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Definition of convexity

Let C C R" be a convex set, with z1,...,2r € C, and let 61,...,0, € R satisfy 6; > 0,
01+ -+ 0 = 1. Show that 6121 + - - - + Opxr € C. (The definition of convexity is that
this holds for k£ = 2; you must show it for arbitrary k.) Hint. Use induction on k.
Solution. This is readily shown by induction from the definition of convex set. We illus-
trate the idea for k = 3, leaving the general case to the reader. Suppose that z1, z2,z3 € C,
and 01 + 02 4+ 03 = 1 with 61,602,605 > 0. We will show that y = 6121 + 0222 + 0323 € C.
At least one of the 6; is not equal to one; without loss of generality we can assume that
01 # 1. Then we can write

y = b1x1 + (1 — 01)(paw2 + p3xs)
where 2 = 02/(1 — 61) and p2 = 03/(1 — 01). Note that pa, us > 0 and

0o + 03 o 1—-6, -
1-60 1-6,
Since C' is convex and z2,x3 € C, we conclude that pusxe + usxs € C. Since this point
and z; arein C, y € C.

Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.

Solution. We prove the first part. The intersection of two convex sets is convex. There-
fore if S is a convex set, the intersection of S with a line is convex.

Conversely, suppose the intersection of S with any line is convex. Take any two distinct
points 1 and x2 € S. The intersection of S with the line through x; and x> is convex.
Therefore convex combinations of 1 and z2 belong to the intersection, hence also to S.

1+ pe =

Midpoint convexity. A set C' is midpoint conver if whenever two points a, b are in C, the
average or midpoint (a + b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C is closed and midpoint convex, then C is convex.

Solution. We have to show that 6z + (1 — 0)y € C for all € [0,1] and =,y € C. Let

6 be the binary number of length k, i.e., a number of the form
0 =127+ 2+ o2

with ¢; € {0,1}, closest to 6. By midpoint convexity (applied k times, recursively),
0® )z + (1 — 0™y € C. Because C is closed,

Jim @Mz +(1—0M)y) =0z + (1 —0)y e C.

Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)
Solution. Let H be the convex hull of S and let D be the intersection of all convex sets
that contain S, i.e.,

D= {D|D convex, D 2 S}.

We will show that H = D by showing that H C D and D C H.

First we show that H C D. Suppose © € H, i.e., x is a convex combination of some
points x1,...,x, € S. Now let D be any convex set such that D O S. Evidently, we have
T1,...,Zn € D. Since D is convex, and z is a convex combination of z1,...,z,, it follows
that z € D. We have shown that for any convex set D that contains S, we have z € D.
This means that x is in the intersection of all convex sets that contain S, i.e., x € D.
Now let us show that D C H. Since H is convex (by definition) and contains S, we must
have H = D for some D in the construction of D, proving the claim.
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2.5

2.6

Examples

What is the distance between two parallel hyperplanes {z € R™ | "« = b1} and {z €
R" | aTa = bo}?

Solution. The distance between the two hyperplanes is |b1 — b2|/||all2. To see this,
consider the construction in the figure below.

2 = (bo/lla]*)a

w1 = (br/[la]*)a

atx =0

The distance between the two hyperplanes is also the distance between the two points
x1 and x2 where the hyperplane intersects the line through the origin and parallel to the
normal vector a. These points are given by

w1 = (bi/lal3)a, @2 = (b2/l|al3)a,

and the distance is
|21 — 22|z = |b1 — b2|/||a]|2-

When does one halfspace contain another? Give conditions under which
{z|a"z <b} C{z|a"z<b}

(where a # 0, a # 0). Also find the conditions under which the two halfspaces are equal.
Solution. Let H = {z | a”x < b} and H = {x | "= < b}. The conditions are:

e H C H if and only if there exists a A > 0 such that @ = Aa and b > Ab.
e H = H if and only if there exists a A > 0 such that @ = Aa and b = \b.

Let us prove the first condition. The condition is clearly sufficient: if @ = Aa and b > \b
for some A > 0, then

aTbe = /\aTmSAb = ELT.CL‘SZ;,

i.e., H CH.

To prove necessity, we distinguish three cases. First suppose a and @ are not parallel. This
means we can find a v with @7v = 0 and a”v # 0. Let & be any point in the intersection
of H and H, i.e., a’# < b and @'z < b. We have a” (2 + tv) = aT& < b for all t € R.
However a” (& + tv) = a”& + ta” v, and since a’v # 0, we will have a” (z + tv) > b for
sufficiently large ¢ > 0 or sufficiently small ¢ < 0. In other words, if a and @ are not
parallel, we can find a point & + tv € H that is not in H, i.e., H Z H.

Next suppose a and @ are parallel, but point in opposite directions, i.e., @ = Aa for some
A < 0. Let & be any point in H. Then & —ta € H for all t > 0. However for ¢ large enough
we will have @7 (# — ta) = a” & + tA||a]|3 > b, so & — ta ¢ H. Again, this shows H Z H.
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Finally, we assume @ = Aa for some A > 0 but b < Ab. Consider any point # that satisfies
aT#="b. Then "2 = Xa"& = \b> b, s0 2 & H.
The proof for the second part of the problem is similar.

2.7 Voronoi description of halfspace. Let a and b be distinct points in R™. Show that the set
of all points that are closer (in Euclidean norm) to a than b, i.e., {z | ||z —al|2 < ||z —b]|2},
is a halfspace. Describe it explicitly as an inequality of the form ¢’z < d. Draw a picture.
Solution. Since a norm is always nonnegative, we have ||z — all2 < ||z — b||2 if and only
if [l — al|3 < [|lz — b[|3, so

e —alf <llz—bl} <= (z-a)(x—a)<(z-b)"(z-b)
— zTr—-2d"z+adTa<zTz—20T2+bTb
— 2b—a)Tz<bTb—a"a.
Therefore, the set is indeed a halfspace. We can take ¢ = 2(b — a) and d = bT'b — a”a.

This makes good geometric sense: the points that are equidistant to a and b are given by
a hyperplane whose normal is in the direction b — a.

2.8 Which of the following sets S are polyhedra? If possible, express S in the form S =
{z| Az <b, Fx = g}.
(a) S={yra1 +y2a2| —1<y1 <1, —1<y; <1}, where a1,a2 € R".
b)) S={zeR"|z=0 172 =1, 3" xa = b, Y, za; = by}, where
aiy...,0n € R and bl,bg cR.
() S={xcR" |z =0, 2Ty <1 for all y with |jy||2 = 1}.
(d) S={zeR" |z =0, 2"y <1forallywith > |y:| =1}
Solution.

(a) S is a polyhedron. It is the parallelogram with corners a1 + a2, a1 — a2, —a1 + az,
—a1 — az, as shown below for an example in R2.

C2 al

1

For simplicity we assume that a; and as are independent. We can express S as the
intersection of three sets:

e Sp: the plane defined by a1 and a2
e Sy ={z+yia1 +y20a2 | afz=al2=0-1<y < 1}. This is a slab parallel to
az and orthogonal to S
e S3={z+y1a1 +y20a2 | afz=al2=0-1<y, < 1}. This is a slab parallel to
a1 and orthogonal to S
Each of these sets can be described with linear inequalities.

e S; can be described as
vz =0, k=1,...,n—2

where vy, are n — 2 independent vectors that are orthogonal to a1 and as (which
form a basis for the nullspace of the matrix [a1 a2]”).
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e Let ¢1 be a vector in the plane defined by a1 and a2, and orthogonal to as. For
example, we can take
c a af az a
1 =01 — 502
llazl3
Then x € Sz if and only if
—|cfa| < el < |l a|.

e Similarly, let c2 be a vector in the plane defined by a1 and a2, and orthogonal

to a1, e.g.,

agal
Co =0a2 — ——5 Q1.
llax (13

Then x € S3 if and only if
—\czTa2| <clp< \czTa2|.

Putting it all together, we can describe S as the solution set of 2n linear inequalities

T

vpr < 0, k=1,...,n—2
—vFz < 0, k=1,...,n—2
Cipx < |C§Fa1|
—cdz < efail
dr < |cFas
—Fx < |Fasl

(b) S is a polyhedron, defined by linear inequalities xr > 0 and three equality con-
straints.

(c) S is not a polyhedron. It is the intersection of the unit ball {z | ||z||2 < 1} and the
nonnegative orthant R’ . This follows from the following fact, which follows from
the Cauchy-Schwarz inequality:

2"y <1 for all y with ||yl =1 < |jz|2 < 1.

Although in this example we define S as an intersection of halfspaces, it is not a
polyhedron, because the definition requires infinitely many halfspaces.

(d) S is a polyhedron. S is the intersection of the set {z | |[zx| <1, k=1,...,n} and
the nonnegative orthant R . This follows from the following fact:

Ty < 1 for all y with Z|yi|:1 = |z;| <1, i=1,...,n.

=1

We can prove this as follows. First suppose that |z;| <1 for all ¢. Then
ey = wyi <Y lwillyl <Y lwil =1

if Zl |y1‘ =1L

Conversely, suppose that z is a nonzero vector that satisfies 7y < 1 for all y with
Zi lyi| = 1. In particular we can make the following choice for y: let k be an index
for which |zx| = max; |z;|, and take yp =1 if zx >0, yp = —1if 2, <0, and y; =0
for ¢ # k. With this choice of y we have

2Ty =z = yewn = |oe| = max|zi|.
1

7



Exercises

Therefore we must have max; |z;| < 1.

All this implies that we can describe S by a finite number of linear inequalities: it
is the intersection of the nonnegative orthant with the set {z | — 1 <z <X 1}, i.e.,
the solution of 2n linear inequalities

—x;
Zq

INIA

Note that as in part (c) the set S was given as an intersection of an infinite number of
halfspaces. The difference is that here most of the linear inequalities are redundant,
and only a finite number are needed to characterize S.

None of these sets are affine sets or subspaces, except in some trivial cases. For example,
the set defined in part (a) is a subspace (hence an affine set), if a1 = a2 = 0; the set
defined in part (b) is an affine set if n = 1 and S = {1}; etc.

2.9 Voronoi sets and polyhedral decomposition. Let xo,...,xx € R™. Consider the set of
points that are closer (in Euclidean norm) to zo than the other z;, i.e.,

V=A{zeR"||lz—wollz <z —zill2, i=1,...,K}.

V' is called the Voronoi region around xo with respect to x1,...,zk.

(a)
(b)

(c)

Show that V is a polyhedron. Express V in the form V = {z | Az < b}.

Conversely, given a polyhedron P with nonempty interior, show how to find =z, ..., zx
so that the polyhedron is the Voronoi region of zo with respect to 1,...,2k.

We can also consider the sets
Vi={z € R" | |z — zi|l2 < |lz — zil|2, i # k}.

The set Vj, consists of points in R™ for which the closest point in the set {zo,...,zx }
is w.

The sets Vo, ..., Vi give a polyhedral decomposition of R™. More precisely, the sets
Vi are polyhedra, UkK:O Vi =R" and int V; Nint V; = 0 for i # j, i.e., V; and V}
intersect at most along a boundary.

Suppose that Pi,..., P, are polyhedra such that UZI P, = R", and int P, N
int P; = 0 for ¢« # j. Can this polyhedral decomposition of R™ be described as
the Voronoi regions generated by an appropriate set of points?

Solution.

(a)

x is closer to zo than to x; if and only if
lz —zollz < llz —zill: <= (z—w0)" (& —m0) < (z— )" (& — )
— 'z 2:5(1;:5 + xg:co < oTr — 2:5?1’ + x?wz
= 2z — xo)Tx < J:ZTJSZ — moTxo,
which defines a halfspace. We can express V as V = {z | Az < b} with

T T
Tr1 — Xo 1 T1 — Xy xo

T T
X2 — X0 Ty X2 — Ty o

A=2 , b=

TK — X0 I%l‘K—CL‘gZEQ
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(b) Conversely, suppose V = {z | Az < b} with A € R**™ and b € R¥. We can pick
any zo € {z | Az < b}, and then construct K points z; by taking the mirror image
of xp with respect to the hyperplanes {z | afz = b;}. In other words, we choose x;
of the form z; = x¢ 4+ Aai, where X is chosen in such a way that the distance of z; to
the hyperplane defined by af z = b; is equal to the distance of o to the hyperplane:

bi - a?xo = a,Taci — bz
Solving for A, we obtain A = 2(b; — al'z0)/||a: |3, and

Q(bi — CLZTI'())

xr; = To +
' lla:]?

a;.

(¢) A polyhedral decomposition of R™ can not always be described as Voronoi regions
generated by a set of points {z1,...,Zm}. The figure shows a counterexample in
R

Py

H,

R? is decomposed into 4 polyhedra Pi,...,Ps by 2 hyperplanes Hy, H>. Suppose
we arbitrarily pick 1 € P; and z2 € P2. x3 € P3 must be the mirror image of x1
and x2 with respect to Hy and Hi, respectively. However, the mirror image of x1
with respect to Hs lies in Pl, and the mirror image of x2 with respect to H; lies in
I:’z, so it is impossible to find such an xs.

2.10 Solution set of a quadratic inequality. Let C' C R™ be the solution set of a quadratic
inequality,
C={zecR"|z" Az +b"z+c <0},

with A € S", be R", and c € R.
(a) Show that C is convex if A > 0.

(b) Show that the intersection of C' and the hyperplane defined by g”« + h = 0 (where
g # 0) is convex if A+ Agg” = 0 for some X € R.

Are the converses of these statements true?
Solution. A set is convex if and only if its intersection with an arbitrary line {Z+tv |t €

R} is convex.
(a) We have
(& +tv) " A(E + tv) + b7 (& + tv) + c = at® + B+

where
a= vTAv, 6= b o + 2:ETAU, y=c+ b+ 27 Az,
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The intersection of C' with the line defined by & and v is the set
{&+tv]|at® +pt+~ <0},

which is convex if & > 0. This is true for any v, if vTAv > 0 for all v, i.e., A > 0.
The converse does not hold; for example, take A = —1, b =0, c = —1. Then A # 0,
but C' = R is convex.

(b) Let H = {z | g¢"z + h = 0}. We define o, 3, and « as in the solution of part (a),
and, in addition,
§=g"v, e=g 2 +h.
Without loss of generality we can assume that £ € H, i.e., ¢ = 0. The intersection
of C'N H with the line defined by  and v is

{&+tv|at® + Bt +~<0, 6t =0}

If § = gTv # 0, the intersection is the singleton {#}, if v < 0, or it is empty. In
either case it is a convex set. If § = g7 v = 0, the set reduces to

{&+tv]at® + Bt +v <0},
which is convex if o > 0. Therefore C' N H is convex if
g v=0=v"A4v >0. (2.10.A)

This is true if there exists A such that A 4+ Agg” > 0; then (2.10.A) holds, because
then
v Av =0T (A4 Agg")v >0
for all v satisfying g7v = 0.
Again, the converse is not true.
2.11 Hyperbolic sets. Show that the hyperbolic set {x € RA | x1m2 > 1} is convex. As a
generalization, show that {z € R} | [[I_, #: > 1} is convex. Hint. If a,b > 0 and
0 <60 <1,then a®b'~? < fa + (1 — 6)b; see §3.1.9.
Solution.
(a) We prove the first part without using the hint. Consider a convex combination z of

two points (z1,z2) and (y1,y2) in the set. If = y, then z =0z + (1 — )y > y and
obviously z1z2 > y1y2 > 1. Similar proof if y = x.

Suppose y # 0 and z # y, i.e., (y1 — z1)(y2 — x2) < 0. Then
(01 + (1 = 0)y1)(6z2 + (1 — 0)y2)
0>z + (1 — 0)°y1ya2 + 0(1 — O)z1y2 + 0(1 — O)z21n

= Oziza+ (1 - 0)yiy2 — 0(1 — 0)(y1 — 21)(y2 — x2)
> 1.

(b) Assume that [[, #; > 1 and [[, : > 1. Using the inequality in the hint, we have

[Tz +a =0y =[]ty = [[="[v) " =1

2.12 Which of the following sets are convex?

(a) A slab, i.c., a set of the form {x € R" | a < o’z < 8}.

(b) A rectangle, i.e., a set of the form {zx € R" | a; < x; < 3, i =1,...,n}. A rectangle
is sometimes called a hyperrectangle when n > 2.
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(c)
(d)

(f)
(8)

A wedge, i.e., {x € R" | alz < b1, afz < bs}.
The set of points closer to a given point than a given set, i.e.,

{2 | lo - wollz < [l — yll for all y € S}
where S C R™.
The set of points closer to one set than another, i.e.,

{z | dist(z, S) < dist(z,T)},
where S,T C R", and
dist(z, S) = inf{|lz — 2|2 | z € S}.

[HUL93, volume 1, page 93] The set {x | z + S2 C S1}, where Si,S2 C R™ with Sp

convex.

The set of points whose distance to a does not exceed a fixed fraction 6 of the
distance to b, i.e., the set {z | ||z — al|2 < 0||z — b||2}. You can assume a # b and
0<60<1.

Solution.

(a)
(b)

(c)
(d)

(8)

A slab is an intersection of two halfspaces, hence it is a convex set (and a polyhedron).

As in part (a), a rectangle is a convex set and a polyhedron because it is a finite
intersection of halfspaces.

A wedge is an intersection of two halfspaces, so it is convex set. It is also a polyhe-
dron. It is a cone if by = 0 and b2 = 0.

This set is convex because it can be expressed as
({1 llz = zoll2 < [l= — yl2},
yeS
i.e., an intersection of halfspaces. (For fixed y, the set
{z [ llz —xolla < llz — yll2}

is a halfspace; see exercise 2.9).
In general this set is not convex, as the following example in R shows. With S =
{—1,1} and T = {0}, we have

{z | dist(z,S) < dist(z,T)} ={z € R |z < —-1/20rz>1/2}

which clearly is not convex.

This set is convex. x + Sz C Sy if x +y € Sy for all y € S3. Therefore
frlatsacsi}t=V{rlotyesit= ]y,
yES2 yES2

the intersection of convex sets S1 — y.

The set is convex, in fact a ball.
{z | llx —alla < 6]z — bl|2}
{z | ||lz — all3 < 67|z — |13}
{z| (1 =60"2"2z—2(a—0°0)"z+ (a"a—0°0"b) <0}
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If & = 1, this is a halfspace. If 6 < 1, it is a ball
{z| (& —x0)" (z — x0) < R?},

with center ¢ and radius R given by

— 0% 02[1b]13 — llal3 vz

1-62" 1-62

2.13 Conic hull of outer products. Consider the set of rank-k outer products, defined as
{XXT| X e R"™* rank X = k}. Describe its conic hull in simple terms.

Solution. We have XX7 > 0 and rank(XX”) = k. A positive combination of such
matrices can have rank up to n, but never less than k. Indeed, Let A and B be positive
semidefinite matrices of rank k, with rank(A + B) = r < k. Let V € R be a
matrix with R(V) = N (A + B), i.e.,

VIA+ BV =vT"Aav 4+ VTBV =0.
Since A, B > 0, this means
vTAV =vTBV =0,
which implies that rank A < r and rank B < r. We conclude that rank(A + B) > k for

any A, B such that rank(A, B) =k and A, B = 0.

It follows that the conic hull of the set of rank-k outer products is the set of positive
semidefinite matrices of rank greater than or equal to k, along with the zero matrix.

2.14 Ezpanded and restricted sets. Let S CR"™, and let || - || be a norm on R".
(a) For a > 0 we define S, as {z | dist(z,S) < a}, where dist(z,S) = infycs ||z — y|.
We refer to S, as S expanded or extended by a. Show that if S is convex, then S,
is convex.

(b) For a > 0 we define S_, = {z | B(x,a) C S}, where B(z, a) is the ball (in the norm
Il - 1), centered at x, with radius a. We refer to S_, as S shrunk or restricted by a,
since S_, consists of all points that are at least a distance a from R™\S. Show that
if S is convex, then S_, is convex.

Solution.
(a) Consider two points z1,2z2 € Sg. For 0 <0 <1,
dist(0z1 + (1 — 0)z2, X)

inf |0z + (1 — 0)z2 — y|
yeS

= inf [0z + (1= 0)zz — Oy — (1 - O)e|

Y1,Y2€

= inf 0(z1 —y1) + (1 —0)(22 — y2)||
Y1,Y2€S

< inf (Oflzr =yl + (1 = 0)[|w2 — w2
y1,¥2€S

= 0 inf lo —yll + (1—6) inf ws — pal])

y1E€S Y2 Es
< a

s0 0z1 + (1 — 0)z2 € S,, proving convexity.

(b) Consider two points z1,z2 € S_q, so for all u with ||u|] < q,
1 +u€ES, T2+ u€S.
For 0 <60 <1 and ||u]| < a,
Oz1 + (1 —0)zs +u=0(z1+u)+ (1 —0)(z2 +u) €5,

because S is convex. We conclude that 6z1 + (1 — 6)z2 € S_,.
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2.15 Some sets of probability distributions. Let x be a real-valued random variable with
prob(z = a;) = p;, i = 1,...,n, where a1 < a2z < -+ < an. Of course p € R" lies
in the standard probability simplex P = {p | 1Tp=1, p*> 0}. Which of the following
conditions are convex in p? (That is, for which of the following conditions is the set of
p € P that satisfy the condition convex?)

(a) « < Ef(x) < B, where E f(z) is the expected value of f(x), i.e., E f(x) =
Yo pif(ai). (The function f: R — R is given.)

(b) prob(z > «) < S.
(c) E|2®| < aE|z|.
(d) Ez? < o

e) Ex? > a.

(
(f) var(z) < a, where var(z) = E(z — Ex)? is the variance of .
g) var(z) > a.

h) quartile(z) > «, where quartile(z) = inf{3 | prob(z < 3) > 0.25}.

)
)
)
)
)
(8)
(h)
)

(i) quartile(z) < a.

Solution. We first note that the constraints p; > 0, i = 1,...,n, define halfspaces, and
Z?:l p; = 1 defines a hyperplane, so P is a polyhedron.

The first five constraints are, in fact, linear inequalities in the probabilities p;.

(a) Ef(z) =Y., pif(ai), so the constraint is equivalent to two linear inequalities

a< Zpif (a;) <
i=1
(b) prob(z >a) =3 __pi,so the constraint is equivalent to a linear inequality

Z pi < B.

ira; >a

(¢) The constraint is equivalent to a linear inequality

> pilla?] — afail) <0
=1

(d) The constraint is equivalent to a linear inequality

n
ZPM? <o
i=1

(e) The constraint is equivalent to a linear inequality

n
Zpiaf > a.
i=1

The first five constraints therefore define convex sets.
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(f) The constraint
var(z) = Bz’ — (Ex)® = me? — (Zpiai)Q <a
i=1 i=1

is not convex in general. As a counterexample, we can take n = 2, a1 =0, az = 1,
and a = 1/5. p = (1,0) and p = (0,1) are two points that satisfy var(z) < a, but
the convex combination p = (1/2,1/2) does not.

(g) This constraint is equivalent to

n n

Z a;pi + (Z aip))’ =b"p+p Ap<a

=1 i=1

where b; = a? and A = aa”. This defines a convex set, since the matrix aa” is
positive semidefinite.

Let us denote quartile(x) = f(p) to emphasize it is a function of p. The figure illustrates
the definition. It shows the cumulative distribution for a distribution p with f(p) = as.

prob(z < f)
1 —
pitpet-+pa e —
p1+ p2 ——————— e
025
pP1 ——o0
al a2 Qn /B

(h) The constraint f(p) > « is equivalent to
prob(z < 8) < 0.25 for all 8 < «.

If a < a1, this is always true. Otherwise, define kK = max{i | a; < a}. This is a fixed
integer, independent of p. The constraint f(p) > a holds if and only if

k
prob(z < a) = Zpi < 0.25.
i=1

This is a strict linear inequality in p, which defines an open halfspace.

(i) The constraint f(p) < « is equivalent to
prob(z < 3) > 0.25 for all 8 > a.
This can be expressed as a linear inequality
n
Z pi > 0.25.
i=k+1

(If @ < a1, we define k = 0.)
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2.16

2.17

Operations that preserve convexity
Show that if S; and Sz are convex sets in R™*™, then so is their partial sum

S={(@,y+y2) [z €R™, y1, y2 € R", (2,51) € 51, (x,12) € S2}-
Solution. We consider two points (Z, g1 + 92), (&, 1 + §2) € S, i.e., with

(Z,71) € 51, (Z,72) € S2, (z,71) € Sh, (Z,92) € Sa.

For0<0 <1,
0(Z, 91 +42) + (1= 0)(Z, 1 + §2) = (02 + (1 — 0)Z, (651 + (1 — 0)51) + (672 + (1 — 0)32))
is in S because, by convexity of S and S,

(0Z 4 (1 - 0)Z,05: + (1 — 0)31) € S1, (0Z + (1 —0)Z,072 + (1 — 0)g2) € Sa.

Image of polyhedral sets under perspective function. In this problem we study the image
of hyperplanes, halfspaces, and polyhedra under the perspective function P(z,t) = z/t,
with dom P = R™ x R4 4. For each of the following sets C, give a simple description of

P(C) = {v/t | (v,t) € C, t > 0}

(a) The polyhedron C = conv{(v1,t1),..., (vk,tx)} where v; € R™ and t; > 0.
Solution. The polyhedron

P(C) = conv{vi/t1,..., vk [ti}.
We first show that P(C) C conv{vi/t1,...,vx/trx}. Let x = (v,t) € C, with

K K
U:Z&vi, t:ZQiti,
i=1 i=1
and 0 = 0, 170 = 1. The image P(z) can be expressed as

K bv &
Ple) = v/t = S = ) v/t
Zi:l Oit i=1

where
i = %, = 1,...,K.
Zk:l Ortr
It is clear that p >= 0, 1% = 1, so we can conclude that P(z) € conv{vi/ti,..., vk /tx}
for all xz € C.

Next, we show that P(C) D conv{vi/ti,...,vk/tk}. Consider a point

K
z= Z WiV [t
i=1
with g > 0, 17 = 1. Define

= — =1, K
tizg':pu]’/tj

It is clear that 6 = 0 and 170 = 1. Moreover, z = P(v,t) where

Z»Mi 1
t= 0;t; = 2 = s v = eiviy
zi: doikalti o 2oy malts ZZ:

i.e., (v,t) € C.
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(b) The hyperplane C = {(v,t) | fTv + gt = h} (with f and g not both zero).
Solution.

P(C) {z| fTz+ g = h/t for some t > 0}

{21 ff2+9g=0} h=0
{z| ff24+g>0} h>0
{z| ff2+g<0} h<O.

(¢) The halfspace C' = {(v,t) | fTv+ gt < h} (with f and g not both zero).
Solution.

P(C) {z| f"2+ g < h/t for some t > 0}

{21 ff2+9g<0} h=0
R" h>0
{z| ff2+g9<0} h<O.

(d) The polyhedron C' = {(v,t) | Fv+ gt < h}.
Solution.
P(C)={z]| Fz+ g = (1/t)h for some t > 0}.

More explicitly, z € P(C) if and only if it satisfies the following conditions:

° fZTZ-i-giSOifhi:O
o fTz4+gi<0ifh; <0
o (ffz+g)/hi < (ffz+gr)/he if hy >0 and hy < 0.

2.18 Inwertible linear-fractional functions. Let f : R™ — R™ be the linear-fractional function

f(z) = (Az +b)/(c"z +d), dom f = {z|c"z+d>0}.

A b
is nonsingular. Show that f is invertible and that f~! is a linear-fractional mapping.

Give an explicit expression for f~! and its domain in terms of A, b, ¢, and d. Hint. It
may be easier to express f~! in terms of Q.

Suppose the matrix

Solution. This follows from remark 2.2 on page 41. The inverse of f is given by
[T @) =PHQ T P(),

so f~1 is the projective transformation associated with Q1.

2.19 Linear-fractional functions and convex sets. Let f : R™ — R" be the linear-fractional
function
f(z) = (Az +b)/(c"z +d), dom f = {z|c"z+d>0}.

In this problem we study the inverse image of a convex set C under f, i.e.,
f7HC)={z edomf | f(z) € C}.

For each of the following sets C' C R", give a simple description of f~*(C).
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(a) The halfspace C = {y | "y < h} (with g # 0).
Solution.

{v € dom f [ g" f(x) <h}
{z|g"(Az+b)/(c"z+d) < h, "z +d >0}
= {z|(ATg—he)"2 <hd—g"b, "z +d >0},

fa(®)

which is another halfspace, intersected with dom f.
(b) The polyhedron C = {y | Gy < h}.
Solution. The polyhedron
7€) = {wedomf|Gf(x) Xh}
= {z|GAz+b)/(c"z+d) <h, Fz+d>0}
= {z|(GA—hc")x < hd—Gb, "z +d > 0},

a polyhedron intersected with dom f.

(¢) The ellipsoid {y | y" P~y < 1} (where P € S7.,).
Solution.

(o) {r €edom f| f(x)" P7 f(x) <1}
= {zedomf|(Az+b)" P (Az +b) < ("x+d)?},

= {z|2"Qr+2¢"x<r, "z+d>0}.

where Q = ATP7'A—cc?, q=b"P 'A+de,r=d> —bT P~ 'b. If ATP7 1A > T
this is an ellipsoid intersected with dom f.

(d) The solution set of a linear matrix inequality, C = {y | y141 + -+ + yn An < B},
where A1, ..., A,, B € SP.

Solution. We denote by a’ the ith row of A.

f7HC) = {zedomf| fi(x)A1+ fo(x)As+ -+ fa(x)An = B}
{redomf|(afz+b1)Ai+ -+ (abz +bn)A, < ("z+ d)B}

{redomf|Giz1+- -+ Gmam < H, "z +d> 0}

where
Gi = a1;A1 +a2As+ -+ aniAn — B, H=dB —b1A1 —bsAs — - — b Ap.

f71(0) is the intersection of dom f with the solution set of an LMI.

Separation theorems and supporting hyperplanes

2.20 Strictly positive solution of linear equations. Suppose A € R™*" b e R™, with b € R(A).
Show that there exists an x satisfying

x =0, Az =10
if and only if there exists no A with
ATx =0, ATx £, bIa<o.

Hint. First prove the following fact from linear algebra: ¢’z = d for all = satisfying
Az = b if and only if there is a vector A such that ¢ = AT\ d = b7 \.
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Solution. We first prove the result in the hint. Suppose that there exists a A such that
c=ATX d=0b"\ It is clear that if Az = b then

T =ATAz = Tb=d.

Conversely, suppose Az = b implies ¢’z = d, and that rank A = r. Let F € R**(»~")
be a matrix with R(F) = M(A), and let o be a solution of Az = b. Then Az = b if and
only if & = Fy + xo for some y, and ¢"'z = d for all z = Fy + xo implies

cTFy +CT$0 =d

for all y. This is only possible if F7¢c = 0, i.e., ¢ € N(FT) = R(AT), i.e., there exists
a A such that ¢ = ATX. The condition ¢T Fy + ¢Tzo = d then reduces to ¢Tzo = d, i.e.,
AT Azg = ATb = d. In conclusion, if ¢T'& = d for all & with Az = b, then there there exists
a X such that ¢ = ATX and d = b7 \.

To prove the main result, we use a standard separating hyperplane argument, applied to
the sets C = R}, and D = {z | Az = b}. If they are disjoint, there exists ¢ # 0 and d
such that ¢Tx > d for all x € C and ¢*x < d for all x € D. The first condition means that
¢ 0and d < 0. Since ¢Tz < d on D, which is an affine set, we must have ¢T & constant
on D. (If ¢"z weren’t constant on D, it would take on all values.) We can relabel d to be
this constant value, so we have ¢Tx = d on D. Now using the hint, there is some X such
that c = ATX, d = b"\.

The set of separating hyperplanes. Suppose that C and D are disjoint subsets of R".
Consider the set of (a,b) € R™* for which a”x < b for all z € C, and aT2 > b for all
x € D. Show that this set is a convex cone (which is the singleton {0} if there is no
hyperplane that separates C' and D).

Solution. The conditions a’a < b for all z € C and aTz > b for all x € D, form a set
of homogeneous linear inequalities in (a,b). Therefore K is the intersection of halfspaces
that pass through the origin. Hence it is a convex cone.

Note that this does not require convexity of C or D.

Finish the proof of the separating hyperplane theorem in §2.5.1: Show that a separating
hyperplane exists for two disjoint convex sets C' and D. You can use the result proved
in §2.5.1, i.e., that a separating hyperplane exists when there exist points in the two sets
whose distance is equal to the distance between the two sets.

Hint. If C and D are disjoint convex sets, then the set {z —y | z € C, y € D} is convex
and does not contain the origin.

Solution. Following the hint, we first confirm that

S:{x—y\meayeD},

is convex, since it is the sum of two convex sets.
Since C and D are disjoint, 0 ¢ S. We distinguish two cases. First suppose 0 ¢ clS. The
partial separating hyperplane in §2.5.1 applies to the sets {0} and ¢l S, so there exists an
a # 0 such that

at(x—y)>0
for all z — y € c1S. In particular this also holds for all z —y € S, i.e., a’a > aTy for all
z€Candye€D.
Next, assume 0 € clS. Since 0 ¢ S, it must be in the boundary of S. If S has empty
interior, it is contained in a hyperplane {z | a”z = b}, which must include the origin,
hence b = 0. In other words, a”z = aTy for all z € C and all y € D, so we have a trivial
separating hyperplane.
If S has nonempty interior, we consider the set

S_e ={z | B(z,¢) C S},



2 Convex sets

where B(z,€) is the Euclidean ball with center z and radius € > 0. S_. is the set S,
shrunk by e (see exercise 2.14). ¢l S_. is closed and convex, and does not contain 0, so
by the partial separating hyperplane result, it is strictly separated from {0} by at least
one hyperplane with normal vector a(e):

a(e)fz>0forall z€ S_..

Without loss of generality we assume ||a(e)|2 = 1. Now let ex, k =1,2,... be a sequence
of positive values of €, with limy_oc ex = 0. Since ||a(ex)||2 = 1 for all k, the sequence
a(er) contains a convergent subsequence, and we will denote its limit by a. We have

alex)"z>0forall z € S_,

for all k, and therefore a7z > 0 for all z € int S, and a*z > 0 for all z € S, i.e.,
alz > &Ty

forallz € C,y € D.

2.23 Give an example of two closed convex sets that are disjoint but cannot be strictly sepa-
rated.
Solution. Take C' = {x € R? |2 <0} and D = {x € R2 | zyz2 > 1}.

2.24 Supporting hyperplanes.

(a) Express the closed convex set {z € R3 | z122 > 1} as an intersection of halfspaces.
Solution. The set is the intersection of all supporting halfspaces at points in its
boundary, which is given by {z € Rf_ | z1z2 = 1}. The supporting hyperplane at
x = (t,1/t) is given by

z1 /t° + w2 = 2/t,

so we can express the set as

(= € R? |21/t + 5 > 2/t}.

t>0

(b) Let C = {z € R" | ||z]loo < 1}, the £oo-norm unit ball in R™, and let & be a point
in the boundary of C. Identify the supporting hyperplanes of C' at & explicitly.

Solution. s7z > sT% for all z € C if and only if

;<0 z;,=1
si>0 z;,=-1
;i =0 —-1<z;<1.

2.25 Inner and outer polyhedral approximations. Let C C R™ be a closed convex set, and
suppose that x1,. .., zx are on the boundary of C. Suppose that for each i, al (x—;) = 0

defines a supporting hyperplane for C' at z;, i.e., C C {z | af (x — x;) < 0}. Consider the
two polyhedra

Pinner = conv{zi,...,zx}, Pouter = {7 | aiT(:c —z;)<0,i=1,...,K}.

Show that Pinner € C' C Pouter- Draw a picture illustrating this.

Solution. The points z; are in C because C'is closed. Any point in Pipner = conv{zi,..., 2k}
is also in C' because C' is convex. Therefore Piyner C C.

If z € C then aiT(x —xz;)<0fori=1,...,K, ie., x € Pouter. Therefore C' C Poyter.
The figure shows an example with K = 4.
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Support function. The support function of a set C C R" is defined as
So(y) =sup{y’z |z € C}.

(We allow Sc(y) to take on the value +00.) Suppose that C' and D are closed convex sets
in R". Show that C' = D if and only if their support functions are equal.

Solution. Obviously if C' = D the support functions are equal. We show that if the
support functions are equal, then C' = D, by showing that D C C' and C C D.

We first show that D C C. Suppose there exists a point g € D, x ¢ C. Since C is
closed, o can be strictly separated from C, i.e., there exists an a # 0 with a”zo > b and
a¥xz < b for all z € C. This means that

T T T
supa x <b<a xo <supa z,
zeC xzeD

which implies that Sc(a) # Sp(a). By repeating the argument with the roles of C' and
D reversed, we can show that C C D.

Converse supporting hyperplane theorem. Suppose the set C is closed, has nonempty
interior, and has a supporting hyperplane at every point in its boundary. Show that C is
convex.

Solution. Let H be the set of all halfspaces that contain C. H is a closed convex set,
and contains C by definition.

The support function Sc of a set C'is defined as Sc(y) = sup,ce yTx. The set H and its
interior can be defined in terms of the support function as

H=(ely"z<Scy)}, intH=({z|y"z<Sc@)}
y#0 y#0

and the boundary of H is the set of all points in H with y72 = Sc(y) for at least one
y # 0.

By definition int C' C int H. We also have bd C' C bd H: if Z € bd C, then there exists
a supporting hyperplane at Z, i.e., a vector a # 0 such that a7z = S¢ (a), i.e., T € bd H.
We now show that these properties imply that C' is convex. Consider an arbitrary line
intersecting int C'. The intersection is a union of disjoint open intervals [, with endpoints
in bd C (hence also in bd H), and interior points in int C' (hence also in int H). Now
int H is a convex set, so the interior points of two different intervals I; and I2 can not
be separated by boundary points (since boundary points are in bd H, not in int H).
Therefore there can be at most one interval, i.e., int C' is convex.
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Convex cones and generalized inequalities

2.28 Positive semidefinite cone for n = 1, 2, 3. Give an explicit description of the positive
semidefinite cone S’ , in terms of the matrix coefficients and ordinary inequalities, for
n =1, 2, 3. To describe a general element of S™, for n = 1, 2, 3, use the notation

T X2 xrs3
1 )
1, [ } 5 T2 T4 s
X3 Is Te
Solution. For n = 1 the condition is 1 > 0. For n = 2 the condition is
21>0, x3>0, aizs—a5>0.
For n = 3 the condition is
21>0, 22>0, 23>0, wmza—a5>0, zaze—x3>0, z1x6—25 >0

and
2 2 2
T124T6 + 202T3%5 — T1T5 — TexTs — Tax3 > 0,

i.e., all principal minors must be nonnegative.
We give the proof for n = 3, assuming the result is true for n = 2. The matrix

Ty X2 I3
X = T2 T4 Is5
T3 X5 Te

is positive semidefinite if and only if
2T X2 = xlz% + 2x0z129 + 2432123 + m4z§ + 2x52023 + x6z§ >0

for all z.
If 1 = 0, we must have x3 = 23 =0, so X > 0 if and only if

[ T4 T } = 0.
T5  Te
Applying the result for the 2 x 2-case, we conclude that if z; = 0, X > 0 if and only if
ro = x3 =0, x4 >0, xg > 0, w4m6—x§20.
Now assume z; # 0. We have
2T Xz = 1 (z14+(x2 /1) 22+ (23 )31 ) 23) 2+ (ma—15 J 21 ) 25+ (w6 — 23 /1 ) 23 +2(w5 —Tot3 /21 ) 2223,
so it is clear that we must have x1 > 0 and

T4 fxg/m s — TaZ3/x1

> 0.
T — TaT3/T1 T — x%/xl

By the result for 2 x 2-case studied above, this is equivalent to
T4 — x5 > 0, T1z6 — T3 > 0, (x4 — x5 /21) (26 — 3 /21) — (T5 — T2T3/T1)° > 0.
The third inequality simplifies to
(r1za76 — 222325 — mlxg — xgxg — mx%)/ml > 0.
Therefore, if 1 > 0, then X > 0 if and only if
T1T4 — :cg >0, T1Te — xg >0, (z12476 — 22235 — mlxg — ngg — x4x§)/az1 > 0.

We can combine the conditions for 1 = 0 and 1 > 0 by saying that all 7 principal minors
must be nonnegative.
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2.29 Cones in R?. Suppose K C R? is a closed convex cone.

(d)

Give a simple description of K in terms of the polar coordinates of its elements
(z = r(cos ¢,sin ¢) with r > 0).

Give a simple description of K*, and draw a plot illustrating the relation between
K and K™.

When is K pointed?

When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating
what * <k y means when K is proper.

Solution.

(a)

In R? a cone K is a “pie slice” (see figure).

D!

In terms of polar coordinates, a pointed closed convex cone K can be expressed
K ={(rcos¢,rsing) [r>0,a < ¢ <}

where 0 < 8 — a < 180°. When 8 — a = 180°, this gives a non-pointed cone (a
halfspace). Other possible non-pointed cones are the entire plane

K ={(rcos¢,rsing) |r>0,0< ¢ < 2r} =R?,
and lines through the origin

K ={(rcosa,rsina) | r € R}.

By definition, K* is the intersection of all halfspaces Ty > 0 where x € K. However,
as can be seen from the figure, if K is pointed, the two halfspaces defined by the
extreme rays are sufficient to define K*, i.e.,

K* ={y|yicosa+yssina > 0,y1 cos 3+ y28in 8 > 0}.
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If K is a halfspace, K = {x | v > 0}, the dual cone is the ray
K*={tv|t>0}.

If K = R?, the dual cone is K* = {0}. If K is a line {tv | ¢t € R} through the origin,
the dual cone is the line perpendicular to v

K*={y|v'y =0}

(c) See part (a).

(d) K must be closed convex and pointed, and have nonempty interior. From part (a),
this means K can be expressed as

K ={(rcos¢,rsing) |r>0,a < ¢ <5}

where 0 < 8 — o < 180°.
r<kgymeansy € x+ K.

2.30 Properties of generalized inequalities. Prove the properties of (nonstrict and strict) gen-
eralized inequalities listed in §2.4.1.
Solution.
Properties of generalized inequalities.
(a) =k is preserved under addition. If y —x € K and v — u € K, where K is a convex
cone, then the conic combination (y — z) + (v —u) € K, i.e., x + u <x y + v.
(b) =k is transitive. If y —x € K and z — y € K then the conic combination (y — z) +
(z—y)=z—xz €K, ie, =<k 2.
(¢) =K is preserved under nonnegative scaling. Follows from the fact that K is a cone.
(d) =<k is reflexive. Any cone contains the origin.
(e) =k 1is antisymmetric. If y —x € K and x —y € K, then y — x = 0 because K is
pointed.

(f) =<K 1is preserved under limits. If y; —x; € K and K is closed, then lim; oo (y; — ;) €
K.
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Properties of strict inequality.

(a) If x <k y then x <k y. Every set contains its interior.

(b) Ift <k y andu g v thenz+u <k y+v. Hy—z €int K, then (y—z)+2z € K
for all sufficiently small nonzero z. Since K is a convex cone and v — u € K,
(y —z)+ 24 (u—v) € K for all sufficiently small u, i.e., z +u <x y + v.

(¢) Ift <k y and a > 0 then ax <k ay. If y—xz+ 2z € K for sufficiently small nonzero
z, then a(y —z + 2) € K for all « > 0, i.e., a(y — ) + 2 € K for all sufficiently
small nonzero Z.

(d) z Ak z. 0 ¢ int K because K is a pointed cone.

(e) If x <k y, then for u and v small enough, x +u <x y+v. If y —x € int K, then
(y —z) + (v —u) € int K for sufficiently small u and v.

2.31 Properties of dual cones. Let K™ be the dual cone of a convex cone K, as defined in (2.19).
Prove the following.

(a) K™ is indeed a convex cone.
Solution. K™ is the intersection of a set of homogeneous halfspaces (meaning,
halfspaces that include the origin as a boundary point). Hence it is a closed convex
cone.

(b) K1 C K, implies K5 C K7.
Solution. y € K3 means 7y > 0 for all € K>, which is includes K1, therefore
a:Ty >0 for all z € K;.

(¢) K* is closed.
Solution. See part (a).

(d) The interior of K* is given by int K* = {y | yT2 > 0 for all 2 € K}.
Solution. If y“2 > 0 for all x € K then (y +u)Tz > 0 for all z € K and all
sufficiently small u; hence y € int K.
Conversely if y € K* and yTz = 0 for some z € K, then y ¢ int K* because
(y —tz)Tz < 0 for all t > 0.

(e) If K has nonempty interior then K* is pointed.
Solution. Suppose K™ is not pointed, i.e., there exists a nonzero y € K™ such that
—y € K*. This means yT2 > 0 and —yTz > 0 for all z € K, i.e., yTo = 0 for all
x € K, hence K has empty interior.

(f) K** is the closure of K. (Hence if K is closed, K** = K.)

Solution. By definition of K*, y # 0 is the normal vector of a (homogeneous)
halfspace containing K if and only if y € K. The intersection of all homogeneous
halfspaces containing a convex cone K is the closure of K. Therefore the closure of
K is
clK = m {z|y"z>0 ={z|y"z>0forallyc K*} = K**.
yeK*

(g) If the closure of K is pointed then K™ has nonempty interior.

Solution. If K* has empty interior, there exists an a % 0 such that a7y = 0 for all
y € K*. This means a and —a are both in K**, which contradicts the fact that K**
is pointed.

As an example that shows that it is not sufficient that K is pointed, consider K =
{0} U{(z1,22) | z1 > 0}. This is a pointed cone, but its dual has empty interior.

2.32 Find the dual cone of {Az | x = 0}, where A € R™*".
Solution. K* = {y | ATy = 0}.
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2.33 The monotone nonnegative cone. We define the monotone nonnegative cone as
Knt={zeR"|z1>22> - >z, >0}
i.e., all nonnegative vectors with components sorted in nonincreasing order.

(a) Show that Ky, is a proper cone.
(b) Find the dual cone K}, . Hint. Use the identity

inyi = (z1—z2)y1 + (x2 —x3)(y1 +y2) + (&3 —xa)(y1 +y2 +ys) + -+
i=1

Solution.

(a) The set Km4 is defined by n homogeneous linear inequalities, hence it is a closed
(polyhedral) cone.
The interior of K+ is nonempty, because there are points that satisfy the inequal-
ities with strict inequality, for example, x = (n,n —1,n —2,...,1).
To show that K+ is pointed, we note that if x € Ky, then —x € K4+ only if
x = 0. This implies that the cone does not contain an entire line.

(b) Using the hint, we see that y”x > 0 for all # € Ky if and only if
y1 >0, y1+9y220, ...,;nty2+--+yn 20

Therefore

k
Koy ={y]| ZinO, k=1,...,n}.

i=1

2.34 The lexicographic cone and ordering. The lexicographic cone is defined as
Kiex ={0}U{z e R" |z1 = =2, =0, 241 >0, for some k, 0 < k < n},
i.e., all vectors whose first nonzero coeflicient (if any) is positive.

(a) Verify that Kiex is a cone, but not a proper cone.

(b) We define the lexzicographic ordering on R™ as follows: x <jex y if and only if
y — T € Kiex. (Since Kjex is not a proper cone, the lexicographic ordering is not a
generalized inequality.) Show that the lexicographic ordering is a linear ordering:
for any z, y € R", either  <jex ¥y or y <jex . Therefore any set of vectors can be
sorted with respect to the lexicographic cone, which yields the familiar sorting used
in dictionaries.

(c) Find K7.,.
Solution.

(a) Kiex is not closed. For example, (¢, —1,0,...,0) € Kiex for all € > 0, but not for
e=0.

(b) If z # y then = <jex y and y <jex z. If not, let &k = min{s € {1,...,n} | z: # v},
be the index of the first component in which z and y differ. If zx < yx, we have
T <iex Y. If z > yi, we have x >jex y.

(¢) Kjox = Rier ={(¢,0,...,0) | t > 0}. To prove this, first note that if y = (¢,0,...,0)
with ¢t > 0, then obviously yToc =txy > 0 for all x € Kjex.
Conversely, suppose y~ @ > 0 for all € Kieyx. In particular y7e; > 0, so y1 > 0.
Furthermore, by considering © = (¢, —1,0,...,0), we have ey1 —y2 > 0 for all € > 0,
which is only possible if yo = 0. Similarly, one can prove that y3 =--- =y, = 0.
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Exercises

Copositive matrices. A matrix X € S™ is called copositive if 27 Xz > 0 for all z > 0.
Verify that the set of copositive matrices is a proper cone. Find its dual cone.
Solution. We denote by K the set of copositive matrices in S™. K is a closed convex
cone because it is the intersection of (infinitely many) halfspaces defined by homogeneous
inequalities

ZTXZ = Zziszij Z 0.

W]

K has nonempty interior, because it includes the cone of positive semidefinite matrices,
which has nonempty interior. K is pointed because X € K, —X € K means 27 Xz = 0
for all z > 0, hence X = 0.
By definition, the dual cone of a cone K is the set of normal vectors of all homogeneous
halfspaces containing K (plus the origin). Therefore,

= conv{zz z >0}
K* Ti2%=0

Euclidean distance matrices. Let x1,...,x, € R”*. The matrix D € S™ defined by D;; =
lz: — x;]3 is called a Euclidean distance matriz. It satisfies some obvious properties such
as Dyj = Dji, Dy = 0, Dy; > 0, and (from the triangle inequality) D}{* < D}/* + D}/?.
We now pose the question: When is a matrix D € S™ a Euclidean distance matrix (for
some points in RF, for some k)? A famous result answers this question: D € S™ is a
Euclidean distance matrix if and only if D;; = 0 and T Dz <0 for all z with 17z = 0.
(See §8.3.3.)

Show that the set of Euclidean distance matrices is a convex cone. Find the dual cone.
Solution. The set of Euclidean distance matrices in S™ is a closed convex cone because
it is the intersection of (infinitely many) halfspaces defined by the following homogeneous
inequalities:

eiTDei <0, e,TDei >0, 2T Dz = ijxk;Djk <0,

3ok
foralli=1,...,n, and all z with 17z = 1.
It follows that dual cone is given by
K* =conv({—zz" |17z =1} LJ{elelT7 —e1€],...,enel, —enel }).

This can be made more explicit as follows. Define V € R™**("~1 ag

 [i-1m i=j
V”_{—l/n i # 7.

The columns of V' form a basis for the set of vectors orthogonal to 1, i.e., a vector x
satisfies 17z = 0 if and only if = Vy for some y. The dual cone is

K*={vWV" 4 diag(u) | W < 0,u € R"}.

Nonnegative polynomials and Hankel LMIs. Let Kpol be the set of (coefficients of) non-
negative polynomials of degree 2k on R:

Kpo = {x € Rk | 1 + @2t + st 4+ x2k+1t2k >0 for all t € R}.

a) Show that K. is a proper cone.
p
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(b)

A basic result states that a polynomial of degree 2k is nonnegative on R if and only
if it can be expressed as the sum of squares of two polynomials of degree k or less.
In other words, = € Kpo if and only if the polynomial

p(t) = o1 + zot + 23t 4 - + Topyat™”

can be expressed as

p(t) = r(t)* +s(t)*,
where r and s are polynomials of degree k.
Use this result to show that

Kpol = {x c R2H! T = Z Y,un for some Y € Sﬁ_ﬂ } .
m-+4n=i+1

In other words, p(t) = x1 + 2ot + x3t> + - - - + Top11t>* is nonnegative if and only if
there exists a matrix Y € S’fl such that

1 = Yn

x2 = Y2+ Yo

3 = Yiz+Yer+Y3
Tok+1 = Yitlk+1-

Show that K, = Khan Where

Kuan = {z €e R*™ | H(2) = 0}

and
z1 z2 Z3 s Zk Zk+1
%) z3 Z4 ce Zk41 Zk+4-2
Z3 Z4 zZ5 s Zk+4-2 Zk+4
H(z) =
Zk Zk+1  Rk4+2 0 22k—1 22k
Zk+1  Rk+2  Rk4+3 22k 22k+1
(This is the Hankel matriz with coeflicients z1, . .., z2k+1.)

Let Kumom be the conic hull of the set of all vectors of the form (1,t,t2,...,t%),
where t € R. Show that y € Kmom if and only if y1 > 0 and

y:yl(l,Eu,EUQ,...,Eu%)

for some random variable u. In other words, the elements of Kpom are nonnegative
multiples of the moment vectors of all possible distributions on R. Show that Ky =
K;)om'

Combining the results of (¢) and (d), conclude that Kpan = €l Kmom-

As an example illustrating the relation between Kmom and Khan, take & = 2 and
z = (1,0,0,0,1). Show that z € Khan, 2 € Kmom. Find an explicit sequence of
points in Kmom which converge to z.

Solution.

(a)

It is a closed convex cone, because it is the intersection of (infinitely many) closed
halfspaces, and also obviously a cone.

It has nonempty interior because (1,0,1,0,...,0,1) € int Ko (i.e., the polynomial
14+t2 4+t + .- +%). It is pointed because p(t) > 0 and —p(t) > 0 imply p(t) = 0.
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(b)

First assume that x; = Z
allt € R,

it Yinn for some Y = 0. It easily verified that, for

2k+1
p(t) = o1 + w2t + - + 2ot = Z Z Yot ™!
i=1 m+4n=1i+1
k41
_ Z Ymntm+n72
m,n=1
k+1
_ Z Y, tmfltnfl
m,n=1
= vTYw
where v = (1,t,t%,...,t*). Therefore p(t) > 0.
Conversely, assume © € Kp,o. By the theorem, we can express the corresponding
polynomial p(t) as p(t) = r(t)* + s(t)?, where
T(t) =ai1 t+ast+---+ ak+1tk, S(t) =by +bat+---+ bk+1tk,

The coefficient of '~ in r(¢)® + s(t)? is Zm+n:¢+1(ama" + bmbr). Therefore,

zi= Y (amntbaba) = Y Y

m4n=1i+1 m4n=1i+1

for Y = aa® + bbT.
z € K} if and only if 272 > 0 for all © € K,o. Using the previous result, this is
equivalent to the condition that for all Y > 0,
2k+1 k+1
Z 2z Z Yin = Z Yinzmin—1 = tr(YH(z)) >0,
i=1  mtn=it+1 m,n=1
i.e., H(z) = 0.
The conic hull of the vectors of the form (1,1, ...,t%*) is the set of nonnegative multi-

ples of all convex combinations of vectors of the form (1,t,...,t%*), i.e., nonnegative
multiples of vectors of the form

E(1,t,t%,...,t%%).
Tz >0 for all z € Kmom if and only if
E(z1 4+ zot + @3t 4+ 5E2k+1t2k) >0

for all distributions on R. This is true if and only if

T1 + ot + w3t? 4 - + x2k+1t2k >0
for all ¢.

This follows from the last result in §2.6.1, and the fact that we have shown that
Khan = K;ol = K;::)m

For the example, note that Et? = 0 means that the distribution concentrates prob-
ability one at ¢t = 0. But then we cannot have Et* = 1. The associated Hankel
matrix is H = diag(1,0, 1), which is clearly positive semidefinite.

Let’s put probability px at ¢ = 0, and (1 — px)/2 at each of the points t = +k.
Then we have, for all k, Et = Et* = 0. We also have Et> = (1 — px)k? and
Et* = (1- Pk)k4. Let’s now choose pr, = 1 — 1/1@47 so we have Et* = 1, and
Et* = 1/k®. Thus, the moments of this sequence of measures converge to 1, 0, 0, 1.
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2.38 [Roc70, pages 15, 61] Convex cones constructed from sets.

(a)

The barrier cone of a set C is defined as the set of all vectors y such that y”x is
bounded above over € C. In other words, a nonzero vector y is in the barrier cone
if and only if it is the normal vector of a halfspace {z | y"2 < a} that contains C.
Verify that the barrier cone is a convex cone (with no assumptions on C').

Solution. Take two points z1,x2 in the barrier cone. We have

T T
supryy < 00, sup ra y < 00,
yel yel

so for all 61,602 > 0,

sup(f1z1 + HQxQ)Ty < sup(@lxlTy) + sup(nggy) < 0.
yeC yeC yeC

Therefore 8x1 + 0222 is also in the barrier cone.

The recession cone (also called asymptotic cone) of a set C' is defined as the set of
all vectors y such that for each z € C, x — ty € C for all ¢ > 0. Show that the
recession cone of a convex set is a convex cone. Show that if C' is nonempty, closed,
and convex, then the recession cone of C' is the dual of the barrier cone.

Solution. It is clear that the recession cone is a cone. We show that it is convex if
C' is convex.

Let y1, y2 be in the recession cone, and suppose 0 < 0 < 1. Then if x € C
z—t(0yr + (1 = 0)y2) = 0(z — tyr) + (1 — 0)(x — ty2) € C,

for all ¢ > 0, because C is convex and x — ty1 € C, x — tys € C for all t > 0.
Therefore 0y1 + (1 — 0)y-2 is in the recession cone.

Before establishing the second claim, we note that if C' is closed and convex, then
its recession cone Rc can be defined by choosing any arbitrary point & € C, and
letting

Re={y|&—1tye CVt>0}.

This follows from the following observation. For x € C, define
Re(z) ={y |z —ty € CVt > 0}.

We want to show that Rc(z1) = Re(x2) for any z1, 22 € C. We first show Re(z1) C
Re(z2). Ify € Re(x1), then 1 — (¢/0)y € C for allt > 0, 0 < € < 1, so by convexity
of C,

O(x1 — (t/0)y) + (1 — 0)z2 € C.

Since C' is closed,

T2 —ty = éi{r(l)(@(azl —(t/0)y) + (1 — 0)z2) € C.

This holds for any ¢ > 0, i.e., y € Rc(x2). The reverse inclusion Re(z2) C Re(x1)
follows similarly.

We now show that the recession cone is the dual of the barrier cone. Let Sc(y) =
SUpP,co yTx. By definition of the barrier cone, Sc(y) is finite if and only if y is in
the barrier cone, and every halfspace that contains C can be expressed as

y 'z < Sc(y)

for some nonzero y in the barrier cone. A closed convex set C' is the intersection of
all halfspaces that contain it. Therefore

C={z|y"z < Sc(y) for all y € Be},
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Let 2 € C. A vector v is in the recession cone if and only if £ —tv € C for all ¢t > 0,
i.e.,
y" (# — tv) < Sc(y) for all y € Be.

This is true if and only if yTv > 0 for all y € Bc, i.e., if and only if v is in the dual
cone of Bc.

(¢) The normal cone of a set C' at a boundary point xo is the set of all vectors y such
that y” (z — 20) < 0 for all z € C (i.e., the set of vectors that define a supporting
hyperplane to C' at z¢). Show that the normal cone is a convex cone (with no
assumptions on C). Give a simple description of the normal cone of a polyhedron
{z | Az < b} at a point in its boundary.

Solution. The normal cone is defined by a set of homogeneous linear inequalities
in y, so it is a closed convex cone.

Let xo be a boundary point of {x | Az < b}. Suppose A and b are partitioned as

AT by
A= ! b=
{ A3 } ’ [ b2 }
in such a way that
Ai1xo = by, Asxg < ba.
Then the normal at xzg is
{ATA | A= 0},

i.e., it is the conic hull of the normal vectors of the constraints that are active at xo.

2.39 Separation of cones. Let K and K be two convex cones whose interiors are nonempty and
disjoint. Show that there is a nonzero y such that y € K*, —y € K™.

Solution. Let y # 0 be the normal vector of a separating hyperplane separating the
interiors: mi > « for z € int K7 and mi < o for z € int Ko. We must have o = 0
because K7 and K32 are cones, so if x € int K1, then tx € int K; for all t > 0.

This means that

y € (int K1) = K7, —y € (int K»)" = K5.
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Convex functions
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Exercises

Definition of convexity

3.1 Suppose f: R — R is convex, and a, b € dom f with a < b.

(a)

Show that

b—x T —a
b—af(a)+ b—a

fz) < f(0)

for all = € [a, b].
Solution. This is Jensen’s inequality with A = (b — z)/(b — a).
Show that

f(z) = fla) _ f(b) = fa) _ f(b) = f(x)
rT—a - b—a - b—z

for all x € (a,b). Draw a sketch that illustrates this inequality.
Solution. We obtain the first inequality by subtracting f(a) from both sides of the
inequality in (a). The second inequality follows from subtracting f(b). Geometri-
cally, the inequalities mean that the slope of the line segment between (a, f(a)) and
(b, £(b)) is larger than the slope of the segment between (a, f(a)) and (z, f(x)), and
smaller than the slope of the segment between (x, f(z)) and (b, f(b)).

Suppose f is differentiable. Use the result in (b) to show that

f(b) = f(a)

Y <.

f(a) <
Note that these inequalities also follow from (3.2):
f®) = f(@) + f'(a)(b—a),  fla) = f(b) + f'(b)(a D).

Solution. This follows from (b) by taking the limit for # — a on both sides of
the first inequality, and by taking the limit for x — b on both sides of the second
inequality.
Suppose f is twice differentiable. Use the result in (c) to show that f”(a) > 0 and
() >o0.
Solution. From part (c),
! !
FO-1a
b—a -
and taking the limit for b — a shows that f”(a) > 0.

3.2 Level sets of convex, concave, quasiconvex, and quasiconcave functions. Some level sets
of a function f are shown below. The curve labeled 1 shows {z | f(z) = 1}, etc.
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Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat
for the level curves shown below.

12 3 4 5 6

Solution. The first function could be quasiconvex because the sublevel sets appear to be
convex. It is definitely not concave or quasiconcave because the superlevel sets are not
convex.

It is also not convex, for the following reason. We plot the function values along the
dashed line labeled 1.

Along this line the function passes through the points marked as black dots in the figure
below. Clearly along this line segment, the function is not convex.
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If we repeat the same analysis for the second function, we see that it could be concave
(and therefore it could be quasiconcave). It cannot be convex or quasiconvex, because
the sublevel sets are not convex.

3.3 Inverse of an increasing conver function. Suppose f : R — R is increasing and convex
on its domain (a,b). Let g denote its inverse, i.e., the function with domain (f(a), f(b))
and g(f(z)) =z for a < x < b. What can you say about convexity or concavity of g7

Solution. g is concave. Its hypograph is

{(,t) 1t < g(y)}
{(,t) | f(t) < f(g
{(y,t) | f(t) <w)}

0 1 .
= [ 10 ]epl I
For differentiable g, f, we can also prove the result as follows. Differentiate g(f(z)) =z

once to get
’ !/
g (f(@)) =1/f (z).
so g is increasing. Differentiate again to get

hypog

(y))} (because f is increasing)

f"(z)

0" (@) = s

so g is concave.

3.4 [RV73, page 15] Show that a continuous function f : R™ — R is convex if and only if for
every line segment, its average value on the segment is less than or equal to the average
of its values at the endpoints of the segment: For every z, y € R",

/lf(f“r/\(yx))d/\g M

Solution. First suppose that f is convex. Jensen’s inequality can be written as
fle+ My —2) < f(@) + A(f(y) — f(z))

for 0 < A < 1. Integrating both sides from 0 to 1 we get

f@) + fy)

| terrw-mans [ G@exw - sy =10
0 0

Now we show the converse. Suppose f is not convex. Then there are x and y and
6o € (0,1) such that

J(Oox + (1 —00)y) > Oof(x) + (1 —00) f(y)-
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3.5

3.6

3.7

Consider the function of 6 given by

F(0) = f(0x+ (1= 0)y) —0f(z) — (1= 0)f(y),

which is continuous since f is. Note that F' is zero for # = 0 and 6 = 1, and positive at 0.
Let a be the largest zero crossing of F' below 0y and let 8 be the smallest zero crossing
of F above 6y. Define u = ax + (1 — )y and v = Bz + (1 — B)y. On the interval (o, 3),

we have
F0) = f(0x+ (1= 0)y) > 0f(z) + (1 -0)f(y),
so for 6 € (0,1),
fOu+ (1 —0)v) > 0f(u)+ (1 —0)f(v).

Integrating this expression from 6 = 0 to 6 =1 yields

[ ssou=aans [ ot - s o= L,

In other words, the average of f over the interval [u,v] exceeds the average of its values
at the endpoints. This proves the converse.

[RVT73, page 22] Running average of a convex function. Suppose f : R — R is convex,
with R4 C dom f. Show that its running average F', defined as

F(w):é/ f(t)dt, domF —Ruy,
0

is convex. You can assume f is differentiable.
Solution. F' is differentiable with

Fla) = —(1/a) / £0) dt + ()
Fla) = (2/a%) / F(t) dt — 20 () /2 + [' (@)
0

= ") [ G0 1@ - Fae- o)
0
Convexity now follows from the fact that

f@) = fl@) + f(2)(t - )
for all z,¢ € dom f, which implies F"'(z) > 0.

Functions and epigraphs. When is the epigraph of a function a halfspace? When is the
epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?
Solution. If the function is affine, positively homogeneous (f(az) = af(x) for a > 0),
and piecewise-affine, respectively.

Suppose f : R" — R is convex with dom f = R", and bounded above on R". Show that
f is constant.

Solution. Suppose f is not constant, i.e., there exist x, y with f(z) < f(y). The function

g(t) = flz+t(y —x))
is convex, with ¢g(0) < g(1). By Jensen’s inequality
t—1 1
9(1) £ ——9(0) + 29(t)
for all ¢ > 1, and therefore
g(t) = tg(1) — (t = 1)g(0) = g(0) + t(g(1) — g(0)),

so g grows unboundedly as ¢ — oco. This contradicts our assumption that f is bounded.
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3.8 Second-order condition for convezity. Prove that a twice differentiable function f is convex
if and only if its domain is convex and V2 f(z) > 0 for all z € dom f. Hint. First consider
the case f : R — R. You can use the first-order condition for convexity (which was proved
on page 70).

Solution. We first assume n = 1. Suppose f : R — R is convex. Let z,y € dom f with
y > x. By the first-order condition,

@)y —2) < fly) = f2) < W)y — ).
Subtracting the righthand side from the lefthand side and dividing by (y — z)? gives
Fw =@
y—c

Taking the limit for y — z yields f"'(z) > 0.
Conversely, suppose f”(z) > 0 for all 2 € dom f. Consider two arbitrary points z,y €
dom f with z < y. We have

0 < /yf”(Z)(y—

(/') - =) le/f
= S @ -2+ )

i.e., f(y) > f(z) + f'(z)(y — z). This shows that f is convex.

To generalize to n > 1, we note that a function is convex if and only if it is convex on
all lines, i.e., the function g(t) = f(xzo + tv) is convex in ¢ for all zop € dom f and all v.
Therefore f is convex if and only if

g’ () =0TV f(20 + tv)v >0

for all xp € dom f, v € R", and t satisfying zo + tv € dom f. In other words it is
necessary and sufficient that V2 f(x) &= 0 for all z € dom f.

3.9 Second-order conditions for convezity on an affine set. Let F € R"*™ & € R". The
restriction of f : R™ — R to the affine set {Fz+ & | 2 € R™} is defined as the function

f:R™ — R with
f(z) = f(Fz+ &), dom f = {z | Fz + & € dom f}.
Suppose f is twice differentiable with a convex domain.
(a) Show that f is convex if and only if for all z € dom f
FINV2f(Fz+2)F = 0.

(b) Suppose A € RP*™ is a matrix whose nullspace is equal to the range of F, i.e.,
AF =0 and rank A = n —rank F. Show that f is convex if and only if for all
z € dom f there exists a A € R such that

Vif(Fz+ &)+ ATA = 0.

Hint. Use the following result: If B € S™ and A € RPX", then 27 Bz > 0 for all
x € N(A) if and only if there exists a A such that B+ AT A = 0.

Solution.
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(a) The Hessian of f must be positive semidefinite everywhere:
V2f(z) = F'V?f(Fz 4 2)F = 0.
(b) The condition in (a) means that v7 V2 f(Fz + #)v > 0 for all v with Av = 0, i.e.,
v AT Ay =0 = "V f(Fz +i)v > 0.

The result immediately follows from the hint.

3.10 An extension of Jensen’s inequality. One interpretation of Jensen’s inequality is that
randomization or dithering hurts, i.e., raises the average value of a convex function: For
f convex and v a zero mean random variable, we have E f(xo + v) > f(zo). This leads
to the following conjecture. If fy is convex, then the larger the variance of v, the larger
E f(zo 4+ v).

(a) Give a counterexample that shows that this conjecture is false. Find zero mean
random variables v and w, with var(v) > var(w), a convex function f, and a point
xo, such that E f(zo +v) < E f(zo + w).

(b) The conjecture is true when v and w are scaled versions of each other. Show that
E f(zo + tv) is monotone increasing in ¢ > 0, when f is convex and v is zero mean.

Solution.

(a) Define f: R — R as

xo = 0, and scalar random variables

1 with probability 1/2 ] 4 with probability 1/10
Y=Y -1 with probability 1/2 "1 —4/9 with probability 9/10.

w and v are zero-mean and
var(v) = 16/9 > 1 = var(w).

However,
Ef(v)=2/56<1/2=E f(w).

(b) f(zo+tv) is convex in t for fixed v, hence if v is a random variable, g(t) = E f(zo+tv)
is a convex function of ¢. From Jensen’s inequality,

g(t) = E f(zo + tv) > f(zo) = g(0).
Now consider two points a, b, with 0 < a < b. If g(b) < g(a), then

2209000+ 2g(6) < © 7 9(0) + Sola) = g(a)

which contradicts Jensen’s inequality. Therefore we must have g(b) > g(a).

3.11 Monotone mappings. A function ¢ : R" — R" is called monotone if for all x, y € dom ),

(¥(2) = ¥(y)" (@ —y) 2 0.

(Note that ‘monotone’ as defined here is not the same as the definition given in §3.6.1.
Both definitions are widely used.) Suppose f : R” — R is a differentiable convex function.
Show that its gradient Vf is monotone. Is the converse true, i.e., is every monotone
mapping the gradient of a convex function?
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Solution. Convexity of f implies

f@ = f)+Viw (@—y),  f) = f@) + Vi) (y—2)

for arbitrary x,y € dom f. Combining the two inequalities gives

(V@) = Vi) (z—y) >0,

which shows that V f is monotone.
The converse not true in general. As a counterexample, consider

T 1 0 T
Qp(‘”):{xl/um ] - { 12 1 ] {m }

1) is monotone because

(fIf—y)T[ 1}2 ?](m—y)Z(w—y)T[ 1}4 1{4](&3—y)>0

for all z,y.

However, there does not exist a function f : R? — R such that 1 (z) = Vf(x), because
such a function would have to satisfy

Pf Oy P e,
85018272 o 8%2 - 81‘18(122 - 8:01 o '

Suppose f : R"™ — R is convex, g : R” — R is concave, dom f = domg = R", and
for all z, g(z) < f(z). Show that there exists an affine function h such that for all z,
g(z) < h(z) < f(z). In other words, if a concave function g is an underestimator of a
convex function f, then we can fit an affine function between f and g.

Solution. We first note that int epi f is nonempty (since dom f = R"), and does not
intersect hypo g (since f(z) < t for (z,¢) € intepi f and t > g(z) for (z,t) € hypog).
The two sets can therefore be separated by a hyperplane, i.e., there exist a € R™,b € R,
not both zero, and ¢ € R such that

aT:r—|—bt2<:2aTy—|—bv

ift > f(z) and v < g(y). We must have b # 0, since otherwise the condition would reduce

to aTx > aTy for all x and y, which is only possible if a = 0. Choosing = = ¥, and using
the fact that f(z) > g(x), we also see that b > 0.

Now we apply the separating hyperplane conditions to a point (z,t) € intepif, and
(y,v) = (z,9(z)) € hypo g, and obtain

"z bt >c>a"x+bg(x),
and dividing by b,
t> (c—aTx)/b> g(o),
for all t > f(z). Therefore the affine function h(z) = (¢ — a”x)/b lies between f and g.

Kullback-Leibler divergence and the information inequality. Let Dy be the Kullback-
Leibler divergence, as defined in (3.17). Prove the information inequality: D (u,v) > 0
for all u, v € R .. Also show that Dw(u,v) =0 if and only if u = v.

Hint. The Kullback-Leibler divergence can be expressed as

Da(u,v) = f(u) = f(v) = VF(v)" (u—v),
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where f(v) = Z?:1 v; log v; is the negative entropy of v.
Solution. The negative entropy is strictly convex and differentiable on R% ,, hence

flu) > f() + V()" (u—wv)

for all w,v € R, with u # v. Evaluating both sides of the inequality, we obtain

Zui logu; > Zvi log v; + Z(logvi + 1) (us — ;)
i=1 i=1 i=1

= Zu’ logv; + 17 (u —v).

i=1

Re-arranging this inequality gives the desired result.

3.14 Convez-concave functions and saddle-points. We say the function f : R" x R™ — R
is convez-concave if f(z,z) is a concave function of z, for each fixed z, and a convex
function of x, for each fixed z. We also require its domain to have the product form
dom f = A x B, where A C R" and B C R™ are convex.

(a) Give a second-order condition for a twice differentiable function f: R" x R™ — R

to be convex-concave, in terms of its Hessian V2 f(z, 2).

(b) Suppose that f : R"xR™ — R is convex-concave and differentiable, with V f(Z, 2) =

0. Show that the saddle-point property holds: for all x, z, we have
f(&,2) < f(#,2) < f(=,2).
Show that this implies that f satisfies the strong maz-min property:
sup inf f(z,z) = inf sup f(z,z)

z x x z

(and their common value is f(Z, 2)).

(¢) Now suppose that f : R" x R™ — R is differentiable, but not necessarily convex-

concave, and the saddle-point property holds at z, z:

f(@,2) < f(7,2) < f(=,2)
for all z, z. Show that Vf(z,2) = 0.

Solution.

(a) The condition follows directly from the second-order conditions for convexity and

~

concavity: it is

Vief(2,2) =0, VI f(z,2) 20,
for all z, z. In terms of V2 £, this means that its 1,1 block is positive semidefinite,
and its 2,2 block is negative semidefinite.

Let us fix 2. Since V. f(Z,2) = 0 and f(x, Z) is convex in z, we conclude that Z
minimizes f(x, Z) over z, i.e., for all z, we have

f(z,2) < f(z, 2).

This is one of the inequalities in the saddle-point condition. We can argue in the
same way about z. Fix Z, and note that V. f(Z, 2) = 0, together with concavity of
this function in z, means that Z maximizes the function, i.e., for any x we have

f(z,2) > f(z,2).

To establish this we argue the same way. If the saddle-point condition holds, then
Z minimizes f(x, Z) over all . Therefore we have V f;(Z, Z) = 0. Similarly, since 2
maximizes f(Z,z) over all z, we have Vf,(Z, 2) = 0.
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Exercises

Examples

A family of concave utility functions. For 0 < a <1 let

z® —1
UQ(QT) = a )

with domu, = R4. We also define uo(z) = logz (with domug = R44).
(a) Show that for z > 0, uo(x) = lima—o ua(z).
(b) Show that us are concave, monotone increasing, and all satisfy uq (1) = 0.

These functions are often used in economics to model the benefit or utility of some quantity
of goods or money. Concavity of u, means that the marginal utility (i.e., the increase
in utility obtained for a fixed increase in the goods) decreases as the amount of goods
increases. In other words, concavity models the effect of satiation.

Solution.

(a) In this limit, both the numerator and denominator go to zero, so we use ’'Hopital’s

rule: (d/do)(z® — 1) ol
. . a)(z® — . z%logx
1 o = lim ——F———— = lim ——— =1 .
Ay e = I T Wdaya a1
(b) By inspection we have
1% -1
o(1) = -
ua(1) " 0

The derivative is given by
uh (z) = 27,

which is positive for all z (since 0 < a < 1), so these functions are increasing. To
show concavity, we examine the second derivative:

ul(z) = (a— 1)z 2.

Since this is negative for all x, we conclude that u. is strictly concave.

3.16 For each of the following functions determine whether it is convex, concave, quasiconvex,

or quasiconcave.

(a) f(z)=€e"—1onR.
Solution. Strictly convex, and therefore quasiconvex. Also quasiconcave but not
concave.

(b) f(z1,m2) = z122 on RY .
Solution. The Hessian of f is

which is neither positive semidefinite nor negative semidefinite. Therefore, f is
neither convex nor concave. It is quasiconcave, since its superlevel sets

{(x1,22) € RY | ;a2 > a}

are convex. It is not quasiconvex.

(¢) f(z1,72) = 1/(x122) on RA,.
Solution. The Hessian of f is

1 2/(x3)  1/(z122)
z1x2 | 1/(z122) Q/mg

V2 f(z) =

=0

Therefore, f is convex and quasiconvex. It is not quasiconcave or concave.
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(d) f(z1,22) = z1/x2 on RY .
Solution. The Hessian of f is

2 . 0 71/27%
Vif(z) = —1/x3 21 /x3

which is not positive or negative semidefinite. Therefore, f is not convex or concave.
It is quasiconvex and quasiconcave (i.e., quasilinear), since the sublevel and super-
level sets are halfspaces.

(e) f(z1,22) = 2?/x2 on R x Ry 4.
Solution. f is convex, as mentioned on page 72. (See also figure 3.3). This is easily
verified by working out the Hessian:

72x1/x§ 2mf/x§ —2z1 /22

Vif(z) = [ 2z A } = (2/x2) [ ' } [1 —2z1/xzs | =0.

Therefore, f is convex and quasiconvex. It is not concave or quasiconcave (see the
figure).

(f) f(w1,22) = 2§ 3™, where 0 < @ < 1, on R% .
Solution. Concave and quasiconcave. The Hessian is

_ [ala- et afl- e iee
VQf(x) = |: a(l — a)xl‘filmggia (1- a)(fa)lx‘f:rfa71

_ a l—a _1/1:% 1/5131(1)2
= ol —a)ziz, [ 1212 71/:”%

B o 1o 1/z1 /a1 !
= —a(l —a)ziz, |: —1/2 :| |: —1/x2 :|
0.

PN

f is not convex or quasiconvex.

3.17 Suppose p < 1, p # 0. Show that the function

n 1/p
f(@) = (Z w)

with dom f = R}, is concave. This includes as special cases f(z) = (3 ., ‘763/2)2 and
the harmonic mean f(z) = (3., 1/x:)~". Hint. Adapt the proofs for the log-sum-exp
function and the geometric mean in §3.1.5.

Solution. The first derivatives of f are given by

F@) = oiemym o (F@\'T
Ox; :(Zwi)( ral _< x; > '

i=1

The second derivatives are
Pfa) _1-p(f@\ " (f@\ " _1-p (@)
0x;0x; T T T @) \ wiz;

8?@)_1—p(f@f>1p_1—p<ﬂ@>lp

for i # j, and




Exercises

We need to show that

VIV @)y = Tt ((Z y”;(f”,) ) Z v (fp ) <0

This follows by applying the Cauchy-Schwarz inequality a”b < ||a||2||b||2 with

-p/2 1-p/2

and noting that > a7 = 1.

3.18 Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the follow-
ing.

(a) f(X)=tr (X_l) is convex on dom f = ST .
(b) f(X) = (det X)/™ is concave on dom f = S’} .
Solution.
(a) Define g(t) = f(Z +tV), where Z = 0 and V € S".
g(t) = tr((Z+tV)

= tr(Zz7'U+tz7PvzT AT
= tr(Zz7'QU +t0)7'Q")
= tr(Q Z7'QU +tA)7Y)

= Z(Q Z7'Q)u(1 +th) Y,

=1

where we used the eigenvalue decomposition Z 2V Z~1/2 = QAQT. In the last
equality we express g as a positive weighted sum of convex functions 1/(1 + t);),
hence it is convex.

(b) Define g(t) = f(Z 4+ tV), where Z > 0 and V € S™.

g(t)

(det(Z +tV))'/"
= (det 2"/ det(I + 22V 2V ?) det 2/2) "

n 1/n
(det Z)"/™ (Hu +m)>

i=1

where X\;, ¢ = 1,...,n, are the eigenvalues of Z7Y2y 2712 From the last equality
we see that g is a concave function of t on {¢t | Z +tV > 0}, since det Z > 0 and the

geometric mean (J]7 x;)'/™ is concave on R .

1
3.19 Nonnegative weighted sums and integrals.
(a) Show that f(z) = 2:21 oz is a convex function of z, where a1 > ag > -+ >
ar > 0, and z[; denotes the ith largest component of . (You can use the fact that
f(z) = Zle x[ is convex on R™.)
Solution. We can express f as
fl@) = ar(zy+op+-+ap) + (ar—l ar)(zp +w[21 oot apo)
F(ar—2 — ap—1) (@) + o) + - F Tppog)) o A (@1 — a2)zp,
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which is a nonnegative sum of the convex functions

zp), T+ Tp2) T+ T2 + ), Tyt T+t Ty

Let T'(z,w) denote the trigonometric polynomial
T(z,w) = x1 + T2 cosw + T3 o8 2w + + - + + Ty, cos(n — 1)w.

Show that the function
27
flz) = 7/ log T(z,w) dw
0

is convex on {z € R" | T'(z,w) >0, 0 <w < 27}.
Solution. The function

g(z,w) = —log(x1 + 22 cosw + x3cos 2w + - - - + +xp cos(n — 1)w)

is convex in z for fixed w. Therefore

fw) = / 7 gl )

is convex in x.

3.20 Composition with an affine function. Show that the following functions f : R” — R are
convex.

(a)

(b)

f(z) = ||Ax — b]|, where A € R™*™ b€ R™, and || - || is a norm on R™.
Solution. f is the composition of a norm, which is convex, and an affine function.
flx) = —(det(Ao + 141+ - + ann))l/m, on{z| Ao +z1A1+ -+, A, = 0},
where A; € S™.

Solution. f is the composition of the convex function h(X) = —(det X)*/™ and an
affine transformation. To see that h is convex on ST, , we restrict h to a line and

prove that g(t) = —det(Z + tV)¥/™ is convex:

g(t) = —(det(Z +tv)'/™
= —(det 2)Y™(det(I + tZz 2V z=/2)/m
= —(et )™ [+t
i=1
where A1, ..., Ap denote the eigenvalues of Z7 Y2y 272 We have expressed g as
the product of a negative constant and the geometric mean of 1 +tX\;, i =1,...,m.

Therefore g is convex. (See also exercise 3.18.)

F(X)=tr(Ao+ 1414+ +zo,A,) " on {z | Ag+z1A1 +- -+ 2,A, = 0}, where
A; € 8™. (Use the fact that tr(X ') is convex on ST ; see exercise 3.18.)

Solution. f is the composition of tr X ' and an affine transformation

T Ao +x1A1+ -+ zaAn.

3.21 Pointwise mazimum and supremum. Show that the following functions f : R™ — R are
convex.
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(a)

f(@) =maxi—1,_x |[ADz —bD |, where A® € R™*" ) ¢ R™ and || - || is a norm
on R™.

Solution. f is the pointwise maximum of k functions |A®z — b®||. Each of those
functions is convex because it is the composition of an affine transformation and a
norm.

f(x) =>""_, |z[i on R", where |z| denotes the vector with |z]; = |zi| (i.e., |z] is
the absolute value of z, componentwise), and |z|};) is the ith largest component of
|z|. In other words, |z|q1, |12, - -, || are the absolute values of the components
of z, sorted in nonincreasing order.

Solution. Write f as

1<iy <ig <+ <ip

f@)= lely=_ _max_ o]+ o+l
=1

which is the pointwise maximum of n!/(r!(n — r)!) convex functions.

3.22 Composition rules. Show that the following functions are convex.

(a)

f(z) = —log(—log(>_T", ea?“rbi)) ondomf={z| > ", e i < 1}. You can
use the fact that log(D>_" | e¥) is convex.

Solution. g(z) = log(} ", eaiTI"'bi) is convex (composition of the log-sum-exp
function and an affine mapping), so —g is concave. The function h(y) = —logy is

convex and decreasing. Therefore f(z) = h(—g(z)) is convex.

f(z,u,v) = —vuv — 2Tz on dom f = {(z,u,v) | wv > z¥z, u, v > 0}. Use the
fact that 27 x/u is convex in (z,u) for u > 0, and that —,/Z1z2 is convex on R3 .

Solution. We can express f as f(z,u,v) = —y/u(v—2Tz/u). The function
h(z1,z2) = —\/Z172 is convex on R3_+, and decreasing in each argument. The
functions g1(u,v,z) = w and ga(u,v,2) = v — 7 x/u are concave. Therefore
flu,v,2) = h(g(u,v,x)) is convex.

f(z,u,v) = —log(uv — z7z) on dom f = {(2,u,v) | wv > 272, u, v > 0}.

Solution. We can express f as
f(z,u,v) = —logu —log(v — 2" x/u).

The first term is convex. The function v — 27 2 /u is concave because v is linear and
xTx/u is convex on {(z,u) | u > 0}. Therefore the second term in f is convex: it is
the composition of a convex decreasing function — logt and a concave function.
f(z,t) = —(t" — ||z||5)*/? where p > 1 and dom f = {(x,t) | t > ||z||,}. You can use
the fact that ||z||}/u”~" is convex in (z,u) for u > 0 (see exercise 3.23), and that
—z'/Py'=1/P is convex on R2 (see exercise 3.16).

Solution. We can express f as

1/p P 1/p
Y AN AR
flz,t) = (t (t = =t = .

This is the composition of h(y1,y2) = fy}/pyéfl/p (convex and decreasing in each
argument) and two concave functions
_ x|}
i@ t) =7, gaat) =t — 1D

1
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(e) f(z,t) = —log(t? — ||x||5) where p > 1 and dom f = {(z,t) | t > ||z|p}. You can
use the fact that ||z||5/u”~" is convex in (z,u) for u > 0 (see exercise 3.23).
Solution. Express f as

fl,t) = —logt’™" —log(t — [|=[b/t"")
= —(p—1)logt—log(t — [lz[|5/t"").

The first term is convex. The second term is the composition of a decreasing convex
function and a concave function, and is also convex.

3.23 Perspective of a function.
(a) Show that for p > 1,

B Y e e o 2 G
f(il»',t) - tp,1 - tp,1

is convex on {(z,t) | ¢ > 0}.
Solution. This is the perspective function of ||z||} = |z1|” + - - - + |2n|?.
(b) Show that
_ Az + 0|3
f(fL’) - CTiU + d
is convex on {z | ¢Tx +d > 0}, where A € R™*" bc R™, cc R" and d € R.

Solution. This function is the composition of the function g(y,t) = y”y/t with an
affine transformation (y,t) = (Az + b,c"x 4 d). Therefore convexity of f follows
from the fact that g is convex on {(y,t) | t > 0}.

For convexity of g one can note that it is the perspective of 27z, or directly verify
that the Hessian
I/t —y/t? }

vzg(yv t) = |: 7yT/t yTy/t3

is positive semidefinite, since

v 17 I/t —y/t? v 2
o] e e || ] = e vz 2o

w yTy/t* || w
for all v and w.

3.24 Some functions on the probability simplex. Let x be a real-valued random variable which
takes values in {ai,...,an} where a1 < a2 < .-+ < an, with prob(z = a;) = p;,
i =1,...,n. For each of the following functions of p (on the probability simplex {p €
RY | 17p = 1}), determine if the function is convex, concave, quasiconvex, or quasicon-
cave.

(a) Ex.
Solution. Ex = pia1 + --- + pnayn is linear, hence convex, concave, quasiconvex,
and quasiconcave

(b) prob(z > «).
Solution. Let j = min{é | a; > a}. Then prob(z > a) = Z?:j pi, This is a linear
function of p, hence convex, concave, quasiconvex, and quasiconcave.

(¢) prob(a <z < f).
Solution. Let j = min{i | a; > a} and k = max{i | a; < 8}. Then prob(a <z <
B8) = Zf:j p;. This is a linear function of p, hence convex, concave, quasiconvex,
and quasiconcave.
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(d)

Z?:l p; log p;, the negative entropy of the distribution.

Solution. plogp is a convex function on R4 (assuming 0log0 = 0), so Zipi log p:
is convex (and hence quasiconvex).

The function is not concave or quasiconcave. Consider, for example, n = 2, p* =
(1,0) and p* = (0,1). Both p' and p* have function value zero, but the convex com-
bination (0.5,0.5) has function value log(1/2) < 0. This shows that the superlevel
sets are not convex.

varz = E(z — Ex)%

Solution. We have
varz = Exz? — (E x)2 = Zpia? - (Zpiai)Q,
i=1 i=1

so var x is a concave quadratic function of p.

The function is not convex or quasiconvex. Consider the example withn = 2, a1 =0,
az = 1. Both (p1,p2) = (1/4,3/4) and (p1,p2) = (3/4,1/4) lie in the probability
simplex and have var z = 3/16, but the convex combination (p1, p2) = (1/2,1/2) has
a variance var x = 1/4 > 3/16. This shows that the sublevel sets are not convex.
quartile(z) = inf{8 | prob(z < §) > 0.25}.

Solution. The sublevel and the superlevel sets of quartile(z) are convex (see
problem 2.15), so it is quasiconvex and quasiconcave.

quartile(x) is not continuous (it takes values in a discrete set {a1,...,an}, so it is
not convex or concave. (A convex or a concave function is always continuous on the
relative interior of its domain.)

The cardinality of the smallest set A C {a1,...,an} with probability > 90%. (By
cardinality we mean the number of elements in A.)

Solution. f is integer-valued, so it can not be convex or concave. (A convex or a
concave function is always continuous on the relative interior of its domain.)

f is quasiconcave because its superlevel sets are convex. We have f(p) > « if and

only if
k
me < 0.9,
i=1
where k = max{i = 1,...,n | i < a} is the largest integer less than «a, and py; is

the ith largest component of p. We know that Zlepm is a convex function of p,
so the inequality Zle P < 0.9 defines a convex set.

In general, f(p) is not quasiconvex. For example, we can take n = 2, a1 = 0 and
az = 1, and p' = (0.1,0.9) and p* = (0.9,0.1). Then f(p') = f(»*) = 1, but
F((" +p*)/2) = £(0.5,0.5) = 2.

The minimum width interval that contains 90% of the probability, i.e.,
inf {8 —a| prob(a <z < g) >0.9}.

Solution. The minimum width interval that contains 90% of the probability must
be of the form [a;,a;] with 1 <14 < j < n, because

J
prob(a <z <f) =Y px =prob(a; <z < ay)
k=1

where i = min{k | ax > a}, and j = max{k | ar < 8}.
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We show that the function is quasiconcave. We have f(p) > « if and only if all
intervals of width less than v have a probability less than 90%,

J

> <09

k=i

for all 4, 5 that satisfy a; — a; < . This defines a convex set.

The function is not convex, concave nor quasiconvex in general. Consider the ex-
ample with n = 3, a1 = 0, a2 = 0.5 and a3 = 1. On the line p; + p3 = 0.95, we
have

0.5 p1+ps=0.95 pi € (0.1,0.15]U[0.85,0.9)
1 p1+p3=095 p1 € (0.15,0.85)

It is clear that f is not convex, concave nor quasiconvex on the line.

0 pi+ps=095 pie[0.050.1U[0.9,0.95]
f(p)=

3.25 Maximum probability distance between distributions. Let p, ¢ € R™ represent two proba-
bility distributions on {1,...,n} (sop, ¢ >0, 1Tp = 17¢g = 1). We define the mazimum
probability distance dmp(p,q) between p and ¢ as the maximum difference in probability
assigned by p and ¢, over all events:

dmp(p, ) = max{| prob(p, C) — prob(q,C)| | C C {1,...,n}}.

Here prob(p,C) is the probability of C, under the distribution p, i.e., prob(p,C) =
iec Pi-
Find a simple expression for dmp, involving [|p —qllx = >, [pi — ¢i|, and show that dmp,

is a convex function on R"™ x R™. (Its domain is {(p,q) | p, ¢ = 0, 17p =1T¢ =1}, but
it has a natural extension to all of R™ x R"™.)

Solution. Noting that

prob(p,C) — prob(q,C) = —(prob(p, C) — prob(q, C)),
where C' = {1,...,n}\ C, we can just as well express dmp as
dmp(p7 q) = max{prob(p, C) - pI‘Ob(q, C) | C g {17 L 7TL}}

This shows that dmp is convex, since it is the maximum of 2™ linear functions of (p, q).
Let’s now identify the (or a) subset C' that maximizes

prob(p,C) — prob(q,C) = Z(pl — qi).
ieC

The solution is
C*={ie{l,...,n}|pi>q}

Let’s show this. The indices for which p; = ¢; clearly don’t matter, so we will ignore
them, and assume without loss of generality that for each index, psq; or p; < ¢;. Now
consider any other subset C. If there is an element k& in C* but not C, then by adding
k to C we increase prob(p,C) — prob(q,C) by pr — g > 0, so C could not have been
optimal. Conversely, suppose that k € C'\ C*, so pr — qx < 0. If we remove k from C,
we’d increase prob(p, C') — prob(g, C) by gr —pr > 0, so C could not have been optimal.

Thus, we have dmp(p7 q) = Z
Using

pi>q, (Pi — @i). Now let’s express this in terms of [lp — q||1.

Z(Pz‘*qz')+ Z(Pi*Qi):lTpfquZO,

Pi>q; i <q;
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we have

SO

Z(pi_Qi):_<Z(pi—Qi)>,

Di>q; Pi<qi

dop(p,a) = (1/2) Y (i—a)—(1/2) > (0i—a:)

Pi>4q; Pi<q;

= (1/2)) Ipi —ail

(1/2)llp — gl

This makes it very clear that dmp is convex.
The best way to interpret this result is as an interpretation of the £1-norm for probability
distributions. It states that the ¢;-distance between two probability distributions is twice
the maximum difference in probability, over all events, of the distributions.

3.26 More functions of eigenvalues. Let A1(X) > Aa(X) > -+ > Ay (X) denote the eigenvalues
of a matrix X € S™. We have already seen several functions of the eigenvalues that are
convex or concave functions of X.

The maximum eigenvalue A1 (X) is convex (example 3.10). The minimum eigenvalue
An(X) is concave.

The sum of the eigenvalues (or trace), tr X = A1(X) 4+ -+ + An(X), is linear.

The sum of the inverses of the eigenvalues (or trace of the inverse), tr(X ') =
Yo 1/Xi(X), is convex on 8%, (exercise 3.18).

The geometric mean of the eigenvalues, (det X)"/™ = (', Xi(X))"/", and the

logarithm of the product of the eigenvalues, log det X = Z?:l log A\;(X), are concave
on X € S, (exercise 3.18 and page 74).

In this problem we explore some more functions of eigenvalues, by exploiting variational
characterizations.

(a)

(b)

Sum of k largest eigenvalues. Show that Zle Ai(X) is convex on S™. Hint. [HJ85,
page 191] Use the variational characterization

k
D N(X) =supfr(VIXV) |V e RV, VTV =1},
i=1

Solution. The variational characterization shows that f is the pointwise supremum
of a family of linear functions tr(VI XV).

Geometric mean of k smallest eigenvalues. Show that (H?:ni,CJrl i (X)/* is con-

cave on S% . Hint. [MOT9, page 513] For X > 0, we have

n 1/k

< H /\i(X)> = %inf{tr(VTXV) |V eR™ det VTV =1}.
i=n—k+1

Solution. f is the pointwise infimum of a family of linear functions tr(V7 XV).

n

Log of product of k smallest eigenvalues. Show that Zz:n—k-‘rl
on ST, . Hint. [MOT9, page 513] For X > 0,

ﬁ Xi(X) = inf { [T " xv).

i=n—k+1 i=1

log A\;(X) is concave

VeRF vy = 1} .
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3.27

3.28

Solution. f is the pointwise infimum of a family of concave functions

log H(VTXV)“- = Z log(VIXV)s;.

Diagonal elements of Cholesky factor. Each X € S™, has a unique Cholesky factorization

X = LLT, where L is lower triangular, with L;; > 0. Show that L;; is a concave function
of X (with domain S ).

Hint. L;; can be expressed as Li; = (w — zTYflz)lm, where

Y =z

27w
is the leading ¢ X ¢ submatrix of X.
Solution. The function f(z,Y) = 2V ~'z with dom f = {(2,Y) | Y = 0} is convex
jointly in z and Y. To see this note that

2,Y,t) Cepif = Y =0, Yo e,
z t

so epi f is a convex set. Therefore, w — 27Y "1z is a concave function of X. Since the
squareroot is an increasing concave function, it follows from the composition rules that
Iiw = (w — 27Y 712)Y? is a concave function of X.

Operations that preserve convexity

Ezpressing a convex function as the pointwise supremum of a family of affine functions.
In this problem we extend the result proved on page 83 to the case where dom f # R".
Let f: R™ — R be a convex function. Define f : R" — R as the pointwise supremum of
all affine functions that are global underestimators of f:

f(z) = sup{g(x) | g affine, g(z) < f(2) for all z}.
(a) Show that f(z) = f(z) for z € int dom f.
(b) Show that f = f if f is closed (i.e., epi f is a closed set; see §A.3.3).
Solution.

(a) The point (x, f(z)) is in the boundary of epi f. (If it were in intepi f, then for
small, positive € we would have (z, f(z) — €) € epi f, which is impossible.) From
the results of §2.5.2, we know there is a supporting hyperplane to epi f at (z, f(x)),
i.e., a € R™ b € R such that

atz4+bt>a"z+ bf(z) forall (z,t) € epi f.

Since ¢ can be arbitrarily large if (z,t) € epi f, we conclude that b > 0.
Suppose b = 0. Then
a¥z>a"z forall z € dom f

which contradicts z € int dom f. Therefore b > 0. Dividing the above inequality
by b yields
t> f(z) + (a/b)"(x — z) for all (z,t) € epi f.
Therefore the affine function
9(2) = f(a) + (a/b)" (z - 2)
is an affine global underestimator of f, and hence by definition of f ,

f@) > f(z) > g(a).
However g(z) = f(x), so we must have f(z) = f(z).
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(b) A closed convex set is the intersection of all halfspaces that contain it (see chapter 2,
example 2.20). We will apply this result to epi f. Define

H = {(a,b,c) e R""? | (a,b) #0, inf (a"z+bt)>c}.

(z,t)cepi f

Loosely speaking, H is the set of all halfspaces that contain epi f. By the result in

chapter 2,
. T
epif= [ {(=t)|a"z+bt>ch (3.28.A)
(a,b,c)€H
It is clear that all elements of H satisfy b > 0. If in fact b > 0, then the affine
function

h() = —(a/b)"x + /b,
minorizes f, since
t> f(x) > —(a/b) @ + ¢/t = h()

for all (z,t) € epi f. Conversely, if h(x) = —a’2 + ¢ minorizes f, then (a,1,c) € H.
‘We need to prove that

epif = ﬂ {(z,t) | a"x + bt > c}.

(a,b,c)€H,b>0

(In words, epi f is the intersection of all ‘non-vertical” halfspaces that contain epi f.)
Note that H may contain elements with b = 0, so this does not immediately follow
from (3.28.A).

‘We will show that

(1 {@vldat+bt>ct= () {@t)]d"s+bt>ch. (328B)

(a,b,c)€H, b>0 (a,b,c)eH

It is obvious that the set on the left includes the set on the right. To show that
they are identical, assume (Z,t) lies in the set on the left, i.e.,

Tz +bE>c

for all halfspaces a”z + bt > ¢ that are nonvertical (i.e., b > 0) and contain epi f.
Assume that (Z,%) is not in the set on the right, i.e., there exist (a,b,¢) € H
(necessarily with b = 0), such that

a'z < e
H contains at least one element (ao, bo, co) with by > 0. (Otherwise epi f would be

an intersection of vertical halfspaces.) Consider the halfspace defined by (a,0,¢) +
€(ao, bo, co) for small positive e. This halfspace is nonvertical and it contains epi f:

(@ + eao) x4 ebot > @’ x + €(ad x + bot) > &+ eco,

for all (x,t) € epi f, because the halfspaces a”« > & and ad +bot > co both contain
epi f. However,

TZ + e(ad z + bol) < &+ eco

(@ + eao)’ T + ebot = a
for small €, so the halfspace does not contain (z,¢). This contradicts our assumption
that (z,%) is in the intersection of all nonvertical halfspaces containing epi f. We
conclude that the equality (3.28.B) holds.
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3.29

3.30

3.31

Representation of piecewise-linear convezr functions. A function f : R" — R, with
dom f = R", is called piecewise-linear if there exists a partition of R™ as

Rn:X1 UXsU---UXp,
where int X; # 0 and int X; Nint X; = 0 for ¢ # j, and a family of affine functions
afz +b1, ..., a¥z + by such that f(z) = al z + b; for = € X;.

Show that this means that f(z) = max{al @ +b1,...,afz +br}.
Solution. By Jensen’s inequality, we have for all z, y € dom f, and ¢t € [0, 1],

fly+tlx—y) < fly) +t(f(x) — f(y)),

and hence

Now suppose = € X;. Choose any y € int X, for some j, and take ¢t sufficiently small so
that y + t(x — y) € X;. The above inequality reduces to

(a] (y+tx—y) +b; —ay—b;)
¢

ajx+b; >a)y+b;+ =a)z+b;

This is true for any j, so aiTm +b; > maszl’m,L(afx + b;). We conclude that

T T
a; x+b; = max (ajz+bj).
J=1esL

Convex hull or envelope of a function. The convexr hull or convex envelope of a function
f:R™ — R is defined as

g(x) = inf{t | (z,t) € convepi f}.

Geometrically, the epigraph of g is the convex hull of the epigraph of f.

Show that g is the largest convex underestimator of f. In other words, show that if h is
convex and satisfies h(x) < f(z) for all z, then h(z) < g(z) for all z.

Solution. It is clear that g is convex, since by construction its epigraph is a convex set.

Let h be a convex lower bound on f. Since h is convex, epih is a convex set. Since h is a
lower bound on f, epi f C epih. By definition the convex hull of a set is the intersection
of all the convex sets that contain the set. It follows that convepif = epig C epih,
i.e., g(x) > h(zx) for all z.

[Roc70, page 35] Largest homogeneous underestimator. Let f be a convex function. Define
the function g as
inf M_

g(x) - a>0 (%
(a) Show that g is homogeneous (g(tz) = tg(x) for all ¢t > 0).

(b) Show that g is the largest homogeneous underestimator of f: If h is homogeneous
and h(z) < f(z) for all z, then we have h(z) < g(z) for all .

(¢) Show that g is convex.
Solution.

(a) Ift >0,
g(tx) = inf _f(atz) =t inf _f(atz:)
a>0 o« a>0 ta
For t = 0, we have g(tx) = g(0) = 0.

=tg(z).
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(b) If h is a homogeneous underestimator, then

W) = Mem) T

for all @ > 0. Taking the infimum over «a gives h(z) < g(z).
(c) We can express g as
g(z) = inf tf(x/t) = inf h(z,t)
t>0 >0

where h is the perspective function of f. We know h is convex, jointly in = and ¢,
so g is convex.

3.32 Products and ratios of convex functions. In general the product or ratio of two convex

functions is not convex. However, there are some results that apply to functions on R.
Prove the following.

a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions
g g g
on an interval, then fg is convex.

(b) If f, g are concave, positive, with one nondecreasing and the other nonincreasing,
then fg is concave.

(c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and
positive, then f/g is convex.

Solution.

(a) We prove the result by verifying Jensen’s inequality. f and g are positive and convex,
hence for 0 <6 <1,

fOz+(1=0)y) g0z +(1-0)y) < (0f(zx)+(1-0)f(y)) (Og9(x)+ (1 —-0)g(y))
0f(z)g(x) + (1 - 0)f(y)g(y)
+0(1=0)(f(y) — f(2))(9(z) — 9(y))-

The third term is less than or equal to zero if f and g are both increasing or both
decreasing. Therefore

f0x+ (1 —0)y) g(0x + (1 - 0)y) < 0f(x)g(x) + (1 —0)f(y)g(v).

(b) Reverse the inequalities in the solution of part (a).

(c) It suffices to note that 1/g is convex, positive and increasing, so the result follows
from part (a).

3.33 Direct proof of perspective theorem. Give a direct proof that the perspective function g,

as defined in §3.2.6, of a convex function f is convex: Show that dom g is a convex set,
and that for (z,t), (y,s) € domg, and 0 < 6 < 1, we have

g0z + (1 —0)y,0t+ (1 —0)s) < 0g(x,t)+ (1 —0)g(y,s).

Solution. The domain domg = {(z,t) | /t € dom f,t > 0} is the inverse image of
dom f under the perspective function P : R"*' — R"™ P(z,t) = x/t for t > 0, so it is
convex (see §2.3.3).

Jensen’s inequality can be proved directly as follows. Suppose s,t > 0, z/t € dom f,
y/s €dom f, and 0 < 0 < 1. Then
g0z + (1 —0)y,0t+ (1 —0)s)
= Bt+(1-0)s)f((Ox+ (1 —0)y)/(0t+ (1 —0)s))
(0t + (1= 0)s)f((0t(x/t) + (1 = 0)s(y/s))/ (0 + (1 — 0)s))
< 0tf(z/t) + (1 —0)sf(y/s).

A
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3.34 The Minkowski function. The Minkowski function of a convex set C is defined as
Mc(z) =inf{t >0 |t 'z e C}.

) Draw a picture giving a geometric interpretation of how to find M¢ ().

) Show that Mc is homogeneous, i.e., Mc(azx) = aMc(z) for a > 0.
¢) What is dom M¢?

) Show that Mc is a convex function.

) Suppose C' is also closed, symmetric (if z € C then —z € (), and has nonempty
interior. Show that M¢ is a norm. What is the corresponding unit ball?
Solution.

(a) Consider the ray, excluding 0, generated by z, i.e., sz for s > 0. The intersection
of this ray and C is either empty (meaning, the ray doesn’t intersect C), a finite
interval, or another ray (meaning, the ray enters C' and stays in C).

In the first case, the set {t > 0 | t™'z € C} is empty, so the infimum is co. This
means Mc(xz) = co. This case is illustrated in the figure below, on the left.

In the third case, the set {s > 0 | sz € C'} has the form [a, c0) or (a,0), so the set
{t > 0|t 'z € C} has the form (0, 1/a] or (0,1/a). In this case we have Mc(z) = 0.
That is illustrated in the figure below to the right.

Y,

In the second case, the set {s > 0| sx € C} is a bounded , interval with endpoints
a < b, so we have M¢c(xz) = 1/b. That is shown below. In this example, the optimal
scale factor is around s* ~ 3/4, so Mc(x) ~ 4/3.

In any case, if z =0 € C then Mc(0) = 0.
(b) If & > 0, then

Mc(az) inf{t >0t 'az € C}
ainf{t/a > 0|t 'az € C}

aMc(z).
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If & = 0, then
B (o0 oec
Mc(ocx) = Mc(O) = { s 0¢C.
(¢) dom Mg = {z | =/t € C for some t > 0}. This is also known as the conic hull of C,
except that 0 € dom M¢ only if 0 € C.

(d) We have already seen that dom M¢ is a convex set. Suppose z,y € dom M¢, and
let 6 € [0,1]. Consider any tg,t, > 0 for which z/t, € C, y/t, € C. (There exists
at least one such pair, because z,y € dom M¢.) It follows from convexity of C' that

0r+ (1= 0)y _ Ota(z/ta) + (1 = Oty (y/ty) _
Oty + (1 —0)ty) Oty + (1 —0)ty

and therefore
Mc(0z + (1 — 0)y) < 0ty + (1 — 0)iy.

This is true for any ts,ty > 0 that satisfy z/t, € C, y/t, € C. Therefore

Mc(0z + (1 - 0)y)

IA

Oinf{t, >0| z/t, € C} + (1 —0)inf{t, > 0| y/t, € C}
OMc(z) + (1 — 0)Mc(y).

Here is an alternative snappy, modern style proof:

e The indicator function of C, i.e., I¢, is convex.
e The perspective function, tIc(z/t) is convex in (z,t). But this is the same as
Ic(z/t), so Ic(x/t) is convex in (z,t).
e The function t 4+ Ic(z/t) is convex in (z,t).
e Now let’s minimize over ¢, to obtain inf(t+ Ic(z/t)) = Mc(x), which is convex
by the minimization rule.
(e) It is the norm with unit ball C.
(a) Since by assumption, 0 € int C', Mc(z) > 0 for z # 0. By definition M (0) = 0.
(b) Homogeneity: for A > 0,

Mc(A\z) inf{t >0 (N 'z eC}
Ainf{u >0 |u 'z e C}

= AMc(z).

By symmetry of C, we also have Mc(—z) = —Mc(x).
(c¢) Triangle inequality. By convexity (part d), and homogeneity,

Me(z +y) = 2Mc((1/2)z + (1/2)y) < Mo(z) + Mc(y)-

3.35 Support function calculus. Recall that the support function of a set C' C R" is defined as
Sc(y) = sup{y”x | x € C}. On page 81 we showed that Sc is a convex function.

(a) Show that Sp = Sconv B-

(b) Show that Sa+p = Sa + Si.

(c) Show that Saup = max{Sa, Sg}.

(d) Let B be closed and convex. Show that A C B if and only if Sa(y) < Sp(y) for all
y.

Solution.
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(a) Let A= conv B. Since B C A, we obviously have Sp(y) < Sa(y). Suppose we have
strict inequality for some y, i.e.,
y u <y

for all w € B and some v € A. This leads to a contradiction, because by definition v
is the convex combination of a set of points u; € B, i.e., v = ZZ 0;u;, with 6; > 0,
Zi 0; = 1. Since

ylus <yTv

for all ¢, this would imply
yTv = Zeinui < Z 6‘in1) = yTv.

We conclude that we must have equality Sg(y) = Sa(y).
(b) Follows from

Sarsly) = sup{y(uto)|ue Ave B}
= sup{yTu |ue A} + sup{yTw | w € B}
= Sa(y)+Ss(y).

(c¢) Follows from

Saus(y) = sup{y’u|ue AUB}
max{sup{y”u | u € A}, sup{y’v | u € B}
= max{Sa(y), Sz(y)}-

(d) Obviously, if A C B, then Sa(y) < Sg(y) for all y. We need to show that if A Z B,
then Sa(y) > Sg(y) for some y.
Suppose A Z B. Consider a point & € A, T ¢ B. Since B is closed and convex, T
can be strictly separated from B by a hyperplane, i.e., there is a y # 0 such that

ny > yTI
for all z € B. Tt follows that Sp(y) < y*Z < Sa(y).

Conjugate functions
3.36 Derive the conjugates of the following functions.

(a) Maz function. f(z)= maxi=1,..,n»z; on R".

Solution. We will show that

. 0 ify=0, 1Ty=1
Fw={ 0, s 1

,,,,,

oo otherwise.

We first verify the domain of f*. First suppose y has a negative component, say
yr < 0. If we choose a vector z with xx = —¢, ; = 0 for i # k, and let ¢ go to
infinity, we see that

xTy —maxx; = —tyr — 00,

so y is not in dom f*. Next, assume y > 0 but 17y > 1. We choose = = t1 and let
t go to infinity, to show that

:cTy —maxzr; = tlTy —1
1
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is unbounded above. Similarly, when y > 0 and 17y < 1, we choose z = —t1 and
let ¢ go to infinity.

The remaining case for y is y > 0 and 17y = 1. In this case we have

mTy < maxz;
for all z, and therefore 7y —max; z; < 0 for all z, with equality for = 0. Therefore
fr(y) =0.

Sum of largest elements. f(z) =
Solution. The conjugate is

. 0 0=<y=<1, 1Ty=r
f(y)—{ SV = Y

T

i=1 T[4 on R".

oo otherwise,

We first verify the domain of f*. Suppose y has a negative component, say yi < 0.
If we choose a vector x with xx = —t, x; = 0 for ¢ # k, and let ¢ go to infinity, we
see that

ay — f(z) = —tyx — oo,
so y is not in dom f*.
Next, suppose y has a component greater than 1, say yr > 1. If we choose a vector
x with zp =t, ©; = 0 for i # k, and let ¢ go to infinity, we see that

o'y — f(z) = tyx —t — o0,

S0 y is not in dom f*.
Finally, assume that 17z # r. We choose = = ¢1 and find that

zTy — flx) = 11Ty — tr

is unbounded above, as t — oo or t — —o0.
If y satisfies all the conditions we have

2y < f(x)
for all x, with equality for x = 0. Therefore f*(y) = 0.

Piecewise-linear function on R. f(z) = maxi=1,.. . m(aiz + b;) on R. You can
assume that the a; are sorted in increasing order, i.e., a1 < --- < am, and that none
of the functions a;x + b; is redundant, i.e., for each k there is at least one z with
f(z) = axx + by.

Solution. Under the assumption, the graph of f is a piecewise-linear, with break-
points (b; — bit1)/(ait1 —as), 1 =1,...,m — 1. We can write f* as

(aiz + bz))

f*(y) = sup (wy — max

z i=1,...,m

We see that dom f* = [a1, am], since for y outside that range, the expression inside

the supremum is unbounded above. For a; < y < a;4+1, the supremum in the

definition of f* is reached at the breakpoint between the segments 7 and 7 + 1, i.e.,
at the point (bit+1 — b;)/(ai+1 — a:), so we obtain

Yy—ai
Ai+1 — G4

F(y) = —=bi — (big1 — bs)

where 7 is defined by a; < y < a;+1. Hence the graph of f* is also a piecewise-linear
curve connecting the points (a;, —b;) for i = 1,...,m. Geometrically, the epigraph
of f* is the epigraphical hull of the points (a;, —b;).
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(d)

Power function. f(z) = x? on R4, where p > 1. Repeat for p < 0.

Solution. We'll use standard notation: we define ¢ by the equation 1/p+1/¢ =1,
e, q=p/(p—1).

We start with the case p > 1. Then P is strictly convex on Ry. For y < 0 the
function yz — x? achieves its maximum for z > 0 at x =0, so f*(y) =0. For y > 0
the function achieves its maximum at = = (y/p)*/®~Y, where it has value

y(y/p)" P = (y/p)?' Y = (p = 1) (y/p)"

Therefore we have
F= { (p—D(y/p)* y>0.
For p < 0 similar arguments show that dom f* = —R and f*(y) = %p(—y/p)‘?

Geometric mean. f(z) = —([J=:)"/™ on R} .
Solution. The conjugate function is

f*(y)z{ 0 ify=0, ([[(~w)"" >1/n

oo otherwise.

We first verify the domain of f*. Assume y has a positive component, say yi > 0.
Then we can choose z =t and z; = 1, i # k, to show that

2Ty = fl@) =ty + Yy — "
ik
is unbounded above as a function of ¢ > 0. Hence the condition y < 0 is indeed
required.
Next assume that y < 0, but (Hi(—yi))l/” < 1/n. We choose x; = —t/y;, and

obtain y
:cTy—f(m) =—tn—t (H(—i)) — 00

i
as t — oo. This demonstrates that the second condition for the domain of f* is also
needed.

Now assume that y < 0 and (Hi(—yi))l/n > 1/n, and & = 0. The arithmetic-
geometric mean inequality states that

- 1/n 1/n
% > <H(—yz$z)> > % <H xz) ;

i.e., xTy > f(x) with equality for x; = —1/y;. Hence, f*(y) = 0.

Negative generalized logarithm for second-order cone. f(x,t) = —log(t? — z"x) on
{(z,t) e R" xR | ||z||2 < t}.
Solution.

f(yu) = —2+1logd —log(u® —y"y),  domf*={(y,u)|llyl2 < —u}.

We first verify the domain. Suppose ||y||2 > —u. Choose z = sy, t = s(||z||2 +1) >
sllyllz > —su, with s > 0. Then

y o +tu> sy"y —su® = s(u® —y"y) >0,
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s0 y” + tu goes to infinity, at a linear rate, while the function — log(t*> — z”x) goes
to —oo as —log s. Therefore

y x + tu+ log(t* — 27 x)
is unbounded above.
Next, assume that ||y||2 < u. Setting the derivative of
y"x +ut + log(t* — 2" x)

with respect to x and t equal to zero, and solving for ¢ and x we see that the
maximizer is
g 2w
uZ — yTy’ uz —yTy’
This gives
Fyu) = ut+y z+logt® —z"x)

= —2+1log4— log(y2 —u'u).

Show that the conjugate of f(X) = tr(X ') with dom f = S% is given by
() = —2tr(-Y)?, dom f* = —S%.

Hint. The gradient of f is Vf(X) = —X 2.
Solution. We first verify the domain of f*. Suppose Y has eigenvalue decomposition

Y =QAQ" =) Naia!
i=1
with Ay > 0. Let X = Qdiag(t, 1,...,1)QT = tqiq] + Z?:Q qiqF . We have

trXY —tr X =t + Y N—1/t—(n—1),
i=2
which grows unboundedly as ¢ — co. Therefore Y ¢ dom f*.
Next, assume Y < 0. If Y < 0, we can find the maximum of

tr XY —tr X'
by setting the gradient equal to zero. We obtain ¥ = —X 2, i.e., X = (fY)_l/Q, and
FH(Y) = —2tr(-Y)"2

Finally we verify that this expression remains valid when Y =< 0, but Y is singular.
This follows from the fact that conjugate functions are always closed, i.e., have closed
epigraphs.

Young’s inequality. Let f : R — R be an increasing function, with f(0) = 0, and let g be
its inverse. Define F' and G as

Fla) = / “fla)da,  Gly) = / " g(a) da.

Show that F' and G are conjugates. Give a simple graphical interpretation of Young’s
inequality,

vy < F(z) + G(y).
Solution. The inequality zy < F(z) + G(y) has a simple geometric meaning, illustrated
below.
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F(z) is the shaded area under the graph of f, from 0 to z. G(y) is the area above the
graph of f, from 0 to y. For fixed = and y, F(z) + G(y) is the total area below the
graph, up to z, and above the graph, up to y. This is at least equal to zy, the area of the
rectangle defined by x and y, hence

F(z) +G(y) > xy

for all z, y.
It is also clear that F(z) + G(y) = zy if and only if y = f(z). In other words

G(y) =sup(zy — F(z)),  F(x) =sup(zy — G(y)),
x Yy
i.e., the functions are conjugates.
3.39 Properties of conjugate functions.

(a) Conjugate of convex plus affine function. Define g(z) = f(z) + ¢"z + d, where f is
convex. Express ¢g* in terms of f* (and ¢, d).

Solution.
g*(y) = sup(y'z—f(z) —c'z—d)
= sup((y — c)Tm —f(z)—d
= ffly—c—d

(b) Conjugate of perspective. Express the conjugate of the perspective of a convex
function f in terms of f*.

Solution.

9 (y,s) = sup  (y"x+ st —tf(x/t)
z/tedom f,t>0

= sup sup (t(y" (z/t) +s— f(z/t)))

t>0 z/t€dom f

= supt(s+ sup (yT(w/t) — f(z/t)))
t>0 z/t€dom f
= jl;gt(s + £ (y))

{o s+ f*(y) <0

oo otherwise.
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(c) Conjugate and minimization. Let f(z,z) be convex in (z,z) and define g(z) =
inf, f(x,z). Express the conjugate ¢g* in terms of f*.
As an application, express the conjugate of g(z) = inf.{h(z) | Az + b=z}, where h
is convex, in terms of h*, A, and b.

Solution.
9'(y) = Sl;p(wTy —inf f(z,2))
= silf(wTy = flz,2))
= f;(y, 0).

To answer the second part of the problem, we apply the previous result to

{ h(z) Az+b==x

o) otherwise.

f(:E,Z) =

‘We have

Flyo) = if(y'z—v'z - f(z,2))

_ iof (T — T s
Azlszx(y z—v z—h(z))

= inf(y" (Az+b) —v" 2z — h(2))
= bly+inf(y" Az — 0"z — h(2))
= b y+h ATy —v).

Therefore r T
g (y) =1"(y,0)=by+h"(Ay).

(d) Conjugate of conjugate. Show that the conjugate of the conjugate of a closed convex
function is itself: f = f** if f is closed and convex. (A function is closed if its
epigraph is closed; see §A.3.3.) Hint. Show that f** is the pointwise supremum of
all affine global underestimators of f. Then apply the result of exercise 3.28.
Solution. By definition of f*,

f*(y) =sup(y" = — f(x)).

If y € dom f*, then the affine function h(x) = y™x — f*(y), minorizes f. Conversely,
if h(z) = a”x + b minorizes f, then a € dom f* and f*(a) < —b. The set of all
affine functions that minorize f is therefore exactly equal to the set of all functions
h(z) = yT2 + ¢ where

y € dom f7, c<—f(y).

Therefore, by the result of exercise 3.28,

fl@)y= suwp 'z—fy)=r"®.

ycEdom f*

3.40 Gradient and Hessian of conjugate function. Suppose f : R™ — R is convex and twice
continuously differentiable. Suppose 7 and Z are related by § = V f(z), and that V> f(Z) >
0.
(a) Show that Vf*(y) = .
(b) Show that V2f*(g) = V2f(z)~".
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Solution. We use the implicit function theorem: Suppose F': R" x R™ — R satisfies

e F(u,7) =0

e F' is continuously differentiable and D, F'(u,v) is nonsingular in a neighborhood of

(@, ).
Then there exists a continuously differentiable function ¢ : R®™ — R™, that satisfies
v = ¢(u) and
F(u,¢(u)) =0

in a neighborhood of .

Applying this to u = y, v = z, and F(u,v) = Vf(x) —y, we see that there exists a
continuously differentiable function g such that

z=yg(®),
and
Vi) =y
in a neighborhood around g. Differentiating both sides with respect to y gives
VA f9(y)Dy(y) = 1,
i.e., Dg(y) = V2f(g(y)) ™", in a neighborhood of 7.

Now suppose y is near §. The maximum in the definition of f*(y),

f*(y) =sup(i" = — f(a)),

T

is attained at = g(y), and the maximizer is unique, by the fact that V2f(z) = 0. We

therefore have -
P w) =y 9 — flay))
Differentiating with respect to y gives

Viy) = g)+Dgy)"y— Dgly)" Vi(g(y))
= g(y)+Dg(y)"y — Dg(y)"y
a(y)

and
V2f*(y) = Dyly) =V f(g(y) "
In particular,

Vg =z, V(@ =Vf@ "

Domain of conjugate function. Suppose f : R"™ — R is a twice differentiable convex
function and = € dom f. Show that for small enough v we have

y=Vf(z)+ V’f(z)u € dom f*,

i.e., yTx — f(x) is bounded above. It follows that dim(dom f*) > rank V2 f(z).

Hint. Consider V f(z + tv), where ¢ is small, and v is any vector in R".

Solution. Clearly Vf(z) € dom f*, since V f(z) maximizes V f(z)%z — f(z) over z. Let
v € R™. For t small enough, we have z 4 tv € dom f, and therefore w(t) = Vf(z + tv) €
dom f*, since = + tv maximizes w(t)” z — f(z) over z. Thus, w(t) = Vf(z +tv) defines a
curve (or just a point), passing through V f(x), that lies in dom f*. The tangent to the
curve at V f(z) is given by

w' (0) = %Vf(:c—ktv) e
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Now in general, the tangent to a curve that lies in a convex set must lie in the linear part
of the affine hull of the set, since it is a limit of (scaled) differences of points in the set.
(Differences of two points in a convex set lie in the linear part of its affine hull.) It follows
that for s small enough, we have Vf(z) + sV f(z)v € dom f*.

Examples:

f = aTx 4 blinear: dom f* = {a}.

functions with dom f* = R"

f=1log> exp(r): dom f* = {y=0]|17y =1} and

Vif(z) = —(1/172)%22" 4+ (1/17 2) diag(2))

where 17z = 1.
f=2"Pz+q¢"x+r: dom f* = q+ R(P)

Quasiconvex functions

Approzimation width. Let fo,..., fn : R — R be given continuous functions. We consider
the problem of approximating fo as a linear combination of fi,..., f,. For z € R", we
say that f = z1f1 + -+ + z»fn approximates fo with tolerance ¢ > 0 over the interval
[0,T]if | f(t) — fo(t)] < efor 0 <t <T. Now we choose a fixed tolerance ¢ > 0 and define
the approrimation width as the largest T such that f approximates fo over the interval
[0,T7:

W(z) =sup{T | |z1f1(t) + -+ xznfn(t) — fo(t)| < efor 0 <t <T}.

Show that W is quasiconcave.
Solution. To show that W is quasiconcave we show that the sets {z | W(x) > a} are
convex for all a. We have W (z) > « if and only if

—e < Ilfl(t) + - +17nfn(t) - fO(t) <e

for all t € [0, ). Therefore the set {z | W(z) > a} is an intersection of infinitely many
halfspaces (two for each t), hence a convex set.

First-order condition for quasiconvexity. Prove the first-order condition for quasiconvexity
given in §3.4.3: A differentiable function f: R"™ — R, with dom f convex, is quasiconvex
if and only if for all z,y € dom f,

fy) < f(z) = Vf(z) (y—z) <O0.

Hint. It suffices to prove the result for a function on R; the general result follows by
restriction to an arbitrary line.
Solution. First suppose f is a differentiable function on R and satisfies

f@) < f@) = f'(2)(y —2) <0. (3.43.A)

Suppose f(z1) > f(z2) where 1 # z2. We assume x2 > z1 (the other case can be handled
similarly), and show that f(z) < f(z1) for z € [z1,22]. Suppose this is false, i.e., there
exists a z € [z1,x2] with f(z) > f(x1). Since f is differentiable, we can choose a z that
also satisfies f'(z) < 0. By (3.43.A), however, f(z1) < f(z) implies f'(z)(z1 — 2) < 0,
which contradicts f'(z) < 0.

To prove sufficiency, assume f is quasiconvex. Suppose f(z) > f(y). By the definition of
quasiconvexity f(z+t(y —x)) < f(z) for 0 < ¢t < 1. Dividing both sides by ¢, and taking
the limit for ¢ — 0, we obtain

o £+ 1y — )~ f(@)
t—0 t

which proves (3.43.A).
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3.44 Second-order conditions for quasiconvexity. In this problem we derive alternate repre-
sentations of the second-order conditions for quasiconvexity given in §3.4.3. Prove the
following.

(a)

A point x € dom f satisfies (3.21) if and only if there exists a o such that
V2f(z)+oVf(x)Vf(z)" =o0. (3.26)
It satisfies (3.22) for all y # 0 if and only if there exists a o such
Vif(x)+ oV f(z)Vf)T = o0. (3.27)

Hint. We can assume without loss of generality that V2 f(x) is diagonal.

A point 2 € dom f satisfies (3.21) if and only if either Vf(z) = 0 and V?f(x) = 0,
or Vf(z) # 0 and the matrix

has exactly one negative eigenvalue. It satisfies (3.22) for all y # 0 if and only if
H (x) has exactly one nonpositive eigenvalue.

Hint. You can use the result of part (a). The following result, which follows from
the eigenvalue interlacing theorem in linear algebra, may also be useful: If B € S™

and a € R", then
B a
An ([ at 0

>2AAB)

Solution.

(a)

We prove the equivalence of (3.21) and (3.26). If Vf(z) = 0, both conditions
reduce to V2f(z) = 0, and they are obviously equivalent. We prove the result for
V() #0.

To simplify the proof, we adopt the following notation. Let a € R", a # 0, and

B € S™. We show that

a"r=0=2"Bz>0 (3.44.A)

if and only if there exists a o such that B + caa” > 0.

It is obvious that the condition is sufficient: if B 4+ caa® > 0, then

"z =0= 2"Bz = 2" (B+ caa’)z > 0.

Conversely, suppose (3.44.A) holds for all y. Without loss of generality we can
assume that B is diagonal, B = diag(b), with the elements of b sorted in decreasing
order (by > by > --- > by). We know that

atr=0= szxf > 0.
i=1
If b, > 0, there is nothing to prove: diag(b) + caa™ > 0 for all & > 0.
Suppose b, < 0. Then we must have a, # 0. (Otherwise, x = e, would satisfy

a¥z = 0 and z7 diag(b)z = b, < 0, a contradiction.) Moreover, we must have
bn—1 > 0. Otherwise, the vector x with

Ty =" =Tp2=0, Tno1 =1, Tn = —An-1/0n,
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would satisfy aTz = 0 and zT diag(b)x = bn-1 + l),L(CLn,l/an)2 < 0, which is a
contradiction. In summary,
an # 0, by, <0, by >--->b,_1>0. (3.44.]3)

‘We can derive conditions on ¢ guaranteeing that
C = diag(b) + oaa” > 0.

Define @ = (a1,...,an-1), b = (b1,...,bn-1). We have Crn = bp + oa? > 0 if
o > —byn/a’. The Schur complement of Chy, is

2 2 2 2
. __T On T .7\, Gn0- +bno—an__r
dlag(b) + ocaa” — m(la = dlag(b) + waa
and is positive semidefinite if if a2o? + bpo — a2 > 0, i.e.,

b, [
4a?

+ 1.

Next, we prove the equivalence of (3.22) and (3.27). We need to show that
e’z =0=2"Bx >0 (3.44.C)

if and only if there exists a o such that B + caa” > 0.
Again, it is obvious that the condition is sufficient: if B 4+ caa® > 0, then

o't =0= 2" Bz =2"(B+caa")z > 0.
for all nonzero x.

Conversely, suppose (3.44.C) holds for all z # 0. We use the same notation as above
and assume B is diagonal. If b, > 0 there is nothing to prove. If b,, < 0, we must
have a,, # 0 and b,—1 > 0. Indeed, if b,,—1 < 0, choosing

Ty = =Tp_2=0, Tpno1 =1, Tn = —Qn-1/an
would provide a vector with aT2 = 0 and 27 B < 0. Therefore,
an # 0, b, <0, b1 >--->bp_1>0. (3.44.D)

We can now proceed as in the proof above and construct a o satisfying B+oaa” > 0.

We first consider (3.21). If Vf(x) = 0, both conditions reduce to V2f(z) > 0, so
they are obviously equivalent. We prove the result for V f(z) # 0. We use the same
notation as in part (a), and consider the matrix

_| B a ntl
o[ 2]

with a # 0. We need to show that C has exactly one negative eigenvalue if and
only if (3.44.A) holds, or equivalently, if and only if there exists a o such that
B+ caa” > 0.

We first note that C' has at least one negative eigenvalue: the vector v = (a,t) with
t < a¥ Ba/(2||a|3) satisfies

vICv =a¥Ba+2ta’a < 0.
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Assume that C' has exactly one negative eigenvalue. Suppose (3.44.A) does not
hold, i.e., there exists an z satisfying a”2 = 0 and 27 Bz < 0. The vector u = (z,0)
satisfies

uTCu=uTBu<0.

We also note that u is orthogonal to the vector v defined above. So we have two
orthogonal vectors u and v with «”Cu < 0 and v"Cv < 0, which contradicts our

assumption that C has only one negative eigenvalue.

T

Conversely, suppose (3.44.A) holds, or, equivalently, B + caa® > 0 for some o.

Define
I o B a I 0 B+oad” a
il I 1 [ ] |

Since B+caa” = 0, it follows from the hint that A, (C(c)) > 0, i.e., C(0) has exactly
one negative eigenvalue. Since the inertia of a symmetric matrix is preserved under
a congruence, C' has exactly one negative eigenvalue.

The equivalence of (3.21) and (3.26) follows similarly. Note that if V f(z) = 0, both
conditions reduce to V2f(x) = 0. If Vf(x) # 0, H(z) has at least one negative
eigenvalue, and we need to show that the other eigenvalues are positive.

3.45 Use the first and second-order conditions for quasiconvexity given in §3.4.3 to verify
quasiconvexity of the function f(z) = —x1x2, with dom f = RZ .

Solution. The first and second derivatives of f are

-1

Vi) = [ o ] L V) = [ 1 ] .

We start with the first-order condition

f(@) < fy) = VI(@)" @y —2) <0,
which in this case reduces to

—y1y2 < —z122 = —x2(y1 —21) —21(y2 —x2) <0

for x,y > 0. Simplifying each side we get

Y1Y2 > T1x2 — 2x122 < T1Y2 + T2Y1,
and dividing by z1z2 (which is positive) we get the equivalent statement

(y1/z1)(y2/22) > 1 =1 < ((y2/22) + (y1/21)) /2,

which is true (it is the arithmetic-geometric mean inequality).
The second-order condition is

y Vi) =0, y# 0=y V2f(z)y >0,
which reduces to
—y1%2 — Y21 =0, y #0 = —2y12 > 0

for z > 0, i.e.,
Y2 = —ylmg/xl — —2y1y2 > O7

which is correct if z > 0.
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Quasilinear functions with domain R™. A function on R that is quasilinear (i.e., qua-
siconvex and quasiconcave) is monotone, i.e., either nondecreasing or nonincreasing. In
this problem we consider a generalization of this result to functions on R".

Suppose the function f : R™ — R is quasilinear and continuous with dom f = R". Show
that it can be expressed as f(z) = g(a”z), where g : R — R is monotone and a € R™.
In other words, a quasilinear function with domain R"™ must be a monotone function of
a linear function. (The converse is also true.)

Solution. The sublevel set {z | f(z) < a} are closed and convex (note that f is continu-
ous), and their complements {z | f(z) > a} are also convex. Therefore the sublevel sets
are closed halfspaces, and can be expressed as

{z] f(2) <a} = {z]a(@)"z < b(a)}

with [Ja(a)]]2 = 1.
The sublevel sets are nested, i.e., they have the same normal vector a(a) = a for all «,
and b(a1) > b(az) if a1 > az. In other words,

{z| f(z) <a}={z|a"z<b(a)}

where b is nondecreasing. If b is in fact increasing, we can define g = b~! and say that
{z| fz) <a}={z|g(a"z) <a}

and by continuity of f, f(z) = g(a™x). If b is merely nondecreasing, we define

9(t) = sup{a [ b(a) < t}.

Log-concave and log-convex functions

Suppose f: R" — R is differentiable, dom f is convex, and f(x) > 0 for all x € dom f.
Show that f is log-concave if and only if for all z,y € dom f,

@) o (V@) (y—2)
f(w)gp( (@) )

Solution. This is the basic inequality

h(y) 2 h(z) + Vh(z)" (y - 2)
applied to the convex function h(z) = —log f(z), combined with Vh(z) = (1/f(z))V f(z).
Show that if f : R" — R is log-concave and a > 0, then the function g = f —a is

log-concave, where dom g = {z € dom f | f(z) > a}.
Solution. We have for z,y € dom f with f(z) > a, f(y) > a,and 0 < 0 <1,

floz+(1-0y)—a > f@) f»"" -a
> (f@) —a)'(fy) —a)' "
The last inequality follows from Holder’s inequality
wvr + gy < (u}/g—i—u;/‘g)e(vi/(l_m _’_1);/(1—9))1797
applied to
ur = (f(l‘) - a)97 U1 = (f(y) - (1)1_9, Uz = a("?, V2 = a1_67

which yields
F@°f)' 0 = (f2) =)’ (fy) =)’ +a
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3.49 Show that the following functions are log-concave.
(a) Logistic function: f(z) =e”/(1+ e”) with dom f = R.
Solution. We have
log(e®/(1+€")) =z —log(1 + €*).

The first term is linear, hence concave. Since the function log(1 + e®) is convex (it
is the log-sum-exp function, evaluated at 1 = 0, z2 = x), the second term above is
concave. Thus, e®/(1 4 €”) is log-concave.

(b) Harmonic mean:

1

= - _ domf=R",.
1z + -+ 1/an f=Riy

f(@)

Solution. The first and second derivatives of

h(z) =log f(z) = —log(1/x1+ - -+ 1/zp)

are
oh() _ V=¥
Ox; 1/z1 4+ 1/x,
0%h(x) —2/x3 1/}
922 Tzt ot an @zt ot am)?
9%h(z) 1/(z323) o
Oz;0z; - (/1 + -+ 1/x,)? (@ #7)-

We show that 47 Vh(z)y < 0 for all y # 0, i.e.,

O wi/ah)? <200 1/ vi/ad)

This follows from the Cauchy-Schwarz inequality (a”b)? < ||a||3]|b||3, applied to

1 yi
P =—, bi = .
“= vz,
(¢) Product over sum:
7.1 Zj n
f(x)—zn:ln_l -, dom f=R},.
i=1""

Solution. We must show that

flz) = zn:logxi — logzn:xi
i=1 i=1

is concave on x > 0. Let’s consider a line described by x + tv, where and z, v € R"
and z > 0: define

Ft) = log(@i +tvi) —log » (i + tvy).

The first derivative is

~ Vs 1Ty
t) = - ,
R0 Z z; +tv; 1Tz +t1To

i
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and the second derivative is

f//(t):7z( Uy + (1 U)

i +tv)2  (1Tz +1Tv)2’

Therefore to establish concavity of f, we need to show that
- 2 174)2
Froy=-3 5+ G <o

22 Ty =

holds for all v, and all =z > 0.

The inequality holds if 17v = 0. If 1Tv # 0, we note that the inequality is ho-
mogeneous of degree two in v, so we can assume without loss of generality that
17y = 1Tz, This reduces the problem to verifying that

2
Vi
E —->1
— T
1

holds whenever z > 0 and 1Tv = 172.

To establish this, let’s fix z, and minimize the convex, quadratic form over 1Tv =
17z. The optimality conditions give

so we have v; = Az?. From 17v = 172 we can obtain ), which gives

*7kak 2

o kaixl

.. T T .
Therefore the minimum value of El vZ/x? over 1Ty =17z is

vl (Zame\ g e ()
Sebr=(g) o= () =

because ||z||2 < ||z||1. This proves the inequality.
Determinant over trace:

det X
Fx) = tr X’

Solution. We prove that
h(X) =log f(X) = logdet X — logtr X

dom f=8",.

is concave. Consider the restriction on a line X = Z + tV with Z > 0, and use the
eigenvalue decomposition Z~ Y2V Z71/2 = QAQT = S N

hMZ+tV) = logdet(Z +tV)—logtr(Z +tV)
= logdet Z —logdet(I +tZ /*VZ ?) —logtr Z(I +tZ */*vVZ'/?)

= logdet Z — > log(1+t\i) —log Y (a7 Zai)(1+tAs)

i=1 i=1

= logdet Z + Zlog(quqi) - Z log((qi Zq:)(1 + tA:))

i=1 i=1

—log Z((qiTZQi)(l +1t\)),

i=1
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which is a constant, plus the function

n n
Z logy; — log Z Yi
i=1 i=1

(which is concave; see (c)), evaluated at y; = (q7 Zq:)(1 +t\;).

3.50 Coefficients of a polynomial as a function of the roots. Show that the coefficients of a

3.51

polynomial with real negative roots are log-concave functions of the roots. In other words,
the functions a; : R™ — R, defined by the identity

"+ ar(N)s" T o anc1 (Vs Fan(M) = (5 — M) (s — A2) - (5 — An),

n
are log-concave on —R ;.

Hint. The function
Sk (:E) = Z LiyLig =+ Tigs
1<i1<ig < <ip<n
with dom S, € RY} and 1 < k < n, is called the kth elementary symmetric function on
R"™. It can be shown that S,i/k is concave (see [ML57]).

Solution. The coefficients are given by ar(X) = Si(—A). The result follows from the
hint, because the logarithm of a nonnegative concave function is log-concave.

[BLOO, page 41] Let p be a polynomial on R, with all its roots real. Show that it is
log-concave on any interval on which it is positive.

Solution. We assume the polynomial has the form
p(z) = a(z —s1)(z — s2) ... (x — sn),

with s1 < s2 < -+ < sy, and a > 0. (The case o < 0 can be handled similarly).

Suppose p is positive on the interval (s, Sk+1), which means n — k (the number of roots
to the right of the interval) must be even. We can write logp as

logp(m) =loga + ZIOg(x - sk)
+log((z — Sk+z)(f — Skt2))
+log((x — sk+3)(T — 5k+4))
4+ 4 ]og((x — Sn—l)(x - Sn))

The first terms are obviously concave. We need to show that
f(z) =log((x — a)(z — b)) = log(z* — (a + b)z + ab)
is concave if z < a < b. We have

2(x —a)(z — b) — (2 — (a +b))?
(22 — (a + b)x + ab)? '

Sy = = ax)

Z@inra @)=

It is easily shown that the second derivative is less than or equal to zero:

~b) — ((z —a) + (z ~1))*
a)(z—b) — (x—a)® — (z —b)* — 2(x — a)(z — b)
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[MO79, §3.E.2] Log-convexity of moment functions. Suppose f : R — R is nonnegative
with R4 C dom f. For z > 0 define

B(x) = / " () du.

Show that ¢ is a log-convex function. (If = is a positive integer, and f is a probability
density function, then ¢(x) is the xth moment of the distribution.)
Use this to show that the Gamma function,

I'(x) :/ u” e " du,
0

is log-convex for = > 1.
Solution. g(z,u) = u®f(u) is log-convex (as well as log-concave) in z for all u > 0. It
follows directly from the property on page 106 that

o(x) = / " gl u du= / " () du

is log-convex.

Suppose z and y are independent random vectors in R", with log-concave probability
density functions f and g, respectively. Show that the probability density function of the
sum z = x + y is log-concave.

Solution. The probability density function of = + y is f * g.

Log-concavity of Gaussian cumulative distribution function. The cumulative distribution
function of a Gaussian random variable,

is log-concave. This follows from the general result that the convolution of two log-concave
functions is log-concave. In this problem we guide you through a simple self-contained
proof that f is log-concave. Recall that f is log-concave if and only if f”(z)f(z) < f'(x)?
for all z.

(a) Verify that f”(z)f(z) < f'(z)? for x > 0. That leaves us the hard part, which is to
show the inequality for z < 0.

(b) Verify that for any ¢ and x we have t?/2 > —2?/2 + at.
(c) Using part (b) show that e /2 < ¢#*/2=7 Conclude that

/ e 2 gt < 6I2/2/ e " dt.

(d) Use part (c) to verify that f”(x)f(z) < f'(x)* for z < 0.
Solution. The derivatives of f are
f(z)= 67I2/2/\/ 2m, f(z) = —:cefz2/2/\/ 2.

(a) f"(z) <0 for z >0.
(b) Since t?/2 is convex we have

t2)2 > 2?2+ 2(t — x) = 2t — 2° /2.
This is the general inequality

g(t) = g(z) + ¢'(2)(t — @),
which holds for any differentiable convex function, applied to g(t) = t*/2.
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(c) Take exponentials and integrate.

(d) This basic inequality reduces to

x

2 2 2

—ze * /2/ et < e
—oo

x —z?/2
/ e 2 < © .
— 00 _m

This follows from part (c) because

2
x —x
—zt &
/ e "tdt = .
—T
—o0

3.55 Log-concavity of the cumulative distribution function of a log-concave probability density.
In this problem we extend the result of exercise 3.54. Let g(t) = exp(—h(t)) be a differ-
entiable log-concave probability density function, and let

fz) = /; g(t)dt = /; o h® gt

be its cumulative distribution. We will show that f is log-concave, i.e., it satisfies

' (x)f(z) < (f'(x))? for all .

(a) Express the derivatives of f in terms of the function h. Verify that f”(z)f(z) <
(f' (@) if W' (z) > 0.
(b) Assume that h'(z) < 0. Use the inequality

h(t) > h(z) + B (2)(t — )

i.€.,

(which follows from convexity of h), to show that

T —h(z)
—h® g < £
/,of = =h(a)

Use this inequality to verify that f”(z)f(z) < (f'(z))? if A'(x) > 0.

Solution.

(a) f(z) = ffoo e "W dt, f(z) = e M, f(z) = —h'(z)e” "), Log-concavity means

_h/(x)e—h(m)/ o~ h(® dtge—Qh(z)’

—o0

which is obviously true if —h'(z) < 0.
(b) Take exponentials and integrate both sides of —h(t) < —h(z) — h'(z)(t — z):

/ e—h(t) dt < exh/(x)—h(x)/ e—th'(:c) dt

_ ezh,(m)—h(.’z)e—zh/(.’z)/(_h/(m))
€7h(z)

—h(z)
(—h'(az))/ e "ar < e Mo,
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3.56 More log-concave densities. Show that the following densities are log-concave.

(a) [MOT9, page 493] The gamma density, defined by
A
f(@) = Frya’ e,

with dom f = R4. The parameters A and « satisfy A > 1, o > 0.

Solution.
log f(x) = log((e/T(A)) + (A — 1) log z — az.

(b) [MOT9, page 306] The Dirichlet density

" Ant+1—1
_ F(IT)\) A1—1 An—1 i
f(x) = mxl SRR 9 (121:82)

with dom f = {z € R?, | 172 < 1}. The parameter X satisfies A > 1.
Solution.

log f(x)

n

= 1og(T)/(P() - Tu)) + 3 (A = D logz; + (Angr — 1) log(1 — 172).

i=1
Convexity with respect to a generalized inequality

3.57 Show that the function f(X)= X' is matrix convex on S’ .
Solution. We must show that for arbitrary v € R", the function

g(X)=v"X 0.
is convex in X on S% . This follows from example 3.4.
3.58 Schur complement. Suppose X € S™ partitioned as

A B
X:|:BT C:|7

where A € S*. The Schur complement of X (with respect to A) is S = C — BTA™'B

(see §A.5.5). Show that the Schur complement, viewed as function from S™ into S"F is
matrix concave on S’} .

Solution. Let v € R"*. We must show that the function
v"(C—BTAT'B)w
is concave in X on S% . This follows from example 3.4.

3.59 Second-order conditions for K-convezity. Let K C R™ be a proper convex cone, with
associated generalized inequality <. Show that a twice differentiable function f : R" —
R™, with convex domain, is K-convex if and only if for all x € dom f and all y € R",

~ Pf(2)
81,‘7;811]'

4,j=1

yiy; =k 0,

i.e., the second derivative is a K-nonnegative bilinear form. (Here 8?f/dx;0x; € R™,
with components 02 fi /0x;0x;, for k = 1,...,m; see §A.4.1.)
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3.60

Solution. f is K-convex if and only if v f is convex for all v <g 0. The Hessian of

vl f(z) is

n

VA f(2) = Y 0V fila).
k=1
This is positive semidefinite if and only if for all y

YV @)y =Y Y oV @y = Y ve( Y VE fe@)yiys) > 0,

i,j=1 k=1 k=1 ij=1
which is equivalent to
Z V2 fr(@)yiy; =x 0
i,5=1
by definition of dual cone.

Sublevel sets and epigraph of K-convex functions. Let K C R™ be a proper convex cone
with associated generalized inequality <k, and let f : R" — R™. For a € R™, the
a-sublevel set of f (with respect to <k) is defined as

Co={z eR"| f(z) 2Kk a}.
The epigraph of f, with respect to <k, is defined as the set
epigf = {(z,t) ER"™" | f(z) = t}.
Show the following:

(a) If f is K-convex, then its sublevel sets C are convex for all a.

(b) fis K-convex if and only if epiy f is a convex set.
Solution.

(a) For any z,y € Co, and 0 < 0 < 1,
fOz+ (1 =0)y) 2x 0f(z) + (1 -0)f(y) =k o
(b) For any (z,u), (y,v) €epif,and 0 <0 <1,

J(6x+ (1 - 0)y) < 0f(x) + (1 - 0)f(y) <xc bu+ (1 - D).
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Convex optimization problems



4.1

4.2

Exercises

Exercises

Basic terminology and optimality conditions
Consider the optimization problem
minimize  fo(z1,x2)
subject to 2x1 +x2 > 1

21+ 3z2 >1
z1 20, x22>0.

Make a sketch of the feasible set. For each of the following objective functions, give the
optimal set and the optimal value.

(@) fo(z1,22) = x1 + x2.
(b) fo(z1,22) = —x1 — 22.
(c) fol
(d) fo(z1,z2) = max{z1,z2}.
(e) fo(zy,x2) = a3 4 923.
Solution. The feasible set is the convex hull of (0, c0), (0,1), (2/5,1/5), (1,0), (o0, 0).

(a) =¥ =(2/5,1/5).

X1,%2) = X1.

(b) Unbounded below.

(¢) Xopt = {(0,z2) [ w2 > 1}.

(d) =* =(1/3,1/3).

(e) =¥ =(1/2,1/6). This is optimal because it satisfies 2z1+x2 = 7/6 > 1, z1+3z2 = 1,

and
Vfo(z™) = (1,3)

is perpendicular to the line x1 + 3x2 = 1.

Consider the optimization problem
minimize fo(z) = — >, log(bi — a x)

with domain dom fy = {x | Az < b}, where A € R™*™ (with rows a] ). We assume that
dom fj is nonempty.
Prove the following facts (which include the results quoted without proof on page 141).

(a) dom fy is unbounded if and only if there exists a v # 0 with Av < 0.

(b) fo is unbounded below if and only if there exists a v with Av < 0, Av # 0. Hint.
There exists a v such that Av < 0, Av # 0 if and only if there exists no z > 0
such that ATz = 0. This follows from the theorem of alternatives in example 2.21,
page 50.

(¢) If fo is bounded below then its minimum is attained, i.e., there exists an z that
satisfies the optimality condition (4.23).

(d) The optimal set is affine: Xopy = {* + v | Av = 0}, where z* is any optimal point.
Solution. We assume zg € dom f.

(a) If such a v exists, then dom fy is clearly unbounded, since z¢ + tv € dom fy for all

t>0.
Conversely, suppose z* is a sequence of points in dom fy with ||z¥||2 — co. Define
v* = 2*/||z"||2. The sequence has a convergent subsequence because |[v*||z = 1 for

all k. Let v be its limit. We have |Jv||2 = 1 and, since alv*® < b;/||z"||2 for all k,
alv < 0. Therefore Av < 0 and v # 0.



4 Convex optimization problems

(b) If there exists such a v, then fo is clearly unbounded below. Let j be an index with
a]-T'u < 0. Fort >0,

fo(zo+tv) = — Z log(b; — aiTxo — taiT'U)
=1

< - Z log(b; — af xo) — log(b; — a;‘-rxo — tafv),
i#]
and the righthand side decreases without bound as ¢ increases.

Conversely, suppose f is unbounded below. Let z* be a sequence with b — Az* = 0,
and fo(z*) — —oco. By convexity,

k - 1 T, k - b —alzk
fO(SE ) > fo(xo) + Zl maz (SU - -TO) = fo(wo) +m — 2 m

so if fo(x*) — —o0, we must have max;(b; — a; z*) — oo.

Suppose there exists a z with z > 0, ATz = 0. Then
2o = 2" (b — Az®) > z; max(b; — af 2¥) — 0.

We have reached a contradiction, and conclude that there is no such z. Using the
theorem of alternatives, there must be a v with Av <0, Av # 0.

(¢) We can assume that rank A = n.
If dom fo is bounded, then the result follows from the fact that the sublevel sets of
fo are closed.
If dom f; is unbounded, let v be a direction in which it is unbounded, i.e., v # 0,
Av < 0. Since rank A = 0, we must have Av # 0, but this implies fo is unbounded.
We conclude that if rank A = n, then f; is bounded below if and only if its domain
is bounded, and therefore its minimum is attained.

(d) Again, we can limit ourselves to the case in which rank A = n. We have to show
that fo has at most one optimal point. The Hessian of fy at z is

1
V2 f(z) = AT diag(d) A, di=————, i=1,...,m,
7(@) g(d) G aTap
which is positive definite if rank A = n, i.e., fo is strictly convex. Therefore the
optimal point, if it exists, is unique.

4.3 Prove that z* = (1,1/2,—1) is optimal for the optimization problem

minimize  (1/2)z” Pz + ¢z +r
subject to —1<z; <1, i=1,2,3,

13 12 -2 —22.0
12 17 6|, gq=|-145], r=1
—2 6 12 13.0

Solution. We verify that z* satisfies the optimality condition (4.21). The gradient of
the objective function at z* is

where

P =

Vio(z*) = (-1,0,2).
Therefore the optimality condition is that
V(@) (y— ) = =1(y1 = 1) +2(y2+ 1) > 0
for all y satisfying —1 < y; < 1, which is clearly true.
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4.4 [P. Parrilo] Symmetries and convez optimization. Suppose G = {Q1,...,Qr} CR" " isa
group, i.e., closed under products and inverse. We say that the function f: R"™ — R is G-
invariant, or symmetric with respect to G, if f(Q:x) = f(x) holds for all z and i = 1,..., k.
We define T = (1/k) Zle Q:z, which is the average of x over its G-orbit. We define the
fized subspace of G as

F={z|Qix==z, i=1,...,k}
(a) Show that for any x € R", we have T € F.
(b) Show that if f: R™ — R is convex and G-invariant, then f(Z) < f(z).

(c) We say the optimization problem

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m

is G-invariant if the objective fy is G-invariant, and the feasible set is G-invariant,
which means

fi@) <0, fm(2) <0 = f1(Qiz) <0,..., fm(Qiz) <0,

fori =1,...,k. Show that if the problem is convex and G-invariant, and there exists
an optimal point, then there exists an optimal point in F. In other words, we can
adjoin the equality constraints € F to the problem, without loss of generality.

(d) As an example, suppose f is convex and symmetric, i.e., f(Pz) = f(z) for every
permutation P. Show that if f has a minimizer, then it has a minimizer of the form
al. (This means to minimize f over x € R", we can just as well minimize f(t1)

over t € R.)
Solution.
(a) Q;z = (1/k) 25:1 Q;Qix € F, because for each Q; € G there exists a Q; € G s.t.
Qi = Q.
(b) Using convexity and invariance of f,
k k
F@) < (/R F(Qiw) = (1/k) Y flw) = f(a).
i=1 i=1

(c) Suppose z* is an optimal solution. Then z* is feasible, with

k
fo(@®) fol(1/k) D Qiz)

IA

(1/k) Y fo(Qix)
fo(z").

Therefore z* is also optimal.

(d) Suppose z* is a minimizer of f. Let T = (1/n!) )", Px*, where the sum is over all
permutations. Since Z is invariant under any permutation, we conclude that T = a1l
for some o € R. By Jensen’s inequality we have

F@ < (1/n)> " f(P2") = (@),

which shows that T is also a minimizer.
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4.5 FEquivalent convex problems. Show that the following three convex problems are equiva-
lent. Carefully explain how the solution of each problem is obtained from the solution of
the other problems. The problem data are the matrix A € R™*" (with rows af ), the
vector b € R™, and the constant M > 0.

(a) The robust least-squares problem
minimize Y " ¢(aj z — by),

with variable z € R", where ¢ : R — R is defined as

oy ={ lul < M
Tl MQ2ul - M) |ul > M.
(This function is known as the Huber penalty function; see §6.1.2.)

(b) The least-squares problem with variable weights

minimize Y. (af x — b;)?/(wi + 1) + M*1Tw
subject to w = 0,

with variables z € R" and w € R™, and domain D = {(z,w) € R"XR™ | w > —1}.
Hint. Optimize over w assuming z is fixed, to establish a relation with the problem
in part (a).

(This problem can be interpreted as a weighted least-squares problem in which we
are allowed to adjust the weight of the ith residual. The weight is one if w; = 0, and
decreases if we increase w;. The second term in the objective penalizes large values
of w, i.e., large adjustments of the weights.)

(¢) The quadratic program

minimize Zzl(uf + 2Mw;)
subject to —u—v <Az —b=<u+wv
0u=xM1

v > 0.

Solution.

(a) Problems (a) and (b). For fixed u, the solution of the minimization problem

minimize  w?/(w + 1) + M?w
subject to w >0

is given by

_ ) /M =1 u =M
Y=Y 0 otherwise.

(w = 0Ju|/M —1 is the unconstrained minimizer of the objective function. If |u|/M —
1 >0 it is the optimum. Otherwise w = 0 is the optimum.) The optimal value is

inf (uQ/(w+1)—|—M2w) =

w0

M@2lu| = M) |ul =M
u? otherwise.

It follows that the optimal value of z in both problems is the same. The optimal w
in the second problem is given by

w — |az-Tac—b1-|/M—1 |aiT;r—bi|2M
T 0 otherwise.
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(b) Problems (a) and (c). Suppose we fix = in problem (c).

First we note that at the optimum we must have u; + v; = \aiTx — b;|. Otherwise,
i.e., if u;, v; satisfy w; + v; > |a;-‘px 4+ b; with 0 < u; < M and v; > 0, then, since
u; and v; are not both zero, we can decrease u; and/or v; without violating the
constraints. This also decreases the objective.

At the optimum we therefore have
v; = |az~Tac —bi| — us.
Eliminating v yields the equivalent problem

minimize Y7 (uf — 2Mu; + 2M|af @ — bi|)

subject to 0 < u; < min{M, |al x — b;|}

If |alx — b;] < M, the optimal choice for u; is u; = |a} © — b;|. In this case the ith
term in the objective function reduces to |afz — b;|. If |a] © — b;| > M, we choose
u; = M, and the ith term in the objective function reduces to 2M|alTx —bi| — M?2.
We conclude that, for fixed z, the optimal value of the problem in (c) is given by

m

Z ¢(a?m —b;).

=1

4.6 Handling conver equality constraints. A convex optimization problem can have only linear
equality constraint functions. In some special cases, however, it is possible to handle
convex equality constraint functions, i.e., constraints of the form g(x) = 0, where g is
convex. We explore this idea in this problem.

Consider the optimization problem

minimize  fo(x)
subject to  fi(z) <
h(z) =

0, 2=1,....m (4.65)
0,

where f; and h are convex functions with domain R™. Unless h is affine, this is not a
convex optimization problem. Consider the related problem

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m, (4.66)
h(z) <0,

where the convex equality constraint has been relaxed to a convex inequality. This prob-
lem is, of course, convex.

Now suppose we can guarantee that at any optimal solution z* of the convex prob-
lem (4.66), we have h(z*) = 0, i.e., the inequality h(z) < 0 is always active at the solution.
Then we can solve the (nonconvex) problem (4.65) by solving the convex problem (4.66).

Show that this is the case if there is an index r such that
e fo is monotonically increasing in x,
e fi,..., fm are nonincreasing in x,
e h is monotonically decreasing in x,.

We will see specific examples in exercises 4.31 and 4.58.

Solution. Suppose z* is optimal for the relaxed problem, and h(z*) < 0. By the last
property, we can decrease x, while staying in the boundary of g. By decreasing x, we
decrease the objective, preserve the inequalities f;(x) < 0, and increase the function h.
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4.7 Convez-concave fractional problems. Consider a problem of the form

minimize  fo(z)/(c"x + d)
subject to  fi(z) <0, i=1,...,m
b

where fo, fi,..., fm are convex, and the domain of the objective function is defined as
{zx €dom fy | Tz +d >0}

(a)

Show that this is a quasiconvex optimization problem.

Solution. The domain of the objective is convex, because fo is convex. The sublevel
sets are convex because fo(z)/(¢"z 4+ d) < a if and only if ¢’z +d > 0 and fo(z) <
a(cTz + d).

Show that the problem is equivalent to

minimize  go(y,t)

subject to  gi(y,t) <0, i=1,...,m
Ay =1bt
Ty+dt =1,

where g; is the perspective of f; (see §3.2.6). The variables are y € R™ and t € R.
Show that this problem is convex.

Solution. Suppose z is feasible in the original problem. Define t = 1/(c”z + d)
(a positive number), y = x/(cTx + d). Then ¢t > 0 and it is easily verified that
t, y are feasible in the transformed problem, with the objective value go(y,t) =
fo(z)/(c"x + d).

Conversely, suppose y,t are feasible for the transformed problem. We must have
t > 0, by definition of the domain of the perspective function. Define xz = y/t. We
have z € dom f; for i = 0,...,m (again, by definition of perspective). x is feasible
in the original problem, because

filz) = gi(y, )/t <0, i=1,....m  Azx=A(y/t)=b.
From the last equality, ¢c”« 4+ d = (¢Ty + dt)/t = 1/t, and hence,

t=1/(c"z+d),  fo(@)/(c"z+d) = tfo(z) = go(y,1).

Therefore z is feasible in the original problem, with the objective value go(y, t).
In conclusion, from any feasible point of one problem we can derive a feasible point
of the other problem, with the same objective value.

Following a similar argument, derive a convex formulation for the convex-concave
fractional problem

minimize  fo(x)/h(x)
subject to  fi(z) <0, i=1,...,m
Ax=b

where fo, f1,..., fm are convex, h is concave, the domain of the objective function
is defined as {z € dom fo Ndomh | h(xz) > 0} and fo(x) > 0 everywhere.
As an example, apply your technique to the (unconstrained) problem with

folw) = (br F(x))/m,  h(z) = (det(F(x))"/™,

with dom(fo/h) = {z | F(x) > 0}, where F(z) = Fo +z1F1 + - - - + 2, F,, for given
F; € S™. In this problem, we minimize the ratio of the arithmetic mean over the
geometric mean of the eigenvalues of an affine matrix function F(z).

Solution.
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(a) We first verify that the problem is quasiconvex. The domain of the objec-
tive function is convex, and its sublevel sets are convex because for a > 0,
fo(z)/h(z) < e if and only if fo(x) — ah(x) < 0, which is a convex inequality.
For a < 0, the sublevel sets are empty.

(b) The convex formulation is

minimize  go(y,t)
subject to  gi(y,t) <0, i=1,...,m

where g; is the perspective of f; and R is the perspective of —h.
To verify the equivalence, assume first that x is feasible in the original problem.
Define ¢t = 1/h(z) and y = x/h(x). Then ¢t > 0 and

9i(y,t) = tfily/t) = tfi(x) <0, i=1,....m,  Ay= Az/h(z)="0t.
Moreover, h(y,t) = th(y/t) = h(z)/h(x) = 1 and
90(y, ) = tfo(y/t) = fo(z)/h(x).

We see that for every feasible point in the original problem we can find a feasible
point in the transformed problem, with the same objective value.

Conversely, assume y, t are feasible in the transformed problem. By definition
of perspective, t > 0. Define x = y/t. We have

filz) = fily/t) = ¢i(y, )/t <0, i=1,...,m, Az = A(y/t) =b.

From the last inequality, we have

h(y,t) = —th(y/t) = —th(z) < —1.
This implies that A(z) > 0 and th(z) > 1. And finally, the objective is
fo(x)/h(z) = go(y,1)/(th(z)) < go(y,t).

We conclude that with every feasible point in the transformed problem there is
a corresponding feasible point in the original problem with the same or lower
objective value.

Putting the two parts together, we can conclude that the two problems have
the same optimal value, and that optimal solutions for one problem are optimal
for the other (if both are solvable).

minimize  (1/m)tr(tFo +y1 Fi + - + ynFn)
subject to  det(tFo +y1Fi 4 -+ + yn Fn)/™ > 1

with domain

{(y,t) |t >0, tFo +y1 F1 + -+ ynFn = 0}.

Linear optimization problems

4.8 Some simple LPs. Give an explicit solution of each of the following LPs.
(a) Minimizing a linear function over an affine set.
minimize ¢’z
subject to Az =b.

Solution. We distinguish three possibilities.
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e The problem is infeasible (b € R(A)). The optimal value is co.
e The problem is feasible, and c is orthogonal to the nullspace of A. We can
decompose c¢ as
c=ATx+¢, Aé=0.

(¢ is the component in the nullspace of A; AT\ is orthogonal to the nullspace.)
If ¢ = 0, then on the feasible set the objective function reduces to a constant:

Fr= TAz +éTx = \Tb.

The optimal value is A7b. All feasible solutions are optimal.

e The problem is feasible, and ¢ is not in the range of AT (¢ # 0). The problem
is unbounded (p* = —o0). To verify this, note that z = xo — t¢ is feasible for
all t; as t goes to infinity, the objective value decreases unboundedly.

In summary,
+o0o bg R(A)
p =< MNb ¢= AT\ for some A
—oo otherwise.

Minimizing a linear function over a halfspace.

minimize ¢’z
subject to aTxz < b,

where a # 0.

Solution. This problem is always feasible. The vector ¢ can be decomposed into a
component parallel to a and a component orthogonal to a:

c=a\+ ¢,
with a”'¢ = 0.
e If A > 0, the problem is unbounded below. Choose x = —ta, and let t go to
infinity:
e =—tc"a=-tha"a —» —
and
aT:E—b:—taTa—bSO
for large t, so = is feasible for large t. Intuitively, by going very far in the
direction —a, we find feasible points with arbitrarily negative objective values.
e If ¢ # 0, the problem is unbounded below. Choose x = ba — t¢ and let t go to
infinity.
o If ¢ = a) for some X\ < 0, the optimal value is ¢Tab = Ab.

In summary, the optimal value is

. b ¢ = a for some A <0
—oo otherwise.

Minimizing a linear function over a rectangle.

minimize cTx

subject to | <x <X,

where [ and u satisfy [ < u.

Solution. The objective and the constraints are separable: The objective is a sum of
terms c;z;, each dependent on one variable only; each constraint depends on only one
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variable. We can therefore solve the problem by minimizing over each component of x
independently. The optimal x} minimizes c;x; subject to the constraint I; < x; < u;.
If ¢; > 0, then z} = I;; if ¢; < 0, then z} = u;; if ¢; = 0, then any x; in the interval
[li,u;] is optimal. Therefore, the optimal value of the problem is

p* = Tet + uTc_,

+

where ¢;” = max{c¢;,0} and ¢; = max{—c;, 0}.

Minimizing a linear function over the probability simplex.
minimize ¢z
subject to 1Tz =1, z>0.

What happens if the equality constraint is replaced by an inequality 172 < 17

We can interpret this LP as a simple portfolio optimization problem. The vector
x represents the allocation of our total budget over different assets, with x; the
fraction invested in asset ¢. The return of each investment is fixed and given by —c;,
so our total return (which we want to maximize) is —c” . If we replace the budget
constraint 1Tz = 1 with an inequality 1T« < 1, we have the option of not investing
a portion of the total budget.

Solution. Suppose the components of ¢ are sorted in increasing order with

cp=ceg=-=ck <Cgp1 < <.

We have
cTr > c1(1Tm) = Cmin
for all feasible x, with equality if and only if
T+t =1, 1 2>0,...,2, >0, Tyl ==y = 0.

We conclude that the optimal value is p* = ¢1 = ¢min. In the investment interpreta-
tion this choice is quite obvious. If the returns are fixed and known, we invest our
total budget in the investment with the highest return.

If we replace the equality with an inequality, the optimal value is equal to
p* = min{0, Cmin }-

(If emin < 0, we make the same choice for z as above. Otherwise, we choose x = 0.)
Minimizing a linear function over a unit box with a total budget constraint.

minimize ¢’z
subject to 1Tz =0, 0=z =<1,

where « is an integer between 0 and n. What happens if « is not an integer (but
satisfies 0 < o < n)? What if we change the equality to an inequality 17z < a?
Solution. We first consider the case of integer a. Suppose

ClS"'SCi—l<Ci:"‘:0a:"':0k<ck+1S“‘Scn-

The optimal value is
ciotc2+- -+ cCa
i.e., the sum of the smallest o elements of ¢. x is optimal if and only if

,1;1:...:1’7’-_1:17 ;1;1_|__|_l*k:a—7,+1’ $k+1:"':-’73n:0-
If « is not an integer, the optimal value is
pr=citcat - FCla)+Citla)(a—la)).

In the case of an inequality constraint 17z < «, with « an integer between 0 and n,
the optimal value is the sum of the o smallest nonpositive coefficients of c.
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(f) Minimizing a linear function over a unit box with a weighted budget constraint.

minimize ¢’z
subject to dTz=a, 0=z =<1,

with d = 0, and 0 < o < 17d.
Solution. We make a change of variables y; = d;x;, and consider the problem

minimize Y " (ci/di)y:
subject to 1Tz =0a, 0=<y=<d.

Suppose the ratios ¢;/d; have been sorted in increasing order:

G o
di — do — ~ dn
To minimize the objective, we choose
yr=di, y2=dz, ..., Yr=dx,

Y1 = — (di + -+ di), Ykt = -+ =Yn =0,

where k = max{i € {1,...,n} |di+---+di < a} (and k =0 if d; > «). In terms
of the original variables,

==z =1, Tet1 = (= (d1+ -+ dk))/drt1, Thyo =+ = Tp =

4.9 Square LP. Consider the LP
minimize Tz
subject to Ax <b

with A square and nonsingular. Show that the optimal value is given by

- cTA % A ¢ <0
P=1 —x otherwise.

Solution. Make a change of variables y = Az. The problem is equivalent to

minimize ¢TA™ly
subject to y < b.

If A=T¢ < 0, the optimal solution is y = b, with p* = ¢T A7'b. Otherwise, the LP is
unbounded below.

4.10 Converting general LP to standard form. Work out the details on page 147 of §4.3.
Explain in detail the relation between the feasible sets, the optimal solutions, and the
optimal values of the standard form LP and the original LP.

Solution. Suppose z is feasible in (4.27). Define

x5

; =min{0,z;}, x;

K3

= min{0, —;}, s=h—-Gz.

It is easily verified that =™, 27, s are feasible in the standard form LP, with objective
value

et -z +d=c"z—d.
Hence, for each feasible point in (4.27) we can find a feasible point in the standard form
LP with the same objective value. In particular, this implies that the optimal value of
the standard form LP is less than or equal to the optimal value of (4.27).
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Conversely, suppose 21, 7, s are feasible in the standard form LP. Define z = 2 — 2™.
It is clear that x is feasible for (4.27), with objective value ¢’z +d = T2t — 7o~ + d.
Hence, for each feasible point in the standard form LP we can find a feasible point in (4.27)
with the same objective value. This implies that the optimal value of the standard form
LP is greater than or equal to the optimal value of (4.27).

We conclude that the optimal values are equal.
Problems involving ¢1- and £~ -norms. Formulate the following problems as LPs. Explain
in detail the relation between the optimal solution of each problem and the solution of its
equivalent LP.

(a) Minimize ||Az — b||oo (fso-norm approximation).

(b) Minimize ||Az — b||1 (¢1-norm approximation).

(¢) Minimize ||Az — b||1 subject to ||z]|e < 1.

(d) Minimize ||z||1 subject to ||Az — bl|e < 1.

(e) Minimize ||Az — bl|1 + ||z|co-
In each problem, A € R™*™ and b € R™ are given. (See §6.1 for more problems involving
approximation and constrained approximation.)

Solution.
(a) Equivalent to the LP
minimize ¢
subject to Axr —b <tl
Az — b > —t1.
in the variables z, t. To see the equivalence, assume x is fixed in this problem, and
we optimize only over t. The constraints say that

—t<afz—by, <t
for each k, i.e., t > |afx — bgl, i.e.,

t> mgx|a£x —bi| = ||Az = b]|oo-

Clearly, if x is fixed, the optimal value of the LP is p*(z) = | Az — b||«c. Therefore
optimizing over ¢ and x simultaneously is equivalent to the original problem.
(b) Equivalent to the LP
minimize 17s
subject to Ax —b=<s
Ax —b> —s.
Assume z is fixed in this problem, and we optimize only over s. The constraints say
that
—sk < apx — by < s

for each k, i.c., s > |afx — bk|. The objective function of the LP is separable, so
we achieve the optimum over s by choosing

Sk = |a£m — b,

and obtain the optimal value p*(z) = ||Az — b||1. Therefore optimizing over ¢ and s
simultaneously is equivalent to the original problem.
(c) Equivalent to the LP
minimize 1Ty
subject to —y <X Arxr—b=<y
1<z <1,

with variables x € R" and y € R™.
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(d) Equivalent to the LP

minimize 17y
subject to —y<ax <y
-1<Ar-b<1

with variables x and y.

Another good solution is to write x as the difference of two nonnegative vectors
z =a" — 2z, and to express the problem as

minimize 1Tzt +172~
subject to —1 < AzT —Az” —b=<1
x>0, 2~ >0,

with variables z7 € R™ and 2~ € R™.

(e) Equivalent to
minimize lTy +t
subject to —y X Ax—b=<Xy
1<z <11,

with variables z, y, and ¢.

Network flow problem. Consider a network of n nodes, with directed links connecting each
pair of nodes. The variables in the problem are the flows on each link: z;; will denote the
flow from node ¢ to node j. The cost of the flow along the link from node ¢ to node j is
given by c;jxi;, where c;; are given constants. The total cost across the network is

n
C = E CijTij.

3,j=1

Each link flow z;; is also subject to a given lower bound [;; (usually assumed to be
nonnegative) and an upper bound u;;.

The external supply at node ¢ is given by b;, where b; > 0 means an external flow enters
the network at node i, and b; < 0 means that at node ¢, an amount |b;| flows out of the

network. We assume that 17b = 0, i.e., the total external supply equals total external
demand. At each node we have conservation of flow: the total flow into node ¢ along links
and the external supply, minus the total flow out along the links, equals zero.

The problem is to minimize the total cost of flow through the network, subject to the
constraints described above. Formulate this problem as an LP.

Solution. This can be formulated as the LP

. . . n
minimize C = E i j=1 CidTij
,

subject to  b; + Z;;l Tij — Z;LZI zj; =0, i=1,...,n
lij < x5 < wgy.
Robust LP with interval coefficients. Consider the problem, with variable z € R",

minimize Ty
subject to Az < bforall A € A,

where A C R™*"™ is the set

A:{AERmxn|AU—‘/U§A2J§A”+%J, i:l,...,m, _]:1,771,}
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(The matrices A and V are given.) This problem can be interpreted as an LP where each
coefficient of A is only known to lie in an interval, and we require that x must satisfy the
constraints for all possible values of the coefficients.

Express this problem as an LP. The LP you construct should be efficient, i.e., it should
not have dimensions that grow exponentially with n or m.

Solution. The problem is equivalent to

minimize c_T:r
subject to Az + V|z| b

where |z| = (|z1],|z2|,...,|zxn|). This in turn is equivalent to the LP

minimize cfx
subject to Ax+Vy <b
—yXz =y

with variables x € R", y € R".

Approzimating a matriz in infinity norm. The o-norm induced norm of a matrix A €
R™ "™, denoted ||A||s, is given by

A
I !
z#0 H:L‘Hoo i=1,..., m

This norm is sometimes called the max-row-sum norm, for obvious reasons (see §A.1.5).

Consider the problem of approximating a matrix, in the max-row-sum norm, by a linear
combination of other matrices. That is, we are given k + 1 matrices Ao, ..., Ax € R™*",
and need to find € R* that minimizes

|[Ao + 2141 + -+ + 2k Ak o-
Express this problem as a linear program. Explain the significance of any extra variables

in your LP. Carefully explain how your LP formulation solves this problem, e.g., what is
the relation between the feasible set for your LP and this problem?

Solution. The problem can be formulated as an LP
minimize t
subject to —S g Ao+ x1A1+ -+ zpar xS
S1=<t1,

with variables S € R™*", t € R and « € R¥. The inequality < denotes componentwise
inequality between matrices, i.e., with respect to the cone

K={XeR™"|X;;>0,i=1,....m, j=1...,n}.

To see the equivalence, suppose x and S are feasible in the LP. The last constraint means

that
n
tzzs,-j, i=1,...,m,
j=1

so the optimal choice of ¢ is

n
t = max E Sij.
1
=1
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This shows that the LP is equivalent to
minimize maxi(z;;l Sij)
subject to —S <g Ao+ x1A1+ -+ zpar <k S.

Suppose z is given in this problem, and we optimize over S. The constraints in the LP
state that

—Si; < A(x)i; < Sij,
(where A(z) = Ao + 2141 + -+ + 2 Ak), and since the objective is monotone increasing
in S;j, the optimal choice for S;; is

Sij = |A(x)i5]-
The problem is now reduced to the original problem
minimize max;=1,_.. m 22:1 |A(z)s5]-

Relazxation of Boolean LP. In a Boolean linear program, the variable x is constrained to
have components equal to zero or one:

minimize ¢’z
subject to Az <b (4.67)
z; €4{0,1}, i=1,...,n.

In general, such problems are very difficult to solve, even though the feasible set is finite
(containing at most 2™ points).

In a general method called relazation, the constraint that z; be zero or one is replaced
with the linear inequalities 0 < x; < 1:

minimize ¢’z
subject to Az <b (4.68)
0<z: <1, i=1,...,n.

We refer to this problem as the LP relazation of the Boolean LP (4.67). The LP relaxation
is far easier to solve than the original Boolean LP.

(a) Show that the optimal value of the LP relaxation (4.68) is a lower bound on the
optimal value of the Boolean LP (4.67). What can you say about the Boolean LP
if the LP relaxation is infeasible?

(b) It sometimes happens that the LP relaxation has a solution with z; € {0,1}. What
can you say in this case?

Solution.

(a) The feasible set of the relaxation includes the feasible set of the Boolean LP. It
follows that the Boolean LP is infeasible if the relaxation is infeasible, and that
the optimal value of the relaxation is less than or equal to the optimal value of the
Boolean LP.

(b) The optimal solution of the relaxation is also optimal for the Boolean LP.

Minimum fuel optimal control. We consider a linear dynamical system with state z(¢t) €
R", ¢t = 0,...,N, and actuator or input signal u(t) € R, for t = 0,...,N — 1. The
dynamics of the system is given by the linear recurrence

z(t+1) = Az(t) + bu(t), t=0,...,N—1,

where A € R™™ and b € R" are given. We assume that the initial state is zero, i.e.,
z(0) =0.
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The minimum fuel optimal control problem is to choose the inputs u(0),...,u(N — 1) so
as to minimize the total fuel consumed, which is given by

subject to the constraint that x(N) = xdes, where N is the (given) time horizon, and
Zdes € R™ is the (given) desired final or target state. The function f: R — R is the fuel
use map for the actuator, and gives the amount of fuel used as a function of the actuator
signal amplitude. In this problem we use

_J lal la| <1
ﬂ@_{2m—1 la| > 1.
This means that fuel use is proportional to the absolute value of the actuator signal, for
actuator signals between —1 and 1; for larger actuator signals the marginal fuel efficiency
is half.
Formulate the minimum fuel optimal control problem as an LP.

Solution.
minimize 17t
subject to Hu = Zges
—y2uy
tzy
t>=2y—1
where
H=[ A" AN%p ... Ab b ].
Optimal activity levels. We consider the selection of n nonnegative activity levels, denoted

Z1,...,Zn. These activities consume m resources, which are limited. Activity j consumes

Aijx; of resource i, where A;; are given. The total resource consumption is additive, so

the total of resource ¢ consumed is ¢; = Z?:1 A;jzj. (Ordinarily we have A;; > 0, i.e.,

activity j consumes resource i. But we allow the possibility that A;; < 0, which means

that activity j actually generates resource i as a by-product.) Each resource consumption
max

is limited: we must have ¢; < ¢;***, where ¢;"** are given. Each activity generates revenue,
which is a piecewise-linear concave function of the activity level:

ri(ay) =4 P 0< @ <4
I pia; + 5% —q5) T > g

Here p; > 0 is the basic price, g; > 0 is the quantity discount level, and p?isc is the
quantity discount price, for (the product of) activity j. (We have 0 < p?‘sc < pj.) The
total revenue is the sum of the revenues associated with each activity, i.e., Z;;l r;(x;).

The goal is to choose activity levels that maximize the total revenue while respecting the
resource limits. Show how to formulate this problem as an LP.
Solution. The basic problem can be expressed as
maximize Z;Zl ri(z;)
subject to x>0
Az < ™M,

This is a convex optimization problem since the objective is concave and the constraints
are a set of linear inequalities. To transform it to an equivalent LP, we first express the
revenue functions as

. di
ri(x;) = min{p;z;, pjq; + ;" (z; —q;)},
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which holds since r; is concave. It follows that r;(x;) > u; if and only if

disc

DiTj > Uuj, Piq; +p5 (T —q5) > uy.

We can form an LP as
.. T
maximize 1 u

subject to x>0
A:I,‘ _< C!nax

pit; > uj, P + 05w —q5) 2wy, j=1,...,n,
with variables z and u.

To show that this LP is equivalent to the original problem, let us fix . The last set of
constraints in the LP ensure that u; < 7;(x), so we conclude that for every feasible z, u
in the LP, the LP objective is less than or equal to the total revenue. On the other hand,
we can always take u; = 7;(z), in which case the two objectives are equal.

4.18 Separating hyperplanes and spheres. Suppose you are given two sets of points in R",
{v',v?,...,v"} and {w',w?, ..., w"}. Formulate the following two problems as LP fea-
sibility problems.

(a) Determine a hyperplane that separates the two sets, i.e., find a € R™ and b € R
with a # 0 such that
atvi<b, i=1,...,K, a"w'>b, i=1,...,L.
Note that we require a # 0, so you have to make sure that your formulation excludes
the trivial solution @ = 0, b = 0. You can assume that

12 oKt w? . Wk

v
rank 1 T 1 1 1. 1 =n+1

(i.e., the affine hull of the K + L points has dimension n).

(b) Determine a sphere separating the two sets of points, i.e., find z. € R"™ and R > 0
such that

Hvi_mCHQSRa i:]-a"'7K7 le_xC”QZR’ 7':1”L
(Here z. is the center of the sphere; R is its radius.)

(See chapter 8 for more on separating hyperplanes, separating spheres, and related topics.)
Solution.

(a) The conditions

a"vt<b, i=1,...,K, aTw'>b, i=1,...,L

form a set of K 4+ L linear inequalities in the variables a, b, which we can write in
matrix form as

Bx >0
where
- 7(v1)T 1 -
_ | T (K+L)x (n+1) | oa
B = 7(’11)1)T _1 (S R 5 Xr = b .
[ —(w")" -1 ]




Exercises

We are interested in nonzero solutions of Bx = 0.

The rank assumption implies that rank B = n+ 1. Therefore, its nullspace contains
only the zero vector, i.e., x # 0 implies Bx # 0. We can force x to be nonzero by
adding a constraint 17 Bz = 1. (On the right hand side we could choose any other
positive constraint instead of 1.) This forces at least one component of Bz to be
positive. In other words we can find nonzero solution to Bz > 0 by solving the LP
feasibility problem

Br =0, 1"Bx=1.

(b) We begin by writing the inequalities as

lv*]13 — 20Tz, + llzcll3 < R* i=1,...,K,
l' 13 — 200" e + el > B2, =1, 1.

These inequalities are not linear in . and R. However, if we use as variables x. and
v = R? — ||z.||3, then they reduce to

HU’L”g 72(Di)TxC S’Vﬁ = 15"'7K7 ||wl||§ 72(wi)T‘CE8 2’77 i = 17"'7La

which is a set of linear inequalities in z. € R™ and v € R. We can solve this
feasibility problem for z. and ~, and compute R as

R=/7+ [lz[3.
We can be certain that v + ||z¢|> > 0: If z. and 7 are feasible, then
7+ llaellz 2 01113 - 2(0") T we + laell3 = Jlo’ —ze]l3 2 0.

4.19 Consider the problem
minimize  ||Az — b||1/(cTx + d)
subject to  ||z|leo < 1,
where A € R™*" b e R™, c € R", and d € R. We assume that d > ||c||1, which implies
that ¢Ta + d > 0 for all feasible x.
(a) Show that this is a quasiconvex optimization problem.

(b) Show that it is equivalent to the convex optimization problem

minimize || Ay — bt||:
subject to  ||ylleo <t
Ty+dt =1,

with variables y € R", t € R.
Solution.
(a) fo(z) <« if and only if
|Az — b]j1 — a(c"z +d) <0,

which is a convex constraint.
(b) Suppose ||z||co < 1. We have ¢”z 4 d > 0, because d > ||c||1. Define

y=z/("z+d), t=1/("z+d).
Then y and ¢ are feasible in the convex problem with objective value

Ay = btlly = | Az = b]l1 /(" + d).
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Conversely, suppose y, t are feasible for the convex problem. We must have ¢t > 0,
since ¢ = 0 would imply y = 0, which contradicts ¢y + dt = 1. Define

x=y/t.
Then ||z]|c < 1, and ¢"z + d = 1/t, and hence
Az — bl /("% + d) = || Ay — bt

4.20 Power assignment in a wireless communication system. We consider n transmitters with
powers pi,...,pn > 0, transmitting to n receivers. These powers are the optimization
variables in the problem. We let G € R"*™ denote the matrix of path gains from the
transmitters to the receivers; G;; > 0 is the path gain from transmitter j to receiver i.
The signal power at receiver ¢ is then S; = Gi;pi, and the interference power at receiver &
isI; = Zk#i Girpr. The signal to interference plus noise ratio, denoted SINR, at receiver
i, is given by S;/(I; + o0;), where o; > 0 is the (self-) noise power in receiver i. The
objective in the problem is to maximize the minimum SINR ratio, over all receivers, i.e.,
to maximize

. K2

z:r{lmn L +o;

There are a number of constraints on the powers that must be satisfied, in addition to the
obvious one p; > 0. The first is a maximum allowable power for each transmitter, i.e.,
pi < PP where P/"®* > 0 is given. In addition, the transmitters are partitioned into
groups, with each group sharing the same power supply, so there is a total power constraint
for each group of transmitter powers. More precisely, we have subsets Ki,..., K, of
{1,...,n} with K1 U---UK,, ={1,...,n}, and K; N K; =0 if j # [. For each group Kj,
the total associated transmitter power cannot exceed PFF > 0:

ZkaPlgp, l=1,...,m.
keK,

Finally, we have a limit P;° > 0 on the total received power at each receiver:

ZGikpk <P° i=1,...,n.

k=1
(This constraint reflects the fact that the receivers will saturate if the total received power
is too large.)
Formulate the SINR maximization problem as a generalized linear-fractional program.
Solution.

minimize ma'xi(Zk¢i Gikpk =+ O'»L)/(G”pz)
0<p; <P

Zkem pr < PP
> s Ginpr < P

Quadratic optimization problems
4.21 Some simple QCQPs. Give an explicit solution of each of the following QCQPs.

(a) Minimizing a linear function over an ellipsoid centered at the origin.

minimize ¢’z

subject to zT Az < 1,
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where A € ST, and ¢ # 0. What is the solution if the problem is not convex
(AgSh)?
Solution. If A > 0, the solution is

. 1 _1 * —1/2
rF=———o—A "¢, pr=—||A cll2 = =Vl A 1e.
vVcTA-le

This can be shown as follows. We make a change of variables y = A'/%z, and write
¢ = A"'2¢c. With this new variable the optimization problem becomes

minimize &y

subject to  yTy <1,

i.e., we minimize a linear function over the unit ball. The answer is y* = —¢/||¢]|2.

In the general case, we can make a change of variables based on the eigenvalue
decomposition

A=QdiagMQ" = Nawal
i=1
We define y = Qx, b = Qc, and express the problem as

minimize Z?:l biyi
subject to ZLI Xiy? < 1.

If A\; > 0 for all 4, the problem reduces to the case we already discussed. Otherwise,
we can distinguish several cases.

e )\, < 0. The problem is unbounded below. By letting y,, — +00, we can make
any point feasible.

e )\, = 0. If for some i, b; # 0 and A; = 0, the problem is unbounded below.

e )\, =0, and b; =0 for all 4 with A\; = 0. In this case we can reduce the problem
to a smaller one with all A\; > 0.

Minimizing a linear function over an ellipsoid.

minimize ¢’z
subject to  (z — xz.)T Az — z.) < 1,

where A € ST, and ¢ # 0.
Solution. We make a change of variables

y:Al/Q(x—wc), x:A71/2y+mC,
and consider the problem

minimize ¢f A™Y2y + Tz,
subject to  yTy < 1.

The solution is

y = (/AT Pell2) AT e, at = we = (1/ AT Pe]2) AT e
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(¢) Minimizing a quadratic form over an ellipsoid centered at the origin.

minimize 27 Bz
subject to 2T Az <1,

where A € S| and B € S%}. Also consider the nonconvex extension with B ¢ S.
(See §B.1.)

Solution. If B > 0, then the optimal value is obviously zero (since =7 Bz > 0 for
all z, with equality if z = 0).

In the general case, we use the following fact from linear algebra. The smallest
eigenvalue of B € S™, can be characterized as

Amin(B) = inf 2T Bz.

zTx=1
To solve the optimization problem

minimize 27 Bz
subject to 2T Az <1,

with A = 0, we make a change of variables y = A'/2z. This is possible since A > 0,
so A'/? is defined and nonsingular. In the new variables the problem becomes

minimize yT A Y2BAY%y
subject to  yTy < 1.

If the constraint y”y < 1 is active at the optimum (y”y = 1), then the optimal
value is

Amin(A7V2BATY?),

by the result mentioned above. If yTy < 1 at the optimum, then it must be at a
point where the gradient of the objective function vanishes, i.e., By = 0. In that
case the optimal value is zero.

To summarize, the optimal value is

o _ [ Amin(ATVPBATV?) A (ATY?BATV?) <0
P 0 otherwise.

In the first case any (normalized) eigenvector of A"Y2BA™Y? corresponding to the
smallest eigenvalue is an optimal y. In the second case y = 0 is optimal.

4.22 Consider the QCQP
minimize  (1/2)2T Px +q¢Tx 4+
subject to  aTx < 1,

with P € ST,. Show that 2* = —(P 4+ M) ~'q where A = max{0, A} and X is the largest
solution of the nonlinear equation

¢ (P4+X)"%qg=1.
Solution. z is optimal if and only if
T
T x <1, Pr+q=0

or
e =1, Pr+qg=—-X\z
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for some A > 0. (Geometrically, either x is in the interior of the ball and the gradient
vanishes, or = is on the boundary, and the negative gradient is parallel to the outward
pointing normal.)

The algorithm goes as follows. First solve Px = —q. If the solution has norm less than
or equal to one (||P"'q||2 < 1), it is optimal. Otherwise, from the optimality conditions,
x must satisfy ||z||2 =1 and (P + A\)x = —¢q for some A > 0. Define

n

T =P +N "l =3

i=1

where A\; > 0 are the eigenvalues of P. (Note that P + AI > 0 for all A > 0 because
P = 0.) We have f(0) = ||[P™*q||? > 1. Also f monotonically decreases to zero as A — co.
Therefore the nonlinear equatlon f ( ) =1 has exactly one nonnegative solution A. Solve
for X\. The optimal solution is z* = —(P 4+ XI)~*

ly-norm approzimation via QCQP. Formulate the £4-norm approximation problem
minimize ||Az — blls = (3.7, (af z — bs)*)*/*

as a QCQP. The matrix A € R™*™ (with rows a; ) and the vector b € R™ are given.
Solution.

e . m 2

minimize i1 Zi

subject to alax —bi =i, i=1,...,m
2 .
Yi <z t=1,....m

Complex 01-, l2- and Lo -norm approzimation. Consider the problem
minimize [|Az — b,

where A € C™*" b € C™, and the variable is x € C". The complex £,-norm is defined

by
m 1/p
lyll, = (ZW)
i=1

forp > 1, and ||y||cc = maxi=1,....m |y:i|]. For p = 1, 2, and oo, express the complex £p-norm
approximation problem as a QCQP or SOCP with real variables and data.

Solution.

(a) Minimizing ||Az — b2 is equivalent to minimizing its square. So, let us expand
| Az — b||3 around the real and complex parts of Az — b:

Az —bl3 = [IR(Az —b)|3 + [|S(Az —b)|3
= |RARz — SASz — N3 + |RASz + SART — b3

If we define 27 = [RzT Sz7] as requested, then this becomes

Az — b3 = ||[RA — 4]z — Rb|> + ||[SA %A]z—\st

H[ sl 2]

The values of F' and g can be extracted from the above expression.

2
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(b) First, let’s write out the optimization problem term-by-term:
minimize ||Az — b||s

is equivalent to
minimize ¢t
subject to |afz —b| <t
t=1,...,m,

where af, ..., aL are the rows of A. We have introduced a new optimization variable

t.

Each term |a} z — b| must now be written in terms of real variables (we’ll use the
same z as before):

lafz —b> = (Ra] Rz — Sa] Sz — Rb)? + (Ra] Sz + Sa] Rz — Ib)?

I3 - [5]

So now we have reduced the problem to the real minimization,

2

minimize ¢

subject to

This is a minimization over a second-order cone. It can be converted into a QCQP
by squaring both sides of the constraint and defining A = t2:

minimize A

subject to

(¢) The ¢1-norm minimization problem is to minimize || Az — b||1, i.e.,
minimize Y " |a; z — b]
Let us introduce new variables t1, ..., t;y, and rewrite the minimization as follows:
e . . m
minimize Zf« s
subject to |aj x — b\ < tz,
1=1,.
The conversion to second-order constraints is similar to part (b):
minimize

™t

i=1

RaT  —SaTl b
bject t E ; —
subject to ‘H Sal z

al Sb <t; t=1,...,m.

4.25 Linear separation of two sets of ellipsoids. Suppose we are given K + L ellipsoids
Ei:{Piu+qi|Hu||2§1}, i=1,..., K+ L,

where P; € S™. We are interested in finding a hyperplane that strictly separates &1, ...,
Ex from k41, ..., Exk+1L, i.e., we want to compute a € R", b € R such that

aTx+b>Of0rac€51U~~-U5K, aT:L‘+b<Oforx€5K+1U~--U€K+L,
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or prove that no such hyperplane exists. Express this problem as an SOCP feasibility
problem.

Solution. We first note that the problem is homogeneous in a and b, so we can replace
the strict inequalities aTr+b>0and aTz +b<0withaTz+b>1and aTz+b< —1,
respectively.

The variables a and b must satisfy

Huum(aTPiu +a"g)>1, 1,...,L

and

sup (aTPiquaTqi) <-1, i=K+1,..., K+ L.
flull2<1

The lefthand sides can be expressed as

(6 Pt ) = —|PTaltaTgoth, sup (7 Parea ) = PPl acth
25 ull2<1

We therefore obtain a set of second-order cone constraints in a, b:

—|PFal2 +a"q;+b>1, i=1,...,L
|PTalls+aTqi+b< -1, i=K+1,...,K+L.

4.26 Hyperbolic constraints as SOC constraints. Verify that x € R", y, z € R satisfy

d'z<yz, y>0, 2>0
if and only if
Sy+z y =0, z > 0.

El)

Use this observation to cast the following problems as SOCPs.

(a) Mazimizing harmonic mean.
maximize (27;1 1/(alx — bi))_1 ,
with domain {z | Az - b}, where al is the ith row of A.
(b) Mazimizing geometric mean.
maximize (H?;l(a?x - bi))l/m ,

with domain {z | Az > b}, where a7 is the ith row of A.
Solution.
(a) The problem is equivalent to
minimize  17¢
subject to  ti(alx4+b;)>1, i=1,...,m
t > 0.
Writing the hyperbolic constraints as SOC constraints yields an SOCP

minimize 17t

2
LL,LT.T +b; —t;
t:>0, afz+b;>0, i=1,...,m

subject to

‘ ga?$+bi+ti, i=1,...,m
2
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(b) We can assume without loss of generality that m = 2% for some positive integer K.

(If not, define a; =0 and b; = —1 fori =m +1,.. ., 2K where 2% is the smallest
power of two greater than m.)

Let us first take m = 4 (K = 2) as an example. The problem is equivalent to

maximize  Y1y293y4
subject to y=Ax —b
y = 0,

which we can write as

maximize tito
subject to y=Ax —b
yiy2 >t
Ysya > t3
yioa t1207 tQZov

and also as
maximize t

subject to y= Az —b
Yiys > i
yaya > 13
tity > t°
y =0, ti,t2,t>0.

Expressing the three hyperbolic constraints
yiy2 >, ysya >3, tit2 >0

as SOC constraints yields an SOCP:

minimize —t
. 2ty
subject to <yi+y2, y1>20, y22>0
[ Y1~ Y2 2
[ 2t
§ <ys+wys, y3>0, y22>0
[ Y3~ V4 2
[ 2
! Stitto, >0, >0
t1 — o )
y= Az —b.

We can express the problem as

maximize Yoo

subject to YK—1,5—1 :afz—bj, ] = 1,...,m )
Yi < Yig1,26Yig12k41: =0,..., K =2, k=0,...2" -1
Az = b,
where we have introduced auxiliary variables y;; fori =0,..., K—1,5=0,...,2" —1.

Expressing the hyperbolic constraints as SOC constraints yields an SOCP.
The equivalence can be proved by recursively expanding the objective function:

Yoo < YioY11
< (y20¥21) (Y22y23)
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A

< (y30ys1)(ys2ys3)(y34y3s ) (Yseysr)

< YK-1,0YK-1,1 """ Yr—1,2K_1
= (aiz—"b1)--(apx —bn).
Matriz fractional minimization via SOCP. Express the following problem as an SOCP:

minimize  (Az +b)T (I + Bdiag(z)BT)™!(Az +b)
subject to x > 0,

with A € R™ "™, b€ R™, B € R™*". The variable is z € R".
Hint. First show that the problem is equivalent to

minimize v7 v 4+ w” diag(z) " 'w
subject to v+ Bw = Ax+1b
xz >~ 0,

with variables v € R™, w,z € R". (If ; = 0 we interpret wf/xZ as zero if w; = 0 and as
oo otherwise.) Then use the results of exercise 4.26.

Solution. To show the equivalence with the problem in the hint, we assume x > 0 is
fixed, and optimize over v and w. This is a quadratic problem with equality constraints.
The optimality conditions are

v=u, w = diag(z)B v
for some v. Substituting in the equality constraint, we see that v must satisfy
(I + Bdiag(z)B")v = Az + b,
and, since the matrix on the left is invertible for z > 0,
v =v = (I+Bdiag(z)B") ' (Az+b), w = diag(z)B” (I+ B diag(z)B") "' (Az+b).
Substituting in the objective of the problem in the hint, we obtain
v v+ w” diag(z)'w = (Az 4+ b)" (I + Bdiag(z)B") ' (Az + b).

This shows that the problem is equivalent to the problem in the hint.
As in exercise 4.26, we now introduce hyperbolic constraints and formulate the problem
in the hint as
minimize t+17s
subject to vTo <t
w? < sz, i=1,...,n
x>0
with variables t € R, s,z,w € R", v € R™. Converting the hyperbolic constraints into
SOC constraints results in an SOCP.
Robust quadratic programming. In §4.4.2 we discussed robust linear programming as an
application of second-order cone programming. In this problem we consider a similar
robust variation of the (convex) quadratic program

minimize  (1/2)2T Px +q¢ x4
subject to Az <b.

For simplicity we assume that only the matrix P is subject to errors, and the other
parameters (g, r, A, b) are exactly known. The robust quadratic program is defined as

minimize  suppeg((1/2)2” Pz + ¢ z + 1)
subject to Ax <Xb
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where £ is the set of possible matrices P.

For each of the following sets £, express the robust QP as a convex problem. Be as specific
as you can. If the problem can be expressed in a standard form (e.g., QP, QCQP, SOCP,
SDP), say so.

(a) A finite set of matrices: £ = {Py,..., Pk}, where P, € ST,i=1,..., K.

(b) A set specified by a nominal value Py € S plus a bound on the eigenvalues of the
deviation P — Py:
E={PeS"| I X P—Py2~I}

where v € R and Py € S,
l[ull2 < 1}-

(¢) An ellipsoid of matrices:
K
E = { Py + Z Pu;
(a) The objective function is a maximum of convex function, hence convex.
We can write the problem as

i=1
You can assume P; € 8%, i=0,..., K.

Solution.

minimize ¢
subject to  (1/2)a" Pz +¢Tx+r<t, i=1,....K
Az < b,
which is a QCQP in the variable z and t.
(b) For given x, the supremum of 7 APz over —yI <= AP < ~I is given by

T T
sup r° APx =~z .
—vI<AP=~I

Therefore we can express the robust QP as

minimize  (1/2)z" (Po +~yI)z +q¢ 2 +r
subject to Az <b

which is a QP.

(¢) For given z, the quadratic objective function is

K
(1/2) (xTP0x+ sup Zul(xTsz)) +qT$+T

<
lulla<1 <=

K

1/2
= (1/2)2" Poz 4 (1/2) (Z(xTPix)2> +q"z+

i=1

This is a convex function of z: each of the functions z” P;x is convex since P, > 0.
The second term is a composition h(g1(z), ..., gx(z)) of h(y) = |ly|l2 with gi(z) =
T P;z. The functions ¢; are convex and nonnegative. The function h is convex and,
for y € Rf , nondecreasing in each of its arguments. Therefore the composition is
convex.

The resulting problem can be expressed as

minimize  (1/2)z" Pox 4 |Jy|l2 + ¢ x + 7

subject to  (1/2)a" Pz <wy;, i=1,....K
Ax <b
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which can be further reduced to an SOCP

minimize u -+t

P01/2m
2u—1/4

P2y
2y; — 1/4

lyll2 < ¢
Az < b.

<2u+1/4
2

subject to

<2i+1/4, i=1,....K
2

The variables are z, u, t, and y € R¥.
Note that if we square both sides of the first inequality, we obtain

" Pox 4 (2u — 1/4)* < (2u +1/4)%,

i.e., 7 Pyz < 2u. Similarly, the other constraints are equivalent to (1/2)z” Pz < y;.

4.29 Mazimizing probability of satisfying a linear inequality. Let ¢ be a random variable in R",

normally distributed with mean ¢ and covariance matrix R. Consider the problem

maximize prob(c’z > «)
subject to Fx <g, Axz=5b.

Find the conditions under which this is equivalent to a convex or quasiconvex optimization
problem. When these conditions hold, formulate the problem as a QP, QCQP, or SOCP
(if the problem is convex), or explain how you can solve it by solving a sequence of QP,
QCQP, or SOCP feasibility problems (if the problem is quasiconvex).

Solution. The problem can be expressed as a convex or quasiconvex problem if a < &%«
for all feasible .

Before working out the details, we first consider the special case with ¢ = 0. In this case

cT'z is a random variable, normally distributed with E(c”z) = 0 and E(c'z)? = 27 Ra.

If o < 0, maximizing prob(c’z > a) means minimizing the variance, i.e., minimizing
2T Rz, subject to the constraints on z, which is a convex problem (in fact a QP). On the
other hand, if & > 0, we maximize prob(c’z > «) by mazimizing the variance =7 Rz,
which is very difficult.

We now turn to the general case with & # 0. Define u = ¢’ «, a scalar random variable,
normally distributed with Eu = ¢*« and E(u — Eu)? = 27 Rz. The random variable

u—¢lx
VT Rx
has a normal distribution with mean zero, and unit variance, so

u—7clw a—2lx a—¢clx
prob(u > «) = prob > =1-d( —— |,
( ) (\/wTRx VaT Rx VT Rx

2
where ®(z) = \/%771’ fjoo et /th, a monotonically increasing function.
To maximize 1 — ®, we can minimize (o — ¢* z)/vaT Rz, i.e., solve the problem
maximize (&' z — a)/VaT Rz

subject to Fx <g
Az =b.
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4.30

Equivalently, if 7« > « for all feasible x, we can also minimize the reciprocal of the
objective function:
minimize V2T Rz /(& z — a)
subject to Fx =g
Az =b.

If &7z > « for all feasible x, this is a quasiconvex optimization problem, which we can
solve by bisection. Each bisection step requires the solution of of an SOCP feasibility
problem

VaTRz < t(c"z — a), Fzx <g, Az =b.

The problem can also be expressed as a convex problem, by making a change of variables

T 1
V=g t==
e —« c

T—a

This yields the problem

minimize  /yT Ry

subject to Fy <X gt

Ay =10t
Ay—at=1
t>0.

If we square the objective this is a quadratic program.

Geometric programming

A heated fluid at temperature 7' (degrees above ambient temperature) flows in a pipe
with fixed length and circular cross section with radius r. A layer of insulation, with
thickness w < r, surrounds the pipe to reduce heat loss through the pipe walls. The
design variables in this problem are T', r, and w.

The heat loss is (approximately) proportional to Tr/w, so over a fixed lifetime, the energy
cost due to heat loss is given by a1 Tr/w. The cost of the pipe, which has a fixed wall
thickness, is approximately proportional to the total material, i.e., it is given by aar. The
cost of the insulation is also approximately proportional to the total insulation material,
i.e., agrw (using w < r). The total cost is the sum of these three costs.

The heat flow down the pipe is entirely due to the flow of the fluid, which has a fixed
velocity, i.e., it is given by asTr?. The constants «; are all positive, as are the variables
T, r, and w.

Now the problem: maximize the total heat flow down the pipe, subject to an upper limit
Chax on total cost, and the constraints

Tmin S T S Tmax; T'min S T S T'max Wmin S w S Wmax w S 017"

Express this problem as a geometric program.
Solution. The problem is

maximize  auTr?
subject to arTw™ + asr + azrw < Chax
Tmin S T S Tmax
T'min S r S T'max
Wmin < W < Wmax
w < 0.17.
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This is equivalent to the GP

minimize (1/044) r—2
subject to (al/Cmax)Tw 4 (a2 /Cmax)T + (a3 Crax)rw < 1
(1/Tmax)T <1, TwnT ' <1
(1/rmax)r < 1, rminr ' <1
(1/wmax)w < 1, wminw™ ' <1
10wr~t < 1.

4.31 Recursive formulation of optimal beam design problem. Show that the GP (4.46) is equiv-
alent to the GP

e s N
minimize ZZ 1 Wi

subject to  w;/Wmax gl Wmin/w; <1, i=1,...,N
hi/hmax <1, hmin/hi <1, i=1,...,N
hi/(WiSha) <1 i=1,...,N
6iF/(omaxwih?) <1, i=1,...,N
(26 — 1)d; Jvi +vig1/vi <1, i=1,...,N
(t=1/3)di/ys + vir1/yi + yir1/yi <1, i=1,...,N
yl/ymaxgl
Bwh3d;/(6F)=1, i=1,...,N.

The variables are w;, h;, vs, d;, y; fori =1,..., N.
Solution. The problem is then

. N
minimize 21:1 w;ih;

subject to  Wmin < Wi < Wmax, t=1,..., N
hmin < hi < hmax, t=1,...,N
Smin < hi/w; < Smax i=1,...,N
GZF/( ih?) < Omax, G=1,...,N (4.31.A)
(22—1)d + Vit1, 2—1 ..,N
(¢ —1/3)di + vit1 +Yit1, i=1,...,N
Ym
6

H \/\ I|

y
d; /(Ew,-hf), i=1,...,N,

where to simplify notation we use variables d; = 6F/(Ew;h?), and define yn41 = dn 1 =
0. The variables in the problem are w;, hi, vi, yi, d;, fori =1,...,

This problem is not a GP, since the equalities that define v; and y; are not monomial
inequalities. (The objective and other constraints, however, are fine.) T'wo approaches can
be used to transform the problem (4.31.A) into an equivalent GP. One simple approach is
to eliminate v1,...,vn and y2,...,yn, using the recursion (4.45). This recursion shows
that y; and v; are all posynomials in the variables w;, h;, and in particular, the constraint
Y1 < Ymax 1S & posynomial inequality.

We now describe another method, that would be better in practice if the number of
segments is more than a small number, since it preserves the problem structure. To
express this as a GP, we replace the equalities that define v; and y; by the inequalities

v; > (Zi—l)di+1}¢+1, Yi > (i—1/3)di+v¢+1 +Yi+1, t=1,...,N. (4.31,]3)

This can be done without loss of generality. To see this, suppose we substitute the
inequalities (4.31.B) in (4.31.A), and suppose h, w, v, y, d are feasible. The variables vq
and y; appear in the following four inequalities

vy > di, y1 > (2/3)d1, v2 > 3da + v1, y2 > (5/3)d2 +v1 + y1.
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It is clear that setting v1 = di and y1 = (2/3)d1, without changing any of the other
variables, yields a feasible point with the same objective value. Next, consider the four
inequalities that involve v and ya:

v2 > 3d2 + v1, y2 > (5/3)d2 + v1 +y1, vz > bd3z + v2, ys > (7/3)ds + v2 + y2.

Again, it is clear that we can decrease v and y2 until the first two inequalities are tight,
without changing the objective value. Continuing the argument, we conclude that the
two problems are equivalent.
It is now straightforward to express the problem as the GP
minimize Zjil w;h;
subject to  wW;i/Wmax <1, Wmin/w; <1, i=1,...,N
hi/hmax <1, hmin/hi <1, i=1,...,N
hi/(wiSmax) <1 i=1,...,N
6iF/(Omaxwihi) <1, i=1,...., N
(2i—1)di/1}i+vi+1/1},‘§1, t=1,...,N
(7;71/3)d¢/yi+’U1‘+1/yi+yi+1/y¢Sl, i:L...,N
yl/ymax <1
Ew;h3/(6Fd;) =1, i=1,...,N.

4.32 Approximating a function as a monomial. Suppose the function f : R™ — R is differ-
entiable at a point zo > 0, with f(zo) > 0. How would you find a monomial function

f:R"™ — R such that f(zo) = f(x0) and for x near xo, f(x) is very near f(z)?

Solution. We’ll give two ways to solve this problem. They both end up with the same
solution.

Let the monomial approximant have the form

f@) =caft - apr,
where ¢ > 0.

Method 1. First-order matching. To make f(z) very near f(z) in the vicinity of zo, we
will make the function values agree, and also set the gradient of both functions equal at
the point x¢:

: of of
f(@o) = f(z0), ol el I
zo
We have R
0 _ _1;
a:‘cfl = caix‘fl "~I?1 1 ...me" = a;x; 1f(m)7
which gives us an explicit expression for the exponents a;:
o ZTq af
f(z) O],

All that is left is to find the coefficient ¢ of the monomial approximant. To do this we use
the condition f(zo) = f(z0):
f(z)

C= Q@ Qa=
x(lll...x(:‘l"

zo

Method 2. Log transformation. As is done to transform a GP to convex form, we take the
log of the function f and the variables, to get

g(y) = log f(y), yi = log zs,
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and similarly for the approximating monomial:

i(y) =log f(y) =¢+ay,

where ¢ = log c. Note that the transformation takes the monomial into an affine function.
After this transformation, the problem is this: find an affine function that fits g(y) very
well near the point yo = log 9. That’s easy — the answer is to form the first-order Taylor
approximation of g at yo:

9(o) + V(o)  (y —yo) =+ a’y.
This implies
¢=g(yo) — Vawo) vo,  a=Vg(yo).

If we work out what this means in terms of f, we end up with the same formulas for ¢
and a; as in method 1 above.

Express the following problems as convex optimization problems.
(a) Minimize max{p(z), ¢(z)}, where p and ¢ are posynomials.
(b) Minimize exp(p(z)) + exp(g(x)), where p and ¢ are posynomials.
(c¢) Minimize p(x)/(r(x) — g(x)), subject to r(x) > g¢(x), where p,q are posynomials,
and r is a monomial.

Solution.

(a) This is equivalent to the GP

minimize ¢
subject to  p(x)/t <1, q(x)/t <1.
Now make the logarithmic change of variables x; = e¥?.
(b) Equivalent to
minimize  exp(t1) + exp(t2)
subject to  p(x) <t1, q(z) < ta.
Now make the logarithmic change of variables z; = e¥¢ (but not to t1, t2).
(¢) Equivalent to
minimize ¢
subject to  p(x) < t(r(x) — q(x)),

and

minimize ¢

subject to  (p(x)/t + q(x))/r(z) <1,
which is a GP.

4.34 Log-convezity of Perron-Frobenius eigenvalue. Let A € R™*™ be an elementwise positive

matrix, i.e., A;; > 0. (The results of this problem hold for irreducible nonnegative
matrices as well.) Let Ap¢(A) denotes its Perron-Frobenius eigenvalue, i.e., its eigenvalue
of largest magnitude. (See the definition and the example on page 165.) Show that
log Ape(A) is a convex function of log A;;. This means, for example, that we have the
inequality

Apt(C) < ()‘pf(A))‘pf(B))l/zv

where C;j = (Ai;jBij)*/?, and A and B are elementwise positive matrices.

Hint. Use the characterization of the Perron-Frobenius eigenvalue given in (4.47), or,
alternatively, use the characterization

log Apt(A) = klim (1/k)log(1” A*1).
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Solution. Define a;; = log A;;. From the characterization in the text

n

log dor(4) = inf_max log()_e"0y/u)
j=1

= inf max | log( E ety —y,
y i=1,...,n
=1

where we made a change of variables v; = e¥*. The functions

n

log Zeaii+y-7 —y;

Jj=1
are convex, jointly in a and y, so

n

max log g ety | —y;
K

j=1

is jointly convex in « and y. Minimizing over y therefore gives a convex function of a.
From the characterization in the hint

log Apr(4) = lim (1/k)log(D_(4"):).

47

A* expanded as a sum of exponentials of linear functions of a;j. So log Apt(A) is the
pointwise limit of a set of convex functions.

4.35 Signomial and geometric programs. A signomial is a linear combination of monomials of
some positive variables x1,...,x,. Signomials are more general than posynomials, which
are signomials with all positive coefficients. A signomial program is an optimization
problem of the form

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
hl(ZE) =0 , =

where fo,..., fm and hi,...,h, are signomials. In general, signomial programs are very
difficult to solve.

Some signomial programs can be transformed to GPs, and therefore solved efficiently.
Show how to do this for a signomial program of the following form:

e The objective signomial fy is a posynomial, i.e., its terms have only positive coeffi-

cients.

e FEach inequality constraint signomial f1,..., f,, has exactly one term with a negative
coefficient: f; = p; — ¢; where p; is posynomial, and ¢; is monomial.

e Each equality constraint signomial hq,..., h, has exactly one term with a positive
coefficient and one term with a negative coefficient: h; = r; — s; where r; and s; are
monomials.

Solution. For the inequality constraints, move the single negative term to the righthand
side, then divide by it, to get a posynomial inequality: f;(z) < 0 is equivalent to p;/¢; < 1.
For the equality constraints, move the negative term to the righthand side, then divide
by it, to get a monomial equality: h;(z) = 0 is equivalent to r;/s; = 1.



4.36

4.37

Exercises

Explain how to reformulate a general GP as an equivalent GP in which every posynomial
(in the objective and constraints) has at most two monomial terms. Hint. Express each
sum (of monomials) as a sum of sums, each with two terms.

Solution. Consider a posynomial inequality with ¢ > 2 terms,

t
fl@) = gix) <1,
=1
where g; are monomials. We introduce new variables s1, ..., s:—2, and express the posyn-

omial inequality as the set of posynomial inequalities

g1(z) + g2(z) < s
gs(xz) +s1 < s

|/\ ce

gi(x) + s¢—2 1.

By dividing by the righthand side, these become posynomial inequalities with two terms
each. They are clearly equivalent to the original posynomial inequality. Clearly s; is
an upper bound on Z;J:l g;i(z), so the last inequality, g:(x) + st—2 < 1, implies the
original posynomial inequality. Conversely, we can always take s; = Z;ill g;(x), so if the
original posynomial is satisfied, there are s1, ..., s¢—2 that satisfy the two-term posynomial

inequalities above.

Generalized posynomials and geometric programming. Let x1,. .., x, be positive variables,
and suppose the functions f; : R" — R, i = 1,...,k, are posynomials of x1,...,x,. If
¢ : R* — R is a polynomial with nonnegative coefficients, then the composition

hz) = o(f1(@), ..., fe()) (4.69)

is a posynomial, since posynomials are closed under products, sums, and multiplication
by nonnegative scalars. For example, suppose fi and f2 are posynomials, and consider
the polynomial ¢(z1, z2) = 32722 + 221 + 325 (which has nonnegative coefficients). Then
h = 3fff2+ 2f1 + f3 is a posynomial.

In this problem we consider a generalization of this idea, in which ¢ is allowed to be
a posynomial, i.e., can have fractional exponents. Specifically, assume that ¢ : RF —
R is a posynomial, with all its exponents nonnegative. In this case we will call the
function h defined in (4.69) a generalized posynomial. As an example, suppose f1 and fa
are posynomials, and consider the posynomial (with nonnegative exponents) ¢(z1, 22) =
2293232 4 2129° + 2. Then the function

h(z) = 2f1(2)"° f2(2) "2 + fr(2) fa(2)"° + 2

is a generalized posynomial. Note that it is not a posynomial, however (unless f1 and f2
are monomials or constants).

A generalized geometric program (GGP) is an optimization problem of the form

minimize  ho(z)

subject to  hi(z) <1, i=1,...,m (4.70)
g’b(‘r): , t=1,...,p,
where g1, ..., gp are monomials, and ho, ..., h,, are generalized posynomials.

Show how to express this generalized geometric program as an equivalent geometric pro-
gram. Explain any new variables you introduce, and explain how your GP is equivalent
to the GGP (4.70).
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Solution.

We first start by transforming to the epigraph form, by introducing a variable ¢ and
introducing a new inequality constraint ho(z) < ¢, which can be written as ho(x)/t < 1,
which is a valid generalized posynomial inequality constraint. Now we’ll show how to deal
with the generalized posynomial inequality constraint

d(fi(z), ..., fu(2)) <1, (4.37.A)
where ¢ is a posynomial with nonnegative exponents, and fi,..., fr are posynomials.
We'll use the standard trick: introduce new variables t1,...,¢x, and replace the single
generalized posynomial inequality constraint (4.37.A) with

¢(t177tk)§17 fl(x)gtl,,fk(flf)gtk, (437B)

which is easily transformed to a set of k+ 1 ordinary posynomial inequalities (by dividing
the last inequalities by ¢;). We claim that this set of posynomial inequalities is equivalent
to the original generalized posynomial inequality. To see this, suppose that z,t1,...,xk
satisfy (4.37.B). Now we use the fact that the function ¢ is monotone nondecreasing in
each argument (since its exponents are all nonnegative), which implies that

o(fr(x), ..., fu(z)) < 1.

Conversely, suppose that (4.37.A) holds. Then, defining ¢; = fi(x), i = 1,...,k, we find
that

P(tr,.. tk) <1, fi(z) =t1,..., frlz) =tk
holds, which implies (4.37.B).
If we carry out this procedure for each generalized posynomial inequality, we obtain a GP.

Since the inequalities are each equivalent, using the argument above, the two problems
are equivalent.

Semidefinite programming and conic form problems

4.38 LMIs and SDPs with one variable. The generalized eigenvalues of a matrix pair (A, B),
where A, B € S”, are defined as the roots of the polynomial det(AB — A) (see §A.5.3).

Suppose B is nonsingular, and that A and B can be simultaneously diagonalized by a
congruence, i.e., there exists a nonsingular R € R™*" such that

RT AR = diag(a), = R"BR = diag(b),

where a,b € R". (A sufficient condition for this to hold is that there exists ¢1, t2 such
that t1 A+ t2B = 0.)

(a) Show that the generalized eigenvalues of (A, B) are real, and given by \; = a;/b;,
i=1,...,n.

(b) Express the solution of the SDP

minimize ¢t
subject to tB < A,

with variable t € R, in terms of a and b.
Solution.

(a) If B is nonsingular, R” BR must be nonsingular, i.e., b; # 0 for all . We have
det(AB — A) = (det R)* [ [(Abi — a:) =0

so A is a generalized eigenvalue if and only if A = a;/b; for some .
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(b) We have tB < A if and only if tb < a, i.e.,

tgal/bb bi>0
t>ai/b; b; <O.

The feasible set is an interval defined by,

max a;/b; <t < mina;/b;.
b; <0 b; >0

If the interval is nonempty and bounded, the optimal solution is one of the endpoints,
depending on the sign of c.
4.39 SDPs and congruence transformations. Consider the SDP
minimize Tz
subject to x1F1 +x2Fo+ -+, F + G X0,

with F;, G € S8*, c € R".
(a) Suppose R € R*** is nonsingular. Show that the SDP is equivalent to the SDP
minimize Tz
subject to 1P +xoFo+ -4+ Fn+GX 0,
where F;, = RTF,R, G = R"GR.
(b) Suppose there exists a nonsingular R such that F; and G are diagonal. Show that
the SDP is equivalent to an LP.

(c) Suppose there exists a nonsingular R such that F; and G have the form

= | ol ag . x_ | BT b
FZ—|:aiT ai:|7 i=1,...,n, G—|: b B:|,

where i, 8 € R, a;,b € R*™!. Show that the SDP is equivalent to an SOCP with
a single second-order cone constraint.

Solution.

(a) Let A € S™ and R € R™™ with R nonsingular. A > 0 if and only if 27 Az > 0 for
all . Hence, with © = Ry, yTRT ARy > 0 for all y, i.e., yT RTAR > 0.

(b) A diagonal matrix is positive semidefinite if and only if its diagonal elements are
nonnegative.

(¢) The LMI is equivalent to

= | (afz+p)I Az +b

F(z) = = 0.

(Az + )T (@Tz+ I | =

where A has columns a;, i.e., | Az + b2 < a”z + 8.
4.40 LPs, QPs, QCQPs, and SOCPs as SDPs. Express the following problems as SDPs.

(a) The LP (4.27).
Solution.
minimize Tr+d
subject to  diag(Gz —h) <0
Ax =b.
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(b) The QP (4.34), the QCQP (4.35) and the SOCP (4.36). Hint. Suppose A € S, ,,
C €8S° and B € R"™*°. Then

A B T 4—1
[BT o |20 c-B"a"Bx0.

For a more complete statement, which applies also to singular A, and a proof,
see §A.5.5.

Solution.
(a) QP. Express P = WW7T with W € R"*".

minimize t+2¢Tx+r
. 1 Wl
subject to |: ST T ] =0
diag(Gz — h) <0
Az =0,

with variables z, t € R.
(b) QCQP. Express P; = W, W, with W; € R"*":.

minimize to+2¢x +ro
subject to  ti+2¢fx 41 <0, i=1,...,m
I Wxz
|: xTWi tiI
Az = b,

=0, i=0,1,...,m

with variables z, t; € R.
(c) SOCP.

minimize Tr

(Aa:i + bl)T (ClT.Z‘ + dl)I
Fx=g.

subject to { =0, +=1,...,N

By the result in the hint, the constraint is equivalent with || A;x+b;|2 < ciTm+di
when ¢/ = +d; > 0. We have to check the case ¢! x + d; = 0 separately. In this
case, the LMI constraint means A;x + b; = 0, so we can conclude that the LMI
constraint and the SOC constraint are equivalent.

(¢) The matrix fractional optimization problem
minimize (Az + b)" F(z)~'(Az +b)
where A € R™*", b c R™,
Flz)=Fo+x1F1+ -+ 2z Fn,

with F; € S™, and we take the domain of the objective to be {z | F(z) > 0}. You
can assume the problem is feasible (there exists at least one z with F(z) = 0).
Solution.
minimize ¢
F(x) Az +b
(Azx + )T t

with variables x, t € R. The LMI constraint is equivalent to

subject to =0

(Az 4+ 0)" F(z) " (Az +b) < ¢
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if F(z) > 0.
More generally, let

fo(z) = (Az 4+ b)T F(z) " (Az + b), dom fo(z) = {z | F(z) > 0}.

>0}.
epig = {(Jf,t) ‘ |: (Aif%))T A$t+b EO}

g(z) = inf{t [(Affi)T Axt—i_b]i()}.

We have

epi fo = {(a:,t) ‘F(m) -0, [ ey A

Then cl(epi fo) = epig where g is defined by

We conclude that both problems have the same optimal values. An optimal solution
for the matrix fractional problem is optimal for the SDP. An optimal solution for
the SDP, with F(z) > 0, is optimal for the matrix fractional problem. If F(x)
is singular at the optimal solution of the SDP, then the optimum for the matrix
fractional problem is not attained.

4.41 LMI tests for copositive matrices and Po-matrices. A matrix A € S™ is said to be copositive
if 27 Az > 0 for all z >= 0 (see exercise 2.35). A matrix A € R™*" is said to be a Pp-
matriz if max;—1,... n»2i(Axz); > 0 for all . Checking whether a matrix is copositive or
a Po-matrix is very difficult in general. However, there exist useful sufficient conditions
that can be verified using semidefinite programming.

(a) Show that A is copositive if it can be decomposed as a sum of a positive semidefinite
and an elementwise nonnegative matrix:

A=B+C, B=0, Ci;>0, i,j=1,...,n (4.71)

Express the problem of finding B and C that satisfy (4.71) as an SDP feasibility
problem.

(b) Show that A is a Po-matrix if there exists a positive diagonal matrix D such that
DA+ A"D > 0. (4.72)
Express the problem of finding a D that satisfies (4.72) as an SDP feasibility problem.
Solution.
(a) Suppose A satisfies (4.71). Let  »= 0. Then
2T Az = 2" Bx + 27 Cx > 0,

because B >~ 0 and Cj; > 0 for all 4, j.
(b) Suppose A satisfies (4.72). Then

" (DA+ A"D)z =2 Z drzr(Axr) >0
k=1

for all z. Since di > 0, we must have zx(Axg) > 0 for at least one k.
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4.42 Complex LMIs and SDPs. A complex LMI has the form

where I, ..., F,, G are complex n x n Hermitian matrices, i.e., F = F;, G = G, and
x € R™ is a real variable. A complex SDP is the problem of minimizing a (real) linear
function of z subject to a complex LMI constraint.

Complex LMIs and SDPs can be transformed to real LMIs and SDPs, using the fact that
SX  RX

_Cx
XEO@{%X JX]&O,

where 8 X € R™*"™ is the real part of the complex Hermitian matrix X, and 3X € R"*"
is the imaginary part of X.

Verify this result, and show how to pose a complex SDP as a real SDP.
Solution. For a Hermitian matrix RX = (RX)7 and 3X = —3X7. Now let z = u + iv,
where u, v are real vectors, and i = v/—1. We have

Xz = (u—iw)T (RX +iSX)(u+ iv)
= uTRXu+0TRXv — uTSXv + 0TS Xu

e[ 5 w[]

Therefore 27 Xz > 0 for all z if and only if the 2n x 2n real (symmetric) matrix above is
positive semidefinite.

Thus, we can convert a complex LMI into a real LMI with twice the size. The conversion
is linear, a complex LMI becomes a real LMI, of twice the size.

To pose
4.43 FEigenvalue optimization via SDP. Suppose A : R™ — S™ is affine, i.e.,
A(z) = Ao+ 2141+ - -+ z,An
where A; € S™. Let A1(z) > Aa(x) > -+ - > A (x) denote the eigenvalues of A(x). Show
how to pose the following problems as SDPs.
(a) Minimize the maximum eigenvalue \i(x).
(b) Minimize the spread of the eigenvalues, A1(z) — Am ().

(¢) Minimize the condition number of A(z), subject to A(z) > 0. The condition number
is defined as k(A(z)) = A1 (z)/Am(x), with domain {z | A(z) > 0}. You may assume
that A(z) = 0 for at least one x.

Hint. You need to minimize A/, subject to

0 <y = A(z) < M.

Change variables to y = x /v, t = A\/v, s = 1/~.
(d) Minimize the sum of the absolute values of the eigenvalues, |A1(z)| + - + | Am(x)].
Hint. Express A(x) as A(z) = Ay — A, where A =0, A_ = 0.
Solution.

(a) We use the property that A\i(z) < t if and only if A(z) =< ¢I. We minimize the
maximum eigenvalue by solving the SDP

minimize ¢
subject to  A(x) S tI.

The variables are z € R" and ¢t € R.
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(b)

A1(z) <t if and only if A(x) = t1I and A\ (A(z)) > to if and only if A(z) = tol,
so we can minimize A1 — A, by solving

minimize t1 — ta
subject to  tol < A(z) 2 t11.

This is an SDP with variables t; € R, t2 € R, and x € R".
We first note that the problem is equivalent to

minimize  A/y

subject to I < A(z) < Al (4.43.A)

if we take as domain of the objective {(}, ) | v > 0}. This problem is quasiconvex,
and can be solved by bisection: The optimal value is less than or equal to « if and
only if the inequalities

A <~a, v 2 A(z) 2 A, ¥>0

(with variables v, A, z) are feasible.
Following the hint we can also pose the problem as the SDP

minimize ¢t
subject to I X sAo+yi1Ai+ -+ yndn 1 (4.43.B)
s> 0.

We now verify more carefully that the two problems are equivalent. Let p* be the
optimal value of (4.43.A), and pZy, is the optimal value of the SDP (4.43.B).
We first show that p* > pZy,. Let A/ be the objective value of (4.43.A), evaluated
at a feasible point (v, A, ). Define s = 1/, y = z/v, t = A\/v. This yields a feasible
point in (4.43.B), with objective value ¢ = A/~. This proves that p* > ply,.
Next, we show that pZy, > p*. Suppose that s, y, t are feasible in (4.43.B). If s > 0,
then v = 1/s, x = y/s, A = t/s are feasible in (4.43.A) with objective value ¢. If
s = 0, we have

I<y1Ar+ - +ynAn 2t

Choose = = 7y, with 7 sufficiently large so that A(7y) = Ao + 71 > 0. We have
A1 (Ty) < A1(0) + 7t, Am (TY) > Am(0) + 7

so for 7 sufficiently large,

)\1(0)+t7'
< —"
K(zo + 71y) < o (0) 7

Letting 7 go to infinity, we can construct feasible points in (4.43.A), with objective
value arbitrarily close to t. We conclude that ¢t > p* if (s, y, t) are feasible in (4.43.B).
Minimizing over t yields pZ,;, > p*.

This problem can be expressed as the SDP
minimize tr AT +trA”

subject to  A(x) = AT — A~ (4.43.0)
At =0, A" =0,

with variables 2, AT, A~. We can show the equivalence as follows. First assume x
is fixed in (4.43.C), and that A" and A~ are the only variables. We will show that
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the optimal A" and A~ are easily constructed from the eigenvalue decomposition
of A(z), and that at the optimum we have

trAt 4tra” = Z|>\i(A z

Let A(x) = QAQT be the eigenvalue decomposition of A(x). Defining At =
QTATQ, A~ = QT A Q, we can write problem (4.43.C) as

minimize  tr AT 4+ tr A~

subject to A= AT — A~ (4.43.D)

At =0, A >0,
with variables AT and A~. Here we have used the fact that
trAT =trQQTAT =tr QTATQ =tr AT.
When solving problem (4.43.D), we can assume without loss of generality that the
matrices A* and A~ are diagonal. (If they are not diagonal, we can set the off-
diagonal elements equal to zero, without changing the objective value and without
changing feasibility.) The optimal values for the diagonal elements are:
Al =max{\;,0}, A;; = max{—\;,0},

and the optimal value ) |Ai|. Going back to the problem (4.43.C), we have shown
that if we fix =, and optimize over AT and A™, the optimal value of the problem is

i=1

Since the constraints are linear in z, we can allow = to be a variable. Minimizing
over z, A", and A~ jointly is equivalent to minimizing » " |Xi(A(z))].
4.44 Optimization over polynomials. Pose the following problem as an SDP. Find the polyno-
mial p: R — R,
p(t) =x1 +x2t + -+ $2k+1t2k7
that satisfies given bounds I; < p(t;) < w,, at m specified points ¢;, and, of all the
polynomials that satisfy these bounds, has the greatest minimum value:

maximize inf; p(t)
subject to  I; < p(t;) <ws, i=1,...,m.

The variables are z € R?* 1.

Hint. Use the LMI characterization of nonnegative polynomials derived in exercise 2.37,
part (b).
Solution. First reformulate the problem as
maximize ¥
subject to  p(t)—y >0, teR
L<plt) <w, i=1,...,m

(variables z, 7). Now use the LMI characterization to get an SDP:

maximize ’y

subject to v=Yn
x-:Zern 1 Yo, i=2,..,2k+1
ZSZ )<w, i=1,...,m
Y = 0.

The variables are ¢ € R**! ~ e R, Y e Sk,
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4.45 [Nes00, Par00] Sum-of-squares representation via LMIs. Consider a polynomial p : R" —
R of degree 2k. The polynomial is said to be positive semidefinite (PSD) if p(z) > 0
for all x € R"™. Except for special cases (e.g., n = 1 or k = 1), it is extremely difficult
to determine whether or not a given polynomial is PSD, let alone solve an optimization
problem, with the coefficients of p as variables, with the constraint that p be PSD.

A famous sufficient condition for a polynomial to be PSD is that it have the form

p(@) = (@),

for some polynomials ¢;, with degree no more than k. A polynomial p that has this
sum-of-squares form is called SOS.

The condition that a polynomial p be SOS (viewed as a constraint on its coefficients)
turns out to be equivalent to an LMI, and therefore a variety of optimization problems,
with SOS constraints, can be posed as SDPs. You will explore these ideas in this problem.

(a) Let f1,...,fs be all monomials of degree k or less. (Here we mean monomial in
the standard sense, i.e., 7' - - - ', where m; € Z,, and not in the sense used in
geometric programming.) Show that if p can be expressed as a positive semidefinite
quadratic form p = fTV f, with V' € 8%, then p is SOS. Conversely, show that if
p is SOS, then it can be expressed as a positive semidefinite quadratic form in the
monomials, i.e., p= f7 V f, for some V € S¥.

(b) Show that the condition p = f7V f is a set of linear equality constraints relating the
coefficients of p and the matrix V. Combined with part (a) above, this shows that
the condition that p be SOS is equivalent to a set of linear equalities relating V' and
the coefficients of p, and the matrix inequality V > 0.

(¢) Work out the LMI conditions for SOS explicitly for the case where p is polynomial
of degree four in two variables.

Solution.

(a) Factor V as V.= WW7", where W € R°*" and let w; denote the ith column of W.

We have . .
p=rf"Y wal f=Y (!>
i=1 i=1

i.e., p is SOS.
Conversely, if p is SOS, it can be expressed as p = E;l(win)Q, sop= fTVF for
V= 22:1 wiwiT .
(b) Expanding the quadratic form gives
p=> Viififi,
Q=1
and equating coefficients on both sides proves the result.
(c) Solution for degree 2: The monomials of degree 2 or less are
=1 fa =, f3 =2, fs =i, fe = z122, fr=13
and the general expression for p

2 2 3 2
p(z) = c1+ o + e3m2 + caxl + c5T1T2 + ceT + crx] + C3TIT2

2 3 4 3 2 2 3 4
+ cox1x3 + C10T3 + €112 + C1221X2 + C13T1T3 + C14T1T2 + Ci15%2
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The equality constraints are
c1 = Vi1, c2=2Via, c3=2Vi3, ca= Va2 +2Vi5, c5=2Va3+ 2Vis,

ce = Vaz +2Vi7, cr =2Vas, cg =2Vae+2Vas, co=2Var+2V36, c10=2Var,
ci1 = Vs, c12 =2Vss, c13=2Vs7, c1a=2Ver, ci15="Vrr.

These, together with V' € s7+, are the (necessary and sufficient) LMI conditions for
p to be SOS.

4.46 Multidimensional moments. The moments of a random variable ¢ on R? are defined as
wi; = Etit), where ¢,j are nonnegative integers. In this problem we derive necessary
conditions for a set of numbers p;;, 0 < 4,5 < 2k, i + j < 2k, to be the moments of a
distribution on R?2.

Let p : R? — R be a polynomial of degree k with coefficients Cij,

p(t) =D eitith,

and let ¢ be a random variable with moments p;;. Suppose ¢ € R
the coeflicients ¢;; in some specific order, and p € RETDCAHD) contains the moments i
in the same order. Show that Ep(t)2 can be expressed as a quadratic form in c:

Ep(t)* = ¢"H(p)e,

where H : RF+HDEHD _ gk+1)(k+2)/2 ¢ g linear function of . From this, conclude
that p must satisfy the LMI H(u) = 0.
Remark: For random variables on R, the matrix H can be taken as the Hankel matrix
defined in (4.52). In this case, H(u) = 0 is a necessary and sufficient condition for u to be
the moments of a distribution, or the limit of a sequence of moments. On R?, however,
the LMI is only a necessary condition.

FDE+2)/2 contains

Solution.
y = (€00, €10, €01, €20, C11, C02, €30, C21, C12, €03, - - - 5 Ck0s Ch—1,15 - - - , COk)
k k—i 2
2 igd
Ep(t) = E g E cijtith
i=0 j=0
k k—i k k—m
i+m,j+n
= E E E g CijCmn (£
1=0 j=0 m=0 n=0
k k—i k k—-m
= g § § g CijCmni+m,j+n,
=0 j=0 m=0 n=0
i.e.,

Hij,mn = Hit+m,j+n-
For example, with k = 2,

E(coo + c10t1 + corta + ca0ts + ciitits + Co2t§)2

Moo H10 MOl M20 H11  HO2 Coo
Hio HM20 H11 M30  M21  H12 C10
o Mot M11 Ho2  M21  H12  HO3 Co1
a [COO o cor G0 cn 002] H20 H30  M21 M40  H31  H22 C20
M11 f21 Mi12 M31 M22 H13 C11

Mo2  M12 03 f22 13 Mo4 Co2
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4.47 Mazimum determinant positive semidefinite matriz completion. We consider a matrix
A € S™, with some entries specified, and the others not specified. The positive semidefinite
matriz completion problem is to determine values of the unspecified entries of the matrix
so that A = 0 (or to determine that such a completion does not exist).

(a) Explain why we can assume without loss of generality that the diagonal entries of
A are specified.

(b) Show how to formulate the positive semidefinite completion problem as an SDP
feasibility problem.

(c) Assume that A has at least one completion that is positive definite, and the diag-
onal entries of A are specified (i.e., fixed). The positive definite completion with
largest determinant is called the mazimum determinant completion. Show that the
maximum determinant completion is unique. Show that if A* is the maximum de-
terminant completion, then (A*)~! has zeros in all the entries of the original matrix
that were not specified. Hint. The gradient of the function f(X) = logdet X is
VF(X)=X"" (see §A.4.1).

(d) Suppose A is specified on its tridiagonal part, i.e., we are given Ai1,..., Ann and
A2, ..., An—1,n. Show that if there exists a positive definite completion of A, then
there is a positive definite completion whose inverse is tridiagonal.

Solution.

(a) If a diagonal entry, say A;;, were not specified, then we would take it to be infinitely
large, i.e., we would take A;; — oo. Then, the condition that A > 0 reduces to
A » 0, where A is the matrix A with ¢th row and column removed. Repeating
this procedure for each unspecified diagonal entry of A, we see that we can just as
well consider the submatrix of A corresponding to rows and columns with specified
diagonal entries.

(b) The problem is evidently an LMI, since A is clearly an affine function of its unspec-
ified entries, and we require A > 0.

(c) We can just as well minimize f(A) = —logdet A, which is a strictly convex function
of A (provided A > 0. Since the objective is strictly convex, there is at most one
optimum point. The objective grows unboundedly as A approaches the boundary
of the positive definite set, and the set of feasible entries for the matrix is bounded
(since the diagonal entries are fixed, and for a matrix to be positive definite, no
entry can exceed the maximum diagonal entry). Therefore, there is exactly one
minimizer of —logdet A, and it occurs away from the boundary. The optimality
condition is simple: it is that the gradient vanishes. Now suppose the i, j entry of
A is unspecified (i.e., a variable). Then we have, at the optimal A*,

8f _ *N—L1lg
9A;; =2tr(A") E;; =0.

But this is nothing more than twice the i, entry of (A*)~!. Thus, all entries of
(A*)™! corresponding to unspecified entries in A must vanish.

(d) The maximum determinant positive definite completion will be tridiagonal, by part (c).

4.48 Generalized eigenvalue minimization. Recall (from example 3.37, or §A.5.3) that the
largest generalized eigenvalue of a pair of matrices (A, B) € S* x SiJr is given by

T
u Au

Amax(A, B) =
(4,B) = sup 7

= max{A | det(AB — A) = 0}.

As we have seen, this function is quasiconvex (if we take S* x S% . as its domain).
We consider the problem

minimize Amax(A(z), B(z)) (4.73)
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where A, B : R" — S* are affine functions, defined as
A(x) = Ao+ x1A1 + - + T An, B(x) =Bo+21B1+ -+ + 2nBn.
with A;, B; € SF.
(a) Give a family of convex functions ¢; : S¥ x 8¥ — R, that satisfy
Amax(A, B) <t <= ¢:«(A,B) <0
for all (A, B) € 8* x S%_. Show that this allows us to solve (4.73) by solving a

sequence of convex feasibility problems.

(b) Give a family of matrix-convex functions ®; : S*¥ x §¥ — S* that satisfy
Amax(A4,B) <t <= ®,(A,B) 20
for all (A, B) € S* x S%_. Show that this allows us to solve (4.73) by solving a

sequence of convex feasibility problems with LMI constraints.

(c) Suppose B(x) = (aTx+b)I, with a # 0. Show that (4.73) is equivalent to the convex
problem

minimize )\tnax(SAO + ylAl + -+ y'ﬂA")
subject to aTy+bs=1
s >0,

with variables y € R", s € R.
Solution.
(a) Take ¢+(A, B) = Amax(A — tB). fo(A, B) <t if and only if
B™'YPABTV? <tl <= tB-A»0
<= Amax(A—tB) <0.

(b) Take ®,(A,B) = A —tB.

(¢) We will refer to the generalized eigenvalue minimization problem as the GEVP, and
to the eigenvalue optimization problem as the EVP.
The GEVP is feasible because a # 0, so there exist « with a”z + b > 0.
Suppose x is feasible for the GEVP. Then

y= (/@ z+b)e,  s=1/("+b)
is feasible for the EVP (a”y + bs = 1 and s > 0). The objective value of (y,s) in
the EVP is equal to the objective value of « in the GEVP:

1 _ T
Amax (m(AO + 1A+ + -TnAn)> = Amax(A(‘r)v (CL z+ b)I)

Conversely, suppose y, s are feasible for the EVP. If s # 0, then z = y/s satisfies
a¥z +b=1/s> 0, so z is feasible for the GEVP. Moreover,

1

Amas(A(2): (07 +D)1) = A 5

A(z)) = Amax(sAo + y1A1 + -+ ynAn),

i.e., the objective values are the same.
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0, then for all & with a”& +b > 0,
ty is feasible in the GEVP for all ¢t > 0.

If y, s are feasible for the EVP with s
a¥(G+ty)+b=a"+b+t>0,50x =&
The objective value of x is

UT(A(i‘) Ft(yr1 AL+ Fyndn))u

Amax A th t r t b)1 =
(A(E +ty), (a” (zo + ty) +b)I) sup (@i + b+ tyuTu
T
~ swp tu (y1 A1 + T + ynAn))u
w£0 tu' u

= )\max(ylAl + -+ ynAn)

so there are feasible points in the GEVP with objective values arbitrarily close to
the objective value of y, s in the EVP.
We conclude that the optimal values of the EVP and the GEVP are equal.

4.49 Generalized fractional programming. Let K € R™ be a proper cone. Show that the
function fo : R™ — R™, defined by
fo(z) =inf{t | Czx +d <k t(Fz + g)}, dom fo ={z | Fx + g >k 0},

with C, F € R™*", d,g € R™, is quasiconvex.

A quasiconvex optimization problem with objective function of this form is called a gen-
eralized fractional program. Express the generalized linear-fractional program of page 152
and the generalized eigenvalue minimization problem (4.73) as generalized fractional pro-
grams.

Solution.

(a) fo(z) < aifand only if Cz +d <x a(Fz +g) and Fx + g =k 0.
To see this, we first note that if Cxz + d <x «a(Fx + g), and Fxr 4+ g = 0, then
obviously fo(z) < a.

Conversely, if fo(z) < a and Fz + g =k 0, then Cx + d < t(Fx + g) for at least
one t < «a, and therefore (since Fz + g =x 0),

Cx+d =g t(Fzx+g)
for all t > t. In particular, Cz + d <k a(Fz + g).
(b) Choose K = R/,.

T .
Cx+d=2t(Fx+g), Fr+g>0 < thaxclTx——’—dz.
i flr+g

(c) Choose K € S%.

A(z) 2 tB(z), B(z) » 0 <= Amax(A(z), B(x)) <t.

Vector and multicriterion optimization

4.50 Bi-criterion optimization. Figure 4.11 shows the optimal trade-off curve and the set of
achievable values for the bi-criterion optimization problem

minimize (w.r.t. R3)  (||Az —b|%, ||z]|3),

for some A € R19°%19 p ¢ R0 Answer the following questions using information from
the plot. We denote by x5 the solution of the least-squares problem

minimize ||Az — b||3.
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4.51

4.52

What is ||zis]|2?
What is ||Azis — b||27
What is [|b]|2?

Give the optimal value of the problem

(a
(b
(c
(d

Nar N N NG

minimize  ||Az — b||3
subject to  ||lz[|3 = 1.

(e) Give the optimal value of the problem
minimize  ||Az — b||3
subject to  ||z[|3 < 1.
(f) Give the optimal value of the problem

minimize || Az — b||3 + ||z||3.

(g) What is the rank of A?

Solution.

(a) [lzssfl2 = 3.
(b) [[Azis — blJ3 = 2.
() [1bll2 = v10.

(d) About 5.
(e) About 5.
(f) About 3 + 4.

(g) rank A = 10, since the LS solution is unique.

e

Momnotone transformation of objective in vector optimization. Consider the vector opti-
mization problem (4.56). Suppose we form a new vector optimization problem by replacing
the objective fo with ¢ o fo, where ¢ : R? — R satisfies

u 2k v, uF v = ¢(u) Xk ¢(v), ¢(u) # B(v).

Show that a point z is Pareto optimal (or optimal) for one problem if and only if it is
Pareto optimal (optimal) for the other, so the two problems are equivalent. In particular,
composing each objective in a multicriterion problem with an increasing function does
not affect the Pareto optimal points.

Solution. Follows from

fo(z) 2k foly) <= o(fo(z)) =x ¢(fo(y))

with equality only if fo(x) = fo(y).

Pareto optimal points and the boundary of the set of achievable values. Consider a vector
optimization problem with cone K. Let P denote the set of Pareto optimal values, and
let O denote the set of achievable objective values. Show that P C O Nbd O, i.e., every
Pareto optimal value is an achievable objective value that lies in the boundary of the set
of achievable objective values.

Solution. P C O, because that is part of the definition of Pareto optimal points. Suppose
fo(z) € P, fo(z) € int O. Then fo(x) + z € O for all sufficiently small z, including small
values of z <k 0. This means that fo(x) is not a Pareto optimal value.
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Suppose the vector optimization problem (4.56) is convex. Show that the set
A=0+ K ={teR?| fo(zx) <k t for some feasible z},

is convex. Also show that the minimal elements of A are the same as the minimal points
of O.

Solution. If fo(r1) =k t1 and fo(z2) <k t2 for feasible z1, z2, then for 0 < 6 < 1,
0x1 + (1 — 6)x2 is feasible, and

Jo(0z1 + (1 —0)z2) =k Ofo(x1) + (1 —6)fo(y1)
<k Ot1 + (1 —0)io,

ie., 0t + (1 — 0)t2 € A.
Suppose u is minimal for A, i.e.,

veEA vk u=v=u.

We can express v as u = @+ z, where & € O and z = 0. We must have z = 0, otherwise
the point v =4 + 2/2 € A, v <k v and v # u. In other words, u € O. Furthermore, u is
minimal in O, because

veO, v3xku=—=veEA vKu—>v=nu.
Conversely, suppose u is minimal for O, i.e.,
veEQO, vk U= v=u.
Then for all v =042z € A, with 0 € O, z = 0,

V+2z2=ku, V€O, 2z 0

Scalarization and optimal points. Suppose a (not necessarily convex) vector optimization
problem has an optimal point z*. Show that z* is a solution of the associated scalarized
problem for any choice of A > = 0. Also show the converse: If a point z is a solution of
the scalarized problem for any choice of A =g~ 0, then it is an optimal point for the (not
necessarily convex) vector optimization problem.

Solution. Follows from the dual characterization of minimum elements in §2.6.3: fo(z*)
is the minimum element of the achievable set O, if and only if for all A =x~ 0, AT fo(x*)
is the unique minimizer of ATz over O.

Generalization of weighted-sum scalarization. In §4.7.4 we showed how to obtain Pareto
optimal solutions of a vector optimization problem by replacing the vector objective fo :
R" — RY with the scalar objective AT fo, where A\ =g+ 0. Let » : R? — R be a
K-increasing function, i.e., satisfying

u =K v, u#v= P(u) < P).
Show that any solution of the problem

)

<

8

minimize  ¥(fo(
subject to  f;(z)

is Pareto optimal for the vector optimization problem

0, 2=1,...,m
0, 72=1,...,p

minimize (w.r.t. K) fo(z)
subject to fi(z) <0, i=1,....m
hz(.’[) = 07 =
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Note that 1 (u) = ATu, where X =g+ 0, is a special case.

As a related example, show that in a multicriterion optimization problem (i.e., a vector
optimization problem with fo = F : R® — R, and K = R{jr), a unique solution of the
scalar optimization problem

minimize maxi—1,. . q Fi(z)
subject to  fi(z) <0, i=1,...,m
hi(x)zo, i:l,...,p,

is Pareto optimal.
Solution. Suppose z* is a solution of the scalar problem. Now, suppose

u € O, u <k fo(z¥), u # fo(z™).

Because 1 is increasing, ¥ (u) < ¥(fo(z*)). However, this contradicts the fact that z* is
minimizes 1 o fo.

Miscellaneous problems

[P. Parrilo] We consider the problem of minimizing the convex function fo : R" — R
over the convex hull of the union of some convex sets, conv (U?Zl Ci). These sets are
described via convex inequalities,

Ci={x] fij(x) <0, j=1,..., Kk},

where f;; : R — R are convex. Our goal is to formulate this problem as a convex
optimization problem.

The obvious approach is to introduce variables zi,...,z, € R", with ; € C;, 8 € R?
with @ = 0, 170 = 1, and a variable x € R", with 2 = 6121 + - -- + 0,2,. This equality
constraint is not affine in the variables, so this approach does not yield a convex problem.
A more sophisticated formulation is given by

minimize  fo(x)

subject to Sifij(zi/si)go, i:l,...,q, j:l,...,k,‘
1Ts=1, s>0
T=2z1+ -+ 2,

with variables z1,...,2 € R", z € R", and s1,...,5¢ € R. (When s; = 0, we take
sifij(zi/s:) to be 0if z; = 0 and oo if z; # 0.) Explain why this problem is convex, and
equivalent to the original problem.
Solution. Since f;; are convex functions, so are the perspectives s; fi;(zi/si). Thus the
problem is convex.
Now we show it is equivalent to the original problem. First, suppose that x is feasible for
the original problem, and can be expressed as * = 61z1 + - - - + 0424, where z; € C;, and
6 = 0,170 = 1. Define z; = 0z, and s; = 6;. We claim that Zly-vvy2qy Sly---,Sqy T
are feasible for the reformulated problem. Clearly we have x = 21 + -+ 4+ 24, and s = 0,
1Ts = 1. For s; > 0, we have zi/si = x; € Cj, S0

fij(Zi/Si)SO, jzl,...,ki.
Multiplying by s; yields the inequalities in the reformulated problem. For s; = 0, the
inequalities hold since we take s; fi;(zi/s:) = 0.
Conversely, let z1,...,2q, S1,...,5q, « be feasible for the reformulated problem. When

si = 0, we must also have z; = 0, so we can ignore these, and assume without loss of
generality that all s; > 0. Define x; = 2;/s;. Dividing the inequalities

fij(zi/si)go, j:l,...,ki
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by s; yields
fis(x:) <0, j=1,... ki,

which shows z; € C;. From
x:zl+...+zq:51x1+...+5q1’q

we see that x is a convex combination of z1, ..., z4, and therefore is feasible for the original
problem.

It follows that the two problems are equivalent.
Capacity of a communication channel. We consider a communication channel, with input

X(t) € {1,...,n}, and output Y (¢) € {1,...,m}, for t = 1,2,... (in seconds, say). The
relation between the input and the output is given statistically:

pij =prob(Y(t) =i|X(t)=4), i=1,...,m, j=1,...,n.
The matrix P € R™*" is called the channel transition matriz, and the channel is called

a discrete memoryless channel.

A famous result of Shannon states that information can be sent over the communication
channel, with arbitrarily small probability of error, at any rate less than a number C,
called the channel capacity, in bits per second. Shannon also showed that the capacity of
a discrete memoryless channel can be found by solving an optimization problem. Assume
that X has a probability distribution denoted z € R", i.e.,

z; =prob(X =j), j=1,...,n.

The mutual information between X and Y is given by

I(X Z Z z;pijlogy =m——— Z TR
k=1 g

i=1 j=1
Then the channel capacity C is given by

C=supl(X;Y),

where the supremum is over all possible probability distributions for the input X, i.e.,
over z = 0,17z = 1.

Show how the channel capacity can be computed using convex optimization.

Hint. Introduce the variable y = Px, which gives the probability distribution of the
output Y, and show that the mutual information can be expressed as

I(X;Y) =c"e = yilog, ys,

i=1

where ¢; = > pijlogypij, j=1,...,n
Solution. The capacity is the optimal value of the problem

TEPik

maximize  fo(z) =Y ., Z] L xjpij log Zm
subject to x>0, 1Tz =1,
with variable z. It is possible to argue directly that the objective fo (which is the mutual

information between X and Y') is concave in x. This can be done several ways, starting
from the example 3.19.
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Another (related) approach is to follow the hint given, and introduce y = Pz as another
variable. We can express the mutual information in terms of x and y as

I(X;Y) = Z Z;pij log S —
> >k ThDik
D @ pislogpis — Y yilogy:
J % i

= —c"z=> yilogy,

where ¢; = — ZZ pij log pij. Therefore the channel capacity problem can be expressed as

maximize I(X;Y)=—c"x— EI y; log y;
subject to x>0, 1Tz=1
y = P,

with variables « and y. The objective is a constant plus the entropy of y, hence concave,
so this is a convex optimization problem.

4.58 Optimal consumption. In this problem we consider the optimal way to consume (or spend)
an initial amount of money (or other asset) ko over time. The variables are c1,...,cr,
where ¢; > 0 denotes the consumption in period t. The utility derived from a consumption
level ¢ is given by u(c), where v : R — R is an increasing concave function. The present
value of the utility derived from the consumption is given by

T
U= Z Blu(ct),
t=1

where 0 < 8 < 1 is a discount factor.

Let k; denote the amount of money available for investment in period ¢t. We assume
that it earns an investment return given by f(k:), where f : R — R is an increasing,
concave investment return function, which satisfies f(0) = 0. For example if the funds
earn simple interest at rate R percent per period, we have f(a) = (R/100)a. The amount
to be consumed, i.e., ¢, is withdrawn at the end of the period, so we have the recursion

kt+1:k’t+f(kt)—ct7 tZO,...,T.

The initial sum ko > 0 is given. We require k¢ > 0,¢ = 1,...,T+1 (but more sophisticated
models, which allow k: < 0, can be considered).

Show how to formulate the problem of maximizing U as a convex optimization problem.
Explain how the problem you formulate is equivalent to this one, and exactly how the
two are related.

Hint. Show that we can replace the recursion for k; given above with the inequalities
kt+1§kt+f(kt)—ct, tIO,...,T.

(Interpretation: the inequalities give you the option of throwing money away in each
period.) For a more general version of this trick, see exercise 4.6.
Solution. We start with the problem

maximize U = ZtTZI Bru(cr)
subject to  kiy1 = ke + f(kte) —ct, t=0,...,T
ke>0,t=1,...,T+1,

with variables ci1,...,cr and k1, ..., kr4+1. The objective is concave, since it is a positive
weighted sum of concave functions. But the budget recursion constraints are not convex,
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since they are equality constraints involving the (possibly) nonlinear function f. The hint
explains what to do: we look instead at the modified problem

maximize U = Zthl Blu(er)
subject to  kip1 < ke + f(ke) — e, £ =0,...,T
ke>0,t=1,...,T+1.

This problem is convex, since the budget inequalities can be written as
kiv1 — ke — f(ke) + ¢ <0,

where the lefthand side is a convex function of the variables ¢ and k.
We will now show that when we solve the modified problem with the inequality constraints,
for any optimal solution we actually get equality for each of the budget constraints. This
means that the solution of the modified problem is actually optimal for the original prob-
lem as well. To see this, we note that by changing the equality constraints into inequalities,
we are relazing the constraints (i.e., making them looser), and therefore, if anything, we
improve the objective compared to the original problem.
Let ¢* and k* be optimal for the modified problem. Suppose that at some period s, we
have

kipr < kS + (kD) —cl.
This looks pretty suspicious, since it means that in period ¢, we are actually throwing
away money (i.e., we are not investing or consuming all of our available funds). Now
consider a new consumption stream ¢ defined as

&t:{ct t#s

c;+e t=s
where € is a small positive number such that
kipn S k34 f(RS) — s

holds. In words, ¢ is the same consumption stream as c¢*, except in the period when
we throw away some money (in ¢*) we just consume a little more. Clearly we have
U(¢) > U(c"), since the two streams consume the same amount for every period except
one, in which we consume more with ¢é. (Here we use the fact that U is increasing.)

Let k be the asset stream that results from the consumption stream ¢. Then all the
constraints of the original problem are satisfied for ¢ and k, and yet ¢* has a lower
objective value than ¢. That contradicts optimality of ¢*. We conclude that for c*, we
have

kivi=ki+ f(ki)—ci.

Robust optimization. In some optimization problems there is uncertainty or variation
in the objective and constraint functions, due to parameters or factors that are either
beyond our control or unknown. We can model this situation by making the objective
and constraint functions fy, ..., fm functions of the optimization variable x € R™ and
a parameter vector u € RF that is unknown, or varies. In the stochastic optimization
approach, the parameter vector u is modeled as a random variable with a known dis-
tribution, and we work with the expected values E, f;(z,u). In the worst-case analysis
approach, we are given a set U that u is known to lie in, and we work with the maximum
or worst-case values sup, ¢y fi(x,u). To simplify the discussion, we assume there are no
equality constraints.

(a) Stochastic optimization. We consider the problem

minimize E fo(z,u)
subject to E fi(z,u) <0, i=1,...,m,
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where the expectation is with respect to u. Show that if f; are convex in x for each
u, then this stochastic optimization problem is convex.

(b) Worst-case optimization. We consider the problem

minimize  sup, ¢y fo(z,w)
subject to sup,cy fi(z,u) <0, i=1,...,m.

Show that if f; are convex in x for each u, then this worst-case optimization problem
is convex.

(c) Finite set of possible parameter values. The observations made in parts (a) and (b)
are most useful when we have analytical or easily evaluated expressions for the
expected values E f;(x,u) or the worst-case values sup, < fi(z,u).

Suppose we are given the set of possible values of the parameter is finite, i.e., we

have u € {u1,...,un}. For the stochastic case, we are also given the probabilities
of each value: prob(u = wu;) = p;, where p € RY,p>0,17p = 1. In the worst-case
formulation, we simply take U € {u1,...,un}.

Show how to set up the worst-case and stochastic optimization problems explicitly
(i.e., give explicit expressions for sup, .y fi and Ey fi).

Solution.

(a) Follows from the fact that the inequality
filbx + (1= 0)y,u) < 0f(z,u) + (1 - 0)f(y,u)

is preserved when we take expectations on both sides.
(b) If fi(x,u) is convex in z for fixed u, then sup, fi(z,u) is convex in x.

(c¢) Stochastic formulation:

minimize ). pk fo(x, ur)
subject to >, prfi(z,ux) <0, i=1,...,m.

Worst-case formulation:

minimize maxy fo(z,ur)
subject to  maxy fi(z,ur) <0, i=1,...,m.

4.60 Log-optimal investment strategy. We consider a portfolio problem with n assets held over
N periods. At the beginning of each period, we re-invest our total wealth, redistributing
it over the n assets using a fixed, constant, allocation strategy x € R"™, where x > 0,
1Tz = 1. In other words, if W(t — 1) is our wealth at the beginning of period ¢, then
during period t we invest ;W (t — 1) in asset 7. We denote by A(t) the total return during
period t, i.e., A(t) = W(t)/W(t — 1). At the end of the N periods our wealth has been

multiplied by the factor Hivzl A(t). We call

N
1
t=1

the growth rate of the investment over the N periods. We are interested in determining
an allocation strategy x that maximizes growth of our total wealth for large N.

We use a discrete stochastic model to account for the uncertainty in the returns. We
assume that during each period there are m possible scenarios, with probabilities ;,
j = 1,...,m. In scenario j, the return for asset ¢ over one period is given by p;;.
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Therefore, the return A(¢) of our portfolio during period ¢ is a random variable, with
m possible values pTz, ..., pLx, and distribution

m; = prob(A(t) = p;‘vrr), j=1,...,m.

We assume the same scenarios for each period, with (identical) independent distributions.
Using the law of large numbers, we have

N m

1 w1 B B oy

]\;LI}lo ~ log ( W) ) = A}E%O ~ g 1 log A(t) = Elog A(t) = E 1 wj log(p; x).
i= j=

In other words, with investment strategy x, the long term growth rate is given by
m
Ry = Zﬂ'j log(p?a:).
j=1

The investment strategy = that maximizes this quantity is called the log-optimal invest-
ment strategy, and can be found by solving the optimization problem

maximize Z;nzl 5 10g(p;"r13)

subject to x>0, 1Tz =1,

with variable x € R".
Show that this is a convex optimization problem.

Solution. Actually, there’s not much to do in this problem. The constraints, x > 0,
172 = 1, are clearly convex, so we just need to show that the objective is concave (since
it is to be maximized). We can do that in just a few steps: First, note that log is concave,
so log(pl x) is concave in x (on the domain, which is the open halfspace {z | pl = = 0}).
Since m; > 0, we conclude that the sum of concave functions

> mjlog(p] z)
j=1

is concave.

Optimization with logistic model. A random variable X € {0, 1} satisfies

exp(a’x 4+ b)
b(X=1)=p= P& 2+0)
prob( )=p 1+exp(aTz +b)’

where z € R" is a vector of variables that affect the probability, and a and b are known
parameters. We can think of X = 1 as the event that a consumer buys a product, and
xz as a vector of variables that affect the probability, e.g., advertising effort, retail price,
discounted price, packaging expense, and other factors. The variable x, which we are to
optimize over, is subject to a set of linear constraints, Fx < g.

Formulate the following problems as convex optimization problems.
(a) Mazimizing buying probability. The goal is to choose = to maximize p.

(b) Mazimizing expected profit. Let ¢ x+d be the profit derived from selling the product,
which we assume is positive for all feasible z. The goal is to maximize the expected
profit, which is p(¢”z + d).

Solution.
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(a) The function e*/(1 + €*) is monotonically increasing in u, so we can maximize
exp(aTz + b)/(1 + exp(a”x + b)) by maximizing a”z + b, which leads to the LP

maximize aTz+0b
subject to Fx =< g.

(b) Here we have to maximize p(c”z + d), or equivalently, its logarithm:

maximize a”x 4+ b — log (1 +exp(aTz + b)) +log(cTa + d)
subject to Fzx < g.

This is a convex problem, since the objective is a concave function of z. (Recall that
f(x) =log> " exp(ai  + b;) is convex.)

4.62 Optimal power and bandwidth allocation in a Gaussian broadcast channel. We consider a
communication system in which a central node transmits messages to n receivers. (‘Gaus-
sian’ refers to the type of noise that corrupts the transmissions.) Each receiver channel
is characterized by its (transmit) power level P; > 0 and its bandwidth W; > 0. The
power and bandwidth of a receiver channel determine its bit rate R; (the rate at which
information can be sent) via

R; = a;W; log(l + ﬂrLPZ/WZ),

where a; and f; are known positive constants. For W; = 0, we take R; = 0 (which is
what you get if you take the limit as W; — 0).

The powers must satisfy a total power constraint, which has the form
P+ + Py = Pot,

where P;ot > 0 is a given total power available to allocate among the channels. Similarly,
the bandwidths must satisfy

W1+"'+Wn:Wtot,

where Wiot > 0 is the (given) total available bandwidth. The optimization variables in
this problem are the powers and bandwidths, i.e., Pi,..., P, Wi,..., W,.

The objective is to maximize the total utility,

Zuz‘(Ri%

where u; : R — R is the utility function associated with the ith receiver. (You can
think of u;(R;) as the revenue obtained for providing a bit rate R; to receiver %, so the
objective is to maximize the total revenue.) You can assume that the utility functions u;
are nondecreasing and concave.

Pose this problem as a convex optimization problem.

Solution. If we substitute the expression for R; in the objective, we obtain

maximize > " u (i Wilog(1+ BiPi/Wi))
subject to 17p = Pios, 1TW = Wiot
P>0, Wx=0

with variables P, W € R". We show that R; is a concave function of (P;, W;). It will
follow that w(R;) is concave since it is a nondecreasing concave function of a concave
function. The total utility U is then concave since it is the sum of concave functions.
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To show that R; is concave in (P;, W;) we can derive the Hessian, which is

— — a3 1 1 1"

Since a;, Bi, Wi, and P; are positive, V2R; is negative semidefinite.

An alternative proof follows fromt the fact that ¢ log(1+x/t) is concave in (z,t) for ¢t > 0,
since it is the perspective of log(1 + z), and log(1 + x) is concave.

Another approach is to relax the bit-rate equality constraint, and write the problem as

maximize U ="  u(R;)
subject to Ri S aiWi log(l + ﬁlpl/Wl)
1TP = Ptot, 1TW = Wtot,

with variables P;, W, and R;. The bit-rate inequality is convex, since the lefthand side
is a convex function of the variables (actually, linear), and the righthand side is a concave
function of the variables. Since the objective is concave, this is a convex optimization
problem. We need to show now is that when we solve this convex optimization problem,
we end up with equality in the bit-rate inequality constraints. But this is easy: for each
variable R;, the objective is monotonically increasing in R;, so we want each R; are large
as possible. Examining the constraints, we see that this occurs when

Optimally balancing manufacturing cost and yield. The vector z € R™ denotes the nomi-
nal parameters in a manufacturing process. The yield of the process, i.e., the fraction of
manufactured goods that is acceptable, is given by Y (x). We assume that Y is log-concave
(which is often the case; see example 3.43). The cost per unit to manufacture the product
is given by ¢”z, where ¢ € R™. The cost per acceptable unit is ¢7x/Y (z). We want to
minimize ¢’ /Y (x), subject to some convex constraints on x such as a linear inequalities
Az < b. (You can assume that over the feasible set we have ¢”z > 0 and Y (z) > 0.)
This problem is not a convex or quasiconvex optimization problem, but it can be solved
using convex optimization and a one-dimensional search. The basic ideas are given below;
you must supply all details and justification.

(a) Show that the function f: R — R given by
f(a) = sup{Y(z) | Az < b, <" =a},
which gives the maximum yield versus cost, is log-concave. This means that by

solving a convex optimization problem (in x) we can evaluate the function f.

(b) Suppose that we evaluate the function f for enough values of a to give a good approx-
imation over the range of interest. Explain how to use these data to (approximately)
solve the problem of minimizing cost per good product.

Solution. We first verify that the objective is not convex or quasiconvex. For ¢cTz/Y ()
to be quasiconvex, we need the constraint

z)Y(z) <t <= log(c"z) —logY(x) < logt

to be convex. By assumption, —log Y (x) is convex, but in general we can’t assume that
the sum with log(c”z) is convex.
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(a) The function f(a) is log-concave because

log f(a) = sup F(, a)

a

where .
F(z,a) = { logY(z) Az = b.7 cr=a
—00 otherwise.

F has domain {(z,a) | Az < b, c'z = a}, which is a convex set. On its domain it is
equal to log Y (x), a concave function. Therefore F' is concave, and maximizing over
a gives another concave function.

(b) We would like to solve the problem

maximize log(Y (z)/c"x)
subject to Az <b.

or, equivalently,

maximize logY (z) —loga

subject to Ax =<b

'z =a,

with variables  and a. By first optimizing over x and then over a, we can write the
problem as

maximize log f(a) — loga,
with variable a. The objective function is the sum of a concave and a convex function.
By evaluating log f(a) — loga for a large set of values of a, we can approximately
solve the problem.
Another useful observation is as follows. If we evaluate the objective function at
some a = a. This yields not only the value, but also a concave lower bound

log f(a) —loga > logf(a)—loga— (a—a)/a
= logf(a) —a/a—loga+ 1.

By repeatedly maximizing the lower bound and linearizing, we can find a local
maximum of f(a)/a.

4.64 Optimization with recourse. In an optimization problem with recourse, also called two-
stage optimization, the cost function and constraints depend not only on our choice of
variables, but also on a discrete random variable s € {1,...,S}, which is interpreted as
specifying which of S scenarios occurred. The scenario random variable s has known
probability distribution 7, with m; = prob(s =1),i=1,..., 5.

In two-stage optimization, we are to choose the values of two variables, x € R"™ and
z € R%. The variable z must be chosen before the particular scenario s is known; the
variable z, however, is chosen after the value of the scenario random variable is known.
In other words, z is a function of the scenario random variable s. To describe our choice
z, we list the values we would choose under the different scenarios, i.e., we list the vectors

21,...,25 € R
Here z3 is our choice of z when s = 3 occurs, and so on. The set of values
n q
zeR", Z1,...,25 €ER

is called the policy, since it tells us what choice to make for = (independent of which
scenario occurs), and also, what choice to make for z in each possible scenario.

The variable z is called the recourse variable (or second-stage variable), since it allows
us to take some action or make a choice after we know which scenario occurred. In
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contrast, our choice of x (which is called the first-stage variable) must be made without
any knowledge of the scenario.

For simplicity we will consider the case with no constraints. The cost function is given by
f:R"xR*x{1,...,5} - R,

where f(z,z,1) gives the cost when the first-stage choice z is made, second-stage choice
z is made, and scenario ¢ occurs. We will take as the overall objective, to be minimized
over all policies, the expected cost

s
E f(z,2s,8) = me(x,zi,i).

Suppose that f is a convex function of (z, z), for each scenario ¢ = 1,...,5. Explain
how to find an optimal policy, i.e., one that minimizes the expected cost over all possible
policies, using convex optimization.

Solution. The variables in the problem are
Z, Zlye.y2q,

i.e., the policy. The (total) dimension of the variables is n 4+ Sg. Our problem is nothing
more than

minimize F(z) = Zil mi f(x, 2, 1),
which is convex since for each ¢, f(z, z,1) is convex in (z, z;), and 7; > 0.

Optimal operation of a hybrid vehicle. A hybrid vehicle has an internal combustion engine,
a motor/generator connected to a storage battery, and a conventional (friction) brake. In
this exercise we consider a (highly simplified) model of a parallel hybrid vehicle, in which
both the motor/generator and the engine are directly connected to the drive wheels. The
engine can provide power to the wheels, and the brake can take power from the wheels,
turning it into heat. The motor/generator can act as a motor, when it uses energy stored
in the battery to deliver power to the wheels, or as a generator, when it takes power from
the wheels or engine, and uses the power to charge the battery. When the generator takes
power from the wheels and charges the battery, it is called regenerative braking; unlike
ordinary friction braking, the energy taken from the wheels is stored, and can be used
later. The vehicle is judged by driving it over a known, fixed test track to evaluate its
fuel efficiency.

A diagram illustrating the power flow in the hybrid vehicle is shown below. The arrows
indicate the direction in which the power flow is considered positive. The engine power
Peng, for example, is positive when it is delivering power; the brake power p, is positive
when it is taking power from the wheels. The power p..q is the required power at the
wheels. It is positive when the wheels require power (e.g., when the vehicle accelerates,
climbs a hill, or cruises on level terrain). The required wheel power is negative when the
vehicle must decelerate rapidly, or descend a hill.

Engine Brake
l peng T pbY preq
wheels
T Pmg
Motor/
generator Battery
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All of these powers are functions of time, which we discretize in one second intervals, with
t =1,2,...,T. The required wheel power preq(1),...,preq(T) is given. (The speed of
the vehicle on the track is specified, so together with known road slope information, and
known aerodynamic and other losses, the power required at the wheels can be calculated.)

Power is conserved, which means we have

Preq(t) = Peng(t) + Pmg(t) — poe(t), t=1,...,T.

The brake can only dissipate power, so we have py.(t) > 0 for each ¢t. The engine can only
provide power, and only up to a given limit Pg,5*, i.e., we have

0 < Peng(t) < Pongs t=1,...,T.
The motor/generator power is also limited: pmg must satisfy
P < pug(t) < P2, t=1,...,T.

Here Ppg™ > 0 is the maximum motor power, and —Prrﬂ'“gin > 0 is the maximum generator
power.

The battery charge or energy at time ¢ is denoted E(t), t = 1,...,T + 1. The battery
energy satisfies

Et+1) = E(t) = pmg(t) = nlpme(®)], t=1,....,T+1,

where 7 > 0 is a known parameter. (The term —pmg(t) represents the energy removed
or added the battery by the motor/generator, ignoring any losses. The term —n|pmg(?)]
represents energy lost through inefficiencies in the battery or motor/generator.)

The battery charge must be between 0 (empty) and its limit i (full), at all times. (If
E(t) = 0, the battery is fully discharged, and no more energy can be extracted from it;
when E(t) = Epiy, the battery is full and cannot be charged.) To make the comparison
with non-hybrid vehicles fair, we fix the initial battery charge to equal the final battery
charge, so the net energy change is zero over the track: E(1) = E(T 4+ 1). We do not
specify the value of the initial (and final) energy.

The objective in the problem is the total fuel consumed by the engine, which is

T
Ftotal = ZF(peng(t))a
t=1

where F' : R — R is the fuel use characteristic of the engine. We assume that F' is
positive, increasing, and convex.

Formulate this problem as a convex optimization problem, with variables peng(t), Pmg(t),
and ppr(t) for t =1,...,T, and E(t) for t = 1,...,T + 1. Explain why your formulation
is equivalent to the problem described above.

Solution. We first collect the given objective and constraints to form the problem

minimize 23:1 F(peng(t))

subject t0  Preq(t) = Peng(t) + Pme(t) — Por(t)
E(t+1) = E(t) — pmg(t)) — nlpmg(t))]
0 < E(t) < BN
EQ)=E(T+1)
0 < peng(t) < Pong™
Pr" < pmg(t) < Prg™
0 S pbr(t)v

where each constraint is imposed for the appropriate range of t. The fuel use function F’
is convex, so the objective function is convex. With the exception of the battery charge
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equations, each constraint is a linear equality or linear inequality. So in this form the
problem is not convex.

‘We need to show how to deal with the nonconvex constraints

E(t+1) = E(t) — pma(t)) — nlpms(t))].
One approach is to replace this constraint with the relaxation,

E(t+1) < E(t) — pmg(t)) — nlpme(1))],

which is convex, in fact, two linear inequalities. Intuitively, this relaxation means that we
open the possibility of throwing energy from the battery away at each step. This sounds
like a bad idea, when fuel efficiency is the goal, and indeed, it is easy to see that if we
solve the problem with the relaxed battery charge constraints, the optimal E* satisfies

E*(t+1) = E*(t) = pme(t)) — nlpme (1)),

and therefore solves the original problem. To argue formally that this is the case, suppose
that the solution of the relaxed problem does throw away some energy at some step t.
We then construct a new trajectory, where we do not throw away the extra energy, and
instead, use the energy to power the wheels, and reduce the engine power. This reduces
the fuel consumption since the fuel consumption characteristic is increasing, which shows
that the original could not have been optimal.
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Basic definitions

5.1 A simple example. Consider the optimization problem

minimize 2?41
subject to (z —2)(x —4) <0,

with variable z € R.

(a)
(b)

Analysis of primal problem. Give the feasible set, the optimal value, and the optimal
solution.

Lagrangian and dual function. Plot the objective 22 41 versus z. On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(x, \) versus
x for a few positive values of A. Verify the lower bound property (p* > inf, L(z, )
for A > 0). Derive and sketch the Lagrange dual function g.

Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution A\*.
Does strong duality hold?

Sensitivity analysis. Let p*(u) denote the optimal value of the problem

minimize 2% +1
subject to  (z —2)(x —4) < u,

as a function of the parameter u. Plot p*(u). Verify that dp*(0)/du = —\*.

Solution.

(a)

(b)

The feasible set is the interval [2,4]. The (unique) optimal point is z* = 2, and the
optimal value is p* = 5.
The plot shows fo and fi.
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The Lagrangian is
L(z,\) = (14 M)z® — 62z + (1 + 8)).

The plot shows the Lagrangian L(z,A) = fo + A\f1 as a function of z for different
values of A > 0. Note that the minimum value of L(z, A) over z (i.e., g())) is always
less than p*. Tt increases as A varies from 0 toward 2, reaches its maximum at A = 2,
and then decreases again as A increases above 2. We have equality p* = g(\) for
A=2.
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For A > —1, the Lagrangian reaches its minimum at = 3\/(1 + A). For A < —1 it
is unbounded below. Thus

—“ON/(1+N)+1+80 A> -1

g(N) A< -1

—00

which is plotted below.

6

4t

We can verify that the dual function is concave, that its value is equal to p* = 5 for
A =2, and less than p* for other values of .

The Lagrange dual problem is
maximize —9A%/(1 4+ A) 4+ 14 8\
subject to A > 0.

The dual optimum occurs at A = 2, with d* = 5. So for this example we can directly
observe that strong duality holds (as it must — Slater’s constraint qualification is
satisfied).

The perturbed problem is infeasible for u < —1, since inf,(z® — 6x 4+ 8) = —1. For
u > —1, the feasible set is the interval

3—vItu3d+vVIital,

given by the two roots of z*> — 6z + 8 = u. For —1 < u < 8 the optimum is
z*(u) = 3 —+/1+u. For u > 8, the optimum is the unconstrained minimum of fo,
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i.e., z*(u) = 0. In summary,

00 u < —1
p*(u) = 1MM+u—6yV1I+u —-1<u<8§
1 u> 8.

The figure shows the optimal value function p*(u) and its epigraph.

= -\~
du
5.2 Weak duality for unbounded and infeasible problems. The weak duality inequality, d* < p*,
clearly holds when d* = —oo or p* = co. Show that it holds in the other two cases as
well: If p* = —oo, then we must have d* = —oo, and also, if d* = oo, then we must have
p* = oo.
Solution.
(a) p* = —oo. The primal problem is unbounded, i.e., there exist feasible x with

arbitrarily small values of fo(z). This means that
L(x,A) = fo(z) + Y Xifilw)
i=1

is unbounded below for all A = 0, i.e., g(A\) = —oo for A = 0. Therefore the dual
problem is infeasible (d* = —oc0).

(b) d* = co. The dual problem is unbounded above. This is only possible if the primal
problem is infeasible. If it were feasible, with f;(Z) < 0 for i = 1,...,m, then for all
Az 0,

g(N) = inf(fo(@) + Y Nfi(@)) < fo(@) + Y Nifi(@),
so the dual problem is bounded above.
5.3 Problems with one inequality constraint. Express the dual problem of

minimize ¢’z
subject to  f(x) <0,
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5.4

with ¢ # 0, in terms of the conjugate f*. Explain why the problem you give is convex.
We do not assume f is convex.

Solution. For A =0, g(\) = inf ¢z = —oco. For A > 0,

inf(c"z + Af(x))
Minf((¢/A) "z 4+ Af(z))
7)‘fik(7c/>‘)7

g(N)

i.e., for A > 0, —g is the perspective of f{, evaluated at —c¢/A. The dual problem is

minimize  —Af{(—¢/A)
subject to A > 0.

Examples and applications
Interpretation of LP dual via relazed problems. Consider the inequality form LP

minimize ¢’z

subject to Ax <X b,

with A € R™*", b € R™. In this exercise we develop a simple geometric interpretation
of the dual LP (5.22).

Let w € RY'. If z is feasible for the LP, i.e., satisfies Az < b, then it also satisfies the
inequality
w? Az < w7b.

Geometrically, for any w > 0, the halfspace H,, = {z | w” Az < w”b} contains the feasible
set for the LP. Therefore if we minimize the objective ¢?x over the halfspace H, we get
a lower bound on p*.

(a) Derive an expression for the minimum value of ¢”z over the halfspace H, (which
will depend on the choice of w = 0).

(b) Formulate the problem of finding the best such bound, by maximizing the lower
bound over w > 0.

(c) Relate the results of (a) and (b) to the Lagrange dual of the LP, given by (5.22).
Solution.

(a) The optimal value is

—00 otherwise.

inf To— { MwTb ¢ = XATw for some A < 0
z€Hqy

(See exercise 4.8.)
(b) We maximize the lower bound by solving
maximize Aw?’b
subject to ¢ = AATw
A<0, w>=0

with variables A and w. Note that, as posed, this is not a convex problem.
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(c) Defining z = —Aw, we obtain the equivalent problem
maximize —bTz
subject to ATz4+c¢=0

z = 0.

This is the dual of the original LP.

5.5 Dual of general LP. Find the dual function of the LP

minimize ¢’z
subject to Gz =X h
Az =b.
Give the dual problem, and make the implicit equality constraints explicit.
Solution.
(a) The Lagrangian is
Lz, \v) = cTx4+\(Gx—h)+vT(Az —b)
= (T H+ NG+ T Az — AT — 7T,
which is an affine function of x. It follows that the dual function is given by

, Nh =T e+ GTA+ATv =0
g\ v) = H;fL(x’)" v) = { — 00 otherwise.

(b) The dual problem is
maximize  g(\,v)
subject to A > 0.

After making the implicit constraints explicit, we obtain

maximize —ATh —v7Tb
subject to ¢+ GTA+ ATy =0
A>=0.

5.6 Lower bounds in Chebyshev approzimation from least-squares. Consider the Chebyshev

or {so-norm approximation problem

minimize ||Az — b/, (5.103)

where A € R™*" and rank A = n. Let z., denote an optimal solution (there may be
multiple optimal solutions; z.n denotes one of them).

The Chebyshev problem has no closed-form solution, but the corresponding least-squares
problem does. Define

x1s = argmin || Az — by = (AT A) "t ATb.

We address the following question. Suppose that for a particular A and b we have com-
puted the least-squares solution zis (but not zcn). How suboptimal is zis for the Chebyshev
problem? In other words, how much larger is ||Azis — b||oo than ||Azen — bljec?

(a) Prove the lower bound
[Az1s = blloo < V/m || AZen — bl

using the fact that for all z € R™,

1
—|zll2 < ||z < ||z]||2.
\/m” 2 < llzlle < |l2ll2
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(b) In example 5.6 (page 254) we derived a dual for the general norm approximation
problem. Applying the results to the £oo-norm (and its dual norm, the £1-norm), we
can state the following dual for the Chebyshev approximation problem:

maximize b7y
subject to  ||v|]1 <1 (5.104)
ATy =0.

Any feasible v corresponds to a lower bound b7 v on |AZch — bl| oo -
Denote the least-squares residual as ris = b — Axjs. Assuming rjs 7# 0, show that

v=—ris/lrslly, =g/l
are both feasible in (5.104). By duality " # and b” & are lower bounds on ||Azch —
blloo. Which is the better bound? How do these bounds compare with the bound
derived in part (a)?
Solution.

(a) Simple manipulation yields

1 1 1
HAxcheb - b”oo > —HAxcheb - bHQ > _HAxls - b||2 > —HA.IIls - b”oo
m m m

v Vi Vi
(b) From the expression 1, = (AT A)~'ATb we note that
ATre = AT(b— AATA) '0) = ATb— ATb = 0.
Therefore AT9 = 0 and A% = 0. Obviously we also have ||#]|1 = 1 and ||7|; = 1,

so U and 7 are dual feasible.
We can write the dual objective value at U as

b5 — —b"rys _ (Azys — b) g _ lms 13
1|2 lI71s]1 lIm1s]2
and, similarly,
2
b5 — ||TISH2.
lI71s]l1

Therefore U gives a better bound than ».

Finally, to show that the resulting lower bound is better than the bound in part (a),
we have to verify that

1
> —||71s]| 0o -
> Il
This follows from the inequalities
Izl < vVmllzll2, Izl < |22
which hold for general z € R™.

5.7 Piecewise-linear minimization. We consider the convex piecewise-linear minimization
problem
m(ai T+ b;) (5.105)

minimize max;—1

,,,,,

with variable z € R".
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(a) Derive a dual problem, based on the Lagrange dual of the equivalent problem

minimize maxi—1,...,m Yi
subject to afxz+b; =y, i=1,...,m,

with variables x € R", y € R™.

(b) Formulate the piecewise-linear minimization problem (5.105) as an LP, and form the
dual of the LP. Relate the LP dual to the dual obtained in part (a).

(c) Suppose we approximate the objective function in (5.105) by the smooth function
fo(z) =log (Z exp(a; = + b») :
i=1
and solve the unconstrained geometric program
minimize log (Zil exp(al x + bz)) . (5.106)

A dual of this problem is given by (5.62). Let p5,, and pg, be the optimal values
of (5.105) and (5.106), respectively. Show that

0 < pep — Ppwt < logm.
(d) Derive similar bounds for the difference between p,; and the optimal value of
minimize (1/7)log (Z:’;l exp(y(a z + bz))) ,
where v > 0 is a parameter. What happens as we increase ~y7

Solution.

(a) The dual function is

g(A) = inf ( max y; + Z Ni(alz 4 b — y1)> .

z,y \ =1,
i=1
The infimum over x is finite only if ZZ Aia; = 0. To minimize over y we note that

0 A0, 1Tx=1

. T N\ _
12f(mlaxyz ATy) —{ —o0o  otherwise.

To prove this, we first note that if A = 0, 17X = 1, then
Ay = Z Ajyj < Z Aj Max y; = maxyi,
j J k2 2
with equality if y = 0, so in that case
inf(maxy; — A"y) = 0.
Yy i

If A4 0, say A; <0, then choosing y; = 0, ¢ # j, and y; = —t, with £ > 0, and
letting ¢ go to infinity, gives

maxy; — )\Ty =04t x — —o0.
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Finally, if 17X # 1, choosing y = t1, gives
maxy; — Ay =t(1-1")\) — —oo,

ift > ocoand 1 <17\ orift —» —oo and 1 > 17\
Summing up, we have

(A) _ bT)\ Zl )\iai = 07 A t 0, ].T)\ =1
9N =N —oo otherwise.

The resulting dual problem is

maximize b7\

subject to ATA =0
1"a=1
A=0.

The problem is equivalent to the LP

minimize ¢
subject to Ax +b < t1.

The dual problem is

maximize bTz
subject to ATz=0, 1Tz=1, 20,

which is identical to the dual derived in (a).

Suppose z* is dual optimal for the dual GP (5.62),

maximize bz — Y 7" zlogzi
subject to 1Tz =1
ATz =0.

Then z* is also feasible for the dual of the piecewise-linear formulation, with objective

value .
bz = Pap + Z 2! log 2.
i=1
This provides a lower bound on py:

Ppwl > Dgp + Z z; log z; > py, — logm.
i=1
The bound follows from
inf zilog z; = —logm.
1T z2=1
i=1
On the other hand, we also have
max(a; z + b;) < log Z exp(ai z + b;)

for all x, and therefore py; < pgp.
In conclusion,
Pap — logm < ppun < pp.-
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(d) We first reformulate the problem as

minimize  (1/7)log 31" | exp(vyi)
subject to Ax+b=1y.

The Lagrangian is

1, «— T
L(z,y,z) = = lo exp(vyi) + 2" (Az +b—1y).
(,y,2) 5 gE (Vi) ( )

i=1
L is bounded below as a function of z only if ATz = 0. To find the optimum over
y, we set the gradient equal to zero:
eYi o
This is solvable for y; if 172 =1 and z > 0. The Lagrange dual function is
v, 1y
g(z)=b z— szilogzi,
R
and the dual problem is
maximize 0"z — (1/7) Y7, zilog 2
subject to ATz =0
17z =1.

Let pg, () be the optimal value of the GP. Following the same argument as above,
we can conclude that

) 1
Pap (V) — S logm < prwt < pap(7)-

In other words, pg,(y) approaches py,, as v increases.

Relate the two dual problems derived in example 5.9 on page 257.
Solution. Suppose for example that v is feasible in (5.71). Then choosing A; = (ATv +
¢)” and Mo = (ATv + ¢)F, yields a feasible solution in (5.69), with the same objective
value. Conversely, suppose v, A1 and A2 are feasible in (5.69). The equality constraint
implies that

M=Av+e) +u, =A@v+e) +o,

for some v > 0. Therefore we can write (5.69) as

maximize —bTv —uT(ATv+¢)” 1T (ATv+ o)t — (u—1D)Tw
subject to v > 0,

and it is clear that at the optimum v = 0. Therefore the optimum v in (5.69) is also
optimal in (5.71).

Suboptimality of a simple covering ellipsoid. Recall the problem of determining the min-
imum volume ellipsoid, centered at the origin, that contains the points a1,...,a, € R"
(problem (5.14), page 222):

minimize  fo(X) = logdet(X 1)

subject to  al Xa; <1, i=1,...,m,
with dom fy = S, . We assume that the vectors a1, ..., amn span R" (which implies that

the problem is bounded below).
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(a)

Show that the matrix

m —1
T
Xsim = g aray 9
k=1

is feasible. Hint. Show that

m T
Zk:l arag, 73 “0
|t e
and use Schur complements (§A.5.5) to prove that a} Xa; < 1fori=1,...,m.
Solution.
T
ey arai ak |l D, axai 0 L@ a;
al 1 0 0 1 1

is the sum of two positive semidefinite matrices, hence positive semidefinite. The
Schur complement of the 1,1 block of this matrix is therefore also positive semidef-

inite:
m -1
1-— aZT (Z a;mf) a; > 0,

k=1
which is the desired conclusion.
Now we establish a bound on how suboptimal the feasible point Xgim is, via the dual
problem,

maximize logdet (Z:’;l )\iaiaiT) 1" +n

subject to A > 0,
with the implicit constraint Zzl )\Z—aia;[ > 0. (This dual is derived on page 222.)
To derive a bound, we restrict our attention to dual variables of the form A\ = ¢1,
where ¢t > 0. Find (analytically) the optimal value of ¢, and evaluate the dual
objective at this A. Use this to prove that the volume of the ellipsoid {u | uTXsimu <

1} is no more than a factor (m/n)"/? more than the volume of the minimum volume
ellipsoid.

Solution. The dual function evaluated at A = ¢1 is
g(A) = log det (Z am?) +nlogt — mt + n.
i=1

Now we’ll maximize over ¢ > 0 to get the best lower bound. Setting the derivative
with respect to t equal to zero yields the optimal value ¢ = n/m. Using this A we
get the dual objective value

g(A) = logdet (Z am?) + nlog(n/m).

The primal objective value for X = Xginm is given by

m -1
— log det <Z am?) ,

=1

so the duality gap associated with Xsm and X is nlog(m/n). (Recall that m >
n, by our assumption that ai,...,am span R"™.) It follows that, in terms of the
objective function, Xgim is no more than nlog(m/n) suboptimal. The volume V of
the ellipsoid £ associated with the matrix X is given by V = exp(—0/2), where O
is the associated objective function, O = —logdet X. The bound follows.
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5.10 Optimal experiment design. The following problems arise in experiment design (see §7.5).

(a) D-optimal design.

minimize  logdet (Ele erwiT) -
subject to x>0, 1Tz =1.

(b) A-optimal design.
minimize  tr (Zle xiviviT) -t
subject to x>0, 1Tz =1.

The domain of both problems is {z | Y7 ziviv{ > 0}. The variable is z € R?; the
vectors v1,...,vp, € R™ are given.

Derive dual problems by first introducing a new variable X € S™ and an equality con-
straint X = Zle ziv;vg , and then applying Lagrange duality. Simplify the dual prob-
lems as much as you can.

Solution.

(a) D-optimal design.
minimize  logdet(X ')
subject to X = Zf: ac,-vwiT
z >~ 0, 1]T1: =1.

The Lagrangian is
P
L(z, Z,z,v) = logdet(X ')+ tr(ZX)— inviTZvi — 2z 4+v(1Tz 1)
=1

P
= logdet(X ') +tr(ZX) + in(fviTZvi —zit+v)—v.

i=1

The minimum over z; is bounded below only if v — vl Zv; = z;. Setting the gradient
with respect to X equal to zero gives X ~' = Z. We obtain the dual function

) logdetZ +n—v v—vlZvi=2z, i=1,...,p
9(2,2) = { —00 otherwise.

The dual problem is

maximize logdetZ +n —v
subject to vl Zv; <v, i=1,...,p,

with domain S%, x R. We can eliminate v by first making a change of variables
W = (1/v)Z, which gives

maximize logdetW +n+nlogry —v
subject to vl Wuv; <1, i=1,...,p.

Finally, we note that we can easily optimize nlogrv — v over v. The optimum is
v = n, and substituting gives

maximize logdet W + nlogn
subject to vIWwv; <1, i=1,...,p.
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(b) A-optimal design.
minimize  tr(X ')
subject to X = (Zle xiviviT)
x>0, 1Tz=1.

The Lagrangian is

p
L(X,Z,zv) = tr(X ") +tr(ZX) - meiTZvi — 2Tz +v(1Tz 1)

=1

P
= tr(X7")+tr(ZX) + in(fviTZvi —zitv)—vr.

i=1

The minimum over z is unbounded below unless vZ-T Zv; + z; = v. The minimum
over X can be found by setting the gradient equal to zero: X 2= 2, or X = Z~ /2
if Z > 0, which gives

inf (tr(X ") +tr(ZX)) =

X0 00 otherwise.

{ 2tr(ZY%) Z >0
The dual function is

— 1/2 T ‘ o
g(Z,zgy): { V+2t[‘(Z ) Zto, v; ZU1+ZZ v

—0o0 otherwise.
The dual problem is
maximize —v + 2tr(Z/?)
subject to v} Zv; <nu, i=1,...,p
Z = 0.

As a first simplification, we define W = (1/v)Z, and write the problem as

maximize —v + 2y/vtr(W1/?)
subject to v Wv; <1, i=1,...,p
W = 0.

By optimizing over v > 0, we obtain

maximize  (tr(W'/?))?
subject to  vIWwv; <1, i=1,...,p
W = 0.

5.11 Derive a dual problem for
minimize Y . [[Aiz + bil2 + (1/2)]]z — zol[3-

The problem data are A; € R™*", b; € R™, and o € R". First introduce new variables
y; € R™ and equality constraints y; = A;x + b;.
Solution. The Lagrangian is

N

N
1
L(z,z1,...,2n) = z; lyillz + 51l = zoll2 - > A (i — A —by).

=1
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We first minimize over y;. We have

0 l2ill2 <1

. T _
11111if(\|y2||2 +2iv) = { —oo otherwise.

(If ||zi]l2 > 1, choose y; = —tz; and let ¢ — oo, to show that the function is unbounded

below. If ||z:]|2 < 1, it follows from the Cauchy-Schwarz inequality that |ly:||2 + 27 v: > 0,
so the minimum is reached when y; = 0.)

We can minimize over x by setting the gradient with respect to x equal to zero. This

yields
N
T =x0 + Z A;TFZA
=1
Substituting in the Lagrangian gives the dual function

N N .
g(z1,...,2n) = { Zi:l(AixO +bi)"zi — %H Zi:l ATzl a2 <1, i=1,...

=

—00 otherwise.
The dual problem is
maximize Zf\;l(Aixo +b)T 2 — %H Zf\;l AT 2|2
subject to  ||zil]l2 <1, i=1,...,N.

Analytic centering. Derive a dual problem for

minimize — 7" log(bi — aj x)
with domain {z | alx < b;, i =1,...,m}. First introduce new variables y; and equality
constraints y; = b; — aiTx.
(The solution of this problem is called the analytic center of the linear inequalities al z <
bi, i = 1,...,m. Analytic centers have geometric applications (see §8.5.3), and play an
important role in barrier methods (see chapter 11).)
Solution. We derive the dual of the problem

o . . m
minimize — Zi:l log y;
subject to y =0b— Ax,

where A € R™ "™ has a7 as its ith row. The Lagrangian is
L(z,y,v) == logy: +v" (y — b+ Ax)
i=1
and the dual function is

g(v) =inf | — Zlogyi + 07 (y — b+ Ax)
i=1

z,y

The term v” Az is unbounded below as a function of z unless ATv = 0. The terms in y
are unbounded below if v 3 0, and achieve their minimum for y; = 1/v; otherwise. We
therefore find the dual function

(V) = Z;illogyi—i-m—bTV ATy =0, v>0
IWI=\ T otherwise

and the dual problem

maximize ZW;l logv; —bTv+m
subject to A'v =0.
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5.13 Lagrangian relazation of Boolean LP. A Boolean linear program is an optimization prob-
lem of the form o .
minimize ¢
subject to Az <b
z; €{0,1}, i=1,...,n,
and is, in general, very difficult to solve. In exercise 4.15 we studied the LP relaxation of
this problem,
minimize ¢’z
subject to Az <b (5.107)
0<z; <1, i=1,...,n,
which is far easier to solve, and gives a lower bound on the optimal value of the Boolean
LP. In this problem we derive another lower bound for the Boolean LLP, and work out the
relation between the two lower bounds.

(a) Lagrangian relazation. The Boolean LP can be reformulated as the problem
minimize Tz
subject to Ax <b
xi(l—xi):o, ’L':L...,’I’L,

which has quadratic equality constraints. Find the Lagrange dual of this problem.
The optimal value of the dual problem (which is convex) gives a lower bound on
the optimal value of the Boolean LP. This method of finding a lower bound on the
optimal value is called Lagrangian relazation.

(b) Show that the lower bound obtained via Lagrangian relaxation, and via the LP
relaxation (5.107), are the same. Hint. Derive the dual of the LP relaxation (5.107).

Solution.
(a) The Lagrangian is
Lz, pv) = cz+u" (Az—b)— vz + 2" diag(v)z
= 2" diagw)z+ (c+ATu—v)z —b" .

Minimizing over z gives the dual function

_ ) e/ (et aln—vi)? v v=0
g, v) = { —00 otherwise

where a; is the ith column of A, and we adopt the convention that a*/0 = oo if
a#0,and a®*/0 =0 if a = 0.
The resulting dual problem is

maximize —b%p — (1/4) Yo e+ alp—v)?/v;
subject to v > 0.

In order to simplify this dual, we optimize analytically over v, by noting that

sup (_(cﬁa?u—w)?) _ { (ci+alp) citalp<o
v; >0

vi 0 ci+alp>0
= min{0, (¢; + af p)}.
This allows us to eliminate v from the dual problem, and simplify it as

maximize —b"p+ > min{0,¢; + af p}
subject to > 0.
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(b) We follow the hint. The Lagrangian and dual function of the LP relaxation re

Lz u,v,w) = caz+u’(Az—b)—v z+w’ (z—1)
= (c+ATu—v+w)z—b"u—1"w
(w,0,w) = —Tu—1Tw ATu—v+w+c=0
g\ v a —00 otherwise.

The dual problem is

maximize —bTu — 17w
subject to ATu—v4+w4c=0
u>=0,v>=0,w>=0,

which is equivalent to the Lagrange relaxation problem derived above. We conclude
that the two relaxations give the same value.

5.14 A penalty method for equality constraints. We consider the problem

minimize  fo(x)

subject to Az =b, (5.108)

where fo : R” — R is convex and differentiable, and A € R™*"™ with rank A = m.

In a quadratic penalty method, we form an auxiliary function
¢(a) = f(2) + af Az - b||3,

where o > 0 is a parameter. This auxiliary function consists of the objective plus the
penalty term o Az —b||3. The idea is that a minimizer of the auxiliary function, Z, should
be an approximate solution of the original problem. Intuition suggests that the larger the
penalty weight «, the better the approximation Z to a solution of the original problem.

Suppose Z is a minimizer of ¢. Show how to find, from Z, a dual feasible point for (5.108).
Find the corresponding lower bound on the optimal value of (5.108).

Solution. If £ minimizes ¢, then
Vfo(&) + 20AT (A% — b) = 0.
Therefore Z is also a minimizer of
fo(@) + 1" (Az —b)

where v = 2a(AZ — b). Therefore v is dual feasible with

9(v) inf(fo(z) + V' (Az b))

Fo(®) + 20| AZ — b]3.

Therefore,
fo(x) > fo(Z) + 2a]|AZ — b]|3
for all x that satisfy Az = b.
5.15 Consider the problem

minimize  fo(z)

subject to  fi(x) <0, i=1,...,m, (5.109)
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where the functions f; : R™ — R are differentiable and convex. Let h1,...,hm : R = R
be increasing differentiable convex functions. Show that

$(z) = fo(@) + Y ha(filx))

=1

is convex. Suppose £ minimizes ¢. Show how to find from Z a feasible point for the dual
of (5.109). Find the corresponding lower bound on the optimal value of (5.109).
Solution. 7 satisfies

0=Vfo(@)+ Y (W(fi@)Vi(F) = VIo(#) + Y NV fi(@))

where \; = h}(fi(Z)). A is dual feasible: \; > 0, since h; is increasing, and

ey fo(®)+ D Niful#)

Fo(®) + Y Wi fo(@) fi(3).

5.16 An ezact penalty method for inequality constraints. Consider the problem

minimize  fo(z)

subject to  fi(x) <0, i=1,...,m, (5.110)

where the functions f; : R" — R are differentiable and convex. In an exact penalty
method, we solve the auxiliary problem

minimize ¢(z) = fo(zr) + amax;—1, .. m max{0, fi(z)}, (5.111)

where a > 0 is a parameter. The second term in ¢ penalizes deviations of x from feasibility.
The method is called an ezact penalty method if for sufficiently large «, solutions of the
auxiliary problem (5.111) also solve the original problem (5.110).
(a) Show that ¢ is convex.
(b) The auxiliary problem can be expressed as
minimize  fo(z) + ay
subject to  fi(z) <y, i=1,...,m
0<y
where the variables are x and y € R. Find the Lagrange dual of this problem, and
express it in terms of the Lagrange dual function g of (5.110).

(c) Use the result in (b) to prove the following property. Suppose A* is an optimal
solution of the Lagrange dual of (5.110), and that strong duality holds. If o >

17)\*, then any solution of the auxiliary problem (5.111) is also an optimal solution
of (5.110).

Solution.

(a) The first term is convex. The second term is convex since it can be expressed as

max{ fi(z),..., fm(x),0},

i.e., the pointwise maximum of a number of convex functions.
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(b) The Lagrangian is

L(z,y, A 1) = fo(@) +ay+ Y N(fi(2) —y) — p.

i=1

The dual function is

inf L(z,y, A\ ) = inf fo(z) +ay+ > N(fi(2) —y) — py
Y Y i=1

inf(fo(w) + D Nifiw)) +inf(a = A =y

{ g 1A+ u=a

—oo  otherwise,
and the dual problem is

maximize g(A)
subject to 1TA4+p=a
A=0, p>0,

or, equivalently,
maximize g(A)
subject to 1TA <
A= 0.

(c) If 1TX* < @, then \* is also optimal for the dual problem derived in part (b). By
complementary slackness y = 0 in any optimal solution of the primal problem, so the
optimal z satisfies f;(z) <0,¢=1,...,m, i.e., it is feasible in the original problem,
and therefore also optimal.

5.17 Robust linear programming with polyhedral uncertainty. Consider the robust LP

minimize ¢’z
subject to  sup,ep, aTz<b;, i=1,...,m,

with variable x € R", where P; = {a | Cia < d;}. The problem data are ¢ € R",
C; e R™*™ d; € R™, and b € R™. We assume the polyhedra P; are nonempty.
Show that this problem is equivalent to the LP

minimize ¢’z

subject to  d¥z; <b;, i=1,...,m
Clzi==z, i=1,....m
zi=0, i=1,...,m

with variables ¢ € R™ and z; € R™, i =1,...,m. Hint. Find the dual of the problem
of maximizing aiTx over a; € P; (with variable a;).
Solution. The problem can be expressed as

minimize ¢’z

subject to  fi(z) <b;, i=1,...,m

if we define f;(z) as the optimal value of the LP

maximize z7a
subject to Cia < d,
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where a is the variable, and z is treated as a problem parameter. It is readily shown that
the Lagrange dual of this LP is given by

minimize  d7 z
subject to CTz =z
z > 0.

The optimal value of this LP is also equal to f;(x), so we have f;(z) < b; if and only if
there exists a z; with
di z < by, Clzi=u, zi = 0.

Separating hyperplane between two polyhedra. Formulate the following problem as an LP
or an LP feasibility problem. Find a separating hyperplane that strictly separates two
polyhedra

P ={x| Az < b}, P2 ={z|Czx <d},
i.e., find a vector a € R™ and a scalar - such that

aTx >~ for x € Py, aTx < v for z € Po.

You can assume that P; and P2 do not intersect.
Hint. The vector a and scalar v must satisfy

inf "z >~> sup o’ .
zEP, zEP2

Use LP duality to simplify the infimum and supremum in these conditions.
Solution. Define pj(a) and p3(a) as

pi(a) = inf{a"z | Az < b}, ps(a) =sup{a’ z | Cx < d}.
A hyperplane aTz = ~ strictly separates the two polyhedra if
p3(a) <7y <pila).
For example, we can find a by solving

maximize pj(a) — p3(a)
subject to  |la|l1 <1

and selecting v = (pi(a) + p3(a))/2. (The bound ||a||: is added because the objective is
homogeneous in a, so it unbounded unless we add a constraint on a.)

Using LP duality we have
pi(a) = sup{=b"z |ATz1+a=0, z1 = 0}
p3(a) = inf{—a"z|Cz<d}
= sup{—dT22 | CT2s—a=0, 20~ 0},

so we can reformulate the problem as

maximize —bT 21 —d¥ 2y

subject to ATz +a=0
CTzy—a=0
Z1 t 0, zZ2 t 0
falr <1.

The variables are a, z1 and z3.
Another solution is based on theorems of alternative. The hyperplane separates the two
polyhedra if the following two sets of linear inequalities are infeasible:
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o Az <b aTz <~
o Cx<d,aTz>~.

Using a theorem of alternatives this is equivalent to requiring that the following two sets
of inequalities are both feasible:

o 21 =0, wy >0, ATz +aw; =0, b7z, —yw, <0
e 2o =0, wy >0, CTZQ—CLU)QZO, dez+’yw2<0

w1 and w2 must be nonzero. If wiy = 0, then ATz = 0, bT21 < 0. which means P;
is empty, and similarly, w2 = 0 means P2 is empty. We can therefore simplify the two
conditions as

o 21 >0, AT21 +a=0,bTz <~
0 20-0,CT2—a=0,d"2 < -7,
which is basically the same as the conditions derived above.

The sum of the largest elements of a vector. Define f: R" — R as

f(z) = Z T[],
i=1

where r is an integer between 1 and n, and x;) > z2) > -+ > 7|, are the components of
z sorted in decreasing order. In other words, f(z) is the sum of the r largest elements of
z. In this problem we study the constraint

f(@) < a.

As we have seen in chapter 3, page 80, this is a convex constraint, and equivalent to a set
of n!/(r!(n — r)!) linear inequalities

Tip +o 4z, <o, 1<ii<io<- <t <N
The purpose of this problem is to derive a more compact representation.

(a) Given a vector z € R", show that f(x) is equal to the optimal value of the LP

maximize z’y
subject to 0=y =<1
1Ty =r
with y € R™ as variable.
(b) Derive the dual of the LP in part (a). Show that it can be written as
minimize ¢t + 17w
subject to tl1+u>x
u = 0,

where the variables are t € R, u € R"™. By duality this LP has the same optimal
value as the LP in (a), i.e., f(x). We therefore have the following result: x satisfies
f(z) < «a if and only if there exist ¢t € R, v € R™ such that

rt+1Tu§a, tl4+u >z, u >~ 0.

These conditions form a set of 2n+1 linear inequalities in the 2n+ 1 variables x, u, t.
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(c)

As an application, we consider an extension of the classical Markowitz portfolio
optimization problem

minimize z7Xx
subject to ﬁT:B > Pmin
1Tz=1, >0

discussed in chapter 4, page 155. The variable is the portfolio z € R"; p and X are
the mean and covariance matrix of the price change vector p.

Suppose we add a diversification constraint, requiring that no more than 80% of
the total budget can be invested in any 10% of the assets. This constraint can be
expressed as

Formulate the portfolio optimization problem with diversification constraint as a

QP.

Solution.

(a)

See also chapter 4, exercise 4.8.
For simplicity we assume that the elements of x are sorted in decreasing order:

Ty 2 Xg 200 2 T
It is easy to see that the optimal value is

T1+x2+ -+ T,

obtained by choosing y1 =y =---=yr=1and yr41 =--- =yn =0.
We first change the objective from maximization to minimization:
minimize —zTy
subject to 0y =<1
1Ty =r.

We introduce a Lagrange multiplier A\ for the lower bound, u for the upper bound,
and t for the equality constraint. The Lagrangian is

L(y7)‘7u7 t) = _:rTy_ )\Ty+uT(y_ 1) +t(1Ty_r)
= —1Tu—rt+(—z—A+u+t1)"y.
Minimizing over y yields the dual function

1Ty —rt —2—-A+u+t1=0
—0o0 otherwise.

g\ u,t) = {

The dual problem is to maximize g subject to A = 0 and u > 0:

maximize —17wu — 7t
subject to —A+u+tl==x
A=0, u=z0,

or after changing the objective to minimization (i.e., undoing the sign change we
started with),
minimize  1Tu + rt
subject to u+tl > x
u > 0.

We eliminated A\ by noting that it acts as a slack variable in the first constraint.
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(c)
minimize 27Xz
subject to P& > Tmin
1Tz=1, z=0
[n/20]t + 17w < 0.9
Al4+u>=0
u =0,

with variables x, u, t, v.

5.20 Dual of channel capacity problem. Derive a dual for the problem

minimize —c"z 4+ > 7" yilogy
subject to Pxr =y
z>0, 1Tz=1,

where P € R™*™ has nonnegative elements, and its columns add up to one (i.e., P71 =
1). The variables are x € R", y € R™. (For ¢; = Z:r;l pij log pij, the optimal value is,
up to a factor log 2, the negative of the capacity of a discrete memoryless channel with
channel transition probability matrix P; see exercise 4.57.)

Simplify the dual problem as much as possible.

Solution. The Lagrangian is

L(z,y,\v,2) = Tz + Z yilogy; — Nz + V(lT:r -1+ zT(Px —vy)

i=1

= (—c=A+v1+P"2)Tz+ Zyi logy; — 27y — v.
i=1
The minimum over z is bounded below if and only if
—c—A+vi+PTz=0.
To minimize over y, we set the derivative with respect to y; equal to zero, which gives
logy; + 1 — z; = 0, and conclude that
inf (y; logy; — ziy:) = —e™ .
ylinzo(y 0gYi — 2iyi) = —€
The dual function is

O p,2) = -y meiT . —e=A4+v1+PT2=0
g = g otherwise.

The dual problem is

maximize —» " exp(z —1)—v

subject to Pz —c4v1 > 0.
This can be simplified by introducing a variable w = z + v1 (and using the fact that
1 = PT1), which gives

maximize —» " exp(wi—v—1)—v

subject to  PTw > c.

Finally we can easily maximize the objective function over v by setting the derivative
equal to zero (the optimal value is v = — log(zi e!™™4), which leads to

maximize — log(ZZil expw;) — 1

subject to  PTw > c.

This is a geometric program, in convex form, with linear inequality constraints (i.e.,
monomial inequality constraints in the associated geometric program).
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Strong duality and Slater’s condition

5.21 A convex problem in which strong duality fails. Consider the optimization problem
minimize e ®
subject to x2/y <0

with variables z and y, and domain D = {(z,y) | y > 0}.

(a) Verify that this is a convex optimization problem. Find the optimal value.

(b) Give the Lagrange dual problem, and find the optimal solution A* and optimal value
d* of the dual problem. What is the optimal duality gap?

(c) Does Slater’s condition hold for this problem?

(d) What is the optimal value p*(u) of the perturbed problem
minimize e

subject to  2%/y <u

as a function of u? Verify that the global sensitivity inequality
p*(u) > p*(0) — N'u
does not hold.
Solution.

(a) p* =1
(b) The Lagrangian is L(z,y,A\) = e~* + Az?/y. The dual function is

0 A>0

x,y>0 —0 AL O,

g(\) = inf (e7* + M\’ /y) = {

so we can write the dual problem as

maximize 0
subject to A >0,

with optimal value d* = 0. The optimal duality gap is p* — d* = 1.
(c¢) Slater’s condition is not satisfied.
(d) p(u)=1ifu=0,p*(u) =0if u >0 and p*(u) = oo if u < 0.
5.22 Geometric interpretation of duality. For each of the following optimization problems,
draw a sketch of the sets
G = {(wt)|3reD, fole) =t fi(z)=u},
A = {(wt)[Fz €D, fo(z) <t, filz) <u},

give the dual problem, and solve the primal and dual problems. Is the problem convex?
Is Slater’s condition satisfied? Does strong duality hold?

The domain of the problem is R unless otherwise stated.
(a) Minimize x subject to z? < 1.
(b) Minimize x subject to z < 0.

(¢) Minimize z subject to |z| < 0.
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(d) Minimize  subject to fi(z) < 0 where

—r+2 x>1
T —1<x<1
—x—2 x<-—1.

fi(z) =

(e) Minimize 2* subject to —z +1 < 0.
(f) Minimize z* subject to —z + 1 < 0 with domain D = R.

Solution. For the first four problems G is the curve
g = {(U’:t) | u € D, u = fl(t)}

For problem (e), G is the curve
G={(ut)[t=(1-u)}
For problem (f), G is the curve
G={(u,t) |u<l, t=1-u)’}
A is the set of points above and to the right of G.

(a) z* = —=1. A* =1. p* = —1. d* = —1. Convex. Strong duality. Slater’s condition
holds.
This is the generic convex case.

(b) z* = 0. p* = 0. d* = 0. Dual optimum is not achieved. Convex. Strong duality.
Slater’s condition does not hold.
We have strong duality although Slater’s condition does not hold. However the dual
optimum is not attained.

(¢) z* =0. p* =0. \* =1. d* = 0. Convex. Strong duality. Slater’s condition not
satisfied.
We have strong duality and the dual is attained, although Slater’s condition does
not hold.

(d) =¥ =—-2. p* = —=2. \* = 1. d* = —2. Not convex. Strong duality.
We have strong duality, although this is a very nonconvex problem.

(e) z* =1. p* = 1. d* = —o0. Not convex. No strong duality.

The problem has a convex feasibility set, and the objective is convex on the feasible
set. However the problem is not convex, according to the definition used in this
book. Lagrange duality gives a trivial bound —oo.

(f) z* =1. p* =1. A* =1. d* = 1. Convex. Strong duality. Slater’s condition is
satisfied.
Adding the domain condition seems redundant at first. However the new problem
is convex (according to our definition). Now strong duality holds and the dual
optimum is attained.

5.23 Strong duality in linear programming. We prove that strong duality holds for the LP

minimize ¢’z
subject to Az <b

and its dual

maximize —b%z

subject to ATz+¢=0, z>0,
provided at least one of the problems is feasible. In other words, the only possible excep-
tion to strong duality occurs when p* = oo and d* = —oo.
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(a) Suppose p* is finite and z* is an optimal solution. (If finite, the optimal value of an
LP is attained.) Let I C {1,2,...,m} be the set of active constraints at z*:

a?x*zbi, el a?x*<bi, i€ 1.
Show that there exists a z € R™ that satisfies

>0, i€l, z=0, i¢l, Zziaich:O.
iel

Show that z is dual optimal with objective value ¢ z*.
Hint. Assume there exists no such z, i.e., —c & {ZZEI zia; | z; > 0}. Reduce
this to a contradiction by applying the strict separating hyperplane theorem of
example 2.20, page 49. Alternatively, you can use Farkas’ lemma (see §5.8.3).

(b) Suppose p* = oo and the dual problem is feasible. Show that d* = co. Hint. Show
that there exists a nonzero v € R™ such that ATv =0, v = 0, bTv < 0. If the dual
is feasible, it is unbounded in the direction v.

(¢) Consider the example
minimize

subject to [ (1) T =

1

Formulate the dual LP, and solve the primal and dual problems. Show that p* = co
and d* = —oco.

Solution.

(a) Without loss of generality we can assume that I = {1,2,...,k}. Let A € R"*" be
the matrix formed by the first k rows of A. We assume there is no z > 0 such that
c+ ATz =0, ie.,

—cg¢gS={A"z|z >0}
By the strict separating hyperplane theorem, applied to —c and S, there exists a u
such that
—u"e>uTATz
for all Z = 0. This means ¢’u < 0 (evaluate the righthand side at z = 0), and
Au < 0.
Now consider = z* + tu. We have

a?w = a?x* +taZTu =b; +ta?u <b, i€l

for all ¢t > 0, and

alzr=alz" +talu<bi+talu<by, idl,

for sufficiently small positive ¢. Finally

T T T T
crx=ca +tcu<c z”

for all positive t. This is a contradiction, because we have constructed primal feasible
points with a lower objective value than z*.

We conclude that there exists a z = 0 with ATz + ¢ = 0. Choosing z = (%, 0) yields
a dual feasible point. Its objective value is

—bTz= (") ATz =T ar.
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(b)

The primal problem is infeasible, i.e.,
-bgS={Az+s|s =0}

The righthand side is a closed convex set, so we can apply the strict separating
hyperplane theorem and conclude there exists a v € R™ such that —v?b > vT (Az +
s) for all z and all s > 0. This is equivalent to

o < 0, ATy = 0, v = 0.

This only leaves two possibilities. Either the dual problem is infeasible, or it is
feasible and unbounded above. (If zo is dual feasible, then z = zo + tv is dual
feasible for all t > 0, with —b7z = —bT 29 + tb7w).
The dual LP is
maximize 21 — 22
subject to z2+1=0
Z1, %22 2 0,

which is also infeasible (d* = —o0).

5.24 Weak max-min inequality. Show that the weak max-min inequality

5.25

sup inf f(w,z) < inf sup f(w,z)
z2€Z weW weW zeZ

always holds, with no assumptions on f: R" x R™ — R, W CR", or Z C R™.
Solution. If W and Z are empty, the inequality reduces to —oo < oco.
If W is nonempty, with @ € W, we have

inf f(w,z) < f(w,z2)
wew

for all z € Z. Taking the supremum over z € Z on both sides we get

sup inf f(w,z) < sup f(w,=2).
2€Z weW z2€Z

Taking the inf over @ € W we get the max-min inequality.

The proof for nonempty Z is similar.

[BL0OO, page 95] Convez-concave functions and the saddle-point property. We derive con-
ditions under which the saddle-point property

sup inf f(w,z)= inf sup f(w,z) (5.112)
z2€Z weW weW zeZ

holds, where f: R" x R™ —= R, W x Z C dom f, and W and Z are nonempty. We will
assume that the function

gz(w)z{ flw,z) wew

%) otherwise

is closed and convex for all z € Z, and the function

hw(z)—{ —flw,z) z€Z

%) otherwise

is closed and convex for all w € W.
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(a) The righthand side of (5.112) can be expressed as p(0), where

p(u) = inf sup(f(w,z)+ uTz).
weW zeZ

Show that p is a convex function.

(b) Show that the conjugate of p is given by

v~ ) —infuew f(w,v) veZ
P (v) _{ o otherwise.

(c) Show that the conjugate of p* is given by

p™(u) = sup inf (f(w,z)+u”2).
z2€Z weWw

Combining this with (a), we can express the max-min equality (5.112) as p**(0) =
p(0).

(d) From exercises 3.28 and 3.39 (d), we know that p**(0) = p(0) if 0 € intdom p.
Conclude that this is the case if W and Z are bounded.

(e) As another consequence of exercises 3.28 and 3.39, we have p**(0) = p(0) if 0 €
dom p and p is closed. Show that p is closed if the sublevel sets of g, are bounded.

Solution.

(a) For fixed z, F,(u,w) = g.(w)—uT 2 is a (closed) convex function of (w, u). Therefore

F(w,u) = 81612 (g-(w) + uTz)

is a convex function of (w, u). (It is also closed because it epigraph is the intersection
of closed sets, the epigraphs of the functions F..)

Minimizing F' over w yields a convex function

inf F(w,u) = inf sup (g.(w)+u"z)
w w z€Z
= inf sup(f(w,z)+u"2)
weW zeZ
= p(w).
(b) The conjugate is
p'(v) = sup(v’u—p(u))

u

= sup(v’u— inf sup(f(w,z)+u’z2))
u weW ez

= sup sup (v"u —sup(f(w,z) +u’ 2))
u wew z€Z

= sup sup (—sup(f(w,2) + (z = v)"w))
u weWw 2€Z

= sup sup inf (—f(w,z) + (v —2)"u)
u weWw 2€Z

= sup sup inf (—f(w, z) + (v — 2)"w).
weW u *€Z

By assumption, for all w, the set

Cyw =epihy ={(2,t) | 2€ Z, t > —f(z,w)}
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is closed and convex. We show that this implies that

Tu) _ { ;Of(w,v) vEZ

sup inf (—f(w, 2) + (2 — v) otherwise.

w 2€Z

First assume v € Z. It is clear that

ing(—f(w, 2) 4z u) < —f(w,v) +v"u (5.25.A)
z€E
for all u. Since h, is closed and convex, there exists a nonvertical supporting
hyperplane to its epigraph C,, at the point (z, f(z,w)), i.e., there exists a @& such
that
inf (" 2z — f(z,w)) = inf (@' z—t)=a"v— f(v,w). (5.25.B)
2€2 (2,t)€C

Combining (5.25.A) and (5.25.B) we conclude that
inf (= f(w,2) + (2 = v)"u) < —f(w,v)
z€

for all u, with equality for u = 4. Therefore

sup ing(—f(w, 2) 4 2 u— v u) = — f(w,v).

u ?

Next assume v # Z. For all w, and all ¢, (v,t) # C., hence it can be strictly
separated from C,, by a nonvertical hyperplane: for all £ and w € W there exists a
u such that

t+u'v < irelg(ff(w, 2) +u’2),

i.e.,

t< 2122(—]”(11)72) +u”(z —v)).

This holds for all ¢, so

sup inf (—f(w,2) +u” (z —v)) = co.

w 2€Z
The conjugate of p* is
P = swp@ o+ inf fw,v))
vEZ weW
= sup inf (f(w,v) +u"v).
vez WEW
We noted in part (a) that F(w,u) = sup,.,(f(w,z) + 27u) is a closed convex

function. If Z is bounded, then the maximum in the definition is attained for all
(w,u) e W xR™,s0 W x R™ C dom F,.

If W is bounded, the minimum in p(u) = inf,ew F(w, u) is also attained for all u,
so domp = R™.

epip is the projection of epi F C R" x R™ x R (a closed set) on R™ x R.

Now in general, the projection of a closed convex set C' € R? x R? on R? is closed
if C' does not contain any half-lines of the form {(Z,7+ sv) € R? x R? | s > 0} with
v # 0 (i.e., no directions of recession of the form (0,v)).

Applying this result to the epigraph of F' and its projection epip, we conclude that
epip is closed if epi F' does not contain any half-lines {(w, @, ) + s(v,0,0) | s > 0}.
This is the case if the sublevel sets of g, are bounded.
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Optimality conditions
5.26 Consider the QCQP
minimize  z? + 232
subject to  (z1 — 1)+ (z2 —1)2 <1
(1 — 1D+ (z2+1)2 <1
with variable z € R
(a) Sketch the feasible set and level sets of the objective. Find the optimal point 2* and
optimal value p*.
(b) Give the KKT conditions. Do there exist Lagrange multipliers AT and A3 that prove
that =* is optimal?
(¢) Derive and solve the Lagrange dual problem. Does strong duality hold?
Solution.

(a) The figure shows the feasible set (the intersection of the two shaded disks) and some
contour lines of the objective function. There is only one feasible point, (1,0), so it
is optimal for the primal problem, and we have p* = 1.

2

(b) The KKT conditions are

(r1 — 1)+ (z2—1)* <1, (z1— 124 (22 +1)2 < 1,
A1 >0, A2 >0
2x1 + 2)\1(501 — 1) + 2)\2(%1 — 1) =0
219 + 2)\1(%‘2 — 1) + 2)\2(33‘2 + 1) =0
M(x1 = D24+ (22— 1)2 = 1) = Xa((1 — )2 + (22 +1)2 = 1) = 0.

At z = (1,0), these conditions reduce to
A1 >0, A2 >0, 2=0, —2A1 +2X2 =0,
which (clearly, in view of the third equation) have no solution.
(¢) The Lagrange dual function is given by
g(A1,A2) = inf L(z1,x2, A1, A2)

o1,m2
where
L(z1,x2, A1, A2)

= 4+ (@ -1+ (2 —1)° =1+ Xz — 1)+ (z2+1)> - 1)

= (1+ A1+ A)zf + (1+ A+ A2)zd — 2(A1 + A2)zr — 2(A\1 — A2)z2 + A1 + X
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L reaches its minimum for

S AL+ A2 - Al — A2
R D PRIV Tl A
and we find
2 42
g(Ai,x2) = SO At e TR A+ A 20
’ —00 otherwise,

where we interpret a/0 = 0 if a = 0 and as —co if a < 0. The Lagrange dual problem
is given by

maximize ()\1 + Ao — ()\1 — )\2)2)/(1 + A\ + )\2)

subject to A1, A2 > 0.

Since g is symmetric, the optimum (if it exists) occurs with A1 = A2. The dual
function then simplifies to

21
g(A1, A1) = 1
We see that g(A1, A2) tends to 1 as A1 — o0o. We have d* = p* = 1, but the dual
optimum is not attained.
Recall that the KKT conditions only hold if (1) strong duality holds, (2) the primal
optimum is attained, and (3) the dual optimum is attained. In this example, the
KKT conditions fail because the dual optimum is not attained.

5.27 Equality constrained least-squares. Consider the equality constrained least-squares prob-
lem
minimize  ||Az — b||3
subject to Gx =h
where A € R™*" with rank A = n, and G € R?*" with rank G = p.

Give the KKT conditions, and derive expressions for the primal solution z* and the dual
solution v*.

Solution.

(a) The Lagrangian is

L(z,v) |Az —b||3 + " (Gz — h)

= "AT Az 4+ (GTv —24Tb) 2 — v h,
with minimizer x = —(1/2)(AT A)~'(GTv — 2A"b). The dual function is
g(v) = —(1/4)(G"Tv —24Tb)" (AT A) N (GTv — 24Tb) — v h
(b) The optimality conditions are
24" (Az* —b)+GTv* =0,  Gz*=h.
(¢) From the first equation,
z* = (ATA) (AT — (1/2)GT V).
Plugging this expression for z* into the second equation gives
G(ATA) AT — (1/2)G(ATA)'GTv" = h

o v = —2(GATA) TG N (h = G(AT AT ATD).

Substituting in the first expression gives an analytical expression for z*.
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5.28 Prove (without using any linear programming code) that the optimal solution of the LP

minimize  47x1 + 93x2 + 1723 — 9324

1 -6 1 3 -3
1 -2 701 1 5

subject to 0 3 —-10 -1 2 < | -8
6 —11 -2 12 L3 -7

1 6 -1 -3 T4 4

is unique, and given by z* = (1,1,1,1).
Solution.
Clearly, z* = (1,1,1,1) is feasible (it satisfies the first four constraints with equality).
The point 2* = (3,2,2,7,0) is a certificate of optimality of z = (1,1,1,1):
e z* is dual feasible: z* = 0 and ATz* + ¢ = 0.

e 2" satisfies the complementary slackness condition:
zi*(aiTx—bi) =0, ¢=1,...,m,

since the first four components of Az — b and the last component of z* are zero.

5.29 The problem
minimize  —3z? + 22 + 222 + 2(x1 + x2 + x3)
subject to z? 4+ x5 + 23 =1,
is a special case of (5.32), so strong duality holds even though the problem is not convex.

Derive the KKT conditions. Find all solutions z, v that satisfy the KKT conditions.
Which pair corresponds to the optimum?

Solution.

(a) The KKT conditions are
ri4as+ai =1, (=34+v)z14+1 =0, (14+v)z24+1 =0, (24v)z3+1=0.

(b) A first observation is that the KKT conditions imply v # 2, v # —1, v # 3. We can
therefore eliminate x and reduce the KKT conditions to a nonlinear equation in v:
1 n 1 n 1 _
(=3+v)2  (1+v)2  (2+v)*
The lefthand side is plotted in the figure.

10




Exercises

There are four solutions:
v = —3.15, v =0.22, v =1.89, v =4.04,
corresponding to
z = (0.16,0.47, —0.87), z = (0.36,—0.82,0.45),
z = (0.90,—0.35, 0.26), z = (—0.97,-0.20,0.17).

(c) v* is the largest of the four values: v* = 4.0352. This can be seen several ways. The
simplest way is to compare the objective values of the four solutions x, which are

fo((L‘) = 1.17, fo(l') = 0.677 fo(i]?) = 70.56, f()(x) = —4.70.

We can also evaluate the dual objective at the four candidate values for v. Finally
we can note that we must have

V2 fo(z*) +v* V2 fi (2¥) = 0,

because x* is a minimizer of L(z,v*). In other words

-3 0 0 1 0 0
0 1 0|+v*|0 1 0|=0,
0 0 2 0 0 1

and therefore v* > 3.

5.30 Derive the KKT conditions for the problem

minimize tr X — logdet X
subject to Xs =1y,

with variable X € 8™ and domain S%,. y € R™ and s € R" are given, with s7y = 1.
Verify that the optimal solution is given by

. 1
X" = I+ny — TssT.
sT's

Solution. We introduce a Lagrange multiplier z € R™ for the equality constraint. The
KKT optimality conditions are:

X >0, Xs=uy, X '=T1+ %(st +s27). (5.30.A)

We first determine z from the condition Xs = y. Multiplying the gradient equation on
the right with y gives

_ 1
s=X"'y=y+ 5(2 + (z"y)s). (5.30.B)

By taking the inner product with y on both sides and simplifying, we get z7y =1 —y7y.
Substituting in (5.30.B) we get

z=-2y+1+y"y)s,

and substituting this expression for z in (5.30.A) gives

X1

1
I+ 5(—2ysT —2sy" +2(1 +y"y)ss")

T+ 14y y)ss” —ys" —sy”.
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5.31

5.32

Finally we verify that this is the inverse of the matrix X* given above:

(I + (1 4y y)ss” —ys” — syT) X
= (T — (1/5Ts)ssT) + (1+47y)(ssT + sy” — ss7)

—(ys" +yy" —ys") = (sy" + (¥ y)sy" — (1/s7s)ssT)
- I

To complete the solution, we prove that X* = 0. An easy way to see this is to note that

T T T T T\ T
Xt e Ta T %5 (vt st (L wst st
Rl G TR B A T TR

Supporting hyperplane interpretation of KKT conditions. Consider a convex problem with
no equality constraints,

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m.

Assume that z* € R™ and \* € R™ satisfy the KKT conditions

fi(z®) < 0, i=1,....,m
AX> 0, i=1,....,m
MNfiE) = 0, i=1....m
Vio(z*)+ > " AiVfi(z*) = 0.

Show that
Vfo(x*) (x —z*) >0

for all feasible . In other words the KKT conditions imply the simple optimality criterion
of §4.2.3.

Solution. Suppose z is feasible. Since f; are convex and f;(z) < 0 we have
0> filz) > fila®) + Vi) (z —2z*), i=1,...,m.

Using A} > 0, we conclude that

0 > D N (fia")+ Vi) (@—2")

DN fil@ )+ NV i) (@ —a)
= ~Viole") (@ —a").

In the last line, we use the complementary slackness condition A} f;(z*) = 0, and the last
KKT condition. This shows that V fo(z*)” (z—x*) > 0, i.e., Vfo(z*) defines a supporting
hyperplane to the feasible set at x*.

Perturbation and sensitivity analysis

Optimal value of perturbed problem. Let fo, f1,..., fm : R — R be convex. Show that
the function

p*(u,v) = inf{fo(x) | Iz € D, fi(z) <u;, i=1,...,m, Ax —b=v}
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is convex. This function is the optimal cost of the perturbed problem, as a function of
the perturbations v and v (see §5.6.1).

Solution. Define the function

fo(z) filz)<wus, i=1,....m, Az —b=vw
00 otherwise.

G(z,u,v) = {
G is convex on its domain
domG = {(z,u,v) |z €D, fi(zr) <wui, t=1,...,m, Az —b=v},
which is easily shown to be convex. Therefore G is convex, jointly in x,u,v. Therefore
p*(u,v) = inf G(z, u, v)

is convex.

Parametrized £1-norm approximation. Consider the £1-norm minimization problem

minimize ||Az + b+ ed|1

with variable z € R3, and

-2 7 1 —4 —10

-5 -1 3 3 —13

-7 3 =5 9 —27

A= -1 4 —4 |’ b= 0|’ d= —10
1 5 5 —11 -7

2 -5 -1 5 14

We denote by p*(€) the optimal value as a function of e.

(a) Suppose € = 0. Prove that £* = 1 is optimal. Are there any other optimal points?

(b) Show that p*(e) is affine on an interval that includes € = 0.

Solution. The dual problem of
minimize ||Az 4 b||1

is given by
maximize b7z
subject to ATz =0
[2llec < 1.

If z and z are both feasible, then
| Az +bl|s > 2" (Az +b) =b"2

(this follows from the inequality u”v < ||ul|so|lv]|1). We have equality (|| Az + b1 = b¥2)
only if z;(Ax +b); = [(Axz 4 b);| for all 4. In other words, the optimality conditions are: z
and z are optimal if and only if ATz =0, ||z]lc < 1 and the following ‘complementarity
conditions’ hold:

1<z <1 — (ACI?—‘rb)l:O

(Az4+b); >0 = =z =1

(A:L‘ + b)l <0 = z =-1.
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(a) b+ Az = (2,0,0,—1,0,1), so the optimality conditions tell us that the dual optimal
solution must satisfy z1 = 1, z4 = —1, and z5 = 1. It remains to find the other 3
components zz2, 23, 26. We can do this by solving

-5 -7 1 29 -2 -1 2 1
ATz=| -1 3 5 23 | + 7 4 -5 -1 | =0,
3 -5 5 25 1 -4 -1 1

in the three variables z2, 23, z6. The solution is z* = (1,—0.5,0.5,—1,0,1). By
construction z* satisfies ATz* = 0, and the complementarity conditions. It also
satisfies ||2*||cc < 1, hence it is optimal.

(b) All primal optimal points x must satisfy the complementarity conditions with the
dual optimal z* we have constructed. This implies that
(AJ? + b)2 = (AJL‘ —+ b)g = (Am + b)5 =0.
This forms a set of three linearly independent equations in three variables. Therefore
the solution is unique.

(¢) z* remains dual feasible for nonzero e. It will be optimal as long as at the optimal
z”(e),
(b+ed+ Ax™(e))r =0, k=235

Solving this three equations for z*(¢) yields
x(e) = (1,1,1) + €(—3,2,0).
To find the limits on €, we note that z* and x*(e¢) are optimal as long as
(A(z*(e) +b+ed)1 =2+ 10e > 0
(A(z*(e) +b+ed)a=—-1+€<0
(A(z*(e)+b+ed)sg=1—2¢>0
pe., —1/5 < e<1/2.

The optimal value is
p(e) = (b+ed)’ 2" =4+ 7

5.34 Consider the pair of primal and dual LPs

minimize (¢ + ed)”x
subject to Ax <b+e€f

and
maximize —(b+ef)Tz
subject to ATz+c+ed=0
z>=0
where
-4 12 -2 1 8 6
—17 12 7 11 13 15
A= 1 0 -6 11, b= —4 |, f=1 —-13 |,
3 3 22 -1 27 48
—11 2 -1 -8 —18 8

c = (49, —-34,—-50,-5), d = (3,8,21,25), and € is a parameter.

(a) Prove that z* = (1,1,1,1) is optimal when € = 0, by constructing a dual optimal
point z* that has the same objective value as x*. Are there any other primal or dual
optimal solutions?
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(b)

Give an explicit expression for the optimal value p*(€) as a function of € on an
interval that contains € = 0. Specify the interval on which your expression is valid.
Also give explicit expressions for the primal solution z*(¢) and the dual solution
2*(€) as a function of €, on the same interval.

Hint. First calculate z*(€) and z* (), assuming that the primal and dual constraints
that are active at the optimum for e = 0, remain active at the optimum for values
of € around 0. Then verify that this assumption is correct.

Solution.

(a)

(c)

All constraints except the first are active at x = (1,1, 1, 1), so complementary slack-
ness implies that z; = 0 at the dual optimum.

For this problem, the complementary slackness condition uniquely determines z: We
must have

ATz +c=0,
where
—17 12 7 11 29
- 1 0 -6 1 | oz
A= 3 3 2 -1 | 7| u
—11 2 -1 -8 25

A is nonsingular, so ATZ + ¢ = 0 has a unique solution: z = (2,1,2,2). All compo-
nents are nonnegative, so we conclude that z = (0,2, 1, 2,2) is dual feasible.
We expect that for small € the same primal and dual constraints remain active.
Let us first construct z*(e) and z*(e) under that assumption, and then verify using
complementary slackness that they are optimal for the perturbed problem.

To keep the last four constraints of z*(¢) active, we must have
x(e) = (1,1,1,1) + eAx

where AAz = (fa, f3, fa, f5). We find Az = (0,1,2, —1). x*(¢) is primal feasible as
long as
A((1,1,1,1) + €(0,1,2,—1) < b+ ef.

By construction, this holds with equality for constraints 2-5. For the first inequality
we obtain
7+ 7e < 8+ 6e.

i.e., e < 1.
If we keep the first component of z*(€) zero, the other components follow from
AT 2*(€) + ¢ + ed = 0. We must have

2"(e) = (0,2,1,2,2) + €Az

where ATAz + f =0 and Az; = 0. We find Az = (0,—1,2,0,2). By construction,
2*(€) satisfies the equality constraints AT 2*(€) + ¢+ ef = 0, so it is dual feasible if
its components are nonnegative:

2"(e) = (0,2 — 6,1+ 2¢,2,2 + 2¢) > 0,

e, —1/2<e<2.

In conclusion, we constructed z*(€¢) and z*(€) that are primal and dual feasible for
the perturbed problem, and complementary. Therefore they must be optimal for
the perturbed problems in the interval —1/2 < e < 1..

The optimal value is quadratic

p () = (c+ed) 2" (€) = —(b+ ef)" 2% (e) = —40 — T2€ + 25€.
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5.36

Sensitivity analysis for GPs. Consider a GP

minimize  fo(z)
subject to  fi(z) <1, i=1,....,m
=1, +=1,...,p,

where fo, ..., fm are posynomials, hq, ..., h, are monomials, and the domain of the prob-
lem is R} | . We define the perturbed GP as

minimize  fo(x)
subject to  fi(z) <
hi (11) =

and we denote the optimal value of the perturbed GP as p*(u,v). We can think of u; and
v; as relative, or fractional, perturbations of the constraints. For example, u; = —0.01
corresponds to tightening the first inequality constraint by (approximately) 1%.

Let A* and v* be optimal dual variables for the convex form GP

minimize  log fo(y)
subject to log fi(y) <0, i=1,...,m
loghi(y) =0, i=1,...,p,

with variables y; = log z;. Assuming that p*(u,v) is differentiable at v = 0, v = 0, relate
A* and v* to the derivatives of p*(u,v) at u = 0, v = 0. Justify the statement “Relaxing
the ith constraint by « percent will give an improvement in the objective of around a\}

percent, for o small.”

*

Solution. —\*, —v* are ‘shadow prices’ for the perturbed problem

minimize  log fo(y)
subject to log fi(y) <w;y, i=1,...,m
log hi(y) =vi, i=

i.e., if the optimal value log p* (u,v) is differentiable at the origin, they are the derivatives
of the optimal value,

__ 0Ologp*(0,0)  9p*(0,0)/0u; o Ologp*(0,0)  9p*(0,0)/0v;

N dus *(0,0) 1’ o, *(0,0)

Theorems of alternatives

Alternatives for linear equalities. Consider the linear equations Az = b, where A € R™*™.
From linear algebra we know that this equation has a solution if and only b € R(A), which
occurs if and only if b L A (AT). In other words, Az = b has a solution if and only if
there exists no y € R™ such that ATy = 0 and b7y # 0.

Derive this result from the theorems of alternatives in §5.8.2.

Solution. We first note that we can’t directly apply the results on strong alternatives
for systems of the form

filx) <0, i=1,...,m, Az =0

or
filz) <0, i=1,...,m, Az = b,

because the theorems all assume that Ax = b is feasible.
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5.38

Exercises

We can apply the theorem for strict inequalities to
t< —1, Ax + bt =b. (5.36.A)
This is feasible if and only if Az = b is feasible: Indeed, if AZ

A(3Z) —2b = b. so x = 3%, t = —2 satisfies (5.36.A). Conversely, if z,
then 1 —¢ > 2 and

b is feasible, then
t satisfies (5.36.A)

so Az = b is feasible.

Moreover Az + bt = b is always feasible (choose z = 0, ¢ = 1, so we can apply the theorem
of alternatives for strict inequalities to (5.36.A). The dual function is

A=bTy ATv =0, Ax+bTv=0

. T b)) =
g\ v) = 1£f(/\(t +1)+v (Az + bt — b)) { —00 otherwise.

The alternative reduces to
ATy =0, b'v < 0.

[BT97] Ezistence of equilibrium distribution in finite state Markov chain. Let P € R™*"
be a matrix that satisfies

pij207 i7j:17"'an7 PT1:17

i.e., the coefficients are nonnegative and the columns sum to one. Use Farkas’ lemma to
prove there exists a y € R"™ such that

Py=y, y=0, 17y=1
(We can interpret y as an equilibrium distribution of the Markov chain with n states and

transition probability matrix P.)
Solution. Suppose there exists no such y, i.e.,

is infeasible. From Farkas’ lemma there exist z € R"™ and w € R such that
(P-D)"24+wl>=0, w<O0,

i.e.,
T
Pz 2.

Since the elements of P are nonnegative with unit column sums we must have

(PT2); < max z;
J

which contradicts PTz = 1.

[BT97] Option pricing. We apply the results of example 5.10, page 263, to a simple
problem with three assets: a riskless asset with fixed return r» > 1 over the investment
period of interest (for example, a bond), a stock, and an option on the stock. The option
gives us the right to purchase the stock at the end of the period, for a predetermined
price K.

We consider two scenarios. In the first scenario, the price of the stock goes up from
S at the beginning of the period, to Su at the end of the period, where v > r. In this
scenario, we exercise the option only if Su > K, in which case we make a profit of Su— K.
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Otherwise, we do not exercise the option, and make zero profit. The value of the option
at the end of the period, in the first scenario, is therefore max{0, Su — K'}.

In the second scenario, the price of the stock goes down from S to Sd, where d < 1. The
value at the end of the period is max{0, Sd — K}.

In the notation of example 5.10,

r wS max{0,Su— K}

V= dS max{0,5d— K} |’

P =1, p2 =S, ps =C,

where C' is the price of the option.

Show that for given r, S, K, u, d, the option price C is uniquely determined by the
no-arbitrage condition. In other words, the market for the option is complete.
Solution. The condition VTy = p reduces to

Y1 +y2 =1/m, uyr +dys =1, y1 max{0, Su — K} + yo max{0,Sd — K} = C.
The first two equations determine y; and y2 uniquely:
r—d u—r
ST N )
and these values are positive because u > r > d. Hence

(r — d)max{0, Su — K} 4+ (u — r) max{0, Sd — K'}
r(u—d) '

C =

Generalized inequalities

SDP relazations of two-way partitioning problem. We consider the two-way partitioning
problem (5.7), described on page 219,

RV T
minimize ' Wz
subject to 2?2 =1, i=1,...,n, (5.113)
with variable z € R™. The Lagrange dual of this (nonconvex) problem is given by the
SDP

maximize —1Tv

subject to W + diag(v) = 0

with variable v € R™. The optimal value of this SDP gives a lower bound on the optimal
value of the partitioning problem (5.113). In this exercise we derive another SDP that
gives a lower bound on the optimal value of the two-way partitioning problem, and explore
the connection between the two SDPs.

(5.114)

(a) Two-way partitioning problem in matriz form. Show that the two-way partitioning
problem can be cast as

minimize  tr(WX)
subject to X >0, rankX =1
X”':L izl,...,’l’b,

with variable X € S™. Hint. Show that if X is feasible, then it has the form
X =z, where x € R™ satisfies x; € {—1,1} (and vice versa).

(b) SDP relazation of two-way partitioning problem. Using the formulation in part (a),
we can form the relaxation

minimize  tr(WX)
subject to X =0 (5.115)
X—;izl, i:l,...7n7
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with variable X € S™. This problem is an SDP, and therefore can be solved effi-
ciently. Explain why its optimal value gives a lower bound on the optimal value of
the two-way partitioning problem (5.113). What can you say if an optimal point
X* for this SDP has rank one?

(c) We now have two SDPs that give a lower bound on the optimal value of the two-way
partitioning problem (5.113): the SDP relaxation (5.115) found in part (b), and the
Lagrange dual of the two-way partitioning problem, given in (5.114). What is the
relation between the two SDPs? What can you say about the lower bounds found
by them? Hint: Relate the two SDPs via duality.

Solution.
(a) Follows from tr(WazzT) = 2" Wz and (zzT);; = 2.

(b) It gives a lower bound because we minimize the same objective over a larger set. If
X is rank one, it is optimal.

(c) We write the problem as a minimization problem
minimize 17y
subject to W + diag(v) = 0.

Introducing a Lagrange multiplier X € S™ for the matrix inequality, we obtain the
Lagrangian

L(v, X) 17y — tr(X (W + diag(v)))

= 17y —tr(XW) — Z vi X
i=1

= —tr(XW)+ Z vi(1— Xii).
i=1

This is bounded below as a function of v only if X;; = 1 for all ¢, so we obtain the
dual problem

maximize —tr(WX)

subject to X >~ 0

Xiizl, i:l,...,n.

Changing the sign again, and switching from maximization to minimization, yields
the problem in part (a).

5.40 E-optimal experiment design. A variation on the two optimal experiment design problems
of exercise 5.10 is the E-optimal design problem

minimize  Amax (Z:’:l xivwiT) B
subject to = >0, 17z =1.

(See also §7.5.) Derive a dual for this problem, by first reformulating it as

minimize 1/t
subject to Zle zivivl = t1
z>0, 1Tz=1,

with variables ¢ € R, z € R? and domain R;; x R?, and applying Lagrange duality.
Simplify the dual problem as much as you can.
Solution.
minimize 1/t
subject to Zle zivvl =t
z>=0, 1Tz=1.
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The Lagrangian is

L(t,z, Z,z,v)

P
1/t —tr (Z(Z zivivl — tI)) — 2Tz +v(1Tz 1)
i=1

p
l/t—i—ttrZ—l—in(—viTZvi —zitv)—v.

=1

The minimum over z; is bounded below only if —U;rZUi — z; +v = 0. To minimize over ¢

we note that
2vVtr Z Z >0

igg(l/t titrZ) = { —00 otherwise.

The dual function is

2Vtr Z — v viTZvi—in =v, Z>0
—00 otherwise.

9(Z,z,v) = {

The dual problem is

maximize 2vVtrZ —v
subject to vl Zv; <v, i=1,...,p
Z = 0.

We can define W = (1/v)Z,

maximize 2y/vVtrW —v
subject to vl Wuwv; > 1, i=1,...,p
W = 0.

Finally, optimizing over v, gives v = tr W, so the problem simplifies further to

maximize trW
subject to vIWuv; <1, i=1,...,p,
W = 0.

Dual of fastest mizing Markov chain problem. On page 174, we encountered the SDP

minimize ¢

subject to —tI < P — (1/n)117 <¢I
P1=1
PijZO, i,j:L...,n
Pl'j =0 for (’L,j) g S,

with variables t € R, P € S™.
Show that the dual of this problem can be expressed as

maximize 17z — (1/n)17Y1
subject to  [|[Y|2x« <1
(zi +2;) <Y for (i,j) € €

with variables z € R™ and Y € S”. The norm || - ||2« is the dual of the spectral norm
on 8™: [[Y]l2« = > [Ai(Y)], the sum of the absolute values of the eigenvalues of Y.

(See §A.1.6, page 639.)
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Solution. We represent the Lagrange multiplier for the last constraint as A € S™, with
Xij =0 for (i,7) € €.
The Lagrangian is
L(t,P,U,V,z, W, A)
= t+tr(U(—tI — P+ (1/n)117)) + tr(V(P — (1/n)117 —tI))
+27(1 = P1) — tr(WP) + tr(AP)
= (1—trU—trV)t+tr(P(-U+V - W +A—(1/2)(1z" — 217))
+17z+ (1/n)1"U1 -1"V1).

Minimizing over ¢ and P gives the conditions
trU4+trV =1, (1/2)(1z" +21") =V —U - W +A.
The dual problem is

maximize 17z — (1/n)17(V —U)1
subject to U >0, V=0, tr(U+V)=1
(Zz' + Zj) < Vi; — U;j for (l,]) eé.

This problem is equivalent to
maximize 17z — (1/n)17Y1
subject to ||Vl <1
(zi +2;) <Y for (i,5) € €

with variables z € R™, Y € S™.

5.42 Lagrange dual of conic form problem in inequality form. Find the Lagrange dual problem
of the conic form problem in inequality form

minimize Tx
subject to Az <k b

where A € R™*", b € R™, and K is a proper cone in R™. Make any implicit equality
constraints explicit.

Solution. We associate with the inequality a multiplier A € R™, and form the Lagrangian
L(z,\) = "z + AT (Az — b).
The dual function is

g(\)

inf (ch + A\ (Az — b))

B "N ATA+c=0
- —o0o  otherwise.

The dual problem is to maximize g(\) over all A <g+ 0 or, equivalently,
maximize —bT A

subject to ATA4c¢=0
A >k 0.
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5.43 Dual of SOCP. Show that the dual of the SOCP

minimize  fTx
subject to || Aix + bsl|2 SClTl‘—Fdi, i=1,...,m,

with variables x € R"™, can be expressed as

maximize Zzl(b;ful + divy)
subject to " (AT ui + covi) + f =0
fluille <vi, i=1,...,m,

with variables u; € R™,v; € R,¢=1,...,m. The problem data are f € R", 4; € R"*",
bieR",c;eRandd;, e R,i=1,...,m.
Derive the dual in the following two ways.

(a) Introduce new variables y; € R™ and ¢; € R and equalities y; = A;z + b;, ¢; =
¢TIz + d;, and derive the Lagrange dual.

(b) Start from the conic formulation of the SOCP and use the conic dual. Use the fact
that the second-order cone is self-dual.

Solution.

(a) We introduce the new variables, and write the problem as

minimize ¢’z

subject to  ||yill2 <t;y, i=1,...,m
y¢:Aix+bi7 t=1,...,m
tichﬂc—l—di, i=1,....,m

The Lagrangian is

L('/L‘7 y7 t7 )\’ ]/’ l’L)

m

T+ ZM(Hysz —t;) + ZViT(yi — Az —b;) + Zﬂi(ti —clx— d;)
i=1 i=1

=1

m m

(c— ZAzTVi — Zuici)Tx + Z()\zHysz + V;Tyz) + Z(_)\i + i)t
i=1 i=1

=1 i=1

- Z(bfyl -+ dl,u,)
=1

The minimum over x is bounded below if and only if

m

Z(A?IJ, + ,uici) = C.

i=1
To minimize over y;, we note that

0 [vill2 < Ai

. T —
I;f(/\ZHyZHQ +viyi) = { —oo  otherwise.

The minimum over t; is bounded below if and only if A\; = u;. The Lagrangian is

=i (O v+ dips) 3T (AT v+ paes) = ¢
g()VV’u): ||V7~H2§)‘27 /’L:A
—00 otherwise



Exercises

which leads to the dual problem
maximize — Z?zl(blrl/i +di\)
subject to Z:’;l(AiTVi + Xici) =¢
||Vi||2§)\i7 z:l,,m

(b) We express the SOCP as a conic form problem

minimize ¢’z
subject to —(Aix +bi,clz4+d;) <k, 0, i=1,...,m.

The conic dual is

maximize — :;1(b,~Tui + div;)
subject to Y. (A ui +vici) = ¢
(ui,vi) tK?‘ 0, i:1,...,m.

5.44 Strong alternatives for nonstrict LMIs. In example 5.14, page 270, we mentioned that
the system
Z =0, tr(GZ) > 0, tr(F;Z2)=0, i=1,...,n, (5.116)

is a strong alternative for the nonstrict LMI

F(z)=m P+ +a.Fy + G =20, (5.117)

if the matrices F; satisfy

n

Y wF =0 = ZUF =0. (5.118)

1=1 =1

In this exercise we prove this result, and give an example to illustrate that the systems
are not always strong alternatives.

(a) Suppose (5.118) holds, and that the optimal value of the auxiliary SDP

minimize s
subject to F(x) = sl

is positive. Show that the optimal value is attained. If follows from the discussion
in §5.9.4 that the systems (5.117) and (5.116) are strong alternatives.

Hint. The proof simplifies if you assume, without loss of generality, that the matrices
F1, ..., F, are independent, so (5.118) may be replaced by >~ 0 F; = 0= v =0.

(b) Take n =1, and
0 1 0 0
GL 0}’ F1[01]'

Show that (5.117) and (5.116) are both infeasible.

Solution.

(a) Suppose that the optimal value is finite but not attained, i.e., there exists a sequence
(x® sk =0,1,2,..., with

PR+ 2P, G = sMT (5.44.A)

for all k, and s} — s* > 0. We show that the norms ||z*)||> are bounded.
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Suppose they are not. Dividing (5.44.A) by [|z¥) |2, we have
A/[lz® )G + vV Fy 4 -+ 0P Fy 2w

where v®) = z® /]|2®)]|5, w® = s®) /]|2®)||5. The sequence (v™*,w™) is bounded,
so it has a convergent subsequence. Let ¥, w be its limit. We have

1_)1F1+"'+7_1nFnj07

since w must be zero. By assumption, this implies that v = 0, which contradicts our
assumption that the sequence z™*) is unbounded.

Since it is bounded, the sequence z® must have a convergent subsequence. Taking
limits in (5.44.A), we get

TP+ 4+ TaFn+ G 257,

i.e., the optimum is attained.
The LMI is

T1 1
<
which is infeasible. The alternative system is

|: 211 zZ12

=0, 222 = 0, z12 > 0,
z12 222

which is also impossible.
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Approximation and fitting



6.1

6.2

6.3

Exercises

Exercises

Norm approximation and least-norm problems

Quadratic bounds for log barrier penalty. Let ¢ : R — R be the log barrier penalty

function with limit a > 0:

() = { —a?log(1 — (u/a)?) |u|<a

00 otherwise.

Show that if u € R™ satisfies ||u]|oc < a, then

ulld < 3 pus) < 2Lle) 2

= luliE

This means that > ¢(u;) is well approximated by [|u|3 if |lulls is small compared to

a. For example, if ||ul|o/a = 0.25, then

lull3 <> ¢lws) < 1.033- fJull3.

i=1

Solution. The left inequality follows from log(1 + z) < x for all z > —1.
The right inequality follows from convexity of —log(1 — z):

2
U;
fbmfﬁmﬂswmymufwﬂmﬂ

and therefore

a
[l

m 2
a3 log(1 - u?/a?) < —a® V2 1og(1 — fu)2 /a?).
=1

ly-, ba-, and Lo -norm approximation by a constant vector. What is the solution of the

norm approximation problem with one scalar variable z € R,
minimize ||zl — b,

for the ¢1-, f2-, and foc-norms?

Solution.

(a) f2-norm: the average 17b/m.
(b) ¢1-norm: the (or a) median of the coefficients of b.

(¢) €oo-norm: the midrange point (maxb; — minb;)/2.

Formulate the following approximation problems as LPs, QPs, SOCPs, or SDPs.

problem data are A € R™*™ and b € R™. The rows of A are denoted a? .

(a) Deadzone-linear penalty approximation: minimize Z:’;l é(al'z —b;), where

¢>(u)={ 0 jul < @

uf —a  |u[ > a,

where a > 0.

The
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b) Log-barrier penalty approzimation: minimize S . ¢(alz — b;), where
=1

| —a®log(1 - (u/a)®) |u|<a
Plu) = { o [ul > a,
with a > 0.

(¢) Huber penalty approzimation: minimize Zzl é(alz — b;), where

o) ={ ) =
T MQ2u| - M) |u| > M,
with M > 0.
(d) Log-Chebysheuv approzimation: minimize max;—1,.._m |log(al x)—logb;|. We assume
b > 0. An equivalent convex form is
minimize ¢
subject to 1/t <alz/bi<t, i=1,...,m,
with variables z € R™ and t € R, and domain R" x Ry .
(e) Minimizing the sum of the largest k residuals:
minimize Zle 7] 14)
subject to r = Ax — b,
where |r|g) > |rlg) = -+ > |r|pm) are the numbers |ri|, |r2|, ..., |rm| sorted in

decreasing order. (For k = 1, this reduces to £e-norm approximation; for k = m, it
reduces to ¢1-norm approximation.) Hint. See exercise 5.19.

Solution.
(a) Deadzone-linear.

minimize 17y
subject to —y—al K Az —b=<y+al
y = 0.
An LP with variables y € R™, x € R".

(b) Log-barrier penalty. We can express the problem as
maximize H:il t?
subject to (1 —y;/a)(1+yi/a) >t7, i=1,...,m

-1<y/a<1l, i=1,....,m

y= Ax — b,

with variables t € R™, y €¢ R™, z € R".

We can now proceed as in exercise 4.26 (maximizing geometric mean), and reduce
the problem to an SOCP or an SDP.

(c) Huber penalty. See exercise 4.5 (c), and also exercise 6.6.

(d) Log-Chebyshev approximation.

minimize ¢t
subject to 1/t <alax/bi<t, i=1,...,m

over x € R™ and ¢t € R. The left inequalities are hyperbolic constraints

ta?x > by, t>0, aiTx >0



6.4 A differentiable approzimation of £1-norm approzimation. The function ¢(u) = (u®4-¢)

Exercises

that can be formulated as LMI constraints

t Vb
[\/171- aiTx]>0’

or SOC constraints

T
t—ajw ]H2St+ai -

(e) Sum of largest residuals.

minimize kt +17z
subject to —tl—z<Ax—b=tl+z
z =0,
with variables z € R", t € R, z € R™.
1/2

with parameter € > 0, is sometimes used as a differentiable approximation of the absolute
value function |u|. To approximately solve the ¢;-norm approximation problem

minimize |[|Az — b||1, (6.26)

where A € R™*", we solve instead the problem
minimize " dlafz — b)), (6.27)

where a7 is the ith row of A. We assume rank A = n.

Let p* denote the optimal value of the ¢;-norm approximation problem (6.26). Let &
denote the optimal solution of the approximate problem (6.27), and let # denote the
associated residual, # = Az — b.

(a) Show that p* > 3" #7/(77 + €)'/%.
(b) Show that
. N |74]
[AZ — bl <p +Z\7’i| (1— CEDEIE
=1

(By evaluating the righthand side after computing &, we obtain a bound on how subop-
timal Z is for the ¢;-norm approximation problem.)

Solution. One approach is based on duality. The point £ minimizes the differentiable
convex function » " é(alz —b;), so its gradient vanishes:

Now, the dual of the £1-norm approximation problem is

maximize ZZI bid;
subject to  |A;| <1, i=1,...,m
Z:il )\iai =0.

Thus, we see that the vector
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is dual feasible. It follows that its dual function value,

=1

A=

—b;7;
72 +¢)1/2’

provides a lower bound on p*. Now we use the fact that Z:’;l Xia; = 0 to obtain

P>

P2

GEDRE

Now we establish part (b). We start with the result above,

m
Pz R/

i=1

and subtract [|AZ —blly = > | || from both sides to get

p"—|Az — bl >

Re-arranging gives the desired result,

PR GG ORI )

) C N |ri]
Az — bl <p +Z|n|<1(7,3+6)1/2 :

i=1

6.5 Minimum length approximation. Consider the problem
minimize  length(z)
subject to  ||Az — b|| <€,

where length(z) = min{k | ; = 0 for ¢ > k}. The problem variable is z € R"; the
problem parameters are A € R™*™, b € R™, and € > 0. In a regression context, we are
asked to find the minimum number of columns of A, taken in order, that can approximate

the vector b within e.

Show that this is a quasiconvex optimization problem.
Solution. length(z) < « if and only if z;, = 0 for k > «. Thus, the sublevel sets of length

are convex, so length is quasiconvex.

6.6 Duals of some penalty function approximation problems. Derive a Lagrange dual for the
problem
minimize Y $(ri)
subject to 1= Ax — b,

for the following penalty functions ¢ : R — R. The variables are x € R"™, r € R™.
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(a) Deadzone-linear penalty (with deadzone width a = 1),

_J0 uf <1
$lu) = { =1 Ju > 1.
(b) Huber penalty (with M = 1),
u? lul <1
o) = { 2ul —1 |u| > 1.
(¢) Log-barrier (with limit a = 1),
¢(u) = —log(1—2*),  dom¢ = (—1,1).

(d) Relative deviation from one,

U u>1
¢(u) = max{u,1/u} = { Vu u<1,
with d0m¢ = R++.
Solution. We first derive a dual for general penalty function approximation. The La-
grangian is
L(z,r,\) = Z(j)(ri) + v (Az —b—7).
i=1

The minimum over z is bounded if and only if ATv = 0, so we have

) = —bTv+ Zlil inf,, (p(r:) — virs) ATy =0
IV = _x otherwise.

Using
inf(¢(ri) —viri) = —sup(viri — §(ri)) = —¢" (i),
we can express the general dual as
maximize —bTv — S ()
subject to ATy =0.

Now we’ll work out the conjugates of the given penalty functions.

(a) Deadzone-linear penalty. The conjugate of the deadzone-linear function is

sy )l e <1
¢(Z)_{oo lz| > 1,

so the dual of the dead-zone linear penalty function approximation problem is

maximize —bTv — [k
subject to AT =0, ||V|e < 1.

(b) Huber penalty.
wm_{fﬂ |2 <2

o0 otherwise,
so we get the dual problem
maximize —(1/4)||v||3 — bV
subject to ATy =0
[Vfloo < 2.
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(¢) Log-barrier. The conjugate of ¢ is

o (2) sup (wz + log(1 — x2))

|z|<1

= —14+/1+22+1log(—1++/1+ 22)—2log|z| + log2.

(d) Relative deviation from one. Here we have

P (2) = Sl;[;(:l:z —max{z,1/z}) =

{ —2v—z z< -1

Plugging this in the dual problem gives

maximize —bTv + Z:ll s(vi)
subject to ATv =0, v=<1,

where
-1
—1.

s(vi) = { Vo

B 1—Vi 1Z3

IV IA

Regularization and robust approximation

Bi-criterion optimization with Euclidean norms. We consider the bi-criterion optimization
problem
.. . 2 2 2
minimize (w.r.t. R7)  (||Az — b||3, ||z||3),

where A € R™*™ has rank r, and b € R™. Show how to find the solution of each of the
following problems from the singular value decomposition of A,

A= Udiag(o)VT = Zaiuiv?
i=1

(see §A.5.4).

(a) Tikhonov regularization: minimize || Az — b||3 + &||z||3.
(b) Minimize ||Az — b||3 subject to ||z||3 = .
(c) Maximize ||Az — b||3 subject to ||z||3 = 7.

Here § and ~ are positive parameters.

Your results provide efficient methods for computing the optimal trade-off curve and the
set of achievable values of the bi-criterion problem.

Solution. Define ~
g= V"2, Vi), b= (U"bUb).

where Vo € R™("™") gatisfies Vo' Vo = I, ViV = 0, and Us € R™ (™7 gatisfies
Ui Uz =1,U3 U =0. We have

T

Az~ bl = (a5 + S B Jeli=Y @

i=1 i=r+1 =1

We will use T as variable.
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(a) Tikhonov regularization. Setting the gradient (with respect to Z) to zero gives

(U?+5)ii20igi, 1=1,...,7 z;, =0, 2=7r+1,...,n
The solution is

- bio; , - )
xi:5+012, t=1,...,m7, z; =0, i=r+1,...,n

In terms of the original variables,

(u; b ).

Z

If 6 = 0, this is the least-squares solution
2=Ab=VEUTb = (1/03)(u] b)ui.
i=1
Ifé > 0 each component (u; b)v; receives a weight o;/(6 + o7). The function

a/(8 + o?) is zero if 0 = 0, goes through a maximum of 1/(1 + ) at ¢ = §, and
decreases to zero as 1/0 for o — oo.
In other words, if o; is large (o; > ), we keep the ith term in the LS solution. For
small o; (0; ~ § or less), we dampen its weight, replacing 1/0; by a;/(6 + ).

(b) After the change of variables, this problem is

minimize Z: I(GZCEZ —b )2 + Z:ir+1 i)?
subject to ZZL 1 T3 P=n.

Although the problem is not convex, it is clear that a necessary and sufficient condi-
tion for a feasible Z to be optimal is that either the gradient of the objective vanishes
at Z, or the gradient is normal to the sphere through #, and pointing toward the
interior of the sphere. In other words, the optimality conditions are that ||Z||3 = ~
and there exists a v > 0, such that

2 - 5 . .
(o7 + V)T =o3bs, i=1,...,1, vi; =0, i=r+1,...,n

We distinguish two cases.
o If Y7 (bi/oi)* <, then v =0 and

ii:biai, 7::1,...,7",

(i.e., the unconstrained minimum) is optimal. For the other variables we can
choose any &;, i = r + 1,...,n that gives ||Z||3 = .

o If T (bi/os)? > ~, we must take v > 0, and

~ bio; . - .
Ti = — , t=1,...,7 z; =0, t=r+1,...,n.
o +v

We determine v > 0 by solving the nonlinear equation

n r ~ 2
~2 bio; _
23 (475) =

i=1 i=1

The left hand side is monotonically decreasing with v, and by assumption it is
greater than v at v = 0, so the equation has a unique positive solution.
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(c) After the change of variables to &, this problem reduces to

maximize Y, (0% — bi)? + Dt b
subject to Y. | & =1.

Without loss of generality we can replace the equality with an inequality, since a
convex function reaches its maximum over a compact convex on the boundary. As
shown in §B.1, strong duality holds for quadratic optimization problems with one
inequality constraint.

In this case, however, it is also easy to derive this result directly, without appealing
to the general result in §B.1. We will first derive and solve the dual, and then show
strong duality by establishing a feasible £ with the same primal objective value as
the dual optimum.

The Lagrangian of the problem above (after switching the sign of the objective) is

=1 i=r41 i=1
- XT:(V —a})E + 223 oibiF; — Xn: 2 — 0.
=t i=1 i=1

L is bounded below as a function of Z only if v > ¢%, or if v = ¢? and by = 0. The
infimum is

r ~ n
. N (0:b;)? 72
fL =— AV 2 _
in (z,v) Z v—o? Z b; — v,
i=1 i=1
with domain [0, 00), and where for v = ¢} we interpret E%/(V — 0?) as oo if by #

0, and as 0 if by = 0. The dual problem is therefore (after switching back to
maximization)

minimize  g(v) = 22:1(51-02-)2/(1/ — o)) +uvy+ Z?:l b2
subject to v > o?.

The derivative of g is
~  (bioy)?
=2 o

We can distinguish three cases. We assume that the first singular value is repeated
k times where k < r.

e g(0?) = co. This is the case if at least one of the coefficients b1, ..., by is
nonzero.
. . 2 .
In this case g first decreases as we increase v > oi and then increases as v goes
to infinity. There is therefore a unique v > o} where the derivative is zero:

~ (bioi)?
z:: W= "

From v we compute the optimal primal Z as

i=1,...,7, z; =0, 2=r4+1,...,n.
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This point satisfies ||Z||> = v and its objective value is

- leZ—QZUmel Zb2 v—QZmbxz Zb + vy
i=1

I
-1
=
3
T

i=1
o2 b2
= Z + Z b2 + vy
i=1
= g).
By weak duality, this means T is optimal.
e g(0?) is finite and g'(07) < 0. This is the case when by = --- = by = 0 and

,
12 (szz)
g'(o1) =— g + 7 <0.
Z (0 —07)?
i=k+1
As we increase v > o7, the dual objective first decreases, and then increases as

v goes to infinity. The solution is the same as in the previous case: we compute
v by solving ¢'(v) = 0, and then calculate Z as above.

e g(o?) is finite and ¢’(o?) > 0. This is the case when b; = --- = by = 0 and
poon N (Bioi)?
9(01)——.;1W+720~

In this case v = o7 is optimal. A primal optimal solution is

g'(v) i=1
54 0 i=1,...,k
) —bioi/(0?—02) i=k4+1,...,r
0 i=r+1,...,n

(The first k coefficients are arbitrary as long as their squares add up to g'(v).)
To verify that & is optimal, we note that it is feasible, i.e.,

- bio?
121 = ¢'(v) + g =
2 Ty

and that its objective value equals g(o?):

Z(O’?f? — 20‘,‘?)1531') = O‘%gl((f%) = Z (U?f? — 20‘1‘?)1'55‘7;)
i=1 i=k+1
,
= o} <g/(0%) + Z ) + Z o —ot)E; — QUzbla:l)
i=k+1 i=k+1
= oiv+ Y (07 —oh)at —20:bid)
i=k+1
a bio
= oiv+ Z 521_1272
1 i
i=k+1
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6.8 Formulate the following robust approximation problems as LPs, QPs, SOCPs, or SDPs.
For each subproblem, consider the ¢1-, £2-, and the £o-norms.

(a) Stochastic robust approzimation with a finite set of parameter values, i.e., the sum-

of-norms problem
minimize Zf:l pil|Aiz — b||
where p = 0 and 17p = 1. (See §6.4.1.)
Solution.
e /i-norm:
minimize Zle pilTy;
subject to —y; X Aix —b=<vy;, i=1,...,k.
An LP with variables x € R", y; e R™,i=1,... k.
e (s>-norm:
minimize  pTy
subject to  ||Aiz —b|l2 <wyi, i=1,...,k.
An SOCP with variables z € R", y € R".
o {so-norm:
minimize pTy
subject to —y;1 S Ajx—b<wyl, i=1,...,k.

An LP with variables z € R", y € R".

(b) Worst-case robust approzimation with coefficient bounds:

minimize sup,c 4 [|[Az — b||

where
AZ{AERmxn |lz] Saij Suij7 1= 1,...,m, j:l,...,n}.
Here the uncertainty set is described by giving upper and lower bounds for the
components of A. We assume [;; < u;;.
Solution. We first note that

T T T
sup  |a; x —b;y| = sup  max{a; ¢ — b;,—a; x +b;}
lij<aij<ugj lij<aij<ugj
T T
= max{ sup (a;jx—10b;), sup (—a;z+b)}.
lij<a;j<u;j lij<ai;j<u;;
Now,
n n
5 bi)=a;z—b
sup () ayz; —bi) =a; T —bi + > wijlz;]
lij<aij<u;j; =1 =1

where Flij = (lZ] + uij)/2, and Vij = (’U”;j — l”)/Q, and

n

n
T
sup  (— g ai;x; + b)) = —a; z+ b + E vij |z
Lo <as:<uwss
i S SUG j=1 =1

Therefore

n
sup  aj & —bi| = |&?w—b¢|+2vij|mj\.
lij<a;j<u; j=1
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e (1-norm:
minimize Z:il (|&Z~T:r —bi| + Z;:1 vij\xj|> .
This can be expressed as an LP
minimize 1% (y + Vw)

—yXAr—-b=y
—w T X w.

The variables are z € R", y € R™, w € R".
e /o-norm:

2
minimize ) " <|&iT:r —bi| + Z?:1 'Uij|x]") .
This can be expressed as an SOCP
minimize ¢
subject to —y XAz —b=<y

—w =z =<w
ly + Vwl2 < t.

The variables are z ¢ R™", y ¢ R™, w € R", t € R.
o /oo-norm:

minimize max;=1,...,m (\&fx —bi| + Z?:l 'Uijll'j|) .
This can be expressed as an LP
minimize ¢ ~
—y2Az-b=y
—w =z W
—t1 X y+Vw < {1
The variables are z € R", y ¢ R™, w e R", t € R.

(c) Worst-case robust approzimation with polyhedral uncertainty:
minimize sup ¢ 4 ||[Az — b

where

A:{[al am]T | Ciai jdi, izl,...,m}.
The uncertainty is described by giving a polyhedron P; = {a; | Cia; < d;} of possible
values for each row. The parameters C; € R?i*" d;, € RP*, i =1,...,m, are given.
We assume that the polyhedra P; are nonempty and bounded.

Solution. P; = {a | Cia < d;}.

sup laj @ —bj| = sup max{a]x —b;, —a] x + b;}
a; €EP; a; EP;
= max{ sup (a; z) — bi, sup (—a; x) + b;}.
a; €EP; a; €EP;
By LP duality,
sup arz = inf{diTv | Clv=ug, v= 0}
a; €EP;
sup (—a; ) = inf{d]w|Clw=—z, w=0}.

a; €P;
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Therefore, ¢; > sup,, cp, |aTz — b;| if and only if there exist v, w, such that
v,w = 0, x:CiTv:—CiTw7 dfv < t;, dfw < t;.

This allows us to pose the robust approximation problem as

minimize  ||¢]]
subject to x=CTv;, x=—-Clw; i=1,...,m
d?vigti7 d?wigth 1217...,171
vi,wito, i=1,...,m.
e /i-norm:
minimize 17t
subject to z=CTv;, x=-Clw;, i=1,...,m
T T .
divigti, diwigti, 2:1,...,m
vi,w; =0, 1=1,...,m.
e /s-norm:
minimize u
subject to z=Clv;, x=-Clw; i=1,....,m
T T .
divigti, diwigti, 2:1,...,m
vi,w; =0, 1=1...,m
ltl2 < u.

e /s -norm:
minimize ¢

subject to = Clv;, x=-Clw; i=1,....,m
dfv; < t, dfw; <t, i=1,...,m
vi,wito, i=1,...,m.

Function fitting and interpolation
Minimaz rational function fitting. Show that the following problem is quasiconvex:

p(ti)
q(t:)

minimize max
i=1,...,k

i

where
p(t) = ao+ art +ast® + -+ amt™,  q(t) =14 bit + -+ but",
and the domain of the objective function is defined as
D ={(a,b) e R™ xR" | q(t) >0, a <t < f}.

In this problem we fit a rational function p(t)/q(t) to given data, while constraining the
denominator polynomial to be positive on the interval [c, 3]. The optimization variables
are the numerator and denominator coefficients a;, b;. The interpolation points ¢; € [, 8],
and desired function values y;, i = 1,...,k, are given.
Solution. Let’s show the objective is quasiconvex. Its domain is convex. Since q(t;) > 0
fori=1,...,k, we have

~max [p(ti)/q(ti) —yi| <

i=1,...,k
if and only if

—vq(ti) < p(t:) —yiq(ti) <vq(ti), i=1,....k,

which is a pair of linear inequalities.
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Fitting data with a concave nonnegative nondecreasing quadratic function. We are given
the data
z1,...,o8 € R", y1,...,yN € R,

and wish to fit a quadratic function of the form
f@)=1/2)2"Pz+q"z+m,

where P € S™, ¢ € R", and r € R are the parameters in the model (and, therefore, the
variables in the fitting problem).

Our model will be used only on the box B={z € R" |l <z < u}. You can assume that
| < u, and that the given data points x; are in this box.

We will use the simple sum of squared errors objective,

as the criterion for the fit. We also impose several constraints on the function f. First,
it must be concave. Second, it must be nonnegative on B, i.e., f(z) > 0 for all z € B.
Third, f must be nondecreasing on B, i.e., whenever z, Z € B satisfy z < Z, we have
f(z) < f(2).

Show how to formulate this fitting problem as a convex problem. Simplify your formula-
tion as much as you can.

Solution. The objective function is a convex quadratic function of the function pa-
rameters, which are the variables in the fitting problem, so we need only consider the
constraints. The function f is concave if and only if P < 0, which is a convex constraint,
in fact, a linear matrix inequality. The nonnegativity constraint states that f(z) > 0 for
each z € B. For each such z, the constraint is a linear inequality in the variables P, q, r,
so the constraint is the intersection of an infinite number of linear inequalities (one for
each z € B) and therefore convex. But we can derive a much simpler representation for
this constraint. Since we will impose the condition that f is nondecreasing, it follows that
the lowest value of f must be attained at the point [. Thus, f is nonnegative on B if and
only if f(I) > 0, which is a single linear inequality.

Now let’s look at the monotonicity constraint. We claim this is equivalent to V f(z) = 0
for z € B. Let’s show that first. Suppose f is monotone on B and let z € int B. Then
for small positive t € R, we have f(z 4 te;) > f(z). Subtracting, and taking the limit as
t — 0 gives the conclusion V f(z); > 0. To show the converse, suppose that Vf(z) > 0
on B, and let z, Z € B, with z < Z. Define g(t) = f(z + t(Z — z)). Then we have

()= fz) = g(1)—g(0)

> 0,
since Z—z = 0 and Vf = 0 on B. (Note that this result doesn’t depend on f being
quadratic.)

For our function, monotonicity is equivalent to Vf(z) = Pz + ¢ = 0 for z € B. This
too is convex, since for each z, it is a set of linear inequalities in the parameters of
the function. We replace this abstract constraint with 2™ constraints, by insisting that
Vf(z) = Pz+q »= 0 must hold at the 2" vertices of B (obtained by setting each component
equal to I; or u;). But there is a far better description of the monotonicity constraint.
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Let us express P as P = Py — P_, where Py and P_ are the elementwise positive and
negative parts of P, respectively:

(P4)ij = max{P;;, 0}, (P-)ij = max{—P;;,0}.

Then
Pz4+q>=0 foralll<z=<u

holds if and only if
Pil—P_u+q=0.

Note that in contrast to our set of 2™ linear inequalities, this representation involves
n(n + 1) new variables, and n linear inequality constraints.

(Another method to get a compact representation of the monotonicity constraint is based
on deriving the alternative inequality to the condition that Pz 4+ q > 0 for I < z < u; this
results in an equivalent formulation.)

Finally, we can express the problem as

minimize Zi\;l ((1/2)mfpwi +q "z +r— %)2
subject to P =<0
(1/2)I"Pl+q"l+7 >0
P=Py—P., (Pi)i; =20, (P-)i;=0
Pil—P_u+q>0,

with variables P, P, P_ € S™, q € R, and r € R. The objective is convex quadratic, there
is one linear matrix inequality (LMI) constraint, and some linear equality and inequality
constraints. This problem can be expressed as an SDP.

We should note one common pitfall. We argue that f is concave, so its gradient must be
monotone nonincreasing. Therefore, the argument goes, its ‘lowest’ value in B is achieved
at the upper corner u. Therefore, for Pu+¢q > 0 is enough to ensure that the monotonicity
condition holds. One variation on this argument holds that it is enough to impose the
two inequalities Pl 4+ ¢ >= 0 and Pu+ ¢ = 0.

This sounds very reasonable, and in fact is true for dimensions n = 1 and n = 2. But
sadly, it is false in general. Here is a counterexample:

-1 1 -1 1 1.1 2.1
P=| 1 -10 o, I=] -1, u=| 1], g=1 20].
0 1 20

-1 0 -10
It is easily checked that P <0, Pl + q = 0, and Pu+ q > 0. However, consider the point

ro1
z= | —1
1

)

which satisfies [ < z < u. For this point we have

[ —0.9
Pz+q= 31 | #0.
L 9
Least-squares direction interpolation. Suppose Fi,...,F, : R¥ — RP, and we form the

linear combination F : R¥ — RP?,
Flu)=z1Fi(u) + -+ znFn(u),

where z is the variable in the interpolation problem.
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In this problem we require that Z(F(vj),q;) =0, j = 1,...,m, where g; are given vectors
in RP, which we assume satisfy ||gj|l2 = 1. In other words, we require the direction of
F to take on specified values at the points v;. To ensure that F(v;) is not zero (which
makes the angle undefined), we impose the minimum length constraints ||F(v;)|l2 > e,
7 =1,...,m, where ¢ > 0 is given.

Show how to find 2 that minimizes ||2||?, and satisfies the direction (and minimum length)
conditions above, using convex optimization.

Solution. Introduce variables y;, and constraints

F(vj) = y;4, Yj > €

and minimize ||z|*. This is a QP.

6.12 Interpolation with monotone functions. A function f : R* — R is monotone nondecreas-
ing (with respect to RX) if f(u) > f(v) whenever u > v.

(a)

(b)

Show that there exists a monotone nondecreasing function f : R¥ — R, that satisfies
f(ui) =y; for i =1,...,m, if and only if

yi > y; whenever u; = u;, ¢, j=1,...,m.
Show that there exists a convex monotone nondecreasing function f : R¥ — R, with
dom f = R”, that satisfies f(u;) = y; for ¢ = 1,...,m, if and only if there exist
gi € R*¥. i=1,...,m, such that

g’bioa i:17"'7m7 y]2y1+ng(u]7u’L)7 ivjzla"'7m'

Solution.

(a)

The condition is obviously necessary. It is also sufficient. Define
f(z) = maxy;.
u; 2z
This function is monotone, because v < w always implies

f(v) = maxy; < maxy; = f(w).

u; v w; 3w
f satisfies the interpolation conditions if

f(ui) = max y; = yi,

uj U
which is true if w; = u; implies y; > y;.

If we want dom f = R*, we can define f as

f(a:)—{ min; y; rFu, t=1,...,m

max.; <« ¥i otherwise.

We first show it is necessary. Suppose f is convex, monotone nondecreasing, with
dom f = RF, and satisfies the interpolation conditions. Let g; be a normal vector
to a supporting hyperplane at u; to f, i.e.,

f@) > yi+ gl (x —wi),

for all z. In particular, at * = u;, this inequality reduces to

yi > i+ i (- ),
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It also follows that g; > 0: If g;x < 0, then choosing x = u; — ey gives

f@) >y + g8 (x—w) =yi — gi > yi,

so f is not monotone.
To show that the conditions are sufficient, consider

fl@) = max (i +9i (x —w)).

i=1,
f is convex, satisfies the interpolation conditions, and is monotone: if v < w, then
T T
Yi+gi (v—w) <yi+g; (w—u)
for all ¢, and hence f(v) < f(w).

Interpolation with quasiconvex functions. Show that there exists a quasiconvex function
f:R* — R, that satisfies f(u;) = y; for i = 1,...,m, if and only if there exist g; € R,
i=1,...,m, such that

g;'T(Uj —u;) < —1 whenever y; <y;, 4, j=1,...,m.

Solution. We first show that the condition is necessary. For each i = 1,...,m, define
Ji={j=1,...,m|y; <y} Suppose the condition does not hold, i.e., for some i, the
set of inequalities

9i (u; —u;) < =1, j€EJ;

is infeasible. By a theorem of alternatives, there exists A > 0 such that

ij(uj—ui):(), ZAJ':L

JjeJi Jj€J;
This means u; is a convex combination of u;, 7 € J;. On the other hand, y; > y; for
j € Ji, soif f(ui;) =y; and f(u;) = y;, then f cannot be quasiconvex.

Next we prove the condition is sufficient. Suppose the condition holds. Define f : R* — R
as

f(x) = max {ymin, max{y; | gf (z — u;) > 0}}
where Ymin = min; y;.
We first verify that f satisfies the interpolation conditions f(u;) = y;. It is immediate
from the definition of f that f(u;) > y;. Also, f(u;) > y; only if ng(m —u;) > 0 for some
j with y; > y;. This contradicts the definition of g;. Therefore f(u;) = y;.
Finally, we check that f is quasiconvex. The sublevel sets of f are convex because f(z) < «
if and only if

g (@—u)>0 = y;<a

or equivalently, gJT(:c —uj) < 0 for all j with y; > a.

[Nes00] Interpolation with positive-real functions. Suppose z1,...,2z, € C are n distinct
points with |z;| > 1. We define Ky as the set of vectors y € C™ for which there exists a
function f: C — C that satisfies the following conditions.

o f is positive-real, which means it is analytic outside the unit circle (i.e., for |z| > 1),
and its real part is nonnegative outside the unit circle (Rf(z) > 0 for |z| > 1).

e f satisfies the interpolation conditions
f(zl):ylv f(22)2y27 (RN f(zn):yn
If we denote the set of positive-real functions as F, then we can express Kyp as

KDP:{yECn|E|fe:F7 Z/k:f(zk): k:177n}
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(a) It can be shown that f is positive-real if and only if there exists a nondecreasing
function p such that for all z with |z| > 1,

27 4 —
67,9 4z 1
et — »—1

£(2) = i (00) + / ap(0),

where i = v/—1 (see [KNT77, page 389]). Use this representation to show that Ky,
is a closed convex cone.

Solution. It follows that every element in K., can be expressed as il + v where
a € R and v is in the conic hull of the vectors

0 —1 0 —1 i@ —1
v(9)2<2_6+21 ¢ trm o C +"1), 0<6<2m

1
Wz e — 2z et — z,

Therefore K, is the sum of a convex cone and a line, so it is also a convex cone.
Closedness is less obvious. The set

C={v0)|0<6<2r}

is compact, because v is continuous on [0, 27]. The convex hull of a compact set is
compact, and the conic hull of a compact set is closed. Therefore Ky is the sum of
two closed sets (the conic hull of C' and the line iaR), hence it is closed.

(b) We will use the inner product R(2"y) between vectors x,y € C™, where 2 denotes
the complex conjugate transpose of . Show that the dual cone of K, is given by

S(17x) =0, %(le +Z’ >>0vee[o zn}}

Ky = {xEC"

Solution. z € K, if
R((iol +v)"z) = aS(1"Tz) + R@w7z) >0

for all @ € R and all v in the conic hull of the vectors v(#). This condition is
equivalent to I(17x) = 0 and R(v(8)¥ ) > 0 for all § € [0, 27].
(c) Show that

Ky, = {xEC"

HQEHK, l‘l:z%, l=1,...,n}

where H'{ denotes the set of positive semidefinite Hermitian matrices of size n x n.

Use the following result (known as Riesz-Fejér theorem; see [KN77, page 60]). A

function of the form
n

Z(yke—ikﬂ + ﬂk eik@)

k=0
is nonnegative for all 6 if and only if there exist ao,...,an, € C such that
n n 2
Z(ykeilkg + gkesz) _ Z akezke
k=0 k=0

Solution. We first show that any x of the form

n

xlzz%, l=1,...,n, (6.14.A)

1-2, "%
k=1
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where @ € HY, belongs to K,,. Suppose z satisfies (6.14.A) for some Q € H}. We

have

Also,

\%

2i3(17z) = 1"z-1"z
_ Qri Qi
- Zzl_z —221_Z
k=1 1=1 k=1 1=1
_ Qrt Qi
= ZZ—H —ZZI_,_
k=1 1=1 1=1 k=1
= 0.
Zmle 0
=1
R[Sy Qu e
1—z tlz7le—10 — 371
k=1 1=1 l
lzn:zn: Qu e 9+211+ Que 4t
2k—1 — 1—2;1,2[16_’6—571 1—2];121 ew—zfl
1 n n le e 10+Z 1 616+Z;1
§Zzl_z—1z T gm0 517 gio _ -1
k=1 I=1 k k
1 - Qr 2(1— 2% ")
Qk:” L=z (e — 2 M) (e — 27 )
Y\ Qi
0 _ 1 —if _ 1
il G
0.
€ K.

Therefore x

Conversely,

suppose x € K, i.e., 3(17z) = 0 and the function

R(0)

=1
ZZ;S (ykefikQ + gkeike)

Hlnzl e — Zf1|2

for some y. The last line follows by bringing all terms in the previous line on the
same denominator. The absence of a term k& = n in the numerator on the last line
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requires some explanation. The coefficient of the term e'™?/ I, le? — 2712 is

In = %ZZ:(“ZZZIH(—?J)—M1H(_2’“1)>

kil kAl
RGO R s PN .

= 5 (gzk )> lzzl(ml - Z1)
- 0

because I(17z) = 0.

Applying the Riesz-Fejér theorem to the numerator in the last expression for R we

get
n—1 iko |2
R(9) = | 2= ¢
H?:l(elg - Zl_l)

for some set of coefficients ax, and hence

L
R(0) = Z eit — y—1
=1 l
for some b € C". Therefore
n n bkEl
R(O) = ; -1 ; —1
; ; (e — 2z, ) e —z )
I bib e e T
2] — 207 e —z7 ' et — 2t
- " & bkl_)l e + z 1
N 1— 2tz emio — 771
1=1 k=1 ko=l l

Since the functions (e =%

i +2)/(e"" — ") are linearly independent, we conclude
that

n _
Z brb;
T = 1 10
1—2_ "z~
k=1 ko=

i.e., we can choose Q = bb¥.

(d) Show that K., = {y € C" | P(y) = 0} where P(y) € H" is defined as

15
P(y)kl:%, Lk=1,...,n.
1—2,"2

The matrix P(y) is called the Nevanlinna-Pick matriz associated with the points
Zky Yk-

Hint. As we noted in part (a), Ky is a closed convex cone, so Kyp = K;p.
Solution. From the result in (c), € K} if and only if for all Q € HY,

1
Ra"y) = Sy +yTa)
n n
1 Qi _ Qi
= = +
2 P (yl 1-z 170 M1 1zt
=1 k=1
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~ Yt + Uk
- on (1>

N[ =

AV
o ot
~
~ ~
Q
i)
—~
<
— =
—

In other words, if and only if P(y) = 0.

As an application, pose the following problem as a convex optimization problem:

minimize Z:Zl | f(z1) — wi|?
subject to f € F.

The problem data are n points zx with |zx| > 1 and n complex numbers w1, ...,
wy. We optimize over all positive-real functions f.

Solution. We can express this problem as

minimize ZZ:1 [y — wi|?
subject to  P(y) = 0,

where P(y) is the Nevanlinna-Pick matrix, and the variable is the (complex) vector
y. Since P is linear in y, the constraint is a (complex) LMI, which can be expressed
as a real LMI in the real and imaginary parts of y, following exercise 4.42. The
objective is (convex) quadratic.
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Exercises

Exercises

Estimation

Linear measurements with exponentially distributed moise. Show how to solve the ML
estimation problem (7.2) when the noise is exponentially distributed, with density

a)e 2
o= { Qo 22

where a > 0.

Solution. Solve the LP
minimize 17 (y — Az)
subject to Az < y.

ML estimation and £oo-norm approximation. We consider the linear measurement model
y = Az + v of page 352, with a uniform noise distribution of the form

p(z):{ 1/(20) |z <o

0 |z| > .

As mentioned in example 7.1, page 352, any = that satisfies ||Az — y|lcc < a is a ML
estimate.

Now assume that the parameter « is not known, and we wish to estimate «, along with
the parameters z. Show that the ML estimates of z and a are found by solving the
{-norm approximation problem

minimize ||Az — yl|co,

where a? are the rows of A.
Solution. The log-likelihood function is

— <
I(z,0) = mlog(l/2a) || Ax yHoo <a
—00 otherwise.
Maximizing over « and y is equivalent to solving the /o.-norm problem.
Probit model. Suppose y € {0, 1} is random variable given by

1 d"u+b+v<0
L au4+b+v>0,

where the vector u € R" is a vector of explanatory variables (as in the logistic model
described on page 354), and v is a zero mean unit variance Gaussian variable.

Formulate the ML estimation problem of estimating a and b, given data consisting of
pairs (ui,yi), ¢ = 1,..., N, as a convex optimization problem.
Solution. We have

prob(y = 1) = Q(a"u + b), prob(y=0)=1-Q(a"u+b) = P(—a"u —b)

1 o] t2/2
zZ) = —— e dt.
=) V2m /z
The log-likelihood function is

l(a,b) = Z log Q(a" u; + b) + Z log Q(—a" u; —b),

yi=1 y;=0

where

which is a concave function of a and b.
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7.4 Estimation of covariance and mean of a multivariate normal distribution. We consider the
problem of estimating the covariance matrix R and the mean a of a Gaussian probability
density function

Pr.a(y) = (2m)"* det(R) "2 exp(—(y — a) "R~ (y — a) /2),
based on N independent samples y1, y2, ..., ynv € R".

(a) We first consider the estimation problem when there are no additional constraints
on R and a. Let p and Y be the sample mean and covariance, defined as

N N
— 1 _ 1 T
N_Ng Yk, Y_Ng (yr — ) (yr — )" .
=1 =1

Show that the log-likelihood function
N
I(R,a) = —(Nn/2)log(2r) — (N/2)logdet R — (1/2) Y (s — a)" R~ (yx — a)
k=1

can be expressed as
I(R,a) = g (—nlog(?ﬂ) —logdet R —tr(R™'Y) — (a — )" R ' (a — ,u)) .

Use this expression to show that if Y > 0, the ML estimates of R and a are unique,
and given by
am] = W, le =Y.

(b) The log-likelihood function includes a convex term (—logdet R), so it is not obvi-
ously concave. Show that [ is concave, jointly in R and a, in the region defined
by

R <2Y.
This means we can use convex optimization to compute simultaneous ML estimates
of R and a, subject to convex constraints, as long as the constraints include R < 2Y,
i.e., the estimate R must not exceed twice the unconstrained ML estimate.

Solution.
(a) We show that Zgil(yk —a)(yr —a)T = N(Y — (a — p)(a — pu)T):

N N
Z(yk —a)(yk —a)T = ZykykT—NauT—NuaT—&-NaaT
k=1 k=1
N
= Y -y — )" + Npp" — Nap” — Nua” + Naa”
k=1

= NY 4 N(a-pa-pu").

This proves that the two expressions for | are equivalent.

Now let’s maximize [. It is not (in general) a concave function of R, so we have to
be careful. We do know that at the global optimizer, the gradient vanishes (but not
conversely). Setting the gradient with respect to R and u to zero gives

“R'"+R 'Y +(a—pw(a—pw R =0, —2R '(a—p) =0,
which has only one solution,
Y+ (a—pa—pw" =R,  a=p

It must be the global maximizer of [, since ! is not unbounded above.
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(b) We show that the function
f(R) = —logdet R — tr(R™'Y)

is concave in R for 0 < R < 2Y. This will establish concavity of the log-likelihood
function because the remaining term of [ is concave in a and R.

The gradient and Hessian of f are given by
Vf(R) = —R'+R'YR!
V2f(R[V] = R'WR'-R'WR'WR'-R'YR'WR!
where by V2 f(R)[V] we mean

VA(R)[V] = %Vf(R—&-tV)

t=0
‘We show that )
(VU A(RIV]) = S f(R4 V)| <0
t=0
for all V. We have
tr(VV?f(R)[V]) = tr(VR'VR™")—2tr(VR'VR'YR™")
= tr(RTVPVR™'?)* (I —2R7'?YR™'?))
< 0
for all V if
2RTYV2YRTY? - 1,
j.e., R<2Y.

7.5 Markov chain estimation. Consider a Markov chain with n states, and transition proba-
bility matrix P € R™*"™ defined as

Pij = prob(y(t +1) =i [ y(t) = j).

The transition probabilities must satisfy P;; > 0 and > " P =1, j = 1,...,n. We
consider the problem of estimating the transition probabilities, given an observed sample
sequence y(1) = k1, y(2) = ko, ..., y(N) = ky.

(a) Show that if there are no other prior constraints on P;j;, then the ML estimates are

the empirical transition frequencies: P»L'j is the ratio of the number of times the state
transitioned from j into ¢, divided by the number of times it was j, in the observed
sample.

(b) Suppose that an equilibrium distribution p of the Markov chain is known, i.e., a
vector ¢ € R} satisfying 17¢g =1 and Pq = ¢q. Show that the problem of computing
the ML estimate of P, given the observed sequence and knowledge of ¢, can be
expressed as a convex optimization problem.

Solution.

(a) The probability of the sequence y(2),...,y(N), given that we start in y(1) is

— Cij
Pro ey Prs ks Pry k1 = I I Pz‘j

n
i,k=1

where c;; is the number of times the state transitioned from j to ¢. The ML estima-
tion problem is therefore

maximize szzl cij log P;j
subject to 1TP =17T.
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The problem is separable, and can be solved column by column. Let p; = (Pij, ..., Pnj)
be column j of P. It is the solution of

maximize Z?:l ¢ij log pij
subject to  17p; = 1.

Using Lagrange multipliers we find that

Cij
Pij = ==

Zi:l Cij .
(b) The ML estimation problem is

maximize ZZ].:I cijlog P;j
subject to 1TP =17
Pq=q.

7.6 Estimation of mean and variance. Consider a random variable z € R with density p,
which is normalized, i.e., has zero mean and unit variance. Consider a random variable
y = (x+b)/a obtained by an affine transformation of z, where a > 0. The random variable
y has mean b and variance 1/ a?. Asa and b vary over R, and R, respectively, we generate
a family of densities obtained from p by scaling and shifting, uniquely parametrized by
mean and variance.

Show that if p is log-concave, then finding the ML estimate of a and b, given samples
Yi,--.,Yn of y, is a convex problem.

As an example, work out an analytical solution for the ML estimates of a and b, assuming
p is a normalized Laplacian density, p(z) = e~ 2/*!.

Solution. The density of y is given by

py(u) = ap(au — b).
The log-likelihood function is given by
log py (u) = log a + log p(au — b).

If p is log-concave, then this log-likelihood function is a concave function of @ and b. This
allows us to compute ML estimates of the mean and variance of a random variable with
a normalized density that is log-concave.

Suppose that n samples yi,...,y, are drawn from the distribution of y, which has a
log-concave normalized density. To find the ML estimate of the parameters a and b, we
maximize the concave function

Zpy(yi) =nloga + Zlogp(ayi —b).
i=1 i=1

For the Laplace distribution, you get

n n
> pu(ys) =nloga—2 " |ay; — b,
i=1 =1

so the ML estimates solve
minimize —nloga+2)""  |ay; — bl.
We can define ¢ = b/a, and solve

minimize —nloga+2a) " | |yi —cl|.
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The solution c is the median of y;. a can be found by setting the derivative equal to zero:

o= n
22?:1 ‘yz - CI .

ML estimation of Poisson distributions. Suppose x;, i = 1,...,n, are independent random
variables with Poisson distributions

e Mg

kL7

prob(z; = k) =

with unknown means p;. The variables z; represent the number of times that one of n
possible independent events occurs during a certain period. In emission tomography, for
example, they might represent the number of photons emitted by n sources.

We consider an experiment designed to determine the means p;. The experiment involves
m detectors. If event 7 occurs, it is detected by detector j with probability pj;. We assume
the probabilities p;; are given (with pj; > 0, Z;n:1 pji < 1). The total number of events

recorded by detector j is denoted y;,

n
Yj :Zyjh J=1...,m
i=1

Formulate the ML estimation problem of estimating the means u;, based on observed
values of y;, j =1,...,m, as a convex optimization problem.

Hint. The variables y;; have Poisson distributions with means pj;;u;, .e.,

e Pt (pjipi)”

prob(y;; = k) = X

The sum of n independent Poisson variables with means A1, ..., A, has a Poisson distri-
bution with mean A1 +--- + \,.

Solution. It follows from the two hints that y; has a Poisson distribution with mean

T
E Ppjilti = Py p-
=1

Therefore,
log(prob(y; = k)) = —pj pu+ klog(pj 1) — log k.

Suppose the observed values of y; are k;, j = 1,...,n. Then the ML estimation problem
is

maximize — 37", pIp+ >k log(p) 1)
subject to p > 0,

which is convex in p.

For completeness we also prove the two hints. Suppose x is a Poisson random variable
with mean p (number of times that an event occurs). It is well known that the Poisson
distribution is the limit of a binomial distribution

—u, k
prob(z = k) = % = lim < Z ) Q-9 ",

n—00, Ng—

i.e., we can think of z is the total number of positives in n Bernoulli trials with ¢ = p/n.



7 Statistical estimation

Now suppose y is the total number of positives that is detected, where the probability of
detection is p. In the binomial formula, we simply replace ¢ with pg, and in the limit

prob(y = k)

lim ( i )<pq>’“<1 — (pg))" "

n—oo, nq—u

= lim ( L )q%l—q)”
n—oo, nq—pup
e " (pp)*
k! '
Assume x and y are independent Poisson variables with means p and A. Then

Z prob(z = i) prob(y = k — 7)

=0

prob(z +y = k)

7.8 Estimation using sign measurements. We consider the measurement setup
yi = sign(aiTm +bit+v), i=1,...,m,

where z € R" is the vector to be estimated, and y; € {—1,1} are the measurements. The
vectors a; € R™ and scalars b; € R are known, and v; are IID noises with a log-concave
probability density. (You can assume that a] « + b; + v; = 0 does not occur.) Show that
maximum likelihood estimation of z is a convex optimization problem.

Solution. We re-order the observations so that y; = 1 for¢ = 1,...,k and y; = 0 for
i=k+1,...,m. The probability of this event is

Hlekprob(a,rx +b;+v; >0)- H?;k-u prob(alz +b; +v; < 0)
= Hi=1 F(ia‘le - bl) ' H:y;k_'.l(]‘ - F(iazﬂx - bl))7
where I is the cumulative distribution of the noise density. The integral of a log-concave

function is log-concave, so F' is log-concave, and so is 1 — F'. The log-likelihood function
is

k m
l(z) = Zlog F(—alz —b;) + Z log(1 — F(—ai z —b;)),
i=1 i=k+1
which is concave. Therefore, maximizing it is a convex problem.

7.9 Estimation with unknown sensor nonlinearity. We consider the measurement setup
yi = flajz +bi+v:), i=1,...,m,

where z € R"™ is the vector to be estimated, y; € R are the measurements, a; € R",
b; € R are known, and v; are IID noises with log-concave probability density. The function
f : R — R, which represents a measurement nonlinearity, is not known. However, it is
known that f'(¢) € [I,u] for all ¢, where 0 < | < u are given.
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Explain how to use convex optimization to find a maximum likelihood estimate of x, as
well as the function f. (This is an infinite-dimensional ML estimation problem, but you
can be informal in your approach and explanation.)

Solution. For fixed function f and vector x, we observe yi,...,ym if and only if
fﬁl(yi)—af:c—bi:vi, i=1,...,m.

(Note that the assumption 0 < I < w implies f is invertible.) It follows that the probability
of observing y1,...,Ym is

Hpv (f M y) —aiz—bi).

The log of this expression, regarded as a function of x and the function f, is the log-
likelihood function:

l(xaf) = Zlogpv (Zz - a;rx — bl) s
=1

where z; = fﬁl(yi). This is a concave function of z and x.

The function f only affects the log-likelihood function through the numbers z;. The
constraints can be expressed in terms of the inverse as

(d/dt)f~(t) € [1/u, 1/1),
so we conclude that
(u)lyi — il < lzi — 2] < (1/ Dy — wsl,
for all 7, j. Conversely, if these inequalities hold, then there is a function f that satisfies

the inequality, with f~*(y;) = 2. (Actually, this is true only in the limit, but we’re being
informal here.)

Therefore, to find the ML estimate, we maximize the concave function of x and z above,
subject to the linear inequalities on z.

Nonparametric distributions on R¥. We consider a random variable & € R* with values
in a finite set {a1, ..., an}, and with distribution

pi =prob(z =a;), i=1,...,n.
Show that a lower bound on the covariance of X,
SXEX-EX)X-EX)",

is a convex constraint in p.

Solution.

N N " T
E(X -EX)X -EX)" = Zpioziozzr - (Zpiocz') <Zp¢06i> =8
i=1 i=1 i=1

if and only if

n ool — n v
[ Sapel o8 v ] 2
i=1 P
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Optimal detector design

Randomized detectors. Show that every randomized detector can be expressed as a convex
combination of a set of deterministic detectors: If

T=[ti to -+ t, |€ER™T"

satisfies t; > 0 and 17t = 1, then T can be expressed as
T=0T+---+0nTn,

where T; is a zero-one matrix with exactly one element equal to one per column, and
0; >0, Zi\; 0; = 1. What is the maximum number of deterministic detectors N we may
need?

We can interpret this convex decomposition as follows. The randomized detector can be
realized as a bank of N deterministic detectors. When we observe X = k, the estimator
chooses a random index from the set {1,..., N}, with probability prob(j = i) = 6;, and
then uses deterministic detector 7T}.

Solution. The detector T can be expressed as a convex combination of deterministic
detectors as follows:

m m m
T:§ E E Oissizsociim | €01 €1 0 iy |

where
=tiatip2- -t

Qn,Mn .

To see this, note that

i1=1ig=1  ip=1
m m m
= E E (tinn e tiz,2) E tina [ e e € |
in=1  is=1 i1=1
m m
= E E (bign -+ tin2) [ 11 ey ei, |
in=1  is=1

It is also clear that
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The following general argument (familiar from linear programming) shows that every de-
tector can be expressed as a convex combination of no more than n(m—1)+1 deterministic
detectors.

Suppose v1, ..., vn are affinely dependent points in RP, which means that
Vi V2 - UN
rank 11 .1 < N,

and suppose z is a strict convex combination of the points vy:
$:91U1—|—'~~+9N1)N, 1:91+"'+9N, 9>—0,

Then x is a convex combination of a subset of the points v;. To see this note that the
rank condition implies that there exists a A # 0 such that

N N
Z)\ﬂ}i:(), Z)WZO
i=1 i=1

Therefore,
= (01 +tA)vr + - + (I8 +tAN)vN, 1= (01 +th)vi + -+ (8 + tAN)vN,
for all t. Since A has at least one negative component and 6 > 0, the number
tmax = sup{t | 6 + ¢\ = 0}
is finite and positive. Define =0 + tmaxA. We have
x:é1v1—|—~~~+§N1}N, I:él+---+éN, étO,

and at least one of the coefficients of 6 is zero. We have expressed = as strict convex
combination of a subset of the vectors v;. Repeating this argument, we can express x as
a strict convex combination of an affinely independent subset of {v1,...,vn}.

Applied to the detector problem, this means that every randomized detector can be
expressed as a convex combination of affinely independent deterministic detectors. Since
the affine hull of the set of all detectors has dimension n(m — 1), it is impossible to find
more than n(m — 1) + 1 affinely independent deterministic detectors.

Optimal action. In detector design, we are given a matrix P € R™*™ (whose columns
are probability distributions), and then design a matrix 7' € R™*™ (whose columns are
probability distributions), so that D = TP has large diagonal elements (and small off-
diagonal elements). In this problem we study the dual problem: Given P, find a matrix
S € R™*" (whose columns are probability distributions), so that D = PS € R™*™ has
large diagonal elements (and small off-diagonal elements). To make the problem specific,
we take the objective to be maximizing the minimum element of D on the diagonal.

We can interpret this problem as follows. There are n outcomes, which depend (stochas-
tically) on which of m inputs or actions we take: P;; is the probability that outcome i
occurs, given action j. Our goal is find a (randomized) strategy that, to the extent pos-
sible, causes any specified outcome to occur. The strategy is given by the matrix S: Sj;
is the probability that we take action j, when we want outcome i to occur. The matrix
D gives the action error probability matrix: D;; is the probability that outcome 7 occurs,
when we want outcome j to occur. In particular, D;; is the probability that outcome ¢
occurs, when we want it to occur.

Show that this problem has a simple analytical solution. Show that (unlike the corre-
sponding detector problem) there is always an optimal solution that is deterministic.

Hint. Show that the problem is separable in the columns of S.
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Solution. Let p7 be kth row of P. The problem is then

maximize ming ﬁgsk
subject to s >0, k=1,....m
1Tsp, =1, k=1,...,m.

This problem is separable (when put in epigraph form): we can just as well choose each
Sk to maximize ﬁfsk subject to s = 0, 175, = 1. But this is easy: we choose an index [
of pr which has maximum entry, and take s = e;.

In other words, the optimal strategy is very simple: when the outcome i is desired, simply
choose (deterministically) an input that maximizes the probability of the outcome k.

Chebyshev and Chernoff bounds

Chebysheuv-type inequalities on a finite set. Assume X is a random variable taking values
in the set {1, @2,...,am}, and let S be a subset of {a, ..., am}. The distribution of X
is unknown, but we are given the expected values of n functions f;:

Efi(X):bi, ’iZl,...,’/L. (732)
Show that the optimal value of the LP

minimize  xg + E:;l bix;
subject to @0 + > | fi(a)zi >1, a€S
zo+ Y fila)zi >0, a¢s,

with variables xq, ..., Zn, is an upper bound on prob(X € 5), valid for all distributions
that satisfy (7.32). Show that there always exists a distribution that achieves the upper
bound.

Solution. The best upper bound on prob(z € S) is the optimal value of

maximize Zaes PrQ

subject to > " pr =1
Z;n:lpkfi(ak) Ibi, 1= 1,...,71
p=0.

The dual problem is

minimize  xzg + 2:21 xib;
subject to @0 +>."  zifi(a) >1, a€S
zo+ Yy . xifila) >0, ags,
The dual problem is feasible, so strong duality holds. Furthermore, the dual problem

is bounded below, so the optimal value is finite, and hence there is a primal optimal
solution.
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Projection on a set

8.1 Uniqueness of projection. Show that if C' C R" is nonempty, closed and convex, and the
norm || - || is strictly convex, then for every z( there is exactly one z € C' closest to z¢. In
other words the projection of x¢ on C' is unique.

Solution. There is at least one projection (this is true for any norm): Suppose & € C,
then the projection is found by minimizing the continuous function ||z — x| over a closed
bounded set C N{z | ||z — zo| < ||& — xo||}, so the minimum is attained.

To show that it is unique if the norm is strictly convex, suppose u,v € C with u # v and
|lu — xol| = ||lv — x0]| = D. Then (1/2)(u+ v) € C and

[[(1/2)(u + v) = zol| 1(1/2)(u = zo0) + (1/2) (v — o) |
(1/2)[lu = @ol| + (1/2)]lv = zo|

= D,

A

so u and v are not the projection of zg on C.

8.2 [Web94, Val64] Chebyshev characterization of convezity. A set C € R" is called a Cheby-
shev set if for every z¢o € R™, there is a unique point in C' closest (in Euclidean norm)
to xo. From the result in exercise 8.1, every nonempty, closed, convex set is a Chebyshev
set. In this problem we show the converse, which is known as Motzkin’s theorem.

Let C € R™ be a Chebyshev set.

(a)
(b)
(c)
(d)

(e)

Show that C' is nonempty and closed.

Show that Pc, the Euclidean projection on C, is continuous.

Suppose zg € C. Show that Pc(xz) = Pco(xo) for all x = 0z¢ + (1 — 0) Po(z0) with
0<0<1.

Suppose zg € C. Show that Pc(x) = Pco(zo) for all x = 0zo + (1 — 0)Po(x0) with
0>1.

Combining parts (c¢) and (d), we can conclude that all points on the ray with base
Pc(z0) and direction o — Pco(zo) have projection Pco(zo). Show that this implies
that C' is convex.

Solution.

(a)

C' is nonempty, because it contains the projection of an arbitrary point zo € R".

To show that C is closed, let x, k = 1,2, ... be a sequence of points in C' with limit
Z. We have
12 — Pe(Z)|l2 < |12 — 2kl

for all k& (by definition of Pc(Z)). Taking the limit of the righthand side for k — oo
gives ||Z — Pc(Z)||2 = 0. Therefore Z = Po(Z) € C.

Let xx, Kk =1,2,..., be a sequence of points converging to Z. We have
zx — Po ()2 < [lex — Po(@)lle < |lzx — 22 + [|Z — Po(Z)]l2-
Taking limits on both sides, we see that

Jim lzx — Po(zi)ll2 = lim ||z — Po(zk)l2 < | — Po(@)]l2.

Now Z has a unique projection, and therefore Pc(Z) is the only element of C in the
ball {z | ||z — Z||2 < dist(Z, C)}. Moreover C is a closed set. Therefore

Jim (|2 = Po(zx)ll2 < |2 — Po(z)]l2

is only possible if Po(zy) converges to Po(Z).
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(c)

Suppose & = 0z¢ + (1 — 0) Pc(xo) with 0 < 6 < 1. We have

lzo — Po()ll2 lzo — zll2 + [z — Pc(z)||2
lzo — zl2 + [z — Pc(zo)ll2
[[(1 = 0)(xzo — Pc(z0))|l2 + ||0(x0 — Pe(x0))||2

= |lwo = Po(xo)ll2-

<
<

(The first inequality is the triangle inequality. The second inequality follows from
the definition of Pc(z).) Since C is a Chebyshev set, Pc(x) = Po(xo).
We will use the following fact (which follows from Brouwer’s fixed point theorem):
If g: R" — R" is continuous and g(z) # 0 for ||z||2 = 1, then there exists an = with
[z]l2 = 1 and g(z)/[lg(x)[|2 = .
Let z = Ozo + (1 — 0)Pc(xo) with 6 > 1. To simplify the notation we assume that
zo = 0 and
lz = zoll2 = (0 = 1)[|Pe(zo)ll2 = 1.

The function g(z) = —Pc(x) is continuous (see part (b)). g(x) # 0 for x # 0 because
xo = 0 ¢ C. Using the fixed point theorem, we conclude that there exists a y with
llyll2 = 1 such that
_ Poly)

1 Po(y)ll2
This means that o = 0 lies on the line segment between Pc(y) and y. Hence, from
(¢), Pc(zo) = Pc(y), and

y:

_ Pc(l’o) _ _ LE =2
A e

We conclude that Pco(z) = Pc(zo).

It is sufficient to show that C is midpoint convex. Suppose it is not, i.e., there
exist z1,z2 € C with zo = (1/2)(z1 + x2) ¢ C. For simplicity we assume that
|21 = @2]l2 = 2, s0 [[wo — @2[l2 = [lzo — z1[l2 = 1.

Define D = ||zog — Pc(z0)||2. We must have 0 < D < 1. (D > 0 because zg ¢ C
and C is closed; D < 1 because otherwise xo would have two projections, x1 and x2,
contradicting the fact that C' is a Chebyshev set.)

By the result in (¢) and (d), all points x(0) = Pc(xo) +6(xo — Pc(x0)) are projected
on Pc(mo), i.e.,

dist(2(6), C) = |[Pe (o) + 6(xo — Pe(0)) — Pe(ao) 2 = bllwa — Pe(zo)|l2 = 6D.
Without loss of generality, assume that

(:l?o — Pc(:r()))T(.’El — mo) S 0.
(Otherwise, switch the roles of 1 and z2). We have for 6 > 1,

0°D* = dist(z(6),C)*
< z(6) - 213
= 12(6) — zoll3 + 1o — w11 + 2(2(6) — 20)" (w0 — 1)
= (0—1)°D*+1+2(x(0) — o) (x0 — z1)
(0—1)>D* +1+42(0 — 1)(z0 — Pe(x0))" (z0 — 21)
< (0-1)’D* +1.

(The first inequality follows from the fact that Pc(xo) # x1.) Therefore 0 < (1 —
20)D2 + 1, which is false for 6 > (1/2)(1 + 1/D2).
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8.3 FEuclidean projection on proper cones.

(a) Nonnegative orthant. Show that Euclidean projection onto the nonnegative orthant
is given by the expression on page 399.
Solution. The inner product of two nonnegative vectors is zero if and only the
componentwise product is zero. We can therefore solve the equations

T, = T — T iy zy,i >0, z_i2>0, T4,iT—,; =0,
for e =1,...,n. If zo,; > 0 the solution is x4 ; = zo,;, v—,; = 0. If zo; < 0 the
solution is ¢4 ; =0, z_ ; = —xo,;. If z¢,; = 0 the solution is x4+ ; = x_ ; = 0.

(b) Positive semidefinite cone. Show that Euclidean projection onto the positive semidef-
inite cone is given by the expression on page 399.

Solution. Define X; = VTX,V, X_ = VTX_V. These matrices must satisfy
A=X, - X_, X, -0, X_ =0, tr(XyX_)=0.

The first condition implies that the off-diagonal elements are equal: (X );; = (X_);;
if ¢ # j. The third equation implies

tr(X X )= Z(XJr)u(fL)u + ZZ(XJr)ij(Xf)ij =0
i=1 i=1 j#i

which is only possible if

(X4)ij=(X )iy =0, i#j

and ~ _
(X+)11(X—)zz:07 7,:1,,71

In other words, X, and X_ are diagonal, with a complementary zero-nonzero pat-
tern on the diagonal, i.e.,

()~(+)”- = max{\;, 0}, (j(o)u' = max{—A\;, 0}.

(c) Second-order cone. Show that the Euclidean projection of (zo, o) on the second-

order cone
K ={(z,t) e R""" | ||z[|2 <t}
is given by
0 lzoll2 < —to
Pg (xo,t0) = { (zo,t0) |zoll2 < to
(1/2)(X + to/[|woll2) (o, [oll2)  [lzoll2 = [to]-

Solution. The second-order cone is self-dual, so the conditions are
zo=u-v, to=p-7, |ula<p, [vl2<7,  wlv+pr =0

It follows from the Cauchy-Schwarz inequality that the last three conditions are
satisfied if one of the following three cases holds.

e 1n=0,u=0,|v]2 <7. The first two conditions give v = —z¢, to = —7. The
fourth condition implies tg < 0, and || — zo|2 < —to.
In this case (xo,t0) is in the negative second-order cone, and its projection is
the origin.
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e 7=0,v=0, |lul|]2 < p. The first two conditions give u = xo, p = to. The third

condition implies ||zo||2 < to.

In this case (zo,to) is in the second-order cone, so it is its own projection.

o |lull2=p >0, |v|]]2 =7 >0, 7u = —pv. We can express v as v = —(7/p)u.
From z¢p = u — v,
zo=(1+7/pu,  p=|ulz,
and therefore p + 7 = ||zo||2. Also, to = p — 7. Solving for u and 7 gives
m=(1/2)(to + llzoll2), 7= (1/2)(=to + [lzol[2)-
7 is only positive if tg < ||zo]|2. We obtain
_ to A [lzofl2 _ llzoll2 + o _ to—[lzoll2 _ llzoll2 — to
PTG - T a8 — T an_ 11 40, - - 5 -
2||zoll2 2 2[|zoll2 2

8.4 The Euclidean projection of a point on a convex set yields a simple separating hyperplane

(Pe(z0) — z0)" (& = (1/2)(x0 + Pe(0))) = 0.

Find a counterexample that shows that this construction does not work for general norms.

Solution. We use the ¢1-norm, with
C={zcR’ |z +22/2<1},  x0=(1,1).
The projection is Pc(zo) = (1/2,1), so the hyperplane as above,
(Pe(0) — z0)" (2 — (1/2)(wo + Po(x0))) = 0,

simplifies to z1 = 3/4. This does not separate (1, 1) from C.

8.5 [HUL93, volume 1, page 154] Depth function and signed distance to boundary. Let C C R"
be a nonempty convex set, and let dist(x,C) be the distance of z to C' in some norm.

We already know that dist(x, C) is a convex function of z.
(a) Show that the depth function,
depth(z, C) = dist(z, R" \ C),

is concave for x € C.
Solution. We will show that the depth function can be expressed as

depth(z,C) = inf (Sc(y) -y a),

llyll«=1

where Sc¢ is the support function of C'. This proves that the depth function is

concave because it is the infimum of a family of affine functions of z.
We first prove the following result. Suppose a # 0. The distance of

a point zp, in

the norm | - ||, to the hyperplane defined by a”z = b, is given by |aTz — b|/||al|«.

‘We can show this by applying Lagrange duality for the problem

minimize ||z — zol|
subject to aTx = b.

The dual function is
g(v) = inf (||3; —zo|| +v(a "z - b))
= inf (||x —xo|| + va” (z — zo) + v(a o — b))

v —t) fwall. <1
- —00 otherwise
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so we obtain the dual problem

maximize v(a”zo — b)
subject to  |v| < 1/||al|«.

If aTxzo > b, the solution is v* = 1/||al|.. If a’xo < b, the solution is v* = —1/||a|..
In both cases the optimal value is |a”zo — b|/||al|«-

We now give a geometric interpretation and proof of the expression for the depth
function. Let H be the set of all halfspaces defined by supporting hyperplanes of C,
and containing C. We can describe any H € H by a linear inequality 7y < Sc(y)
where y is a nonzero vector in dom Sc(y).

Let H € H. The function dist(z, R" \ H) is affine for all z € C:

_ T
dist(z,R" \ H) = 7‘%@@” Ly

The intersection of all H in H is equal to cl C' and therefore
depth(z,C) = inf dist(z,R"\ H)
HeH
inf (S, — 7 *
inf(Sc(y) y)/llyll

= inf (Se(y)—z'y).
lyll=1

The signed distance to the boundary of C' is defined as

| dist(z,C) x g C
s(z) = { —depth(z,C) z€C.

Thus, s(z) is positive outside C, zero on its boundary, and negative on its interior.
Show that s is a convex function.

Solution. We will show that if we extend the expression in part (a) to points z ¢ C,
we obtain the signed distance:

s(z) = sup (y"z— Sc(y)).
llyll«=1
In part (a) we have shown that this is true for z € C.

If £ € bdC, then y"2 < Sc(y) for all unit norm y, with equality if y is the
normalized normal vector to a supporting hyperplane at x, so the expression for s
holds.

If x € clC, then for all y with ||y|l« = 1, y"2 — Sc(y) is the distance of = to a
hyperplane supporting C' (as proved in part (a)), and therefore

y"x — Sc(y) < dist(z, C).
Equality holds if we take y equal to the optimal solution of

maximize y’x — Sc(y)
subject to ||y« <1

with variable y. As we have seen in §8.1.3 the optimal value of this problem is equal
to dist(z, C).
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8.6

8.7

The geometric interpretation is as follows. As in part (a), we let H be the set of all
halfspaces defined by supporting hyperplanes of C, and containing C. From part (a),
we already know that for H € ‘H

—depth(z,C) = max s(z, H),
HeH

where s(z, R™ \ H) is the signed distance from z to H. We now have to show that
for x outside of C
dist(x,C) = sup s(z, H).
HeH

By construction, we know that for all G € H, we must have dist(z,C) > s(z,G).
Now, let B be a ball of radius dist(z,C) centered at z. Because both B and C
are convex with B closed, there is a separating hyperplane H such that H € H and
s(z, H) = dist(z, C), hence

dist(z,C) < sup s(z, H),
HeH

and the desired result.

Distance between sets

Let C, D be convex sets.

(a) Show that dist(C,z + D) is a convex function of z.
(b) Show that dist(tC, z + ¢tD) is a convex function of (z,t) for ¢ > 0.

Solution. To prove the first, we note that
dist(C,z + D) = inf (Ic(u) + Ic(z +v) + |lu — (z +v)||) .
The righthand side is convex in (u,v,z). Therefore dist(C,xz + D) is convex by the
minimization rule. To prove the second, we note that
dist(tC,z + tD) = tdist(C,z/t + D).

The righthand side is the perspective of the convex function from part (a).

Separation of ellipsoids. Let &1 and &2 be two ellipsoids defined as
S={z|(@@—2)" Pl(@—m) <1}, &E={z|(@—a)" P (z—x2) <1},
where P, P> € S’ . Show that & N & = @ if and only if there exists an a € R™ with
15 %all + 1P/ %all2 < a” (21 — 2).

Solution. The two sets are closed and bounded, so the intersection is nonempty if and
only if there is an a # 0 satisfying

. T T
inf a"x > sup a” .
z€eéy zE€EY

The infimum is giving by the optimal value of
minimize aTx
subject to  (z —x1)T Py (xz —z1) < 1.

A change of variables y = P, "/?(x — 1) yields

minimize aTx + aTPl/Qy
subject to  yTy <1,
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which has optimal value a”xz; — ||P*/2al|.

Similarly,
sup a’x = a’zy + || P%al)2.
re€a

The condition therefore reduces to
az1 — | Pal2 > aTz2 + | P a2

We can also derive this result directly from duality, without using the separating hyper-
plane theorem. The distance between the two sets is the optimal value of the problem

minimize |z — y|2
subject to ||P171/2(a: —z1)|2 <1
1Py 2y — 22l < 1,

with variables z and y. The optimal value is positive if and only if the intersection of the
ellipsoids is empty, and zero otherwise.

To derive a dual, we first reformulate the problem as

minimize HUHQ
subject to  [|v]2 <1, |lw|2<1
1/2

P "v=x—-1
P21/2w:y7m2
u=x—-y,

with new variables u, v, w. The Lagrangian is

Lz, y,u, v, w, A1, A2, 21, 22, 2)
= lulls + Aa(llvlla = 1) + de(lwlls = 1) + 27 (P %0 — 2 + 1)
+ 25 (PyPw — y+ w2) + 27 (u — z + )
= =1 =)+ lexl + ZQT:EQ —(z+ zl)Tm +(z— zg)Ty
llullz + 2w+ Afjolla + 21 PP+ dolwllz + 22 Py *w.

The minimum over z is unbounded below unless z; = —z. The minimum over y is
unbounded below unless zo = z. Eliminating z; and z2 we can therefore write the dual
function as

g(A, A2, 2) = A1 —Aa+ 2" (22 — 21) + inf(||ul]z + 2" w)

+inf(Alfoll2 — 27 P%0) + + inf Az [lw]|2 + 27 Py ?w).

We have
0 [l2]l2 <1
—oo  otherwise.

inf(||ull2 + zTu) = {

This follows from the Cauchy-Schwarz inequality: if ||z]|2 < 1, then zTu > —||z||2||u|2 >
—|lu|l2, with equality if w = 0. If ||z||]2 > 1, we can take u = —tz with ¢ — oo to show
that ||lul2 + 27w = t||z]|1(1 — ||2||2)) is unbounded below.

We also have

0 [Pzl < n

inf(\ —2TPy) =
121( tfvlla =27 Py 7o) —oco  otherwise.



8 Geometric problems

8.8

This can be shown by distinguishing two cases: if A\; = 0 then the infimum is zero if
P11/2z = 0 and —oo otherwise. If A1 < 0 the minimum is —oo. If A1 > 0, we have

inf(Ay ||v]|2 — 2" P}/ %0) Avinf([[o]l2 — (1/21)27 P/ 0)

- { 0 [P/ %2]2 < A

—oo  otherwise.

Similarly,
0 (1P 22 < X

inf(\ Py w) =
13( allwlle + 27 Py w) —o0o otherwise.

Putting this all together, we obtain the dual problem

maximize —A\; — A2 + zT(xg — 1)

subject to [|zll2 <1, [[P%2]2 < A, (1P 222 < s
which is equivalent to

maximize —|| P}/ %zl — | Py %22 + 27 (z2 — 1)
subject to ||z]]2 < 1.

The intersection of the ellipsoids is empty if and only if the optimal value is positive, i.e.,
there exists a z with

—I1P 2zl — 1By 2|2 + 2" (22 — 21) > 0.

Setting a = —z gives the desired inequality.

Intersection and containment of polyhedra. Let P1 and P2 be two polyhedra defined as
Pr={z | Az < b}, Pr={z| Fx = g},

with A € R™*™, b€ R™, F € RP*", g € R?. Formulate each of the following problems
as an LP feasibility problem, or a set of LP feasibility problems.

(a) Find a point in the intersection P; N Pa.
(b) Determine whether Py C Ps.

For each problem, derive a set of linear inequalities and equalities that forms a strong
alternative, and give a geometric interpretation of the alternative.

Repeat the question for two polyhedra defined as
P1 = conv{v,..., vk}, P2 = conv{ws,...,wr}.

Solution
Inequality description.

(a) Solve

The alternative is
ATy+ FTy =0, u =0, v >0, b u+g v <0.

Interpretation: if the sets do not intersect, then they can be separated by a hyper-
plane with normal vector a = ATu = —FTv. If Az <band Fy < g,

aTz=uTAx <uTb < —UTg < v Fz< aTy.
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(b) P1 C P; if and only if

T .
sup fiz<gi, i=1,...,p.
Ax=<b

We can solve p LPs, and compare the optimal values with g;. Using LP duality we
can write the same conditions as

inf Vz<g, i=1,...,p,
AT z=f;, 2=0

which is equivalent to p (decoupled) LP feasibility problems
ATzi = fi, z; = 0, szi < g

with variables z;. The alternative for this system is
Az = Xb,  flfz>Ag, A>0.

If A > 0, this means that (1/X\)z € Py, (1/N)z & Po.
If A =0, it means that if £ € P1, then T + tz ¢ P2 for ¢ sufficiently large.

Vertex description.
(a) P1 NPz =07 Solve
A= 0, 17a =1, w0, 17 =1, VA=W,

where V' has columns v; and W has columns w;.
From Farkas’ lemma the alternative is

Viz+41 -0, t <0, WPz +ul =0, u <0,

i.e., VTz =0, WT2z < 0. Therefore z defines a separating hyperplane.
(b) P C P? Fori=1,..., K,

wi = Vi, wi =0, 17 = 1.
The alternative (from Farkas lemma) is
VIZi+ 6120,  wizi+t <0,

i.e., wl z;1 < VT 2z, Thus, z; defines a hyperplane separating w; from Ps.

Euclidean distance and angle problems

8.9 Closest Fuclidean distance matriz to given data. We are given data a?ij, fori,j=1,...,n,
which are corrupted measurements of the Euclidean distances between vectors in R¥:

dij = |lwi — xjll2 +vij, 45=1,...,n,

where v;; is some noise or error. These data satisfy d;; > 0 and d;; = dj;, for all 4, j. The
dimension k is not specified.

Show how to solve the following problem using convex optimization. Find a dimension
kand 1,..., 2, € RF so that sz:l(di]’ — d;;)? is minimized, where d;; = ||z — z;||2,
i, =1,...,n. In other words, given some data that are approximate Euclidean distances,
you are to find the closest set of actual Euclidean distances, in the least-squares sense.

Solution. The condition that d;; are actual Euclidean distances can be expressed in
terms of the associated Euclidean distance matrix, D;; = d3;:

l)n ::0, 7 ::1,...,TL Z)U Eio, i,j 221,...,ﬂ
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(I —(1/n)117)DI - (1/n)117) <0,
which is a set of convex conditions on D.
The objective can be expressed in terms of D as

D (i —di)? = > (DY —diy)
i,j=1 4,j=1
= Z (Dz‘j —2D}/%di; + ij) :
i,5=1

which is a convex function of D (since Dl-lj/ Zciij is concave). Thus we minimize this
function, subject to the constraints above. We reconstruct x; as described in the text,
using Cholesky factorization.

8.10 Minimaz angle fitting. Suppose that yi,...,ym € RF are affine functions of a variable

zeR™

Yy =Aix+b;,, i=1,...,m,
and z1, ..., zm € R" are given nonzero vectors. We want to choose the variable z, subject
to some convex constraints, (e.g., linear inequalities) to minimize the maximum angle
between y; and z;,

max{Z(y1,21), .-, Z(Ym,2zm)}
The angle between nonzero vectors is defined as usual:

T
_ u v
/(u,v) = cos ™" (—)
’ l[ull2llv]l2 ) °

where we take cos™'(a) € [0,7]. We are only interested in the case when the optimal
objective value does not exceed /2.

Formulate this problem as a convex or quasiconvex optimization problem. When the
constraints on z are linear inequalities, what kind of problem (or problems) do you have
to solve?

Solution. This is a quasiconvex optimization problem. To see this, we note that

T

u v T

u- v

—— > cos(8
Tl = @)

/(u,v) = cos™ " <|

|ull2]|v]l2

><9 <=

— cos(®)ull2llv]2 < u",

where in the first line we use the fact that cos™' is monotone decreasing. Now suppose

that v is fixed, and w is a variable. For 8 < 7/2, the sublevel set of Z(u,v) (in u) is a
convex set, in fact, a simple second-order cone constraint. Thus, Z(u,v) is a quasiconvex
function of u, for fixed v, as long as uTv > 0. It follows that the objective in the angle
fitting problem,

max{Z(y1,21), -, L(Ym,2zm)},
is quasiconvex in z, provided it does not exceed 7 /2.
To formulate the angle fitting problem, we first check whether the optimal objective value
does not exceed /2. To do this we solve the inequality system

(Asz-i-bl)TZzzO, z':l,...,m,

together with inequalities on z, say, Fx < g. This can be done via LP. If this set
of inequalities is not feasible, then the optimal objective for the angle fitting problem
exceeds /2, and we quit. If it is feasible, we solve the SOC inequality system

Fz =g, (Aiz + b)) 2z > cos(0)|| Asz + bi|2||zill2, i=1,...,m,
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to check if the optimal objective is more or less than . We can then bisect on 6 to find
the smallest value for which this system is feasible. Thus, we need to solve a sequence of
SOCPs to solve the minimax angle fitting problem.

Smallest Euclidean cone containing given points. In R", we define a Fuclidean cone, with
center direction ¢ # 0, and angular radius 0, with 0 < 6§ < /2, as the set

{r e R"| L(c,z) < 0}.

(A Euclidean cone is a second-order cone, i.e., it can be represented as the image of the
second-order cone under a nonsingular linear mapping.)

Let a1,...,am € R. How would you find the Euclidean cone, of smallest angular radius,
that contains ai,...,an? (In particular, you should explain how to solve the feasibility
problem, i.e., how to determine whether there is a Euclidean cone which contains the
points.)

Solution. First of all, we can assume that each a; is nonzero, since the points that are
zero lie in all cones, and can be ignored. The points lie in some Euclidean cone if and only
if they lie in some halfspace, which is the ‘largest’ Euclidean cone, with angular radius
7/2. This can be checked by solving a set of linear inequalities:

T .
a;x>0, 21=1,...,m.

Now, on to finding the smallest possible Euclidean cone. The points lie in a cone of
angular radius 0 if and only if there is a (nonzero) vector z € R" such that

alz

—t—— >cosf, i=1,...,m.
llaill2]lzl2

Since 6 < 7/2, this is the same as
ai x> ||ai|2||z]|2cos, i=1,...,m,

which is a set of second-order cone constraints. Thus, we can find the smallest cone by
bisecting 0, and solving a sequence of SOCP feasibility problems.

Extremal volume ellipsoids

Show that the maximum volume ellipsoid enclosed in a set is unique. Show that the
Loéwner-John ellipsoid of a set is unique.

Solution. Follows from strict convexity of f(A) = logdet A™'.
Léwner-John ellipsoid of a simplex. In this exercise we show that the Léwner-John el-
lipsoid of a simplex in R™ must be shrunk by a factor n to fit inside the simplex. Since

the Lowner-John ellipsoid is affinely invariant, it is sufficient to show the result for one
particular simplex.

Derive the Lowner-John ellipsoid &j; for the simplex C' = conv{0,e1,...,en}. Show that
&ij must be shrunk by a factor 1/n to fit inside the simplex.

Solution. By symmetry, the center of the LJ ellipsoid must lie in the direction 1, and
its intersection with any hyperplane orthogonal to 1 should be a ball. This means we can
describe the ellipsoid by a quadratic inequality

(x —al)T (I + 117 (@ — a1) < 7,

parameterized by three parameters «, 3, 7.

The extreme points must be in the boundary of the ellipsoid. For xz = 0, this gives the
condition

v = a’n(1 + np).
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For z = e;, we get the condition
w— _L1EB8
2(1+np)

The volume of the ellipsoid is proportional to

n

A" det(I + p117) 7 =

1+ 8n’
and its logarithm is
nlogy —log(1+fn) = nlog(a®n(l+nB)) —log(1+ Bn)
_ (1+8)°
= nlog <m> —log(1 + Bn)

= mnlog(n/4) +2nlog(l+ B) — (n + 1)log(1 + ng).
Setting the derivative equal to zero gives § = 1, and hence

1 n
T aFD p=1, T 1vn

We conclude that & is the solution set of the quadratic inequality

1 T T 1 n
- —1 I+11 —-—1) <
(- =) U+ 1) - 1) < T

which simplifies to 272 4 (1 — 172)? < 1. The shrunk ellipsoid is the solution set of the
quadratic inequality

1)<t
n+1 n(l+n)

(o — %Hl)T(I +117) (@ —

which simplifies to
Tr4+(1-1"2)? <

S|

We verify that the shrunk ellipsoid lies in C' by maximizing the linear functions 17z, —z;,
i =1,...,n subject to the quadratic inequality. The solution of

maximize 17z
subject to Tz + (1 —-1T2)?2 < 1/n

is the point (1/n)1. The solution of

minimize  x;
subject to zTz+ (1 —1T2)2 < 1/n
is the point (1/n)(1 — €;).
Efficiency of ellipsoidal inner approximation. Let C be a polyhedron in R" described as
C = {z | Az < b}, and suppose that {z | Az < b} is nonempty.
(a) Show that the maximum volume ellipsoid enclosed in C, expanded by a factor n
about its center, is an ellipsoid that contains C'.

(b) Show that if C' is symmetric about the origin, i.e., of the form C' = {z | -1 <X Az =<
1}, then expanding the maximum volume inscribed ellipsoid by a factor /n gives
an ellipsoid that contains C.

Solution.
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(a) The ellipsoid &€ = {Bu+d | |lul]|]2 < 1} is the maximum volume inscribed ellipsoid,
if B and d solve

minimize  logdet B~*
subject to  ||Bailla <bi —ald, i=1,...,m,

or in generalized inequality notation

minimize  logdet B~*
subject to  (Bai,b; —alfd) >k 0, i=1,...,m,

where K is the second-order cone. The Lagrangian is
L(B,d,u,v) = logdet B~ — Z ul Ba; — v (b — Ad).
i=1

Minimizing over B and d gives

1 m
~3 Z azul + u;a; ), ATy =0.

The dual problem is

maximize logdet(—(1/2) Y7 (aiuf +wia] ) —b"v+n
subject to ATv =0
luille <wviy, i=1,...,m.

The optimality conditions are: primal and dual feasibility and

| =

2Ezalul—%uzal), u?Bai—i—vi(bz ald)—O i=1,...,m.

To simplify the notation we will assume that B = I, d = 0, so the optimality
conditions reduce to

||ai\|2§bi7 2'21,44.77717 ATUZO, ||uiH2§'Ui7 i:L...,m,
and
1 m
—3 Z aul + uial )7 wla; +vib; =0, i=1,...,m. (8.14.A)

From the Cauchy-Schwarz inequality the last inequality, combined with |la;||2 < b;
and ||u;i]|2 < v, implies that and u; = 0, v; = 0 if ||ai||2 < bi, and

ui = —([Juill2/bi)as, vi = [luill2

if Ha7,||2 = bl‘.
We need to show that ||z||2 < n if Az <b. The optimality conditions (8.14.A) give

m
§ T
— a; U =

i=1

oz =— Z(u;‘rx)(alTx) Z

and

m
aZ § Z 2.
ualuQ -

||2
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Since u; = 0, v; = 0 if ||a;]|2 < bs, the last sum further simplifies and we obtain
m
eTr < Z l|lwil|2b; = b7 v = n.
i=1

Let £ = {z | 27Q 'z < 1} be the maximum volume ellipsoid with center at the
origin inscribed in C, where @ € S} .. We are asked to show that the ellipsoid

VnE ={z|2"Q 'z <n}

contains C.
We first formulate this problem as a convex optimization problem. z € & if x =
Q'?y for some y with ||y[2 < 1, so we have £ C C if and only if for i = 1,...,p,

T H1/2 1/2 . T ~1/2 1/2
sup af Q% = Qa2 <1, inf alQ*y = —|Q" a2 > 1,
llyll2<1 llyll2<1
or in other words af Qa; = ||Q*/?a;||3 < 1. We find the maximum volume inscribed

ellipsoid by solving

minimize  log det Q*

subject to aXQa; <1, i=1,...,p. (8.14.B)
The variable is the matrix @ € S™.
The dual function is
\) = inf L(Q,\) = inf | logdetQ™" Ai(af Qa; —1) | .
9(\) = inf L(Q,) égo<0g et Q +_§; (af Qa >>

Minimizing over @ gives

p

Q= Z Niaia;

i=1

and hence
p T p p T
g0 = { log det (Zizl \ia;a; ) > Aitn 21-:1(%‘1'5““1' )>=0
—00 otherwise.

The resulting dual problem is

maximize logdet (Zle )\iaiaf) 3P Xi+n
subject to A = 0.

The KKT conditions are primal and dual feasibility (Q > 0, af Qa; < 1, A = 0),
plus

P
Q' =) Naa!,  AN(1-alQa)=0, i=1,...p. (8.14.C)
i=1

The third condition (the complementary slackness condition) implies that afQa; =1
if \; > 0. Note that Slater’s condition for (8.14.B) holds (af Qa; < 1 for Q = ¢I
and ¢ > 0 small enough), so we have strong duality, and the KKT conditions are
necessary and sufficient for optimality.
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Now suppose @ and A are primal and dual optimal. If we multiply (8.14.C) with @
on the left and take the trace, we have

P P P
n= tr(QQ_l) = Z i tr(QaiaiT) = Z Xial Qa; = Z i
i=1 i=1 i=1

The last inequality follows from the fact that af Qa; = 1 when \; # 0. This proves
17\ = n. Finally, we note that (8.14.C) implies that if = € C,

P P
TQ x = Z Ni(alz)? < Z Ai =n.
i=1 i=1

8.15 Minimum volume ellipsoid covering union of ellipsoids. Formulate the following problem

as a convex optimization problem. Find the minimum volume ellipsoid & = {z | (z —
20)T A7 (x — x0) < 1} that contains K given ellipsoids

Ei={z|a"Ax+2b]z+c¢ <0}, i=1,...,K.

Hint. See appendix B.
Solution. £ contains &; if

sup (x — z0)" A (z — 20) < 1,
zeE;

i.e.,
T A+ 2+ <0 = 2TA 'z —2lA v+ atA 0 —1<0.
From the S-procedure in appendix B, this is true if and only if there exists a A; > 0 such

that
A A; b o AL 7A71x0
oeE e —(Afla:o)T 3 A mg —1 |-

In other words,

)\1141 >\1b1 I —1
i.e., the LMI
A 1 —zF
—zo bl 14 XNic
holds. We therefore obtain the SDP formulation

minimize logdet A™!
A 1 —zf
subject to I N A Aibi =0, i=1,...,K
—Xo )\zb,LT 1+ Xic;
N >0, i=1,..., K.

The variables are A € S™, o € R", and \;, 1 =1,..., K.
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8.17

8.18

Mazimum volume rectangle inside a polyhedron. Formulate the following problem as a
convex optimization problem. Find the rectangle

R={zeR" |l <z <u}

of maximum volume, enclosed in a polyhedron P = {z | Az < b}. The variables are
l,u € R". Your formulation should not involve an exponential number of constraints.

Solution. A straightforward, but very inefficient, way to express the constraint R C P
is to use the set of m2" inequalities Av’ < b, where v* are the (2") corners of R. (If the
corners of a box lie inside a polyhedron, then the box does.) Fortunately it is possible to
express the constraint in a far more efficient way. Define

at

i = max{ai;, 0}, a;; = max{—a;;,0}.

ij
Then we have R C P if and only if

n

S (@huy —agl) <bi, i=1,...,m,

=1
The maximum volume rectangle is the solution of

n 1/n

maximize (H¢:1(ui — lz))
subject to 7" (afu; —agl;) <b, i=1,...,m,

with implicit constraint u > [. Another formulation can be found by taking the log of the
objective, which yields

maximize Y. log(u; — ;)
subject to  Y" (afu; —agl;) <b;, i=1,...,m.

Centering

Affine invariance of analytic center. Show that the analytic center of a set of inequalities is
affine invariant. Show that it is invariant with respect to positive scaling of the inequalities.

Solution. If z,. is the minimizer of — Z:’;l log(—fi(x)) then yac = Txac + o is the
minimizer of —» "™ log(—f:(Tx + x0)).

Positive scaling of the inequalities adds a constant to the logarithmic barrier function.
Analytic center and redundant inequalities. Two sets of linear inequalities that describe

the same polyhedron can have different analytic centers. Show that by adding redundant
inequalities, we can make any interior point xo of a polyhedron

P={zecR"| Az < b}

the analytic center. More specifically, suppose A € R™*™ and Azp < b. Show that there
exist c € R", v € R, and a positive integer g, such that P is the solution set of the m + ¢
inequalities

Az =b, Tr< v, Tx< o P Tz < vy (8.36)

(where the inequality ¢”a < v is added ¢ times), and zo is the analytic center of (8.36).
Solution. The optimality conditions are

—~ 1
. q -
Z;bi—aiTac*al—i_ V—CTac*CiO
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so we have to choose
vy—c x*

c=—1—""A"4q
q
where d; = 1/(b; — al ©*). We can choose ¢ = —A”'d, and for ¢ any integer satisfying
q > max{c" z|Az < b} — " 2",
and v =g+ cTz*.
8.19 Let x.. be the analytic center of a set of linear inequalities

T .
a;x<by, 1=1,...,m,

and define H as the Hessian of the logarithmic barrier function at zac:

H = ————aa; .
2 B armp

Show that the kth inequality is redundant (i.e., it can be deleted without changing the
feasible set) if
1/2

by — afxac > m(afHﬁlak)
Solution. We have an enclosing ellipsoid defined by

(€ — o) H(x — Tac) < m(m —1).

The maximum of af'z over the enclosing ellipsoid is

aF Tac + \/m(m - 1)\/a£H*1ak

so if

aF Tac + \/m(m — 1)\/afH—1a;C < by,
the inequality is redundant.

8.20 Ellipsoidal approximation from analytic center of linear matriz inequality. Let C be the
solution set of the LMI

T1 A1 + x2A2 + -+ X0 A X B,
where A;, B € S™, and let z,c be its analytic center. Show that

ginner g C g gouter;
where

ginner = {ZE | (l’ — $aC)TH(;E — a:ac) S 1}’
Eouter = {x| (@ —2ac) H(x — xac) < m(m —1)},

and H is the Hessian of the logarithmic barrier function
—logdet(B — x1 A1 — 2242 — - —xr Ap)

evaluated at Tac.
Solution. Define F(z) = B — ZZ z;A;. and Fac = F(2ac) The Hessian is given by

Hij = tI‘(P‘azlIélz'Fwat:quj)7
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so we have
(@ = 7o) T H(@ = 2ac) = > (@ — Tac,i) () — Tac,y) tr(Fac A Fig' A))
2%

tr (Foo! (F(2) — Fac)Fao' (F(z) — Fac))

= tr (F?(F(2) — Fao) Fi/?)”
We first consider the inner ellipsoid. Suppose z € Einner, i.€.,
tr (Fp2(F(a) — Fa)Fod /%)’ = | Fa P P(@) 2 1) < 1.
This implies that

“1 < N (F PR () F ) -1 < 1,
i.€e.,
0 < N(Fo?F(z)Flt/?) < 2
for i =1,...,m. In particular, F(z) > 0, i.e., z € C.

To prove that C' C Esuter, we first note that the gradient of the logarithmic barrier function
vanishes at xac, and therefore,

tr(F'A) =0, i=1,...,n,

and therefore
tr (Fo' (F(2) = Fae)) =0, tr (Fo! F(x)) = m.

Now assume x € C. Then

(z — xqc)TH(x — ac)

_ ( ch)F;cl/Q)z
= tr (Fac1 = Fa) o' (F(x) = Fac))

= tr(F.' F( Fa_ch( )) = 2tr (Foc' F(2)) + tr (Foo' FacFuc' Fac)
= tr (Fac1 ach )) —2m+m

= tr(F _I/QF( )F_1/2)2

< (te(F2F(2)F?) —m
= m2 — m.

The inequality follows by applying the inequality Z N < Z Xi)? for A = 0 to the
eigenvalues of Facl/QF(a:)Fa_cl/Q.
[BYT99] Maximum likelihood interpretation of analytic center. We use the linear mea-

surement model of page 352,
y= Az +v,

where A € R™*™. We assume the noise components v; are IID with support [—1,1]. The
set of parameters = consistent with the measurements y € R™ is the polyhedron defined
by the linear inequalities

~14+y=<Az<1+y. (8.37)

Suppose the probability density function of v; has the form

(v) = ar(1—2v?)" —-1<v<1
PUI=13 o otherwise,
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where r > 1 and a,. > 0. Show that the maximum likelihood estimate of x is the analytic
center of (8.37).

Solution.

L =mloga, + rz (log(l +yi —ai @) + log(1 —y; + a;frx)) .

=1

8.22 C(enter of gravity. The center of gravity of a set C' C R™ with nonempty interior is defined

as
fcudu

Lcg = m

The center of gravity is affine invariant, and (clearly) a function of the set C, and not
its particular description. Unlike the centers described in the chapter, however, it is very
difficult to compute the center of gravity, except in simple cases (e.g., ellipsoids, balls,
simplexes).

Show that the center of gravity xce is the minimizer of the convex function

f(z) :/ ||u—:c\|g du.
c

Solution. Setting the gradient equal to zero gives

(AQ@—mywzo

Lu@_<41m>x

i.e.,

Classification

8.23 Robust linear discrimination. Consider the robust linear discrimination problem given
in (8.23).

(a) Show that the optimal value t* is positive if and only if the two sets of points can
be linearly separated. When the two sets of points can be linearly separated, show
that the inequality ||a||2 < 1 is tight, i.e., we have ||a*||2 = 1, for the optimal a*.

(b) Using the change of variables @ = a/t, b = b/t, prove that the problem (8.23) is
equivalent to the QP

minimize  ||al|2
subject to aTz; —b>1, i=1,...,N
aTy;—b< -1, i=1,...,M.

Solution.

(a) If t* > 0, then
a*Tzi 2 t* —|—b* > b* > b* _ t* 2 Q*Tyi7
so a*, b* define a separating hyperplane.

Conversely if a, b define a separating hyperplane, then there is a positive ¢ satisfying
the constraints.

The constraint is tight because the other constraints are homogeneous.
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(b) Suppose a, b, t are feasible in problem (8.23), with ¢ > 0. Then a, b are feasible in
the QP, with objective value ||a||2 = [|a|2/t < 1/t.
Conversely, if @, b are feasible in the QP, then t = 1/||d||2, a = a/||d||2, b = b/||@|)2,
are feasible in problem (8.23), with objective value ¢t = 1/||a||2.

Linear discrimination mazimally robust to weight errors. Suppose we are given two sets of
points {z1,...,zn} and and {y1,...,ym} in R" that can be linearly separated. In §8.6.1
we showed how to find the affine function that discriminates the sets, and gives the largest
gap in function values. We can also consider robustness with respect to changes in the
vector a, which is sometimes called the weight vector. For a given a and b for which
f(z) = a”x — b separates the two sets, we define the weight error margin as the norm of
the smallest u € R™ such that the affine function (a + u)T2 — b no longer separates the
two sets of points. In other words, the weight error margin is the maximum p such that

(a—}—u)TxiZb, i=1,...,N, (a—i—u)Tijb, i=1,..., M,

holds for all u with [Jul]2 < p.

Show how to find a and b that maximize the weight error margin, subject to the normal-
ization constraint ||all2 < 1.

Solution. The weight error margin is the maximum p such that
(a+w) Tz >b, i=1,...,N, (a4+u)'y; <b, i=1,...,M,
for all u with ||ull2 < p, i.e.,
a'zi — pllzillz > bi, @y + pllyill2 < bi.
This shows that the weight error margin is given by

. atz; —b b— aTyi
min , .
i=1,...,N |2 llyill2
M

Jj=1,...,

We can maximize the weight error margin by solving the problem

maximize ¢
subject to  a’x; —b>t||lzille, i=1,...,N

b—a'y: > tllyill2, j=1,....M

llall2 <1
with variables a, b, t.
Most spherical separating ellipsoid. We are given two sets of vectors z1,...,zny € R", and
Y1,-.-,ym € R™, and wish to find the ellipsoid with minimum eccentricity (i.e., minimum
condition number of the defining matrix) that contains the points z1,...,xn, but not the
points y1,...,ya. Formulate this as a convex optimization problem.

Solution. This can be solved as the SDP

minimize 0%

subject to @] Pzi+q xi+r>0, i=1,...,N
v Pyi+q"yi+r<0, i=1,....,M
I<P=~I

with variables P € S, ¢ € R", and r,v € R.
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Placement and floor planning

Quadratic placement. We consider a placement problem in R?, defined by an undirected
graph A with N nodes, and with quadratic costs:

minimize Z(i,j)eA ||$z - wJH%

The variables are the positions z; € R?,i=1,..., M. The positions x;, i = M +1,...,N
are given. We define two vectors u,v € R by
u = (z11,%21,...,TM1), v = (T12,T22,...,TM2),

containing the first and second components, respectively, of the free nodes.
Show that v and v can be found by solving two sets of linear equations,

C'u:d1, CU:d2,

where C € S™. Give a simple expression for the coefficients of C' in terms of the graph A.
Solution. The objective function is

2 2
S wi—w)’+ > (v —vy)
(i,5)eA (4,5)€A

Setting the gradients with respect to u and v equal to zero gives equations Cu = d; and
Cv = ds with

Ch— { degree of node i i=7
I —(number of arcs between i and j) i # 7,
and
di; = Z i1, doi = Z Zj2.
i>M, (i,j)€A i>M, (i,j)€A
Problems with minimum distance constraints. We consider a problem with variables

z1,...,xn € R*. The objective, fo(z1,...,zN), is convex, and the constraints
fi(z1,...,zn) <0, i=1,...,m,

are convex (i.e., the functions f; : RV* — R are convex). In addition, we have the
minimum distance constraints

||‘r1_xJ||22Dmlll7 Z#]’ 7/7.7:117]\]

In general, this is a hard nonconvex problem.

Following the approach taken in floorplanning, we can form a convex restriction of the
problem, i.e., a problem which is convex, but has a smaller feasible set. (Solving the
restricted problem is therefore easy, and any solution is guaranteed to be feasible for the
nonconvex problem.) Let a;; € R®, for i < j, 4,5 =1,..., N, satisfy ||ai;||2 = 1.

Show that the restricted problem

minimize  fo(z1,...,ZN)
subject to  fi(z1,...,2zn) <0, i=1,...,m
az;'(xi_xj)szin7 Z<.]7 i7j:1,~~~7N7

is convex, and that every feasible point satisfies the minimum distance constraint.
Remark. There are many good heuristics for choosing the directions a;;. One simple
one starts with an approximate solution #1,...,Znx (that need not satisfy the minimum
distance constraints). We then set a;; = (Z; — &;)/||%:i — Z5]|2-

Solution. Follows immediately from the Cauchy-Schwarz inequality:

1 <a”(u—v) < all2llu = vll2 = u—vl|2.
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Miscellaneous problems
8.28 Let P; and P2 be two polyhedra described as
Py ={z| Az 2 b}, Pr={z|-1=xCzx <1},

where A € R™*", C € RP*™, and b € R™. The polyhedron P2 is symmetric about the
origin. For ¢ > 0 and z. € R"™, we use the notation ¢Ps + z. to denote the polyhedron

tPs + z. = {tz + z. | © € P2},

which is obtained by first scaling P> by a factor ¢t about the origin, and then translating
its center to ..

Show how to solve the following two problems, via an LP, or a set of LPs.
(a) Find the largest polyhedron tP2 + z. enclosed in P1, i.e.,

maximize ¢
subject to  tP2+z. C Py
t>0.

(b) Find the smallest polyhedron tP2 + x. containing P1, i.e.,
minimize ¢
subject to P1 C tPa2 + xc
t>0.

In both problems the variables are t € R and z. € R".
Solution.

(a) We can write the problem as

maximize ¢

subject to  SUD,¢sp,1a, afe <b;, i=1,...,m
or
maximize ¢
subject to  af . + SUP_41<cw<t1 afv<b, i=1,...,m. (8.28.4)
If we define
pla;)) = sup ajv, (8.28.B)
—1<Cw<1
we can write (8.28.A) as
maximize ¢ (8.28.C)

subject to  alxe +tp(a;) <b;, i=1,...,m,

which is an LP in z. and t. Note that p(a;) can be evaluated by solving the LP in
the definition (8.28.B).

In summary we can solve the problem by first determining p(a;) for i = 1,...,m,
by solving m LPs, and then solving the LP (8.28.C) for ¢t and z..

(b) We first note that = € tP2 + x. if and only
—t1 < C(z — z.) < 1.
The problem is therefore equivalent to
minimize ¢
subject to  sup,ep, Tr—cFe.<t, i=1,...,1

infeep, clax—cloe>—t, i=1,...,1
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or

minimize ¢
subject to  —t +sup 4.« Tr<cFe, <t+ inf Az<sp Tx, i=1,...,1L

If we define p(c;) and ¢(c;) as

plci)) = sup ¢ ¢, q(ci) = inf ¢z (8.28.D)
Az<b Az<b

then the problem simplifies to

minimize ¢
subject to  —t +p(ci) < cFawe <t+qle), i=1,...,1, (8.28.E)

which is an LP in z. and ¢.

In conclusion, we can solve the problem by first determining p(c;) and ¢(c;), i =
1,...,p from the 2! LPs in the definition (8.28.D), and then solving the LP (8.28.E).

8.29 Outer polyhedral approzimations. Let P = {z € R" | Az < b} be a polyhedron, and
C C R" a given set (not necessarily convex). Use the support function S¢ to formulate
the following problem as an LP:

minimize ¢t
subject to C CtP+x
t>0.

Here tP+x = {tu+x | u € P}, the polyhedron P scaled by a factor of ¢t about the origin,
and translated by z. The variables are t € R and z € R".

Solution. We have C C tP + z if and only if (1/¢)(C —z) C P, i.e.,
Samyc—a)(ai) <by, i=1,...,m.

Noting that for ¢t > 0,

Sasno-a(a) = sup a" (1/t)(u— 2)) = (1/t)(Sc(a) — a’x),

we can express the problem as

minimize t
subject to  Sc(ai) —alx <tb;, i=1,...,m
t>0,

which is an LP in the variables x, t.

8.30 Interpolation with piecewise-arc curve. A sequence of points a1, ..., a, € R? is given. We
construct a curve that passes through these points, in order, and is an arc (i.e., part of a
circle) or line segment (which we think of as an arc of infinite radius) between consecutive
points. Many arcs connect a; and a;+1; we parameterize these arcs by giving the angle
0; € (—m, ) between its tangent at a; and the line segment [a;, a;+1]. Thus, §; = 0 means
the arc between a; and a;+1 is in fact the line segment [a;, a;11]; 6; = 7/2 means the arc
between a; and a;+1 is a half-circle (above the linear segment [a1, a2]); 6; = —7/2 means
the arc between a; and a;+1 is a half-circle (below the linear segment [a1,a2]). This is
illustrated below.
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a; Git1

Our curve is completely specified by the angles 61,...,60,, which can be chosen in the
interval (—m, 7). The choice of 8; affects several properties of the curve, for example, its
total arc length L, or the joint angle discontinuities, which can be described as follows.
At each point a;, i = 2,...,n— 1, two arcs meet, one coming from the previous point and
one going to the next point. If the tangents to these arcs exactly oppose each other, so the
curve is differentiable at a;, we say there is no joint angle discontinuity at a;. In general,
we define the joint angle discontinuity at a; as |0;—1+6;+1;|, where 1); is the angle between
the line segment [a;, a;+1] and the line segment [a;—1, as], i.e., ¥; = Z(a; — @it1, i1 —a5).
This is shown below. Note that the angles 1; are known (since the a; are known).

Ai+4+1

We define the total joint angle discontinuity as

n
D= 101+ 0: +vil.
i=2
Formulate the problem of minimizing total arc length length L, and total joint angle

discontinuity D, as a bi-criterion convex optimization problem. Explain how you would
find the extreme points on the optimal trade-off curve.

Solution. The total joint angle discontinuity is

D= Z|9i71 + 0; + i,

=2

which is evidently convex in 6.
The other objective is the total arc length, which turns out to be

n—1 0
L= 1i——
Z “sin6;’
i=1
where l; = ||a; — ait1]|2. We will show that L is a convex function of 6. Of course we

need only show that the function f(z) = x/sinz is convex over the interval |z| < 7. In
fact f is log-convex. With g = log(z/sinz), we have

" 1 1

g =——+= .
z2  sin’z

Now since |sinz| < |z| for (all) x, we have 1/x? < 1/sin?z for all z, and hence g”" > 0.
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Therefore we find that both objectives D and L are convex. To find the optimal trade-off
curve, we minimize various (nonnegative) weighted combinations of D and L, i.e., D+ AL,
for various values of A > 0.

Now let’s consider the extreme points of the trade-off curve. Obviously L is minimized by
taking 6; = 0, i.e., with the curve consisting of the line segments connecting the points.
So € = 0 is one end of the optimal trade-off curve.

We can also say something about the other extreme point, which we claim occurs when
the total joint angle discontinuity is zero (which means that the curve is differentiable).
This occurs when the recursion

91':—01'_1—1/)1', 1=2,...,m,

holds. This shows that once the first angle 6; is fixed, the whole curve is fixed. Thus,
there is a one-parameter family of piecewise-arc curves that pass through the points,
parametrized by 6:. To find the other extreme point of the optimal trade-off curve, we
need to find the curve in this family that has minimum length. This can be found by
solving the one-dimensional problem of minimizing L, over 6, using the recursion above.



Chapter 9

Unconstrained minimization
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Exercises

Unconstrained minimization

9.1 Minimizing a quadratic function. Consider the problem of minimizing a quadratic
function:
minimize f(z) = (1/2)2" Pz + ¢"z + 1,

where P € 8™ (but we do not assume P > 0).

(a) Show that if P % 0, i.e., the objective function f is not convex, then the problem is
unbounded below.

(b) Now suppose that P = 0 (so the objective function is convex), but the optimality
condition Pz* = —q does not have a solution. Show that the problem is unbounded
below.

Solution.

(a) If P # 0, we can find v such that v Pv < 0. With 2 = tv we have
fla) = (" Po/2) + t(q" v) + 1,

which converges to —oo as t becomes large.

(b) This means g € R(P). Express q as ¢ = ¢ + v, where ¢ is the Euclidean projection
of ¢ onto R(P), and take v = ¢ — ¢. This vector is nonzero and orthogonal to R(P),
i.e., vT Pv = 0. Tt follows that for z = tv, we have

flz) = tg"v+r = t(G+ ’U)TU +r= t(UTv) + 7,
which is unbounded below.

9.2 Minimizing a quadratic-over-linear fractional function. Consider the problem of minimiz-
ing the function f: R"™ — R, defined as

_ Az — bl 1 T
flz) = ot d dom f={z|c z+d>0}.

We assume rank A = n and b € R(A).
(a) Show that f is closed.
(b) Show that the minimizer z* of f is given by
¥ =z + tas

where 21 = (ATA)7*ATb, 22 = (ATA) !¢, and ¢t € R can be calculated by solving
a quadratic equation.

Solution.

(a) Since b € R(A), the numerator is bounded below by a positive number (|| Az —b||3).
Therefore f(z) — oo as = approaches the boundary of dom f.

(b) The optimality conditions are

2 g7 [ Az — b||3
— 2 (xix )7 ||A1‘—b||§
Tz —d V(T —d)e2?
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9.3

9.4

i.e., x = x1 + txa where

| Az — b3 _ [l Awy + tAws — b]l3

- 2(cTx —d)  2(cTxy +tcTze —d)’

In other words ¢ must satisfy
2% o + 2t(c" 21 — d) || Aza |3 + 2t(Azy — b)" Az + || Azy — b3

t*c"xo + ||Azy — 0|13,

which reduces to a quadratic equation
t*c"xa + 2t(cT w1 — d) — || Az1 — b]|3 = 0.
We have to pick the root

o (cTx1 —d) + \/ cTxy — + (cTz9)|| Az — b]|2
- cTJ:Q ’
so that
ar+tas)—d = Tor—d— (" —d)+ \/ cTzy —d)? + (cTx2)||Az1 — b||2
= V(w1 —d)? + (Tw2) | Ay — b3
> 0.

Initial point and sublevel set condition. Consider the function f(x) = 23+ 3 with domain
dom f = {(z1,z2) | z1 > 1}.

(a) What is p*?

(b) Draw the sublevel set S = {x | f(z) < f(z®)} for (® = (2,2). Is the sublevel set
S closed? Is f strongly convex on S7

(¢) What happens if we apply the gradient method with backtracking line search, start-
ing at (9?7 Does f(ac(k>) converge to p*?

Solution.
(a) p* =limgy_(1,0) f(z1.22) = L.

(b) No, the sublevel set is not closed. The points (1 + 1/k, 1) are in the sublevel set for
k=1,2,..., but the limit, (1,1), is not.

(¢) The algorithm gets stuck at (1,1).

Do you agree with the following argument? The ¢i-norm of a vector x € R™ can be

eXpreSSed as
= (1/2) inf E 2y +1 .
llzll = (1/ );n0<, 1$1/y y)

Therefore the ¢1-norm approximation problem
minimize |4z —b||1
is equivalent to the minimization problem
minimize f(z,y) =Y .-, (ai @ — bi)*/y: + 17y, (9.62)

with dom f = {(z,y) € R® x R™ | y = 0}, where a! is the ith row of A. Since f is twice
differentiable and convex, we can solve the ¢;-norm approximation problem by applying
Newton’s method to (9.62).

Solution. The reformulation is valid. The hitch is that the objective function f is not
closed.



Exercises

9.5 Backtracking line search. Suppose f is strongly convex with mI < V2f(z) < MI. Let
Az be a descent direction at x. Show that the backtracking stopping condition holds for

Vi) Az
O0<t ———~—.
M| Az|3

Use this to give an upper bound on the number of backtracking iterations.
Solution. The upper bound V?f(z) < MI implies

[z +tAz) < f(z) +tVf(z)" Az + (M/2)t* Ax" Az
hence f(z + tAz) < f(z) + atVf(z)" Az if
t(1 —a)Vf(x) Az + (M/2)t° Az" Az <0
i.e., the exit condition certainly holds if 0 < t < ¢y with

Vi) Az S _Vf(x)TAﬂc
MAzTAx = MAzTAzx’

to = —2(1 — a)
Assume to < 1. Then 8t <t for k > log(1/t0)/log(1/43).

Gradient and steepest descent methods

(k

9.6 Quadratic problem in R?. Verify the expressions for the iterates z*) in the first example

of §9.3.2.
Solution. For k = 0, we get the starting point 2(® = (v, 1).

The gradient at z* is (x(lk),’ymék)), so we get
(k) k
(k) Wy _ | (=t _ (2=t (I—t)y
" =tV f(x = =| —
T [ (1 —~t)zf” y+1) [ A=) (=1*

F@® =tV i) = (P = 1) + (1 = 1)*) (%) '

and

This is minimized by ¢ = 2/(1 4 ), so we have

I N e 10
_ { (1 —t)at™ }

- k

(1 —yt)yzs?

v—1 :cgm
- (5] ]
_ (-1 o v
= G ey )

9.7 Let Axyq and Axsq be the normalized and unnormalized steepest descent directions at x,
for the norm || - ||. Prove the following identities.

(a) VF(@)" Aznsa =~V f ()]
(b) Vf(2)" Azaa = —[[V f(2)]%.
(¢) Azaq = argmin, (V. f(z)"v + (1/2)[v]]*).
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9.8

9.9

9.10

Solution.

(a) By definition of dual norm.
(b) By (a) and the definition of Axsq.

(¢) Suppose v = tw with ||w|| = 1 and w fixed. We optimize over ¢ and w separately.

‘We have
Vi@ v+ 1/2)|])? =tV f () w+17/2.

Minimizing over ¢ > 0 gives the optimum ¢ = —Vf(z)Tw if Vf(z)Tw < 0, and
t = 0 otherwise. This shows that we should choose w such that Vf(z)Tw < 0.
Substituting f = —V f(x)Tw gives

V() w+i%/2 = —(Vf(x) w)?/2.
‘We now minimize over w, i.e., solve

minimize  —(Vf(x)Tw)?/2
subject to  |Jw| = 1.

The solution is w = Axpsq by definition. This gives
t = —Azpa Vi) = V(@)

and v = fw = AZsq.

Steepest descent method in o -norm. Explain how to find a steepest descent direction in
the fo-norm, and give a simple interpretation.

Solution. The normalized steepest descent direction is given by
Aznsa = —sign(Vf(z)),

where the sign is taken componentwise. Interpretation: If the partial derivative with
respect to x is positive we take a step that reduces xy; if it is positive, we take a step
that increases xy.

The unnormalized steepest descent direction is given by

Azsa = —[|Vf ()1 sign(V f(z)).

Newton’s method

Newton decrement. Show that the Newton decrement A(z) satisfies

_ . T . 0TV f(x)
ANz) = vTV;?(]E;)vﬂ( v Vf(z)) = 21;13 (WITV2f(z)v)i/2

Solution. The first expression follows from a a change of variables
w=Vf@) P, w=V () e

and from
sup —w! V2f(z) V2V f(z) = |VF(x)2VE@)]2 = A=)

[[w]2=1
The second expression follows immediately from the first.

The pure Newton method. Newton’s method with fixed step size ¢ = 1 can diverge if the
initial point is not close to z*. In this problem we consider two examples.
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(a) f(xz) = log(e® 4+ e~ ") has a unique minimizer * = 0. Run Newton’s method with
fixed step size t = 1, starting at z(® =1 and at z(® =1.1.

(b) f(z) = —logx+z has a unique minimizer x* = 1. Run Newton’s method with fixed
step size t = 1, starting at 20 = 3.

Plot f and f’, and show the first few iterates.

Solution.
o f(x) = log(e” + €™ %) is a smooth convex function, with a unique minimum at
the origin. The pure Newton method started at z® = 1 produces the following
sequence.

2™ f@®) —p*
—8.134-107°T | 4.338-107"
4.094-107° | 2.997-107!
—4.730-107%% | 8.156 - 1072
7.060-107° | 1.118-1072
—2.346-107% | 2.492-107°

U W N =3

Started at #(®) = 1.1, the method diverges.

k z® fa®) —p*
1] —1.129-10° | 5.120-107 1
2 1.234-10° | 5.349 - 1071
3| —1.695-10° | 6.223-107!
4 5.715-10° | 1.035 - 10°
5 | —2.302-10* | 2.302-10*
o f(z) = —logz + x is smooth and convex on dom f = {z | > 0}, with a unique

minimizer at £ = 1. The pure Newton method started at z® =3 gives as first

iterate
2 =3-1'(3)/1"(3) = -3
which lies outside dom f.
9.11 Gradient and Newton methods for composition functions. Suppose ¢ : R — R is increasing
and convex, and f : R" — R is convex, so g(z) = ¢(f(z)) is convex. (We assume that

f and g are twice differentiable.) The problems of minimizing f and minimizing g are
clearly equivalent.

Compare the gradient method and Newton’s method, applied to f and g. How are the
search directions related? How are the methods related if an exact line search is used?
Hint. Use the matrix inversion lemma (see §C.4.3).

Solution.

(a) Gradient method. The gradients are positive multiples

Vy(x) = ¢'(f(2))Vf(x),

so with exact line search the iterates are identical for f and g. With backtracking
there can be big differences.

(b) Newton method. The Hessian of g is

¢"(f(@)V @)V i) + 6 (f(2)V (),

so the Newton direction for g is

—(¢"(f @)V @)V @) + ¢ (f@)Vf(2) " V().
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From the matrix inversion lemma, we see that this is some positive multiple of the
Newton direction for f. Hence with exact line search, the iterates are identical.
Without exact line search, e.g., with Newton step one, there can be big differences.
Take e.g., f(z) = 22 and ¢(x) = z? for > 0.

9.12 Trust region Newton method. If V() is singular (or very ill-conditioned), the Newton

step Axn, = —V2f(x) "'V f(2) is not well defined. Instead we can define a search direction
Axzir as the solution of

minimize  (1/2)v" Ho + ¢™v

subject to  |[v]l2 <,
where H = V2 f(z), g = Vf(x), and 7 is a positive constant. The point £+ Az, minimizes
the second-order approximation of f at x, subject to the constraint that ||(z+Ax)—x||2 <
~. The set {v | ||v||2 < v} is called the trust region. The parameter -, the size of the trust
region, reflects our confidence in the second-order model.

Show that Az, minimizes
(1/2)0" Hv + g"v + B|jv||3,

for some B This quadratic function can be interpreted as a regularized quadratic model
for f around z.

Solution. This follows from duality. If we associate a multiplier 8 with the constraint,
then the optimal v must be a minimizer of the Lagrangian

(1/2)0" Ho +g" v+ B(|[v]l3 — 7).
The value of B can be determined as follows. The optimality conditions are

Ho+g+pv=0, v"v<y, 5>0, B(y—v"v)=0.

e If H > 0, then H 4 BI is invertible for all § > 0, so from the first equation,
v =—(H + BI)"'g. The norm of v is a decreasing function of 3. If | H g2 < v,
then the optimal solution is

v=—H""g, B =0.
If |H *g|l2 > 7, then § is the unique positive solution of the equation ||(H +
BI)glla =
e If H is singular, then we have 8 = 0 only if g € R(H) and ||[Hg|2 < 7.

Otherwise, § is the unique solution positive solution of the equation ||(H+8I) g2 =
7.

Self-concordance

9.13 Self-concordance and the inverse barrier.

(a) Show that f(z) =1/x with domain (0,8/9) is self-concordant.
(b) Show that the function

= 1
f@)=a) o
i=1 @

with dom f = {z € R" | al'z < b;, i = 1,...,m}, is self-concordant if dom f is
bounded and
a>(9/8) max sup (b —alz).

i=1,...,m zedom f

Solution.
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(a) The derivatives are
f(x) = —1/a%, f(@) = 2/a%, f"(@) = —6/a",
so the self-concordance condition is
3/2
6 op(2) AT
x3 z4/T

x4 —

which holds if vz < 4v/2/6 = 1/8/9.

(b) If we make an affine change of variables y; = 8(b; —alz)/(9a), then y; < 8/9 for all
x € dom f. The function f reduces to » ™" (1/y:), which is self-concordant by the

result in (a).

9.14 Composition with logarithm. Let g : R — R be a convex function with domg = R4,

and .
9" (z)
x
for all z. Prove that f(z) = —log(—g(x)) — log z is self-concordant on {z | z > 0, g(z) <
0}. Hint. Use the inequality

lg" ()] < 3

3 3
5+ Spt <1

which holds for p,q,r € Ry with p® +¢*> + 7% = 1.
Solution. The derivatives of f are

IR R
ro - (43) 4
ro - L9 a(dg) e 2
We have
e < 12 () R
< 5 e(53) 5

We will show that
3 2 3/2
39'@) (@I, 3 @lg@l 2 _,((¢@) _d'@ 1
—a:g(xﬁ?(—g(m)) P T SQ((W)) 9(@) +w2> |

To simplify the formulas we define

(—g"(x)/g(x)"*
(

P T G @@ + g@)? (@) + 1/a2)
.- ¢ @)|/9(x)

(—g"(x)/g(x) + g'(x)2/g(x)? + 1/x2)"/?
A 1/z

(—9"(@)/g(z) + ¢'(2)*/9(2)? + 1/2*)"/*
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9.15

Note that p > 0, ¢ > 0, r > 0, and p? + ¢> + 7> = 1. With these substitutions, the
inequality reduces to the inequality

3 3
5+ + o+ <1

2
in the hint.
For completeness we also derive the inequality:
3 3 3
ot = ()Gt e+ —ar)
3 1
= (r+aGE" e+~ 5 +0)?)

(r+ 9B~ (r+q)?)

<
On the last line we use the inequality (1/2)x(3 — 2?) < 1 for 0 < z < 1, which is easily
verified.

Prove that the following functions are self-concordant. In your proof, restrict the function
to a line, and apply the composition with logarithm rule.

(a) f(z,y) = —log(y® — 2" @) on {(z,y) | |z]|2 <y}
(b)) f(z,y) = —2logy — log(y*? — x?), with p > 1, on {(z,y) € R? | |z|” < y}.
(¢) f(z,y) = —logy —log(logy — z) on {(z,y) | e” < y}.
Solution.
(a) To prove this, we write f as f(x = —logy — log(y — 2Tz /y) and restrict the

)
function to a line ¢ = & + tv, y = ¥ + tw,

AT AT 2, T
. " _ R T T 2tz v t“v v .
f(@+tv, g+ tw) = —log <y+tw J+tw  g+tw g+tw> log(§ + tw).

If w = 0, the argument of the log reduces to a quadratic function of ¢, which is the
case considered in example 9.6.

Otherwise, we can use y instead of ¢ as variable (i.e., make a change of variables
t = (y—9)/w). We obtain

f(@+tv, g+ tw) = —log(a + By — v/y) — logy

where

Defining g(y) = —a — By + v/y, we have
f(@+tv, g+ tw) = —log(—g(y)) — logy
The function g is convex (since v > 0) and satisfies (9.43) because
9" (W) =~6v/y",  9"(w) =2v/y".

(b) We can write f as a sum of two functions

fi(z,y) = —logy —log(y"/? —z),  fa(z,y) = —logy — log(y"/® + z).
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We restrict the functions to a line x = & + tv, y = g + tw. If w = 0, both functions
reduce to logs of affine functions, so they are self-concordant. If w # 0, we can use
y as variable (i.e., make a change of variables t = (y — §)/w), and reduce the proof
to showing that the function

—logy — log(y"/? + ay +b)

is self-concordant. This is true because g(z) = —ax — b — x'/? is convex, with
derivatives

1—-p)(1—-2 -1
g/"(a:) _ _( P)(3 P) xl/p*Sj g”(:c) _p _ x1/p72’
p p
so the inequality (9.43) reduces

—D(2p—1 —
(p )p(gp )§3pr1’

i.e.,p> —1.
(c) We restrict the function to a line x = & + tv, y = § + tw:
f(@ 4 to, g+ tw) = —log(y + tw) — log(log(y + tw) — & — tw).

If w = 0 the function is obviously self-concordant. If w # 0, we use y as variable
(i.e., use a change of variables t = (y — §)/w), and the function reduces to

—logy —log(logy — a — by),
so we need to show that g(y) = a+ by — log y satisfies the inequality (9.43). We have

2 1

" 1!
g W =-5 W= 5
so (9.43) becomes
2 3
P

9.16 Let f: R — R be a self-concordant function.
(a) Suppose f”(z) # 0. Show that the self-concordance condition (9.41) can be ex-

pressed as
d ., -
| (@)

Find the ‘extreme’ self-concordant functions of one variable, i.e., the functions f
and f that satisfy

<1

respectively.
(b) Show that either f”(x) =0 for all z € dom f, or f(z) > 0 for all z € dom f.

Solution.
(a) We have
i 17" -1/2 _ [ fm(x)
dxf (z) =( 1/2)f//($)3/2'
Integrating
if"(m)71/2 -1

dx
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gives f(z) = —log(z + co) + c1z + c2. Integrating

d

a2 -1/2 _
(@) 1

gives
f(z) = —log(—a + co) + c1z + c2.
(b) Suppose f”(0) > 0, f”(z) =0 for £ > 0, and f”(z) > 0 on the interval between 0

and Z. The inequality
d

1< —f"(@)"? <1
< L)
holds for z between 0 and Z. Integrating gives

f//(j)71/2 _ f//(o)—1/2 <z
which contradicts f”(z) = 0.

9.17 Upper and lower bounds on the Hessian of a self-concordant function.

(a) Let f:R? — R be a self-concordant function. Show that

3/2
% < ()" -
/() Pi (*f@\"” .
020z, 2 0x2 dx3 ;17

for all z € dom f.
Hint. If h: R? x R? x R? — R is a symmetric trilinear form, i.e.,

h(u,v,w) =  aruiviws + a2(U1vIW2 + U1V2W1 + U2VIWT)

+ az(u1vaws + ugvi1w1 + Ugv2w1) + G4ULV2W2,

then

h(u, v, w) h(u,u,u)
SUp e = SUp —
wwwzo [[ull2l|vll2llwlle wzo  llull3

Solution. We first note the following generalization of the result in the hint. Sup-
pose A € 82, and h is symmetric and trilinear. Then h(A~™Y2u, A=Yy, A=1/2w)
is a symmetric trilinear function, so

R(A™Y 20, A=Y 29, A=Y 2w) R(A™Y 20, A=Y 2, A71/2y)
sup ’ ) = sup ’ . ’ 7
40,720 l[ull2l[ol2]|wll2 U0 lull2
i.€.,
sup h(u, v, w) h(u,u,u) (9.17.A)

wrvsro (7 Au) 2T A0) 2w Aw) 72 o (uT Au)
By definition, f: R™ — R is self-concordant if and only if

‘uT (%VQf(:i: + tu)

) u’ < 2TV f(2)u)*2.
t=0
for all u and all £ € dom f. If n = 2 this means that

[h(u, u,u)| < (uTAu)S/2
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for all u, where

h(u,v,w) = uT(%VQf(i“—i—tv)
0*f (&)

3
Ox?

Juw
t=0

+ (u1v1we2 + urv2wr + u2viwi)

> f(2)
0130z

> f(&) & f(&)
011072 + v o3
& f(#)

2
2 2
0x3

U1v1w1

+ (u1v2w2 + u2v1w2 + U2v2w1)
O f(@ &

f(l’) + 2uqus f ) +
2

T 2 (@
A =
oA “ Ox? Ox10x

i.e., A= V2f(&). In other words,

h(u,u,u) —h(u,u,u)
——=< 2 — = < 2.
o (WTAWP? =% T A =

Applying (9.17.A) (to h and —h), we also have

|h(u,v,u)| < 2(u” Au) (0" Av)*/? (9.17.B)
for all v and v. The inequalities

o f(z)\*" 7 f()\*"*
32( 8:@) ) <2{ 522 )

follow from (9.17.B) by choosing ©v = v = (1,0) and u = v = (0, 1), respectively.
The inequalities

2 2 1/2
< P f(@) (a f(fr)> ,

2 2
Oxi Ox3

9*f(x)

831'2

0°f(x)

83231

9*f(x)

896181:3 -

9*f ()

627%8162

2 1/2 g2
) (a f(x)) & f(x)

2 2
Ox? Oxi

follow by choosing v = (1,0), w = (0,1), and v = (0,1), w = (1,0), respectively.

To complete the proof we relax the assumption that V2f(2) = 0. Note that if f
is self-concordant then f(z) 4+ ex”x is self-concordant for all ¢ > 0. Applying the
inequalities to f(z) + ez z gives

2 3/2
<2 (aaf—z(f)) + e,

for all € > 0. This is only possible if the inequalities hold for € = 0.

Let f: R™ — R be a self-concordant function. Show that the nullspace of V?f(x)
is independent of . Show that if f is strictly convex, then V2 f(z) is nonsingular
for all x € dom f.

Hint. Prove that if wTV?2f(z)w = 0 for some z € dom £, then w” V2 f(y)w = 0 for
all y € dom f. To show this, apply the result in (a) to the self-concordant function

f(t,s) = f(z+tly —z) + sw).
Solution. Suppose w? V2 f(x)w = 0. We show that w” V2 f(y)w = 0 for all y €
dom f.

Define v = y —z and let f be the restriction of f to the plane through z and defined
by w, v:

0*f(x)

83x¢

& f(z)
8$?8$j

2 2 1/2
O f (@) (a f(:rr)) e

- 2 2
ox; x5

f(s,t) = fz + sw + tv).



9 Unconstrained minimization

Also define -
T2 0 f(07 t)
g(t) =w V f(z + tv)w = ez

f is a self-concordant function of two variables, so from (a),

9 F(0,1) o (azf(o,t)>1/2 f(0,1) _ ) (a?f(O,t))mg(t)’

Otds?

9" ()] = ot? 0s2 0s2

i.e., if g(t) # 0, then

d 8270, \""*
—_ > _ .
a o890 = 2( D52

By assumption, g(0) > 0 and g(¢) = 0 for t = 1. Assume that g(7) > 0for 0 < 7 < ¢.
(If not, replace t with the smallest positive ¢ for which g(¢t) = 0.) Integrating the

inequality above, we have
f(efon)"”
-2 — dr
o 0s?

+ 27 1/2
9" f(0,7)
exp (-2\/0 (T dr ,
which contradicts the assumption g(¢) = 0. We conclude that either g(¢t) = 0 for

all ¢, or g(t) > O for all t. This is true for arbitrary = and v, so a vector w either
satisfies wT' V2 f(z)w = 0 for all z, or w” V2 f(z)w > 0 for all x.
Finally, suppose f is strictly convex but satisfies v V?f(x)v = 0 for some x and

v # 0. By the previous result, vT V2 f(x + tv)v = 0 for all t, i.e., f is affine on the
line x + tv, and not strictly convex.

log(g(t)/9(0))

v

9(t)/9(0)

v

Let f: R™ — R be a self-concordant function. Suppose x € dom f, v € R". Show
that

(1— )’V f(@) < Vf(a +tv) < ———V2f(a)

(1 —ta)?
for z +tv € dom f, 0 < t < a, where a = (vT V2 f(z)v)/2.
Solution. As in part (b), we can prove that

527 1/2
‘%logg(t)’ <2 <7);$’ t)>

where g(t) = w'V2f(z + tv)w and f(s,t) = f(z + sw + tv). Applying the upper
bound in (9.46) to the self-concordant function f(0,t) = f(z + tv) of one variable,
t, we obtain

9%f(0,t) < a?
952~ (1 —ta)?’
% 2 d 2
—zl o
e 4 < *
0ta) S 290 = a0

Integrating gives

2log(1 —ta) <log(g(t)/9(0)) < —2log(1 — ta)

9(0)(1 ~ta)” < g(1) < %
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Finally, observing that ¢(0) = a? gives the inequalities

V2 f(x)w
o 2 T2 < wlv2 LW
(1 —-ta)w V f(x)w <w' V f(z+tv)w < (1= ta)2
This holds for all w, and hence

(1—ta)?V? f(z) 2 V2 f(z + tv) < mVQf($)~

9.18 Quadratic convergence. Let f : R™ — R be a strictly convex self-concordant function.
Suppose A(z) < 1, and define 7 =z — V2 f(z) "'V f(z). Prove that A(z™) < \(z)?/(1 —
A(z))?. Hint. Use the inequalities in exercise 9.17, part (c).

Solution. Let v = —V?f(z) 'V f(x). From exercise 9.17, part (c),
(1— tA@)2V2f(2) 2 V2f (2 + tv) < — T f(a).

- T (1—tA(@)?

We can assume without loss of generality that V2 f(x) = I (hence, v = —V f(z)), and

2 2 !
(=A@ 2V 2 gt

We can write A\(z") as

e = V)V
< (=A@ VI
= (1=Aaz) " </ VQf(:ertv)vdtJer(:c))
= (1-Ax)" (/ (VQf(a:—l—tv)—I)dt)v
< (1-A@) </ (ﬁl)dt)v
< et = 30 [ G~ D
0
@
= NP

9.19 Bound on the distance from the optimum. Let f : R™ — R be a strictly convex self-
concordant function.

(a) Suppose A(Z) < 1 and the sublevel set {z | f(z) < f(Z)} is closed. Show that the
minimum of f is attained and

T2 pr N k) 12 A(Z)
((73*33) Vf(:c)(:rfx)) Sm-
(b) Show that if f has a closed sublevel set, and is bounded below, then its minimum is

attained.

Solution.
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(a) As in the derivation of (9.47) we consider the function f(t) = f(& 4 tv) for an
arbitrary descent direction v. Note from (9.44) that

f'(0)
f//(0)1/2
if A\(z) < 1.
We first argue that f(¢) reaches its minimum for some positive (finite) ¢t*. Let

to =sup{t > 0| &+ tv € dom f}. If ¢ = oo (i.e., £+ tv € dom f for all ¢t > 0),

then, from (9.47), f'(t) > 0 for
t>1=— _f/(o) S—
f7(0) + f7(0)1/2f(0)

so f must reach a minimum in the interval (0, f).
If to is finite, then we must have

lim f(t) > f(0).

t—to

since the sublevel set {t | f(t) < f(0)} is closed. Therefore f reaches a minimum in
the interval (0, ¢o).

In both cases,

O _
F10) + F1(0)/2F(0)

~+
*

. —F'(0)// f"(0)
Vo < . _
1+ f(0)/+/f7(0)
L A
- 1-X(z)

where again we used (9.44). This bound on ¢* holds for any descent vector v. In
particular, in the direction v = 2* — z, we have t* = 1, so we obtain

_ T2 /N ) 1/2 A(Z)
((az—x) Vf@)(z—= )) Sl_i)\(«’f)‘

(b) If f is strictly convex, and self-concordant, with a closed sublevel set, then our
convergence analysis of Newton’s method applies. In other words, after a finite
number of iterations, A\(z) becomes less than one, and from the previous result this
means that the minimum is attained.

9.20 Conjugate of a self-concordant function. Suppose f : R™ — R is closed, strictly convex,
and self-concordant. We show that its conjugate (or Legendre transform) f* is self-
concordant.

(a) Show that for each y € dom f*, there is a unique x € dom f that satisfies y =
Vf(z). Hint. Refer to the result of exercise 9.19.

(b) Suppose § = Vf(Z). Define
g(t) = f(@+tv),  h(t)=f"(F+tw)
where v € R™ and w = V2f(Z)v. Show that
g"(0) =h"(0),  ¢"(0) =—h"(0).

Use these identities to show that f* is self-concordant.
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Solution.

(a)

(b)

y € dom f* means that f(z) — y”« is bounded below as a function of f. From
exercise 9.19, part (a), the minimum is attained. The minimizer satisfies V f(z) = y,

and is unique because f(x) — y” x is strictly convex.
Let F be the inverse mapping of Vf, i.e., x = F(y) if and only if y = Vf(x). We
have T = F(3), and also (from exercise 3.40),
Vi) =F), V() =VFFy)"
for all y € dom f~.
The first equality follows from V2 f*(g) = V2 f(z) ™"
g"(0) ="V f(@)v = w" V*f* (7)w = 1" (0).
In order to prove the second equality we define
G = £V2f(:i+t'u) H= iv2f*(*+tw)
Cdt t=0’ S odt Y =0’
i.e., we have
V(@ +tv) = V2f(Z) +tG, V(G4 tw) ~ V> f*(g) +tH
for small ¢, and
VAV + ) V(Y (@) + Y f (@)
VA + tw)
~ Vf*(y)+tH.

Q

Linearizing both sides of the equation

VA (V@ + )V (T +tv) =1
gives

HVf(z) + V" (5)G =0,

i.e., G = —V2f(Z)HV?f(Z). Therefore
0
dt
= J+Gw
= —w'Hw
o d s,
= Tk V(g + tw)w
— —hW(O).

g"(0) = V2 f(Z + tv)v

t=0

t=0

It follows that
" (0)] < 2" (0)*"2,

for any ¥ € dom f* and all w, so f* is self-concordant.

9.21 Optimal line search parameters. Consider the upper bound (9.56) on the number of

Newton iterations required to minimize a strictly convex self-concordant functions. What
is the minimum value of the upper bound, if we minimize over a and 37

Solution. Clearly, we should take 8 near one.
The function

20 — 8«
a(l —2a)?
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9.22

9.23

reaches its minimum at a = 0.1748, with a minimum value of about 252, so the lowest
upper bound is

252(f(2'”) = p") + log, log,(1/e).

Suppose that f is strictly convex and satisfies (9.42). Give a bound on the number of
Newton steps required to compute p* within €, starting at 2.

Solution. —
fe) —p" + log, log, (4e/k%)
where f = (k?/4)f. In other words

*

2O _ ,
(/) T2 g, g, (1602)

Implementation

Pre-computation for line searches. For each of the following functions, explain how the
computational cost of a line search can be reduced by a pre-computation. Give the cost
of the pre-computation, and the cost of evaluating g(t) = f(z + tAz) and g¢'(¢) with and
without the pre-computation.

(a) f(o) = -3, log(bi — ai ).

(b) f(x) =log (ZZI exp(alz + bz))

(c) f(z)=(Az —b)T(Po+ x1P1 + - - -+ 2, P,) "' (Az — b), where P; € S™, A € R™*",
beR™ anddom f ={z | P+ Z::I x; P; = 0}.

Solution.

(a) Without pre-computation the cost is order mn.
We can write g as

g(t) = — Zlog(bi - aiTz) - Z log(1 — taiTAx/(bi - aiTm)),
i=1 i=1

so if we pre-compute w; = af Axz/(b; — al =), we can express g as

w

g(t) = g(0) = log(1 —tw,),  g'(t)=—) !

1
twi ’

The cost of the pre-computation is 2mn + m (if we assume b — Az is already com-
puted). After the pre-computation the cost of evaluating g and ¢’ is linear in m.

(b) Without pre-computation the cost is order mn. We can write g as

gt) = log (Z exp(a?z + b; + taiTAa:)>

i=1
m

— 10g‘§ eteithi
i=1

where a; = af Az and 8; = af « + b;. If we pre-compute a; and 3; (at a cost that
is order mn), we can reduce the cost of computing g and ¢’ to order m.
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(c) Without pre-computation the cost is 2mn (for computing Az — b), plus 2nm? (for
computing P(z)), followed by (1/3)m?> (for computing P(z) ! (Az — b), followed by
2m for the inner product. The total cost 2nm? + (1/3)m>.

The following pre-computation steps reduce the complexity:
e Compute the Cholesky factorization P(z) = LL”
e Compute the eigenvalue decomposition L_l(zzlzl Az, P)L™T = QAQT.
e Compute y = QT L 1Az, and v = QTL 1 AAx.
The pre-computation involves steps that are order m?> (Cholesky factorization, eigen-

value decomposition), 2nm® (computing P(z) and ). Az;P;), and lower order
terms.

After the pre-computation we can express g as

- yi + tv;)?

=1
which can be evaluated and differentiated in order m operations.

Exploiting block diagonal structure in the Newton system. Suppose the Hessian V2f(x) of
a convex function f is block diagonal. How do we exploit this structure when computing
the Newton step? What does it mean about f?

Solution. If the Hessian is block diagonal, then the objective function is separable, i.e.,
a sum of functions of disjoint sets of variables. This means we might as well solve each of
the problems separately.

Smoothed fit to given data. Consider the problem
minimize f(z) =Y " V(i —yi) + A 22:11 (Tip1 — x)?

where A > 0 is smoothing parameter, v is a convex penalty function, and x € R" is the
variable. We can interpret  as a smoothed fit to the vector y.

(a) What is the structure in the Hessian of f7

(b) Extend to the problem of making a smooth fit to two-dimensional data, i.e., mini-
mizing the function

Z Y(xij — yij) + A (Z_: Z($i+l,j — i)+ Z Z_:(xi,j-&-l - xi]-)2> ,

i,j=1 i=1 j=1 i=1 j=1
with variable X € R™"*", where Y € R™*™ and A > 0 are given.
Solution.
(a) Tridiagonal.
(b) Block-tridiagonal if we store the elements of X columnwise. The blocks have size

n x n. The diagonal blocks are tridiagonal. The blocks on the first sub-diagonal are
diagonal.

Newton equations with linear structure. Consider the problem of minimizing a function
of the form

fl@) = vi(Aiw +b) (9.63)

where A; € R™*™ b, € R™i, and the functions v; : R™ — R are twice differentiable
and convex. The Hessian H and gradient g of f at x are given by

N N
H= Z ATH A, g= Z Al g.. (9.64)
i=1

=1
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9.27

where H; = V2;(A;x +b;) and g; = Vb (Aiz + bs).
Describe how you would implement Newton’s method for minimizing f. Assume that
n > m;, the matrices A; are very sparse, but the Hessian H is dense.

Solution.

In many applications, for example, when n is small compared to the dimensions m;, the
simplest and most efficient way to calculate the Newton direction is to evaluate H and g
using (9.64), and solve the Newton system with a dense Cholesky factorization.

It is possible, however, that the matrices A; are very sparse, while H itself is dense. In that
case the straightforward method, which involves solving a dense set of linear equations of
size n, may not be the most efficient method, since it does not take advantage of sparsity.
Specifically, assume that n > m;, rank A; = m;, and H; > 0, so the Hessian is a sum of
N matrices of rank m;. We can introduce new variables y; = AT v, and write the Newton
system as

N
S Alyi=-g,  yi=HAlv, i=1,.,N
i=1

This is an indefinite system of n + ZZ m; linear equations in n + ZZ m,; variables:

—Hl_l 0 e 0 Al Y1 O
0 —-H;' .- 0 Az Y2 0

: : . : : : = : . (9.26.A)
0 0 o —Hy' An YN 0
AT AT AR 0 v —g

This system is larger than the Newton system, but if n > m;, and the matrices A; are
sparse, it may be easier to solve (9.26.A) using a sparse solver than to solve the Newton
system directly.

Analytic center of linear inequalities with variable bounds. Give the most efficient method
for computing the Newton step of the function

flz)=—- Z log(z; +1) — Zlog(l —z;) — Zlog(bi — aiTx),

with dom f = {x € R" | =1 < & < 1, Az < b}, where a] is the ith row of A. Assume A
is dense, and distinguish two cases: m > n and m < n. (See also exercise 9.30.)

Solution. Note that f has the form (9.60) with k =n,p=m, g =b, F = —A, and
Yo(y) = *Zlogyi, $i(m:) = —log(1 —a?), i=1,...,n.
i=1

The Hessian f at z is given by
H=D+ A"DA (9.27.A)

where Dy = 1/(1 — x;)% 4+ 1/(z: + 1), and Di; = 1/(b; — al z)?.
The first possibility is to form H as given by (9.27.A), and to solve the Newton system
using a dense Cholesky factorization. The cost is mn? operations (to form ATDA) plus
(1/3)n? for the Cholesky factorization.
A second possibility is to introduce a new variable y = DAw, and to write the Newton
system as

DAz, + ATy =—g, ﬁ_ly = AAxys. (9.27.B)
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From the first equation, Azy, = D™'(—g — ATy), and substituting this in the second
equation, we obtain

(D' +AD'A"T)y=—-ADg. (9.27.C)
This is a positive definite set of m linear equations in the variable y € R™. Given y, we find
Az, by evaluating Az, = —D 7' (g 4+ ATy). The cost of forming and solving (9.27.C) is
mn?+(1/3)m?® operations (assuming A is dense). Therefore if m < n, this second method
is faster than directly solving the Newton system HAzn, = —g.
A third possibility is to solve (9.27.B) as an indefinite set of m + n linear equations

D AT Azt —g
HEAIEaNE -
This method is interesting when A is sparse, and the two matrices D + ATDA and
D™t + AD7'AT are not. In that case, solving (9.27.D) using a sparse solver may be
faster than the two methods above.

Analytic center of quadratic inequalities. Describe an efficient method for computing the
Newton step of the function

flx)=-— Z log(—z" Az — bl z — ¢;),
i=1
with dom f = {z | 27 Az + bz +¢; <0, i = 1,...,m}. Assume that the matrices
A; € S are large and sparse, and m < n.
Hint. The Hessian and gradient of f at x are given by

H = Z(QaiAi + a?(QAix + bl)(QAll' + bz‘)T)7 g = Z Oti(2AiCL‘ + bi),

i=1 i=1

where a; = 1/(fxTAi — bl — ).
Solution. We can write H as H = Q + FFT, where

Q = QZCMZ’AZ', F = [ 051(2A1$ =+ bl) 052(2A2$ =+ bz) cee Otm(2AmCL‘ + bm) } .
i=1

In general the Hessian will be dense, even when the matrices A; are sparse, because of
the dense rank-one terms. Finding the Newton direction by building and solving the
Newton system Hv = g, therefore costs at least (1/3)n> operations, since we need a dense
Cholesky factorization.

An alternative that may be faster when n > m is as follows. We introduce a new variable
y € R™, and write the Newton system as

Qu+Fy=—g, y=F"v
Substituting v = —Q~*(g + Fy) in the second equation yields
(I+FT'Q 'F)yy=-F'Q g, (9.28.A)

which is a set of m linear equations.

We can therefore also compute the Newton direction as follows. We factor ) using a
sparse Cholesky factorization. Then we calculate the matrix V = Q' F by solving the
matrix equation QV = F column by column, using the Cholesky factors of Q. For each
colum this involves a sparse forward and backward substitution. We then form the matrix
I+ FTV (m?n flops), factor it using a dense Cholesky factorization ((1/3)m?® flops), and
solve for y. Finally we compute v by solving Qv = —g — F'y. The cost of this procedure
is (1/3)m? +m?n operations plus the cost of the sparse Cholesky factorization of @, and
the m sparse forward and backward substitutions. If n > m and Q is sparse, the overall
cost can be much smaller than solving Hv = —g by a dense method.
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9.29 FExploiting structure in two-stage optimization. This exercise continues exercise 4.64, which
describes optimization with recourse, or two-stage optimization. Using the notation and
assumptions in exercise 4.64, we assume in addition that the cost function f is a twice
differentiable function of (z, z), for each scenario ¢ =1,...,S.

Explain how to efficiently compute the Newton step for the problem of finding the optimal
policy. How does the approximate flop count for your method compare to that of a generic
method (which exploits no structure), as a function of S, the number of scenarios?
Solution. The problem to be solved is just

minimize F(z) = 25:1 i f(x, 23, 1),

which is convex since for each ¢, f(x, z,1) is convex in (z, z;), and 7; > 0.

Now let’s see how to compute the Newton step efficiently. The Hessian of F' has the
block-arrow form

Vi.,F Vi,F VI, F ... Vi F
Vi, FT VI ._F 0 e 0
V2F— | ViLFT 0 V2, . F 0 7
. . : : . :
Vi F 0 0 s Vi F

which we can exploit to compute the Newton step efficiently. First, let’s see what happens
if we don’t exploit this structure. We need to solve the set of n+ Sq (symmetric, positive
definite) linear equations V2FA,, = —VF, so the cost is around (1/3)(n+ Sq)® flops. As
a function of the number of scenarios, this grows like S®.

Now let’s exploit the structure to compute A,;. We do this by using elimination, elimi-
nating the bottom right block of size Sq x Sq. This block is block diagonal, with S blocks
of size ¢ x ¢, This situation is described on page 677 of the text. The overall complexity
is

(2/3)Sq® 4+ 2nSq® + 2n*Sq + 2n*Sq + (2/3)n®
= ((2/3)(]3 +2nq° 4 2n°q + 2n2q) S+ (2/3)n°,
which grows linearly in S.

Here are the explicit details of how we can exploit structure to solve a block arrow, positive
definite symmetric, system of equations:

A A Az - AN " b
A, A 0 - 0 . b
A{3 0 A33 .. 0 2 — .2
;1 : . . : TN by
AlN 0 0 oo ANN
We eliminate z;, for j = 2,..., N, to obtain

z; = A; (bj — Aljm1), j=2,...,N.

The first block equation becomes

N N
A11 — ZAl]AJ_le’{] Tr1 = b1 - ZAlej'_jlbj'
Jj=2

j=2
We’ll solve this equation to find x1, and then use the equations above to find z2,...,zN.
To do this we first carry out a Cholesky factorization of Ags, ..., Ayn, and then compute

A;21A1T2, el A;,%VAEFN, and A;;bz, cee A;\,%VbN, by back substitution. We then form the
righthand side of the equations above, and the lefthand matrix, which is the Schur com-
plement. We then solve these equations via Cholesky factorization and back substitution.
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Numerical experiments

9.30 Gradient and Newton methods. Consider the unconstrained problem
minimize f(z) =—) " log(l1 —af z) — > " log(l — 3),

with variable z € R", and dom f = {z | afz <1, i=1,...,m, |z;| <1, i=1,...,n}.
This is the problem of computing the analytic center of the set of linear inequalities

alr <1, i=1,...,m, lzi| <1, i=1,...,n.

Note that we can choose (%) = 0 as our initial point. You can generate instances of this
problem by choosing a; from some distribution on R™.

(a) Use the gradient method to solve the problem, using reasonable choices for the back-
tracking parameters, and a stopping criterion of the form ||V f(z)||2 < 7. Plot the
objective function and step length versus iteration number. (Once you have deter-
mined p* to high accuracy, you can also plot f — p* versus iteration.) Experiment
with the backtracking parameters o and ( to see their effect on the total number of
iterations required. Carry these experiments out for several instances of the problem,
of different sizes.

(b) Repeat using Newton’s method, with stopping criterion based on the Newton decre-
ment A2, Look for quadratic convergence. You do not have to use an efficient method
to compute the Newton step, as in exercise 9.27; you can use a general purpose dense
solver, although it is better to use one that is based on a Cholesky factorization.

Hint. Use the chain rule to find expressions for V f(x) and V2f(z).
Solution.
(a) Gradient method. The figures show the function values and step lengths versus

iteration number for an example with m = 200, n = 100. We used a = 0.01,
B = 0.5, and exit condition ||V f(z®)|]z < 1073,

0.016 5
102 | 0.014f
N 0.012}
g(100 1
| 0.01}
10 1= L
o) £ 0.008p
8
B . 0.006F
10 1
0.004
10°
0.002f
10’B L L L L G L L L L L
0 100 200 300 400 500 0 100 200 300 400 500 600
k
The following is a Matlab implementation.
ALPHA = 0.01;
BETA = 0.5;

MAXITERS = 1000;
GRADTOL = 1le-3;

x = zeros(n,1);

for iter = 1:MAXITERS
val = -sum(log(1-A*x)) - sum(log(1l+x)) - sum(log(1l-x));
grad = A’*(1./(1-A*x)) - 1./(1+x) + 1./(1-x);
if norm(grad) < GRADTOL, break; end;
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v = -grad;

fprime = grad’*v;

t = 1; while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),
t = BETAxt;

end;

while ( -sum(log(1l-A*(x+t*v))) - sum(log(l-(x+t*v)."2)) >

val + ALPHAxt*fprime )

t = BETAxt;

end;

X = x+t*v;

end;

(b) Newton method. The figures show the function values and step lengths versus iter-
ation number for the same example. We used o« = 0.01, 8 = 0.5, and exit condition
Mz*)? <1078,

The following is a Matlab implementation.

ALPHA = 0.01;

BETA = 0.5;
MAXITERS = 1000;
NTTOL = 1le-8;

x = zeros(n,1);
for iter = 1:MAXITERS
val = -sum(log(1-A*x)) - sum(log(i+x)) - sum(log(1-x));
d = 1./(1-A*x);
grad = A’xd - 1./(1+x) + 1./(1-x);
hess = A’*xdiag(d."2)*A + diag(1./(1+x).72 + 1./(1-x)."2);
v = -hess\grad;
fprime = grad’*v;
if abs(fprime) < NTTOL, break; end;
t = 1; while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),
t = BETAxt;
end;
while ( -sum(log(1l-Ax(x+t*v))) - sum(log(l-(x+t*v)."2)) >
val + ALPHAxt*fprime )
t = BETAxt;
end;
X = x+t*v;
end;

9.31 Some approximate Newton methods. The cost of Newton’s method is dominated by the
cost of evaluating the Hessian V2 f(z) and the cost of solving the Newton system. For large
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problems, it is sometimes useful to replace the Hessian by a positive definite approximation
that makes it easier to form and solve for the search step. In this problem we explore
some common examples of this idea.

For each of the approximate Newton methods described below, test the method on some
instances of the analytic centering problem described in exercise 9.30, and compare the
results to those obtained using the Newton method and gradient method.

(a) Re-using the Hessian. We evaluate and factor the Hessian only every N iterations,
where N > 1, and use the search step Az = —H71Vf(x), where H is the last Hessian
evaluated. (We need to evaluate and factor the Hessian once every N steps; for the
other steps, we compute the search direction using back and forward substitution.)

(b) Diagonal approzimation. We replace the Hessian by its diagonal, so we only have
to evaluate the n second derivatives 9% f(x)/0z7, and computing the search step is
very easy.

Solution.

(a) The figure shows the function value versus iteration number (for the same example
as in the solution of exercise 9.30), for N =1 (i.e., Newton’s method), N = 2, and
N =5.

0 5 10 15 20 25
We see that the speed of convergence deteriorates rapidly as N increases.

(b) The figure shows the function value versus iteration number (for the same example
as in the solution of exercise 9.30), for a diagonal approximation of the Hessian. The
experiment shows that the algorithm converges very much like the gradient method.

0 200 400 600 800

k

9.32 Gauss-Newton method for convex nonlinear least-squares problems. We consider a (non-
linear) least-squares problem, in which we minimize a function of the form

Zfi('r)27

N =

flx) =
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where f; are twice differentiable functions. The gradient and Hessian of f at x are given
by

Vi@ =Y fi@Vi@), V@) =Y (VH@V@" + fi(2)V fi()).
i=1 i=1
We consider the case when f is convex. This occurs, for example, if each f; is either
nonnegative and convex, or nonpositive and concave, or affine.
The Gauss-Newton method uses the search direction

Azgn = — | > _ V(@) Vi) > fi@)Vfilx)

(We assume here that the inverse exists, i.e., the vectors V f1(z),..., V fm(z) span R™.)
This search direction can be considered an approximate Newton direction (see exer-
cise 9.31), obtained by dropping the second derivative terms from the Hessian of f.

We can give another simple interpretation of the Gauss-Newton search direction Azgy.
Using the first-order approximation f;(x +v) = fi(x) + V f;(z)Tv we obtain the approxi-
mation

P+ o)~ 5 S (fil@) + Vi) o)

The Gauss-Newton search step Axg, is precisely the value of v that minimizes this ap-
proximation of f. (Moreover, we conclude that Azg, can be computed by solving a linear
least-squares problem.)

Test the Gauss-Newton method on some problem instances of the form
fi(z) = (1/2)a" Aiz + b 4+ 1,

with A; € ST, and bl A;'b; < 2 (which ensures that f is convex).
Solution. We generate random A; € S%,, random b;, and scale A; and b; so that
biTAi_lb,' = 2. We take n = 50, m = 100. The figure shows a typical convergence plot.
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k

We note that the Gauss-Newton method converges linearly, and much more slowly than
Newton’s method (which for this example converged in 2 iterations).

This was to be expected. From the interpretation of the Gauss-Newton method as an
approximate Newton method, we expect that it works well if the second term in the
expression for the Hessian is small compared to the first term, 4.e., if either V2 f; is small
(fi is nearly linear), or f; is small. For this test example neither of these conditions was
satisfied.
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Exercises

Equality constrained minimization
10.1 Nonsingularity of the KKT matriz. Consider the KKT matrix

P AT
A 0 |’

where P € ST, A € RP*" and rank A = p < n.

(a)

(b)

Show that each of the following statements is equivalent to nonsingularity of the
KKT matrix.

o N(P)NN(A) = {0}.

e Az =0,z # 0 =z’ Pz > 0.

o FTPF = 0, where F € R"*("™P) is a matrix for which R(F) = N(A).
. P+ATQA> 0 for some @ > 0.

Show that if the KKT matrix is nonsingular, then it has exactly n positive and p
negative eigenvalues.

Solution.

(a)

The second and third are clearly equivalent. To see this, if Az = 0,  # 0, then =
must have the form o = Fz, where z # 0. Then we have 7 Pz = 2T FT PFz.
Similarly, the first and second are equivalent. To see this, if x € N'(A)NN(P), z # 0,
then Az = 0, ¢ # 0, but 7 Pz = 0, contradicting the second statement. Conversely,
suppose the second statement fails to hold, i.e., there is an z with Az = 0, x # 0,
but 27 Pz = 0. Since P > 0, we conclude Pz =0, i.e., z € N (P), which contradicts
the first statement.

Finally, the second and fourth statements are equivalent. If the second holds then
the last statement holds with Q = I. If the last statement holds for some @ > 0
then it holds for all > 0, and therefore the second statement holds.

Now let’s show that the four statements are equivalent to nonsingularity of the KKT
matrix. First suppose that x satisfies Az =0, Pxr =0, and = # 0. Then

2[5

which shows that the KKT matrix is singular.
Now suppose the KKT matrix is singular, i.e., there are x, z, not both zero, such

that

P AT T _y

A 0 z |
This means that Pz + ATz = 0 and Az = 0, so multiplying the first equation on the
left by 7, we find 27 Pz + 2T ATz = 0. Using Az = 0, this reduces to 7 Pz = 0,
so we have Pz = 0 (using P > 0). This contradicts (a), unless z = 0. In this case,
we must have z # 0. But then ATz = 0 contradicts rank A = p.
From part (a), P4+ AT A = 0. Therefore there exists a nonsingular matrix R € R™*"
such that

R'(P+ATAR=1.
Let AR = UXV{' be the singular value decomposition of AR, with U € RP*?,
> = diag(o1,...,0) € RP*? and Vi € R™*P. Let Vo € R™*("~P) be such that

V:[V1 V2]
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is orthogonal, and define
S=[% 0]eR"

We have AR =USV7”, so
VIR"(P+ A"A)RV =V 'R"PRV + S"S =1.
Therefore VT RT PRV = I — S”S is diagonal. We denote this matrix by A:
A =V"R"PRV =diag(1 —o%,...,1 —0,,1,...,1).

Applying a congruence transformation to the KKT matrix gives
VIRT 0 P AT RV o| | A S7
o U A 0 o U| | S o |’

and the inertia of the KKT matrix is equal to the inertia of the matrix on the right.

Applying a permutation to the matrix on the right gives a block diagonal matrix
with n diagonal blocks

A 0y o B o
|:0'i O:|’ t=1,...,p, Ai=1, i=p+1,...,n

The eigenvalues of the 2 x 2-blocks are
i £ /\Z2 + 4(71.2
2 )
i.e., one eigenvalue is positive and one is negative. We conclude that there are
p + (n — p) = n positive eigenvalues and p negative eigenvalues.

10.2 Projected gradient method. In this problem we explore an extension of the gradient method
to equality constrained minimization problems. Suppose f is convex and differentiable,
and = € dom f satisfies Ax = b, where A € RP*"™ with rank A = p < n. The Euclidean
projection of the negative gradient —V f(z) on A (A) is given by

Azpe = argmin |-V f(z) — ul|2.
Au=0

(a) Let (v, w) be the unique solution of

L]

Show that v = Azpg and w = argmin, ||V f(z) + ATy]ls.
(b) What is the relation between the projected negative gradient Axp, and the negative
gradient of the reduced problem (10.5), assuming FTF = I?

(¢) The projected gradient method for solving an equality constrained minimization
problem uses the step Azps, and a backtracking line search on f. Use the re-
sults of part (b) to give some conditions under which the projected gradient method

converges to the optimal solution, when started from a point z© ¢ dom f with
Az©® =p.

Solution.

(a) These are the optimality conditions for the problem

minimize ||~V f(z) — ul|3
subject to Au = 0.
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(b) If FTF = I, then Azpy = —FV f(Fz + &) where z = Fz + 7.

(¢) By part (b), running the projected gradient from 2(*) is the same as running the

gradient method on the reduced problem, assuming F7F = I. This means that
the projected gradient method converges if the initial sublevel set {z | f(z) <

f(z®), Az = b} is closed and the objective function of the reduced or eliminated
problem, f(Fz + &) is strongly convex.

Newton’s method with equality constraints

10.3 Dual Newton method. In this problem we explore Newton’s method for solving the dual

of the equality constrained minimization problem (10.1). We assume that f is twice
differentiable, V2 f(x) > 0 for all x € dom f, and that for each v € RP, the Lagrangian
L(z,v) = f(x) + v (Az — b) has a unique minimizer, which we denote z(v).

(a) Show that the dual function g is twice differentiable. Find an expression for the
Newton step for the dual function g, evaluated at v, in terms of f, Vf, and V2f,
evaluated at * = z(v). You can use the results of exercise 3.40.

(b) Suppose there exists a K such that

V2f(z) AT 7
H[ o A7) <k

0

2
for all x € dom f. Show that g is strongly concave, with VZg(v) < —(1/K)I.
Solution.

(a) By the results of exercise 3.40, g is twice differentiable, with

Vg(v) = AV (—A"v) = Az(v)
Vigv) = AV (—ATV)AT = —AV f(z(v)) ' AT.

Therefore the Newton step for g at v is given by
Avyy = (AV? f(z(v)) P AT) Az (v).

for all z € z(S) = {z(v) | v € S}. Using the expression

[H AT}_I_[H* 0:||:H1AT_(AH1AT)1[AH1 1]

(b) Now suppose

<K

[ V2f(z) AT }1
A 0

2

A 0 0 0 —1I

(with H = V?f(z)), we see that

moAT 7 H AT 77 [o
A 0 = A o u
2 2 2
—1 4T
= sup HA (AH AT 'y
lullz=1 —1 )
> sup ||(AH71AT)71uH2

llull2=1

I(AH™"AT) "2
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for all € (S), which implies that
Vig(v) = —AV? f(a(v) T AT 2 —(1/K)I

forallv e S.

10.4 Strong convezity and Lipschitz constant of the reduced problem. Suppose f satisfies the

10.5

10.6

assumptions given on page 529. Show that the reduced objective function f(z) = f(Fz+2%)
is strongly convex, and that its Hessian is Lipschitz continuous (on the associated sublevel

set S). Express the strong convexity and Lipschitz constants of f in terms of K, M, L,
and the maximum and minimum singular values of F'.

Solution. In the text it was shown that V2f(z) = ml, for m = omin(F)?/(K?M). Here
we establish the other properties of f. We have

IV2f ()l = IF" V2 f(Fz + &) Fl2 < |IF|3M,

using ||V f2(z)||l2 < M. Therefore we have V2f(z) < MI, with M = ||F||3M.
Now we establish that V2 f(z) satisfies a Lipschitz condition:

IV2F(2) = V2 f(w)]2

|FT (V2 f(Fz+ &) — V2f(Fw+ &) F||2
IFIZIV?f(Fz + &) — V2 f(Fw + &)| 2
LIF|3[|F(z = w)|2

L||F||3 ||z — wl|a-

IN AN IA

Thus, V2 f(z) satisfies a Lipschitz condition with constant L = L||F||3.

Adding a quadratic term to the objective. Suppose @ = 0. The problem
minimize  f(z) + (Az — b)TQ(Azx — b)
subject to Ax =b

is equivalent to the original equality constrained optimization problem (10.1). Is the
Newton step for this problem the same as the Newton step for the original problem?

Solution. The Newton step of the new problem satisfies

H+ ATQA AT Az | | —g—24TQAx +24TQb
A 0 w o 0 ’

From the second equation, AAz = 0. Therefore,

H AT | [ Az ] [ —g—24TQAz +24TQb
A 0 w | 0 ’

H AT Az | | —g
A 0 wo| 0 |’
where w = w + 2QAx — 2Qb. We conclude that the Newton steps are equal. Note the

connection to the last statement in exercise 10.1.
The Newton decrement. Show that (10.13) holds, i.e.,

and

(@) —inf{f(z +v) | A(z +v) = b} = Ax)?/2.

Solution. The Newton step is defined by

RSN
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We first note that this implies that AzT HAz = —gT Az. Therefore

fa+az) = f@)+g"v+ (1/2)0" Ho
= fl)+(1/2)g"v
= f(z) = (1/2)A(=)".

Infeasible start Newton method

10.7 Assumptions for infeasible start Newton method. Consider the set of assumptions given
on page 536.

(a)

Suppose that the function f is closed. Show that this implies that the norm of the
residual, ||r(z,v)||2, is closed.

Solution. Recall from §A.3.3 that a continuous function h with an open domain
is closed if h(y) tends to infinity as y approaches the boundary of domh. The
function ||7||2 : R™ x R? — R is clearly continuous (by assumption f is continuously
differentiable), and its domain, dom f x RP, is open. Now suppose f is closed.

Consider a sequence of points (¢, ") € dom ||||2 converging to a limit (Z,7) €
bddom ||r||z. Then Z € bddom f, and since f is closed, f(z*)) — oo, hence
IV f(z®)]]2 — oo, and ||r(z®, v*))||2 — co. We conclude that ||r|)2 is closed.
Show that Dr satisfies a Lipschitz condition if and only if V2f does.

Solution. First suppose that V2 f satisfies the Lipschitz condition

IV*f(2) = V*f(@)ll2 < Lllz — &2

for z, £ € S. From this we get a Lipschitz condition on Dr: If y = (z,v) € S, and
§= (% 7)€ S, then

1Dr(y) — Dr(g)ll2

H[Wf(x) AT}_{WM) AT]
A

0 A 0 )
_ VA f(z) = V2f(z) 0
- 0 0 )
= IV*f(2) = V(@)
< Lz = 2|2
< Ly =1l

To show the converse, suppose that Dr satisfies a Lipschitz condition with constant
L. Using the equations above this means that

IDr(y) = Dr(@)ll2 = IV f(2) = V* (@)l < Llly — §ll2

for all y and §. In particular, taking v = 7 = 0, this reduces to a Lipschitz condition
for V2 f, with constant L.

10.8 Infeasible start Newton method and initially satisfied equality constraints. Suppose we use
the infeasible start Newton method to minimize f(z) subject to afe=b;,i=1,...,p.

(a)
(b)

0

Suppose the initial point z(?) satisfies the linear equality alx = b;. Show that the

linear equality will remain satisfied for future iterates, i.e., if alz® = b; for all k.
Suppose that one of the equality constraints becomes satisfied at iteration k, i.e.,

we have af z*~V % b, alz™ = b;. Show that at iteration k, all the equality
constraints are satisfied.
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10.9

Solution.
Follows easily from

k-1
P — (H(l — t(i))> O

i=0

Equality constrained entropy mazimization. Consider the equality constrained entropy
maximization problem

minimize  f(z) = Z?zl x;log x;

subject to Az = b, (10-42)

with dom f = R}, and A € RP*". We assume the problem is feasible and that rank A =
p<n.

(a) Show that the problem has a unique optimal solution z*.

(b) Find A, b, and feasible 2(*) for which the sublevel set
{zeRY, | Az =0, f(z) < f(=)}

is not closed. Thus, the assumptions listed in §10.2.4, page 529, are not satisfied for
some feasible initial points.

(c) Show that the problem (10.42) satisfies the assumptions for the infeasible start
Newton method listed in §10.3.3, page 536, for any feasible starting point.

(d) Derive the Lagrange dual of (10.42), and explain how to find the optimal solution
of (10.42) from the optimal solution of the dual problem. Show that the dual problem
satisfies the assumptions listed in §10.2.4, page 529, for any starting point.

The results of part (b), (c), and (d) do not mean the standard Newton method will fail,
or that the infeasible start Newton method or dual method will work better in practice.
It only means our convergence analysis for the standard Newton method does not apply,
while our convergence analysis does apply to the infeasible start and dual methods. (See
exercise 10.15.)

Solution.

(a) If p* is not attained, then either p* is attained asymptotically, as « goes to infinity,
or in the limit as = goes to z*, where * = 0 with one or more zero components.

The first possibility cannot occur because the entropy goes to infinity as x goes to
infinity. The second possibility can also be ruled out, because by assumption the
problem is feasible. Suppose & > 0 and AZ = b. Define v =% — x and

n

g(t) = _(a} + tv;) log(a} + tvy)

=1

for ¢ > 0. The derivative is
gt = Zvi(l + log(x} + tv;).
i=1

Now if 7 = 0 for some i, then v; > 0, and hence lim;—.¢ g(t) = —oo. This means it
is impossible that lim¢—o g(t) = p*.
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(b) Consider

2 1 0 1
iy -l

and starting point =(® = (1/20,9/10,1/20). Eliminating x> and z3 from the two
equations
2.131—|—.132:1, IL’1—|—:I’2—|—:ZT3:1
gives 2 = 1 — 21, 23 = x1. For (¥ = (1/20,9/10,1/20), with f(z(®)) = —0.3944
we have f(z1,1 — 2z1,21) < f(m(0>) if and only if 1/20 < z1 < 0.5, which is not
closed.
(¢) The dual problem is

o T P T
maximize —b"v—) 7  exp(—1-—a;v)

where a; is the ith column of A. The dual objective function is closed with domain
RP.
(d) We have
r(z,v) = (Vf(z) + A"v, Az — b)
where
Vf(z)i=logz; +1, i=1,...,n.
We show that ||7||2 is a closed function.
Clearly ||r]|2 is continuous on its domain, R}, x RP.
Suppose (), v®)) k= 1,2, ... is a sequence of points converging to a point (Z, 7) €
bd dom ||r||2. We have Z; = 0 for at least one i, so logatgk) +1+alv® - —co.
Hence ||r(z®,v® |3 — co.
We conclude that r satisfies the sublevel set condition for arbitrary starting points.
10.10 Bounded inverse derivative condition for strongly convex-concave game. Consider a convex-

concave game with payoff function f (see page 541). Suppose V2,f(u,v) = ml and
V2, f(u,v) <= —mlI, for all (u,v) € dom f. Show that

IDr(u,v) "2 = V2 f(u,0) " l2 < 1/m.

Solution. Let
D E
H:V2f(u,v): [ ET _p ]
where D € S, F € 89, E € R?*?, and assume D > mI, F = ml. Let D~'/2EF~1/? =
U Vi be the singular value decomposition (U; € RP*", V; € R7*", ¥ € R™", r =
rank E). Choose Us € RP*®=") and V4 € R~ 5o that Uf Uy = I, U Uy = 0 and
VEVy = I, V8 Vi = 0. Define

1 0

U=[U: U; |eRP?,  V=[W WV ]|eR, S_{ o 0

} € RPX9,

With these definitions we have D™Y2EF~1/2 = Uysv7T = U, V{7, and

Ho— DY*U 0 I S UTp'/? 0
B o PV [ st I 0 VIEYZ |-
Therefore

gt [ Ut 0 1 s 1 '[p'"U o
- 0 VTF71/2 ST —I 0 F71/2V
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and |[H™ 2 < (1/m)||G™||2, where

1 S
G- { A } .
We can permute the rows and columns of G so that it is block diagonal with max{p,q}—r

scalar diagonal blocks with value 1, max{p, ¢} — r scalar diagonal blocks with value —1,
and r diagonal blocks of the form

1 g

g; —1 ’
Note that

1 g4 -t _ 1 1 g;
o; —1 1+ | o0 -1

1
_ 1/4/1+ o? O’i/\/1+0'i2 \/1+af
B oi/\/1+02 —1/y/1+4 072 0

_ 1

|: 1 a-i :|_1 V
o; —1 . 1—1—0'1.2.

If r # max{p, q}, then ||G™!||2 = 1. Otherwise

1 ’
2
1+01‘,

and therefore

IG™"]l2 = max(1 +07) 7/ < 1.

In conclusion,
IH 2 < (1/m)|GH |2 < 1/m.

Implementation

10.11 Consider the resource allocation problem described in example 10.1. You can assume the
fi are strongly convex, i.e., fi'(z) > m > 0 for all 2.

(a) Find the computational effort required to compute a Newton step for the reduced
problem. Be sure to exploit the special structure of the Newton equations.

(b) Explain how to solve the problem via the dual. You can assume that the conjugate
functions f;°, and their derivatives, are readily computable, and that the equation
fi(z) = v is readily solved for x, given v. What is the computational complexity of
finding a Newton step for the dual problem?

(c) What is the computational complexity of computing a Newton step for the resource
allocation problem? Be sure to exploit the special structure of the KKT equations.

Solution.

(a) The reduced problem is

minimize f(z) = 22:11 fi(zi) + fu(d—172).
The Newton equation is
(D + dllT)Az =g.
where D is diagonal with D;; = f/’(z;) and d = fI/(b—172).
The cost of computing Az is order n, if we use the matrix inversion lemma.
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(b) The dual problem is
maxmize g(v)=—bv—>3 " fi(-v).
From the solution of exercise 10.3,
g W) =1"z(v), g'(v)=-1"V?f(z(v)) "1,

where V2 f(2(v)) is diagonal with diagonal elements f{'(x;(v)). The cost of forming

g" (v) is order n.
D 1 Az | | —g
1" 0 w [ ] 0 |’

(c) The KKT system is
which can be solved in order n operations by eliminating Ax.
10.12 Describe an efficient way to compute the Newton step for the problem
minimize  tr(X ')
subject to  tr(A;X)=1b;, i=1,...,p

with domain S% ,, assuming p and n have the same order of magnitude. Also derive the
Lagrange dual problem and give the complexity of finding the Newton step for the dual
problem.

Solution.

(a) The gradient of fo is Vfo(X) = —X 2. The optimality conditions are
p
—X72+Z’u)iAi:0, tr(A; X)=b;, i=1,...,p.
=1
Linearizing around X gives
P
X T HXTAXX T X TPAXX T 4 wid,

i=1

Il
o

Il
S
S
~.
I
_
=

i.e.,

I
~

g
AXX T4 XTIAX +) wi(XAX)
=1

tl‘(AlAX) = b — tI‘(Al',X)7 1= 1, ey P

We can eliminate AX from the first equation by solving p + 1 Lyapunov equations:

AX:Yo-&-iini

i=1
where
YoX '+ X Wo=1, YiX'4+X'Vi=XAX, i=1,...,p.
Substituting in the second equation gives
Hw =y,

with H; = tr(Y:Y;), 4,5 =1,...,p.
The cost is order pn® for computing Y;, p?n? for constructing H and p?® for solving
the equations.
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(b) The conjugate of fo is given in exercise 3.37:
fo(Y)==2tr(=Y)""?,  dom f; =S}
The dual problem is
maximize g(v) = —b"v+2tr(>°"_, viAg)/?

with domain {v¥ € R” | 3 1;A; = 0}. The optimality conditions are
P
2tr(AiVgo(2) =b;, i=1,....p, Z= Z vi As, (10.12.A)
i=1

where go(Z) = tr Z1/2.
The gradient of go is Vtr(Z'/?) = (1/2)Z~'/?, as can be seen as follows. Suppose
Z = 0. For small symmetric AZ, (Z 4+ AZ)Y? ~ Z'/? + AY where

Z+AZ = (Z'*+AY)?
Z+ ZY2AY + AY ZV?,

i.e., AY is the solution of the Lyapunov equation AZ = ZY2AY + AYZ'?. In
particular,

tr AY = tr(Z27V2AZ) —tr(Z7VPAY ZV?) = tr(Z27 V2 AZ) — tr AY,
i.e., tr AY = (1/2)tr(ZY/>AZ). Therefore

tr(Z+A2)Y? &~ trZY?+trAY
tr 22 + (1/2) tr(Z27 2 A Z),

ie., VztrZY? = (1/2)27 /2.
We can therefore simplify the optimality conditions (10.12.A) as

P
tr(AiZ_l/Q) :bi, = 1,...,]7, Z:ZViAiy
i=1

Linearizing around Z, v gives

tr(AiZ YA +te(AAY) = by, i=1,...,p
ZV2AY + AYZY? = AZ
P P
74+ NANZ = ZVZAZ +ZAl/iAi,
i=1 =1
i.e., after a simplification
tr(AAY) = bi—tr(A4Z7Y?), i=1,....p

P

ZY2AY + AY ZY/? - Z Avidi = —Z+ Z vi As.
1 i=1

These equations have the same form as the Newton equations in part (a) (with X
replaced with Z~1/2),
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10.13 Elimination method for computing Newton step for convex-concave game. Consider a
convex-concave game with payoff function f : R? x R? — R (see page 541). We assume
that f is strongly convez-concave, i.e., for all (u,v) € dom f and some m > 0, we have
Viuf (u,v) = mI and V3, f(u,v) < —ml.

(a)

(b)

Show how to compute the Newton step using Cholesky factorizations of V2, f (u,v)
and —V? f,, (u,v). Compare the cost of this method with the cost of using an LDLT
factorization of V f(u,v), assuming V?f(u,v) is dense.

Show how you can exploit diagonal or block diagonal structure in V2, f(u, v) and/or
V2, f(u,v). How much do you save, if you assume V2, f(u,v) is dense?

Solution.

(a)

We use the notation
2 | D E
vf(uvv)_[ET F:|7
with D € S?

., Ee€RPY F e 8%, and consider the cost of solving a system of
the form

2 212

Dv+ EFw = —g, ETy— Fw= —h.

We have two equations

From the first equation we solve for v to obtain
v=—D""(g+ Ew).
Substituting in the other equation gives ET D™ (g + Fw) + Fw = h, so
w=(F+E"D'E)""(h— E"D™ ).

We can implement this method using the Cholesky factorization as follows.
e Factor D = L1 LT ((1/3)p® flops).
e Compute y = D™ 'g, and Y = L7*E (p?(2 + q) ~ p*q flops).
e Compute S = F +Y7TY (pg® flops) and d = h — ETy (2pq flops)
e Solve Sw = d via Cholesky factorization ((1/3)q> flops).

The total number of flops (ignoring lower order terms) is
(1/3)p° +p*a +pd”* + (1/3)¢” = (1/3)(p + )",

Eliminating w would give the same result.

The cost is the same as using LDL™ factorization of Vf(u,v), i.e., (1/3)(p + ¢)*.
A matrix of the form of V2 f(u,v) above is called a quasidefinite matrix. It has the
special property that it has an LDLT factorization with diagonal D: with the same
notation as above,

D E | | L o I 0 L vy
ET —F | | YT Ly || 0 —I o LT |-

Assume f is the cost of factoring D, and s is the cost of solving a system Dz = b
after factoring. Then the cost of the algorithm is

f+p%(s/2) +pa® + (1/3)¢".
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10.14

10.15

Numerical experiments

Log-optimal investment. Consider the log-optimal investment problem described in ex-
ercise 4.60. Use Newton’s method to compute the solution, with the following problem
data: there are n = 3 assets, and m = 4 scenarios, with returns

2 2 0.5 0.5
pP1 = 1.3 5 P2 = 0.5 5 p3 = 1.3 5 P4 = 0.5 .
1 1 1 1

The probabilities of the four scenarios are given by 7 = (1/3,1/6,1/3,1/6).

Solution. Eliminating x3 using the equality constraint x1 4+ x2 + x3 = 1 gives the
equivalent problem

maximize (1/3)log(1 + z1 + 0.3z2) + (1/6) log(1 + =1 — 0.5z2)
+ (1/3) log(1 — 0.5z1 + 0.3z2) + (1/6) log(1 — 0.5z1 — 0.522),

with two variables 1 and x2. The solution is

r1 = 0.4973, x2 = 0.1994, z3 = 0.7021.

We use Newton’s method with backtracking parameters a = 0.01, § = 0.5, stopping
criterion A < 107%, and initial point = = (0,0,1). The algorithm converges in five steps,
with no backtracking necessary.

Equality constrained entropy mazimization. Consider the equality constrained entropy
maximization problem

minimize  f(z) = Z:;l xilog x;
subject to Az = b,

with dom f = R}, and A € RP*", with p < n. (See exercise 10.9 for some relevant
analysis.)

Generate a problem instance with n = 100 and p = 30 by choosing A randomly (checking
that it has full rank), choosing % as a random positive vector (e.g., with entries uniformly
distributed on [0, 1]) and then setting b = Az. (Thus, & is feasible.)

Compute the solution of the problem using the following methods.

(a) Standard Newton method. You can use initial point z(®) = Z.

(b) Infeasible start Newton method. You can use initial point (¥} = 2 (to compare with
the standard Newton method), and also the initial point z(® = 1.

(¢) Dual Newton method, i.e., the standard Newton method applied to the dual problem.

Verify that the three methods compute the same optimal point (and Lagrange multiplier).
Compare the computational effort per step for the three methods, assuming relevant
structure is exploited. (Your implementation, however, does not need to exploit structure
to compute the Newton step.)

Solution.

(a) Standard Newton method. A typical convergence plot is shown below.
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The Matlab code is as follows.
MAXITERS = 100;

ALPHA = 0.01;
BETA = 0.5;
NTTOL = 1le-7;
x = x0;

for iter=1:MAXITERS
val = x’*log(x);
grad = 1+log(x);
hess = diag(1l./x);
sol = -[hess A’; A zeros(p,p)] \ [grad; zeros(p,1)];
v = sol(1:n);
fprime = grad’*v;
if (abs(fprime) < NTTOL), break; end;
t=1;
while (min(x+t*v) <= 0), t = BETA*t; end;
while ((x+t*v)’*log(x+t*v) >= val + t*ALPHA*fprime), t=BETA*t; end;
X = X + t*v;
end;

(b) Infeasible start Newton method. The figure shows the norm of the residual versus

(V(f(z)) + ATv, Az — b) verus iteration number for the same example. The lower

curve uses starting point z(® = 1; the other curve uses the same starting point as
in part (a).

MAXITERS = 100;
ALPHA = 0.01;
BETA = 0.5;
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RESTOL = 1le-7;

x=x0; nu=zeros(p,1);
for i=1:MAXITERS
r = [1+log(x)+A’*nu; A*x-b]; resdls = [resdls, norm(r)];
sol = -[diag(1./x) A’; A zeros(p,p)] \ r;
Dx = sol(1:n); Dnu = sol(n+[1:p]);
if (norm(r) < RESTOL), break; end;
t=1;
while (min(x+t*Dx) <= 0), t = BETA*t; end;
while norm([1+log(x+t*Dx)+A’*(nu+Dnu); Ax(x+Dx)-b]) > ...
(1-ALPHA*t) *norm(r), +t=BETA*t; end;
X = x + t*Dx; nu = nu + t*Dnu;
end;

(¢) Dual Newton method. The dual problem is

n 7(1311/71

maximize —bTv — Zi:l e

where a; is the ith column of A. The figure shows the dual function value versus
iteration number for the same example.

0 0.5 1 1.5 2 25 3

k
MAXITERS = 100;
ALPHA = 0.01;
BETA = 0.5;

NTTOL = 1e-8;
nu = zeros(p,1);
for i=1:MAXITERS
val = b’#nu + sum(exp(-A’*nu-1));
grad = b - Axexp(-A’*nu-1);
hess = Axdiag(exp(-A’*nu-1))*A’;
v = -hess\grad;
fprime = grad’*v;
if (abs(fprime) < NTTOL), break; end;
t=1;
while (b’*(nu+t*v) + sum(exp(-A’*(nu+t*v)-1)) > ...
val + t*xALPHA*fprime), t = BETAxt; end;
nu = nu + t*v;
end;

The computational effort is the same for each method. In the standard and infeasible
start Newton methods, we solve equations with coefficient matrix

{ VZf(z) AT }
A 0 |’
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where
V2 f(z) = diag(z) "
Block elimination reduces the equation to one with coefficient matrix A diag(z)A”.
In the dual method, we solve an equation with coefficient matrix
—V?g(v) = ADA"™
where D is diagonal with D;; = e_“iT”_l.
In all three methods, the main computation in each iteration is therefore the solution of
a linear system of the form
ATDAv = —g
where D is diagonal with positive diagonal elements.

10.16 Convex-concave game. Use the infeasible start Newton method to solve convex-concave
games of the form (10.32), with randomly generated data. Plot the norm of the residual
and step length versus iteration. Experiment with the line search parameters and initial
point (which must satisfy ||u|l2 < 1, ||v||2 < 1, however).

Solution. See figure 10.5 and the two figures below.

5

10

0 2 4 6 8 0 2 4 6 8
k k

A Matlab implementation, using the notation
f@y)=a2"Ay+c"w+d"y —log(l — 2" x) +log(1 —y"y),

is as follows.

BETA = .5;

ALPHA = .01;
MAXITERS = 100;

x = .0l*ones(n,1);
y = .Ol*ones(n,1);

for iters =1:MAXITERS
r = [ Axy + (2/(1-x’*x))*x + c; A’*xx - (2/(1-y’*y))*xy + d];
if (norm(r) < 1e-8), break; end;
Dr = [ ((2/(1-x’*x))*eye(n) + (4/(1-x’*x)"2)*x*x’) A ;
A (-(2/(1-y’xy))*xeye(n) - (4/(1-y?*y) 2)*y*xy’)];
step = -Dr\r; dx = step(l:n); dy = step(n+[1:n]);
t =1;
newx = X+t*dx; newy = y+txdy;
while ((norm(newx) >= 1) | (norm(newy) >= 1)),
t = BETA*t; newx = x+t*dx; newy = y+t*dy;
end;
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newr = [ A*newy + (2/(1-newx’*newx))*newx + c;
A’*newx - (2/(1-newy’*newy))*newy + d 1;
while (norm(mewr) > (1-ALPHA*t)*norm(r))
t = BETA*t; newx = x+t*dx; newy = y+t*dy;
newr = [ A*newy + (2/(l-newx’*newx))*newx + c;
A’*newx - (2/(1-newy’*newy))*newy + dJ;
end;
X = x+txdx; y = y+t*dy;
end;
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Interior-point methods



11.1

11.2

11.3

Exercises

Exercises

The barrier method

Barrier method example. Consider the simple problem

241
2 <ax <4,

minimize
subject to

which has feasible set [2,4], and optimal point z* = 2. Plot fo, and tfo + ¢, for several
values of ¢t > 0, versus z. Label z*(¢).

Solution. The figure shows the function fo + (1/t)f for fo(xz) = x® + 1, with barrier
function I(z) = —log(x — 2) — log(4 — ), for t = 107, 107°8 1076, 10%8, 10.
The inner curve corresponds to t = 0.1, and the outer curve corresponds to t = 10. The
objective function is shown as a dashed curve.

60

501

40¢

301

20t

What happens if the barrier method is applied to the LP

minimize
subject to

T2

1 <x2, 0< 2o,

with variable 2 € R2??
Solution. We need to minimize

tfo(x) + () = tre — log(w2 — 1) —

but this function is unbounded below (letting 1 — —o0), so the first centering step never
converges.

log 2,

Boundedness of centering problem. Suppose the sublevel sets of (11.1),

minimize  fo(z)
subject to ( )<0, i=1,...,m
=b,

are bounded. Show that the sublevel sets of the associated centering problem,

tfo(x) + o(x)
Ax = b,

minimize
subject to

are bounded.
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11.4

11.5

Solution. Suppose a sublevel set {z | ¢t fo(z)+@(z) < M} is unbounded. Let {z+sv | s >
0}, with with v # 0 and « strictly feasible, be a ray contained in the sublevel set. We have
A(z+sv) =bforall s >0 (i.e., Ax = band Av =0), and f;(z+sv) <0,i=1,...,m. By
assumption, the sublevel sets of (11.1) are bounded, which is only possible if fo(z + sv)
increases with s for sufficiently large s. Without loss of generality, we can choose x such
that V fo(z)Tv > 0.

We have

=
v

tfo(z + sv) Zlog (= fi(z + sv))

Y

tfo(z) + stV fo(z Ty — Z log(—fi(z) — sV f; (m)Tv)

for all s > 0. This is impossible since V fo(z)"v > 0.

Adding a norm bound to ensure strong convexity of the centering problem. Suppose we
add the constraint 272 < R? to the problem (11.1):

minimize  fo(x)
subject to ( ) <0, i=1,...,m
=b

Let ¢ denote the logarithmic barrier function for this modified problem. Find a > 0 for
which V2(tfo(z) + ¢(x)) = al holds, for all feasible .

Solution. Let ¢ denote the logarithmic barrier of the original problem. The constraint
2Tz < R? adds the term —log(R? — z”x) to the logarithmic barrier, so we have

Vi(tfo+ @) = Vi(tfo+o)+ 7 —2me] + e _4sz)2mT
= VE(tfo+ o) + (2/R)I
= (2/RY)I,

so we can take m = 2/R.

Barrier method for second-order cone programming. Consider the SOCP (without equality
constraints, for simplicity)

minimize  fTz

subject to  ||Aiz + bil2 < cTe+dy, i=1,...,m. (11.63)
The constraint functions in this problem are not differentiable (since the Euclidean norm
[lul]2 is not differentiable at uw = 0) so the (standard) barrier method cannot be applied.
In §11.6, we saw that this SOCP can be solved by an extension of the barrier method
that handles generalized inequalities. (See example 11.8, page 599, and page 601.) In this
exercise, we show how the standard barrier method (with scalar constraint functions) can
be used to solve the SOCP.

We first reformulate the SOCP as
minimize  fTx
subject to || Az +b:||3/(cTe+di) < cFx+di, i=1,...,m (11.64)
cTe+d; >0, i=1,....m

The constraint function )
[Aiz +billz T d
Iz +d; ¢ ‘

fi(x) =
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is the composition of a quadratic-over-linear function with an affine function, and is twice
differentiable (and convex), provided we define its domain as dom f; = {z | ¢} x+d; > 0}.
Note that the two problems (11.63) and (11.64) are not exactly equivalent. If ¢] z*+d; = 0
for some 4, where z* is the optimal solution of the SOCP (11.63), then the reformulated
problem (11.64) is not solvable; * is not in its domain. Nevertheless we will see that
the barrier method, applied to (11.64), produces arbitrarily accurate suboptimal solutions
of (11.64), and hence also for (11.63).

(a) Form the log barrier ¢ for the problem (11.64). Compare it to the log barrier that
arises when the SOCP (11.63) is solved using the barrier method for generalized
inequalities (in §11.6).

(b) Show that if tf7x + ¢(x) is minimized, the minimizer z*(t) is 2m /t-suboptimal for
the problem (11.63). It follows that the standard barrier method, applied to the
reformulated problem (11.64), solves the SOCP (11.63), in the sense of producing
arbitrarily accurate suboptimal solutions. This is the case even though the optimal
point z* need not be in the domain of the reformulated problem (11.64).

Solution.
(a) The log barrier ¢ for the problem (11.64) is
b ||2 m
-y log (clTx +d; — %) =" log(cl @+ di)
=—>" log ((c;fx +d;)? — || Az + b1||§)

The log barrier for the SOCP (11.63), using the generalized logarithm for the second-
order cone given in §11.6, is

= log (e +di)* — [ Az +bi3)
i=1

which is exactly the same. The log barriers are the same.

(b) The centering problems are the same, and the central paths are the same. The proof
is identical to the derivation in example 11.8.

11.6 General barriers. The log barrier is based on the approximation —(1/t)log(—u) of the

indicator function I_ (u) (see §11.2.1, page 563). We can also construct barriers from
other approximations, which in turn yield generalizations of the central path and barrier
method. Let h : R — R be a twice differentiable, closed, increasing convex function,
with domh = —R44+. (This implies h(u) — oo as u — 0.) One such function is
h(u) = —log(—u); another example is h(u) = —1/u (for u < 0).

Now consider the optimization problem (without equality constraints, for simplicity)

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m,

where f; are twice differentiable. We define the h-barrier for this problem as

on(@) =D h(fi(2)),

=1

with domain {z | fi(z) < 0, ¢ = 1,...,m}. When h(u) = —log(—u), this is the usual
logarithmic barrier; when h(u) = —1/u, ¢ is called the inverse barrier. We define the
h-central path as

z”(t) = argmin ¢ fo(z) + én(x),
where ¢t > 0 is a parameter. (We assume that for each ¢, the minimizer exists and is
unique.)
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(a) Explain why tfo(z) 4+ ¢n(z) is convex in z, for each ¢ > 0.
(b) Show how to construct a dual feasible A from z*(¢). Find the associated duality gap.

(c) For what functions h does the duality gap found in part (b) depend only on t and
m (and no other problem data)?

Solution.

(a) The composition rules show that ¢ fo(z) 4+ ¢r(z) is convex in z, since h is increasing
and convex, and f; are convex.

(b) The minimizer of ¢ fo(z)+¢n (), z = x*(t), satisfies tV fo(2)+V¢(z) = 0. Expanding
this we get

1V fo(=) + )W (f:(2))Vfilz) = 0.

This shows that z minimizes the Lagrangian fo(z) + > Xifi(z), for

Xi =K (fi(2)/t, i=1,...,m.

The associated dual function value is

m

9N = fo(2) + D Nifa(z) = fo(2) + Y B (fa(2)) fil2) /1,

i=1

so the duality gap is

m

(1/6) Y W (Fi(2) (= Fi(2)).

=1

(¢) The only way the expression above does not depend on problem data (except ¢ and
m) is for h'(u)(—u) to be constant. This means h’'(u) = a/(—u) for some constant
a, so h(u) = —alog(—u) + b, for some constant b. Since h must be convex and
increasing, we need a > 0. Thus, h gives rise to a scaled, offset log barrier. In
particular, the central path associated with h is the same as for the standard log
barrier.

11.7 Tangent to central path. This problem concerns dx*(t)/dt, which gives the tangent to the
central path at the point z*(t). For simplicity, we consider a problem without equality
constraints; the results readily generalize to problems with equality constraints.

(a) Find an explicit expression for dz*(¢)/dt. Hint. Differentiate the centrality equa-
tions (11.7) with respect to t.

(b) Show that fo(x*(t)) decreases as t increases. Thus, the objective value in the barrier
method decreases, as the parameter ¢ is increased. (We already know that the duality
gap, which is m/t, decreases as t increases.)

Solution.
(a) Differentiating the centrality equation yields

dx*

=0.
dt

Vio(a* () + (V7 fo(z* (1)) + Vo(=* (1))
Thus, the tangent to the central path at z*(¢) is given by

dx”
dt

=— (tVQfo(m*(t)) + V2¢(:r*(t))) - V fo(z*(t)). (11.7.A)
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(b) We will show that dfo(z*(¢))/dt < 0.

D@ W) _ g gy 1y 22

~Vfo(@* ()" (V7 fo(a* (£) + V*6(a* (1)) Vola* (1))
< 0.

11.8 Predictor-corrector method for centering problems. In the standard barrier method, =* (ut)
is computed using Newton’s method, starting from the initial point z*(¢). One alternative
that has been proposed is to make an approximation or prediction Z of 2*(ut), and then
start the Newton method for computing x*(ut) from z. The idea is that this should
reduce the number of Newton steps, since 7 is (presumably) a better initial point than
2*(t). This method of centering is called a predictor-corrector method, since it first makes
a prediction of what x*(ut) is, then corrects the prediction using Newton’s method.

The most widely used predictor is the first-order predictor, based on the tangent to the
central path, explored in exercise 11.7. This predictor is given by

~ . dz™(t)

= 4 —=(put —1).

7=t () + o (ut )
Derive an expression for the first-order predictor z. Compare it to the Newton update
obtained, i.e., *(t) + Axnt, where Azye is the Newton step for ut fo(x) + ¢(z), at x*(¢).
What can you say when the objective fo is linear? (For simplicity, you can consider a
problem without equality constraints.)
Solution. The first-order predictor is, using the expression for dz*/dt found in exer-
cise 11.7,

e (0)+ 20D )

= 2(0) = (= LIV fola" (1) + V26 (1)) Vola* (1)).

The Newton step for utfo + ¢, at the point z*(t), is given by

8)
|

Avwe = = (V> fol@* (1) + V26" (1)) (utV fo(a* (1) + Vo(a* (1))
= (= D (V fo(@* (1) + V(2" (1) T Vfola* (1),
where we use tV fo(z*(t)) + V¢(z*(t)) = 0. The Newton update is then

(1) + Azws = 2 (1) — (1 — V)t (V2 fol (1) + V(2" (1))~ Vfola™ (1)):

This is similar to, but not quite the same as, the first-order predictor.
Now let’s consider the special case when fj is linear, say, fo(z) = ¢”«. Then the first-order

predictor is given by R ) )
F= ot (t) - (u— DIV (1) e

The Newton update is ezactly the same. The Newton step for utfo + ¢ at z* is exactly
the tangent to the central path. We conclude that when the objective is linear, the fancy
sounding predictor-corrector method is exactly the same as the simple method of just
starting Newton’s method from the current point z*(¢).

11.9 Dual feasible points near the central path. Consider the problem

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m,

with variable z € R™. We assume the functions f; are convex and twice differentiable. (We
assume for simplicity there are no equality constraints.) Recall (from §11.2.2, page 565)
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that A\; = —=1/(tfi(z*(¢))), ¢ = 1,...,m, is dual feasible, and in fact, z*(¢) minimizes
L(x, ). This allows us to evaluate the dual function for A, which turns out to be g(\) =
fo(z*(t)) — m/t. In particular, we conclude that z*(¢) is m/t-suboptimal.

In this problem we consider what happens when a point z is close to *(t), but not quite
centered. (This would occur if the centering steps were terminated early, or not carried
out to full accuracy.) In this case, of course, we cannot claim that \; = —1/(¢tfi(x)),
i = 1,...,m, is dual feasible, or that x is m/t-suboptimal. However, it turns out that
a slightly more complicated formula does yield a dual feasible point, provided x is close
enough to centered.

Let Axzne be the Newton step at = of the centering problem
minimize tfo(z) — > log(—fi(x)).

o 1 Vfi(z)T Azye .
Al_ftfi(:r) (1+fi(x) >, t=1,...,m.

You will show that for small Azyn: (i.e., for & nearly centered), A is dual feasible (i.e.,
A =0 and L(z, \) is bounded below).
In this case, the vector x does not minimize L(z, \), so there is no general formula for the

dual function value g(X) associated with A. (If we have an analytical expression for the
dual objective, however, we can simply evaluate g()).)

Define

Hint. Use the results in exercise 3.41 to show that when Az, is small enough, there exist
Zo, T1, ..., Tm such that

Volzo) = Vfo(x)+ Vfo(z)Azn

Vii(z) = Vfi(z)+ 1/ )V fi(@)Azn, i=1,...,m.

This implies that

=1
Now use fi(z) > fi(zi) + Vfi(x:)" (2 — xi), i = 0,...,m, to derive a lower bound on
L(z, ).

Solution. It is clear that A > 0 for sufficiently small Azn;. We need to show that
fo+ ZZ i fi is bounded below.

The Newton equations at x are

. - K TA nt
Vio(x)+ Y %Vﬁ(m) +>° %Vﬁ(@
+ V2 fo(z) Azne + Z —tj} @ V2 fi(2) Ay = 0
i=1 !

i.e., using the above definition of A,

Vi) + > NVfi(x) + V2 fo(x)Azn + V2 fi(z)Azne = 0.
o() Ezj (x) + V* fo (@) A ;itﬁ(m) (2) Az
Now, from the result in exercise 3.41, if Axy is small enough, there exist zo, 1, ..., Tm
such that

V fo(wo) = V fo(x) + V fo(z) Az,
and
Vfilz) = Vi) + 1/ X))V filx)Azne, i=1,...,m.
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We can therefore write the Newton equation as

m

V fo(zo) + Z XV fi(xi) = 0.

Returning to the question of boundedness of fo + ZZ i fi, we have

m

=1

folzo) + Z Aifi(zs) + (Vfo(wo) + Z )\ivfi(mi)> T

=1

— V fo(zo) mo — Z AV fi(wi) @

fo(zo) + Z Ai fi(xs) — Vfo(wo)Tl"o - Z )\ivfi(iﬂi)Twi,

which shows that fo + El i fi is bounded below.

11.10 Another parametrization of the central path. We consider the problem (11.1), with central
path z*(¢t) for ¢t > 0, defined as the solution of

minimize  tfo(z) — Z:Zl log(— fi(x))
subject to Az =b.

In this problem we explore another parametrization of the central path.
For u > p*, let 2*(u) denote the solution of

minimize  —log(u — fo(z)) — Z:il log(—fi(x))
subject to Az =b.

Show that the curve defined by z*(u), for u > p*, is the central path. (In other words,
for each u > p*, there is a t > 0 for which z*(¢t) = z*(u), and conversely, for each ¢ > 0,
there is an u > p* for which z*(u) = z*(t)).

Solution. z*(u) satisfies the optimality conditions

1 . m 1 (o (u T, _
ey R ) D gy VA ) + ATy =0

for some v. We conclude that z*(u) = z*(t) for

1

L T R

Conversely, for each t > 0, z*(t) = z*(u) with

w= 1+ fola" (1) > P
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11.11 Method of analytic centers. In this problem we consider a variation on the barrier method,
based on the parametrization of the central path described in exercise 11.10. For simplic-
ity, we consider a problem with no equality constraints,

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m.

©

The method of analytic centers starts with any strictly feasible initial point z(®’, and any

u® > fo(m(o)). We then set
u = 0u® + (1 0) fo(z'?),

where 6 € (0, 1) is an algorithm parameter (usually chosen small), and then compute the
next iterate as
20— z*(u(l))

(using Newton’s method, starting from z(®)). Here z*(s) denotes the minimizer of
m
—log(s — fo(x)) = > _ log(~fi(x)),
i=1

which we assume exists and is unique. This process is then repeated.
The point z*(s) is the analytic center of the inequalities

f0($)§57 fl(x)g()??fm(x)g()?

hence the algorithm name.

Show that the method of centers works, i.e., z® converges to an optimal point. Find a
stopping criterion that guarantees that x is e-suboptimal, where € > 0.

Hint. The points %) are on the central path; see exercise 11.10. Use this to show that

m+ 0
+_ gm0
ut —p" < +1(u ),

where u and u™ are the values of u on consecutive iterations.
Solution. Let z = z*(u). From the duality result in exercise 11.10,

*

p" > fo(z) —m(u— fo(x))
= (m+1)fo(z) — mu,
and therefore
p* + mu
< -
fo(z) < p——1
Let ut = 0u + (1 — ) fo(z). We have
uwt—p* = Ou+t(1—-0)fo(z)—p"
p* + mu .
< _p) _
< (1-90) o +6u—p
_ 1-0 . (1-6)m
o (m+1 l)p +( m—+1 +9)u
+0 *
= T (u—p).

m+1
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Barrier method for convex-concave games. We consider a convex-concave game with
inequality constraints,

minimize,, maximize, fo(w,
subject to fi(w)

Here w € R™ is the variable associated with minimizing the objective, and z € R™ is
the variable associated with maximizing the objective. The constraint functions f; and f;
are convex and differentiable, and the objective function fo is differentiable and convex-
concave, i.e., convex in w, for each z, and concave in z, for each w. We assume for
s1rnphc1ty that dom fy = R” x R™.

A solution or saddle-point for the game is a pair w*, z*, for which
f()(’l,U*,Z) S fo(’l,U*,Z*) S fo(’LU,Z*)

holds for every feasible w and z. (For background on convex-concave games and functions,
see §5.4.3, §10.3.4 and exercises 3.14, 5.24, 5.25, 10.10, and 10.13.) In this exercise we
show how to solve this game using an extension of the barrier method, and the infeasible
start Newton method (see §10.3).

(a) Let t > 0. Explain why the function

tfo(w,z) — Zlog —fi(w +Zlog fz

is convex-concave in (w,z). We will assume that it has a unique saddle-point,
(w*(t), 2*(t)), which can be found using the infeasible start Newton method.

(b) As in the barrier method for solving a convex optimization problem, we can derive
a simple bound on the suboptimality of (w*(t),z*(¢)), which depends only on the
problem dimensions, and decreases to zero as t increases. Let W and Z denote the
feasible sets for w and z,

Show that
folw' (0,2 (1) < inf folw,z"() + 7,
weW
o' (0,2 (1) = sup fo(w"(),2) - T,
z2€Z
and therefore ~
sup fo(w*(8),2) = inf fo(w, =" (1) < o

z€Z weWw

Solution.

(a) Follows from the convex-concave property of fo; convexity of —log(—f;), and con-
cavity of log(—f;).
(b) Since (w*(t),z*(¢)) is a saddle-point of the function

tfo(w, 2) - Zlog —fi(w +Zlog —Jilz
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its gradient with respect to w, and also with respect to z, vanishes there:

IV fo(' (0.2 () + Y s VW 0) = 0
V. fo(w* (t), 2 +Z 6 vﬁ-(z*(t)) - 0.

It follows that w*(¢) minimizes

)+ Y Aifi(w)

over w, where \; = 1/(—tf;(w*(t))), i.e., for all w, we have

fo(w’ foz ) < folw, 2 ( Zm

The lefthand side is equal to fo(w*(t),2z*(t)) — m/t, and for all w € W, the second
term on the righthand side is nonpositive, so we have

folw* (8), 2" (9) < inf folw, =" (t)) + m/t.

weWw

A similar argument shows that

fow™(£),27(£)) = sup fo(w(t),z) —m/t.

z€Z

Self-concordance and complexity analysis
11.13 Self-concordance and negative entropy.
(a) Show that the negative entropy function zlogz (on R4 ) is not self-concordant.
(b) Show that for any t > 0, tzlogx — log z is self-concordant (on R4 ).
Solution.

(a) First we consider f(z) = zlogz, for which

J@) =1+loge,  f'@) =1, f@)=-=

Thus

[f"@)] _ 1/e* 1

f”(x)3/2 - 1/363/2 - \/E
which is unbounded above (as z — 07). In particular, the self-concordance inequal-
ity | £ (z)| < 2f"(x)*/? fails for z = 1/5, so f is not self-concordant.

(b) Now we consider g(z) = tzlogx — log z, for which

’ 1 " 1 t " 2
g(x)=——+it+tloge, g'(@)=—5+—, ¢

Therefore
lg" ()]  2/a®+t/a®>  2+tx

g ( )3/2 (1/x2+t/x)3/2 - (1+tx)3/2'
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Define

24+a
"= T

so that (@)
9" (z
h(tiﬁ) = g”(LE)S/Q :
We have h(0) = 2 and we will show that h'(a) < 0 for a > 0, i.e., h is decreasing for
a > 0. This will prove that h(a) < h(0) = 2, and therefore

"
" @) _,
g//(x)3/2 -

We have
1+ a)?’/2 —(3/2)(1 + a)1/2(2 +a)
(1+a)?

(1+a)"?((14a) - (3/2)(2+a))
(1+a)?

h(a) =

(2+a/2)
(1+ay/?

< 0,

for a > 0, so we are done.

11.14 Self-concordance and the centering problem. Let ¢ be the logarithmic barrier function of

11.15

problem (11.1). Suppose that the sublevel sets of (11.1) are bounded, and that tfo + ¢ is
closed and self-concordant. Show that tV2fo(x) + V2¢(x) = 0, for all 2 € dom ¢. Hint.
See exercises 9.17 and 11.3.

Solution. From exercise 11.3, the sublevel sets of ¢ fo + ¢ are bounded.

From exercise 9.17, the nullspace of tfo 4+ ¢ is independent of x. So if the Hessian is not
positive definite, tfo + ¢ is linear along certain lines, which would contradict the fact that
the sublevel sets are bounded.

Barrier method for generalized inequalities

Generalized logarithm is K-increasing. Let 1 be a generalized logarithm for the proper
cone K. Suppose y >k 0.

(a) Show that Vi(y) =k= 0, i.e., that ¢ is K-nondecreasing. Hint. If Vi (y) %k~ 0,
then there is some w >x 0 for which w” Ve(y) < 0. Use the inequality ¢ (sw) <
D(y) + Vi(y)T (sw — y), with s > 0.

(b) Now show that Vi (y) >+ 0, i.e., that ¢ is K-increasing. Hint. Show that
V() < 0, Vi (y) =+ 0 imply Vi (y) =+ 0.

Solution.

(a) If Veb(y) #x~ 0, there exists a w = 0 such that wT Vah(y) < 0. By concavity of ¢
we have

P(y) + Vo (y)" (sw—y)
P(y) — 0+ sw’ Vi (y)
< Y(y) -0

for all s > 0. In particular, ¥ (sw) is bounded, for s > 0. But we have ¥ (sw) =
Y(w) + Olog s, which is unbounded as s — oo. (We need w =g 0 to ensure that
sw € dom1p.)

P(sw)

IA
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(b) We now know that Vi (y) > x= 0. For small v we have

Vi(y +v) = Vi (y) + V(y)v,

and by part (a) we have Vi (y+v) =g+ 0. Since VZ4(y) is nonsingular, we conclude
that we must have Vi (y) == 0.

11.16 [NNO94, page 41] Properties of a generalized logarithm. Let ¢ be a generalized logarithm
for the proper cone K, with degree . Prove that the following properties hold at any
y > 0.

(a) Vi(sy) = Vy(y)/s for all s > 0.
(b) Vi(y) = —V*¥(y)y.
(€) y" VY2 (y)y = 0.
(d) Vo) V()" Vi(y) = 0.

Solution.
(a) Differentiate ¢ (sy) = ¢ (y) + 0log s with respect to y to get sV (sy) = Vip(y).
(b) Differentiating (y + tv)” Vo (y + tv) = 0 with respect to t gives

Vi(y + tv) v + (y + tv) " VP(y + to)o = 0.
At t =0 we get
Vi (y) v +y" Vi (y)o = 0.
This holds for all v, so Vi(y) = — V2 (y)y.
(¢) From part (b),
Yy VY (y)y = —y" Vi(y) = 0.
(d) From part (b),

V() V(y) " Vib(y) = V() y = —0.

11.17 Dual generalized logarithm. Let ¢ be a generalized logarithm for the proper cone K, with
degree 6. Show that the dual generalized logarithm 1), defined in (11.49), satisfies

P(sv) = p(v) + Ologs,

for v =g+ 0, s > 0.
Solution.

¥ (sv) = inf (svTu — 1/J(u)) = inf (vTa — 1/1(11/3))
where @ = su. Using the logarithm property for ¢, we have ¥(@/s) = (a) — 0log s, so

P(sv) = inf (vTﬂ — 1/)(12)) +6logs = 1p(u) + Olog s.

11.18 Is the function S )
i—1 Yi
Y(y) = log (yn+1 - #> :
Yn+1

with domv = {y € R"™" | yny1 > D1 | y?}, a generalized logarithm for the second-

order cone in R"1?

Solution. It is not. It satisfies all the required properties except closedness.

To see this, take any a > 0, and suppose y approaches the origin along the path

(y17-~~7yn):\/m, Ynt+1 =1
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where ¢ > 0. We have
O ud)? = Vit —a) < yanr
=1
so y € int K. However,

P(y) = log(t — t(t — a)/t) =loga.

Therefore we can find sequences of points with any arbitrary limit.

Implementation

11.19 Yet another method for computing the Newton step. Show that the Newton step for the
barrier method, which is given by the solution of the linear equations (11.14), can be
found by solving a larger set of linear equations with coefficient matrix

V2 fo(@)+ Y, A V2 hi@)  Df@)” A"
Df(x) — diag(f(x))? 0
A 0 0

where f(z) = (f1(z),..., fm(z)).

For what types of problem structure might solving this larger system be interesting?

Solution.
tV2fo(x) + 3, =5 V2 file) Df(x)" AT Ay g
Df(x) fdiag(f(x))Q 0 Y =— [ 0 ] .
A 0 0 Unt 0

where g = tV fo(z) + V¢(z). From the second equation,

o Vfi(m)TAwnt
Y T )

and substituting in the first equation gives (11.14).
This might be useful if the big matrix is sparse, and the 2 x 2 block system (obtained by

pivoting on the diag(f(z))? block) has a dense (1,1) block. For example if the (1,1) block
of the big system is block diagonal, m < n is small, and Df(z) is dense.

11.20 Network rate optimization via the dual problem. In this problem we examine a dual method
for solving the network rate optimization problem of §11.8.4. To simplify the presentation
we assume that the utility functions U; are strictly concave, with domU; = R4, and
that they satisfy U/ (z;) — oo as z; — 0 and U (z;) — 0 as z; — oo.

(a) Express the dual problem of (11.62) in terms of the conjugate utility functions
Vi = (=U;)", defined as
Vi(A\) = sup(Az + U;(x)).
>0
Show that domV; = —R44, and that for each A < 0 there is a unique z with
Ul(x) = —A.

(b) Describe a barrier method for the dual problem. Compare the complexity per iter-
ation with the complexity of the method in §11.8.4. Distinguish the same two cases
as in §11.8.4 (AT A is sparse and AAT is sparse).

Solution.
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(a) Suppose A < 0. Since U; is strictly concave and increasing, with U/ (z;) — oo as
x; — 0 and U(z;) — 0 as x; — oo, there is a unique = with

Uj(x) = =\

After changing problem (11.62) its Lagrangian is

n

L@ Az = Y (-Ui@)+ A" (Az—c) = 2"z
= 72 (A A)llerzlxl) — T

The minimum over x is

inf L(z, A, 2)

inf ( Z (Ui(x) — (A" N)izi 4 zixi) — ¢ A)

= — Z sup AT)\),-mi + zizi) — I

= —ZV )i + zi) — A,

so the dual problem is (after changing the sign again)

minimize  ¢"A+ Y " Vi(—=(ATA)i + z)
subject to A >0, =z t O

The function V; is increasing on its domain —R 4, so z = 0 at the optimum and
the dual problem simplifies to

minimize  ¢? A+ 31, Vi(—(ATA);)
subject to A >0

—)\; can be interpreted as the price on link i. —(AT\); is the sum of the prices along
the path of flow 7.

(b) The Hessian of
t <CTA +> %(—(ATA),-)> = Tlog s
=1 [

H = tAdiag(—A"))"?A" + diag(\) 2
If AAT is sparse, we solve the Newton equation HAX = —g.

If AT A is sparse, we apply the matrix inversion lemma and compute the Newton
step by first solving an equation with coefficient matrix of the form D; + AT Dy A,
where Dy and D, are diagonal (see §11.8.4).

Numerical experiments

11.21 Log-Chebyshev approzimation with bounds. We consider an approximation problem: find
x € R", that satisfies the variable bounds | < = < u, and yields Ax =~ b, where b € R™.
You can assume that [ < u, and b > 0 (for reasons we explain below). We let al denote
the ith row of the matrix A.
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We judge the approximation Ax = b by the maximum fractional deviation, which is

T

T T max{a; z,bi}
ax max{(a; x)/b;,b;/(a; r)} = max ———————

i=1,...,m {(ar2)/bi, bi/(ai @)} i=1,...,n min{al z,b;}’

when Az > 0; we define the maximum fractional deviation as oo if Az ¥ 0.
The problem of minimizing the maximum fractional deviation is called the fractional
Chebyshev approzimation problem, or the logarithmic Chebyshev approximation problem,
since it is equivalent to minimizing the objective

‘max |loga; = — logby|.
n

1=1,...,
(See also exercise 6.3, part (c).)

(a) Formulate the fractional Chebyshev approximation problem (with variable bounds)
as a convex optimization problem with twice differentiable objective and constraint
functions.

(b) Implement a barrier method that solves the fractional Chebyshev approximation
problem. You can assume an initial point z(?, satisfying [ < 2@ <y, Az(® -0, is
known.

Solution.

(a) We can formulate the fractional Chebyshev approximation problem with variable

bounds as o
minimize s
subject to  (afz)/b; <s, i R )
bi/(alx)<s, i=1,...,m
alez >0, i=1,....m
I <x=<u

This is clearly a convex problem, since the inequalities are linear, except for the
second group, which involves the inverse.

The sublevel sets are bounded (by the last constraint).

Note that we can, without loss of generality, take b; = 1, and replace a; with a;/b;.
We will assume this has been done. To simplify the notation, we will use a; to
denote the scaled version (i.e., a;/b; in the original problem data).

(b) In the centering problems we must minimize the function

ts+ d(s,z) = ts— Zlog(s —alz) — Zlog alz— Z log(s — 1/al z)
i=1 i=1 i=1

_ i]og(ui — ) — ilOg(fEi — 1)
i=1 i=1

= ¢1(s,x) + P2(s,x) + ¢3(s, )

with variables z, s, where

p1(s,z) = ts— Z log(u; — x;) — Z log(x; — 1)
i=1 i=1

P2(s,2) = — Z log(s — alrx)
i=1

@3(s,x) — Zlog(s(a;‘rm) -1).
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The gradient and Hessian of ¢1 are

[ t
Voi(s,z) = diag(u — 2)7'1 — diag(z — )71 ]
2 . [0 0
Vigi(s,z) = | 0 diag(u— x) "% + diag(x — )2 } '
The gradient and Hessian of ¢2 are
[ 4T
Va(z) = AT ] diag(s — Az) "1
: 4T
Vigo(z) = AT ]diag(sAm)2[ -1 A].

We can find the gradient
where

and Hessian of ¢3 by expressing it as ¢s3(s,z) = h(s, Azx)

h(s,y) = — Y log(syi — 1),
i=1
and then applying the chain rule. The gradient and Hesian of h are

o yif (syi — 1)

s/(syr — 1) T diag(sy — 1)1
Vh(&y) - - { ys diagg(iyy— 11))’111
s/(sym — 1)
and
Vh(s,y)
[ 22w (syi = 1)* 1/(syn = 1) 1/(sy2 —1)° 1/(sym —1)°
1/(sy1 — 1)? s2/(sy1 — 1)? 0 e 0
= 1/(sy2 — 1) 0 s?/(sy2 —1)* - 0
(s~ 1)° 0 0 2/ (sym — 1)’
_ [ yT diag(sy —1)"%y 17 diag(sy —1)72
diag(sy —1)721  s*diag(sy —1)72

We therefore obtain

1 0
Vos(s,z) = 0 AT Vh(s, Az)
L " _ -
= - { AT ] diag(sAz —1) 1
1 0 | 10
Vips(s,z) = 0 AT V2h(s, Az) [ 0 A ]
[ 2T Adiag(sAz —1)"24z 17 diag(sAz —1)724
- AT diag(sAz —1)7%1 AT diag(sAzx —1)72A4 |~

A Matlab implementation is given below.
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MAXITERS = 200;

ALPHA = 0.01;

BETA = 0.5;

NTTOL = 1e-8; % terminate Newton iterations if lambda~2 < NTTOL
MU = 20;

TOL = le-4; % terminate if duality gap less than TOL

x =x0; y=A*x; s = 1.1xmax([max(A*x), max(1./y)]1);
t =1;
for iter = 1:MAXITERS
val = txs - sum(log(u-x)) - sum(log(x-1)) - sum(log(s-y)) - ...
sum(log(s*y-1));
grad = [t-sum(1./(s-y))-sum(y./(s*y-1));
1./(u-x)-1./-1D)+A’*(1./(s-y)-s./(s*xy-1))];
hess = [sum((s-y). (-2)+(y./(s*y-1))."2) ..
(=(s=y) .7 (-2) + (sxy-1).7(-2)) *A;
A x(-(s-y) .7 (-2) + (s*xy-1).7(-2))
diag((u-x) .7 (-2) + (x-1).7(-2)) + ...
A’x(diag((s-y) . " (-2)+(s./(s*y-1)).72))*Al;
step = -hess\grad; fprime = grad’*step;
if (abs(fprime) < NTTOL),
gap = (3*m+2*n)/t;
if (gap<TOL); break; end;

t = MU*t;

else
ds = step(1); dx = step(1+[1:n]); dy = Axdx;
tls = 1;

news = s+tls*ds; newx = x+tls*dx; newy = y+tls*dy;
while (min([news-newy; news-1./newy; newy; newx-1l; u-newx]) <= 0),
tls = BETAx*tls;
news = s+tls*ds; mnewx = x+tls*dx; newy = y+tlsx*dy;
end;
newval = t*news - sum(log(u-newx)) - sum(log(newx-1))
- sum(log(news-newy)) - sum(log(news*newy-1));
while (newval >= val + tls*ALPHA*fprime),
tls = BETAx*tls;
news = s+tls*ds; mnewx = x+tls*dx; mnewy = y+tlsx*dy;
newval = t*news - sum(log(u-newx)) - sum(log(newx-1))
- sum(log(news-newy)) - sum(log(news*newy-1));
end;
x = x+tls*dx; y = A*x; s = s+tls*ds;
end;
end;

11.22 Mazimum volume rectangle inside a polyhedron. Consider the problem described in exer-
cise 8.16, i.e., finding the maximum volume rectangle R = {z | | < < u} that lies in
a polyhedron described by a set of linear inequalities, P = {x | Az < b}. Implement a
barrier method for solving this problem. You can assume that b > 0, which means that
for small I < 0 and w > 0, the rectangle R lies inside P.

Test your implementation on several simple examples. Find the maximum volume rect-
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angle that lies in the polyhedron defined by

0 —1
2 —4

A= 2 1|, b=1
—4 4
-4 0

Plot this polyhedron, and the maximum volume rectangle that lies inside it.
Solution. We use the formulation

minimize  — Z:L:l log(u; — 1;)
subject to ATwu— AT[<b,

+

with implicit constraint w > l) worked out in exercise 8.16. Here a;. = max{a;;, 0},
(%) J

a;; = max{—aij, 0}.

The gradient and Hessian of the function

Y(l,u) = —t Y log(ui — L) — Y log((b— A u+ A71),)

i=1
are
\% = I i -1 7A7T s A+ A~ -1
Y(lu) = t _7 diag(u —1)" 1+ 4T diag(b— ATu+ A1) "1
Vi(lu) = t{ _II }diag(u—l)z[ I 1]
-A~" 5 + -2
+[ AT :|d1ag(b—A ut+ ATD)TP] AT AT .

A plot of the particular polyhedron and the maximum volume box is given below.

0.5

X2

035 0 0.5
T1

An implementation in Matlab is given below.

MAXITERS = 200;

ALPHA = 0.01;

BETA = 0.5;

NTTOL = 1e-8; % terminate Newton iterations if lambda~2 < NTTOL
MU = 20;

TOL = le-4; % terminate if duality gap less than TOL
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Ap = max(A,0); Am = max(-4,0);
r = max(Ap*ones(n,1) + Am*ones(n,1));
(.5/r)*ones(n,1); 1 = -(.5/r)*ones(n,1);
t =1;
for iter = 1:MAXITERS
y = b+Am*1-Ap*u;
val = -t*sum(log(u-1)) - sum(log(y));
grad = t*[1./(u-1); -1./(u-1)] + [-Am’; Ap’I*(1./y);
hess = t*[diag(1./(u-1).72), -diag(1./(u-1).72);
-diag(1./(u-1).72), diag(1./(u-1)."2)] + ...
[-Am’; Ap’l*diag(l./y."2)*[-Am Ap];
step = -hess\grad; fprime = grad’*step;
if (abs(fprime) < NTTOL),
gap = (2xm)/t;

=1
1]

disp([’iter ’, int2str(iter), ’; gap = ’, num2str(gap)]l);
if (gap<TOL); break; end;
t = MUxt;

else
dl = step(1:n); du = step(n+[1:n]); dy = Am*dl-Ap*du;
tls = 1;

while (min([u-1+tls*(du-dl); y+tlsx*dy]) <= 0)
tls = BETAx*tls;

end;

while (-t*sum(log(u-1l+tls*(du-dl))) - sum(log(y+tlsxdy)) >= ...

val + tls*ALPHA*fprime),

tls = BETAxtls;

end;

1 = 1+tls*dl; u = u+tls*du;

end;
end;

SDP bounds and heuristics for the two-way partitioning problem. In this exercise we
consider the two-way partitioning problem (5.7), described on page 219, and also in ex-
ercise 5.39:

minimize 2T Wz

subject to zZ=1, i=1,...,n, (11.65)

with variable z € R". We assume, without loss of generality, that W € S™ satisfies
Wi = 0. We denote the optimal value of the partitioning problem as p*, and z* will
denote an optimal partition. (Note that —z* is also an optimal partition.)

The Lagrange dual of the two-way partitioning problem (11.65) is given by the SDP

. 4T
manflmlze 1" v ) (11.66)
subject to W + diag(v) = 0,

with variable v € R". The dual of this SDP is

minimize  tr(WX)
subject to X >0 (11.67)
Xiizl, z':l,...,n,

with variable X € S™. (This SDP can be interpreted as a relaxation of the two-way
partitioning problem (11.65); see exercise 5.39.) The optimal values of these two SDPs
are equal, and give a lower bound, which we denote d*, on the optimal value p*. Let v*
and X* denote optimal points for the two SDPs.
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(a) Implement a barrier method that solves the SDP (11.66) and its dual (11.67), given
the weight matrix W. Explain how you obtain nearly optimal v and X, give for-
mulas for any Hessians and gradients that your method requires, and explain how
you compute the Newton step. Test your implementation on some small problem
instances, comparing the bound you find with the optimal value (which can be found
by checking the objective value of all 2" partitions). Try your implementation on a
randomly chosen problem instance large enough that you cannot find the optimal
partition by exhaustive search (e.g., n = 100).

(b) A heuristic for partitioning. In exercise 5.39, you found that if X* has rank one,
then it must have the form X* = z*(z*)7, where z* is optimal for the two-way
partitioning problem. This suggests the following simple heuristic for finding a good
partition (if not the best): solve the SDPs above, to find X* (and the bound d*).
Let v denote an eigenvector of X* associated with its largest eigenvalue, and let
% = sign(v). The vector & is our guess for a good partition.

Try this heuristic on some small problem instances, and the large problem instance
you used in part (a). Compare the objective value of your heuristic partition, #TWi,
with the lower bound d*.

(¢) A randomized method. Another heuristic technique for finding a good partition,
given the solution X* of the SDP (11.67), is based on randomization. The method
is simple: we generate independent samples (Y, . .., 2 from a normal distribution
on R", with zero mean and covariance X *. For each sample we consider the heuristic
approximate solution #® = sign(x<k)). We then take the best among these, i.e.,
the one with lowest cost. Try out this procedure on some small problem instances,
and the large problem instance you considered in part (a).

(d) A greedy heuristic refinement. Suppose you are given a partition z, i.e., z; € {—1,1},

i =1,...,n. How does the objective value change if we move element ¢ from one
set to the other, i.e., change x; to —x;? Now consider the following simple greedy
algorithm: given a starting partition x, move the element that gives the largest
reduction in the objective. Repeat this procedure until no reduction in objective
can be obtained by moving an element from one set to the other.
Try this heuristic on some problem instances, including the large one, starting from
various initial partitions, including z = 1, the heuristic approximate solution found
in part (b), and the randomly generated approximate solutions found in part (c).
How much does this greedy refinement improve your approximate solutions from
parts (b) and (c)?

Solution.

(a) We implement a barrier method to solve the SDP (11.66). The only constraint in
the problem is the LMI W + diag(v) = 0, for which we will use the log barrier
—log det(W + diag(v)). To start the barrier method, we need a strictly feasible
point, but this is easily found. If Amin(W) is the smallest eigenvalue of the matrix
W, then W+ (—Amin (W)+1)I has smallest eigenvalue one, and so is positive definite.
Thus, v = (—Amin(W) 4+ 1)1 is a strictly feasible starting point.

At each outer iteration, we use Newton’s method to minimize

f(v) = t17v — log det(W + diag(v)). (11.23.A)

We can start with t = 1, and at the end of each outer iteration increase ¢ by a factor
1 =10 (say) until the desired accuracy is reached. At the end of each iteration, the
duality gap is exactly n/t, with dual feasible point

Z = (n/t)(W + diag(v)) "

We will return v and Z, at the end of the first outer iteration to satisfy n/t < e,
where € is the required tolerance.
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Now we turn to the question of how to compute the gradient and Hessian of f. We
know that for X € S, the gradient of the function g(X) = logdet(X) at X is
given by

Vg(X)=X"".

We use the chain rule, with
X =W + diag(v) = W + Z viEii,
i=1

where F;; is the matrix with a one in the 4,7 entry and zeros elsewhere, to obtain

Vi) = t—tr(W +diag(v)) "Eu)
= t— ((W +diag(v))™")

for i =1,...,n. Thus we have the simple formula
Vf(v) = t1 — diag((W + diag(v)) ™).
The second derivative of logdet X, at X € S’ ,, is given by the bilinear form
Vi(X)[Y,Z] = —tr(X 'YX ' 2).

Applying this to our function f yields, with X = W + diag(v),

V()i = te(X T Eq X T Ey;) = (Xfl)jj )
for i,7 =1,...,n. Thus we have the very simple formula for the Hessian:
VA f(v) = (W + diag(v)) ") o (W + diag(v)) "),

where for U, V € S", the Schur (or Hadamard, or elementwise) product of U and
V', denoted W = U o V| is defined by W;; = U,;; Vi;.
We first test the method on some small problems. We generate random symmetric
matrices W € 8'°) with off-diagonal elements generated from independent A/(0,1)
distributions, and zero diagonal elements. The figure shows the distribution of the
relative error

_1TV* _ p*

p*|

for 100 randomly generated matrices.

10

number of samples

N
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We notice that the lower bound is equal (or very close) to p* in 10 cases, and never
less than about 15% below p*.

We also generate a larger problem instance, with n = 100. The optimal value of the
relaxation is —1687.5. The lower bound from the eigenvalue decomposition of W
(see remark 5.1) is Amin (W) = —1898.4.

(b) We first try the heuristic on the family of 100 problems with n = 10. The heuristic
gave the correct solution in 70 instances. For the larger problem, the heuristic gives
the upper bound —1336.5. At this point we can say that the optimal value of the
larger problem lies between —1336.5 and —1687.5.

(c) We first try this heuristic, with K = 10, on the family of 100 problems with n = 10.
The heuristic gave the correct solution in 88 instances.

We plot below a histogram of the objective obtained by the randomized heuristic,
over 1000 samples.
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Many of these samples have an objective value larger than the one found in part (b)
above, but some have a lower cost. The minimum value is —1421.7, so p* lies between
—1421.7 and —1687.5.

(d) The contribution of z; to the cost is (3. | Wijzi)x;. If this number is positive,
then switching the sign of x; will decrease the objective by 2 Z?:l Wijx;.
‘We apply the greedy heuristic to the larger problem instance. For x = 1, the cost
is reduced from 13.6 to —1344.8. For the solution from part (b), the cost is reduced
from —1336.5 to —1440.6. For the solution from part (b), the cost is reduced from
—1421.7 to —1440.6.

11.24 Barrier and primal-dual interior-point methods for quadratic programming. Implement
a barrier method, and a primal-dual method, for solving the QP (without equality con-
straints, for simplicity)

minimize  (1/2)z" Pz + ¢"
subject to Az <b,

with A € R™*™. You can assume a strictly feasible initial point is given. Test your codes
on several examples. For the barrier method, plot the duality gap versus Newton steps.
For the primal-dual interior-point method, plot the surrogate duality gap and the norm
of the dual residual versus iteration number.

Solution. The first figure shows the progress (duality gap) versus Newton iterations for
the barrier method, applied to a randomly generated instance with n = 100 variables and
m = 200 constraints. We use pu = 20, o = 0.01, 3 = 0.5, and ¢©) = 1. We choose b > 0,
and use (9 = 0.
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The next two figure show the progress (surrogate duality gap 7 and dual residual norm
|7 dual||2 versus iteration number) of the primal-dual method applied to the same problem

instance. We use p = 10, o = 0.01, 8 = 0.5, z(® =1, and )\EO) = 1/b;.
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The Matlab code for the barrier method is as follows.

MAXITERS = 200;
ALPHA = 0.01;
BETA = 0.5;
MU = 20;
TOL = 1e-3;
NTTOL = le-6;
x = zeros(n,1); t = 1;
for iter = 1:MAXITERS
y = b-Axx;
val = tx(.5%x’*Pxx + q’*x) - sum(log(y));
grad = t*(P*x+q) + A’*(1./y);
hess = t*P + A’*diag(l./y."2)*A;
v = -hess\grad; fprime = grad’*v;
s =1; dy = -Axv;
while (min(y+s*dy) <= 0), s = BETA*s; end;
while (t*(.5*(x+s*v)’*P*(x+s*v) + q’*(x+s*v)) - ...
sum(log(y+s*dy)) >= val + ALPHA*s*fprime), s=BETAx*s;end;
X = X+s*v;
if (-fprime < NTTOL),
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gap = m/t;
if (gap < TOL), break; end;
t = MU*t;

end;

end;
The Matlab code for the primal-dual method is as follows.

MAXITERS = 200;
TOL = 1le-6;
RESTOL = 1e-8;
MU = 10;
ALPHA = 0.01;
BETA = 0.5;
x = zeros(n,1); s = b-A*x; =z = 1./s;
for iters = 1:MAXITERS
gap = s’*z; res = Pxx + q + A’*z ;
if ((gap < TOL) & (norm(res) < RESTOL)), break; end;
tinv = gap/(m*MU) ;
sol = -[ P A’; A diag(-s./z) 1 \ ...
[ P*x+q+A’*z; -s + tinv*(1./z) 1;
dx = sol(1:n); dz = sol(n+[1:m]); ds = -A*xdx;
r = [P*x+q+A’*z; z.*s-tinv];
step = min(1.0, 0.99/max(-dz./z));
while (min(s+step*ds) <= 0), step = BETAxstep; end;
newz = z+step*dz; newx = x+step*dx; news = s+step*ds;
newr = [P*newx+q+A’*newz; mnewz.*news-tinv];
while (norm(mewr) > (1-ALPHA*step)#*norm(r))
step = BETA*step;
newz = z+step*dz; newx = x+step*dx; news = s+step*ds;
newr [Pxnewx+q+A’*newz; newz.*news-tinv];
end;
x = x+step*dx; z = z +step*dz; s = b-Ax*x;
end;



