -~ 00
Cd=[s o }
00 - 10

(z = DI = (2 + 1)A3y + 21 - Ay) ™ ByCy = blkdiag {Q1(2), -+, Qi(2)},

and

It can be shown that

where Q;(z) € C™% ™™ is given by

[z2+1 —(z+1) 0 e 0 0 ]
2 z-1 —(z+1) -~ 0 0
Qi(2) = 2 0 Zfl _0 0 . (3.4.50)
2 0 0 o z=1 —(z+1)
L 2 0 0 0 z—1 J

for i = 1,---,mq. It follows from (3.4.49) that the eigenvalue of /i:: is the
scalar z that causes the rank of

blkdiag {Q1(2), -+, Qm.(2)},

to drop below ng = 3°1»4 ¢;. Using the particular form of Q;(2), it is clear

that the only such scalar z € C which causes @;(z) to drop rank is z = ~1.
Moreover, rank {Qi(—1)} = ng, — 1, i.e., Q;(—1) has only one linearly indepen-
dent eigenvector. Hence, z = —1 is the eigenvalue of A:Z, or equivalently the

invariant zero of X4, with the multiplicity structure

Sil(zd) = {41," : aqmd} = S;g(zc);

thereby proving 4(a). &

4(b). This part of the infinite zero structure corresponds to the invariant zeros
of the matrix (I + A},)(I — A%,)~!. With A}, in Jordan form, Property 4(b)
follows by straightforward manipulations. &

5(a). It follows directly from (3.4.48).

5(b). This follows from the structure of (A4, By,C4) in (3.4.42) to (3.4.44), in
conjunction with Property 2.4.3 of the special coordinate basis. 53]

6(a)-6(b). We let the state space of the system (3.2.1) be X and be partitioned
in its SCB subsystems as follows:

X=X 00X 0 X 00X, 0, (3.4.51)
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We further partition X} as
xb=xf o Xy, (3.4.52)

where X is associated with the zero dynamics of the unstable zero of (3.2.1)
at s = a =1 and X} is associated with the rest of unstable zero dynamics of
(3.2.1). Similarly, we let the state space of the transformed system (3.2.6) be
X and be partitioned in its SCB subsystems as follows:

I=X. oX el oX,0X oX, (3.4.53)
with X 2 being further partitioned as
P 0, (3.4.54)

where X 21 is associated with the zero dynamics of the invariant zero of (3.2.6)
at z=—1and X 2* is associated the rest of the zero dynamics of the zeros of
(3.2.6) on the unit circle. Then, from the above derivations of 1(a) to 5(b), we
have the following mappings between the subsystems of £, of (3.2.1) and those
of &4 of (3.2.6):

X = ,

a
Xy = /?21,

X0 — X0

XH = Y7, > (3.4.55)
X —_— Xy,

X, ez X.,

x4 — X, )

Noting that both geometric subspaces V* and $* are invariant under any non-
singular output and input transformations, as well as any state feedback and
output injection laws, we have

VHE) =X o X oX. =X o X 0. = 8°(2), (3.4.56)
and
STE) =X DX OX. X=X, @A, & X ®Xoy =VO(Ty). (3.4.57)

Unfortunately, other geometric subspaces do not have such clear relationships
as above.

This concludes the proof of Theorem 3.2.1 and this chapter. &



Chapter 4

Existence Conditions of H
Suboptimal Controllers

4.1. Introduction

THE FIRST FUNDAMENTAL issue one faces in an H, optimization problem, is
when, or under what conditions a < suboptimal controller exists. Fortunately,
the problem regarding the existence conditions of y-suboptimal controllers for
either the regular or singular type of continuous-time or discrete-time systems
has almost been completely solved in the literature. As it was mentioned in the
introduction, there were four main different approaches developed in early years,
which include: 1) Interpolation approach (see e.g., Limbeer and Anderson [77));
2) Frequency domain approach (see e.g., Doyle [47], Francis [54] and Glover
[57]); 3) Polynomial approach (see e.g., Kwakernaak [69]); and 4) J-spectral
factorization approach (see e.g., Kimura [67]). All these techniques mainly deal
with the regular problem.

We recall in this chapter the existence conditions of v suboptimal controllers
for the Hy, optimization problem derived from the pure time-domain methods
based on algebraic Riccati equations or linear matrix inequalities. For the
regular continuous-time systems, the problem was solved by Doyle, Glover,
Khargonekar and Francis [49], i.e., DGKF, and Tadmor [129]. For general
singular continuous-time systems with no invariant zero on the imaginary axis,
the problem was solved by Stoorvogel and Trentelman [127] and Stoorvogel
[124]. In the situation when systems have invariant zeros on the imaginary
axis, the result was derived by Scherer [117-119]. The existence conditions of
v-suboptimal controllers for discrete-time systems were reported in Stoorvogel
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[124] and Stoorvogel, Saberi and Chen [125]. These results will form a base for
the results reported in the coming chapters.

4.2. Continuous-time Systems

We consider in this section a general continuous-time linear time-invariant (LTT)
system ¥ with a state-space description,

t=Az+ Bu+ E w,
L:¢qy=Cz + D, w, (4.2.1)
h=Cyzx+ Dy u+ Dy w,

where £ € R is the state, u € R™ is the control input, w € RY is the external
disturbance input, y € RP” is the measurement output, and h € R’ is the
controlled output of ¥. We also consider the following proper measurement
feedback control law,

U = Aemp ¥ + Bemp ¥,
Semp { P emp Y (4.2.2)

u = C'cmp v+ Dcmp y.

For simplicity of presentation, we will first set the direct feedthrough term from
the disturbance w to controlled output h in (4.2.1) to be equal to zero, i.e.,
Djyy = 0. For easy reference, we define ¥, to be the subsystem characterized
by the matrix quadruple (A, B, Cy, D), and X4 to be the subsystem character-
ized by the matrix quadruple (A, E,Cy, D), which respectively have transfer
functions:

Gp(8) = Co(sI — A)"'B + D, (4.2.3)

and
GQ(s) =C (SI - A)_IE + D;. (4.2.4)

We recall in this section some important results in the literature regarding the
existence conditions of y-suboptimal control laws for the continuous-time H,
optimization problem.

The first result given below is due to [124]. Before we introduce the theorem,
let us define the following quadratic matrices,

A'P + PA+CyCy + Y 2PEE'P PB+CLD
R = | A VP BCEY)
22 2L/2
and
AQ + QA' + EE' + y2QC4C,Q QC| + ED;
Gy(Q) := [ 10+ D,E 2 11) D 1} (4.2.6)
1 1 14
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It should be noted that the above matrices are dual of each other. In addition
to these two matrices, we define two polynomial matrices whose roles are again
completely dual:

L,(P,s):=[sI-A-~y"*EE'P -B], (4.2.7)
and
o — A —y2QC4C,
o) :

Now we are ready to introduce the following theorem which gives a set of

M, (Q,s) = (4.2.8)

necessary and sufficient conditions for the existence of a «y-suboptimal controller
for the continuous-time system (4.2.1) with Dy = 0 and with both subsystems
Y and ¥, having no invariant zero on the imaginary axis.

Theorem 4.2.1. Consider the continuous-time linear time-invariant system of
(4.2.1) with Dyy = 0. Assume that ¥, and £, have no invariant zero on the
imaginary axis. Then the following statements are equivalent:

1. There exists a linear time-invariant and proper dynamic compensator
Yemp Of (4.2.2) such that when it is applied to (4.2.1), the resulting
closed-loop system is internally stable. Moreover, the H-norm of the
closed-loop transfer function from the disturbance input w to the con-
trolled output A is less than +.

2. There exist positive semi-definite matrices P and () such that the following
conditions are satisfied:

(a) Fy(P) > 0.
(b) rank{F,(P)} = normrank {Gs(s)}.

(©) rank[l;lji’)‘;)} — 1 + normrank {G»(s)}, Vs € €°U C*.

Here G (s) and Gq(s) are respectively the transfer function of ¥p and
Yo, and “normrank” denotes the rank of a matrix with entries in the field
of rational functions.
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The following remark concerns the full information feedback and full state
feedback cases. It turns out that for the system with Doy = 0, the existence
conditions of y-suboptimal controllers for the full information feedback case and
for the full state feedback case are identical.

Remark 4.2.1. For the special cases of full information and full state feed-
back, the solution to the linear matrix inequality (LMI), i.e., Condition 2.(d)
of Theorem 4.2.1, which satisfies Conditions 2.(e) and 2.(f), is identically zero.
This implies that Condition 2.(g) is automatically satisfied. Hence, the exis-
tence conditions of y-suboptimal controllers for both the full information and
the full state feedback cases reduce to Conditions 2.(a)-2.(c). Moreover, it can
be shown that a y-suboptimal static control law exists. ®

The following corollary deals with the regular systems or regular case. It
was first reported in Doyle et al. [49] and Tadmor [129].

Corollary 4.2.1. Consider the continuous-time linear time-invariant system
of (4.2.1) with Dy = 0. Assume that ¥; and ¥4 have no invariant zero on the
imaginary axis, Dy is of full column rank and D; is of full row rank. Then the
following statements are equivalent:

1. There exists a linear time-invariant and proper dynamic compensator
Semp of (4.2.2) such that when it is applied to (4.2.1), the resulting
closed-loop system is internally stable. Moreover, the H,-norm of the
closed-loop transfer function from the disturbance input w to the con-
trolled output h is less than ~.

2. There exist positive semi-definite matrices P and () such that the following
conditions are satisfied:

(a) P is the solution of the Riccati equation:
A'P+ PA+CyCy +y*PEE'P
—(PB + CyD,)(D4Dy) Y (B'P + DyCs) =0.  (4.2.9)
(b) Agp is asymptotically stable, where
Agp = A+ 2EE'P — B(DyD;) Y (B'P + DyCy).  (4.2.10)
(c) @ is the solution of the Riccati equation:

AQ + QA+ EE' +4*QC5CaQ
—(QCy + EDy)(D\D}) Y (C1Q + D1E') = 0. (4.2.11)
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(d) Aciq is asymptotically stable, where
Agg = A+~72QC5Cy — (QC) + ED}) (D1 D})71Cy. (4.2.12)
(e) p(PQ) <7

If the given system (4.2.1) with nonzero D35 term, then the general condi-
tions for the existence of y-suboptimal controllers are rather complicated. We
will derive these conditions later in Chapter 6. In what follows, we recall a
corollary that deals with a special full information feedback case when Dj is of
full column rank and ¥; has no invariant zero on the imaginary axis.

Corollary 4.2.2. Consider the continuous-time linear time-invariant system
of (4.2.1) with y = (2’ w')" and D, being of full column rank. Assume that
¥r has no invariant zero on the imaginary axis. Then the following statements
are equivalent:

1. There exist constant gain matrices F; and F5 such that when the control
law u = Fiz + Fyw is applied to (4.2.1), the resulting closed-loop system
is internally stable. Moreover, the H-norm of the closed-loop transfer
function from the disturbance input w to the controlled output A is less
than ~.

2. The following conditions are satisfied:

(a) Dj, (I — Dy(DyD3)~D}) Dag < 721

(b) There exists a positive semi-definite solution P to the Riccati equa-
tion:

O:PA+A’P+C§C’2—[

B'P+DyCy | -1 [ BP+DyC
E’P+DI22C2 E/P+Dl220 ’

where
o . [ DD D} Dag
’ Dl22D2 D,22D22 - ’}/21 ’

such that the matrix,

Aclp ::A_[B E]G—l {BP+D10])

E'P + DjC

is asymptotically stable.
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Note that the existence conditions of a ~y-suboptimal controller for the full
state feedback case with Dy being of full column rank and ¥, having no invari-
ant zero on the imaginary axis, are similar to those in Item 2 of Corollary 4.2.2
except that one has to replace 2.(a) by Dy, D2g < ¥2I.

Next, we will remove the restrictions on the invariant zeros of the subsystems
Yp and Zq, i.e., we will allow both ¥, and ¥, to have invariant zeros on the
imaginary axis. The following theorem is due to Scherer [119].

Theorem 4.2.2. Consider the continuous-time linear time-invariant system of
(4.2.1) with Dyg = 0. Then the following statements are equivalent:

1. There exists a linear time-invariant and proper dynamic compensator
Yemp of (4.2.2) such that when it is applied to to (4.2.1), the result-
ing closed-loop system is internally stable. Moreover, the H.,-norm of
the closed-loop transfer function from the disturbance input w to the
controlled output h is less than ~.

2. There exist appropriate dimensional constant matrices F' and K, and pos-
itive definite matrices P > 0 and @ > 0 such that the following conditions
are satisfied:

(a) (A+BF)P+P(A+BF)+~y 2PEE'P+(Cy+D2F) (Cy+DyF) < 0.
(b) (A+KCQ+Q(A+KCy) +v~2QCLC,Q+(E+KDy)(E+KD;)' < 0.
(c) p(PQ) <~

The above Conditions 2.(a) and 2.(b) in Theorem 4.2.2 can be converted
into conditions of the existences of positive definite solutions for some reduced
order algebraic Riccati inequalities, which are independent of F' and K. This
can be done by transforming the subsystems ¥; and ¥, of the given system
into the special coordinate basis as in Chapter 2.

4.3. Discrete-time Systems

We now consider in this section a general discrete-time linear time-invariant
(LTI) system ¥ with a state-space description

z(k+1) = A z(k) + B u(k) + E w(k),

2 d yk) =G k) + Dy w(k), (4.3.1)
h(k) =Cy .’L‘(k) + D, u(k) + Dyg w(k),
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where z € IR™ is the state, u € R™ is the control input, w € RY is the
disturbance input, y € RP is the measurement output, and h € R’ is the
controlled output of ¥. The following X.n;, is the controller considered:

5 ‘ {v(k+1) = Acmp v(k) + Bemp y(k),
cmp

u(k) = Cemp v(k) + Demp y(k). (4.3.2)

We would like to note that in principle, one could transfer all the results in the
continuous-time case to the discrete-time one using the bilinear and the inverse
bilinear transformations of Chapter 3. For the regular full information feedback
case, the interconnection between the continuous-time and discrete-time H,
optimization problems as well as the relationship between the continuous-time
and discrete-time H, algebraic Riccati equations will be explicitly established
later in Chapter 5.

Again, as in the continuous-time case, we define ¥ to be the subsystem
characterized by the matrix quadruple (4, B, Cy, D5), and 4 to be the subsys-
tem characterized by the matrix quadruple (A, E,C1, D1), which respectively
have transfer functions:

Gr(2) = Co(2I — A)™'B + D, (4.3.3)

and
Go(2) = Ci(zI ~ A)™*E + D;. (4.3.4)
The following result is due to Stoorvogel, Saberi and Chen [125].
Theorem 4.3.1. Consider the system (4.3.1). Assume that the subsystems

Y: and X4 have no invariant zero on the unit circle. Then the following two
statements are equivalent:

1. There exists a linear time-invariant and causal dynamic compensator X¢mp
of (4.3.2) such that when it is applied to (4.3.1), the resulting closed loop
system is internally stable and the closed loop transfer matrix from the
disturbance input w to the controlled output h is less than .

2. There exist symmetric matrices P > 0 and @) > 0 such that
(a) The following matrix R is positive definite,

R:=~*I - Dy,Dyy — E'PE
+ (E'PB + D}y, D,)VY(B'PE + DyD3;) >0, (4.3.5)

where
V := B'PB + D,D,. (4.3.6)
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(b) P satisfies the discrete algebraic Riccati equation:

P=A'PA+CLC, - [B’PA+D’202 ] ’GT [B'PA+Dgcz

. (437
E'PA+D},Cs E’PA+D’2202] (4.3.7)

where

DiDy+B'PB DiDy+B'PE
G::[ 272 272 ] (4.3.8)

DbyDy+E'PB  E'PE+DyyDas—~%1
(c) For all z € C with |z| > 1, we have
zI-A -B -E
rank[ B'PA+D)C, B'PB+DyD,  B'PE+D}D,, }
E'PA+DyCy E'PB+DyyDy E'PE+D}yDoyy—v%I
= n+ q + normrank{Gz(z)}.
(d) The following matrix S is positive definite,

S := I — Dy3 Dy, — C2QC%
+ (C2QC{ + D32 D})WH(C1QCy + D1Djy) > 0, (4.3.9)

where
W := D, D, + C,QC,. (4.3.10)

(e) @ satisfies the following discrete algebraic Riccati equation:

i ! !
QIAQA’ +EE — [ClQA +D1E"jl f[leAl-i-DlE

4.3.11
CaQA'+ Dy E! C2QAI+D22EI:|’ (4.3.11)

where

_ [ DD} +C1QC4 Dy D3, +C1QC5

= . 4.3.12
D22D11+C2QC{ CQQCé+D22D§2_’)’2[:' ( )

(f) For all z € C with |z| > 1, we have

- ClQC{'FDlDi ClQCé+D1D’22

z2I-A  AQC{+ED] AQC3+ED;,
rank l:
=0y CQCi+DypD; C2QC5+ Dy Doy —~21

= n+ £+ normrank{Gq(z2)}.

(8) p(PQ) < 7.
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Here we should note that Condition 2.(b) is the standard Riccati equation
used in discrete-time H, optimization except that the inverse is replaced by a
generalized inverse. Condition 2.(c) is nothing other than the requirement that
P must be a stabilizing solution of the Riccati equation. Conditions 2.(b) and
2.(c) uniquely determine, if it exists, the matrix P. A similar comment can
be made about Conditions 2.(d)-2.(f). Condition 2.(g) is as usual the coupling
condition. The solutions to the above mentioned P and ) can be obtained
by transforming the subsystems ¥, and ¥, into the special coordinate basis
as in Chapter 2 and then solving two standard discrete-time Riccati equations
without generalized inverses. These will be given later in Chapter 10.

The following remark concerns the full information feedback and full state
feedback cases.

Remark 4.3.1. For the special cases of full information and full state feedback
we can dispense with the second Riccati equation. More specifically:

1. Full information feedback case: In this case we know both the state and
the disturbance of the system at time k. It is easy to check that Q@ =0
satisfies Conditions 2.(d)-2.(f). Moreover this guarantees that the cou-
pling Condition 2.(g) is automatically satisfied. Therefore there exists
a stabilizing controller which yields a closed loop system with the Hg,
norm strictly less than - if and only if there exists a positive semi-definite
matrix P satisfying Conditions 2.(a)-2.(c).

2. Full state feedback case: In this case, it is easy to see that a necessary
condition for the existence of a positive semi-definite matrix @) satisfying
Conditions 2.(d)-2.(f) is that |Dss| < . It is also easy to check that for
the full state feedback case,

Q= E(I -7 *DyyDy,) ' E, (4.3.13)
satisfies Conditions 2.(d)-2.(f). Condition 2.(g) then reduces to
v%I — D9y D}y, — E'PE > 0. (4.3.14)

Moreover, Condition (4.3.14) implies that Condition 2.(a) is automatically
satisfied. Therefore there exists a stabilizing controller which yields a
closed loop system with the Ho, norm strictly less than v if and only if
there exists a positive semi-definite matrix P satisfying Conditions 2.(b),
2.(c) and additionally Condition (4.3.14).
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Furthermore, it can be shown that either in the full information case or in the
full state feedback case, there always exists a y-suboptimal static control law
whenever the above-mentioned conditions are satisfied. &

The following corollary deals with the regular case in discrete-time H,
optimization and is due to [124].

Corollary 4.3.1. Consider the system (4.3.1). Assume that the subsystem X,
is left invertible and has no invariant zero on the unit circle, and the subsystem
Y4 is right invertible and has no invariant zero on the unit circle. Then the
following two statements are equivalent:

1. There exists a linear time-invariant and causal dynamic compensator Xe¢mp
of (4.3.2) such that when it is applied to (4.3.1), the resulting closed loop
system is internally stable and the closed loop transfer matrix from the
disturbance input w to the controlled output A is less than ~.

2. There exist symmetric matrices P > 0 and ) > 0 such that
(a) The following matrices V and R are positive definite,
V := B'PB + D3D; > 0, (4.3.15)
and

R:=~*I - D},Dyy — E'PE
+ (E'PB + Dy,D;)V~(B'PE + DyDy3) > 0. (4.3.16)

(b) P satisfies the discrete algebraic Riccati equation:

B'PA+DLCy 1’ B'PA+D!
P:APA+CKB—[ _F2@]Guﬂ*[ '*2@],

E'PA+D},C, E'PA+Dj,C,
(4.3.17)
where
D,D,+B'PB D}Dy;+B'PE
G@p:[f s 2722 o | (4318)
D22D2+E PB ElPE+D122D22—’)/ I
(c) The following matrix A.p is asymptotically stable,
B'PA+ DyC,
Aar=A-[B E]G(P)™! R 4.3.19
e [ 1G(P) [ETA+D§@] (4.3.19)



4.3. Discrete-time Systems 93

(d) The following matrices W and S are positive definite

W := D D] + C1QC; > 0, (4.3.20)
and

S = ")/2] - D22D/22 — CQQCé
+ (C2QC1 + Doy D)W (C1QCy + D1 Dyy) > 0. (4.3.21)

(e) Q satisfies the following discrete algebraic Riccati equation:

Q=AQA' + EE' - [C‘Q“l'J’DIEI}IH(Q)‘1 [ClQA’JrDlE/J

C2QA’+D22E’ CQQA’+D22El
(4.3.22)
where
D, D1+ C1QC; DDy, +C1QC
H(Q) ;:[ L 1 ’ L 1? ?, J (4.3.23)
D22D1+02QCI 02Q02+D22D22—’)/ I
(f) The following matrix A¢q is asymptotically stable,
ClQA’-f-DlE’]' 1[G
Aco:= A— H . 4.3.
wwi=a |G H@7 (3] aaa
(8) p(PQ) <~

It is interesting to note that all the conditions in Corollary 4.3.1 are related
to those in Corollary 4.2.1 by a properly defined bilinear transformation. This
will be shown later in Chapter 5 in more details. In fact, following the result of
Glover [57], we can show that the continuous-time H,, optimization problem
and the discrete-time H, optimization problem are equivalent under the bilin-
ear transformation (see the detailed properties of the bilinear transformation in
Chapter 3). Thus, all the results for the discrete-time case can be derived from
those of its continuous-time counterpart.



Chapter 5

Solutions to Discrete-time
Riccati Equations

5.1. Introduction

THE DISCRETE-TIME algebraic Riccati equation (DARE) has been investigated
extensively in the literature (see, for example [9,68,72,101,105,123]). Here, most
of the work was based on the discrete-time algebraic Riccati equation appearing
in a linear quadratic control problem (hereafter we will refer to such a DARE
as the H,-DARE). Recently, the problem of H, control and that of differential
games for discrete-time systems, have been studied by a number of researchers
including [4,63,78]. This work gives rise to a different kind of algebraic Riccati
equation (hereafter we call it an H,-DARE). Analyzing and solving such an
H,,-DARE are very difficult primarily because of an indefinite nonlinear term
and because we cannot a priori guarantee the existence of solutions. In this
chapter, we recall the results of Chen et al. [38] on non-recursive methods for
solving general DAREs, as well as Ho-DAREs and H,,-DAREs. In particular,
we will cast the problem of solving a given Ho.-DARE to the problem of solv-
ing an auxiliary continuous-time algebraic Riccati equation associated with the
continuous-time H, control problem (H,,-CARE) for which the well known
non-recursive solving methods are available. The advantages of this approach
are: it reduces the computation involved in the recursive algorithms while giv-
ing much more accurate solutions, and it readily provides the properties of the
general Ho.-DARE. More importantly, the results given in this chapter build an
interconnection between the discrete-time and continuous-time H, optimiza-
tion problems.
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5.2. Solution to a General DARE

We first introduce in this section a non-recursive method for solving the follow-
ing discrete-time algebraic Riccati equation, which is even more general than
the Ho,-DARE and which plays a critical role in solving the Ho,-DARE,

P=APA-(APM+N)R+M'PM)'(M'PA+N')+Q, (5.2.1)

where A, M, N, R and () are real matrices of dimensions n x n, n x m, n x m,
m X m and n X n, respectively, and with @) and R being symmetric matrices.
We will show that the DARE of (5.2.1) can be converted to a continuous-time
Riccati equation. Assume that matrix A has no eigenvalue at —1. We define
F:=(A+I)"YA-1I),
G :=2A+1)"M,
W:=R+MA +1)1QA+I)'M (5.2.2)
-N'(A+D)™*M - M'(A'+I)7N,
H:=-QA+I)'M+N.
Note that matrices F, G, W and H are in fact defined using the inverse bilinear
transformation.

We have the following theorem.

Theorem 5.2.1. Assume that matrix A has no eigenvalue at —1. Then the
following two statements are equivalent.

1. P is a symmetric solution to the DARE (5.2.1) and W is nonsingular.

2. P is a symmetric solution to the continuous algebraic Riccati equation,

PF+ F'P—(PG+H)W(PG+H) +Q=0, (5.2.3)

and R+ 2G'(I — F')"'P(I — F)~'@ is nonsingular.
Moreover, P and P are related by P = 2(4' + I)~1P(A + I)~L.
Proof. See Subsection 5.4.A. &

We would like to note that Theorem 5.2.1 can be regarded as a bridge
connecting discrete-time algebraic Riccati equations and continuous-time alge-
braic Riccati equations. The result of Theorem 5.2.1 shows that any discrete-
time Riccati equation of the form (5.2.1) can be converted into an equivalent
continuous-time Riccati equation of (5.2.3) for which many numerically stable
non-recursive solving methods are available. Thus, in our opinion, there is no
need to develop separate techniques for solving discrete-time algebraic Riccati
equations.
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5.3. Solution to an H-DARE

In this section we present a non-recursive procedure that generates symmetric
positive semi-definite matrices P such that

V := B'PB+ DD, >0, (5.3.1)
R:= 721 - D/22D22 - E,PE
+ (E'PB + Db, D3)V~Y(B'PE + D}D15) > 0, (5.3.2)

and such that the following discrete-time algebraic Riccati equation (DARE) is
satisfied:

P=APA+CyCy - [B'PA+D502]IG—1 [B'PAJFD’zCz

E'PA+ D},C, E'PA+ DiCy ] (533
where

! ! ! 1
o [ DyD, + B'PB DyDy, + B'PE ] (5.3.4)

Dy D,y + E'PB  E'PE + D)y Dyy — 421
The conditions of (5.3.1) and (5.3.2) guarantee that the matrix G is invertible.
We are particularly interested in solutions P of (5.3.1), (5.3.2) and (5.3.3) such
that all the eigenvalues of the matrix A, are inside the unit circle, where
B'PA + D,C, ]

E'PA+ Dj,Cy (5.3.5)

Aa:=A-[B E]G! {

The interest in this particular Riccati equation stems from the discrete-
time Hy control theory (see Corollary 4.3.1). Also, it is simple to see that
by letting E' = 0 and Dy = 0, (5.3.1), (5.3.2) and (5.3.3) reduce to the well-
known Riccati equation from linear quadratic control theory. For clarity, we
first recall the relation between the above Riccati equation and the discrete-
time full information feedback H, control problem. Let us define a system Xp;
by

sk+1) = A z(k) + B ulk) + E w(k),
N R EC QT
h(k) = (4 il:(k) + D, u(k) + Doy w(k),

where z € R" is the state, u € R™ is the control input, w € R? the disturbance
input, h € R’ the controlled output and y € R™"? the measurement. Then the
following lemma follows from Corollary 4.3.1.

Lemma 5.3.1. Consider a given system (5.3.6). Assume that (A, B, Cy, Ds) is
left invertible and has no invariant zero on the unit circle. Then the following
two statements are equivalent:
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1. There exists a static feedback u = K;z + Kow, which stabilizes Xz, and
makes the Hy, norm of the closed-loop transfer function from w to h less
than ~.

2. There exists a symmetric positive semi-definite solution P to (5.3.1),
(5.3.2) and (5.3.3) such that matrix A of (5.3.5) has all its eigenvalues
inside the unit circle.

In what follows, we provide a non-recursive method for computing the sta-
bilizing solution to the Ho-DARE for the full information problem, i.e., (5.3.1),
(5.3.2) and (5.3.3). We first define an auxiliary He-CARE from the given sys-
tem data and we connect the stabilizing solution for the given H,,-DARE to
the stabilizing solution for the auxiliary Ho,-CARE, for which non-recursive
methods of obtaining solutions are available.

We first choose any constant matrix F such that A + BF has no eigenvalue
at —1. We note that this can always be done as (4, B) is stabilizable with
respect to €° U €®. Next, define an auxiliary Hy-CARE,

~ ~ ~1 x ~t ~
—PA+ AP+ E,0y- [ B P+ DyC ] & ['? P+ DyC; ] (5.3.7)
with the associated condition
Dy, (1 - Dz(D;DQ)—lz");) Day < 41, (5.3.8)
where -
A =(A+BF+I1)"Y(A+BF -1), )
B :=2(A+BF +1)72B,
E =2+ BF+1)%E,
N ( ) » (5.3.9)
Cy :=Cy+ DyF,
Dy := Dy — (Co + DyF)(A+ BF + I)"!B,
Dy := Dy — (Cy + DoF)(A+ BF + I)™'E,
and . .
G = [ DoD2 | Dol \ ] . (5.3.10)
DDy DgyDyy — 71

If matrix D, is injective, then Condition (5.3.8) implies G in (5.3.10) is invert-
ible. Again, we are particularly interested in solution P of (5.3.7) such that the
eigenvalues of Ag are in the open-left plane, where

(5.3.11)
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We note that under the conditions when D, is injective, (A,B,C‘g,Dz) has
no invariant zero on the jw axis, and (5.3.8), the above H,,-CARE (5.3.7)
is related to the continuous-time H., +y-suboptimal full information feedback
control problem for the following system,

i= A z+ Bu+ E w,

Ser 1 {Y = <é> z + (?) w, (5.3.12)

h = 02 $+E2u+ D22 w.

The following lemma follows from Corollary 4.2.2.

Lemma 5.3.2. Consider a given system (5.3.12). Assume that D, is injective
and (A, B,C3, Dy) has no invariant zero on the jw axis. Then the following
two statements are equivalent:

1. There exists a static feedback law u = K1z + K 2w, which stabilizes Sm
and makes the H, norm of the closed-loop transfer function from w to h
less than 7.

2. Condition (5.3.8) holds and there exists a symmetric P > 0 such that
(5.3.7) is satisfied and such that the matrix A¢ of (5.3.11) has all its
eigenvalues in the open left-half plane.

Now, we are ready to present our main results.

Theorem 5.3.1. The following two statements are equivalent:

1. (A, B) is stabilizable and (A, B, Cs, D,) is left invertible with no invariant
zero on the unit circle. Moreover, there exists a symmetric positive semi-
definite matrix P such that (5.3.1), (5.3.2) and (5.3.3) are satisfied along
with the matrix A of (5.3.5) having all its eigenvalues inside the unit
circle.

2. (A, B) is stabilizable, Dy is injective and (4, B, C, D3) has no invariant
zero on the jw axis, and (5.3.8) holds. Moreover, there exists a symmetric
positive semi-definite solution P of the Ho-CARE (5.3.7) such that the
eigenvalues of ficl, where /icl is as in (5.3.11), are in the open left-half
complex plane.

Moreover, P and P are related by P = 2(A'+ F'B'+1)"'P(A+ BF + I)~\.

Proof. See Subsection 5.4.B. 5]
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Remark 5.3.1. We should point out that the left invertibility of (4, B, Ca, D3)
is a necessary condition for the existence of the stabilizing solution to the H-
DARE for the full information problem (see [124]). Moreover, following the
proof of Theorem 5.3.1 and the properties of the continuous-time algebraic
Riccati equation, it is easy to show that the condition that (A, B,Cy, Ds) has
no invariant zero on the unit circle is also necessary for the existence of the
stabilizing solution to the Hoo-DARE for the full information problem. ®]

Remark 5.3.2. From Theorem 5.3.1, a non-iterative method of obtaining the
stabilizing solution P to the Hoo-DARE for the full information problem can
be established as follows:

1. Obtain the auxiliary H,-CARE;

2. Obtain the stabilizing solution P to the H.,-CARE using some well-
known non-iterative methods. For clarity, we recall in the following a
so-called Schur method (see e.g., [73,114]): Define a Hamiltonian matrix

_ | Hun Hi
[t ] sa10

Hiu=A-[B E)G ' [Dy Dy Cs,

H.=-[B E)G (B EY,
3 A (5.3.14)
Hy = —Co{I —[Dy Dy]G  [Ds D3])'}Cs,
~ ~ - =1 =~ ~ ~
Hy =-{A-[B E|G'[Dy Dn)Cy).
Find an orthogonal matrix Ty, € RZ" 2" that puts Hy, in the real Schur
form
S Siz
0 Sy’

where S;; € R™™ is a stable matrix and Syy € R™*" is an anti-stable
matrix. Partition Ty, into four n X n blocks:

Tu le]
Toy Toa]

T! HnTon = [ (5.3.15)

T = [ (5.3.16)

Then P is given by P = Ty, Ty,

3. The stabilizing solution to the H,,-DARE for the full information problem
is given by P = 2(A' + F'B' + I)"'P(A+ BF +I)~\. &
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It is well-known that the H.,-DARE is the generalization of the H,-DARE.
Namely, by letting v = oo, or equivalently £ = 0 and Dy; = 0, we obtain
the general Hy-DARE. For completeness, we give the following corollary that
provides a non-iterative method of solving the general Ho-DARE.

Corollary 5.3.1. The following two statements are equivalent:

1. (A, B) is stabilizable and (A, B, C, D,) is left invertible with no invariant
zero on the unit circle. Moreover, there exists a positive semi-definite
matrix P such that

B'PB + DyD, > 0, (5.3.17)

P =A'PA+CyCy — (A'PB+ CyD,)(DyD, + B'PB)~(A'PB + C}yD,)’

(5.3.18)
and such that the eigenvalues of the matrix A are inside the unit circle,
where

Ag = A- B(DyD,+ B'PB)"}(A'PB + C;D,)’. 5.3.19
2

2. (A, B) is stabilizable, D5 is injective and (4, B, Ca, D3) has no invariant
zero on the jw axis. Moreover, there exists a positive semi-definite solution
P of the following CARE

0=PA+A P+C,Cy—(PB+C,Dy)(DyDy) " (PB+C,Ds), (5.3.20)

such that the eigenvalues of Aq are in the open left-half complex plane,
where

Ag = A— B(DyD,) Y (PB + CyDs)". (5.3.21)
Moreover, P and P are related by P = 2(A' + F'B'+I)"'P(A+ BF +I)~L.

Lemmas 5.3.1 and 5.3.2, and Theorem 5.3.1 show the interconnection be-
tween the Ho, 7y-suboptimal control problem for the discrete-time system X,
and the continuous-time system Y. This connection is formalized in the fol-
lowing lemma.

Lemma 5.3.3. Assume that (A4, B) is stabilizable and (4, B, Cs, D5) is left in-
vertible with no invariant zero on the unit circle. Then the following statements
are equivalent:

1. The full information feedback discrete-time system Xg; of (5.3.6) has at
least one y-suboptimal control law. Namely, for a given ~, there exists a
static full information feedback u = Kz + Kow such that the closed-loop
transfer function from w to h has an H-norm less than ~.
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2. The full information feedback continuous-time system e Of (5.3.12) has
at least one y-suboptimal control law. Namely, for a given 7, there exists a
static full information feedback u = K 11+ K 2w such that the closed-loop
transfer function from w to h has an Hy-norm less than ~.

Remark 5.3.3. The results of Lemma 5.3.3 can easily be obtained by a dif-
ferent route. It is well known that the Hankel norm and the H,, norm of a
transfer function are invariant under a bilinear transformation (see e.g., Glover
[57]). Hence one can recast the Ho y-suboptimal control problem for the
discrete-time system X, into an equivalent H, y-suboptimal control problem
for an auxiliary continuous-time system obtained by performing bilinear trans-
formation on Xy;. It can be shown that one of the state space realizations of
this auxiliary continuous-time system, ¥z, is given by

i= A z4+ B u+ FE w,

(é) T + (133) u + (%“) w, (5.3.22)

zZ = 02 T + bg u + D22 w,

il

ZHL : y

where D3 = —(A+ BF +I)™'B, Dy = —(A+ BF +I)"'E, and A, B, E,
C,, D5 and Do, are as defined in (5.3.9). Consequently the Hoo y-suboptimal
control problem for the discrete-time ¥, has a solution if and only if the He, -
suboptimal control problem for the continuous-time system Y, has a solution.
However, we note that Y5, is not completely in the full information form. This
difficulty can easily be removed by redefining the measurement output in Xg;

RSP RORO R

It is now obvious that Xz, with the new measurement output § is in fact the

as

same as Lg. Also, it is easy to show that the Ho, y-suboptimal problem for X5,
has a solution if and only if the H, y-suboptimal problem for ¥z, has a solution
and hence the result of Lemma 5.3.3 follows. It is important to note that
the bilinear transformation approach does not establish a relationship between
the stabilizing solution of the H,,-CARE associated with the continuous-time
system ¥, obtained by performing a bilinear transformation on discrete-time
system Yy and defining the new measurement as in (5.3.23), and the Hoo-
DARE associated with the given discrete-time system Xgz;. In fact, the main
contribution of Theorem 5.3.1 is to establish such a relationship. R
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We present in the following a numerical example to illustrate our results.

Example 5.3.1. Let us consider a discrete-time H.,-DARE for the full infor-
mation problem with

1 1 010 10 1
1 1100 0 1 0

A=1]0 1 01 0|,B=|10|,E=]|-1}|, (5.3.24)
0 0111 0 1 0
L0 -1 0 1 1 10 1
[0 0 0 0 O 10 0

Co=1{1 010 1|,Dy=1{0 0|,Dype=1,0 |, (5.3.25)
0 1 010 00 0.5

and v = 1. It is simple to verify that (A4, B,Cs, Ds) is left invertible with an
invariant zero at 0. Following (5.3.9), we obtain the auxiliary Ho-CARE with

1 -2 6 -4 2 68 —50 r—20
-1 3 -8 6 -3  |-92 e8| 28
A= 2 -4 11 -8 4|, B=|128 -94|, E=|-40],
-1 2 -4 3 -1 -52 38 16
0 0 -2 2 -1 ~18 14 L 6
) 0 00 00O ) 1 0 ) [ 0.0
C,=11010 1}, Dy=|10 -8], Doy = | —4.0].
01010 -9 6 ‘1 35
Solving (5.2.3) in MATLAB, we obtain the stabilizing solution to the auxiliary

H,.-CARE as

0.767767  1.110081  0.180720 -0.307296 —0.617828

1.110081  1.607297  0.260775 —0.448623 —0.897322

P =10%x 0.180720  0.260775  0.046343 —0.064704 —0.139318
—0.307296 —0.448623 -0.064704  0.143150  0.264285

—0.617828 —0.897322 -0.139318 0.264285  0.511644

and the stabilizing solution to the Hy-DARE for the full information problem
is given by,

127.143494  187.057481 1 —84.671880 —134.864680
187.057481  278.730887 0 —124.061419 -201.396153

P= 1 0 1 0 1
—84.671880 —124.061419 0 61.078015 92.569717
—134.864680 —201.396153 1 92.569717  147.982935

It is straightforward to verify that the above P satisfies (5.3.1), (5.3.2) and
(5.3.3). Moreover, the eigenvalues of A are given by {0.4125+50.0733,0, 0,0},
which are inside the unit circle.
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5.4. Proofs of Main Results

The proofs of the main results of this chapter are given in the next.

5.4.A. Proof of Theorem 5.2.1

First, let us consider the following reductions:

APA-—P+Q=24A"+D"PA+ )" A-2A'+)'P(A+ )7 +Q
=24 +I)TTAPAA+D) T —2(A" + I)‘1}5(A+I)‘l +Q
=(A'+ 1) 12APA-2P)(A+ )71 +
= A +D)TA +DP(A-D) + (A’—I)P(A+I)](A+I) +Q
=PA-DA+D + (A +I)"(A' -)P+Q
=PF+F'P+Q. (5.4.1)

(1. = 2.) Let us start with the following trivial equality,
APA-P+ (A +DNPA+I)- (A +I)PA-APA+1I)=0,
which implies that

P—PAA+D ™ = (A +I)'A'P
+ (A +DTAPAA+D T (A +D'PA+ D) =

Then we have

W = R+ M'(A'+D) ' QA+D)*M-=N"(A+I)*M-M'(A'+1)~'N
= R+ M'(A'+D)'QA+D) "M -N"(A+I)*M-M'(A'+I)"'N
+M'PM-M'PAA+I)*M-M'(A'+1)"'A'PM
FM(A'+D) A PAA+D) ' M-M'(A'+1)"'P(A+1) 7'M
= R+M'PM —(M'PA+N"Y(A+I)"'M-M'(A'+1)"'(A'PM+N)
+M'(A'+I)"Y(A'PA+Q-P)(A+I)™'M (5.4.2)
= R+ M'PM —(M'PA+N")(A+I)'M-M'(A'+I)"*(A'PM+N)
+M' (A’+I YA'PM+N)(R+M'PM)~(M'PA+N')
x (A+I)7! (5.4.3)
= [I—M’(A’+I)‘1(A’PM+N)(R+M’PM)‘1]
x (R+M'PM)[I-(R+M'PM)™(M'PA+N")(A+I)"'M].  (5.44)

f\\_//\

\_/
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Here we note that we have used (5.2.1) to get (5.4.3) from (5.4.2). By the
assumption that W is nonsingular, we have

R+M'PM=[I-M (A +I)""(APM + N)(R+ M'PM)"'|7'W

x[I—(R+MPM)™(M'PA+N")YA+I)"'M]™".
Hence,

(A'PM+N)(R+M'PM)~ (M'PA+N')

= (A'PM+N)[I-(R+M'PM) " (M'PA+N")(A+I)* MW !
X [[-(R+M'PM)" (M'PA+N")(A+I) M) (M'PA+N')
=[A'PM—(A'PM+N)(R+M'PM)™ (M'PA+N")(A+I)'M+N|W™!

x [A'PM—(A'PM+N)(R+M'PM)™ (M'PA+N')
x (A+I)"*M+N]'

(5.4.5)
= [A'PM+(P-A'PA-Q)(A+I)'M+NW™!

x [A'PM+(P-A'PA-Q)(A+I)'M+N]'

(5.4.6)
= [(A'P+P-Q)(A+I)'M+NW (A P+P-Q)(A+I)'M+N]

= [(A'+D)P(A+D)(A+ D)2 M -Q(A+D)'M+ N]W ™!
x [(A'+DP(A+D)(A+D)2M-Q(A+I)"'M+N)'
= (PG+H)W H(PG+H)'.

(5.4.7)
Again, we have used (5.2.1) to get (5.4.6) from (5.4.5). Finally, (5.2.1), (5.4.1)
and (5.4.7) imply that

PF+FP—(PG+HW Y PG+H)+Q=0
(2. = 1.) It follows from (5.2.2) that
A={I+F){I-F),
M =2(I - F)™%G,
H=-QU-F)"'G+N,
P=(I-F)P(I-F))2, L (5.4.8)
W=R+GU-F)'QU-F)'G

~N'(I-F)"'G-G'(I- F")7N,
R+ M'PM = R+2G'(I - F)~'P(I - F)"'G.
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Then we have
R+M'PM = R+G'(I-F')"'[Q+(P-PF-Q)
+ (P-F'P-Q)+(PF+F'P+Q)I-F)"'G
= R+G'(I-F)'QU-F)"'G-N'(I-F)"'G-G'(I-F')"'N
+G'I-F)PG-Q(U~F)"'\G+N)+[PG-Q(I-F)"'G+NY
x (I-F)"'G+G'(I-F) Y (PF+F'P+Q)I-F)"'G (5.4.9)
=W+G'(I-F)"Y(PG+H)+(PG+H) (I-F)'G
+G'(I-F)"Y PG+H)W Y PG+H)(I-F)"'@ (5.4.10)
=[I+W Y PG+H) (I-F) 'GIW[I+W Y(PG+H) (I-F)"'G). (5.4.11)

Here we note that we have used (5.2.3) to get (5.4.10) from (5.4.9).
By assumption, we have R + M'PM nonsingular. Thus, we can rewrite
(5.4.11) as,

W=[I+G'I-F)YPG+HW Y (R+MPM)
x[[+ W Y(PG+H)(I-F)"'G]™*.
We have the following reductions,
(PG+H)W(PG+H)'
= (PG+H)[I+W Y PG+H)(I-F)"G]
x (R+M'PM) Y I+W Y (PG+H) (I-F)"'G)'(PG+H)'
=[PG+H+(PG+H)W Y(PG+H) (I-F)"'G)(R+M'PM)~}
x [PG+H+(PG+H)W~Y(PG+H)' (I-F)™'G) (5.4.12)
=[PG-QU-F)'G+(PF+F'P+Q)I-F)"'\G+N](R+M'PM)™!
x [PG-QI-F)"'\G+(PF+F'P+Q)(I-F)"'G+NY (5.4.13)
=[I+F)P(I-F)"'\G+N|(R+M'PM)7\[G'(I-F') ' P(I+F)+N')
= (A'PM+N)(R+M'PM)™ (M'PA+N"). (5.4.14)

Again, we have used (5.2.3) to get (5.4.13) from (5.4.12). Finally, it follows
from (5.2.3), (5.4.1) and (5.4.14) that

A'PA— (APM + N)(R+ M'PM)"Y(M'PA+N')+Q - P =0.

This completes the proof of Theorem 5.2.1. B
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5.4.B. Proof of Theorem 5.3.1

We note that the constant matrix F', a pre-state feedback, is introduced merely
to overcome the situation when A has eigenvalues at —1. It is well-known
in the literature that a pre-state feedback law does not affect the solution of
the Riccati equation (5.3.3). Hence, for simplicity of presentation, we prove
Theorem 5.3.1 for the case that F =0 and v = 1.

(1.=2.) It follows from Lemma 3.3.1 that the quadruple (A,B,C'Q,DQ) is
an inverse bilinear transformation of the quadruple (A, B, Cs, D3) with a = 1.
Hence, it follows from Theorem 3.3.1 that (A, B) is stabilizable (see Item 1.a of
Theorem 3.3.1) and (4, B, Cy, D5) is left invertible (see Item 3.b of Theorem
3.3.1) with no invariant zero on the jw axis (see Item 4 of Theorem 3.3.1) and
with no infinite zero of order higher than 0 (see Item 5 of Theorem 3.3.1).
Hence, D is injective as (A, B, Cs, D7) has no invariant zero at —1.

Next, we will show that (5.3.8) holds. Let

M :=[B E], |
Cy[Ds Dsa],

D’2D2 D/2D22
D4yyDy DhyoDoy —1I|°

CyCy,

1

[

4, (5.4.15)

= 2(A+1)7*M,

= —QA+I"'M+ N,

=R+MA+D1QA+D) M -N'A+I)"'M
- M'(A"+I)7IN,

X =I-(R+MPM) " (M'PA+N")YA+I)"'M. J

T OO o=
. .

It is simple to verify that
~] ~ ~f ~
_ 22122 ) ,D%Dm
Then, (5.3.3) and (5.3.7) reduce to (5.2.1) and (5.2.3), respectively, and (5.3.5)
and (5.3.11) can be written, respectively, as

Aq=A—-M(R+MPM)" (M'PA+N'), (5.4.16)

and
Aq=F -GW™Y(PG + H)". (5.4.17)
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Noting that
det [X] = det [I — (R+ M'PM)" (M'PA+ N')(A+ 1)~ M]
=det [I - M(R+ M'PM)™ (M'PA+ N")(A+ 1)
=det [I + Aq] - det [(4 + )71,

it follows that X is nonsingular provided that the eigenvalues of A, are inside
the unit circle. Recalling (5.4.4) in the proof of Theorem 5.2.1, we have W

nonsingular and
W= X"YR+MPM)I (XY, (5.4.18)

which implies that the inertia of W~ is equal to the inertia of (R+ M'PM)~1
(see e.g., Theorem 4.9 of [3]). Again, noting that
1yl
0 I|”°

(DyD3) 0

— I'Y
W= [ ] 0 [Elza (I - Dz(DIzD2)_1D’2) D2z - I]_l

0 I

and

wewrn= [ 7[5 ] fs 71

where Y = —(DyD3)"'DyDgs and Z = —V-1B'PE, together with (5.4.18)
and the facts that V' > 0 and R > 0, it follows that

Dy, (1 - DQ(D;DZ)—ID;) Dy <1

Using the fact that W is nonsingular, it follows from Theorem 5.2.1 that P is
a positive semi-definite solution of (5.3.7).

Finally, we are ready to prove that A has all its eigenvalues in the open
left-half complex plane. It follows from (5.4.7) in the proof of Theorem 5.2.1
that
Ag=F-GW Y PG+ H) =F-GX Y(R+ M'PM)"}(M'PA + N')

=(A+D)YA-1)-2(A+ 1) °M[I - (R+ M'PM)"}(M'PA+ N")
x (A+D)*M)™Y(R+ M'PM)"Y(M'PA + N')
=(A+D) " {A-I-2l-(A+I)"'M(R+ M'PM)""(M'PA+ N")|™!
x (A+I)7'M(R+ M'PM)"'(M'PA+ N')}
=(A+D)H{A-T-2I+A- MR+ MPM)(M'PA+ N
x M(R+ M'PM)""(M'PA+ N")}
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=(A+D Ao+ D) {I+A-MER+MPM)"H(M'PA+N')
x (A-I)-2M(R+ M'PM)"'(M'PA+ N'")}

=(A+D Y Aa+ D7 Aa -1 (A+]), (5.4.19)

which implies that the eigenvalues of Aq are in the open left-half plane provided
that the eigenvalues of A are inside the unit circle.

(2. = 1.) First, following the results of Theorem 3.2.1, it is straightforward
to show that (A, B) is stabilizable and (A, B, Cy, D,) is left invertible with no
invariant zero on the unit circle, provided that (A4, B) is stabilizable, D, is
injective and (A, B, Cy, D3) has no invariant zero on the jw axis. Next, noting
that

det I + W~Y(PG + H)'(I - F)™'G]
=det[I + GWY(PG + H)'(I - F)™]
=det[I - F+ GW™Y(PG + H)'] - det [(I - F)™!]
= det [I - Ad] Sdet[(I - F)7Y,

and A, has all its eigenvalue in the open left-half plane, it follows from (5.4.11)
that R+ M'PM is nonsingular. Thus, the condition in Part 2 of Theorem 5.2.1
holds. The rest of the proof in the reverse direction of Theorem 5.3.1 follows
from an almost identical procedure as (1. = 2.). This completes our proof. &



Chapter 6

Infima in Continuous-time
H, Optimization

6.1. Introduction

IN THIS CHAPTER, we address the problem of computing infima in H., opti-
mization for continuous-time systems. The H,,-CARE based approach to this
problem simply provides an iterative scheme of approximating the infimum, ~*,
of the H,-norm of the closed-loop transfer function. For example, in the regu-
lar measurement feedback case and utilizing the results of Doyle et al. [49] (see
also Corollary 4.2.1), an iterative procedure for approximating v* would pro-
ceed as follows: one starts with a value of v and determines whether v > ~v* by
solving two “indefinite” algebraic Riccati equations and checking the positive
semi-definiteness and stabilizing properties of these solutions. In the case when
such positive semi-definite solutions exist and satisfy a coupling condition, then
we have v > ~* and one simply repeats the above steps using a smaller value
of v. In principle, one can approximate the infimum +v* to within any degree
of accuracy in this manner. However this search procedure is exhaustive and
can be very costly. More significantly, due to the possible high-gain occurrence
as v gets close to v*, numerical solutions for these H,-CAREs can become
highly sensitive and ill-conditioned. This difficulty also arises in the coupling
condition. Namely, as y decreases, evaluation of the coupling condition would
generally involve finding eigenvalues of stiff matrices. These numerical difficul-
ties are likely to be more severe for problems associated with the singular case.
Thus, in general, the iterative procedure for the computation of v* based on
ARE:s is not reliable.
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Our goal here is to develop a non-iterative procedure to compute exactly
the value of v* for a fairly large class of systems, which are associated with the
singular case and satisfy certain geometric conditions. The computation of v*
in our procedure involves solving two well-defined Riccati and two Lyapunov
equations, which are independent of y. The algorithm has been implemented
efficiently in a MATLAB-software environment for numerical solutions. The
results of this chapter are based on those reported in Chen [15] and Chen et al.
[28,30-32].

The outline of this chapter is as follows: In Section 6.2, we will present a
non-iterative algorithm that computes the infimum, «*, for the continuous-time
H, optimization problem under full information feedback, which is equivalent
to that under full state feedback if the direct feedthrough term from the dis-
turbance to the controlled output is equal to zero. Section 6.3 deals with the
computation of v* for the measurement feedback case. Both Sections 6.2 and 6.3
require the given systems to have no invariant zero on the imaginary axis and
satisfying certain geometric conditions. Finally, in Section 6.4, we will remove
the constraints on the imaginary axis invariant zeros, i.e., we will present a
non-iterative computational algorithm for finding v* for systems with invariant
zeros on the imaginary axis.

6.2. Full Information Feedback Case

We consider in this section the H,, optimization problem for the class of
continuous-time systems characterized by

t= A z+ Bu+ E w,

(e +()w e

h= Cy 2+ Dyu+ Dy w,

pIE Y

where z € R" is the state, u € R™ is the control input, w € R? is the external

disturbance input, y € R™"? is the measurement output, and h € R’ is the

controlled output of . It is labelled a full information problem in the literature

because all information about the system, i.e., both z and w, are available for

feedback. For the purpose of easy reference in future developments, we define

Y, to be the subsystem characterized by the matrix quadruple (A, B, Cs, Ds).
We first make the following assumptions:

Assumption 6.F.1: (A, B) is stabilizable;

Assumption 6.F.2: ¥, has no invariant zero on the imaginary axis;
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Assumption 6.F.3: Im (E) C V™ (Zs) + S (%5); and
Assumption 6.F.4: Dyy = 0.

Remark 6.2.1. Here we note that the first assumption, i.e., (A4, B) is stabi-
lizable, is necessary for the existence of any stabilizing controller. The second
assumption will be removed in Section 6.4. Also, Assumption 6.F.3 will be
automatically satisfied if ¥p is right invertible. In fact, in this case, Assump-
tion 6.F.4 will no longer be necessary. This will be treated as a special case at
the end of this section (see Remark 6.2.4). &

We have the following non-iterative algorithm for computing the infimum,
v*, of the full information system (6.2.1).

Step 6.F.1. Without loss of generality, we assume that (A, B, Cs, D), i.e., Lp,
has been partitioned in the form of (2.4.4). Then, transform ¥, into the
special coordinate basis as described in Chapter 2 (see also (2.4.20) to
(2.4.23) for the compact form of the special coordinate basis). In this
algorithm, for easy reference in future developments, we introduce an
additional permutation matrix to the state transformation I'; such that
the new state variables are ordered as follows:

oy
Tp
I (6.2.2)

&
Il
8

We also choose the output transformation I', to have the following form:

I, O
I‘o_[ . FJ (6.2.3)

where mg = rank (D3). Next, we compute
EF
Ey
IJ'E=|E;|. (6.2.4)
E,
Eq
It is simple to verify from the properties of the special coordinate basis
that Assumption 6.F.3 is equivalent to Ey = 0. Also, for economy of
notation, we denote n, the dimension of R"/S*(Z;), which is equivalent

to n} + ny. We note that n, = 0 if and only if the system Z; is right
invertible and is of minimum phase.
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Step 6.F.2. Next, we define

o[ O] [B] e [E] e
Coy =Ty [g gb} . Cyy =Ty [Cdocé] , (6.2.6)
and
Ag := Ay — A13(Co3C03) " Cy3Ca1, (6.2.7)
B,B. := Bi1Bj; + A13(053C'23)—1A'13, (6.2.8)
CLCy = ChyCat — ChyCaa(ClsCiog) ChoyCar. (6.2.9)

Then we solve for the positive definite solution S; of the algebraic Riccati
equation,
A;S; + S; Al — BBl + S:CLCS; =0, (6.2.10)

together with the matrix T, defined by

T, = [TSI g] , (6.2.11)

where T, is the unique solution of the algebraic Lyapunov equation,
At T + Tor(AY) = EX(ETY. (6.2.12)

Here we should note that (—A4,,C;) is detectable since —A7, is stable
and (App, Ch) is observable. Furthermore, Assumption 6.F.1 implies that
(Az, B:) is stabilizable. Hence the existence and uniqueness of the solu-
tions S; and T, follow from the results of Richardson and Kwong [106].

Step 6.F.3. The infimum, v*, is given by

* = 1/ Amax (Te Sz ). (6.2.13)

It can be shown using the result of Wielandt [135] that all the eigenvalues
of T, S;! are real and nonnegative.

We have the following theorem.

Theorem 6.2.1. Consider the full information system given by (6.2.1). Then
under Assumptions 6.F.1 to 6.F.4,

1. v* given by (6.2.13) is indeed its infimum, and
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2. for v > «*, the positive semi-definite matrix P(v) given by

' (Sz_TZ/'YZ)_l 0

. N (6.2.14)

P(y) = (7"
is the unique solution that satisfies Conditions 2.(a)-2.(c) of Theorem
4.2.1. Moreover, such a solution P(v) does not exist when v < v*.

Proof. As stated in Step 6.F.1 of the algorithm, we assume that X, has been
partitioned as in (2.4.4). Hence, the full information system of (6.2.1) can be
rewritten as

. U
i 0
Uy

ho} _ | Cap Lng 0| [uo D30
Ge) =] =+ U 0 () + [ w

where in this proof, we consider both D¢ = 0 and D3y ; = 0. Let us apply a
pre-feedback law,

A z+[B Bl]< >+ E w,

(6.2.15)

up = —Ca0 z + Vo, (6.2.16)

to the above system. Then it is trivial to write the new system as,

z (A= BoCap) = + [Bo Bi] (Z?) + E w,

()= le] =[5 ol (2)

It follows from the theorem of the special coordinate basis, i.e., Theorem 2.4.1,

(6.2.17)

that there exist nonsingular transformations, I';, I', and I'; such that

Ty
v Vo Tp h ho
(0>:Fi ug |, =I5 T, 1, ( 0>=F0 hg | .
Uy hl
Ue Z. hy
T4

By Assumption 6.F.2, i.e., ¥; has no invariant zero on the imaginary axis, the
state component z0 is nonexistent and the transformed system is given by

it AL, LRG0 0 L3Ca] (g}
i‘b 0 Abb 0 0 Lded Ty
;| = 0 L,Cy AZ, 0 L_,Cq z7

fI.TC BCE;I chCb BcEc—a Acc Lchd T
g B4Ej, BaEay B4Ej, BuEa Aas T4
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Bf 0 0 EF
Bgy 0 O o E,
+|B;, 0 O ug | + | E; |w, (6.2.18)
By, 0 B, Uc E,
Bos Bs 0 Eq4
where Ey = 0, and
Ty
ho L. 01[0 0 00 0] (g Imy 0 07 /%o
ha [OF]OOOOCd z; |+ 0 0 of] u
hy Sordloc, 00 0] 2 0 0 0]\u
T4

(6.2.19)
The above transformation of the system with a pre-state feedback law,

ug = —Ch 02 + vy,

along with the nonsingular state and control input transformations does not
change our solution since it does not affect the value of v*. We need to introduce
the following lemmas in order to prove the theorem.

Lemma 6.2.1. Given the system of (6.2.1), which satisfies Assumptions 6.F.1,
6.F.2 and 6.F.4, and v > 0, then there exists a full information feedback con-
trol law u = Fyz + Fow such that when it is applied to (6.2.1), the resulting
I Thwlloo < v and A(A+ BF) C €7, if and only if there exists a real symmetric
solution P, > 0 to the algebraic Riccati equation

P,A, + ALP, + P,E,E.P,/y* - P,B,B.P, + C.C, =0, (6.2.20)
where A;, B, and C; are as defined in (6.2.7) to (6.2.9), and
E+
E, = [ : ] y
E,
with no restriction on Ep. Note that E, = 0 if Assumption 6.F.3 holds.

(6.2.21)

Proof. Without loss of generality, we assume that the given system has been
transformed into the form of (6.2.18) and (6.2.19). Now let us define the new

state variables,
zt T %a
:1:1 :=< ) ( 2) =1z |, (6.2.22)
Tp T3
Zq

where z3 contains only the my states of z4 which are directly associated with
the controlled output hy while z contains =, z. and the remaining states of
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z4. Hence, the dynamics of the transformed system in (6.2.18) and (6.2.19) can
be partitioned as follows,

1 = A1z + [B.ll A13] (ZO> + F,w, (6.2.23)
3
Ty ) _ (A2 A [T By, By A | [ E,
(2)=lam al(2) [Ba]we (B i) (2) (2]
(6.2.24)

() =la)=+ 5 al (). oo

where A;1, Bi1, A3, Co1 and Ca3 are as defined in (6.2.5) to (6.2.6), while
Aga, Az, ---, E3 are the matrices with appropriate dimensions. It is now
straightforward to verify using the properties of the special coordinate basis
that the quadruple characterized by

Az A23] [322 )
, [0 I],0}, 6.2.26
([Aw Asz |’ | B3z [ ) ( )
is right invertible and of minimum phase. Moreover, the state space Xo® A3

spans the strongly controllable subspace S*(Xp). On the other hand, the sub-
system characterized by the quadruple

(Au,[Bu Ass], [021} , [Ifgo C(;D , (6.2.27)

is left invertible with no infinite zero and with no stable invariant zero. The
result of Lemma 6.2.1 follows from Corollary 5.2 and Theorem 6.2 of [127].

Lemma 6.2.2. Given the system of (6.2.1) which satisfies Assumptions 6.F.1
to 6.F.4, then the algebraic Riccati equation of (6.2.20) has a symmetric solution
P, > 0 if and only if S; > T, /72, where S, and T, are respectively given by
(6.2.10) and (6.2.11).

Proof. First, we note that T, of (6.2.11) is in fact the solution to the following
Lyapunov equation
A, T, + T, A, = E,E,, (6.2.28)

+
== (%],

where

0
since Assumption 6.F.3 holds. Also note that

T1021 =0 and TIC;Csz = 0. (6.2.29)
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Now, suppose that S, > T, /v? and define a positive definite matrix,
X =8, - To/7".
It follows from (6.2.10), (6.2.28) and (6.2.29) that
A X + XA, + E,E./v* - BB, + XC.C,X = 0. (6.2.30)
Now, let us pre- and post-multiply (6.2.30) by P, := X ™!, we obtain
P,A, + A.P, + P,E,E.P,/y* — P,B;B.P, + C.C, = 0. (6.2.31)

Hence, P, > 0 is a solution to (6.2.20).
Conversely, suppose that (6.2.20) has a solution P, > 0. Let X := P;1 > 0.
We have

A X + XAL+ E,E./v* -~ BB, + XC.C. X = 0. (6.2.32)
Also, let T, be the solution to the Lyapunov equation
AT, + T, A, = E,E., (6.2.33)

which has the special form as in (6.2.11). Thus, (6.2.29) holds. Next, we define
S; = T./y* + X. Clearly, we have S; > T,/v? and S; > X > 0. Then, we
have

AzSe + SeAl — ByBy + S;CLCSe = Ao(Te /¥ + X)
+ (Te/¥* + X)AL — By B, + (T /v* + X)ChCo(Tu/7* + X)
= (4. Ty + To A, — B Ey) [
+ A X + XA + E,E./v* — BB, + XC.C, X
=0,
which implies that S; > 0 is a solution of the Riccati equation (6.2.10). Since

(6.2.10) can only have one positive definite solution, thus we have S, = S, and
Sz > T, /v*. This completes our proof of Lemma 6.2.2.

Now, let us get back to the proof of Theorem 6.2.1. Suppose that v > v*.
It is easy to verify that

' (SI‘T1/72)—1 0

P() = (") ; .

r;h

satisfies Conditions 2.(a)-2.(c) of Theorem 4.2.1. Hence, there exists a state
feedback law u = Fz with F € R™*" (and obviously there exists a full infor-
mation feedback law u = Fiz + Fow) such that the Hy-norm of the resulting
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closed-loop system from the disturbance w to the controlled output h, Thy(s),
is less than v and A(A+ BF) c C™.

The converse part of the theorem follows immediately from Lemmas 6.2.1
and 6.2.2 since the condition v > {Amax(TeS;1)}? is equivalent to Sy > Ty /2.
This completes our proof of Theorem 6.2.1. &

The following remarks are in order.

Remark 6.2.2. For the continuous-time systems, the infimum for the full in-
formation system of (6.2.1) with Dy, = 0 is equivalent to the infimum for the
full state feedback system, i.e.,

t=Az+ B u+ FE w,
y= z (6.2.34)
h=Cyz+ Dyu+ 0 w.

Thus, the infimum for the above full state feedback system is also given by ¥*
in (6.2.13). ®

Remark 6.2.3. If Assumption 6.F.3, i.e., the geometric condition, is not satis-
fied, then an iterative scheme might be used to determine the infimum. This can
be done by finding the smallest scalar, say 4*, such that the Riccati equation

P.A, + ALP, + P,E,E.P,/(3")? — P,B,B.P, +C.C, =0, (6.2.35)

has a positive definite solution P, > 0. One could also apply the result of
Scherer [117] directly to the Riccati equation (6.2.20) to develop an iterative al-
gorithm of the Newton type to compute an approximation of v*. The algorithm
of Scherer has a quadratic convergent rate. ®

Remark 6.2.4. If ¥, is right invertible, then Assumption 6.F.3 is automat-
ically satisfied. Moreover, Assumption 6.F.4 is no longer necessary and the
infimum ~* for the full information feedback system (6.2.1) can be obtained as

Dby D 0 5
V= </\max{[ 2"”10 21 ; 5_1”> , (6.2.36)

where T, and S, are the positive semi-definite and positive definite solutions

follows:

of the following Lyapunov equations,
AL T, +T.(AY) = (Ef = Bf,Dago — L},T; Dss 1)
x (Ef = B, Dago — LE, L5 Das ), (6.2.37)
AL S, + 5. (4%) = B, (BEL) + Lhr;t (LY, (6.2.38)
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respectively, and D22 o and D2, ; are as defined in (6.2.15) but for nonzero Das.
On the other hand, the infimum for the full state feedback system (6.2.34) is
different from (6.2.36) and is given by

1
DyyDyy 0 3
* = [ Anax o , 2.
i (Aa {[ 0 Tzsm‘]}) (6.2.39)

where T, and S, are again the positive semi-definite and positive definite so-
lutions of the Lyapunov equations (6.2.37) and (6.2.38), respectively. These
claims can be verified using similar arguments as in the proof of Theorem 6.2.1.
The detailed proofs can be found in Chen [15). &

We conclude this section with the following illustrative examples.

Example 6.2.1. Consider a full information system (6.2.1) and a full state
feedback system (6.2.34) characterized by

11101 000 5 1
01001 0 0O 00
A=10 11 0 1{, B=1|1 0 0|, E=1{0 0}, (6.2.40)
11111 0 01 2 3
11110 010 1 4
and
0 0100 1 00
0 0001 00 0
G2 = 0100 0] D, = 00 ol Djy = 0. (6.2.41)
001 00O 0 0 O

It is simple to verify that the subsystem (A, B, C3, Dy) is neither left- nor right-
invertible with one unstable invariant zero at s = 1. Moreover, it is already in
the form of special coordinate basis with

Is=1I5, Top=13, ngz =3,

111 111 000
A.=|0 1 0|, B;B.=|11 1|, C.C,=|0 1 0],
010 11 2 001

and
At =1, Ef=[5 1].

Then solving equations (6.2.10) and (6.2.12), we obtain

0.556281 0.185427 -0.305593 13 00
Se =] 0.185427 0.395142 0.231469|, T, =|0 0 0O,

—0.305593 0.231469  1.217984 0 00
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and for both systems (6.2.1) and (6.2.34), the infima are given by
v* =/ Amax(To Sz ) = 6.4679044. B

Example 6.2.2. Consider a full information system (6.2.1) and a full state
feedback system (6.2.34) characterized by

3 0 01 1 00 4
1 1 01 0 01 3
A= 1100l B = 01 ol E = 9> (6.2.42)
0 010 0 00 1
and
1 0 00 _fr 00 |2
O T P PR ] SR

It is simple to verify that the subsystem (A4, B,Cs, Dy) or ¥y is controllable
and right invertible with one unstable invariant zero at 2 and one infinite zero
of order 2. Following Remark 6.2.4, we obtain

=1 Tor=1, ng,=1, A:a=2a B(-):.:]"

LY, =1, Ef =4, Dypg=2, Dy, =1,

and
S, =05, T,=0.25.

Then, the infimum for the full information feedback system is given

. _ DI22,1D22,1 0 : 1 0 %_
U O (el I (S ER A [ I

and the infimum for the full state feedback system is

ool 8= el ) e

Clearly, they are different. E

Finally, we conclude this section by posting an open problem related to the
exact computation of the infimum, v*, for the full information feedback system
of (6.2.1). The algorithm that yields the exact value of * for this type of
problem was built based on the following crucial assumption,

Im (E) C V7 (Zp) + 57 (Zp), (6.2.44)
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and some minor ones. As will be seen shortly in an example, the assumption of
(6.2.44) is not a necessary condition for obtaining the exact value of v*. Here
is the open problem.

Open Problem. How to compute the exact value of the infimum, i.e., v*,
associated with the full information feedback system of (6.2.1) without imposing
the condition as given in (6.2.44)7

We believe that the above problem is solvable or at least partially solvable.
The following is an example for which we are able to obtain the exact value of
~* without imposing the condition of (6.2.44).

Example 6.2.3. Consider a full information feedback system of (6.2.1) with

10 10 1 0
T I L A L s
and
00 10
0 0 01
02: 1 O s D2: 0 0 5 D22:0. (6246)
0 2 0 0

It is simple to check using the linear system tools of Chapter 2 that
V7 (Ze) + 87 (8) = {0}, (6.2.47)

and hence the condition of (6.2.44) is not valid. It is also straightforward to
verify that the existence of a y-suboptimal control law with v > +* > 0 for
(6.2.1) is equivalent to the existence of a positive definite solution P for the
following algebraic Riccati equation,

PA+ AP+ PEE’P/72 — PBB'P+ (CyC; = 0. (6.2.48)
Let . )
— P PR i _
P:= [Po P2] and 2= 7 1. (6.2.49)

Then (6.2.48) is equivalent to

P02+P12+20P1+Ct PQ(P1+P2+2O£) -0 (6250)
Po(P,+ Py +2a) P2+ P;+2aP+4al -
or
P()(Pl + P+ 2a) =0, (6251)
P2+ P} +2aP, +a =0, (6.2.52)

P¢ + P} +2aP; +4a = 0. (6.2.53)
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(6.2.51) implies that either
Phb=0 or P+P,+2a=0. (6.2.54)
If we choose P, + P, + 2a = 0, then we have
P =-P, - 2aq, (6.2.55)
which together with (6.2.52) imply that
P2+ P2 +2aP,+a=0. (6.2.56)

Clearly, (6.2.53) and (6.2.56) imply that o = 0 or equivalently v = 0. Note that
v > ~* > 0. Hence, it is a contradiction. Thus, we will have to choose Py = 0.
Then (6.2.52) and (6.2.53) reduce to

P? 4+ 2aP, +a =0, (6.2.57)
P2 +2aP, + 40 =0. (6.2.58)

It can be readily verified that the above equations have positive solutions P
and P, if and only if a < 0, or equivalently v > 1. Therefore, the exact value
of the infimum is given by v* = 1. Moreover, the positive definite solution P
of {6.2.48) is given by

! <\/ﬁ—_1+7) 0

— | -1

- o (V&) |

-1

(6.2.59)

for any given v > v* = 1. E

In general, we feel that there is a large class of systems that do not necessarily
satisfy the geometric condition (6.2.44) but their infima are exactly computable.
It is an interesting and of course very challenging problem.

6.3. Output Feedback Case

We present in this section an elegant well-conditioned non-iterative algorithm
for the exact computation of v* of the following measurement feedback system,

t=Az+ Bu+ E w,
Y:y=Cz + D; w, (6.3.1)
h=Cyz+ Dy u+ Dy w,

where £ € R" is the state, u € R™ is the control input, w € RY is the external
disturbance input, y € R? is the measurement output, and h € R’ is the
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controlled output of ¥. Again, for the purpose of easy reference, we define ¥,
to be the subsystem characterized by the matrix quadruple (4, B, C3, D3) and
¥, to be the subsystem characterized by the matrix quadruple (4, E, Cy, D).
We first make the following assumptions:

Assumption 6.M.1: (A, B) is stabilizable;

Assumption 6.M.2: £ has no invariant zero on the imaginary axis;
Assumption 6.M.3: Im (E) C V™ (Z;) + S~ (Zs);

Assumption 6.M.4: (A, C}) is detectable;

Assumption 6.M.5: £ has no invariant zero on the imaginary axis;
Assumption 6.M.6: Ker (C3) D V™ (Zq) NS~ (Xq); and

Assumption 6.M.7: D4y = 0.

Remark 6.3.1. Here we note that Assumptions 6.M.1 and 6.M.4, i.e., (4, B)
is stabilizable and (A, C;) is detectable, are necessary for the existence of any
stabilizing controller. Assumptions 6.M.2 and 6.M.5 will be removed later in
Section 6.4. Also, Assumptions 6.M.3 and 6.M.6 will be automatically satisfied
if ¥p is right invertible and if Xq is left invertible. Moreover, in this case,
Dss = 0, ie., Assumption 6.M.7, can be removed without any difficulties (see
Remark 6.3.3 later in this section). E

We have the following non-iterative algorithm for computing the infimum,

v*, of the general measurement feedback system (6.3.1).

Step 6.M.1. Define an auxiliary full information system

= A z+ Bu+ E w,

(é) T + (?) w, (6.3.2)

h= Cy 2+ Dyu+ Do w,

y

and perform Steps 6.F.1 and 6.F.2 of the algorithm as given in Section 6.2.
For easy reference in future development, we append a subscript ‘e’ to all
sub-matrices and transformations in the special coordinate basis associ-
ated with the system (6.3.2). In particular, we rename the state transfor-
mation of the special coordinate basis for ¥p as I'sp, and the dimension
of R"/S*(X;) as ngp. Furthermore, S; of (6.2.10) and T of (6.2.11) are
respectively renamed to Szp and Tip.
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Step 6.M.2. Define another auxiliary full information system

t= A z+Clu+ C; w,

y = (é) z + (?) w, (6.3.3)

z= FE z+ Diu+ D) w,

and again perform Steps 6.F.1 and 6.F.2 of the algorithm as given in Sec-
tion 6.2 one more time but for this auxiliary system. To all sub-matrices
and transformations in the special coordinate basis of £y, where X7 is
the dual system of ¥4 and is characterized by quadruple (4',C;, E', D}),
we append a subscript ‘q’ to signify their relation to the system ¥3. In
particular, we rename the state transformation of the special coordinate
basis for this case as I'sq, and the dimension of R"/St(Z%) as ngq. As
in Step 6.M.1, we also rename S; of (6.2.10) and T} of (6.2.11) as S;q

and Tyq, respectively.

Step 6.M.3. Partition

I (o) = [E :] , (6.3.4)

where I is a ngp X ngzq matrix, and define a constant matrix
[
- ZQSzQ r Szp TIQSZQ
Step 6.M.4. The infimum ~* for the measurement feedback system (6.3.1) is
then given by

'7* = )\max(M)- (636)
It will be shown later in Proposition 6.3.4 that the matrix M of (6.3.5)
has only real and nonnegative eigenvalues.

The proof of the above algorithm is rather involved. We would have to
introduce several lemmas before proceeding to its final proof. Let us first define

7= DaaxTerSoD} and 4= PDmax(TaeS2) )2, (6.3.7)
SzP — 4zp 7)1 1
Py = gy [ 7T e, (639
and (Sea = Toa/7™)L 0
Q) = (F;;)’[ e O]F;Ql. (6.3.9)

We have the following lemma.
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Lemma 6.3.1. Consider the system (6.3.1), which satisfies Assumptions 6.M.1
to 6.M.7. Then we have

1. For v > v, the positive semi-definite matrix P(vy) given by (6.3.8) is
the unique solution to the matrix inequality F.,(P) > 0, i.e., Condition
2.(a) of Theorem 4.2.1, and satisfies both rank Conditions 2.(b) and 2.(c)
of Theorem 4.2.1. Moreover, such a solution P(v) does not exist when

¥ <9

2. For v > %, the positive semi-definite matrix Q(y) given by (6.3.9) is
the unique solution to the matrix inequality G,(Q) > 0, i.e., Condition
2.(d) of Theorem 4.2.1, and satisfies both rank Conditions 2.(e) and 2.(f)
of Theorem 4.2.1. Moreover, such a solution Q() does not exist when
v <75

Proof. It follows from Theorem 6.2.1. 23]

The next lemma gives an equivalence of the infimum, v*, for the measure-
ment feedback system (6.3.1).

Lemma 6.3.2. Let 73, := max{v;, 75}. Then the infimum for the given
measurement feedback system (6.3.1) is equivalent to

7' =inf {7 € (4q, 00 | F() <7*}, (6.3.10)

where the scalar function

() = p{P(MQM)}, (6.3.11)

and P(v) and Q(y) are given by (6.3.8) and (6.3.9) respectively.

Proof. It follows Lemma 6.3.2 that v* > v%,. Next, for any ¥ € (54,00) such
that f() <7, i-e., p{P(¥)Q(¥)} <4, then the corresponding P(7) and Q(7)
as given in (6.3.8) and (6.3.9) satisfy the conditions of Theorem 4.2.1. Hence,
4 > ~* and v* is equivalent to that of (6.3.10). L

It is then straightforward to show that the scalar function f(y) of (6.3.11)
is given by

fy= /\max{(Szp — ¥ 2 Tpe) ' T(Szq — W‘QTZQ)*F’}. (6.3.12)

The function f(v) of (6.3.12) is a well-defined mapping from (v;,, 00) to [0, 00).
Its evaluation involves the computation of the maximum eigenvalue of a matrix
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of dimension ngp X nzp, which is normally of a much smaller dimension than
the original product P(y)Q (7). We establish some important properties of the
function f(v) in the following propositions.

Proposition 6.3.1. f(v) is a continuous, nonnegative and non-increasing func-
tion of v on (754, 00). ]

Proof. We first show that P, () := (Szp — ¥ 2T4p) ! is non-increasing, i.e., if
v2 > 7 then Py(v2) < Py(71) . Recall that Sy > 0 and T, > 0, we have for
all v2 > 71 > 75g

(71—2 - 72—2)Txp >0,

which implies that
Sep — 71_2sz < Sep — 72—2sz~

Hence,
Pz(72) SPZ(le)’ for Y2 > M-

Similarly, one can show that Q(v) := (Szq—7"2T%q) ! is non-increasing. This
implies that ['Q. (y)I[" is also non-increasing. Then clearly f(v) is a continuous,
nonnegative and non-increasing function of y on (54, 00). &

The function f(-y) defined above can be extended as a mapping from [}, 00)
to [0, 00) by setting
f(req) = lim f(7). (6.3.13)

T=7pq

It follows from Proposition 6.3.1 that the limit f(7y;) exists and could be finite
or infinite.

Proposition 6.3.2. f(y) = 7 has either no solution or a unique solution in
the interval (y;,00). E

Proof. The result follows from Proposition 6.3.1 and the fact that ¥ is strictly
increasing for positive 7. &

Proposition 6.3.3. If f(7) = v* has no solution in the interval (v}, 00) then
v* is equal to 75,. Otherwise, ¥* is equal to the unique solution of f(v) = 2
in the interval (v, 00). E

Proof. If f(y) = 72 has no solution in the interval (y3,,00), then f(y) < ~*
for all v € (774,00) and hence according to Lemma 6.3.2, v* = ;.. On the
other hand, it is obvious that y* is equal to the unique solution of f(y) = 2
when such a solution exists. &
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At first glance, it seems that the solution of f(y) = 2 would involve the
rooting of a highly nonlinear algebraic equation in v. Actually its solution can
be achieved in one step. Namely the problem of solving f(y) = 7?2, if such
a solution exists in the interval (v;4,00), can be converted to the problem of
calculating the maximum eigenvalue of a constant matrix, i.e., M of (6.3.5). In
fact, we would also show that, when f(vy) = 42 has no solution in the interval
(V54> 00), the maximum eigenvalue of this matrix M is equal to 754, which is
~* as well. To prove this, we would have to introduce a matrix function of 7,

N(v) = (Szp — 7—2sz)—1r(5:cq - 7_2qu)—lrl - ’)’2[. (6.3.14)

We have the following propositions on the properties of the matrices M and
N(7).

Proposition 6.3.4. The eigenvalues of the matrix M of (6.3.5) are real and
nonnegative. ®

Proof. First, we have

T 0 [Tee+TSATY -TS)[S: O
’\{M}“’\{_O TmQH -SAr Sz 0 I

=A{ [ St 0] [I 0 ] [Txp+FS;QlF’ —FS;;]}

| 0 I|]|0 Tiq —S;T Sza
SIS 0 ] [Ter + TSI -TS;E
=\ { 75 Tm] [ s st (6.3.15)

Now, it is trivial to verify that both sub-matrices in (6.3.15) are symmetric and
positive semi-definite. Then, using the result of Wielandt [135] (i.e., Theorem
3), it is simple to show that the eigenvalues of M are real and nonnegative. &

Proposition 6.3.5.
1. N(v) has real eigenvalues for all v € (754, 00).

2. Amax{N(7)} = f(7) —7? is a continuous and strictly decreasing function
of v in (v54,00). 3

Proof. Note that both (S;p =y 2T,;) ™! and (Syq — 7 2T;q) ! are symmetric
and positive definite for all v € (y54,00). Hence, all the eigenvalues of N(v)
are real for v € (754,00). The second item follows from Proposition 6.3.1. &

Proposition 6.3.6. The roots of det [N (y)] = 0 are real. Moreover, the largest
root of det [N ()] = 0 in the interval (54, 00) is equal to {Amax(M )}2. E
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Proof. Using the definition of N(v) in (6.3.14), we have

det [N(7)] = (_ l)nzP - det [721_ (S.’L'P _7—2T1P)_1F(SIQ _7‘2TZQ)_1F/]
__ (cpm
"~ det[Sep =72 Ts)
_ (=1)ner
det [Szp "’}’_2sz] - det [72SzQ - zQ]

-det [’stzp —Typ _72F(72SIQ _TzQ)_IFI]

72 SzP - TzP F
’72FI ’YZSzQ—TzQ

- det

_ (=1)™=P - det [Sgp] - det [Szq)
" det [Szp —7—2sz] - det [')’2SzQ - zQ]

-det [y’ I-M]. (6.3.16)

Now it is simple to see that the roots of det [N ()] = 0 are real since all the
roots of det [Y2Szp — Tip] = 0, det [y2Szq — Tuo] = 0 and det [y2I — M] = 0
are real. Clearly, det[Szp — 7 2T%p] # 0 and det [y2Szq — Tuo) # 0 for all
¥ € (13q,00). Hence the largest root of det [N(vy)] = 0 in (v34,00) is equal to
the largest root of det [y2I — M] = 0, which is equal to {Amax(M)}2. &

Finally, we are ready to prove our algorithm for computing the infimum ~*
for measurement feedback systems. We have the following theorem.

Theorem 6.3.1. Consider the measurement feedback system (6.3.1), which
satisfies Assumptions 6.M.1 to 6.M.7. Then

Y =V Amax (M), (6.3.17)
where M as defined in (6.3.5), is indeed its infimum.

Proof. First, we will show that v is equal to the largest root of det [N (v)] =0
when f(y) = +? has a unique solution in (v}, 0). It is simple to observe that
det [N (7*)] = 0 since Amax[N (7v*)] = f(7v*)— (7v*)? = 0. Now suppose that there
exists a 1 such that det [N(y1)] = 0 and y; > ~v*. This implies that there exists
an eigenvalue of N(v1), say A;[N(m11)], such that \;[N(71)] # Amax[V(71)] and
Ai[N(m)] = 0. Thus, we have

Amax[N ()] > M[N(m)] = 0 = Amax [N (7)), (6.3.18)

contradicting the findings in Proposition 6.3.5 that Amax[/N(7)] must be a non-
increasing function. Hence, v* is the largest root of det [N(y)] = 0 and it is
equal to {Amax(M)}? as shown in Proposition 6.3.6.

Now we consider the situation when f(v) = y? has no solution in the interval
(V> 00). In this case, clearly we have v* = v, and 0 < f(v2,) < (15o)?. The
last inequality and the definition of N(v) in (6.3.14) imply that

—(120)? < N[N (1)) 0. (6.3.19)
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Thus, the determinant of N(v;,) is bounded. Evaluating equation (6.3.16) at
Y = Ypq» We have

det [N(’Y;Q)] -det [SzP - (’Y;Q)~2TIP] - det {(7;Q)2SZQ - TzQ]
= (=1)™" - det [See] - det [Sqq] - det [(v3g)?I — M]. (6.3.20)

Note that from (6.3.7) and the definition of 3, we have
det[Sze ~ (72q) *Tar] - det [(776)Szq — Tea] =0, (6.3.21)
and since det [N(v;,)] is bounded, it follows from (6.3.20) that
det [(v54)*I — M] =0, (6.3.22)

or (72,)? is an eigenvalue of M. Furthermore since det [N(7)] = 0 and similarly
det [y2I — M] = 0 do not have a root in (yp4,0), hence 3, = {Amax(M)}2.
This completes the proof of Theorem 6.3.1. B

The following remarks are in order.

Remark 6.3.2. If Assumptions 6.M.3 and 6.M.6, i.e., the geometric condi-
tions, are not satisfied, then an iterative scheme might be used to determine
the infimum. This can be done by finding the smallest scalar, say %, such that
the Riccati equation

PrAgo+ Ay Po+ PrErp By Po/(Y)? = P Bop By P+ C Cop = 0, (6.3.23)
has a positive definite solution P, > 0, the Riccati equation
Qo Asa+ ArqQs+Q: EaaBioQu/ (V) =@, BaaBig@s+CiqCoa = 0, (63.24)
has a positive definite solution Qm > 0, and
Amax{fvxrc?,r'}< (5%)2. (6.3.25)

Here I is as defined in (6.3.4). Also, all sub-matrices with subscript ‘s’ are re-
lated to the special coordinate basis decomposition of ¥, and the system (6.3.2),
and all sub-matrices with subscript ‘@’ are related to the special coordinate basis
decomposition of £}, and the system (6.3.3). =y

Remark 6.3.3. If ¥p is right invertible and Xq is left invertible, then As-
sumptions 6.M.3 and 6.M.6, i.e., the geometric conditions, are automatically
satisfied. Moreover, Assumption 6.M.7, Do = 0, is no longer necessary and
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the infimum +* for the measurement feedback system (6.3.1) can be obtained

as follows:
1
D’22,1PD22,1p 0 0 0 2
L] s s sy
0 —T:EQSIQI“’SIP T2qS;q 0
0 0 0 D’QMQDQQJQ

where I' is as defined in (6.3.4), T, and S.p are the positive semi-definite and
positive definite solutions of the following Lyapunov equations,

A:apsz + TzP (AIaP)I = (E:p - B(Ta,pD22,OP - L+ F_l D22,1P)

adp™ orp
X (Eg_p — B(S‘;PD22,OP - L:dPF;TlPDQQ’lp)I, (6326)
~ ~ ! ! — —_ !
Az—aPSIP + SZP (A;ap) = BS:LP (B(TaP) + La+dPFor1P (L:dprorlp) ) (6327)

and T,q and S, are the positive semi-definite and positive definite solutions
of the following Lyapunov equations,
. . , B
AfiaTaq + Taq(Aly) = (EX, — BfoD22,0o - L ToDas1a)

X (E:Q - Bg_aQD22,OQ -Lt Tk D22’1Q)/, (6328)

adQ™ orQ

AfaaSea + 82a(Adia) = Buq (Blaa) + Liyoloty (L Tok)'. (6.3.29)

Here again all sub-matrices with subscript ‘¢’ are related to the special coordi-
nate basis decomposition of £, and the system (6.3.2), while all sub-matrices
with subscript ‘@’ are related to the special coordinate basis decomposition of
Y3 and the system (6.3.3). The detailed proof of the above claim is similar to
that of Theorem 6.3.1. It can be found in Chen [15]. ®]

We illustrate our results in the following examples.

Example 6.3.1. We consider a measurement feedback system (6.3.1) with A,
B, E, Cy, Dj, Dy, being given as in Example 6.2.1 of Section 6.2 and

0 -2 -3 -2 -1 10
a=, 5 3 4 1],01_[0 0}. (6.3.30)

Step 6.M.1. It was computed in Example 6.2.1 that I'sp = Is, ngpe = 3 and

0.556281 0.185427 —0.305593 13 0 0
Szp = 0.185427 0.395142 0231469, T,, = |0 0 O
—0.305593 0.231469  1.217984 0 00
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Step 6.M.2. The subsystem (A, E,Cy, Dy) is invertible and of nonminimum
phase with invariant zeros at {—1.630662, —3.593415, 0.521129 + 50.363042}.
Following our algorithm, we obtain

—0.011218 -0.106028 -0.906482 —0.212184 0.090909
0.185213 -0.745725  0.194520 -0.119195 0.181818
I'sq = | —0.919232  0.096732  0.326906 —0.603079 0.272727 |,
0.279141  0.532936  0.087364 —0.581308 0.181818
—0.206551 -—0.373195 0.161098  0.489027 0.090909

0.433179 -0.253237

— — A+ = —
Fora =1, Aq=Aduq = [0.551005 0.609080] ) Mea =2,

0.033508 —0.018630 C'C. = 00
—-0.018630  0.030289|° "7 |0 0]’

Bt = —0.769496 0.010023  0.448951 —0.769496
2Q ™ | —0.090061 0.655677 —1.044466 —0.090061 |’

and

g = 0.026333 -0.021114 T = 1.274771 —0.555799
Q7 1-0.021114  0.043965|° "2 7 | —0.555799  1.764580

Step 6.M.3. The n;p X nyq matrix I' is then given by

0.185213 —0.745725

~0.011218 —0.106028
r= :
~0.919232  0.096732

and

0.500695 —0.334250  0.245016 0.082332 0.052125

—-0.442374  0.992368 -—0.260321 0.032515 0.253182

M =10% x 0.616882 —0.513348  0.588766 0.501907 0.261525
1.074941 —-1.295698  0.921909 0.622391 0.172484

—0.583103  1.526365 —0.286520 0.180099 0.487850

Step 6.M.4. Finally, the infimum for the measurement feedback system is given
by

+* = 13.638725. E

Example 6.3.2. We consider a measurement feedback system (6.3.1) with A,
B, E, Cs, Dy, Dy, being given as in Example 6.2.2 of Section 6.2 and

Ci=[1 -2 3 —4], D, =0. (6.3.31)

It is again simple to verify that the subsystem (A, E,Cy, D;), i.e., Zq, is ob-
servable and invertible with two unstable invariant zeros at 0.5 £ 70.5916 and
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one infinite zero of order two. Hence, all assumptions are satisfied. Following
Remark 6.3.3, we obtain

nge =1, Sgp =05, Tz =025

FDT‘Q = 1, an = 27

Bt = —1.2230247 —0.5241535 I+ = —0.6289841
eQ T | 1.1679942  0.9408842 |’ “Tede T | 13756377’

0.8842105 -0.5101735
0.9753892  0.1157895 |’

B(‘):Q = @’ D22,0Q = @, D22,1Q = [2 1],

3 = 0.5274947 0.5264991 o= 0.5810175 0.9950273
227 10.5264991 3.7365053 | 2T |0.9950273 3.2589825]’

T =[-12230247 1.1679942],

A+ —

aaQ —

1 0 0 00
0 9.7252904 3.0610640 —0.7439148 0
M=10 20766328 0.9724337 0.1292764 0|,
0 1.2428740 1.1820112  0.7056473 0
0 0 0 0 5
and finally the infimum for the given system,
v* = 3.2088448. E

6.4. Plants with Imaginary Axis Zeros

We present in this section a non-iterative algorithm for computing v* of the
measurement feedback system (6.3.1) whose subsystems ¥, and/or X, have
invariant zeros on the imaginary axis. The procedure is similar to the algorithm
of the previous section, although it is slightly more complicated. It involves
finding eigenspaces for the imaginary axis invariant zeros of ¥, and ¥, and
finding solutions to two extra Sylvester equations. We consider the system
(6.3.1) which satisfies the following assumptions:

Assumption 6.Z.1: (A, B) is stabilizable;

Assumption 6.2.2: Im (E) C V™ (%p) + S (Zp);

Assumption 6.Z2.3: (A, C1) is detectable;

Assumption 6.Z.4: Ker (C2) D V™ (Zq) NS (Xq); and

Assumption 6.Z.5: Doy = 0.
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We have the following step-by-step algorithm for computing y*. We note that
it has some overlaps with that in the previous section. However, this is merely
for completeness and to properly define matrices required in the computation
of the infimum ~*.

Step 6.Z.1. Transform the subsystem system X, i.e., (4, B,C2, D) into the
special coordinate basis described in Theorem 2.4.1. To all sub-matrices
and transformations in the special coordinate basis of X5, we append the
subscript ‘e’ to signify their relation to the system ¥,. We also introduce
an additional permutation matrix to the original state transformation
such that the transformed state variables are arranged as

+
Tap
Tphp
0
x
go=| % |. (6.4.1)
Tap
Tcp

Tdp
Next, we compute
~ Eg-p -
Ebp
Ege
Eg
Ecr
L Edp .
Note that Assumption 6.Z.2 implies Epr = 0. Then define the following
matrices:

I E = (6.4.2)

Az_aP L:bPCbP 0 Bg:lp L:dp
Ap=1| 0 Appe 0 |, Be:=|Boup Lpar |, (64.3)
0 LngCbP Agap B(())aP LY

adp

Ef
Ee:= | Epe | » (6.4.4)
EO

apP

and

0 0 0 Imge 0
Co:=Tow |0 0 0|, De:=To| 0 CauCl|. (645)
0 Cbp 0 0 0
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By some simple algebra, it is straightforward to show that

0 0 0
CL[I - Do(DoDy) ™ D4]Co = |0 CpeCre 0] (6.4.6)
0 0 0

for some full row rank C’bp,

~ + ~
A:ap LabP Cre 0

Ay — Bo(DLD:)"'DLCo = | ¢ Appe o |, (6.4.7)
0 EgbpébP Agap
and
Bf Liw| [Biw Eaw]
Be(DpDe) "By = | Byt Lypar | * | Bote Lpar (6.4.8)
BYw Loge] [ B Low

. ~ ~0 -4 =0
for some appropriate Labp, Lygp, Logp, Lodge and L, 4,. Here we note that
it can easily be verified that the pair (A~bbp,é pp) is observable provided
that (Apsp, Che) is observable.

Step 6.Z.2. Define

+ ~+ = + ~+
Azp = AaaP LalipCbP , sz = BOaP %ad? , (649)
0 Appe Bose  Lpgp
and
- Et
Cor =10 Cor], Eao» ::[ ‘“’]. (6.4.10)
Ebp

Then we solve for the unique positive definite solution S;p of the Riccati

equation,
AgpSzp + Sgp ALy — BeeBlp + SzpCloCupSep = 0, (6.4.11)
together with the matrix T, defined by
A
where Tyzp is the unique solution to the Lyapunov equation,
AdaeTaoe + Taar(A30) = EL(EL)" (6.4.12)

Next, solve the unique solution Y, of the following Sylvester equation,

) +SopCle(Daye)’
~Bge [BY., I°.] =0. (6.4.13)

(AzP +SzPC;;pCIP)YZP +sz (AO

aaP
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Let us denote the set of eigenvalues of A% _ with a nonnegative imaginary

aaP
part as {jwe1,- -, jwpkp} and for ¢ = 1,---, kp, choose complex matrices
Vie, whose columns form a basis for the eigenspace,
{z € Cmer | 2" (jupid — A°,.) = o}, (6.4.14)

where n » is the dimension of A® . Then define

aaP*

~ ~ =0 =0
Fip = i};([BgaP Ladp] [BOap Lg,dp]l +LabP(Labp)l

- [(Labp) +Ce Yp] [( ape) +C Y,,]) oy (6.4.15)
fori=1,--- kp, and
F, := blkdiag { Fip, -+, Fip } (6.4.16)
It is shown in {118] that Fr > 0. Also, define
Gy := blkdiag { Vs (B%) Vi, -+, Viep B (B%) Vipr }. (64.17)

Step 6.Z.3. Transform the subsystem X3, i.e., (A',C1, E', D7), into the special
coordinate basis described in Theorem 2.4.1. Again we add here the sub-
script ‘e’ to all sub-matrices and transformations in the special coordinate
basis of the system X7 and rearrange the transformed state variables as

z,
Thq
0

@, (6.4.18)

aQ

T

8
O
Il

z
Teq
Tdq
Next, we compute
~ E;!-Q -
Epq
EO
rdey=1 "|. (6.4.19)
E.q
E.q
L EdQ J
Note that Assumption 6.Z.4 implies Eyq = 0. Then define the following

matrices:
Az_aQ abQCbQ 0 Bg;zq L;I-dQ
A-Q = 0 Abbq 0 ) BQ = BObQ Lbdq ) (6420)

0 0 0
0 abQCbQ AaaQ BOaQ LadQ
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E+

aqQ
EQ = EbQ , (6421)
EY,
and
0 0 0 fnoq 0
Co:=Toq|0 0 0}, Dg:=Tbg 0 CiqCyy |- (6.4.22)

By some simple algebra, it is straightforward to show that

0 0 0
Co[I = Do(DiyDy) ™' Dy]Cq = [0 ChaCia 0] , (6.4.23)
0 o0 0

for some full row rank Cpq, and

~+ =
A+ LabQ CbQ 0

aa
Aq - BQ(D:QDQ)_ID,QCQ =[O0 ) A 0o |, (6.4.24)
0 LgpoCra Al%g
and
Bg:zq z’:dQ B(-)I:J,Q i’:dq I
BQ(D:QDQ)_lBIQ = BObQ i’bdQ : BObQ ffbdQ ) (6425)
Bgaq Lgdq BgaQ Z’adQ

for some appropriate Lapq, Labq, :dq, Laq and LadQ Here we note that
it can easily be verified that the pair (Apsq, Coq) is observable provided
that (Apsq,Chq) is observable.

Step 6.Z.4. Define

+ s+ X + =+
AEQ = {Aaaq Lal.,.QCijI ’ BIQ = BOaQ I:adeI , (6426)
0 Abe BObQ Lbdq
and
- Ef,
CZQ = [0 CbQ ] 3 EZQ == . (6.4.27)
Eyq

Then we solve for the unique positive definite solution S;q of the Riccati
equation,

AzQSIQ + SIQA;Q b quBIIQ + SZQC;:QC‘»EQS;Q = O, (6428)
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together with the matrix T,q defined by

Ta:l,'Q Ojl
0 o0}’

where T,;q is the unique solution to the Lyapunov equation,

TIQ = [

Al o Tusa + Taza(Ady)' = EX(EL). (6.4.29)
Next, solve the unique solution Y of the following Sylvester equation,

=0
(Aa:Q +SzQC:IpQC:L‘Q)YJ:Q +YZQ(Ac0mQ)’ +SIQC;:Q(LabQ)I
~Bao [BY,, Ing) =0.(6.4.30)

0

Let us denote the set of eigenvalues of A,

with a nonnegative imaginary
part as {jwaq1, -, jwakg} and for i =1,---, kg, choose complex matrices
Viq, whose columns form a basis for the eigenspace,

{z € €0 | g™ (jwgil — A%,,) = o}, (6.4.31)

0 . . . 0
where n,, is the dimension of 4;,,. Then define

Fia = Via([BSuq Laa)[Blq Lae) + Luse(Lase)

~ [+ CQYQ]' [(Esa)'+ CaYa| JVia, (6.4.32)
fori=1,---,kq, and
Fyi= blkdiag{ Fig, -+, Frga } (6.4.33)
Again, it can be shown that Fq > 0. Also, define
Ga = blkdiag { Vi B2 () Via, -, VigoPRa(E%) Viqa |- (6:439)

Step 6.2.5. Define

ngp := dim {R"/ST(Zp) } —nl,, (6.4.35)
and
Naq = dim {R"/S*(T%)}-nd,, (6.4.36)
and partition
1/ ' x
L) = [* *] : (6.4.37)
where I' is of dimension nzp X nzq. Finally, define a constant matrix
GoF! 0 0 0
0 TeeS7E +TS7IT'S Y IS
M= e e - . (6.4.38)
0 ~T2@S;q ' Soe T1oS:4 0

0 0 0 GoF3!



6.4. Plants with Imaginary Axis Zeros 139

Step 6.Z.6. The infimum ~* is then given by
Y =V Amax(M). (6.4.39)
This will be justified in Theorem 6.4.1 below.
We have the following main theorem.

Theorem 6.4.1. Consider the given measurement feedback system (6.3.1).
Then under Assumptions 6.Z.1 to 6.2.5, its infimum is given by (6.4.39).

Proof. Following the results of Scherer [119], it can be show that

Y > ’)’; = max{ \/ )\max(TzPSz—pl)a \/)\max(Gpr_l) } " (6440)
if and only if the following algebraic Riccati inequality,
[Ap — Bo(DLDp) ' DpCo]X + X[Ap — Bp(DyDp) "' DsCs)'
+7 ?EpE, + XCs [I - Dp(DyD;) "' D;] Co X — Be(D,Ds) ™' B, <0,

has a positive definite solution. Then it follows from the results of [118] and
[119] (see also Theorem 4.2.2) and some simple algebraic manipulations that
for v >+, the positive semi-definite matrix P(vy) given by

Sar — 7" 2Toe)™0 0
(Sep 70 zp) . Fs_pla (6.4.41)

P(y) = (T3
is the lower limit point of the set
{P >0|3F : (A+ BF)'P + P(A+ BF) +~ 2PEE'P
+(Cy + DyF)(Cy + DyF) < 0}.

Moreover, such a P(-y) does not exist when v < ;. By dual reasoning, one can
show that

7> 42 = max { Vomax(Tea522), \hmax(GaF3) } C (6442)
if and only if the following algebraic Riccati inequality,

[Aq = Bo(D,Dq) ™' DoCq)Z + Z[Aq — Ba(DgDq) ™' Dol
+7 2EQE, + ZCq [I - Do(DDgy) "' D] CqZ — Bo(DyDq) ' By < 0,
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has a positive definite solution. For v > ¢, the positive semi-definite matrix
Q(7) given by

Saq — 72Tua)™! 0
(Saa =7 Ta) ol (6.4.43)

Q) = (T2 . 0| T

is the lower limit point of the set

{Q >0[3K : (A+KC1)Q +Q(A+KC1) +72QCLC,Q

+(E+KDy)(E + KD,) < 0}.

Again, such a Q(v) does not exist when v < 7. Now, let us define

'7;Q ‘= max {\/’\maX(TZPSm_Pl): \/Amax(TzQSz—Ql)} , (6.4.44)
and
Yeoup *= SUP {7 € (13q:0) | P[P(MQ()] < ’}'2}, (6.4.45)

where P(y) and Q(v) are as given in (6.4.41) and (6.4.43), respectively. Then
following the results of Scherer [119], it can easily be shown that

4* = max {7;,“,,, \/,\max(GpF;l), \ﬂmx(qugl)} : (6.4.46)

Also, it follows from Theorem 6.3.1 that

TopS!+ TSZAT'SZE —IS71 1) 2
Yeoup = {/\max [ Trer e e _QI] } (6.4.47)
- TIQS:I:QF SzP TIQSzQ
Hence, the result of Theorem 6.4.1 follows. &

We illustrate our main result of this section in the following example.

Example 6.4.1. Consider a given system characterized by

6011 -11 00 11
000 01 0 00
A={0 10 0 1}, B=]1 0], E=|0 0}, (6.4.48)
111 01 00 21
111 10 01 1 2

-1 11 -21876238 -4.2239 -2425699|  _[1 0
1 2 3 2 1 "'~ 1o o]’
(6.4.49)
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and

02:

0
0
X Dyz =0. (6.4.50)

OO O

10
00
00

00100
First, it is simple to verify that the subsystem X is left invertible with two
invariant zeros at +j and Assumption 6.Z.2 is satisfied. Applying the special
coordinate basis transformation to ¥, we have

0 0 0 -1 0
1.3660254 0.3660254 0 0 O
Fsp = | 0.1988066 1.9900945 0 0 0},
0 01T 00
0 00 01
A = [—0.1614784 0.2246812] B = [0.6040578 —0.1762197]
| 0.6026457 —0.8385216 ] TP 7 10.4723969  0.4878984 |’

o _ [1:3544307 0.2665382 g _Jo0
P = 10.2665382 2.0058434 |’ =10 o]’

40 = 0 -1 - 0.9489977  1.0485243
aaP = 1] (| abe ™ | _(0.9489977 —1.0485243|"°

and
<0 0 1 0 2 1
[BSwe Loawl= [0 _1}’ Eop = [_1 _1]'
Following Step 6.Z.2, we obtain

0.6180716 —0.2516670 0 0
Sa:? = |: ] ) Tep = |: } 3

—0.2516670  0.7339429 00

Yo = —-0.6928337 -0.0822109
P71 -0.3161228  0.3068152 |’

and
F, =2.3885733, Gp =3.5.

Next, the subsystem X is invertible and of nonminimum phase with invariant
zeros at {0.078944, £52.302011, —4.095803 }. Hence, Assumption 6.Z.4 is au-
tomatically satisfied. Applying the special coordinate basis transformation to
Y%, we obtain

02148444  0.0018481  0.2169145  0.0698280 0.2
0.56503097  0.6645646 —0.6352193  0.8023543 0.4
Foq = | —0.7990597 —0.7456317 —0.5938518 —0.5805731 0.6 |,
-0.0941402 -0.0440333  0.3437855  0.0892284 0.4
—0.0603521  0.0210926 -—0.2803500 -0.0795282 0.2
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Azg = ALQ =0.0789442, Bgq =[2.3596219 —0.1725085], Cyq =0,

E;Q:[0.1593412 0.0009204 0.0116587 0.1593412]

and

@@ 7 1(.4222493 —0.8733953

[ 0 ) ]_ 13.8502316 —10.8089077
Boaq Lada! = | 03251762 —1.3752299 |

40 = [0.8733954 —14.3566212]

B — —1.9958628 6.3511003 —0.7973732 —1.9958628
eQ 7 | —(0.5082606 0.0920508 —0.4908900 —0.5082606 | °

Following Step 6.Z.4, we have
Szq = 35.4527292, T,q = 0.3224810, Y,q =[-5.2529064 93.6614674],

and
F, = 8.4694885, (G4 = 35.4527292.

Finally, evaluate

1.4653098 0 0 0 0
0 —0.0000103 —0.0000451  0.0003744 0
M= 0  0.0000632  0.0002763 —0.0022958 0
0 -0.0002503 -—0.0010946 0.0090961 0
0 0 0 0 0.2110284
We obtain
7* = v/ Amax (M) = 1.2104998. E]

Finally, we conclude this chapter by noting that it can readily be verified
now that the auxiliary systems associated with the the problem of maximization
of complex stability radius in Subsection 1.4.2, the robust stabilization prob-
lem for plants with additive perturbations in Subsection 1.4.3 and the robust
stabilization problem for plants with multiplicative perturbations in Subsec-
tion 1.4.4, all in Chapter 1, satisfy Assumptions 6.Z.1 to 6.Z.5. Hence, their
infima are exactly computable.



Chapter 7

Solutions to Continuous-
time H~, Problem

7.1. Introduction

THE MAIN CONTRIBUTION of this chapter is to provide closed-form solutions
to the H., suboptimal control problem for continuous-time systems. Here by
closed-form solutions we mean solutions which are explicitly parameterized in
terms of v and are obtained without explicitly requiring a value for . Hence
one can easily tune the parameter v to obtain the desired level of disturbance
attenuation. Such a design can be called a ‘one-shot’ design. We provide these
closed-form solutions for a class of singular H., suboptimal control problems
for which the subsystem from the control input to the controlled output and
the subsystem from the disturbance to the measurement output satisfy certain
geometric conditions and some other minor assumptions, namely, Assumptions
6.M.1 to 6.M.7 of Chapter 6. Moreover, for this class of systems we also provide
conditions under which the H,, optimal control problem via state feedback has
a solution. Explicit expressions for the solutions will also be given. Finally the
issue of pole-zero cancellations in the closed-loop system resulting from the Hy,
optimal or suboptimal state or output feedback control laws is examined.

Some significant attributes of our method of generating the closed-form
solutions in the H, suboptimal control problem are as follows:

1. No H,.-CAREs are solved in generating the closed-form solutions. As a
result, all the numerical difficulties associated with the Ho-CAREs are

alleviated.
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2. The value for v can be adjusted on line when the closed-form solution to
the H., suboptimal control problem is implemented using either software
or hardware. Since the effect of such a ‘knob’ on the performance and the
robustness of the closed-loop system is straightforward, it should be very
appealing from a practical point of view.

3. Having closed-form solutions to the H,, suboptimal control problem en-
ables us to understand the behavior of the controller (i.e., high-gain, band-
width, etc.) as the parameter v approaches the infimum value of the Ho,
norm of Th,, over all stabilizing controllers.

The above mentioned results were reported in Saberi, Chen and Lin [108]. In
the case when Assumptions 6.M.1 and 6.M.7 are not satisfied, a similar method
will also be adapted to compute y-suboptimal solutions. It is, however, no
longer a closed-form one. The outline of this chapter is as follows: Section 7.2
gives a closed-form solution to the H., suboptimal state feedback control prob-
lem, while Section 7.3 provides a closed-form solution (full order controller) to
the Ho, suboptimal measurement feedback control problem. A reduced order
~-suboptimal controller design method is introduced in Section 7.4. Finally, all
main results are to be proved in Section 7.5.

7.2. Full State Feedback

We consider in this section the Hy, optimization problem for the following full
state feedback systems characterized by

t=Az+ Bu+ E w,
T:{y= z (7.2.1)
h=Cyz+ Dyu+ Dy w,

where z € R"™ is the state, u € R™ is the control input, w € R is the external
disturbance input, and h € R is the controlled output of T. Again, we let £,
be the subsystem characterized by the matrix quadruple (4, B,C3, Ds). As in
Section 6.2 of Chapter 6, we first make the following assumptions:

Assumption 7.F.1: (A, B) is stabilizable;
Assumption 7.F.2: ¥; has no invariant zero on the imaginary axis;
Assumption 7.F.3: Im(E) C V7 (Z5) + S™(Z5); and

Assumption 7.F.4: Dgs = 0.
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We introduce a procedure for obtaining the closed-form solutions for the
H,, suboptimal state feedback control problem utilizing an asymptotic time-
scale and eigenstructure assignment (ATEA). The concept of the ATEA design
procedure was proposed originally in Saberi and Sannuti [112] and its complete
time-scale properties and Lyapunov stability analysis were done in Chen [12].
It uses the special coordinate basis of the given system (See Theorem 2.4.1).
We also give conditions under which the H,, optimal control problem has a
solution. Furthermore, explicit expressions for these optimal solutions will be
given. The following is a step-by-step algorithm to construct the closed-form
of the y-suboptimal state feedback laws, which are explicitly parameterized by
v > v* and a tuning parameter €.

Step 7.F.1: Transform the system X into the special coordinate basis as given
by Theorem 2.4.1 in Chapter 2. To all sub-matrices and transformations
in the special coordinate basis of ¥, we append a subscript » to signify
their relation to the system ¥,. We also choose the output transformation
I'yp to have the following form:

Top = [I"E;P FO] , (7.2.2)
where mgp = rank (D;). Next, we compute
Eg
Epe
E=TE=|E.|. (7.2.3)
Ece
EdP

Note that Assumption 7.F.3 implies Ey, = 0. Also, for economy of no-
tation, we denote np the dimension of R"/S*(Z;). Note that nyp =0
if and only if the system X, is right invertible and is of minimum phase.

Next, define
At Lt Che B LT
A - aaP abp ] ’ B — I: Oap] , A — |: adp] ’
e [ 0 Apep He Bope 13e Lyge
0 0 CarC; E},
C21P = Forp l:o Cbp} y CZ3P = Forp [ PO dp:l ) EzP = |:E:: )
and

Axp = Allp - A131> (Cé3p02319)—lcé3p021?)
BIPBIzP = BllPBilP + A13P(053PC23P)~1A113P1
CapCap = C1pCa1p — C31Ca1p(Ch3p Caze) ™' Cop Cote
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Step 7.F.2: Solve for the unique positive definite solution S;p of the algebraic
matrix Riccati equation,

Aszzp + SszlzP - BIPBlzp + SzPC;pCzPSzP = 0, (724)
together with the matrix T, defined by
Toar O
Tpr = [ ‘6" o] , (7.2.5)

where Tp,p is the unique semi-positive solution of the algebraic matrix
Lyapunov equation,

Af e Taar + Taar (A7,

aapP

) = EL(EG) (7.2.6)

Then it was shown in Section 6.2 of Chapter 6 that the infimum for the
given system (7.2.1) is given by

’Y* =YV /\max(TzPSz_pl)~ (7.2.7)

Then, for any v > v*, we define

Fu(y) = [F;S('Y) Fbo(v)} _ [ Bj1p P:
FL(Y) Fu(v) (Ch3pCasp) "HAl3p Po+ChapCone] |’
(7.2.8)
where
Py = (Sgp — 7 2Tpp) 7}, (7.2.9)
and define

Al = Ane — [Bur A ] Fia(7)-

We will show later on that the eigenvalues of A§;, are in C~. Let us
partition [ FJ; (v) Fpi(v)] as,

Fii(n) Fyi(v)

F}y() Fyia(y)

(Fh(v) Fu(n]= , (7.2.10)

F:lmdp (7) FblmdP (7)

+

where FF (7v) and Fpy;(7y) are of dimensions 1 x nJ,, and 1 X nyp, respec-

ali

tively.

Step 7.F.3: Let A.p be any arbitrary m.» X n.p matrix subject to the constraint
that
Afer = Acer — BepAcr, (7.2.11)

is a stable matrix. Note that the existence of such a A.p is guaranteed
by the property that (A.cp, Bep) is controllable.
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Step 7.F.4: This step makes use of subsystems, i = 1 to mgp, represented by
(2.4.14) of Chapter 2. Let A; = { Ai1, Ai2, -+, Aig; }, 7 = 1 to mgp, be the
sets of g; elements all in €, which are closed under complex conjugation,
where ¢; and mgp are as defined in Theorem 2.4.1 but associated with the
special coordinate basis of £p. Let Agp := Ay UA2U---UA,,,. Fori=1
to mgp, we define

qi
pi(s) =[] (s = Xij) = 8% + Fus®™ '+ -+ Fi_1s + Fig,,  (7:2.12)

J=1

and
1

Fi(e, A;) := = [Figi» €Figi—1, -+, €% Fy]. (7.2.13)
Step 7.F.5: In this step, various gains calculated in Steps 7.F.2 to 7.F.4 are
put together to form a composite state feedback gain for the given system

Yp. Let
Ff(7)Fig, /€™ .
Fl(v,6,Agp) = F:m(’y).f"ng/g@ |
F;imdp (7)Fm.dpqmdp Jetmar |
and

Fy11(7)Fq, /€7 1

Z F F: a2
Fbl (7161Adp) : bl2(’7). 242/5

Foimae ('Y)Fmdp dmgp /Eqmdp -

Then define the state feedback gain F(v,e, Age, Acp) as

(6, Ade, Aep) = ~Tip (Fly,6,Aae, Ar) + Fo T3, (72.14)

where F(v,e, Age, Acr) is given by

L Fa) Fo(y) 0 0 0
Fal(’Y)EaAdP) Fb1(7a51AdP) 0 0 Fd(aaAdP) 5 (7215)
0 0 0 Ay 0

+ —_—
COap CObP Cgap COCP COdP

Fo=|E}., Ear Ej. Ear Eus |, (7.2.16)
Ef, E4 EL, 0 0
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and where
Eyn -+ Eimg

Ewp=| @ - : , (7.2.17)
EmdPl EmdedP

and
Fa(e,Agp) = diag[ﬁ'l(a,Al), Fa(e,Ag), -+, F’mdp(s,AmdP)]. (7.2.18)
This completes the algorithm.
We have the following theorem.

Theorem 7.2.1. Consider the full state feedback system (7.2.1) which satisfies
Assumptions 7.F.1 to 7.F.4. Then with state feedback gain given by (7.2.14),
we have the following properties:

1. For any v > ~*, for any Agp C €~ which is closed under complex con-
jugation and for any A subject to the constraints that A¢., is stable,
there exists an €* > 0 such that for all 0 < € < ¢*, the state feedback
control law,

u=F(v,€,Agp, Acr)7, (7.2.19)

with F(v,¢, Age, Acp) being given as in (7.2.14) is a y-suboptimal control
law for the given system (7.2.1). Namely, the closed-loop system com-
prising ¥ and the state feedback law (7.2.19) is internally stable and the
H.-norm of the closed-loop transfer function from the disturbance w to
the controlled output A is less than v, i.e., || Thwlloo < 7-

2. Moreover as € —+ 0, the poles of the closed-loop system, i.e., the eigenval-
ues of A+ BF(v,¢e,Agp,Acp), are given by

AdP

AMAzr), AMAcer), MAfre) +0(e)  and +0(1),

Clearly, there are at least ngp poles of the closed-loop system have infinite
negative real parts as € — 0.

Proof. See Subsection 7.5.A. 23]

The following remarks respectively deal with 1) the interpretations of the
parameters €, Agp and A.p; 2) solutions to the regular problem; and 3) solutions
to the general problem when the geometric condition (Assumption 7.F.3) is not
satisfied.
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Remark 7.2.1. (Interpretations of ¢, Agr and A.p). Theorem 7.2.1 shows
that the closed-loop system under H,, suboptimal state feedback laws, i.e.,
Thw, has fast eigenvalues Agp/e. So the set of parameters Agp in the Hy,
suboptimal gain F'(v,€, Age, Acp) of (7.2.14) represents the asymptotes of these
fast eigenvalues while ¢ represents their time-scale. The closed-loop system
also has A(AS,..) as slow eigenvalues. These eigenvalues can be assigned to
any desired locations in C~ by choosing an appropriate A.p. Hence, the set
of parameters A in the Hy, suboptimal state feedback gain prescribes the
locations of these slow eigenvalues. &

Remark 7.2.2. (Regular Case). If D, is injective, it is obvious from our
algorithm that F'(v,e,Agp, Acp) = F(y) does not depend on €, Age and Ay,
and is given by

F(y) = ~Tie [Cdor + Foo(7)  Cote + Foo(7)  Coue ] T -

This corresponds to the regular case, and is the central controller given in Doyle
et al. [49)]. ®

Remark 7.2.3. Finally, we would like to note that if Assumption 7.F.3, i.e.,
the geometric condition, is not satisfied, one can use the iterative procedure
in Chapter 6 to find an approximation of the infimum, say 4*. Moreover,
the algorithm for finding the y-suboptimal state feedback laws can be slightly
modified to handle this situation. To be more specific, one only needs to modify
Step 7.F.2 slightly as follows:

Step 7.F.2m: For any v > %%, we define

[F:m Fbo(Y)]z{ Bl P
i) Fu] ™ [(CharCase) ™ AlgpPa+ Chy Carrl

where P, is the positive definite solution of the Riccati equation,

Fu(y) ==

P:EAIP + AIIPPZ + PZEZPE;I):pPZ/’yQ - PIBIJPB;;pPz + C;pCzP = 0’

and define '
Ain: = Ap1p — [Bnp Alsp]Fu(’Y)-

Let us partition [ F;{ (v) Fu(v)] as,

Fii(v)  Fuly)

(Fi(7) Fu()]= F‘ﬁ?(V) Fblf(“r)

b

F(jimdp (’Y) FblmdP (7)

where F'' .(7) and Fy;(v) are of dimensions 1 x nJ, and 1 x nyp.

alz
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The rest steps of the algorithm, i.e., Steps 7.F.1, 7.F.3 to 7.F.5, remain un-
changed. All results in Theorem 7.2.1 are valid for this situation as well. The
only difference is that the control law is no longer of closed-form. ®]

The following theorem deals with pole-zero cancellations in the closed-loop
system Tj,, under the state feedback law.

Theorem 7.2.2. (Pole-zero Cancellations). Consider the full state feed-
back system (7.2.1) which satisfies Assumptions 7.F.1 to 7.F.4. Then with
state feedback gain given by (7.2.14), the resulting closed-loop system has the
following property: A(A,,.), the stable invariant zeros of the system ¥, and
A(AS..) are the output decoupling zeros of the closed-loop transfer matrix Thy,.

Hence, they cancel with the poles of Th,,.
Proof. See Subsection 7.5.B. &
We illustrate our algorithm in the following example.

Example 7.2.1. Reconsider the system in Example 6.2.1, i.e., a full state feed-
back system characterized by

1 11 0 1 0 0 0 5 1
01001 00 0 0 0

A={0 110 1|, B=|1 0 0|, E=|0 o], (7.2.20)
11111 0 0 1 2 3
11110 01 0 1 4

and
00100 100 0 0
00001 000 0 0

Q2=10100 0| P2=|o o0 0|l P2=|g ¢ (7.2.21)
00100 00 0 0 0

It is easy to verify that (A, B) is stabilizable, and the system X, is neither
right nor left invertible and is of nonminimum phase with an invariant zero at
s = 1. Moreover, it is already in the form of the special coordinate basis with
nt, =1,n, =n% =0, np =2 and ne = nge = 1. Also, it is simple to
see that Im (E) C V~(Xp) US™ () since Ep = 0. Hence, all Assumptions
7.F.1 to 7.F.4 are satisfied. Moreover, it was obtained in Example 6.2.1 that
the infimum is given by
¥* = 6.4679044.
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10 T T A T T T
[~~~ -~ _gamma=10 & epsilon=0.1
> Y
Y
8r_ _ \ b
T~ \ - .
T~ AT gamma=8 & epsilon=0.1
D \
A 1
A) :
6F gamma=6.5 & Vol .
o Vo
3 epsilon=0.001 Vo
g o
\
[=)] \
4 v .
Vo
Yy
v L
VY
Vo
Pys v a
v
\ '\
N
NI
~ \\
0 1 1 - = ‘::E = i e
107" 10° 10’ 10° 10° 10*

Frequency (rad/sec)

Figure 7.2.1: Maximum singular values of T}, (state feedback case).

Following the algorithm in this section, we obtain the closed-form solution of
the v-suboptimal state feedback gains, F(v,¢€, Agp, Acp), which is given by

r —0.1636732 14 0.2947907*Agp 1] !
0.132909~2 — 5.560084 (0.132909+% — 5.560084)e
0.185427v2 — 3.009097 1 (0.102145v° — 12.824695)A\ap
0.132909+% — 5.560084 (0.132909+% — 5.560084)¢
—0.318336” + 10.696930 4 (0.1636737% — 2.127749) Agp 1|
0.132909+% — 5.560084 (0.132909+% — 5.560084)e
0 -1 —Agr
i 0 Ade 0 |
(7.2.22)

where the scalars Agp < 0 and A.p > 1 (note that A.p must be greater than one
in order to have stable AS..). We demonstrate our results in Figure 7.2.1 by the
plots of maximum singular values of the closed-loop transfer function matrix
for several values of v and €. Note that in Figure 7.2.1, we choose parameters
Agp = —1 and A, = 3. E
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7.3. Full Order Output Feedback

This section deals with H, suboptimal and optimal design using full order
measurement output feedback laws, i.e., the dynamical order of these control
laws will be exactly the same as that of the given system. To be more specific,
we consider the following measurement feedback system

t=Az+ Bu+ E w,
pIE y=Ci z + D; w, (731)
h=Cyz+ Dy u+ Dy w,

where £ € R" is the state, u € R™ is the control input, w € R? is the external
disturbance input, y € RP is the measurement output, and A € R’ is the
controlled output of ¥. Again, we let ¥, be the subsystem characterized by the
matrix quadruple (4, B, Cy, D3) and X4 be the subsystem characterized by the
matrix quadruple (A, E,Cy, D;). The following assumptions are made first:

Assumption 7.M.1: (A, B) is stabilizable;

Assumption 7.M.2: ¥, has no invariant zero on the imaginary axis;

Assumption 7.M.3: Im (E) C V= (Zp) + S™(Z5);

Assumption 7.M.4: (A, C}) is detectable;

Assumption 7.M.5: ¥, has no invariant zero on the imaginary axis;

Assumption 7.M.6: Ker (C3) D V™ (54) NS~ (Xq); and

Assumption 7.M.7: Dys = 0.

The class of output feedback controllers that we consider in this section are
basically observer based control laws and can be regarded as an extension of the
central output feedback controller that was proposed in Doyle et al. [49] for the
regular case. We have modified the central output feedback controller of the
regular case to deal with the singular case. This modification will be discussed
later on. We assume that the infimum ~* has been obtained using methods

given in Section 6.3 of Chapter 6. The procedure for obtaining the closed-form
of the H, suboptimal output feedback laws for any v > 4* proceeds as follows.

Step 7.M.1: Define an auxiliary full state feedback system
t=Az+ Bu+ E w,
y= =z
h=Cyz+ Dy u+ Dy w,
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and proceed to perform Steps 7.F.1 to 7.F.5 of Section 7.2 to obtain the
gain matrix F(vy,e,Age, Acp). Also, define

SzP_ _2T1:P -1
y [( g )70

P(y) = (T 0 0

SP

;. (7.3.2)
Step 7.M.2: Define another auxiliary full state feedback system as follows,

t=Az+Clu+ C) w,
h=FEz + D} u+ Dj, w,

and proceed to perform Steps 7.F.1 to 7.F.5 of Section 7.2 but for this
auxiliary system to obtain a gain matrix F(v,e, Agq, Acq)- Let us define
K(v,6,Adq,Acq) := F(7,€,Adq, Acq)'- Also, define
vq =7 Teq)™' 0

0 0 I (7.3.4)

_1y [ (S
Q(Y) = (Tsq)' [
Step 7.M.3: Construct the following full order observer based controller,

U = Acmp ¥ + Bemp Y,
Semp : { emp cmp ¥ (7.3.5)

u=Cmpv+ 0 uy,
where
Acmp = A+~ 2EE'P(y) + BF(v,€,Ade, Ace)

+ [[ - 7_2Q(7)P(7)]_1{K(% €, Adq, Acq) [Cl + 7—2D1E1P(7)]
+772Q(M[A'P(7) + P(7)A + C3C2 + v 2P(7)EE'P(y)]

+7472Q() [P(1)B + C4D | F(y,€, Ade, Ace) }, (7.3.6)
Bemp = —[I = v72Q(M)P()] K (7,6, Adq, Aca)s (7.3.7)
Ccmp = F(775a AdP7 ACP)' (7.3.8)

It is to be shown that X¢mp is indeed a y-suboptimal controller. Clearly,
it has a dynamical order of n, i.e., it is a full order output feedback
controller.

We have the following theorem.

Theorem 7.3.1. Consider the given measurement feedback system (7.3.1) sat-
isfying Assumptions 7.M.1 to 7.M.7. Then for any v > ~v*, for any Age C C~
and Aygq C €7, which are closed under complex conjugation, and for any A
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and A.q subject to the constraints that Af., and Af., are stable matrices,
there exists an €* > 0 such that for all 0 < € < €”, the control law Y¢mp
as given in (7.3.5) is y-suboptimal controller, namely, the closed-loop system
comprising ¥ and the output feedback controller ¥cp,p, is internally stable and
the H-norm of the closed-loop transfer matrix from the disturbance w to the
controlled output A is less than 7, i.e., ||Thw|loo < -

Proof. See Subsection 7.5.C. &

The following theorem deals with the issue of pole-zero cancellations and
the closed-loop eigenvalues in the y-suboptimal output feedback control.

Theorem 7.3.2. Consider the given measurement feedback system (7.3.1) sat-
isfying Assumptions 7.M.1 to 7.M.7 with the «y-suboptimal control ., as given
in (7.3.5). Then the following properties hold:

1. M(A,;), the stable invariant zeros of the system X5, and A(AS,,) are the
output decoupling zeros of the closed-loop system T},,. Hence they cancel

with the poles of Th.,.

2. A(Az,q), the stable invariant zeros of the system g, and A(AS.,) are the
input decoupling zeros of the closed-loop system T},,. Hence they cancel

with the poles of T}, .

3. Ase — 0, the fast eigenvalues of the closed-loop system are asymptotically
given by Agp/e +0(1) and Agq/e + 0(1).

Proof. See Subsection 7.5.D. )

The following remarks are in order.

Remark 7.3.1. (Interpretations of €, Agp, Agq, Acr and A.y). Again, as
in Remark 7.2.1, the set of parameters Age and Agzq represent the asymptotes
of the fast eigenvalues of the closed-loop system while & represents their time-
scale. The set of parameters A, and A.q prescribe the locations of the slow
eigenvalues of the closed-loop system corresponding to A(AS,,) and A(AS.,).
The eigenvalues can be assigned to any desired locations in €~ by choosing

appropriate A and Aq. ®

Remark 7.3.2. (Regular Case). For the regular problem when D, is sur-
jective and D, is injective, which implies that ¥; does not have z. and z4 and,
Y4 does not have z), and z4 in their SCB decompositions, it is straightforward
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to verify that both F(v,e,A4, Acp) = F(7v) and K(7,€,Adq,Dcq) = K(7)
depend only on . Moreover, we have

[P(7)B + C3D)F(y) + [A'P(7) + P(7)A + C3Cy + 7~ *P(7)EE'P(v)] = 0.
Hence, ¥¢mp reduces to
V= Acmp v+ chp Y,
Ecmp :
u=Cmpv+ 0 uy,

where

Aemp = A+ 2EE'P(v) + BF(v)
+ [I=v72Q(M)P(] " K(M)[C1 + v 2D1E'P(v)],

Bemp = — [I = 72Q()P()] " K (),
Ccmp = F('Y)

This corresponds to the regular case, and is the central controller given in Doyle
et al. [49]. &

Remark 7.3.3. Finally, we would like to note that if Assumptions 7.M.3 and
7.M.6, i.e., the geometric conditions, are not satisfied, one can use the itera-
tive procedure in Chapter 6 to find an approximation of the infimum, say ¥*.
Moreover, the algorithm for finding the y-suboptimal output feedback laws can
also be modified to handle this situation. To be more specific, one only needs
to modify Steps 7.M.1 and 8.M.2 slightly as follows:

Step 7.M.1m: Define an auxiliary full state feedback system

y= z

{i::Azc+Bu+ E w,
h:sz+D2u+D22w,

and proceed to perform Steps 7.F.1, 7.F.2m, and 7.F.3 to 7.F.5 of Sec-
tion 7.2 to obtain the gain matrix F(vy,€, Agp, Acp) and P,. Let Pyp 1= P
Also, define

R i ) (739)

Step 7.M.2m: Define another auxiliary full state feedback system as follows,
t=Az+Clu+ Cy w,

DI { Yy x
h=FEz+ D{u+ Dy, w,

Il

I
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and proceed to perform Steps 7.F.1, 7.F.2m, and 7.F.3 to 7.F.5 of Sec-
tion 7.2 but for this auxiliary system to obtain F(7,&, Age, Acp) and P;.
Let K(v,€,Adq, Acq) := F(7,6,Adq; Acq)' and Qzq := P;. Also, define

QM) = (M) [Qg" g] Lo (7.3.10)

The last step of the algorithm, i.e., Step 7.M.3, remains unchanged. All results
in Theorems 7.3.1 and 7.3.2 are valid for this situation as well. However, the
output feedback control law is not of closed-form any more. 5]

Again, we illustrate our results in the following example.

Example 7.3.1. Consider a given measurement feedback system characterized
by matrices A, B, E, C3, Dy and D, as given in Example 7.2.1 of the previous
section and

0 -2 -3 -2 -1 10
Gi=|; 5 3 3 1], Dl_[O 0]. (7.3.11)
We first note that the pair (A4, C;) is detectable, and the system (A4, E, C1, D1)
is invertible (hence Assumption 7.M.6 is satisfied) and of nonminimum phase

with invariant zeros at { —~1.630662, —3.593415, 0.521129 + j0.363042 }. It was
obtained in Example 6.3.1 that

~v* = 13.638725.

The closed-form to the output feedback suboptimal controllers as in (7.3.5) to
(7.3.8) with F(v,€, Aap, Acp) given by (7.2.22),

K (7,6, Mdq, Acq) = [Ko Ki], (7.3.12)

where
[ —43.917* + 4257.867% — 97026.13

7.129% — 790.429% + 19405.23
—12.457* + 372.659% — 0.02
7.127% = 790.427% + 19405.23
—48.44~* 4 1803.08v% 4 0.02
7.129% — 790.429° + 19405.23 |’
62.577* — 1212.587° — 38810.46
7.129% — 790.427% + 19405.23

17.807* — 83.0472 — 19405.21
L 7.129% — 790.42+% + 19405.23 |
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and
r Ad (0.24v* — 10.147%)\g 1
—54 0.090909°42 — 9
+ € T (7121 — 790.427° + 19405.23)¢
B C(=2.399" +190.919*) Mg
0363636 (7.129* — 790.429% + 19405.23)e
2.04v* — 108.957%) Ay
K = — 0.382726 — — Q
! (7.127% — 790.427% + 19405.23)¢ ’
A (=1.139* + 14.869%) )
— 2.545451 + 0.272727242 _ dq
+ €~ (71295 = 7904277 + 19405.23)¢
A (0.697* — 74.567%) g
—1.272726 + 0.363636 222 — Q
i + € T (71277 - 790.427° + 19405.23)¢ -
with Agq < 0, and
P(y) = ! v
7 = 01329092 — 5.560084
0.42770~2 —0.29658+2 0.16367y> 0 0
—0.296587> —15.8338 4+ 0.58415y>  3.0091 — 0.18543y2 0 0
0.163679%>  3.0091 — 0.18543y%> —5.1368 +0.18543y2 0 0|,
0 0 0 0 0
0 0 0 00
2
_ Y 2
QM) = 0.071193v% — 7.90417142 + 194.052288 (7 @it QO) ’
where
0.083104  0.124442  0.484459 —0.768087 —0.249208
0.124423  1.778706  0.340500 —1.759522 —1.184163
Q.= | 0484459 0.340500 2.917279 —4.330299 —1.256601 |,
—0.768087 —1.759522 —4.330299  7.332315  2.613520
-0.249208 —1.184163 —1.256601  2.613520  1.160281
and
—3.0576430 —3.7265760 —18.030782  27.934279  8.7345960
—3.7265760 —122.50790  6.5460280  79.188507  70.727376
Qo = | —18.030781  6.5460280 —113.22255 153.81266  36.981101
27.934279  79.188509  153.81266 —272.47959 —102.79025
8.7345960  70.727376  36.981101 —102.79025 —55.552230

As in the previous example, we demonstrate our results in Figure 7.3.1 by the

plots of maximum singular values of the closed-loop transfer function matrix

for several values of v and €. Note

that in Figure 7.3.1, we choose A\gp = —1,

A = 3 and A\gq = —1. Note that since ¥, for this example is left invertible,

the gain K (7,&, Adq, Acq) depends only on v, € and Aqq.

E
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Figure 7.3.1: Maximum singular values of T}, (output feedback case).

7.4. Reduced Order Output Feedback

In this section, the H, control problem with reduced order measurement output
feedback is investigated. For the case that some entries of the measurement vec-
tor are not noise-corrupted, we show that one can find dynamic compensators
of a lower dynamical order. More specifically, we will show that there exists a
time-invariant, finite-dimensional dynamic compensator X¢pyp of the form

0 = Acmp v + B ,
Zcmp : {U cme cmp ¥ (741)

u = Ccmp v+ Dcmp Y,

and with a McMillan degree n — rank[C}, Di] + rank(D;) < n for ¥ of (7.3.1)
such that the resulting closed loop system is internally stable and the closed loop
transfer function from w to h has an H,, norm less than v > «*. Moreover, we
give an explicit construction of such a reduced order compensator. The result
of this section was previously reported in [126] while the original idea for how

to construct a reduced order observer for a general system was given by Chen
et al. [29].
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Let v* be the infimum for the given system ¥ of (7.3.1) and let v > v* be
given. Using the result of the previous section, one can easily find two positive
semi-definite matrices P and @ which satisfy

[A'P+ PA+CyCy + PEE'P/y* PB +ChD,

F,(P) := >0
+(P) I B'P + D4C, D, D, }_ ’

and

G.(Q) = [AQ+ QA+ BE' +QCI00/7* QC +ED’1] o
e C1Q + D, E' DD, | =7

respectively, i.e., P and @Q are the solutions of the quadratic matrix inequalities
F,(P) >0 and G,(Q) > 0. Next, we define an auxiliary system,

in = APQ ZPQ + BPQ u + EPQ pr,
EPQ : y = Clp Tpq + Dpo Wepq, (742)
hPQ = Co Tpq + Dop u,

and
Apq = A+ EE'P/y* + (v - QP)™1QC},Cap,
Beq = B+ (v*I — QP)™'QC}, Doy,
Epq := (I - QP/v*) ' Eq,
Cir := C1 + D1E'P/~2.

(7.4.3)

It can be shown (see e.g., [124]) that i) (Apq, Bpq, Cap, Dap) is right invertible
and of minimum phase; and ii) (Apq, Erq, Cip, D1pq) is left invertible and of
minimum phase.

We will build the reduced order compensator upon the above auxiliary sys-
tem and show later that it works for the original system X of (7.3.1) as well.
Let us first eliminate states which can be directly observed and concentrate on
those states which still need to be observed. In order to do this, we need to
choose a suitable basis. Without loss of generality, but for simplicity of pre-
sentation, we assume that the matrices Cip and Dspq are transformed in the
following form:

0 Cio

Cre = [Ik 0

] and Dypq = [Déyo]. (7.4.4)
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Thus, the system pq as in (7.4.2) can be partitioned as follows,
3} An A (= By E;
(562) [A21 A22] (272) + [Bz} ut [E2 Wea;
Yo 0 01,02 T D1,0 (745)
W)=le @) ()

hpq = Cop Tpq + Dyp u,

I

I

where (), 15)' = Tpq and (y§, y})' = y. We observe that y; = z; is already
available and need not be estimated. Thus we need to estimate only the state
variable z. We first rewrite the state equation for z; in terms of the output
y1 and state x5 as follows,

v1 = Any + A1272 + Biu + Erwe,, (7.4.6)
where y; and u are known signals. Then, (7.4.6) can be rewritten as
§ = A1222 + Eyweq = 1 — An1z1 — Biu. (7.4.7)
Thus, observation of x5 is made via (7.4.7) as well as by
yo = C1,02%2 + D1,0Weq.

Now, a reduced order system suitable for estimating the state z; is given by

Ty = A 22+ [An B2](?2)+ E;  weq,

Yo\ _ | Cio2 Do
(5)-[%] = + ] e

Before we proceed to construct the reduced order observer, we present in the

(7.4.8)

following a key lemma which plays an important role in our design.

Lemma 7.4.1. Let Ty denote the subsystem characterized by

- C D
o= (2 [ 3] [ 3])

Then we have

1. ¥y is (non-)minimum phase if and only if (Arq, Erq,Cir, Dirq) is (non-)
minimum phase.

2. X is detectable if and only if (Apq, Erq,Cir, D1rq) is detectable.

3. Ty is left invertible if and only if (Apq, Epq, Cip, D1pq) is left invertible.
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4. Invariant zeros of Xy are the same as those of (Apq, Foq, C1p, Dirq)-

5. Orders of infinite zeros of the reduced order system, ¥y, are reduced by
one from those of (Apq, Epq,Cip, Dipq)-

Proof. It follows from Proposition 2.2.1 of Chen [12]. &

Now, based on (7.4.8), we can construct a reduced order observer of z, as,

22 = A2y + Anys + Byu + Kn ([3{0] - [52,02] 132) ,
y 12

and I
A 0 N
$PQ:|:In_k]z2+[éc:|yl)

where Ky is the observer gain matrix for the reduced order system and is chosen
such that
C1,02 ]
b

Az — Ky [ Ay

is asymptotically stable. In order to remove the dependency on y;, let us
partition Kp = [Kgo, Kr1] to be compatible with the dimensions of the output
(v, v1)'- Then (see e.g., [71]), one can define a new variable v := T2 — Kn1y1
and obtain a new dynamic equation,

U = (Az2 — KroCi,02 — Kr1412)v + (B2 — Kr1 B1)u

+ [Kro, A21 — Kr1A11 + (A22 — KxoClh,02 — Kr1A412)Kri] (‘:?) . (7.4.9)

Thus by implementing (7.4.9), Z> can be obtained without generating g, .

Theorem 7.4.1. Let ¥4 be given by (7.4.2). Then there exist for every € > 0,
a state feedback gain F' and a reduced order observer gain matrix Ky such that
the following reduced order observer based controller,

0 = (Az2 — KroCh,02 — Kn1A12)v + (B2 — Ka1B1)u

+ [Kro, A21 — Kr1411 + (422 — KroClh,02 — Kr1412)Kri] ¥,

_ ~ 0 B 0 I
u=—Ftpq = F{In_k]v F[O KRl]y,

Yemp :

(7.4.10)
when applied to ¥pq is internally stabilizing and yields an Ho, norm of the
closed-loop transfer matrix from weq to heq strictly less than €. Moreover, if
Yemp is applied to the original system X of (7.3.1), then the resulting closed-
loop system comprising ¥ and Xp,p is internally stable and the H, norm of
the closed-loop transfer matrix from w to h is less than ~.
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Proof. See Subsection 7.5.E. &

Remark 7.4.1. The gain matrix F' and Ky can be found using a systematic

procedure given in Chapter 8. B]

Remark 7.4.2. In the case that the given system ¥ of (7.3.1) is regular, then
the controller (7.4.10) reduces to the well-known full order observer based con-

trol design for the regular H-optimization as given in [49]. &

We illustrate the above result with a numerical example.

Example 7.4.1. We again consider a given measurement feedback system char-
acterized by matrices A, B, E, C3, D, as in Example 7.2.1 and C;, D; as in
Example 7.3.1. The infimum for this problem is v* = 13.638725. In what fol-
lows, we will construct a reduced order measurement output feedback control
law that makes the Ho, norm of the resulting closed-loop transfer matrix from
w to h strictly less that v = 14. Following the procedure, we obtain an auxiliary
system Ypq of the form (7.4.2) with

4.2254 —0.7415 41946 0 1.4335
—11.8293 7.6804 -—-13.7917 0 -0.7102
Apq = 19.4695 —9.0672 22.8277 0 4.0975 | ,
—17.4591 10.0905 -19.5135 1 -2.1038
1.2144 0.5197 14176 1 —0.0983
09327 0 O 18.5391 0.8299
—-44755 0 O —62.8474 —29.3560
Bpq = 78569 0 0|, Epq = | 102.9481 28.5462 |
-6.3735 0 1 -97.9601 -22.3008
. 01940 1 0 —0.0958 3.1029
Co = 0.1044 -2.0724 -2.9601 -2 -1
L | 2 3 2 1
Cou = 3.0616 —-0.9592 2.8464 O 0.6772
2~ 1-1.0146 —1.3601 0.6330 0 —0.7358|’
and
Do = 0.9409 -0.3383 Do = 0.9409 -0.3383
1p — 0 0 ) 2rPQ — 0 0 .
It is simple to show that the transformation T and T,
1 -2 -3 -2 -1
0 1 0 0 0
Ts=10 0 1 0 0f, To:[(l) 0'10411},
0 0 0 1 0
0 0 0 0 1
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will transform C; and D; to the following form,

_ 0|cC 0] -2.2811 -3.2732 -2.2087 -1.1044
1 _ 1,02 _
TOCIPTS‘[1k|0 }“[1| 0 0 0 0 ]
and
D 0.9409 —0.3383
—~1 _ 1,0 _
o= [ ] - {23 o]
Moreover, we have
A | A
T_lATS — 11 12 ]
s [Am Az
52714 | -2.4247 -8.3291 -7.5428  2.7283
—11.8293| 31.3390 21.6962  23.6586  11.1191
= 19.4695 | —48.0062 —35.5807 —38.9390 —15.3720 |,
—~17.4591 | 45.0087  32.8639  35.9182  15.3553
1.2144 | —-1.9092 —2.2257 —1.4289 —1.3127
2.9993 1 2
B —4.4755 0 0
Ts‘le[Bl]: 78569 0 0 |,
? -6.3735 0 1
0.1940 1 0
56724 —13.7425
E —62.8474 —29.3560
T;lE—{E}}: 102.9481  28.5462 |,
2 -97.9601 —22.3008
-0.0958  3.1029
andARZAQQ,ER:E2,
oo - [-22811 -3.2732 -2.2087 11044
R 24247 —8.3291 —7.5428  2.7283 |’
and
D. — 09409  —0.3383
R 15.6724 —13.7425 |
Using the algorithm given in Chapter 8, we obtain a gain matrix F,
-1.5656  4.7579  2.1737  3.1311  1.5656
FT, = | —299.4859 555.2644 742.6408 597.9718 189.8014
7.4811 -14.6842 —19.0100 -16.9623 —5.3773
and
93.5515 | —4.4388
—143.1777 | 5.6013
Kn=[Kno | K } = | 1337360 | —4.0145
—1.4788 | 0.2622
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Finally, we obtain a reduced order output feedback controller of the form (7.4.1)
with
—2.5903 -3.4139 -2.7089 -—0.9269
3.3280 4.3868  3.4717  1.1995
—2.9478 -3.8917 -3.0775 -—1.0641 |’
0.6986  0.9299 0.7488  0.2393

4.7579 2.1737 3.1311 1.5656}

Acmp = 10% -

Cemp = | 555.2644 742.6408 597.9718 189.8014
—14.6842 -19.0100 -16.9623 -5.3773

and
o s e
Bemp = 10% - 01337 —a7917|» Demp=]0 8943952},
’ ) 0 -33.1683

0.0015  1.1362

which yields the poles of the closed-loop system, when it is applied to the given
system, at

—97.337,-34.72, -3.591, —1.848, —1.632, —0.248, —1.346, —0.765, — 1.

Obviously, they are in the stable region. The singular value plots of the resulting
closed-loop transfer matrix T}, in Figure 7.4.1 also show that ||Thy||co is indeed
less than 14, the given ~. El

7.5. Proofs of Main Results

7.5.A. Proof of Theorem 7.2.1

We need to recall the following two lemmas in order to proceed with our proof
of Theorem 7.2.1.

Lemma 7.5.1. Let an auxiliary system ¥,,x be characterized by

Sauy {ix = A:c Ty + By up + By Wy, (751)
h2=sz1;+Dx Uz ,
where
EY
Ay = A1ipy, Bg =[Bur Aise], Ez = E
and

0 0
Co=Txp |0 0
0 CbP

I 0
) D; =T 0 Cdpctlip .
0 0
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Figure 7.4.1: Max. singular values of T}, under reduced order output feedback.

Then Y,., comprising the state feedback law u, = —Fi;(y)z, is internally
stable, i.e.,

MAfp) = MAue — [Bus, A1ze)Fui(7)} = MAz = B Fu(y)} €7, (7.5.2)

and the resulting closed-loop transfer function from w, to h, has H,, norm less

than v, i.e.,
—Fnﬁ)] _1[E$]‘
Th.w = ||l sI — AS <. 7.5.3
oo = [ | 00 |61 - 2507 ||| <o 53)
That is u, = —F11(7)z; is a y-suboptimal control law for ,yx.

Proof. We first note that I'op is nonsingular and C4pC}, = I which implies
that D, is injective. Furthermore, it is simple to verify that the invariant
zeros of (Ag, Bz, Cy, D;) are given by A(A7,.), and are not on the imaginary
axis. Hence ¥,,x satisfies the assumptions of the regular H, control problem.
Moreover, it is straightforward to verify that for any v > v*,

P, = (Szp - '7—2sz)_1 >0,
is the solution of the following well-known H,,-CARE:

P, A, + AP, +y*P,E,E.P, + C.C,
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~ [PeB; + C,D;)(Dg D) [By P + Do Cr] = 0, (7.5.4)
with
AMAC,) := MA; + v ?E,E.P, — B,(D.D,)"*(B.Pz) + D,C,)} € C".
Then the results of Lemma 7.5.1 follow.

Lemma 7.5.2. Let (4,B,C), where A € R"*", B € R"*™ and C € R?*",
be right invertible and of minimum phase. Let F'(¢) € R™*" be parameterized
in terms of € and be of the form,

F(e) = N(e)['(e)T(e) + R(e), (7.5.5)

where N(e) € R™*P, I'(e) € R?*P, T'(e) € RP*™ and R(e) € R™*". Also,
T'(e) is nonsingular. Moreover, assume that the following conditions hold:

1. A+ BF(e) is asymptotically stable for all 0 < £ < &* where ¢* > 0;
2. T(e) > WC as € — 0 where W is some p x p nonsingular matrix;

3. ase = 0, N(¢) tends to some finite matrix N such that C(sI — A)"!BN
is invertible;

4. as e = 0, R(e) tends to some finite matrix R; and
5 I''(e) > 0ase — 0.

Then as € — 0, we have ||C[s] — A — BF ()]~} ||oo - 0.

Proof. This is a dual version of Lemma 2.2 given by Saberi and Sannuti [113].
The proof of this lemma follows from similar arguments as in [113]. X

Now we are ready to proceed with the proof of Theorem 7.2.1. Note that
F(v,e,Agp, Agp) is constructed under the standard ATEA procedure. It can
be shown using the techniques of the well-known singular perturbation theory
as in Chen [12] that as ¢ — 0, the eigenvalues of A + BF(v,¢&, Agp, Agp) are
given by AM(Az,.) € €7, A(AS,) € €7, Agp/e € € and A(45;,) € C™ (see
Lemma 7.5.1). Hence the closed-loop is internally stable. Moreover, following
the results of Chen [12], it can be shown that for any Ay € Age/e € C7, the
corresponding right eigenvector, say W (e), satisfies

lim W(e) =W € ST(Zs). (7.5.6)

e—0
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In fact, following the same arguments, one can show that as € — 0, the eigenval-
ues of A4+ 2EE'P(y)+BF(v,¢, Agp, Agp), where P(v) is as defined in (7.3.2),
are given by A(A;,.) € C7, MAS,) € C7, Agp/e € C™ and A(4S,) € C™. We
will use these properties later on in our proofs of other theorems. This proves
the second part of Theorem 7.2.1.

Next, we show that the state feedback law u = F(v,e, Agp, Agp)z yields
[ Thlloo = (Co + DaF (3,6, Aav, Aao)llsI = A= BF (1,6, Aar, Ba)| ' E||_ <.

Without loss of generality but for simplicity of presentation, we assume that
the nonsingular transformations I'sp; = I and [';; = I, i.e., we assume that the
system (A, B,T;;}Cy, T} D,) is in the form of the special coordinate basis. In
view of (7.2.14), let us partition F(vy,&, Agp, Agp) as,

= 0
F(’YaavAdP’ AdP) = FO('Y) + F('}’ e Adp Adp)] 5
where
_ C(-)tzp + Fa-f(_) (7) CObP + FbO ('7) CO_a,p COCP COdP
Fo(y) = - 0 0 0 0 0 |,
0 0 0 0 0
and

+ ~+ ~
F('YaEaAdp,Adp) — EdaP + Fal(’Y)E’Adp) Egpp + Fbl(’Y,E,Adp)

E:;P Ecbp
Ed:ap Ejr Fy(e,Age) + Edp] 8T
Ecap ACP 0
Then we have
—Fh(y) —Fwo(y) 0 0 0
C = 02 + DZF(’Y)E) AdPa AdP) = POP O 0 0 0 Cdp )
0 Che 00 O
and
0 0
. . 0 0
A=A+ BFy(y), B= 0 0 (7.5.8)
0 B
Bgp O

With these definitions, we can write T}, as

Thw = C [sI — A= B F(y,6, Aap, Au)] " E.
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Then in view of (7.5.7), it can easily be seen that F(7y, €, Adp, Agp) has the form,

F(v,€,Agp, Adp) = NT()T(€) + R,

. 1 1 1 In
I‘(g):dlag{éﬁ’ 5,..., }, N=—|: dP:|’

clmap

where

and . ~
R=— [Eda;' Egpe Edap Eir Egp ]
ch-xp Ech Ec_ap ’

while T'(e) satisfies
T(e) = TCh,

as € — 0, where
T':dla.g [Fl(h’ qug, T Fmgmedp]7

and
Cm=[FL(Y) Fu(y) 0 0 Cal. (7.5.9)

Using the same arguments as in Chen et al. [35], it is straightforward to show
that the triple (4, B, Cy,) is right invertible and of minimum phase. Thus, it
follows from Lemma 7.5.2 that

|G [57 - A= B Flve,ar, 8a0)] 7| =0,
.

as € = 0. We should also note that following the same line of reasoning, one
can show that the triple (A + y"2EE'P(y),B,Cy,) is right invertible and of
minimum phase, and moreover as € — 0,

”cm [sI - A—y"2EE'P(y) - B F(v,¢, Aap, Ags)] " “ 50, (7.5.10)

Next, let
_ 0
C=Top |Cn| +Ce,
0
where .
—F(7v) —Fe(y) 0 0 0
Cezr‘op _Fj’l(’Y) _Fbl('Y) 0 00
0 Cie 0 0O
We have

I Thwlloo = | C,[sI - A= B F(y,e,Adp, )] EHOO ,
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as ¢ — 0. Following the procedures of Chen [12] or Saberi, Chen and Sannuti
[110], it can be shown that

—Fu(y)

[0 Che]

C. [sI-A-B F(v,E,AdP,AdP)]_lE—)FOP[ ;

E+

or-ag [ 7o
pointwise in s as ¢ — 0. Hence, the results of Theorem 7.2.1 follow readily from
Lemma 7.5.1. &

7.5.B. Proof of Theorem 7.2.2

Without loss of generality but for simplicity of presentation, we assume that
the nonsingular state and input transformations I'sy; = I and T';p = I, ie.,
the system (A, B,I';,}Cy, T, Dy) is in the form of the special coordinate basis.
Then it is trivial to show that

* 0 0 *
A+ BF(7v,€,Ade, Acp) * Awr 0
+ ’E, b = b
v P> Sep * 0 AS,
* 0 0 *
and
* 0 0 0
02 + DQF(’er,AdPaACP) = I‘OP 0 0 0 x|,
* 0 0 0

where xs represent some sub-matrices which are of no interest to our proof.
Hence, for any a € A(A,,,) U A(AS;), the corresponding right eigenvector is
in the kernel of Cy + DyF(7y,e,Agp,Acp). This proves that a is an output

decoupling zero of Th,. 5.3}

7.5.C. Proof of Theorem 7.3.1

For the sake of simplicity in presentation, we drop in the following proof the
arguments of F(vy,e, Agp, Acp) and K (7,€, Agqg, Acq). Also, we assume without
loss of generality that v = 1. Thus, we will drop the dependency of « in all the
variables.

First, it is simple to verify that the positive semi-definite matrices P of
(7.3.2) and @ of (7.3.4) satisfy

v

0,

A'P+PA+CyCy + PEE'P PB+CyD,
F,(P):=

B'P + DI202 DIQD2
and
AQ +QA' + EE' + QCC,Q QCi + ED}

G‘Y(Q) = [ Ci1Q + D, FE' DlDll

|20
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respectively, i.e., P and @Q are the solutions of the quadratic matrix inequalities
F,(P) > 0 and G,(Q) > 0. Moreover, the following auxiliary system,

Tpq = Apq Trq + Bpq U + Epq Wpq,
Yeq: y = Cip Tpq + Dipq Wpq, (7.5.11)
hPQ = Cop Tpq + Dy w,

where
!
Cae
1
-l?2p

Eq

hP) = [ Dirq

[ica pul 6@ =| )" |18y Dieal,

and
APQ = A+ EEIP+ (I - QP)_IQCQPC2P,
Brq := B+ (I - QP)™'QC4, Dy,
Epq = (I - QP)™'E,,
Cip = Cl + DlElP,

(7.5.12)

has the following properties: 1) the subsystem (Apq, Bpq,C2p,D2p) is right
invertible and of minimum phase; and 2) the subsystem (Arq, Frq,C1p, D1pq)
is left invertible and of minimum phase.

The following lemma is due to [124].
Lemma 7.5.3. For any given compensator X¢mp of the form

. v = Acmp v+ chp Y,
2cmp _
% = Cemp ¥ + Demp -

The following two statements are equivalent:

1. X¢mp applied to the system I defined by (7.3.1) is internally stabilizing
and the resulting closed-loop transfer function from w to h has an H,
norm less than 1, i.e., || Thw||co < 1.

2. Temp applied to the new system Xpq defined by (7.5.11) is internally
stabilizing and the resulting closed loop transfer function from wpq to
heq has an Hy, norm less than 1, i.e., {|Thpqupqlloo < 1.

Hence, it is sufficient to show Theorem 7.3.1 by showing that Xcmp of (7.3.5)
to (7.3.8) applied to Xpq achieves almost disturbance decoupling with internal
stability. Observing that

C3.Coe = A'P+ PA+C}Cy+ PEE'P and Ch,Dop = PB + CiDs,
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it is simple to rewrite Acmp of (7.3.6) as
Acmp = Apq + BegF + (I — QP) 'K (5.

Now it is trivial to see that Xcmp, of (7.3.5) is simply the well-known full order
observer based controller for the system X, with state feedback gain F' and
observer gain (I — QP)"!K. Hence the well-known separation principle holds.
Also, noting the facts that (Apq, Brq, C2p, D2p) and (Apq, Epq, Cip, D1pq) are
of minimum phase, and right invertible and left invertible, respectively, it is
sufficient to prove Theorem 7.3.1 by showing that as € — 0,

1. Apq + BeoF is asymptotically stable;

2. ||(Cop + D2 F)(sI — Apq — BpoF) 71| = 0;

3. Apq + (I — QP)"1KC; is asymptotically stable; and

4 ||lsT = Apq = (I = QP) KC1o] ™ [Boq + (I - QP) 'K Dizol|, = 0.
We shall introduce the following lemma, for further development.
Lemma 7.5.4. As ¢ — 0, we have

1. A+ EE'P + BF is asymptotically stable and

|(Cap + D3 F)(sI — A— EE'P — BF)™!||_ = 0; (7.5.13)

2. A+ QCLCy + KC, is asymptotically stable and

[[s] = A= QC3Cs — KC1| 7' [Eq + K D1go]|| . — 0. (7.5.14)

Note that the roles of the above two statements are dual one another.

Proof. It is shown in the proof of Theorem 7.2.1 that for ¢ — 0, the matrix
A+ EE'P+ BF is asymptotically stable. In what follows, we will show (7.5.13).
By some elementary algebra, it can be shown that

CS;IP + Fc;t) Cove + Fro  Cy, Coce  Coar

OaP
C2P =Top F:i Fy 0 0 Cdp Fs_pli
0 0 0 0 0

and

I 00
Dyp =Dy =Ty |0 0 0T
000
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Moreover,

-1

0
[Cop+Dop F)[sI— A— EE'P—BF]|™! = [Cm} [sI-A-EE'P-BF]™",
0

where A and B are as in (7.5.8), F is as in (7.5.7) and C, is given by (7.5.9).
In view of (7.5.10), we have the result.

Item 2 of Lemma 7.5.4 is the dual version of Item 1. Hence, the results
follow. This completes the proof of Lemma 7.5.4. &

Next, we will first show that Apq + BpoF is asymptotically stable for some
sufficiently small € and

[C2r + D2e Fl[sI — Apqg — BroF] ™} leo = 0,
as € = 0. In view of Lemma 7.5.4, we have
I - APQ_BPQF
sI-A—EE'P—BF—(I-QP)™'QC},[C2p+Dyp F]
{I-(I-QP)™'QC},[Cop + Dy Fl[sI—-A—EE'P—-BF]™'}

[sI-A—EE'P—-BF]
— sI-A-FEE'P—BF pointwise in s as € = 0.

This implies that Apq + BpoF is asymptotically stable for sufficiently small ¢,
and

[Cap + DopF|[sI—Apq—BpoF]™?
= [C2p+D2pF][SI A EEIP B.Fv]_1
A{I-(I-QP)™'QC4,[Cop+DypF|[sI- A— EE'P—BF)]~ 1}

— 0, pointwisein s ase — 0. (7.5.15)
Again, in view of Lemma 7.5.4 and
C3,Cop = A'P+PA+CyCy+PEE'P,
EQE, = AQ+QA'+EE'+QC5C2Q,
we have the following induction:

(I — QP)[sI—Apq—(I-QP)™'LC1]
= [(I-QP)(sI- A—EE'P)—QClyCap— LCy — LD, E' P]
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= [s]- A—EE'P-QC4,Cy— LC,~LD,E'P-5sQP
+QPA+QPEE'P]

= [sI-A-EE'P-Q(A'P+PA+CjCy+ PEE'P)
-LC;—LD,E'P-sQP+QPA+QPEE'P]

= [sI-A-QCL4C;~LC,—~EE'P—~LDE'P-QA'P-5QP)

= [sI-A—QCyCy~LC1 — (EqEy— AQ-QA'-QC5CQ) P
—-LD,E'P-QA'P-sQP]

= [sI-A-QCyCy~LC1 —sQP+AQP+QC;C2QP—EqE( LD, E'P]

= [(sI-A=QC3Cy—LC1) (I-QP) = (Eq+LD1rq) EoP]

= [sI-A-QC4Cy—LC,]
[(I-QP)—(sf—A—Qc;c'2—Lcl)"l (Eq+LD1po) Eg,p]

— [sI-A-QC3C,—LC1 ) (I-QP), pointwise in s as € — 0. (7.5.16)

Hence, Arq+(I-QP) *KCip is asymptotically stable for sufficiently small €.
Now it follows from (7.5.16) that

[sI = Apq—(I-QP) 'LC1p]  [Erq+(I—QP)™'LD15q]
— (I-QP) ™ [sI- A~ QC}Cr— LC1) ™ (I~ QP)[Eeq +(I-QP) ' LD1zq]
= (I-QP)™'[sI- A—QC4Cs~LC1) "} [Eq+LD1sq)

— 0, pointwisein s ase — 0.
This completes the proof of Theorem 7.3.1. B

7.5.D. Proof of Theorem 7.3.2

As in the previous proofs, for simplicity, we will assume that v = 1 and let
F = F(v,e,Agp, Acp) and K = K(7,€, Adq, Acq). Then the closed loop system
Thw(s) is given by

' A BF 1\ E
[C2 DaF] (SI" [ _(I-QP)"'KC, AcmpD [ —(I-QP)"'KD; |’
It follows from the proof of Theorem 7.2.2 that for any
a € M(Ager) UMAL,) € A(A + BF),

the corresponding right eigenvector, say W, i.e., (A + BF)W = aW, satisfies
(Cy + Dy F)W = 0. Moreover, it is simple to verify that (C2e + Dy FYW =0
and PW =0.
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By duality, one can show that for any 8 € A(A;,4)UA(AS.,), B € M(A+KCy)
and the corresponding left eigenvector, say V, i.e., V¥(4 + KC;) = BV",
satisfies V' (E + KD;) = 0 and V"Q = 0. In view of (7.3.6), we have

AcnpW =[A+ EE'P + BF + (I - QP)™*QC},(Cyp + Dyp F)
+(I-QP)'KC, +(I - QP)"'KD,E'P]W
=(I-QP)"'KC\W + (A + BF)W,

and

V¥ Aemp = V(I = QP)[A+ EE'P + BF + (I — QP)~'QC},(Cap + DopF)
+(I-QP)'KC) + (I - QP)"'KD,E'P)

=V"BF +V*(A+ KC()).
Therefore,
A BF ] {W} _ [ (A+BF)W ] Yy [W}
_(I_QP)—IKCI Acmp W - AcmpW—(I-—QP)—lKCl - W ’

and

(C: D,F) [m = (Cs + Do F)W = 0.

This shows that a is an output decoupling zero of Th,,(s). Similarly,

VY g grrka A
= [V¥(I - QP)[A+ (I - QP)'KCi] V*(BF — Aump)]
=p[v? -vi],
and
(v —V“][_(I_Q%_lKDJ =VXE+KD,) =0.

This implies that 3 is an input decoupling zero of Thy,(s).
The first part of Item 3 in Theorem 7.3.2 can be verified easily by using
(7.5.6) and the fact that

Im (P) = [SH(Zp)] .

The second part is the dual of the first case. This completes the proof of
Theorem 7.3.2. &
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7.5.E. Proof of Theorem 7.4.1

First, note that the subsystem i) (Apq, Beq, Cap, Dap) is right invertible and of
minimum phase; and ii) the subsystem (Apq, Erq,Cip, D1pq) is left invertible
and of minimum phase. It follows from Theorem 8.4.2 that there indeed exist
gain matrices F' and Ky such that the resulting reduced order output feedback
control law (7.4.10) internally stabilizes ¥rq and makes the Ho, norm of the
closed-loop transfer matrix strictly less than any given . The second result of
Theorem 7.4.1 follows from Lemma 7.5.3. &



Chapter 8

Continuous-time H
Almost Disturbance
Decoupling

8.1. Introduction

WE CONSIDER IN this chapter the problem of H,, almost disturbance decou-
pling with measurement feedback and internal stability for continuous-time lin-
ear systems. Although in principle it is a special case of the general H, control
problem, i.e., the case that v* = 0, the problem of almost disturbance decou-
pling has a vast history behind it, occupying a central part of classical as well
as modern control theory. Several important problems, such as robust control,
decentralized control, non-interactive control, model reference or tracking con-
trol, H, and H, optimal control problems can all be recast into an almost
disturbance decoupling problem. Roughly speaking, the basic almost distur-
bance decoupling problem is to find an output feedback control law such that
in the closed-loop system the disturbances are quenched, say in an L, sense,
up to any pre-specified degree of accuracy while maintaining internal stability.
Such a problem was originally formulated by Willems ([136] and [137]) and
labelled ADDPMS (the almost disturbance decoupling problem with measure-
ment feedback and internal stability). In the case that, instead of a measure-
ment feedback, a state feedback is used, the above problem is termed ADDPS
(the almost disturbance decoupling problem with internal stability). The prefix
H, in the acronyms H.,-ADDPMS and H.,-ADDPS is used to specify that
the degree of accuracy in disturbance quenching is measured in L,-sense.
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There is extensive literature on the almost disturbance decoupling prob-
lem (See, for example, the recent work [134], [98] and [99] and the references
therein). In [134], several variations of the disturbance decoupling problems
and their solvability conditions are summarized, and the necessary and suffi-
cient conditions are given, under which the H,,-ADDPMS and H.,-ADDPS
for continuous-time linear systems are solvable. These conditions are given in
terms of geometry subspaces and for strictly proper systems (i.e., without di-
rect feedthrough terms from the control input to the output to be controlled
and from the disturbance input to the measurement output). Under these
conditions, [98] constructs feedback laws, parameterized explicitly in a single
parameter g, that solve the Ho,-ADDPMS and the H,-ADDPS. These results
were later extended to proper systems (i.e., with direct feedthrough terms) in
[99]. We emphasize that in all the results mentioned above, the internal stability
was always with respect to a closed set in the complex plane. Such a closeness
restriction, while facilitating the development of the the above results, excludes
systems with disturbance affected purely imaginary invariant zero dynamics
from consideration. Only recently was this “final” restriction on the internal
stability restriction removed by Scherer [119], thus allowing purely imaginary
invariant zero dynamics to be affected by the disturbance. More specifically,
Scherer [119] gave a set of necessary and sufficient conditions under which the
H.,-ADDPMS and the H,-ADDPS, with internal stability being with respect
to the open left-half plane, is solvable for general proper linear systems. When
the stability is with respect to the open left-half plane, the Ho,-ADDPMS and
the Hoo-ADDPS will be referred to as the general Ho,-ADDPMS and the gen-
eral Ho-ADDPS, respectively. The explicit construction algorithm for feedback
laws that solve these general Ho,-ADDPMS and H.,-ADDPS under Scherer’s
necessary and sufficient conditions has only appeared in a very recent paper of
Chen, Lin and Hang [24]. The objective of this chapter is to present: 1) easily
checkable conditions for the general Hoo-ADDPS and H.,-ADDPMS; and 2)
explicit algorithms to construct solutions that solve these problems. The latter
were reported in Chen, Lin and Hang [24].

More specifically, we consider the general Ho,-ADDPMS and the general
H,,-ADDPS, for the following general continuous-time linear system,

t=Az+ Bu+ E w,
Y:ey=0Cz + D w, (8.1.1)
h:CQl'+D2U+D22'LU,

where z € R" is the state, u € R™ is the control input, y € R is the mea-
surement, w € R is the disturbance and h € RP is the output to be con-
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trolled. As usual, for convenient reference in future development, throughout
this chapter, we define X, to be the subsystem characterized by the matrix
quadruple (4, B,C>, D3) and Z, to be the subsystem characterized by the ma-
trix quadruple (A, E, C1, D). The following dynamic feedback control laws are
investigated:

Semp { 0= Acmp ¥+ Bemp 4, (8.1.2)

= Cemp ¥ + Demp ¥

The controller E¢mp of (8.1.2) is said to be internally stabilizing when applied
to the system X, if the following matrix is asymptotically stable:

A+ BDnpCi BCemp

BempCh Amp |7 (8.1.3)

Ag = |:
i.e., all its eigenvalues lie in the open left-half complex plane. Denote by Th,,
the corresponding closed-loop transfer matrix from the disturbance w to the
output to be controlled h. Then the general H,,-ADDPMS and the general
H,,-ADDPS can be formally defined as follows.

Definition 8.1.1. The H., almost disturbance decoupling problem with mea-
surement feedback and with internal stability (the H,,-ADDPMS) for the con-
tinuous time system (8.1.1) is said to be solvable if, for any given positive scalar
v > 0, there exists at least one controller of the form (8.1.2) such that,

1. in the absence of disturbance, the closed-loop system comprising the sys-
tem (8.1.1) and the controller (8.1.2) is asymptotically stable, i.e., the
matrix A as given by (8.1.3) is asymptotically stable; and

2. the closed-loop system has an Ls-gain, from the disturbance w to the
controlled output h, that is less than or equal to v, i.e.,

l1All2 < v|lw|l2, Yw € Ly and for (z(0), v(0)) = (0, 0). (8.1.4)

Equivalently, the H.,-norm of the closed-loop transfer matrix from w to
h, Thw, is less than or equal to v, i.e., [|[Thwllo < 7.

In the case that C; = I and D; = 0, the general H,,-ADDPMS as defined
above becomes the general H.,-ADDPS, where only a static state feedback,
instead the dynamic output feedback (8.1.2) is necessary. )]

Clearly, the Ho,-ADDPMS for ¥ of (8.1.1) is equivalent to the general Hy,
control problem for ¥ with v* = 0. As stated earlier, one of the objectives
of this chapter is to construct families of feedback laws of the form (8.1.2),
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parameterized in a single parameter, say ¢, that, under the necessary and suffi-
cient conditions of Scherer [119], solve the above defined general H,,-ADDPMS
and H..-ADDPS for general systems whose subsystems ¥p and ¥, may have
invariant zeros on the imaginary axis. The feedback laws we are to construct
are observer-based. A family of static state feedback laws parameterized in a
single parameter is first constructed to solve the general H,,-ADDPS. A class
of observers parameterized in the same parameter € is then constructed to im-
plement the state feedback laws and thus obtain a family of dynamic measure-
ment feedback laws parameterized in a single parameter € that solve the general
H_-ADDPMS. The basic tools we use in the construction of such families of
feedback laws are: 1) the special coordinate basis, developed by Sannuti and
Saberi [116] and Saberi and Sannuti [111] (see also Chapter 2), in which a linear
system is decomposed into several subsystems corresponding to its finite and
infinite zero structures as well as its invertibility structures; 2) a block diagonal
control canonical form (see also Chapter 2) that puts the dynamics of imag-
inary invariant zeros into a special canonical form under which the low-gain
design technique can be applied; and 3) the H,, low-and-high gain design tech-
nique. The development of such an H, low-and-high gain design technique was
originated in [81] and [83] in the context of Ho,-ADDPMS for special classes
of nonlinear systems that specialized to a SISO (and hence square invertible)
linear system having no invariant zero in the open right-half plane.

8.2. Solvability Conditions

In this section, we first recall the necessary and sufficient conditions of Scherer
[119] under which the general H,,-ADDPMS and H,-ADDPS are solvable.
Then we will convert the geometric conditions of Scherer into easily checkable
ones using the properties of the special coordinate basis. The following result
is a slight generalization of Scherer [119].

Theorem 8.2.1. Consider the general measurement feedback system (8.1.1).
Then the general H,, almost disturbance decoupling problem for (8.1.1) with
internal stability (H.-ADDPMS) is solvable, if and only if the following con-
ditions are satisfied:

1. (A, B) is stabilizable;
2. (4,C)) is detectable;

3. D22 + D25D1 = 0, where S = —(D’2D2)TDI2D22D'1(D1D1)T;
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4. Im(E + BSD1) C S*(Z:) N {Nye goSA(Ze) };
5. Ker (Cy + D,SCy) D V+(EQ) U {U/\ECOV/\(EQ)}; and
6. V*(Zq) C SH(Zy).

Remark 8.2.1. Note that if ¥, is right invertible and of minimum phase,
and X is left invertible and of minimum phase, then Conditions 4 to 6 of
Theorem 8.2.1 are automatically satisfied. Hence, the solvability conditions of
the H,,-ADDPMS for such a case reduce to:

1. (A, B) is stabilizable;
2. (A, () is detectable; and
3. D22 + DQSDl = 0, where S = —(DIQDQ)TDéDggDi (DlDll)T ®

Remark 8.2.2. It is simple to verify that for the case when all states of the
system (8.1.1) are fully measurable, i.e., C; = I and D; = 0, then the solvability
conditions for the general Ho,-ADDPS reduce to the following:

1. (A, B) is stabilizable;
2. D22 = 0; and
3. Im(E) C ST(Ze) N {NMre goSa(Te) }-

Moreover, in this case, a static state feedback law, i.e., u = Fz, where F is
a constant matrix and might be parameterized by certain tuning parameters,
exists that solves the general H,,-ADDPS. 3]

Theorem 8.2.1 is quite elegant as it is expressed in terms of the well-known
geometric conditions. However, it might be hard to verify these geometric
conditions numerically. In what follows, we will present a simple method to
check the solvability conditions for the Ho-ADDPMS for general continuous-
time systems.

Step 8.2.0: Let S = —(DyD3)!DyDyy D}{(DyD})t. If Doy + DoSD; # 0, the
algorithm stops here. Otherwise, go to Step 8.2.1.

Step 8.2.1: Compute the special coordinate basis of £y, i.e., the quadruple
(A, B,C3,D;). For easy reference, we append a subscript ‘¢’ to all sub-
matrices and transformations in the SCB associated with X;, e.g., I'sp is
the state transformation of the SCB of ¥;, and A9, is associated with
invariant zero dynamics of X on the imaginary axis.
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Step 8.2.2: Next, we denote the set of eigenvalues of A%, with a nonnegative

imaginary part as {wp1,wp2, - ,wWpkp} and for ¢ = 1,2, kp, choose
complex matrices Vjz, whose columns form a basis for the eigenspace

{m € €% | 2% (wpil — A0 ) = 0} , (8.2.1)
where nl, is the dimension of X2,. Then, let

Vo i=[Vip Vap -+ Vigel. (8.2.2)

We also compute ngp := dim (X}) + dim (X} ), and
- EG'—P -
Ege
Ef
Ebp

ECP
L Egp

I, (E+BSD,) := (8.2.3)

Step 8.2.3: Let I} be the dual system of X4 and be characterized by a quadru-
ple (A',C},E',D}). We compute the special coordinate basis of LY.
Again, for easy reference, we append a subscript ‘@’ to all sub-matrices
and transformations in the SCB associated with X7, e.g., ['sq is the state
transformation of the SCB of £¥%, and AJ,, is associated with invariant

zero dynamics of ¥g, on the imaginary axis.

0
aaQ

Step 8.2.4: Next, denote the set of eigenvalues of A
imaginary part as {wq1,wq2, " *,Wakq} and for i = 1,2,---, kq, choose
complex matrices Viq, whose columns form a basis for the eigenspace

with a nonnegative

{o€0™a | 2™ (wail — 4%,,) = o} , (8.2.4)
where nd, is the dimension of X2,. Then, let
Va=[Vie Vaa -+ Viaal- (8.2.5)
We next compute n4q := dim (X,) + dim (Xq), and
(Eoq ]
EY,
1 o | B
T31(Cy + D2SCY) = . (8.2.6)
Epq
-EdQ 4
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Step 8.2.5: Finally, compute

X0 % %

a
A0 =] « T * |, (8.2.7)
*  *x X4

where X% and X 4 are of dimensions (ng, +n3.) x (n;, +n3,) and
(Nep + Mgp) X (Neq + Ndg), respectively, and finally T' is a sub-matrix of

dimension nzp X ngq.

We have the following proposition.

Proposition 8.2.1. Consider the general measurement feedback continuous-

time system (8.1.1). Then the H, almost disturbance decoupling problem for
(8.1.1) with internal stability (H.,-ADDPMS) is solvable, i.e., v* = 0, if and
only if the following conditions are satisfied:

1.
2.
3
4.
5.
6.

(A, B) is stabilizable;
(A, C}) is detectable;

. Doyo + D,SD; = 0, where S = —(DéDQ)TDéD22D’1(D1DI1)T,

Ef, =0, Eyp =0 and VPHEgP =
E}, =0, Eyq =0 and V(;ESQ =0; and
I'=0. 3]

Proof. It is simple to see that the first three conditions are necessary for
the Ho-ADDPMS for (8.1.1) to be solvable. Next, it follows trivially from
the properties of the special coordinate basis of Chapter 2 that the geometric
condition, Im (E + BSD;) C §T(Ze) N {NMxe goSx(Ze)}, is equivalent to the
following conditions: E, =0, Ey = 0 and V,'EY, = 0. Dually, the geometric
condition, Ker (Co + D2SC1) D VF(Eq)U{Uxe goVa(Zq)} , is equivalent to the
following conditions: EJ, = 0, Eyq =0 and V' ES, = 0.
Again, following the properties of the special coordinate basis, we have

0
S*HS) =Ker{[0 In, 0T}, V¥(So)=Im { (Td)' | Inuq
0
Hence, it is straightforward to verify that V1 (Z,) C ST(Zp) is equivalent to
/ 0
[0 In., O] (Tyd) |Ing | =T=0.
0

Thus, the result follows. 3}
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8.3. Solutions to Full State Feedback Case

In this section, we consider feedback law design for the general H,, almost
disturbance decoupling problem with internal stability and with full state feed-
back, where internal stability is with respect to the open left-half plane, i.e.,
the general H,,-ADDPS. More specifically, we present a design procedure that
constructs a family of parameterized static state feedback laws,

u= F(e)z, (8.3.1)

that solves the general H,,-ADDPS for the following system,

t = Az+ Bu+ E w,
y= z (8.3.2)
h = Cyz+ Dy u+ Doy w.

That is, under this family of state feedback laws, the resulting closed-loop
system is asymptotically stable for sufficiently small € and the H,-norm of the
closed-loop transfer matrix from w to h, Thy(3,€), tends to zero as e tends to
zero, where

Thw(s,€) = [Ca + D2 F(e)][sI — A — BF()]*E + Da. (8.3.3)

Clearly, Ds2 = 0 is a necessary condition for the solvability of the general
H,-ADDPS. We present an algorithm for obtaining this F(e), following the
asymptotic time-scale and eigenstructure assignment (ATEA) procedure. We
first use the special coordinate basis of the given system (See Theorem 2.4.1) to
decompose the system into several subsystems according to its finite and infinite
zero structures as well as its invertibility structures. The new component here is
the low-gain design for the part of the zero dynamics corresponding to all purely
imaginary invariant zeros. As will be clear shortly, the low-gain component is
critical in handling the case when the zero dynamics corresponding to purely
imaginary invariant zeros is affected by disturbance. It is well-known that the
disturbance affected purely imaginary zero dynamics is difficult to handle and
has always been excluded from consideration until recently.
We have in the following a step-by-step algorithm.

Step 8.5.1: (Decomposition of ¥z). Transform the subsystem L;, i.e., the
quadruple (A, B, Cy, D), into the special coordinate basis (SCB) as given
by Theorem 2.4.1 of Chapter 2. Denote the state, output and input
transformation matrices as I'sp, ['yp and T';p, respectively.
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Step 8.5.2: (Gain matrix for the subsystem associated with A;). Let F, be any
arbitrary m. X n, matrix subject to the constraint that

Agc = Acc - Bch; (834)

is a stable matrix. Note that the existence of such an F is guaranteed by
the property of the special coordinate basis, i.e., (A, Be) is controllable.

Step 8.5.3: (Gain matrix for the subsystems associated with X} and X}). Let

.. [Fo Fuo
ab " + ) (835)
Fad Fyq
be any arbitrary (mgo + mg) x (n} + np) matrix subject to the constraint
that At LT o + +
aa b B a L
Ate = [ WL | e Ted) pt (8.3.6)
0 Aw Boy  Leg

is a stable matrix. Again, note that the existence of such an Fy; is guar-
anteed by the stabilizability of (4, B) and Property 2.4.1 of the special
coordinate basis. For future use, let us partition [Ff, Fyq] as,

Ff  Fa

+
Fad2 de2

[Ffy Ful= : (8.3.7)

+
Fadmd demd
where F;(_ii and Fy4; are of dimensions 1 x n}™ and 1 X ny, respectively.

Step 8.5.4: (Gain matrix for the subsystem associated with X2). The construc-
tion of this gain matrix is carried out in the following sub-steps.

Step 8.5.4.1: (Preliminary coordinate transformation). Recalling the defi-
nition of (Acon, Beon), i-€., (2.4.27), we have

A;a 0 A;ab BO_a L;d
Acon — Bcon [O 0 F:(;] =10 Aga Agab y Bcon = Bga Lgd )
0 0 A:bc B(-)tzb L:bd
(8.38)
where B L+
B, = [ Bg«;] C Lh= { LZZ] , (8:3.9)

A%y =10 LOCy]—[BS, LY 1FS, (8.3.10)
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and

Ay =10 LoCol-[By, Loyl Fjh (8.3.11)
Clearly (Acon — BconF, :;,Bcon) remains stabilizable. Construct the

following nonsingular transformation matrix,

I- 0 o 17!
Faw=1{ 0 0 I+in, , (8.3.12)
0 I T?

where T? is the unique solution to the following Lyapunov equation,
AL TO —TOAYE = A2, (8.3.13)

We note here that such a unique solution to the above Lyapunov
equation always exists since all the eigenvalues of A, are on the
imaginary axis and all the eigenvalues of A:bc are in the open left-
half plane. It is now easy to verify that

Al:a A;ab 0
T (Aeon — BeonFi)Tapb=| 0 At 0 |, (8314
0 0 A9
By, Lo
F,:bchon = Bg_ab L:_bd . (8315)

By, + By, LY+ TLY,,

Hence, the matrix pair (A%,, BY) is controllable, where
By =B, +T7Bg,, Loq+T9L3,).

Step 8.5.4.2: (Further coordinate transformation). Following the proof
of Theorem 2.3.2, find nonsingular transformation matrices ['Y, and
I, such that (A2,, BY) can be transformed into the block diagonal
control canonical form,

(T50) ™" AgalGa = 0 %2 0 , (8.3.16)
0 0 - 4
and
By Bz -+ Bu *
(0S.) ™ BeTy, O B B , (8.3.17)
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where [ is an integer and for i = 1,2,---,1,
0 1 0 0 0
0 0 1 0 0
A= : , B;=
0 0 0 1 0
—Qn, —Gn._; —0n —a] 1

We note that all the eigenvalues of A; are on the imaginary axis.
Here the *s represent sub-matrices of less interest.

Step 8.5.4.3: (Subsystem design). For each (A;, B;), let Fi(e) € R ™
be the state feedback gain such that

MA; - BiFi(e)} = —e + M(Ai) € C . (8.3.18)

Note that F;(e) is unique.

Step 8.5.4.4: (Composition of gain matrix for subsystem associated with

X9). Let
rF(e) 0 0 0 7
0 F) - 0 0
Fo(e):=TS | = e Do)
¢ 0 0 - F_i(e) 0 *
0 0 - 0  F)
L o 0 -+ 0 0 .
(8.3.19)

where € € (0,1] is a design parameter whose value is to be specified
later.

Clearly, we have
|Fa(e)l < foe, €€ (0,1], (8.3.20)

for some positive constant fO, independent of . For future use, we define
and partition F,s(e) € R(motma)x(natns) o

F b(E) _ [FabO(E)J _ Omoxn; Omox(nj—#nb) F{?O(E) -1 (8 3 21)
Fabd(f) Omdxn; Omdx(n:'+nb) Fad(e) ab)
and
Fopai (€)
Fopaz(€)
Fapa(e) = : ; (8.3.22)

Fabdmd (5)
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where F9(¢) and FY,(¢) are defined as

Fl(e) = [F%O(E)} (8.3.23)
Faale)
We also partition FC,(¢) as,
Foy(e)
Fpy(e) F‘?"? 2 (8.3.24)
ngr;zd(E)

Step 8.5.5: (Gain matrix for the subsystem associated with X;). This step makes
use of subsystems, i = 1 to mg, represented by (2.4.14) of Chapter 2. Let
A = { i1, iz, o0y Aigi }, ¢ =1 to mg, be the sets of g; elements all in
C~, which are closed under complex conjugation, where ¢; and mgy are as
defined in Theorem 2.4.1 but associated with the special coordinate basis
of £p. Let Ag:= A UAU---UAy,,. Fori =1 to my, we define

qi
pi(s) = [J(s = Aij) = 8% + Fus® ™' + - + Fig1s + Fyg,,  (8.3.25)
Jj=1

and 1
Fi(e) := gFiSi(e), (8.3.26)
where
Fiz[Fiq.‘ Fiq.'—l Fi1]1 Si(a)=diag{115a52""15qi—1})
(8.3.27)

Step 8.5.6: (Composition of parameterized gain matrix F(¢)). In this step,
various gains calculated in Steps 8.5.2 to 8.S.5 are put together to form
a composite state feedback gain matrix F'(e). Let

Fopar(e)Fiq, /€T
Fuale) = | Fee@Fa/e® (8.3.28)
Fapims(€) g, /€74
Fi By, Jen
Frye) = Foinfoule® | (8.3.29)
F;;imdFm;qmd/Eqm"
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and
Fya1 Fiq, /€
~ q2
Fuale) = | FrrFom/e (8.3.30)
demdFmded [eTma
Then define the state feedback gain F'(¢) as
Fle) = —Ti (ﬁ;;,,cd(s) + F‘abcd(a)) o, (8.3.31)
where
Coa C8 Co+Fh Cov+Fro  Coc Coa
~ _ ~+ ~ ~
wea(©)=| B, B3 Ef.+F.i(€) Ea+Foale) Es Fa(e)+Eq|,
E, Ega Eg; 0 F, 0
(8.3.32)
Fapo(e) 0 07
Fopea(e) = | Fopale) 0 0], (8.3.33)
0 0 0l
and where )
Ey - EBEim,
Bg=| : . |, (8.3.34)
Emdl e Emdmd J
Fale) = diag{Fl &), Fale), ---, Fmd(e)}. (8.3.35)

We have the following theorem.

Theorem 8.3.1. Consider the given system (8.3.2) that satisfies all the con-

ditions in Remark 8.2.2. Then the closed-loop system comprising (8.3.2) and
the static state feedback law u = F'(¢)z, with F(¢) given by (8.3.31), has the
following properties: For any given v > 0, there exists a positive scalar €* > 0

such that for all 0 < ¢ < ¢*,

1. the closed-loop system is asymptotically stable, i.e., A\{A+BF(e)} C C~;

2. the H,-norm of the closed-loop transfer matrix from the disturbance w

to the controlled output h is less than v, i.e., [|Thw(5,€)||loo < 7-

Hence, by Definition 8.1.1, the control law u = F(e)z solves the general Hy-

ADDPS for the given system (8.3.2).

Proof. See Subsection 8.5.A.

&
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We illustrate the above result in the following example.

Example 8.3.1. Let us consider a given system of (8.1.1) characterized by
C’l-——I,Dl:Oand

01 0 0O01 00 10
001 00 2 00 2 0
000 O0O03 00 00
A= 000 -1 3 4}/ B= 0 0}’ E= 0 of” (8.3.36)
0 00 045 10 00
1 23 456 01 3 1
0 0001 2 10 0 0
Co=1(0 0 0 0 0 1|, Dy=1|0 0|, D=0 0. (83.37)
000010 00 00

The subsystem X is already in the form of the special coordinate basis. It is
simple to verify that: i) (A, B) is stabilizable; ii) £ has three invariant zeros
at 0 and one stable invariant zero at —1; iii) X; has one infinite zero of order
zero and one infinite zero of order one; iv) Iy is left invertible; and v)

1 00 00
01 0 0 O
00100
+ _
ST(Zp) =Im 000 10 , (8.3.38)
0 00 0O
0 0 001
and
1 0 00
0100
0 00O
00 0O
00 01
Hence,
(8.3.40)

O OO OO~
SO0 O —=O
OO~ OOO
il == I e R aw B e B an ]

S(Ze) N {Nre goSa(Ze)} = Im {
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Figure 8.3.1: Max. singular values of T},, — State feedback.
Obviously, Im (E) C §7(Zp) N {Nye goSr(Zs)} and by Remark 8.2.2, the H,-

ADDPS is achievable for the given system. Following our algorithm, we obtain
a state feedback gain matrix

Fle) = 0 0 0 0 -6 -2
T —€?/3-1 2e?/9-e-2 2¢/3-€%/271-4 -4 -5 -—1/e—6]’
(8.3.41)

which places the closed-loop poles of A+ BF(g) asymptotically at —1, =2, —e,
—g, —€ and —1/e. The maximum singular value plots of the corresponding
closed-loop transfer matrix T, (s, €) in Figure 8.3.1 clearly show that the H-
ADDPS is attained as ¢ tends smaller and smaller. El

8.4. Solutions to Output Feedback Case

We present in this section the designs of both full order and reduced order
output feedback controllers that solve the general Ho,-ADDPMS for the given
system (8.1.1). Here, by full order controller, we mean that the order of the
controller is exactly the same as the given system (8.1.1), i.e, is equal to n.
A reduced order controller, on the other hand, refers to a controller whose
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dynamical order is less than n. We will assume without loss of any generality
that Dy = 0 in the given system (8.1.1) throughout this section.

8.4.1. Full Order Output Feedback

The following is a step-by-step algorithm for constructing a parameterized full
order output feedback controller that solves the general H.,-ADDPMS:

Step 8.F.C.1: (Construction of the gain matrix Fp(¢)). Define an auxiliary
system

y = z (8.4.1)

{j: = Az+ Bu+ E w,
h = Coz+ Dyu+ Doy w,

and then perform Step 8.5.1 to 8.S.6 of the previous section to the above
system to obtain a parameterized gain matrix F(¢). We let Fy(¢) = F(g).

Step 8.F.C.2: (Construction of the gain matrix Kq(€)). Define another auxiliary
system

= =z (8.4.2)

t = Az+ Clu+ C) w,
y
h = E'z + D} u+ D}y w,

and then perform Step 8.5.1 to 8.S.6 of the previous section to the above
system to get the parameterized gain matrix F'(¢). We let Kq(e) = F(e)'.

Step 8.F.C.3: (Construction of the full order controller ¥zc(¢)). Finally, the
parameterized full order output feedback controller is given by

U= AFC(e) v+ BFC(E) Y,

Tro(e) {u o) v + Decle) (8.4.3)
where
ro(e) = A+ BFy(e) + Kq(e)C1,
FC(E) = -KQ(E);
Cec(e) := Fo(e), (8.4.4)
DFC(e) = 0.

This concludes the algorithm for constructing the full order measurement
feedback controller.
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We have the following theorem.

Theorem 8.4.1. Consider the given system (8.1.1) with Dss = 0 satisfying
all the conditions in Theorem 8.2.1. Then the closed-loop system comprising
(8.1.1) and the full order output feedback controller (8.4.3) has the following
properties: For any given v > 0, there exists a positive scalar ¢* > 0 such that
forall 0 < e <eg*,

1. the resulting closed-loop system is asymptotically stable; and

2. the Ho-norm of the resulting closed-loop transfer matrix from the distur-
bance w to the controlled output h is less than v, i.e., || Thw(8,€)||oo < 7-

By Definition 8.1.1, the control law (8.4.3) solves the general H..,-ADDPMS for
the given system (8.1.1).

Proof. See Subsection 8.5.B. &

We illustrate the above result in the following example.

Example 8.4.1. We reconsider the system (8.1.1) with A4, B, E, Cs, Dy and

Djs as in Example 8.3.1 but with
10
) Dl = 0 0 . (8.45)

00

O =
=

-1 -1 01
Cl = 0 0 O 0
0 0 0 0O

Using the software toolboxes of Chen [11] and Lin [79], we can easily obtain
the following properties of ¥4: i) (A, C1) is detectable; ii) ¥4 has two stable
invariant zeros at —1 and —0.5616, one imaginary axis invariant zero at 0, and
one unstable invariant zero at 3.5616; iii) ¥q has one infinite zero of order zero
and one infinite zero of order one; iv) L4 is left invertible; and v)

1
1.2808

VH(Zq) =Im , UregoVr(Zq) =Im (8.4.6)

O OO N =N

0
0
0
0

It is straightforward to see that Ker (C2) D V*(Eq) U {UregoVr(Zq)} and
V*T(Zq) € ST(Zp). By Theorem 8.2.1, the Ho,-ADDPMS is solvable for the
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Figure 8.4.1: Max. singular values of Tp,, — Full order output feedback.

given system. Following our algorithm, we obtain a full order output feedback
controller of the form (8.4.3) with F3(¢) as given in (8.3.41) and

2.4375 1 0.1813
2.4028 2 —0.0808
0 0 -3.1758
Kq(e) = 0 _3 4| (84.7)
0 -8.2462 -5
-3 -2 -1/e-3

which places the closed-loop eigenvalues of A + Kq(e)C; asymptotically at
—-0.5616, —1, —4.2462, —4.2787, —¢ and —1/e. The maximum singular value
plots of the corresponding closed-loop transfer matrix Thy,(s,€) in Figure 8.4.1
show that the H,,-ADDPMS is attained as ¢ tends to zero. E

8.4.2. Reduced Order Output Feedback

In this subsection, we follow the procedure of Chen et al. [33,34] to design a
reduced order output feedback controller. We will show that such as a controller
structure with appropriately chosen gain matrices also solves the general H-
ADDPMS for the system (8.1.1). First, without loss of generality and for
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simplicity of presentation, we assume that the matrices C; and D; are already
in the form,

0 C D
Clz[[k 1602] and Dlz[ 6"] (8.4.8)

where k = £ —rank(D;) and D g is of full rank. Then the given system (8.1.1)

can be written as

( (1) _ A A T By E,

() =lan e () [B) e [B]

Yoy _ |0 Cio T Dy

)=1n () + %) e

[Ca1 C2,2]<2>+ Dy u+ Dy w,

h

where the original state z is partitioned into two parts, z; and z3; and y is
partitioned into yo and y; with y; = z;. Thus, one needs to estimate only
the state zo in the reduced order controller design. Next, define an auxiliary
subsystem Yo characterized by a matrix quadruple (Ag, Eg, Cr, Dx), where

D.
(Ag, Bn,Cx, Dg) = <A22,E2, [Cf;;‘f] , [ é{OD : (8.4.10)

The following is a step-by-step algorithm that constructs the reduced order
output feedback controller for the general Ho,-ADDPMS.

Step 8.R.C.1: (Construction of the gain matrix Fy(€)). Define an auxiliary
system

= z (8.4.11)

t = Az+ Bu+ E w,
{y
h = Cyz+ Dy u+ Doy w,

and then perform Step 8.S.1 to 8.5.6 of Section 8.3 to the above system
to get the parameterized gain matrix F(e). We let Fp(e) = F'(e).

Step 8.R.C.2: (Construction of the gain matrix K (¢)). Define another auxiliary
system

t = Ayz+ Chu+ Cyyw,
y= =z (8.4.12)
h = E} z+ D; u+ Dy, w,

and then perform Step 8.S.1 to 8.5.6 of Section 8.3 to the above system
to get the parameterized gain matrix F(¢). We let Kx(e) = F(e)'.
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Step 8.R.C.3: (Construction of the reduced order controller ¥rc(g)). Let us
partition Fy(g) and Kg(e) as,

Fo(e) = [For(e) Fea(e)] and Ka(e) = [Kno(e) Kni(€)] (8.4.13)

in conformity with the partitions of x = (;1> and y = (ZO ), respec-
2 1
tively. Then define
Gr(e) = [~Kro(e), A2 + Kr1(e)An — (Ar + Ka(€)Cr)Kri1(e)].

(8.4.14)
Finally, the parameterized reduced order output feedback controller is

given by
U = Arc(€) v + Brcl(e) v,
b) : 8.4.15
re(€) {u = Cre(€) v + Dxcle) v, ( )
where
ARc(E:) = AR + BQFPQ(E) + KR(E:)CR + Knl (6)Ble2(€),
Brc(€) := Gr(e) + [B2 + Kri1(€)B1][0, Fri(e) — Fea(e)Kri1(e)],
Cre(€) = Feal(e),
Drc(e) := [0, Fpi(e) — Fpa(e)Kri(€)] .
(8.4.16)
This concludes the algorithm for constructing the reduced order measure-
ment feedback controller.

We have the following theorem.

Theorem 8.4.2. Consider the given system (8.1.1) with Dy, = 0 satisfying
all the conditions in Theorem 8.2.1. Then the closed-loop system comprising
(8.1.1) and the reduced order output feedback controller (8.4.15) has the fol-
lowing properties: For any given v > 0, there exists a positive scalar ¢* > 0
such that for all 0 < € <¢e*,

1. the resulting closed-loop system is asymptotically stable; and

2. the Hyo-norm of the resulting closed-loop transfer matrix from the distur-
bance w to the controlled output h is less than ~, i.e., || Thw(s,€)||lco < 7-

By Definition 8.1.1, the control law (8.4.15) solves the general Ho,-ADDPMS
for the given system (8.1.1).

Proof. See Subsection 8.5.C. &
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We illustrate the above result in the following example.

Example 8.4.2. We again consider the given system as in Examples 8.3.1
and 8.4.1. As all the five conditions of Theorem 8.2.1 are satisfied, the H-
ADDPMS for the given system can be solved using a reduced order output
feedback controller. We will construct such a controller in the following. First,
it is simple to show the transformation Ty and T,

001 00O
000100
111
100 0 0 10 _
T, = 00000 1| T, = {8 (1) (1)} , (8.4.17)
100000
01 0000
will transform C; and D; to the form of (8.4.8), i.e.,
0lc 0 0|]-1 -1 01
T, 1C\ T, = [ 7 1002 J =|10] 0 00 0], (8.4.18)
k 01/ 0 000
and
D 10
T7'D, = [—50——] =10 0. (8.4.19)
0 0
Moreover, we have
[4 5]0 0 0 0]
5 6|1 2 3 4
_ A | A 0 11010 O
1 _ 11 | A | _
T AT, = [ y ] =lo2l001 ol (8.4.20)
0 3/10 0 0 O
|3 4]0 0 0 -1 |
(1 0] [0 0]
01 31
B 00 E 10
-1 1 -1 _ 1
T, B~[B2] 0ol T, E_[E2]_ 9 0| (8.4.21)
0 0 00
| 0 0] | 0 0 |
and AR = A22, ER = EQ, and
(-1 -1 0 1 10
Cr = 0 0 0 0|, Dg=10 0. (8.4.22)
| 1 2 3 4 31
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~

0[— ‘,‘/e‘psilon=0.01 ) N 1

epsilon=0.0001

Magnitude (dB)

107 107 10° 10° 10*
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Figure 8.4.2: Max. singular values of Ty, — Reduced order output feedback.

Following our algorithm, we obtain

Fo(e)T, = [ Frle) | Fra(e) |

[ -6 ) 0 0 0 0
| -5 —1/e~6| —€%/3—1 22/9-e—2 2¢/3-€%/27—-4 -4 |
(8.4.23)
and
1.2000+0.1219¢ | 0  —0.6663+0.4025¢
0.8187—0.0609¢ | 0 —0.8534—0.2012¢
Kn(e) = [ Kno(e) | Km(e) | = ~0.1219¢ | 0 ~0.4025¢ |’
00 0
(8.4.24)

which place the eigenvalues of Ap + Ky (e)Cr at —0.5616, —1, —3.8303 and —e¢.
Also, we obtain a reduced order output feedback controller of the form (8.4.15)
with all sub-matrices as defined in (8.4.18) to (8.4.24), and with Bgc(g) and
Drc(€) being slightly modified to

Bre(€) = Gr(e)T; ! + [By + K1 (€)B1] [0, Fpi(e) — Fra(e)Kri(e)] T2,

(8.4.25)
and

Drc(e) = [0, Fri(e) — Fra(e)Kni(e) 1T, (8.4.26)
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respectively. The maximum singular value plots of the corresponding closed-
loop transfer matrix Thq (s, €) in Figure 8.4.2 also show that the H,,-ADDPMS
is attained as € tends to zero. E

8.5. Proofs of Main Results

We present the proofs of all the main results of this chapter in this section.

8.5.A. Proof of Theorem 8.3.1

Under the feedback law u = F'(¢)z, the closed-loop system on the special coor-
dinate basis can be written as follows,

&, = Ag,z, + Boho + L jha + L, hy + E; w, (8.5.1)

£0 = A2,2% + By ho + Lha + L hy + E2w, (8.5.2)

gy, = A ey — BoyFao(e)leg + Tozh) + L [F, Fualzl, + LY ha + Efw,
(8.5.3)

hy = [0, xnt s Cola s (8.5.4)

Tc = Ai. + Leoho + Levhs + Legha + Ecw, (8.5.5)

ho = —[FJ, Fyolaf, — F(e) (2% + T2z},), (8.5.6)

. 1
£ = Agi + Lioho + Liha = =By, [F1:Fiq % + Foai Fig

+ ngi(E)Fiq‘. (22 + fo;fb] + I’iSi(E)mi] +Ew, (8.5.7)

hi = qu.’l?i, 1= 1,2, e, My, (858)
where
ot = (”’+) (8.5.9)
ob ) .5.

and B{ , and L:b 4 are as defined in Step 8.5.4.1 of the state feedback design
algorithm. We have also used Condition 2 of Remark 8.2.2, i.e., D9y = 0, and
E;,E, EY, Ey, E. and E;, i = 1,2,---,myg, are defined as follows,

ILE=[(E) (B (EYL) E. E{ By --- E,]. (8510
Condition 4 of the theorem then implies that

E} =0, (8.5.11)
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and
Im(E2) C S(AJ,) := Nyerag,)Im{wl — A3 }. (8.5.12)

To complete the proof, we will make two state transformations on the closed-
loop system (8.5.1)-(8.5.8). The first state transformation is given as follows,

Zap = F;blzab, Z. =z, (8513)
fori=1,2,---,my,
Tir = za + Fhal + Foaizy + Foy(e)[2d + T2z, (8.5.14)

and for j =2,3,---,¢;,1=1,2,--+,my,

Tij = x45, (8515)
where
xﬂ za
Top = | 20 and Tg = i':b . (8.5.16)
zh z0

e

b
.13)-(8.5.15), the closed-loop system becomes,

(<41

In the new state variables (8.

f; = A;aa_:; + A;abj:b - [B(;—a.’ L;d]Fg(E)jg + L;dﬁd + E;w’ (8517)

i = Atezt —(BY, LT JF%(€)z° + LY, ha, (8.5.18)
ab ab “ab Oab abd!* a abd
i = [Aga - BgFg(e)] zg + (Lag + T3 L3,0)ha + EQu, (8.5.19)

8o = Az 3e + (Lal0, Co) - [Leo, LedlF ) 78,

— [Leoy Lea]F2(e)22 + Leghy + Eow, (8.5.20)
ho = —[F}, Fyo)zh, — Fo(e)32, (8.5.21)

. 1
Ty =A% - Equ F;Si(e)z; + L?;b(e)j:b + L?; (E)Fg(f)ig

+ L2(e)F2(e) A%, 7% + Lig(e)hy + Ei(e)w, (8.5.22)
hi = hi + [Fh., Foai)Zh, + F24u30 = CpZi, i=1,2,---,mg, (8.5.23)

hq = [h1, Ry, By, (8.5.24)
where matrices A_;, A% . B? and L}, are as defined in Step 8.5.4.1 of the
state feedback law design algorithm, and L} ,(e), L (e), L(g), Lia(e) and

E;(e) are defined in an obvious way and, by (8.3.20), satisfy

ILLp@l <1y, LGl <, ILE ()] <1, (8.5.25)

— "iab’
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and
IL,‘d(E)’ < l;q, IE,(E)| <E€, €€ (0, 1], (8.5.26)
for some nonnegative constants I, 19, 192 ; and l;4, independent of e.
We now proceed to construct the second transformation. We need to recall

the following preliminary results from [83].

Lemma 8.5.1. Let the triple (A;, B;, F;(¢)) be as given in Steps 8.5.4.2 and
8.5.4.3 of the state feedback design algorithm. Then, there exists a nonsingular
state transformation matrix @;(¢) € R™*™ such that

1. Q(e) transforms A; — B; F;(¢) into a real Jordan form, i.e.,
Qi (9)[Ai - BiFi(0)| Qi(e) = Ji(e)
= blkdiag{Jio &), Ju(€), Jia(e), -, Jims (e)}, (8.5.27)

where
- 1
Jio(e) = , (8.5.28)
- 1
“Ed roxrio
and for each j =1 to p;,
J;(é‘) I
Jsle) = R R
’ Jiie)  Ir ! —Biy e
J:_;(E) 2T.‘J‘X2T.'j
(8.5.29)
with B;; > 0 for all j =1 to p; and B;; # Bix for j # k.
2. Both |Q:(¢)| and |Q; ! (¢)| are bounded, i.e.,
Qi(e)l < 8, 1Q7(e)| < 8, € €(0,1], (8.5.30)
for some positive constant §;, independent of ¢.
3. If E; € R™*? is such that
Im(E;) C ﬁweA(A‘.)Im(wI - A;), (8.5.31)

then, there exists a §; > 0, independent of ¢, such that

1Q; () E:] < 6, €€(0,1], (8.5.32)
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and, if we partition Q;!(¢)E; according to that of J;(¢) as

Eio(¢) Eio1(g)
E; E;
Qi_l(&?)Ei = 1:(5) , Eiple) = 0:2(6) , (8.5.33)
Eip, () Eiorio(€)d ;. 0x1
and
Eiji(¢)
Eij2(e)
Eij((;‘) = . , (8.5.34)

Eijri; (€)d 3r5x1
then, there exists a §; > 0, independent of ¢, such that, for each j = 0, to
bi,
|Eijri; (€)] < Bie. (8.5.35)

4. If we define a scaling matrix S;;(€) as
Saile) = blkdxag{Sa,o( ), Sai1 (€), Saiz(€), -+, Saips (e)}, (8.5.36)

where
Sain(€) = diag{e"‘°’1,e"‘°‘2, ey 1}, (8.5.37)

and for j =1 to p;,
Saii(e) = blkdiag{e’"‘f‘lh, e, o el 12}, (8.5.38)
then, there exists a k; > 0 independent of € such that,
|Fi(e)Qi(e)S;-1(£)| < Ki€, |E(E)AiQ,’(E)S;~1 (e)| < kie. (8.5.39)
Proof. This is a combination of the results of [83], and (2.2.13) of [80]. X
Lemma 8.5.2. Let
Ji(e) = blkdlag{Jlo, Ja(e), Jip: (e)}, (8.5.40)

where

Jio = , (8.5.41)



8.5. Proofs of Main Results 203

and for each j =1 to p;,

j{;(E) Ig
o _ Fx -1 ﬂij/[:‘:l
4 (€) NAG I )= [ —Bijje -1 |’
jl’;(g) 27 X 2755 ( )
8.5.42

with B;; > 0 for all 7 = 1 to p; and §; # Bk for j # k. Then the unique positive
definite solution P; to the Lyapunov equation,

Ji(€)'B; + PiJ(e) = -1, (8.5.43)
is independent of ¢.
Proof. See [83].

We now define the following second state transformation on the closed-loop
system,
i, =z,;, &5 =z}, (8.5.44)
z5 = [(20))", (Ea2), - (20)') = Sa(€)Q ™ (e)(T5,) 20, (8.5.45)
with
Sa(e) = blkdiag{ Su1 (€), Saa(e), -+, Sw(e) },
Q(e) = blkdiag{Qu(e), @a(e), -+, Qu(e) .
and
Z. = €, (8.5.46)
Tq=[T],%4, &), &i=Si(e)Zi, 1=1,2,---,myq, (8.5.47)

under which the closed-loop system becomes,

= Agufy + Agy (€)Tf, + AZ(€)E + Lijha + Ej w, (8.5.48)

ab = A:bc Top + Aaba( )5'32 + L:bdil‘h (8.5.49)

= J(e)#° + B(e)z° + L0 (e)hg + EX(e)w, (8.5.50)

Fo = AL +e[AL, 3 + A% (€)2% + Leghg + Ecw], (8.5.51)

ho = =[F, Frolid, — Fao(e), (8.5.52)

€3; = (Ag — By Fi)ii+eL}, (), +eL2, ()20 +eLia(e)ha+eE;(e)w, (8.5.53)
hi = hi = hi + [F;, Foail&ly, + Fogi(€)30 = Cq, &, (8.5.54)
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and
ha = [h1, k2, hm] (8.5.55)
where
A;2(e) = —[Bf,, LJF2(e)T%,Q()S: (e), (8.5.56)
A:I?a( ) = —=[Biy, LLalFo(e)TS,Q()S: (e), (8.5.57)
J(e) = blkdiag{eJ1 (€),eda(e), - -, edi (e)}, (8.5.58)
0 Biae) 3213(6) -+ Byle)
. 0 0 Bys(e) -+ Buf(e)
Ble)=|. . R R (8.5.59)
0 0 0 - 0

with j=1,2,---,landk=5+1,5+2,---,1,

Bjk(€) = Sa;(€)Q; ' (€) Bjx Fi(€) Qu(e) Sy (¢), (8.5.60)
and

L24(e) = Sa(€)Q7 M (e)(T%) ™ (L4 + TOLY,), (8.5.61)

[E%(
B = 8.0 @) 5 = [ O g5

Eoz(s)
A%, = Lal0, Cs) — [Leo, Leal Fy, (8.5.63)
A% (e) = ~[Leo, Lea] F2(€)T%,Q(€) S5 (e), (8.5.64)
FQy(e) = F(e)S: (e)Q(e)TY,, (8.5.65)
L2,(e) = Si(e)[L () FP(e) + L (e) FP () AL, ITS,Q)S; (),  (8.5.66)
Liae) = Si(e)Lia(e), Ei(e) = Si(e)Eile), (8.5.67)
LE(6) = Si(e) L, (e),  Fouile) = Flyy(e)T%,Q(e)S: (e), (8.5.68)

and where, for i = 1 to [, Ji(¢) is as defined in Lemma 8.5.2. By (8.3.20),
(8.5.25), (8.5.26), and Lemma 8.5.1, we have that, for all € € (0, 1],

lAaab( )I < a’aab’ IE ( )l < l ad> |Acab| < a’cab’ (8569)
1450 (€)] < agge, 145 ()l < adle, |AL,(e)] < adae, 1Fgule)l < fove,
(8.5.70)

for i = 1 to mg,
\LE, () < T, 1L5,(e)] < e, (8.5.71)
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and
|Lia(e)| < la, |Fos(e)| < foue, |Ei(e)| <& (8.5.72)

fori=1tol,
|EY(e)] < &%, (8.5.73)

and finally, for j=1tol, k=j5+1tol,
|Bjk(e)] < 5jkf, (8.5.74)

+ -0 40 30 0 70
where a__,, lad, al s Gag at?, €% al, 5%, ab, la, Iy, fad, € and b]k are some

positive constants, independent of e.

We next construct a Lyapunov function for the closed loop system (8.5.48)-
(8.5.55). We do this by composing Lyapunov functions for the subsystems. For
the subsystem of Z_, we choose a Lyapunov function,

Vo(E)) = (87) PrES, (8.5.75)
where P, > 0 is the unique solution to the Lyapunov equation,
(A.)Pr + P A, =1, (8.5.76)
and for the subsystem of i’jb, choose a Lyapunov function,
Vah(E3,) = (85,) Pz dy, (8.5.77)
where P;; > 0 is the unique solution to the Lyapunov equation,
(AXSYPh + PRATS = -1 (8.5.78)

The existence of such P, and P} is guaranteed by the fact that both A7, and
A:bc are asymptotically stable. For the subsystem of

:Eg = [("E?zl)la (5:22)1’ ) (igl)l]lf (8-5-79)

we choose a Lyapunov function,

) i—l
70) = Z 0y POz, (8.5.80)
i=1
where o is a positive scalar, whose value is to be determined later, and each

P? is the unique solution to the Lyapunov equation,

Ji(e)'PY + PO Jie) = ~1, (8.5.81)
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which, by Lemma 8.5.2, is independent of €. Similarly, for the subsystem z.,
choose a Lyapunov function,

V(z.) = z.P.%, (8.5.82)
where P, > 0 is the unique solution to the Lyapunov equation,
(AS.)' P, + P.AS, = —1. (8.5.83)

The existence of such a P, is again guaranteed by the fact that AS, is asymp-
totically stable. Finally, for the subsystem of Z4, choose a Lyapunov function

my
Va(#a) = ) &P, (8.5.84)
where each P; is the unique solution to the Lyapunov equation
(qu‘ - Bq.‘Fi),Pi + Pi(Aq,- - Bq.-Fi) = -1 (8.5.85)

Once again, the existence of such P; is due to the fact that A, — By, F; is
asymptotically stable.

We now construct a Lyapunov function for the closed-loop system (8.5.48)-
(8.5.55) as follows.

V(E;, 85,20, %, 84) = V7 (27) + ah VE@EE) + V2(E0) + Ve(Ee) + aaVa(Fa),
(8.5.86)
where af, = 2|P;|%(a;,,)? and the value of o, is to be determined.
Let us first consider the derivative of V(2) along the trajectories of the
subsystem 0 and obtain that,

l 11—
Vao(i'g):z ( )1’1 M‘)’x +2 Z 0) 1 PO ,L](E)za]
=1 j=itl
L (a0)i-1
+2;_a€ - @) PRLS(e)ha + (33 PAES(ehw]  (8.5.87)

Using (8.5.74), it is straightforward to show that there exists an o > 0 such
that,

. 3 _ T -
Vo (83) < 7180 + 1221 - [hal + oaful?, (8.5.88)

for some nonnegative constants a; and as, independent of .
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In view of (8.5.88), the derivative of V' along the trajectory of the closed-loop
system (8.5.48)-(8.5.55) can be evaluated as follows,

—(27)'%; +2(&;) Py A,y (€)Zh, +2(8,) Py A2 ()29
+2(i“) P Ladhd +2(z;) P, E;w— aab( ab) xab
+ 2aab( ) P+A+O ( )xa + 2aab(mab) P:l-)Labdh’d

aba

_Z|ja|2 + —£_|"‘Eal ’ 'h’d' + OZQIU)IQ - ilcjc

+2e3, Po[AT 31, + A% (6)F° + Legha + Ecw)
+ay Z[- —IT; + 2%} PLmb( €)i’ z7,
+ 25 P,I0 (6)7° + 25 P Lig(e)ha + 25 P E; (s)w] . (8.5.89)

Using the majorizations (8.5.69)-(8.5.73) and noting the definition of af,
(8.5.86), we can easily verify that, there exist an ag > 0 and an €} € (0,1] such
that, for all € € (0,¢7],

: 1o 1.0 1-02 | ST 2
<-= - - Z1E2 - = 5.
V< 2‘%] 2Imabl 5 Z,| Zelzdl + as|wl®, (8.5.90)

for some positive constant as, independent of ¢.

From (8.5.90), it follows that the closed-loop system in the absence of dis-
turbance w is asymptotically stable. It remains to show that, for any given
v > 0, there exists an ¢* € (0,e}] such that, for all € € (0,&*],

llAll2 < 7llwll2. (8.5.91)

To this end, we integrate both sides of (8.5.90) from 0 to co. Noting that V' > 0
and V(t) =0 at ¢t = 0, we have,

IRallz < (VZ2aze) |lwll2, (8.5.92)

which, when used in (8.5.88), results in,

N 2aia
1Zall2 < <\/ % + 02) [lwl]2- (8.5.93)

Viewing hq as disturbance to the dynamics of &7, also results in,

25112 < (aavE) w2, (8.5.94)

for some positive constant a4, independent of .
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Finally, recalling that

~ ZO ~
h=Top | hg — FEEl, — F2, ()30 |, (8.5.95)
2p

where ;
ngl(e)
- FO (e
#oe) = | T2 | (8.5.96)

with each F4;(e) satisfying (8.5.71) and (8.5.72), we have,

[IRll2 < |Top] (\/2(135 + ou|Ft | Ve + asy /203 ase + a262) (lwll2, (8.5.97)

for some positive constant as independent of €.
To complete the proof, we choose £* € (0,e7] such that,

{Top| (\/20136 + a4|F;;|\/E + asy/202aze + a2£2> <. (8.5.98)

For use in the proof of measurement feedback results, it is straightforward to
verify from the closed-loop equations (8.5.48)-(8.5.55) that the transfer function
from E%w to h is given by

TO (5) = Tao(s,€) [sT — A, + BF2(e)] ", (8.5.99)

where T,,(s,€) — 0 pointwise in s as € — 0. &

8.5.B. Proof of Theorem 8.4.1

It is trivial to show the stability of the closed-loop system comprising the given
plant (8.1.1) and the full order output feedback controller (8.4.3). The closed-
loop poles are given by A{A + BF;(e)}, which are in C~ for sufficiently small
¢ as shown in Theorem 8.3.1, and A{A + K4(¢)C }, which can be dually shown
to be in €~ for sufficiently small £ as well. In what follows, we will show that
the full order output feedback controller achieves the Ho,-ADDPMS for (8.1.1),
which satisfies all 5 conditions of Theorem 8.2.1. Without loss of any generality
but for simplicity of presentation, hereafter we assume throughout the rest of
the proof that the subsystem Xy, i.e., the quadruple (A, B, Cy, D3), has already
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been transformed into the special coordinate basis as given in Theorem 2.4.1.

To be more specific, we have

A, 0 0 LG 0
0 A%, 0 L%, O
At +
A = ByCqp + 0 0 aa  LayCo 0
0 0 0 App U]
B,;Ec_a BCE?Q, BCE;-'; chCb Acc
—BdEd_a BdEga, BdE;a BdEdb BdEdc
= BOCQ,O + fi,
"By, 0 0- r By,
By, 0 O BY,
po|Ba 0 0| o |BL|
By 0 0 By
BOC 0 Bc Boc
L Bog Bag 0 J L Bog
0210 = [C(;a Cl())a C(){; COb COC COd] )
Coa C0a Cfy Cob Coc Coa I 0
Cz = 0 0 0 0 0 Cd s Dz =10 0
0 0 0 Cy 0 0 0 0
I 0 00
0 I 00
0 0 0O
-+ —
STEe)=Im 315 o o o
0 010
0 0 0 I

L;dCd i
L3.Cy
LT,Cy
LpaCy
Lcdcd

Adq |

(8.5.100)

(8.5.101)

(8.5.102)

} . (8.5.103)

(8.5.104)

It is simple to note that Condition 4 of Theorem 8.2.1 implies that

o]
EO
E=|"
0
E.
E; |

(8.5.105)
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Next, for any ¢ € Vx(Zq) with A € €°, we partition ¢ as follows,

Co
@
+
(= C . (8.5.106)
b

Ce
Ca

Then, Condition 5 of Theorem 8.2.1 implies that C5{ = 0, or equivalently
02’04 = 0, Cbe =0 and Cd(d =0. (8.5.107)

By Definition 2.4.3, we have

[A;'I/\I 51] (f,) =0, (8.5.108)

for some appropriate vector 5. Clearly, (8.5.108) and (8.5.105) imply that

(A - /\I)C = —ET] = N (85109)

* X O O *

where xs are some vectors of not much interests. Note that (8.5.107) implies

(A= XI)¢ = (BoCap+ A~ X)) = (A= X)X
_ N .
*
(Aia - )‘I)Cg— + L:-beCb + L:dCdCd
(App — AI)Gy + LyaCala

*

L * J

- * -
*

(A;l—a - ’\I)CJ_
= e — e, | (8.5.110)

*

L * J

(8.5.109) and (8.5.110) imply

(Af,=AD¢E =0 and (A —M)G = 0. (8.5.111)
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Since A}, is unstable, (Af, — AI)¢{} = 0 implies that ¢ = 0. Similarly, since
(App, Cp) is completely observable, (A, — AI)(y = 0 and Cy(, = 0 imply {, = 0.
Thus, ¢ has the following property,

Ca
G
(= 8 € S*(%p). (8.5.112)
Ce
Ca

Obviously, (8.5.112) together with Condition 6 of Theorem 8.2.1 imply
ST(Zp) DVH(EQ U {Ure oW (Za)}- (8.5.113)

Next, it is straightforward to verify that A — sI can be partitioned as

A—sl =X, + X0y + X3 + Xy, (85114)
where
rA, —sI 0 0 LG, 0 L;,Cq 7
0 0 0 0 0 8
B 0 0 0 0 0 0
Ay = 0 0 0 0 0 0 ’
BCEc_a BcEga BCE;Z chCb Acc —sI Lcdcd
L BdE;a BdEga BdE;_a BdEdb BdEdc Add — sl

(8.5.115)
By, 0 0]
Bga Lgd Lgb
+ 7+ +
X, = | Boa Laa Lay | (8.5.116)
Boy Lyg O
Bo. 0 0
| Boa O 0 |
ro o0 0 0 0 07
0 0 0 0 0 0
X 00 Aja—sI 0 00 85117
710 0 0 Aw—sI 0 0|’ (8:5.117)
0 0 0 0 0 0
L0 0 0 0 0 0]
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and
I 0 0 0 0 07
0 A% —sI 0 0 0 O
0 0 0000
X, = 8.5.118
“lo 0o 000 0 ( )
0 0 0 00O
L0 0 0 0 0 0]
It is simple to see that
Im (X1) C ST(Ze) N {NMre o SA(Ze) }, (8.5.119)
and
Ker (X3) D St (Zp) D VT (Zq) U {UAGCoV,\(EQ)} . (8.5.120)
It follows from the proof of Theorem 8.3.1 that as e — 0
|(C2 + D2Fe(€)][sI — A= BFu(e)] ™| < #es (8.5.121)

where «; is a finite positive constant and is independent of €. Moreover, under
Condition 4 of Theorem 8.2.1, we have

[C2 + DyFy(e)][sI — A — BF,(e)] *E — 0, (8.5.122)

and
[C2 + D2Fp(e)][sI — A~ BF:(e)] 7' X, — 0, (8.5.123)

pointwise in s as € = 0. By (8.5.99), we have
[C2 + Dy Fo(e))[sI — A~ BFy(g)] 7 X4 — 0, (8.5.124)
pointwise in s as € — 0. Dually, one can show that
|[sI — A — Kqo(e)C1] ™ E + Ko(e) Ds)|, < Ko (8.5.125)

where Kq is a finite positive constant and is independent of €. If Condition 5 of
Theorem 8.2.1 is satisfied, the following results hold,

Co[sI — A~ Kqo(e)C1) 7 E + Kqo(e)D1] = 0, (8.5.126)

and
X3[sI — A~ Kqo(e)Ci]7E + Kqo(e)D1] = 0, (8.5.127)

pointwise in s as € — 0.
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Finally, it is simple to verify that the closed-loop transfer matrix from the
disturbance w to the controlled output h under the full order output feedback
controller (8.4.3) is given by

Thu(s,€) = [Ca+ D Fy(e)][sI - A~ BF,(e)] ' E
+CQ[S[—A—KQ(6)C1]_1[E+Kq( ) ]+[02+D2 ( )]
(I~ A=BFy(e)] " (A=sI)[sI — A=~ Ko(e)C1] " [E+Kq(€)D1].

Using (8.5.114), we can rewrite Thy(s,€) as

Thw(s,€) = [Co+DyFp(e)][s] - A— BFy(e)] E
+ Cy[sI—A—Kqo(e)Ch| HE+Kq(e) D]
+[Co+ Dy Fp(€)][sI — A= BFy(e)] 7} (X1 4+ X2Co + X5+ X4)
[sI—A~Kq(e)C1] HE+Kq(e) D).

Following (8.5.121) to (8.5.127), and some simple manipulations, it is straight-
forward to show that as e = 0, Thy(s,€) — 0, pointwise in s, which is equiva-
lent to ||Thwllco = 0 as € — 0. Hence, the full order output feedback controller
(8.4.3) solves the Ho,-ADDPMS for the given plant (8.1.1), provided that all
five conditions of Theorem 8.2.1 are satisfied. 23]

8.5.C. Proof of Theorem 8.4.2

Again, it is trivial to show the stability of the closed-loop system comprising
the given plant (8.1.1) and the reduced order measurement feedback controller
(8.4.15) as the closed-loop poles are A{A+BF; ()} and A{ A+ K= (¢)Cr }, which
are asymptotically stable for a sufficiently small e. Next, it is easy to compute
the closed-loop transfer matrix from the disturbance w to the controlled output
h under the reduced order output feedback controller,

Thu(s,€) = [Cs + DyFo(e)][s] — A — BE(e)]'E
+[Cs 4 DoFo(e)][s] — A — BFs(e)]" (A — sI) (Io_k>
-[sI — Ag — Kq(€)Cr] ' [Ex + Kr(€)Dx]

0 —
+C, (I _k> [s] — Ar — Kq(€)Cr] }[Er + Kx(€)Dgl.
It was shown in Chen [12] (i.e., Proposition 2.2.1) that

0
<I k) VH(Zar) = VT (Zq). (8.5.128)

n—
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Following the same lines of reasoning as in Chen [12], one can also show that

0
<I _k) U)\E CO V)\(EQR) == UAE COVX(ZQ)' (85129)

Hence, we have

0
(In—k) (VH(Zar) U {Ure o VA(Zar)} )=V (Zq) U {Ure o Va(Za) } -
(8.5.130)
The rest of the proof follows from the same lines as those of Theorem 8.4.1. &



Chapter 9

Robust and Perfect

Tracking of
Continuous-time Systems

9.1. Introduction

IN THIS CHAPTER, we present a so-called robust and perfect tracking (RPT)
problem, which was proposed and solved by Liu, Chen and Lin [87]. The devel-
opment of this chapter follows closely from the results of [87]. The robust and
perfect tracking problem is to design a controller such that the resulting closed-
loop system is asymptotically stable and the controlled output almost perfectly
tracks a given reference signal in the presence of any initial conditions and ex-
ternal disturbances. By almost tracking we mean the ability of a controller to
track a given reference signal with arbitrarily fast settling time in the face of
external disturbances and initial conditions. More specifically, we consider in
this chapter the following multivariable linear time-invariant system,

t=Az+ Bu+ E w, z(0)=ux,
Y:qy=Cz + Dy w, (9.1.1)
h:CQ$+D2U+D22’U),

where z € R" is the state, u € R™ is the control input, w € R’ is the external
disturbance, y € R’ is the measurement output, and h € R’ is the output to
be controlled. We also assume that the pair (A, B) is stabilizable and (4, C)
is detectable. For future references, we define ¥ and ¥ to be the subsys-
tems characterized by the matrix quadruples (A, B, C3, D) and (4, E,Cy, D,),
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respectively. Given the external disturbance w € Ly, p € [1,00), and any refer-
ence signal vector, r € R? with ryF, e, rBTD >, being available, and (%)
being either a vector of delta functions or in L,, the robust and perfect track-
ing (RPT) problem for the system (9.1.1) is to find a parameterized dynamic
measurement control law of the following form

{ o = Acmp(€)V + Bemp(€)y + Go(e)r + -+ + Gro1 (€)rFY),

(9.1.2)
U = Cemp(€)V + Demp(€)y + Ho(e)r + -+ + Hy—y (e)r(x=1),

such that when (9.1.2) is applied (9.1.1), we have

1. There exists an €* > 0 such that the resulting closed-loop system with
r = 0 and w = 0 is asymptotically stable for all ¢ € (0,¢*]; and

2. Let h(t,€) be the closed-loop controlled output response and let e(t,¢) be
the resulting tracking error, i.e., e(t,e) := h(t,e) — r(t). Then, for any
initial condition of the state, o € R",

Jp(zo,w,r,€) :=|le]lp > 0 as € = 0. (9.1.3)

We introduce in the above formulation some additional information besides the
reference signal r, i.e., ¥, 7, -, r(*~1) as additional controller inputs. Note that
in general, these additional signals can easily be generated without any extra
costs. For example, if r(t) = t2 - 1(t), where 1(t) is a unit step function, then
one can easily obtain its first order derivative

F(t) = 2t - 1(t) + 2 - 6(t) = 2t - 1(¢), (9.1.4)
where §(t) is a unit impulse function, and the second order derivative
7(t) =2 1(¢). (9.1.5)

These 7(t) and 7#(t) can be used to improve the overall tracking performance,
while 73®)(t) = 2. 6(t) does not exist in the real world and hence cannot be
used. We also note that our formulation covers all possible reference signals
that have the form, r(t) = t*, 0 < k < 0o0. Thus, our method could be applied
to approximately track reference signals, which have a Taylor series expansion
at t = 0. This can be done by truncating the higher order terms of the Taylor
series of the given signal. Also, it is simple to see that when r(t) = 0, the
proposed problem reduces to the well known perfect regulation problem with
measurement feedback.

It is appropriate to trace a short history of the literature that dealt with (al-
most) perfect regulation and (almost) perfect tracking problems. The problem
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of perfect regulation and its related topics were heavily investigated by many
researchers in the 1970’s and early 1980’s. The perfect regulation problem via
state feedback was studied by Kwakernaak and Sivan [70], Francis [53], Kimura
[66], and Scherzinger and Davison [120], and was completely solved by Lin et
al. [86] (see also Lin [82]). The solution to the problem of perfect regulation
via measurement output feedback for general linear systems has only been re-
ported recently by Chen et al. [26]. There were, however, a couple of different
formulations for perfect tracking (see e.g., Lawrence and Rugh [74], Davison
and Chow [44], which mainly dealt with state feedback case, and Davison and
Scherzinger [45], and the references therein). Their problem formulations are
quite different from the RPT problem, as pointed out in details in [87].

In this chapter, we derive a set of necessary and sufficient conditions under
which the proposed robust and perfect tracking problem has a solution, and
under these conditions, develop algorithms for the construction of parameter-
ized feedback laws that solve the proposed problem. We would like to point
out that our problem formulation and design algorithms are capable of tracking
any polynomial signals without actually augmenting any additional integrator
to the given plant. This is because we have utilized all possible information from
the reference r(¢). This technique has successfully been used to solve quite a
number of practical problems, such as the designs of a hard disk servo system
and a gyro mirror targeting system, which will be reported later in Chapters 14
and 16, respectively.

9.2. Solvability Conditions and Solutions

We are now ready to present our main results. We will first derive a set of
necessary and sufficient conditions under which the proposed robust and perfect
tracking (RPT) problem is solvable for the given plant (9.1.1). In fact, we will
show the sufficiency of these conditions by explicitly constructing two types of
parameterized control laws: one is of full order, i.e., its dynamical order is equal
to n, the order of the plant, and the other is of reduced order, i.e., its dynamical
order is less than n.

We have the following theorem.

Theorem 9.2.1. Consider the given system (9.1.1) with its external distur-
bance w € L,, p € [1,00), and its initial condition 2(0) = zo. Then, for any
reference signal r(t), which has all its i-th order derivatives, 1 =0,1,---,k — 1,
k > 1, being available and 7(*)(t) being either a vector of delta functions or in
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Ly, the proposed robust and perfect tracking (RPT) problem is solvable by the
control law of (9.1.2) if and only if the following conditions are satisfied:

1. (A, B) is stabilizable and (A, C}) is detectable;
2. Dy + D3SDy =0, where S = —(D4D,)t Dy D2y DY (D, D))
3. X, ie., (4, B,Cy, Dy), is right invertible and of minimum phase;

4. Ker (Cy + D2SCy) D CyH{Im (D)}

Proof. We first show that Conditions 1 to 4 in the theorem are necessary. Let
us consider the case when r(t) = 0, which of course has all its derivatives of any
order being available. It is simple to see that the proposed robust and perfect
tracking problem then reduces to the perfect regulation problem. Following the
results of Chen et al. [26], we can reformulate the perfect regulation problem
for the given system (9.1.1) as the well studied almost disturbance decoupling
problem (see Willems [136,137] for the original formulation of this problem) for
the following system,

t=Az+ Bu+[E Ilw, =z(0)=0,

y=Cz + [D, 0] w, (9.2.1)

h:CQ$+D2U+[D220}1.D.
For easy reference, we let f)Q be the subsystem characterized by the matrix
quadruple (A,[E I],Cy,[Dy 0]). Following the results of the well-known
almost disturbance decoupling problem (see e.g., Chapter 8), we can show that

if the almost disturbance decoupling problem for the above system is solvable,
then the following conditions hold:

1. (A, B) is stabilizable and (A, C;) is detectable;

2. D33 + DySDy =0, where S = —(D4y D)t Dy D2y D} (D, D)),
3. Im([E+ BSD; I])cC S (%)

4. Ker (Cy + D;3SCy) D VH(E,).

Clearly, Item 3 above implies that ST(X;) = R", which implies that ¥ is
right-invertible without invariant zeros in €. Due to the special form of f)Q,
it is simple to show that V+(£4) = C7*{Im (D;)}. Hence, Items 3 and 4 are
respectively equivalent to:

1. ¥, is right invertible without invariant zeros in C™;
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2. Ker (Cy + D,SCy) D Cy ' {Im (Dy)}.

Thus, it remains to show that if the proposed RPT problem is solvable, the
subsystem ¥, must be of minimum phase. In what follows, we proceed to show
such a fact.

First, we note that second condition, i.e., Das + D3SD; = 0, implies that if
we apply a pre-output feedback law

u =Sy, (9.2.2)

to the system (9.1.1), the resulting new system will have a direct feedthrough
term from w to h equal to 0. Hence, without loss of any generality, we hereafter
assume that matrix Dy = 0 throughout the rest of the proof.

Next, we show that if the robust and perfect tracking problem is solvable for
general nonzero reference r(t), ¥p must be of minimum phase, i.e., X, cannot
have any invariant zeros on the imaginary axis. In fact, this condition must
hold even for the case when w = 0 and z¢ = 0, i.e., for the robust and perfect
tracking of the following system,

z=Az+ Bu
y=Ciz (9.2.3)
e=Ciz+Dyu—r=h-r.

Now, if we treat r as an external disturbance, then the above problem is again

equivalent to the well-known almost disturbance decoupling problem with mea-
surement feedback and with internal stability for the following system,

( t=A zz + B u
Cla;

r

g=| . (9.2.4)

/r(""._‘l)

A

e=Cyz+Dyu—r.

Without loss of generality, we assume that the quadruple (4, B, C2, Ds) has
been transformed into the form of the special coordinate basis of Theorem 2.4.1,
i.e., we have

Tq z
T = T s IGZ(

) ) h:(ZZ) r:(:;) (9.2.5)

Ug
_ (e _[ho—To _
e—(ed)—(hd_rd), u= | uq |, (9.2.6)

U

O 0|
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Ty Ti1 hy
Ty Ti2 ha
T4 = o m=] | = I (9.2.7)
Tmy -'L'iq,- hmd
T1 31
T2 U2
Td = . , U4 = . , (928)
Tmg Umy
and
z, = Az, + B ho + L ha, (9.2.9)
i% = A% 2% + B, ho + L% jhq, (9.2.10)
¢ = Acee + Bocho + Leaha + Be [Eoz; + E%,23] + Beue, (9.2.11)
eo = Cyp4%q + Cg,oﬂg + Ca,0cz¢ + C2,0dTd + Uo — To, (9.2.12)
and for eachi =1,---,mgq,

md
&; = Ag;zi + Lioho + Lighg + By, |ti + EiuTo + EicTc + Z Ej;z;|, (9.2.13)

=1
hi = quxi =T, hd = C’dxd, (9.2.14)
and finally,
ei=h;—1;=Cpi—ri, ea=hg—14=CyTq—rTq. (9.2.15)
Let us define a set of new state variables, i.e., for i = 1,2, -+, mg4, we define
Ti L
T2 T
= -1 1. (9.2.16)
Tiq Tl(-q‘_l)
if K > g;, or
Ti1 T;
) (k=1)
~ Tigq r;
P = - 2.1
T; Tigtt 0 , (9.2.17)
Tig; 0

if k < g;. Then, we have

e; = Cq‘..’f:i, eq = Cyiq, (9.2.18)



9.2. Solvability Conditions and Solutions 221

T, = Ag,z; + Byeo + L eq+ [ By, L,lm, (9.2.19)

a
i = A% 20 + By,eo + Loyea + [BY, L%, (9.2.20)
. = Acec + Boceo + Leata + Be [Ezy; + EL20] + Beue + [Boe  Led]T,
(9.2.21)
eo = (0.2, + C 0aTo + C20cTc + Ca0aZa + o = 1o + Cj gqra,  (9.2.22)
for an appropriate dimensional matrix 02*,0d? and fori = 1,2, .- ,my,
md
;= Aqi:l_li + Lioeg + Ligeq + qu u; + Fijuxoq + Eijcxe + Z Eijl—‘j
j=1
r
+E, : , (9.2.23)
T(K_l)

for an appropriate dimensional matrix Eg,. Note that the disturbances ry and
rq in (9.2.22) can be washed out by the following pre-output feedback,

ug = Ug +ro — C;,Odrd' (9224)

Moreover, the subsystem from the controlled input, i.e., (ug u} u’)', to the
error output, i.e., (ej ed)', is now in the standard form the special coordi-
nate basis of Theorem 2.4.1. Tt then follows from the result of Chapter 8 (i.e.,
Proposition 8.2.1) that if the almost disturbance decoupling problem with mea-
surement feedback and with internal stability for the system (9.2.4) is solvable,

there must exist a nonzero vector £ such that
"M —-A%)=0 and ¢"[BY, L%]=0, (9.2.25)

which is implies that (A%

aa’

Property 2.4.1 of the special coordinate basis of Chapter 2, the uncontrollability
of (A%,,[B3, L%,]) implies the unstabilizability of the pair (4, B), which is

aa)’
0

a

[B3, LY,])is not completely controllable. Following

obviously a contradiction. Hence, o must be non-existent. It then follows
from Property 2.4.2 of the special coordinate basis that ¥p is of minimum

phase. This completes the proof of the necessary part.

We note that for the case when D; = 0, then the direct feedthrough term
Dy, must be a zero matrix as well, and the last condition, i.e., Item 4, of
Theorem 9.2.1 reduces to Ker (C;) D Ker (C1).

We will show the sufficiency of those conditions in Theorem 9.2.1 by explic-
itly constructing parameterized controllers which solve the proposed robust and
perfect tracking problem under Conditions 1 to 4 of Theorem 9.2.1. This will
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be done in the following subsequent subsections. First, we have the following
corollary that deals with the state feedback case.

Corollary 9.2.1. Consider the given system (9.1.1) with its external distur-
bance w € L,, p € [1,00), its initial condition z(0) = zo. Assume that all
its states are measured for feedback, i.e., C; = I and D; = 0. Then, for any
reference signal r(t), which has all its i-th order derivatives, i =1,2,--+,6 — 1,
k > 1, being available and 7(*)(t) being either a vector of delta functions or in
L, the proposed robust and perfect tracking (RPT) problem is solvable by the
control law of (9.1.2) if and only if the following conditions are satisfied:

1. (A, B) is stabilizable;
2. D22 = 0;

3. X, e, (A, B,Cy, Ds), is right invertible and of minimum phase.

9.2.1. Solutions to State Feedback Case

When all states of the plant are measured for feedback, the problem can be
solved by a static control law. We construct in this subsection a parameterized
state feedback control law,

u=F(e)x+ Ho(e)r + -+ He_y(e)r* 1), (9.2.26)

which solves the robust and perfect tracking (RPT) problem for (9.1.1) under
the conditions given in Corollary 9.2.1. It is simple to note that we can rewrite
the given reference in the following form,

r 0o, --- 0 r 0
d : Do : : :
- o= : | e 2.2
dt | r(s-2 0 0 - I||r + ol” (9.2.27)
r(n_l) 0 0 . 0 r("_l) Il

Combining (9.2.27) with the given system, we obtain the following augmented

system,
t=Az+ Bu+FEw
Savg L Y= T (9.2.28)
e=Cyxz+ Dyu
where
T
w = ( ?;i)) , T:= T(N;Q) , (9.2.29)
T
T(K—l)



9.2. Solvability Conditions and Solutions 223

0 I -~ 0 0 0 0 0
A=19 o L ol B=|o|, E=|0 of, (9230
00 00 0 0 I,
0 0 0 4 B E 0
and
Cy=[-I; 0 0 -+ 0 G, Dy=Ds. 9.2.31)

It is then straightforward to show that the subsystem from u to e in the aug-
mented system (9.2.28), i.e., the quadruple (A, B,C3, D,), is right invertible
and has the same infinite zero structure as that of ¥,. Furthermore, its invari-
ant zeros contain those of ¥y and £ x k extra ones at s = 0. We are now ready
to present a step-by-step algorithm to construct the required control law of the
form (9.2.26).

Step 9.5.1. This step is to transform the subsystem from u to e of the aug-
mented system (9.2.28) into the special coordinate basis of Theorem 2.4.1,
i.e., to find nonsingular state, input and output transformations Iy, T';
and I', to put it into the structural form of Theorem 2.4.1 as well as in
a small variation of the compact form of (2.4.20) to (2.4.23). It can be
shown that the compact form of (2.4.20) to (2.4.23) for the subsystem
from u to e of (9.2.28) can be written as,

A0 0 0
0 A;a 0 L;dCd

A= 2.
B.E% B.E, A, LcCasl’ (9:2.32)
B4E), BuE;, BuaEs Aad
0 I, --- 0 0 0 0
a0 =i i g P 000 (9.2.33)
“ 10 0 - 1|’ " |Bee 0 B.|’ -
0 0 -~ 0 Bygy By 0
and
- CY, Ci. Coe Coa - I, 0 0
C= ¢ ¢ , D= . 9.2.34
0 0 0 Cd] [ 0 0 O] ( )
Step 9.5.2. Choose an appropriate dimensional matrix F, such that
Al = A, — B.F, (9.2.35)

is asymptotically stable. The existence of such an F, is guaranteed by the
property that (A.., B.) is completely controllable.
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Step 9.S.3. For each z; of 4, which is associated with the infinite zero structure
of ¥p or the subsystem from u to e of (9.2.28), we choose an F; such that

qi
pi(s) = H(S - )\ij) =s% + Filsq"—l +--+ Fy,_, 8+ Fiy, (9.2.36)

=1
with all A;; being in C~. Let
F,=[F, Fi_, - Fa], t=1,---,mq. (9.2.37)

Step 9.5.4. Next, we construct
Co Coa Coc Coa

F(e)=-T; | ES, E;, Es Eq+Fue) |7}, (9.2.38)
ES E_, F, 0
where
En -+ Eim,
Emdl ot Emdmd
. F F: F,
F4(e) = blkdiag {ETIISI (e), 5—‘12'-’_32(6)’ e j:—j—smd (E)} ) (9.2.40)
and where
Si(e) = diag {1,¢,€?,---,e%7'}. (9.2.41)

Step 9.5.5. Finally, we partition
F(e) = [Ho(e) -+ Hyx-1(e) F(o)], (9.2.42)

where H;(e) € R™¢ and F(¢) € R™ ™. This ends the constructive
algorithm.

We have the following result.

Theorem 9.2.2. Consider the given system (9.1.1) with its external distur-
bance w € L, p € [1,00), its initial condition z(0) = zo. Assume that all its
states are measured for feedback, i.e., C; = I and D; = 0. If Conditions 1
to 3 of Corollary 9.2.1 are satisfied, then, for any reference signal r(¢), which
has all its ¢-th order derivatives, i = 0,1,---,k — 1, K > 1, being available and
r(¥)(t) being either a vector of delta functions or in L,, the proposed robust and
perfect tracking (RPT) problem is solved by the control law of (9.2.26) with
F(e¢) and Hi(e),i=0,1,---,k— 1, as given in (9.2.42).

Proof. See Subsection 9.4.A. &
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The following remark gives an alternative approach for solving the proposed
robust and perfect tracking problem via full state feedback. We leave the proof
of this method to readers as an exercise.

Remark 9.2.1. Note that the required gain matrices for the state feedback
RPT problem might be computed by solving the following Riccati equation,

pA+A’p+e;(:~2_(pB+c:~;b2)(b;D2)“(me;bz)’:o, (9.2.43)

for a positive definite solution P > 0, where

) C, ) D,
C,= elcoin , Dy= 0 , (9244)
0 el
0 I, --- 0
- [4y © . :
A:[ 0 } Ag = —ely + 1, (9.2.45)
0 A K I,
0 0 0

and where B, C; and D5 are as defined in (9.2.30) and (9.2.31). The required
gain matrix is then given by

Fe) = - (DyD:) (PB+C,Ds) = [Hole) -+ Heale) FGO)),
(9.2.46)
where H;(¢) € R™*¢ and F(¢) € R™ ™. Finally, we note that solutions to
the Riccati equation (9.2.43) might have severe numerical problems as € tends
smaller and smaller. ®

9.2.2. Solutions to Measurement Feedback Case

We will consider two types of measurement feedback control laws, one is of
full order controllers whose dynamical order is equal to the order of the given
system and the other reduced order controllers with a dynamical order that is
less than the order of the given system. Without loss of generality, we assume
throughout this subsection that Ds; = 0. If it is nonzero, it can always be
washed out by the following pre-output feedback,

u =Sy, (9.2.47)

with S as given in the second item of Theorem 9.2.1. The following are con-
structive algorithms for both full and reduced order measurement feedback
controllers, which, under the conditions of Theorem 9.2.1, solve the proposed
robust and perfect tracking problem.
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A. Full Order Measurement Feedback

The following is a step-by-step algorithm for constructing a parameterized full
order measurement feedback controller, which solves the robust and perfect
tracking problem.

Step 9.F.1. For the given reference r(t) and the given system (9.1.1), we first
assume that all the state variables of (9.1.1) are measurable and follow
the procedures of the previous subsection to define an auxiliary system,

t=Az+ Bu+FEw
y= ] (9.2.48)
e=Cozxz+Dsu

Then, we follow Steps 9.5.1 to 9.S.5 of the algorithm of the previous
subsection to construct a state feedback gain matrix

F(e) = [Ho(e) -+ Hgx-1(e) F(e)]. (9.2.49)
Step 9.F.2. Let Xq, be characterized by a matrix quadruple
(AQG) EQGJ CQaa DQa) = (A1 [E In] 101) [Dl 0]) . (9250)

This step is to transform this ¥, into the special coordinate basis of
Theorem 2.4.1. Because of the special structure of the matrix Eq,, it is
simple to show that ¥, is always right invertible and is free of invariant
zeros. Utilize the results of Theorem 2.4.1 to find nonsingular state, input
and output transformation I';q, I';o and I'yq such that

-1 _ ACCQ Lch BOcQ
rqursQ_[ B gl 4 | gt | [Coea 0], (9.2.51)
-1 | Bocq 0 I O
FSQEQaFtQ— I:BOdQ Ik, 0 01’ (9252)
and
- C 0 - Iy 0 0 0
FOQ101F8QZI: (())CQ Ik]’ FOQI[DI O]FiQ:[pOk 0 0 ol
(9.2.53)

where k = p — rank(D;). It can be verified that the pair (4,C;) is
detectable if and only if the pair

(ACCQ, [%:D (9.2.54)

is detectable.
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Step 9.F.3. Let Ko be an appropriate dimensional constant matrix such that
the eigenvalues of the matrix

Coc Coc
CCQ - ACCQ cQ [Ech] = ccQ [KcOQ chQ] [EZC:} (9255)

are all in €. Next, we define a parameterized observer gain matrix,

_ Bocq + Kcoq  Ledq + Keda/€ | -
K(e) = qu[ Bode Aaga + In e I (9.2.56)

Step 9.F.4. Finally, we obtain the following full order measurement feedback
control law,

{ b= Aemp(€)v — K(€)y + BHo(e) T + -+ + BH,_1 () r{s=1)

’ (9.2.57
w=F(e)v+ Hole)r + -+ He_y(e) r+Y), (9:2.57)

where Acmp(e) = A+ BF(€) + K(¢)Cy. This completes the construction
of the full order measurement feedback controller.

We have the following theorem.

Theorem 9.2.3. Consider the given system (9.1.1) with its external distur-
bance w € Ly, p € [1,00), its initial condition z(0) = z¢. If Conditions 1 to 4 of
Theorem 9.2.1 are satisfied, then, for any reference signal r(t), which has all its
i-th order derivatives, 1 = 0,1,---,k—1, k > 1, being available and r(”)(t) being
either a vector of delta functions or in L, then the proposed robust and perfect
tracking (RPT) problem is solved by the parameterized full order measurement
feedback control laws as given in (9.2.57).

Proof. See Subsection 9.4.B. &

The following remark yields an alternative way to compute the gain matrix
K(e) in Step 9.F.3.

Remark 9.2.2. The gain matrix K(¢) in Step 9.F.3 can also be computed by
solving the following Riccati equation,

AQ+QA'+(EE'+1)~(QC. +ED!,)(D\ D, +¢I)" (C1Q+D: E') = 0, (9.2.58)

for a positive definite solution @ > 0. The required gain matrix K(e) is then
given by
K(e) = —(QC, + ED})(D D} +eI)™. (9.2.59)

Again, this approach might have some numerical problems when ¢ is small. B
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B. Reduced Order Measurement Feedback

We now present solutions to the robust and perfect tracking problem via re-
duced order measurement feedback control laws. For simplicity of presentation,
we assume that matrices C; and D; have already been transformed into the
following forms,

_ 0 01,02 _ Dl,O
C = [Ik 0 and D; = o | (9.2.60)
where D g is of full row rank. Before we present a step-by-step algorithm to to
construct a parameterized reduced order measurement feedback controller, we

first partition the following system

t=Az+Bu+[E I,]w,
(9.2.61)
ly=Cz +[D; 0] w,
in conformity with the structures of C; and D, in (9.2.60), i.e.,
1\ _ |[An A T B, E, I, 0 .
(iz) B [AZI A22] (@) * [32] ut [E2 0 In—k] w
(9.2.62)
w)_|[0 Cue| (T Dy 0 O] .
R A 1 ) R A A
where
N w
W= <1:0 -6(t)) . (9.2.63)

Obviously, y; = z; is directly available and hence need not to be estimated.
Next, we define X5 to be characterized by

(ARaERacRaDR) = <A22a[E2 0 In—k]; [01,02:] ) [DI,O 0 0]

(9.2.64)
It is again straightforward to verify that Yqn is right invertible with no finite
and infinite zeros. Moreover, (Ag,Cr) is detectable if and only if (A4,C}) is
detectable. We are ready to present the following algorithm.

Step 9.R.1. For the given reference r(t) and the given system (9.1.1), we again
assume that all the state variables of (9.1.1) are measurable and follow
the procedures of the previous subsection to define an auxiliary system,

y= =z (9.2.65)

{:i::Aw+Bu+E'w
e=Cox+ Dyu
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Then, we follow Steps 9.5.1 to 9.5.5 of the algorithm of the previous
subsection to construct a state feedback gain matrix

F(e) =[Ho(e) -+ Hux-1(e) F(e)]. (9.2.66)
Let us partition F'(¢) in conformity with z; and z3 of (9.2.62) as follows,

F(e) = [Fi(e) F(e)]. (9.2.67)

Step 9.R.2. Let Ky be an appropriate dimensional constant matrix such that
the eigenvalues of

C.
Ar + KiCr = Aoy + [Kno  Kni] [ 21(;2} (9.2.68)

are all in €~. This can be done because (Ag, Cr) is detectable.

Step 9.R.3. Let

Gr =[-Kno, Az + Kn1A1n — (Ar + KxCr)Kr1], (9.2.69)
and
Acmp(€) = Ar + BoF3(€) + KxCr + Kr1 B1 Fa(e),
Bemp(e) = Gr + (B2 + Kn1B1) [0, Fi(e) — Fa(e)Kr1], 02.70)
Cemp(€) = Fa(e),

cmp(E) [O Fl( ) F2(5)KRI]-

Step 9.R.4. Finally, we obtain the following reduced order measurement feed-
back control law,

¥ = Acmp(€)V + Bemp(€)y + Go(e)r + -+ + Gror (€)r(—D),
(9.2.71)
u = Comp(€)v + Demp(€)y + Ho(e)r + -+ - + He_1(e)rx=1),
where for i = 0,1,k — 1,
Gi(e) = (B2 + Kn1 B1)Hi(e). (9.2.72)

This completes the construction of the reduced order measurement feed-
back controller.

Theorem 9.2.4. Consider the given system (9.1.1) with its external distur-
bance w € Ly, p € [1,00), its initial condition z(0) = z¢. If Conditions 1 to 4
of Theorem 9.2.1 are satisfied, then, for any reference signal r(¢), which has all
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its i-th order derivatives, s = 0,1,---,k — 1, k > 1, being available and r(")(t)
being either a vector of delta functions or in L,, then the proposed robust and
perfect tracking (RPT) problem is solved by the parameterized reduced order
measurement feedback control laws of (9.2.71).

Proof. See Subsection 9.4.C. &

By now, the sufficiency of Theorem 9.2.1 is obvious in view of the results of
Theorems 9.2.3 and 9.2.4. The proof of Theorem 9.2.1 is thus completed. &

9.3. Robust and Perfect Tracking for Other References

It is very often in practical control system design to track some references such
as sinusoidal functions, which is in L,. It is obvious that we could not make
the Lo norm of the tracking error arbitrarily small if there is a mismatch in
the initial value of the output to be controlled and that of the reference signal.
Another very common situation could be that the references r(t) might have
some entries belonging to one set, say L,,, and some belonging to another set,
say Ly,, for some p; € [1,00] and p; € [1,00]. Thus, for this class of references,
we will have to modify our original problem formulation a little bit in order to
obtain some meaningful results. Again, we consider a linear system as given in
(9.1.1) with an external disturbance

w1
ws
w=| . |, (9.3.1)
wq
where w; € Ly, , pu; € [1,00],7=1,2,---,q. We also consider a reference
T1
T2
r=1{ .|, (9.3.2)
Te
which has the following properties: fori =1,2,---,¢, we haver;, 74, - -, rg'“‘_l),

k; > 1, being available, and rg'“) being a delta function or in L, for some
pr; € [1,00]. Then, the general robust and perfect tracking (GRPT) problem
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for this type of references is to find a parameterized dynamic measurement
feedback control law of the form

K1-1 Ke—1
9 = Acmp(€)V + Bemp(€)y + 3 Gri(e)rt) +--+ Y Grale)ry?,
=0 =0
' (9.3.3)
K.1—1 . Ng—l .
u = Comp() + Demp(e)y + > Hia(e)r + -+ 3 Heu(e)r?,
1=0 1=0

such that when (9.3.3) is applied to (9.1.1), we have

1. There exists an €* > 0 such that the resulting closed-loop system with
r = 0 and w = 0 is asymptotically stable for all € € (0,&*]; and

2. The resulting closed-loop error signal e, which is obviously a function of
€, can be decomposed as

ezerl+"'+er¢+ew1+"‘+ewq+eo, (934)
and as € = 0,

¢ q
J(.’L‘o,’w,T, 5) = Z ”Cr.-”pri + Z Ilew.‘“pw + ”60”17 - 07 (935)
i=1 i=1

for all 1 < p < oo and for any zo € R". Roughly, e, is the error due
to mismatch in initial conditions of the controlled output and reference,
while er,, 1 =1,2,---,¢, and ey,, i = 1,2,--+,q, are corresponding to the
steady state error.

We have the following result.

Theorem 9.3.1. Consider the given system (9.1.1) with its initial condition
z(0) = zo. Also, consider the external disturbance w with its entries w; € L, ,
Pu; € [1,00], @ = 1,2,---,q. Then, for any reference signal r(t) of the form
(9.3.2) with r;, 74, - -+, rﬁ"‘—l), ki > 1, being available, and rl('“) being a delta
function or in Ly, , p; € [1,00], 4 = 1,2,--,£, the general robust and perfect
tracking (GRPT) problem is solvable by the control law of (9.3.3) if and only
if all the same four conditions of Theorem 9.2.1 hold.

Proof. The proof of this theorem follows from similar lines of reasoning as those
of Theorem 9.2.1 with some minor fine tuning. The constructive algorithms of
the previous section should be modified as follows:
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1. State Feedback Case. For the state feedback case, one first needs to obtain

an augmented system,

t=Az+ Bu+Fw
ave:{ U= T (9.3.6)
e=Cyrx+ Dyu
with
T1

: Ti
ez“’"""(#ﬁb)’ zi=| |, m=| ] (987)
Ty T(K,,'-—l)

Then, follow the same procedures as in Steps 9.5.1 to 9.S.4 of the previous
section to obtain a gain matrix F(¢), and partition it as follows,

F(e) =[Hio(e) -+ Hin,-1(€) --- Heole) -+ Hemy-1(6) Fle)].

(9.3.8)
The state feedback controller is given by
Kk1—1 X Ke—1 .
u=FEz+ Y HaEr + -+ Y Hele)r. (9.3.9)
i=0 =0

. Full Order Measurement Feedback Case. One only needs to replace Step

9.F.1 of the algorithm in the previous section with Item 1 above to obtain
the desired F(e). Steps 9.F.2 and 9.F.3 remain unchanged, and the full
order measurement feedback controller is given by,

k1—1 Ke—1
U= Acmp'U - K(f)y + Z BHl,i(E)rgl) +ot Z BHt,i(E)’"y)
=0 =0 (9.3.10)
K1—1 . Ke—1 .
u=F(e)v+ Z Hl,i(a)rgz) + 4 Z Hg,,-(e)rgl),
i=0 =0

where Acmp = A+ BF(e) + K(€)C1.

Reduced Order Measurement Feedback Case. Similarly, one again needs
only to replace Step 9.R.1 in the algorithm of the previous section with
Item 1 above. Steps 9.R.2 and 9.R.3 remain the same, and the reduced
order measurement feedback control is given in the form of (9.3.3) with
parameterized gain matrices Acmp(€), Bemp(€), Cemp(€), Demp(€), being
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given as in (9.2.70), Hj i(¢), j =1,2,---,£and ¢ = 0,1,---,K; — 1, being
given as in (9.3.8), and

Gji(e) = (B + Kr1B1)Hj i(€), (9.3.11)
j: 1,2,...,eandi:0’1’...’,ij_1_
This completes the proof of Theorem 9.3.1. B

Next, we note that in general, it requires infinite gain to achieve the robust
and perfect tracking performance. In practical situations, one would have to
make some trade-offs between the tracking performance and other requirements
in order to design a physically implementable control law. This can be done by
adjusting the tuning parameter ¢.

Finally, we present a numerical example to illustrate the results of the gen-
eral robust and perfect tracking design. The plant considered have two con-
trolled outputs. We are going to design a GRPT controller such that when it is
applied to the given plant, the first controlled output will robustly and almost
perfectly track a ramp signal, while the second one will robustly and almost
perfectly track a sinusoidal function.

Example 9.3.1. Consider a linear system given in the form of (9.1.1) with

010 10 11 1\
A=|1 0 1|, B=|0 0|, E=|0 1], m=|0], (9312
010 01 10 1
and 0
11 10
Cz=|:0 1 O], D2=|:0 0], D22=0. (9313)

For easy verification, we assume that the external disturbance w is given by

1
w= [sin(wt)] - 1(t) € Leo. (9.3.14)
Let the reference input be given as,

t

re (2) - [COS(%)} 1(8). (9.3.15)

We note that 7; = 1(t) € Lo. Thus, we can achieve the GRPT for the above
system and reference without using additional information 7.

A. State Feedback Case. We first consider the case when all the state variables
of the given system are measurable, i.e., C; = I and D; = 0. It is simple
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Figure 9.3.1: Tracking error e; under state feedback.

to verify that the subsystem X is invertible and of minimum phase with one
invariant zero at s = —1 and two infinite zeros of orders 0 and 2, respectively.
Hence, the general robust and perfect problem for the system with the given
reference is solvable. Following the constructive algorithm for the state feedback

case, we obtain a parameterized control law,

-1 -1 0} +[ ! 0} (9.3.16)
= T. .
“Tliez c1-3 27T o1 2

The poles of the closed-loop system comprising the given plant and the above
control law are located at —1, —1/e £+ j/e. Hence, the closed-loop system is
stable for any positive £. Figure 9.3.1 shows the responses of the error signal
ea(t) = ha(t) —ra(t), corresponding to € = 0.1, 0.05 and 0.01, respectively. Note
that e;(t) = hi(t) — r1(t) = 0 for all ¢ > 0. The results clearly show that the

general robust and perfect tracking is achieved.

We next consider the robust and perfect tracking with measurement feed-
back. Let the measurement output y = Ciz + Diw with

100 _fo o
o=[1 99, 0i=]2 9. @a17)

It is simple to see that Ker (C2) = Ker(C;) = C;'{Im(D;)} and hence the
general robust and perfect tracking problem is solvable via measurement feed-
back laws. It is interesting to note that the subsystem X, i.e., the quadruple
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(A,E,Cy, Dy) is of nonminimum phase with an invariant zero at s = 1. Thus,
the subsystem X is not necessary to be of minimum phase and/or left invertible
for the solvability of the robust and perfect tracking problem via measurement
output feedback, as one would expect from the well-known separation principle
arguments.

B.1. Full Order Measurement Feedback Case. Following the constructive algo-
rithm, we obtain the following full order measurement feedback control law,

-1-1 -1 0 [ 1 0] |
V= 0 -1 1 | v+ 0 0Ofr+ |1 1 |y
- a-i-g -xl (oAl ooas

-1 -1 0 1 0]
u = 1—% _1_% _% v+__1 ;27 T.
(9.3.18)

It is straightforward to verify that the closed-loop poles are asymptotically
located at —1, —1/e £ j/e, —1, —1/e and —1/e. Hence, the closed-loop system
comprising the given plant and the full order measurement feedback control law
is asymptotically stable for all ¢ > 0. Figure 9.3.2 shows the resulting tracking
errors under the full order measurement feedback control law with € = 0.05,
0.01 and 0.001, respectively. Again, it is clear that the general robust and
perfect tracking is achieved.

B.2. Reduced Order Measurement Feedback Case. Again, following our con-
structive algorithm for the reduced order measurement feedback case, we obtain
the following first order dynamic controller,

o= (-1-2) v+ [-g -1—37-3] y+ [-1 3]

-1 -1 1 0
2 v+ _2 _q_2_2 Yy + 1 2 T.
€ € e2 T ¢ e2

The poles of the closed-loop system comprising the given plant and the above

(9.3.19)

<

Il
—
o

control law are precisely placed at —1, —1/e £ j/e and —1. Hence, the closed-
loop system is asymptotically stable for all € > 0. Figure 9.3.3 shows the
responses of the error signal e;(t) with e = 0.1, 0.05 and 0.01, respectively. As
in the state feedback case, the resulting e (¢) under the reduced order measure-
ment feedback law is identically zero for all ¢ > 0. The results again clearly
show that the general robust and perfect tracking is achieved. El
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Figure 9.3.2: Tracking errors under full order measurement feedback.
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Figure 9.3.3: Tracking error e; under reduced order measurement feedback

9.4. Proofs of Main Results

9.4.A. Proof of Theorem 9.2.2

It was mentioned in the constructive algorithm of Subsection 9.2.1 that, fol-
lowing the structural algorithms of Sannuti and Saberi [116], and Saberi and
Sannuti [111], one can transform the system (9.2.28) into the special coordinate
basis as given in the compact form of (9.2.32) to (9.2.34). That is there exist
nonsingular state, input and output transformation I'y, IT'; and I', such that

r T
r 7 Iixe O z7
=T a = - a 94.1
()=nZ)=[ 2% e
Tq T4
e to
e—Fo( °>, u="T; uq |, (9.4.2)
€d
Ue
T T1 Ti1
T ) Ti2
r= . , Tqg= ) , T = : , (9.4.3)
r(==1) Tmy Tig;
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hl Uy
h U
ea=| . |, w=| | (9.4.4)
hmd Umq
and
0 I, --- 0 0
Pl T ey | r%) (9.4.5)
0 0 - I 0
00 --- 0 I
&, = Ag,z; + Lyeq + Bye0 + E;w + Gy r%), (9.4.6)

G¢ = AceZe + Legeq + Boceo + Be [uc +E%r+ Ec"aa:;] +Baw+Gor®, (9.4.7)

ey = Cga’l' + C(;IIII; + Cycze + Cogza + ug, (948)

and for eachi =1,:--,myg,

mq
T; = A(Ii T; + Ligeg + Ligeq + qu Ui + E?a’l‘ + Ei;z:; + Ej.z. + Z E,'j.’l:j
Jj=1

+ E,-w + Gi’f'(n), (949)

e; =Cpzi =15, eq=Cyzq. (9.4.10)

Now, it is straightforward to see that if (%) is a vector of delta functions, then
the terms G;r("), G.r®) and G;7(®) can be treated as some additional initial
conditions added to the original ones of the states variables, %, z, and zg4,
respectively. If r(%) is in Ly, p € [1,00), it can be treated as an additional
disturbance and can be merged with the original disturbance w. Thus, in both
cases, we can write (9.4.6), (9.4.7) and (9.4.9) as

&, = As,e, + Loeq+ Byeo + E, 0, (9.4.11)

Te = AceTe + Legeq + Boceo + B, [uc + Ega'r + Ec*ax;] + E.w, (9.4.12)

and

my

I; :A(Ii x; + Lygeg + Ligeq + qu ’U,,'+E?a'7' +Ei;:l:; +E,'¢.’L'C+Z E,;j$j +E,-u‘1,
i=1

(9.4.13)

with @ € L,, p € [1,00), and E, E, and E; being some appropriate constant

matrices, and with a new but again bounded initial condition, say Zo.
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Next, we note that the control law u = Fx with the gain matrix F given in
(9.2.38) can be rewritten as,

up = —Co,r — Cqz; — Coce — CogZa, (9.4.14)
u. = -F.z. — EQr — E_x7, (9.4.15)
and
ui = —E%r — Bz — Ejoz, — ZE”z] - —s (e)%;. (9.4.16)
7j=1

Hence, the closed-loop system comprising the given system and the above con-
trol law can be expressed as follows,

eo =0, (9.4.17)

= Ajz; + L eq+ E;w, (9.4.18)

& = (Acc — BeFo)xe + Legeq + B = AS,x. + Legeg + Ecb,  (9.4.19)

F; _
I; = Aq.- T; — quETlS,’(E).’L'i + Ligeq + By, e; = qu.’lli. (9420)

i

Let us define a new state transformation as,

T1
i, =, &=, Bg:= ( ) y &= Si(e)z, i=1,---,mg. (9.4.21)

Tmy

Then, we have eg = 0, and

T, =A%, + L &4+ E;w, (9.4.22)

Zo = AS, % + Legéq + Eb, (9.4.23)

€i; = (Ay, — By, Fy)&; + €Lia(e)éq + eEi(e)w, (9.4.24)
& =e; = Cpli, &4=ey=Cyiy, (9.4.25)
Lia(e) = Si(e)Lia, Ei(e) = Sie)E:. (9.4.26)

It is simple to show that, for € € (0, 1],

|Lia(e)] < g, |Ei(e)| <6; i=1,---,mq (9.4.27)

for some positive constant fd and 6;, which are independent of €.
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We next construct a Lyapunov function for the closed loop system (9.4.22)
to (9.4.24). We do this by composing Lyapunov functions for the subsystems.
For the subsystem of %, we choose a Lyapunov function,

Vo (&) = (37) Py &, (9.4.28)

a
where P, > 0 is the unique solution to the Lyapunov equation,
(Ag)' Pe + Py A = -1, (9.4.29)
and for the subsystem of Z., we choose a Lyapunov function,
Ve(ie) = &,Pede, (9.4.30)
where P, > 0 is the unique solution to the Lyapunov equation,
(45,) P+ PAS, = —1I. (9.4.31)

Finally, for the subsystem of Z4, we choose a Lyapunov function
mq ,
Va(Za) = Y &;Pids, (9.4.32)
i=1

where P; is the unique solution to the Lyapunov equation,
(A — By, Fy) P + Pi(Ay, — By, Fi) = —1. (9.4.33)

Since Ay, — By, F; is asymptotically stable, the existence of P; is guaranteed. We
now choose a Lyapunov function for the closed-loop system (9.4.22) to (9.4.24)
as follows,

V(Z,, &, &4) = Vo (Z37)+ Ve(Ze) + agVa(Zq), (9.4.34)

where the value of a4 is to be determined. The derivative of V' along the
trajectory of the closed-loop system (9.4.22) to (9.4.24) can be evaluated as
follows,

a

V =—(27)'%, +2(&;) Py [L €4+ E; W] — 2.3 + 28, P.[Leaa + Ec)
mdq
1. - .
+oq ) {_Em" + 2&,P;Lia(€)éq + 28, P,Ei(e)w| . (9.4.35)
=1

It is straightforward to see now that there exist an ay > 0 and ¢* € (0, 1] such
that for all £ € (0,e],

. 1,. 1. 1 . _
V < =518l = 5lEl - 5|3l + culf’, (9.4.36)
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for some positive constant a;, independent of €. Thus, the closed-loop system
in the absence of disturbance w and reference input r is asymptotically stable.

It remains to show that the resulting tracking error e, which is a function
of €, has the following property,

Jp(zo,w,r,€) = |le|l, = 0, as e — 0. (9.4.37)

We first assume that the disturbance @ is nonexistent. It follows from (9.4.36)
that
V< —agV, (9.4.38)

for some positive scalar ay, independent of €. Noting the transformation of
(9.4.21), we have
12(0)| < ao|Zol, (9.4.39)

for some positive oy > 0, independent of e, where Zy is the combination of
the initial condition of the original system, i.e., =g, and the additional ones
introduced by r(*). Thus,

[V(0)| < as|Zol?, (9.4.40)

where a3 > 0 and is independent of €. By the standard comparison theorem,
it follows from (9.4.38) that,

V < V(0)e™ 2t (9.4.41)
which together with (9.4.40) imply that
V < aze” 7t zo)?, (9.4.42)
and thus,
|Za4(t)] < aae™ %] and |é4(t)] < ase™ 2|, (9.4.43)

for some positive scalars a4 and as, independent of e. Now viewing &4 as an
input to the subsystem &; of (9.4.24), one can show that

|Z4(t)] < (aﬁe-ast/f + a7£e_°‘2t) EN (9.4.44)
and
Ea(®)] < 1 (ase™25/% + et zo), (9.4.45)

for some positive scalars ag, a7, as and (;, which are all independent of ¢.
Noting that

e=T, (60) , (9.4.46)

€d
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where eg = 0 and ey = €4, we then have
le] < |To|Br (€725 + ee7%%Y)|Zg| = Ba(e™®t/° + 72| Zo|.  (9.4.47)

Thus, for all 1 < p < 0o, we have, as € —= 0,

o 1/p
llell, < (/0 [ﬂzmd (e_"‘at/E + Ee_o""t) |:EO|]p dt) — 0. (9.4.48)

Next, we take into consideration the disturbance @ € L,, p € [1,00), but
with Zo = 0. Noting that &; in (9.4.24) is a part of the state variables of the
system and eL4(€) is negligible compared to Ay, — By, F; for sufficiently small
€, the subsystem (9.4.24) can then be approximated as,

.1 .
;= E(Aq‘. - B, F)z; + E;(e)w, (9.4.49)

where w € L,. Thus, we have

t
i = el < [ |Cuesp [~2de, - BuFr] Bteyate =) ar
0
< Bs / e~ BT/ (t — 7)|dr, (9.4.50)
0

for some positive scalars 83 and (4, independent of €. The result for p = 1is
obvious. We proceed to show the case when 1 < p < oo. Using the well-known
Holder Inequality, i.e.,

Ifglls <1Ifllp-llgllp=, 1/p+1/p" =1, (9.4.51)

we have

o 1/p 1/p*
el = éi __<_ ﬂ / [ e—ﬁle/f w(t — T):I e—ﬂ4T/E dT
e =l < s | |(e7/e) Tl =] (e7)
o0 1/p 00 1/p*
< Bs [/ e~PaT/e|ip(t — 'r)|”d7'} [/ e‘ﬂ“/sdf]
0 0
€ 1/p* 00 1/p
=3 (-——) [/ e~ P71t — T)|”dr} . (9.4.52)
0
Thus,
e \P/P" poo poo
ledl? < 5% (—) / [ [ eta - T>|vdT} d
Ba 0 0

o __E_ p/p* ¢ ) —ﬁ4r/e[ (o) o » ]
= g ( m) /0 e /0 (@(t — T)|Pdt| dr  (9.4.53)
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=y (Z%)W /O " epurle [ /0 ” Iu";(t)l”dt] dr (9.4.54)

. € P/P‘ oo 3 /
= — w ”/ e PaTledr
@(m) ot |

e\ 1+P/P°
=gP (E) [l (9.4.55)

Note that we have used the property w(t) = 0, ¢t < 0, to get (9.4.54) from
(9.4.53). We would also like to note that the above proof from (9.4.52) to
(9.4.55) was inspired by similar arguments reported in Desoer and Vidyasagar
[46]. It is now clear,

€ 1/p+1/p* Bs
ledo <81 (5) " Twlo= (2) ol 2o, @459
Ba Pa
as € = 0. In view of (9.4.48) and (9.4.56), the robust and perfect tracking
problem is then solved. This completes the proof of Theorem 9.2.2. &
9.4.B. Proof of Theorem 9.2.3
First, let us define a new state variable,
T, =2 —0. (9.4.57)

Then, it is straightforward to verify that the closed-loop system cdmprising the
given system (9.1.1) and the full order measurement feedback control law of
(9.2.57) can be rewritten as follows,

2y = [+ K]z + [E+ K (e)D:]w, (9.4.58)

&= [A+BF(5)}x—BF(e)zU+BH0(e)r+' ++BH,_1(e)r"* Y+ Bw, (9.4.59)

and
h= [02+DQF(E)]z-DzF(e)zv+D2H0(e)r+---+D2HK_1(5)1~<"-1>. (9.4.60)

It is simple to see now the eigenvalues of the closed-loop system are given by
MA + BF(g)}, which have been shown to be in €~ in Theorem 9.2.2, and
MA + K (¢)C:}, which are equivalent to

Acca = KeoaCuea ~Koaale cyufll 1
)\{[ Egcq -—Ik/g - ’\(Accq) U py e (9.4.61)

as € = 0. Thus, the closed-loop system is asymptotically stable for sufficiently
small e, when the external disturbance w = 0 and reference r = 0.
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Next, we intend to investigate the properties of z, in the subsystem (9.4.58).
Let us transform the subsystem (9.2.50) into the special coordinate basis of
Theorem 2.4.1 with nonsingular state, input and output transformations I'sq,
T'iq and Tyq, as given in Step 9.F.2 of Subsection 9.2.2. Also, let

2y = Tsq (:Zz) . (9.4.62)
Then, we can rewrite (9.4.58) as,
. K.
Leq = (.ACCQ - KcOQCOcQ)ch - EdQ Taq + Ecqu, (9.4.63)
and
. 1
.'l;dQ = _gxdq + EchxCQ + Ede, (9464)

for some appropriate dimensional matrices E.q and Egq, independent of e.
Now, let
Feq = Teq — KedqTda- (9.4.65)

Thus, (9.4.63) and (9.4.64) can be rewritten as,

1L76Q = Agcq‘ico + AgcchdedQ + (ECQ - KCdQEdQ)w’ (9-4-66)
and .

finQ = <_EI + EchchQ) Tgq + Ech.’;}CQ + Ede, (9467)

It is clear to see that as € — 0, the poles of the above system are asymptotically
given by A(AS,,) and k repeated ones at —1/e. This confirms with what we
have claimed earlier in (9.4.61). Following similar arguments as in (9.4.37) to
(9.4.56), we can show that for any bounded initial condition and for w € Ly,
p€[l,00),

1Zcqllp < Bellwllp and “de“p < Baellwlp, (9.4.68)

for some positive scalars 8. and (4, independent of €. Thus, there exists a scalar
By, independent of ¢, such that

lzollp < Bullwllp- (9.4.69)

Following (9.2.53), it is simple to verify that

CrH{Im (D1)} = Ker (FOQ [8 I(l] 1“;;) = Ker ([g ;1] r;g), (9.4.70)

nd
a ([8 2} F’_QI) T = [8 }1] (;Z) = (xgq) (9.4.71)
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Thus, the last condition of Theorem 9.2.1, ie., Ker(Cz) > C;7'{Im(D;)},
implies that
Cyzy = MIdQ and ”CZ:EUHP < ﬂmEHwHP’ (9472)

for some appropriate constant matrix M and positive scalar §,,, independent
of €. In fact, for any appropriate matrix N with Ker () D Ker (C;), we have

“Nxv”p < lNI ﬂn tE€- ”w“py (9473)

for some positive scalar 3, (independent of ¢).

We are now ready to show that the full order measurement feedback control
law of (9.2.57) solves the RPT problem. It is straightforward to verify that
(9.4.59) and (9.4.60) can be rewritten as

{a’c (A+BF)  — BF(e) z, + Ew
(9.4.74)

e =(Cs+ DoF) © — DyF(¢) x,

I

where A, B, E, C, and D, are as defined in (9.2.30) and (9.2.31). Without
loss of any generality, we assume hereafter that the quadruple (A4, B, C3, D5) is
in the form of the special coordinate Following the same procedures as in (9.4.1)
to (9.4.20), we can transform (9.4.74) with some appropriate transformations
into the following form,

z, = ALd, + Lo6a+ E; 0 + NJ z,, (9.4.75)
Zo = ASde + Leafa + Ecw + Nezo, (9.4.76)
. F.L - F:
T; = AgTi — qu‘e_q_isi(ﬁ)l'i + Lijeq + Eyw + Nz, — [0 0 B, ;(I%Si(g)] To,
(9.4.77)
eo = —[Co Coc Coalzy, e =Cyz, (9.4.78)

for some appropriate dimensional matrices N, , N. and N;, which are all inde-
pendent of e. First, it is simple to see that

Ker (~[Coa Coe c,,d]) S Ker (Cs). (9.4.79)
In view of (9.4.73), we have
lleollp = 0, ase—0. (9.4.80)

Next, let us define a new state transformation as in (9.4.21), i.e.,

z1
I, =17, Tei=Te, Taq:= ( : ) , &= Si(e)zy, i=1,---,mq. (9.4.81)
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Then,
w = AnE; +L e+ E; N—](;"), (9.4.82)
§o= A Fe + Logéa + [Ee N (;" ) , (9.4.83)
(A -B, F)mz-'rL,d ed+[E Ni(a)] (;D ) -[0 0 M,-(e)]:rv,
(9.4.84)
€ =e; =CyTi, €=eq= Cyla, (9.4.85)
where 7
Mi(e) = Si(€) By, 'eTl;Si(E)’ (9.4.86)
and
f/id(E) = S,‘(E)L,‘d, N,;(E) = Si(ﬁ)Ni, E’i(é‘) = S,‘(S)Ei. (9487)

It is clear that the 2-norms of Lig(€), N;(¢) and E;(e) are all bounded, and in
view of the special structure of By, Si(¢) and F; of (9.2.37), we have

0 0 0
Mie)=1| o 0o - 0
L
€
0
= M . + Mi(€) = qu. + Mi(E), (9488)
15 0 €
Co;

where |M;(e)| < &; for some positive scalar &;, independent of &. Thus, (9.4.84)
can be rewritten as,

F; igi

.1 - 8 . .
fﬁi:g(Aqi—-quFi)fti+Lid(E)éd+[Ei(E) NAE)](;U ) - . [0 0 Cq‘. ]Zv,
(9.4.89)
for some bounded N;(g). It is clear that
Ker ([0 0 Cy]) > Ker(Cy). (9.4.90)
In view of (9.4.73), we have
FiQ.' A
— [0 0 Cglzo)l <millwlly, (9.4.91)
p
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for some positive scalar 7; (independent of ¢). Hence, we can view

(;") and T [0 0 C, )z, (9.4.92)

v 13

as some L, signals, whose [, norms are bounded by some € independent scalars.
Then, following the similar procedures as in (9.4.28) to (9.4.56), it is straight-
forward to show that,

lledllp = 0, as e —= 0. (9.4.93)

In view of (9.4.80) and (9.4.93), it is clear that the RPT problem is solved by
the full order measurement feedback control law (9.2.57). &

9.4.C. Proof of Theorem 9.2.4
We first define a new state variable,
Ty =To — v+ Kg121. (9.4.94)

Again, it is straightforward to verify that the closed-loop system comprising
the given system (9.1.1) and the reduced order measurement feedback control
law of (9.2.71) can be rewritten as follows,

Iy = (AR + KRCR)-'L'S + <E2 + KR [%{0]> w, (9495)

&= [A+BF(£)]z—BFg(e)strBHo(s)r-i----+BHK_1(6)r(“_1)+Ew, (9.4.96)

and
h= [02+D2F(e)}a:—D2F2 (€)z+ Do Ho(e)r++ - -+ Dy Hy_y ()r*~D. (9.4.97)

Thus, it is simple to see that the closed-loop system is asymptotically stable
for sufficiently small €, as the closed-loop poles are given by the eigenvalues of
A+ BF(¢) and Ag + KxCr.

Since Ag + KxCr is asymptotically stable, it follows that for any initial
condition, x5 € L, provided that w € L,. Next, we rewrite

Ts

BFy(e)z, = BF(e) ( 0 > and  DyF(e)z, = DyF(e) (£> . (9.4.98)

It follows from (9.2.60) that

C7H{Im (D)} = Ker ([ Ii 8}) , (9.4.99)
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and
0 O 0
[Ik 0] (xs) =0. (9.4.100)
Thus, the last condition of Theorem 9.2.1, i.e., Ker (Cy) D C;'{Im(D;)},
implies that
02(°>=0 and N(O)zo, (9.4.101)
Ts Ts

for any appropriate dimensional matrix N with Ker (N) D Ker (C;). Following
the same procedures as in (9.4.74) to (9.4.93), we can show that

llell, = 0, ase — 0. (9.4.102)

Hence, the RPT problem is solved by the reduced order measurement feedback
control law (9.2.71). 3]



Chapter 10

Infima in Discrete-time H.
Optimization

10.1. Introduction

IN THIS CHAPTER, we present computational methods for evaluating the infima,
of discrete-time H, optimal control problems. The main contributions of this
chapter are the non-iterative algorithms that exactly compute the values of
infima for systems satisfying certain geometric conditions. If these conditions
are not satisfied, one might have to use iterative schemes based on certain
reduced order systems for approximating these infima. Most of the results of
this chapter were reported earlier in Chen [19], and Chen et al. [21].

10.2. Full Information Feedback Case

The main result of this section deals with the non-iterative computation of
the infimum for the following full information feedback discrete-time system
characterized by:

zk+1)= A z(k)+ B u(k)+ E w(k),
» . k) = (é) (k) + (?) w(k), (10.2.1)
h(k) = (0 .Z'(k) + D, u(k) + Doy w(k),

where z € R is the state, u € R™ is the control input, w € R is the external
disturbance input, y € R™? is the measurement output, and h € R’ is the
controlled output of . For ease of reference in future development, we define
Yp to be the subsystem characterized by the matrix quadruple (4, B, Cs, D5).
We first make the following assumptions:
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Assumption 10.F.1: (A, B) is stabilizable;

Assumption 10.F.2: ¥, has no invariant zero on the unit circle;

Assumption 10.F.3: Im (E) C V°(%;) + S®(X5); and

Assumption 10.F.4: Dy; = 0.

In what follows, we state a step-by-step algorithm for the computation of
the infimum ~*.

Step 10.F.1: Without loss of generality but for simplicity of presentation, we
assume that the quadruple (A, B,Cs, Ds), i.e., Ip, has been partitioned
in the form of (2.4.4). Then, transform X, into the special coordinate
basis as described in Chapter 2 (see also (2.4.20) to (2.4.23) for the com-
pact form of the special coordinate basis). In this algorithm, for ease of
reference in future development, we introduce an additional permutation
matrix to the state transformation I'y such that the new state variables
are ordered as follows:

Tc

Ty

zr |. (10.2.2)

T4

Tp

IS
i

Next, we compute

I'E=|EH|. (10.2.3)

Note that Assumption 10.F.3 is equivalent to Ey = 0. Also, for economy of
notation, we denote n, the dimension of R™/V®(X;), which is equivalent
to ny = n} +ng + ny. We note that n, = 0 if and only if the system Zp
is right invertible and is of minimum phase with no infinite zero of order
higher than zero.

Step 10.F.2: Define A, Bz, Bzo, Bz, Fsz, C: and D, as follows:

Af,  LYCi LGy E+
A = BdE;_a Adga BeEg |, E.:= | Eg |, (10.2.4)
0 LpaCy  Apb Ey
B: 0
B, := [Bzo le] := | Bog Bal|, (1025)

Bey O
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and

0 0 G

It follows from the property of the special coordinate basis that the pair
(Ag, B;) is stabilizable. Next, we find a matrix F, such that A, + B, F,
has no eigenvalue at —1. Then define /iz, Bz, EI, C'z, D, and Dsys as:

Ag = (Ag + BoFy + 1)" (A, + By F, - I), ~
B, := 2(A, + B,F, + )"2B,,

E. = 2(A, + B,F, + )"2E,,

. by (10.2.7)
C; = C: + Dzey

Dy =Dy — (Cy + D, F;)(Az + BoF, + I)"'B,,

D22 = Doy — (Cz + Dze)(Az + B, F; + I)-‘lEI' /

0 0 0 I 0
C,:=T,|0 C4 0|, D,=T,|0 0]. (10.2.6)

Step 10.F.3: Solve the following continuous-time algebraic Riccati equation
and algebraic Lyapunov equation, both independent of :

0= [A,~Bo(D,D,) "' D,C.) 52+, [Az—Bz(D;ﬁx)-lb;éz]
~B.(D,D:)7' B, +5. [€,€.~CuDu(D,D.) ' D,C.] 5., (10.2.8)
0= [Ae=Bo(D,D:)7 D,Cu Tut T [A,~ BB, D) DG
~ [Bo~Bu(D, D)7 D, Dan] (B~ B(D,D.)"'D.Dan] , (10.29)

for positive definite solution S, and positive semi-definite solution 7.
For future use, we define

Sz = (As + B, F, + I)S, (A, + F!B. +I)/2, (10.2.10)

and

T; = (Ae+ BoF + )T, (A, + F.B. + I)/2. (10.2.11)
Step 10.F.4: The infimum, v*, is given by

7 = VAmax(T252 ) = V/ Amax(ToS5h). (10.2.12)

This completes the algorithm for computing v* for the full information
feedback case.

We have the following theorem.
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Theorem 10.2.1. Consider the full information system given by (10.2.1). Then
under Assumptions 10.F.1 to 10.F 4,

1. v* given by (10.2.12) is indeed its infimum, and

2. for v > +*, the positive semi-definite matrix P(vy) given by

PO=CY o 5, -1

! -1
s ) 0 (Sz“Tz/’)’2)—l Fs ’ (10213)

is the unique solution that satisfies Conditions 2.(a)-2.(c) of Theorem
4.3.1. Moreover, such a solution P(7) does not exist when y < v*.

Proof. First, we note that it follows from Theorem 2.4.1 and Property 2.4.4 of
Chapter 2 that (Az, Bz, Cz, D) is left invertible with no invariant zeros on the
unit circle. Following the results of Stoorvogel et al. [125] and Lemma 5.3.3, it
is straightforward to show that the following three statements are equivalent:

1. There exists a v suboptimal controller for the full information system
(10.2.1).

2. There exists a -y suboptimal controller for the following auxiliary system
2ok +1) = A oo(k) + By us(k) + Eo wa(k),

Yz (k) (é) zz (k) + (?) we(k),  (10.2.14)
he(k) = Cp zz(k) + D uz(k) + Daz wy(k),

where A;, B;, E;, C; and D, are defined as in (10.2.4) to (10.2.6). Note
that Dys = 0 by the assumption.

3. There exists a -y suboptimal controller for the following auxiliary system

Iz = Az iz+Bzaz+ Ez Wy,

Yo = (é) Is + (9) Wy, (10.2.15)

Flzz C'z iz""Dz az+ D22 mz:

where Ag, By, E;, Cz, D, and Do, are as defined in (10.2.7).

For future use, we denote £, and £, the matrix quadruples (Az, B;,Cz, D;)
and (A, B.,C.,D,), respectively. Note that by Theorems 4.2.1 and 4.3.1,
Items 2 and 3 above are also equivalent to the following:
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1. There exists a solution P, > 0 to the following discrete-time algebraic
Riccati equation,

E.P, A, i E P A,
(10.2.16)
where
D.D, + B P, B, B.P,E,
, = , (10.2.17)
E.P,B, E'PE, —vI

such that the following conditions are satisfied
Ve :== B,P,B, + D,D, > 0, (10.2.18)
R, :=+*1 - E.P,E, + E.P,B,V,'B,P,E, > 0. (10.2.19)

2. There exists a solution P, > 0 to the following continuous-time algebraic
Riccati equation,

~] ~ ~1 ~ ! ~1 =~ ~ x
0= PoA,+ AP, +C.C,— | BalatDaCa | =1 | BoPatDoCs |
E P,+Dy,C, E_ P,+D,,C.
(10.2.20)
with
Dipoll = Do(D,D,) 71 D;1Das < 4°1, (10.2.21)
and o o
G, = | PePs DDz .| (10.2.22)

Furthermore, the solutions to the above Riccati equations, if they exist, are
related by
P, =2(AL + )7'P, (A, + )7L (10.2.23)

Thus, it is equivalent to show that v* given by (10.2.12) is the infimum for
the full information system (10.2.1) by showing that it is an infimum for the
auxiliary system in (10.2.15). This can be done by first showing the properties
of the auxiliary system of (10.2.15) and then applying the results of Chapter 6.
We note that the matrix F; in Step 10.F.2 of the algorithm is a pre-state
feedback gain, which is introduced merely to deal with the situation when A,
has eigenvalues at —1 and the inverse of I + A, does not exist. For the sake
of simplicity but without loss of generality, we will hereafter assume that A
has no eigenvalue at —1 and F, = 0. We will first show the following two facts
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associated with the auxiliary system (10.2.15): There exists a pre-disturbance
feedback to the system in (10.2.15) in the form of,

tiy = Fyibg + g, (10.2.24)
such that
1. Dyg + D, Fy, = 0, and
2. Im (B, + B, F,) CVO(5,) + 8°(%,).
In fact, we will show that such an F, is given by
Fy=—(D.D,)™ D’ Dyy. (10.2.25)
In order to make our proof simpler, we first apply a pre-state feedback law

0 0 0

] To + Vg, (10.2.26)

to the system in (10.2.14) such that the resulting dynamic matrix A, + B, F,
has the following format,

0  Aa 0 |, (10.2.27)

[A:z'-a L;dCd LIbe
0 LyCq Aw

while the rest of the system matrices in (10.2.14) remain unchanged. Hence, it
is without loss of generality that we assume that A, is already in the form of
(10.2.27). Also, we assume that both Agg and Ay have no eigenvalue at —1.
Then it is simple to verify that

(A;ra + I)—l X1 Xa
(A, +1)71 = 0 (Agg + 1)1 0 ,
0 —(Abb+1)—1Lded(Add+I)_l (Abb'l-I)_l
(10.2.28)

where
Xi=—(AL, + D7 [LY, - L}, Cy(Aw + I) ™2 Lya] Ca(Aga + )72, (10.2.29)
Xy = —(AL, + D)7 LECy(Aw + )7, (10.2.30)
and

D,=D,-C,(A, +I)"'B,
I 0
=T, | = Ca(Adaa+1I)"'Bog —Ca(Aga+1)7'By
X3 Cy(Asp + 1) LyaCy(Aaq + 1)1 By

)
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where

X3 = Cb(Abb + I)—lLded(Add + I)-IBOd — Cb(Abb + I)_lBob. (10.2.31)

Define
I 0 0
I,=T, | —Ca(Aaa + I)"" Bou —Ca(Ada+1)7'By 0
X3 Cb(Abb+I)—1Lded(Add+I)‘1Bd I
(10.2.32)

We note that I', is nonsingular. This follows from the property of the special
coordinate basis (see Theorem 2.4.1) that the triple (A4q, Bq, Cq) is square and
invertible with no invariant zero, and hence Cy(Aqq + I)~! By is nonsingular.
Then we have

o Jro
D,=F, |0 I], (10.2.33)
00

0 0
Doy = —Co(Az+I)7'E, = [ —Ca(Aga+ 1)1 Eq :| =T, {X4} ,
Co( )"1Eq

Abb+[)_1Lded(Add+I 0
(10.2.34)
where
Xy = [Cd(Add + I)—le]_lcd(Add + I)_lEd. (10.2.35)

It is now obvious to see that the following pre-disturbance feedback law to
(10.2.15)
0

ﬁzzﬁwmz+ﬁz:_[X4

} Wy + s, (10.2.36)

guarantees that Doy + Dzﬁ' w = 0. We also have

EF
E,+ BFy=2(A +I)"%(Ey + B,F,) =2(A, + )™ | E3 |, (10.2.37)
0
where
E; =FE; - Bd[Cd(Add + I)_le]—ICd(Add + I)_lEd. (10.2.38)

This shows the first fact. Since D, is of maximal column rank, it follows that
the above F,, is also equivalent to —(D;Dz)”lf);f)gg. Next, let us proceed to
prove the second fact, i.e.,

Im (E; + B.Fy) C VO (E,) + 8°(Z;).
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We will have to apply several nonsingular state transformations to the system
i'z = Az Tz + Bz Uy + (Ez +Bmﬁw) mm:
- < L (10.2.39)
he =Cs &g + Dy 0y

and transform it into the form of the special coordinate basis as given in The-
orem 2.4.1. First let us define a state transformation

T, = (A, + )2 (10.2.40)
In view of (10.2.28), it is straightforward, although tedious, to verify that
(Af,+I)2 * *
T, = { 0 (Aga+I)2 0 ) (10.2.41)
0 Xs (App +1)72

where xs are matrices of not much interest and

Xs = —(Apy + I) " LoaCa(Aga + I)7" + (Apy + I) "' LygCa)(Aga + )71,

(10.2.42)
and
Ay =T, A, Ty = (Ag—I)(Ag+1)7! (10.2.43)
(AT -D(Af,+D~ * 2 AL+ DL Cy (A +1) 7
= 0 (Add—f)(Add-l-I)_l 0 ,
0 2(Abb+I)*lLded(Add+I)—l (Abb—I)(Abb+I)_1
Bf 0
By:=T. B,=2B, =2 [Bo,, Bd} , (10.2.44)
Beyy 0
Ef
By =T, (By+B,Fy)=2| E5 |, where B, =0, (10.2.45)
Ey
C, :=C,T,
0 0 0
=T, |0 —[Ci(Ada+I)"'Ba] " Ca(Ada+I)~? 0 (10.2.46)
0 —Cb(Abb+I)_2Lbdcd(Add+I)—1 Cb(Abb +I)—2

] o Jro
D,=Db,=T,|0 I|. (10.2.47)
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In order to bring the system of (10.2.39) into the standard form of the special
coordinate basis, we will have to perform another state transformation that will
cause the (3, 2) block of C; in the right hand side of (10.2.46) to vanish. The
following transformation T, will do the job,

L 0 0
T.=10 I 0 . (10.2.48)
0 LpaCy(Aga+I)7F  (Apy + I)?

It is quite easy to verify this time that

0
0 2(Abb+1)_2Lded(Add+1)‘2 (Abb+1)_l(Abb—I)

(10.2.49)
2(AL,+1)T LY Cy(Aw+1)
(Add—f)(Add-*-I)—l 0 y
0
B, ,(10.2.50)

*  —(Apw+1)"2LygCy(Aga+1)"1By

Ez = I—IEx
EF Ey
=2 E;} =2|E;|, (10.2.51)
(Ass + I)"2[Ey — LyaCy(AS, + 1)1 EZ] 0
G, = {Cf‘)] =G,
Czl
0 0 0
=T, | 0 —[Cd(Add + I)_le]_lcd(Add + I)—2 0 ) (10.2.52)
0 0 G
D,:=D,=D,. (10.2.53)

Then we have
(Az_a _I)(A;l‘-a +I)_1 * 2(A2_a +I)—1L:bcb(Abb +I)
0 ,

0 0 (Ao + 1)1 (Ape — I)
(10.2.54)
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where

A, = (Agg — I)(Aaa + I)7' + 2B4[Ca(Ada + 1) 7' Ba) ' Ca(Aaa + I) 2.

(10.2.55)
Define another nonsingular state transformation,
A I 0 T,
T.=10 I 0|, (10.2.56)
0 0 I

with T, being a solution to the following general Lyapunov equation
(I=AF)I+AL) T AT (A +I) " (A~ 1) = 2(A%, )" LY, Co (A +I).

It follows from Kailath [64] that such a solution always exists and is unique if
AY, and Ay have no common eigenvalue. Then it is straightforward to verify
that it would transform the (1, 3) block of fiz - ﬁzoézo in (10.2.54) to 0 while
not changing the structures of other blocks. Hence, T, would also transform
the system (/L., B,,C., f)z) and E, into the standard form of the special coor-
dinate basis as given in Theorem 2.4.1 since the pair {(Ap + 1)~ (Ap — I), Cp}
is completely observable due to the complete observability of (Ags, Cp). It is
now clear from the properties of the special coordinate basis that

Im (E;) C VO (S;) + S°(%,),
where ¥, is characterized by (/1,,, Bz, é’m, ﬁz), which is equivalent to
Im(E, + B.F,) CVo(Z;) + S°(%,).

This proves the second fact.
Next, let us apply a pre-disturbance feedback law,

iy = Fytbg + 0y = —(D,Dg) "' D, Dagivg + s, (10.2.57)

to the auxiliary system (10.2.15). Again, this pre-feedback law will not affect
solutions to the Hy, problem for (10.2.15) or to the solution P, of (10.2.20)-
(10.2.22). After applying this pre-feedback law, we obtain the following new
system

~ ~ |

.= A, &, + B, i, + [E, —Bz(DzDz)-lb;Dm] g,

T =<é> 7 + (?) G, (10.2.58)

he= C, iy + D, 9, + 0 Wy
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Then it follows from Corollary 4.2.1 that the existence condition of a v subop-
timal controller for (10.2.58) is equivalent to the existence of a matrix P, > 0
such that

~! ~ ~] ~

+ o) (PaBs + Co D,
~ ~ ~ ~f ~ ~! ~ ~ ~ ~) ~ ~1 ~ I _

+P, [E, - Bo(D,D.)™ D, D (B2 = Bo(D,D,) 7 D Daa| Paf?,

is satisfied. Note that the solution P, to the above Riccati equation is identical

to the solution that satisfies (10.2.20)-(10.2.21).

Now, it follows from Theorem 3.3.1 that (AZ,BZ,C-'I,IL) is left invertible,
and is free of infinite zeros and stable invariant zeros as well as invariant zeros
on the unit circle. Also, in view of the second fact of the auxiliary system of
(10.2.58), it satisfies Assumptions 6.F.1 to 6.F.4 of Chapter 6. Following the

results of Chapter 6, we can easily show that

7 =V Amax (T2 85 ), (10.2.59)

and for any v > +*, the positive definite solution P, of (10.2.20)-(10.2.22) is
given by

P,=(S,-T./v)7 L. (10.2.60)
It then follows from (10.2.23) that for any v > v*, the positive definite solution
P, of (10.2.16)-(10.2.19) is given by

P, =2(A" +)"Y(S, = T2/ (4. + D71, (10.2.61)
and hence v* can also be obtained from the following expression,
v =/ Amax(Te Sz 1), (10.2.62)

where S, and T, are as defined in (10.2.10) and (10.2.11), respectively. More-
over, it is straightforward to verify that

PO = [0 (s, - oy | T

is the unique solution that satisfies Conditions 2.(a)-2.(c) of Theorem 4.3.1.
Finally, note that (AI,BZ, C,, DI) is left invertible, and is free of infinite
zeros and stable invariant zeros as well as invariant zeros on the unit circle. It
follows from Richardson and Kwong [106] that the solution S, to the Riccati
equation (10.2.8) is positive definite because (Ag, B) is controllable, and the
solution T, to the Lyapunov equation (10.2.9) is positive semi-definite. In fact,
both of them are unique. This completes the proof of our algorithm. &

The following remarks are in order.
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Remark 10.2.1. For the case when Dy # 0, Assumption 10.F.3 should be
replaced by the following conditions:

1. Dyg := Doy — C:(A; + I)71E, is in the range space of D, and
2. Im [E - BI(D;D,)—lb;Dn] CVO(S,) +5°(5,).

Then our algorithm would carry through without any problems. We would also
like to note that if (A, B,Cs, D) is right invertible, then (A, B;,Cy, D) is
invertible and D, is square and nonsingular, and V°(5,;) + 8§°(£,) = R™.
Hence, the above two conditions will be automatically satisfied. Such a result
was first reported in Chen [19]. ®

Remark 10.2.2. If Assumptions 10.F.3 and 10.F .4 are not satisfied, then one
might have to approximate iteratively the infimum +* by finding the smallest
nonnegative scalar, say 4* > 0, such that the Riccati equation (10.2.20) and
(10.2.21) are satisfied. &

~ We illustrate the above results in the following example.

Example 10.2.1. Consider a full information system (10.2.1) characterized by

1 1111 0 01 1
0 0 0 11 0 0 O 1
A=1]0 0111, B=j1 0 0|, E=1}1], (10.2.63)
11111 010 1
0 0 011 0 0 O 0
and
00 -1 00 1 00 0
Co={0 0 0 1 0|, Dy=1{0 0 0|, Dypp=1|0]|. (10.2.64)
00 001 0 00O 0

It is can be verified that (A, B) is controllable and (A, B, C3, D5) is neither right
nor left invertible, and is of nonminimum phase with two invariant zeros at 0
and 2, respectively. Moreover, it is already in the form of the special coordinate
basis as given in Theorem 2.4.1 and Assumption 10.F.3 is satisfied as Ej = 0.
Hence, Assumptions 10.F.1 to 10.F .4 are all satisfied. Following the algorithm,
we obtain
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000 10
C.=10 10|, D,=|0 0],
001 00

i [0.25 0.25 0.25]

A, =1 050 -0.50 0.50
-025 075 -0.25

) 0.3125 —0.1875 ) 0.125
B,=|-06250 13750|, E,=| 0.750

0.4375 —1.0625 -0.625
and
) ) 1.000  0.000 3 0.00
C.=C;, D,= 0.250 —0.750|, Dgyp=]-0.50].
-0.125 0.375 0.25

It is simple to verify that (A, By, C5, Dg) is left invertible with two invariant
zeros at 1 and 1/3, respectively. Solving Riccati equations (10.2.8) and (10.2.9),
we obtain

S, =|-0.207890  1.202254 -1.005636

0.227615 -0.207890  0.019725
0.019725 -1.005636  1.014089

and

—-0.06250  0.041667 —0.020833

) 0.09375 —0.062500  0.031250
T, = .
0.03125 —0.020833  0.010417 |

Finally, we get

0.562306 —0.145898 —0.145898 [1/3 0 0
Sz = | —0.145898  0.618034 -0.381966|, T,=| 0 O O},
—0.145898 —0.381966  0.618034 | 0 0 0
and the infimum
~* = 0.934173. El

10.3. Output Feedback Case

We present in this section a well-conditioned non-iterative algorithm for the
exact computation of v* of the following measurement feedback discrete-time
system X,

y(k) = Cy z(k) + Dy w(k), (10.3.1)

sk+1)= A z(k) + B u(k) + E w(k),
x
{ h(k) = C5 z(k) + D2 u(k) + Dy w(k),
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where £ € R"™ is the state, u € R™ is the control input, w € R? is the
external disturbance input, y € R? is the measurement output, and h € Rf is
the controlled output of ¥. Again, for easy reference, we define X, to be the
subsystem characterized by the matrix quadruple (4, B, Cs, D,) and ¥, to be
the subsystem characterized by the matrix quadruple (A, E,Cy, D;). We first
make the following assumptions:

Assumption 10.M.1: (A, B) is stabilizable;

Assumption 10.M.2: ¥, has no invariant zero on the unit circle;
Assumption 10.M.3: Im (E) C V°(XZ;) + S°(X5);

Assumption 10.M.4: (A, C1) is detectable;

Assumption 10.M.5: ¥, has no invariant zero on the unit circle;
Assumption 10.M.6: Ker (C3) D V°(Xq) N S°(X,); and

Assumption 10.M.7: Dy, = 0.

As in the previous section, we outline a step-by-step algorithm for the com-
putation of v* below:

Step 10.M.1: Define an auxiliary full information problem for
zk+1)= A zk)+ B ulk)+ E w(k),

(k) = (é ) 2(k) + (?) w(k), (10.3.2)
h(k) = Cy z(k) + Dy u(k) + Dy w(k),

and perform Steps 10.F.1 to 10.F.3 of the algorithm given in the previous
section. For future use and in order to avoid notational confusion, we
rename the state transformation of the special coordinate basis for ¥p as
I'sp and the dimension of A, as ngp. Also, rename S, of (10.2.10) and T,
of (10.2.11) as S, and Typ, respectively.

Step 10.M.2: Define another auxiliary full information problem for
z(k+1)= A z(k) + C] u(k) + C; w(k),
CEHEC e(Duw, aoss
h(k) = E' =z(k)+ D} u(k) + Djy w(k),

and again perform Steps 10.F.1 to 10.F.3 of the algorithm given in Sec-
tion 10.2 one more time, but for this auxiliary system. Let X} be the
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dual system of ¥4 and be characterized by (A’,C1, E',D}). We rename
the state transformation of the special coordinate basis for ¥3 as I'sq and
the dimension of A; as n;q, and S, of (10.2.10) and T, of (10.2.11) as
Sz and Tyq, respectively.
Step 10.M.3: Partition
*x

o (T5g)' = [* r} : (10.3.4)

where I is a nzp X nzq matrix, and define a constant matrix

M TorSys +TSAT'S; -S4 ] (1035
~ToaSil'Ssy TeaSig
Step 10.M.4: The infimum ~* is then given by
Y =V Amax(M), (10.3.6)
where M has only real and nonnegative eigenvalues.

Proof of the Algorithm. Once the result for the full information case is
established, the proof of this algorithm is similar to the one given in Section 6.3
of Chapter 6. 23]

The following remarks are in order.

Remark 10.3.1. Consider the given discrete-time system (10.3.1) that satisfies
Assumptions 10.M.1 to 10.M.7. Then for any v > ~*, where v* is given by
(10.3.6), the following P(y) and Q(7),

—1v |0 0 -
P =) [0 (Sor = mp/v2)‘1]r”l’ (1037
and
Qy) = (T7q)' 0 0 r;t (10.3.8)
v Q710 (Szq =T/t "o e
satisfy Conditions 2.(a)-2.(g) of Theorem 4.3.1. ®

Remark 10.3.2. For discrete-time H,, control, v* for the full information
feedback system is in general different from that of the full state feedback system
regardless of D2 = 0 or not. For the state feedback case, i.e., C; = I and
D; = 0, we note that the subsystem X is always free of invariant zeros (and
hence free of unit circle invariant zeros) and left invertible. Thus, as long as Xp
is free of unit circle invariant zeros and satisfies Assumption 10.M.1 to 10.M.3,
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one can apply the above algorithm to get the infimum, v*. For this special
case ['sq, Nzq, Szq and Tpq in Step 10.M.2 of the above algorithm can be
directly obtained using the following simple procedure: Compute a nonsingular
transformation I'yq such that

0
I E = [E} , (10.3.9)
where E is a Nzq X Ngq Nonsingular matrix. Then S;q and T4 are respectively
given by
A—1\! ~—-1

. Seq = (E ) ET and Tuq=0, (10.3.10)

and hence . '
v* = [Amax(TerS;m + TS;aI'S;H] 2. (10.3.11)
Note that in general, v* > {Amax(TepS5)} 2. @)

Remark 10.3.3. For the case when D2 # 0, Assumptions 10.M.3 and 10.M.6
should be replaced by the conditions given in Remark 10.2.1, which is associated
with the full information system of (10.3.2), and a set of conditions similar to
those in that remark, but for the full information system of (10.3.3). Then our
procedure would again carry through and yield the correct result. Note that if
¥ is right invertible and X is left invertible, then all these conditions will be
automatically satisfied. The result will then reduce to that of Chen [19]. ®

Remark 10.3.4. If Assumptions 10.M.3 and 10.M.6, i.e., the geometric condi-
tions, and Assumption 10.M.7 are not satisfied, then an iterative scheme might
be used to determine the infimum. This can be done by finding the smallest
scalar, say 4%, such that all the following conditions are satisfied:

1. The Riccati equation

D;PDZP D;pDnP

X . . ~ -
DyseDee  DigDage—(37)21

has a positive definite solution P; > 0, which satisfies
Dl22p[I - DIP(D;PDEP)_lb;P]D”P < (’7*)21'

Here we note that all the sub-matrices in the above Riccati equation are
defined as in (10.2.7) but for the auxiliary system (10.3.2) of Step 10.M.1.
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2. The Riccati equation

~ ~ -~ ~ ~1 -~
0=0Q,Azq + A;QQI +CqCrq —

B0, +D..Cuq ]
Erq@u+D3eCa
DiDea  DieDme |
DiseDeq  DysgDaze— ()1

~ 1 ~ ~ 1 ~
BzQQz +DzQCIQ ]
~ ! )

X ~ ~ ~
EZQQz +D22QCzQ

has a positive definite solution Q~z > 0, which satisfies
~ 1 ~ ~ ! o~ R ~ —x
Dyoq(l = D3q(D4qDsq) 1Dm]D22Q < (7L

Similarly, we note that all the sub-matrices in the above Riccati equation
are defined as in (10.2.7) but for the auxiliary system (10.3.3) of Step
10.M.2.

3. Finally, the coupling condition holds, i.e.,
Amax{ P0G, T }< (7°)2, (10.3.12)
where I is as defined in (10.3.4). ®
The following example illustrates our computational algorithms.

Example 10.3.1. We consider a discrete-time measurement feedback system
(10.3.1) with A, B, E, C2, Dy and Ds; being given as those in ExXample 10.2.1
of the previous section. We consider the full state feedback case first, i.e.,
Cy = I and D; = 0. Following the algorithm and the simplified procedure in
Remark 10.3.2, we obtain those matrices as in the full information case and

1 1 1 01
-1 0 00O
Teo=| 0 =1 0 0 0|, ngq=1,

0 0 -1 00
0 0 010

1

SzQzla T:BQ:O; = 1 ’
0
and

~* = 3.181043.

Now, we consider the computation of v* for the given system with an output
measurement characterized by

C;=[0 0 0 0 1], D;=0. (10.3.13)
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It can be shown that (A, C}) is detectable and (A, E, C;, D) is invertible with
three invariant zeros at 0, 0.618 and —1.618, respectively, and one infinite zero
of order 2. Hence, Assumption 10.M.6 is automatically satisfied. Following the
algorithm, we obtain

52.08746  76.55250 66.46233 —0.95905 2.61803 —4.23607
92.57546 138.46401 120.13777 -1.65303  5.23607 —7.85410
28.03444  42.12461 36.88854 —0.69398 2.61803 —2.61803

M= 19.20270  29.28949 24.96658 0 0 -—1.44097 )’
0 0 0 0 0 0
—46.97871 -70.77709 —-61.686918 0.95905 -—-3.61803 4.23607
and

4* = 15.16907. E

10.4. Plants with Unit Circle Zeros

We discuss in this section a non-iterative algorithm for computing v* of the
measurement feedback system (10.3.1) whose subsystems X, and/or X, have
invariant zeros on the unit circle. We assume that (A, B) is stabilizable and
(A, C1) is detectable. Let F and K be matrices of appropriate dimensions such
that A+ BF and A + KC; have no eigenvalue at —1 and define

Ap == (A+BF +I)"Y(A+ BF - I), \
B, :=2(A+ BF +I)"'B,
E. :=2A+BF+1)"'E,
Cap := (Co + DyF)(A+ BF + 1)1,
Dsp := Dy — (Co + D;F)(A+ BF +I)"'B,
Dagp := Doy — (Cy + DyF)(A+ BF + I)'E, )

b (10.4.1)

and .
Aq:=(A+KC +I)"Y(A+ KC, - 1), )

Ciq :=2C(A+ KC + 1)1,
Caq :=2C2(A+ KC, + 1)1,
Eq:=(A+KC, +D)"Y(E + KD),
Diq:=D; - Ci(A+ KC, +I)"Y(E + KD),
Dasg := Doy — C3(A+ KCy + I)"Y(E + KD,). )
Let &, denote the system characterized by (AP,BP, C 2P,D2p) and f): denote

the system characterized by (Alq, C’;Q,E‘;,D;Q). We also make the following
assumptions:

) (10.4.2)
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Assumption 10.Z.1: Im (Dy;) C Im (Dys);

Assumption 10.2.2: Im |E, — Be( D2PD2p)TD2PD22p] CV () +S7(Ep);
Assumption 10.Z.3: Im (ﬁ;m) C Im (f)’lQ);

Assumption 10.Z.4: Im [C‘;Q—C'IIQ(DMD;Q)TDmf);QQ] CV“(ES)+S‘(§]Z).

It can be shown that Assumptions 10.Z.1-10.Z.4 are independent of the
choice of F and K in (10.4.1) and (10.4.2). The computation of * for a plant
whose subsystems have invariant zeros on the unit circle can be done by slightly
modifying the algorithm given in Section 6.4 of Chapter 6. In particular, X; in
Steps 6.Z.1 and 6.Z.5 should be replaced by £, and (6.4.2) should be replaced
by the following

- E;}-P -
Ebp
Ege
Eee
Ecr

L Egp |

FS—PI EP - BP(E;PD2P)fD,2pD22P] = (10.4.3)

Also, ¥ in Steps 6.Z.2 and 6.Z.5 should be replaced by Eg and (6.4.19) should
be replaced by
- E;—Q -
Eiq
-1 |~ ~1! ~ ~ ! t 7 ~ f qu
r Q [C2Q - Clq(DlQDIQ) DlQD22Q] = E- . (10.4.4)
aQ
E.q
L EdQ J

The rest of the algorithm remains the same.



Chapter 11

Solutions to Discrete-time
Hy, Problem

11.1. Introduction

THIS CHAPTER IS concerned with the discrete-time H, control problem with
full state feedback, full information feedback and general measurement feed-
back. The objective is to present a solution to the discrete-time* Ho, control
problem. One way to approach this problem is to transform the discrete-time
H, optimal control problem into an equivalent continuous-time H,, control
problem via bilinear transformation (see Chapter 3). Then the continuous-time
controllers that are solutions to the auxiliary problem can be obtained and
transformed back to their discrete-time equivalent using inverse bilinear trans-
formation (see again Chapter 3). Another way is to solve this problem directly
in discrete-time setting and in terms of the performance of the original system.
This approach leaves the possibility of directly observing the effect of certain
physical parameters. Finally, a novel aspect of this chapter is that we show
that if certain states or disturbances are observed directly, then this yields the
possibility of deriving a reduced order controller. This result corresponds with
the continuous-time reduced order controller structure of Chapter 7. In fact, all
results presented in this chapter can be regarded as the counterparts of those
in Chapter 7.

The main results of this chapter are similar to those in [125], but our pre-
sentation is quite different. We arrange them in a way so that it is easier for
software implementation.
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11.2. Full Information and State Feedbacks

We first consider in this section the following full information feedback system,

zk+1)= A =z(k)+ B u(k)+ E w(k),
v d yk) = (é) z(k) + ((}) w(k), (11.2.1)
hk) = Cy z(k) + Dy u(k) + Dos w(k),

where £ € R" is the state, u € R™ is the control input, w € R is the external
disturbance input, y € R™* is the measurement output, and h € R® is the
controlled output of . As usual, we define ¥; to be the subsystem characterized
by the matrix quadruple (A, B,C>, Ds). We assume that ¥, has no invariant
zero on the unit circle and its infimum is given by v*. We are interested in
designing a full information feedback control law

u(k) = Fiz(k) + Fw(k), (11.2.2)

such that when it is applied to the given system (11.2.1), the resulting closed-
loop system is asymptotically stable and the resulting closed-loop transfer ma-
trix from w to h has an Hy,-norm less than a given vy > v*.

In what follows, we state a step-by-step algorithm for the computation of
F1 and F2.

Step 11.F.1: Without loss of generality but for simplicity of presentation, we
assume that the quadruple (4, B, Cy, D), i.e., Ly, has been partitioned
in the form of (2.4.4). Then, transform ¥, into the special coordinate
basis as described in Chapter 2, i.e., find nonsingular transformations I';,
I'; and I, such that

[ Aee  BcE; BcEYL LeaCa LaGh ]
0 4L, 0 LCi LG
I7HA-BoCao)ls=| 0 0 Af, LHCy LEG |,
BuEs. B4E;, BiE} Asq BaEa
L 0 0 0 LeaCa App |
Coo [Coc Con Cd, Con Cod
F;l [C' ]Fs ={ 0 0 0 C; 0|,
2t Lo 0o 0o o0 G
[Boe 0 B,
By, 0 0 I, 0 0
I;'[By B |Ii=|Bf, 0 0|, F;1D2Fi=|: 0 0 0]-
Bog By O 0 0O
LBy 0 O
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Note that an additional permutation matrix to the state transformation
has been introduced here to the original SCB such that the new state
variables are ordered as follows:

Tc
T,
= |z |. (11.2.3)
Z4
Tp
Next, we compute
E.
EF
['E/y=|EF|. (11.2.4)
Eq4
Ey

Step 11.F.2: Let F, be any appropriate dimensional constant matrix such that
all the eigenvalues of A.. — B.F. are on the open unit disc. This can be
done as (A, B.) is completely controllable.

Step 11.F.3: Define A;, B,, E;, C, and D, as follows:

AY, LTCy LYLG E}
Az = l:BdE;a Add BdEdbjl, EI = Ed s (11.2.5)
0 LyaCa  Avb Ey
B 0
‘Bz = BOd Bd y DQQZ 2=D22/’)’, (1126)
Boy O
and
0 0 0 Imy O
Cc,=T,|0 C4y 0|, D, =T, 0 O0f. (11.2.7)
0 0 G 0 0

Step 11.F.4: Solve the following discrete-time algebraic Riccati equation:

B.P,A,+D.C, ]’ _1[ B.P,A,+D.C, ]
E.P A, + Dyy,C.| ° | ELP, A, + D}y, C,
(11.2.8)

m:%g&+qa—[

where
D.D, + B,P,B; B.P,E,

Gy =
[ E.P,B, E.P,E, + Dy Dagy — I

] . (11.2.9)

for P, > 0. Note that because (4., B;,Cy,D;) is left invertible and
only has unstable invariant zeros, such a P, always exists provided that
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~ > «*. In fact, one can use the very accurate method given previously in
Chapter 3 to obtain this P,. For future use in the output feedback case,

we compute
X =(T;Y 0 0lpa (11.2.10)
R o p,|Fs- 2.
Step 11.F.5: Next, compute
Fi; = (B,P,B, + D,D;)"*(B,P,A; + D.C;), (11.2.11)
and
Fyy = (BLP,B, + D.D,;) ' (BLP,E, + D.,Dy3,). (11.2.12)

Then, partition Fj, as follows:

F(I-!t-zx FOdz FOba:
Ff. Fue Faol]

daz

Fiz = (11.2.13)

Step 11.F.6: Finally, the gain matrices F; and F» are respectively given by

Coc C&z C(-)tz + F(;;z Cod + Foaz Cob + Fope

Fy=-T; |Es. E, Ft. Fuaz Fase r;t,
F. x * * *
(11.2.14)
and
Fyy
Fy = —T [ j ]7, (11.2.15)

where xs are some arbitrary matrices with appropriate dimensions.

We have the following theorem.

Theorem 11.2.1. Consider the full information feedback discrete-time system
(11.2.1). Then under the full information feedback law,

u(k) = Fiz(k) + Fow(k), (11.2.16)

with F; and F> given by (11.2.14) and (11.2.15), respectively, the closed-loop
system is asymptotically stable and the H,-norm of the closed-loop transfer
matrix from the disturbance w to the controlled output h is less than 7.
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Proof. It is straightforward to verify that the poles of the closed-loop sys-
tem comprising the given full information system (11.2.1) with the control law
(11.2.16) are given by A.. — B.F,, A;, and A, — B, F;;. We note that both
Acc — B.F; and A7, are asymptotically stable. Hence, the closed-loop system
is stable if and only if A, — B, F}, is stable. Moreover, it is also simple to show
that its closed-loop transfer matrix from w to h, say Thy, is equal to YT, 4, ,
where Tj_,, is the transfer matrix from w; to h, of the closed-loop system
comprising the following auxiliary system,

i, = Az T + By uz + E; w,,

Yz = (é) T + (?) Wg, (11.2.17)

hy = Cg zz + Dy ug + Doy wy,

with a full information control law,
Uy = —Fip2, — Fozwg. (11.2.18)

Because (Az, Bz, Cz, D;) is left invertible and has only unstable invariant zeros,
it follows from the result of [124] that the solution to the Riccati equation
(11.2.8) is indeed a positive definite one provided that v > +4*. Moreover, we
also have A; — B, F, is asymptotically stable and ||Th,w, |lco < 1. Hence, the
result of Theorem 11.2.1 follows. 73]

We illustrate the above result with a numerical example.

Example 11.2.1. Consider a discrete-time full information system (11.2.1)
with matrices A, B, E, Cy, Dy and D,y are as given in Example 10.2.1 of
the previous chapter. The infimum for this problem was computed in Example
10.2.1 to be y* = 0.934173. Let us choose a v = 0.934174, which is slightly
larger than v*. Following the above algorithm, we obtain

0 0 -0.745354 -1.078688 —1.078688

Fi=1]-1 -1 -1412022 -1.872678 -—1.872678 |,
-1 0 0 0 0
and
—0.872677
F, = | —=1.206011
0

The closed-loop poles, i.e., \(A+BF;) = {0,0,0,0,0.38197}. The singular value
plot of the closed-loop transfer matrix from w to h in Figure 11.2.1 clearly shows
that its H-norm is less than the given v = 0.934174. E
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Figure 11.2.1: Singular values of T},, under full information feedback.

As was shown in Chapter 10, for discrete-time systems, the infimum associ-
ated with the given full information feedback system is in general different from
that associated with its corresponding full state feedback system, i.e.,

z(k+1) = A z(k) + B u(k) + E w(k),
yk) = =z(k) (11.2.19)
h(k) = C2 z(k) + Dy u(k) + D22 w(k).
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