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Convex sets
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Exercises

Definition of convexity

2.1 Let C ⊆ Rn be a convex set, with x1, . . . , xk ∈ C, and let θ1, . . . , θk ∈ R satisfy θi ≥ 0,
θ1 + · · · + θk = 1. Show that θ1x1 + · · · + θkxk ∈ C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.
Solution. This is readily shown by induction from the definition of convex set. We illus-
trate the idea for k = 3, leaving the general case to the reader. Suppose that x1, x2, x3 ∈ C,
and θ1 + θ2 + θ3 = 1 with θ1, θ2, θ3 ≥ 0. We will show that y = θ1x1 + θ2x2 + θ3x3 ∈ C.
At least one of the θi is not equal to one; without loss of generality we can assume that
θ1 6= 1. Then we can write

y = θ1x1 + (1 − θ1)(µ2x2 + µ3x3)

where µ2 = θ2/(1 − θ1) and µ2 = θ3/(1 − θ1). Note that µ2, µ3 ≥ 0 and

µ1 + µ2 =
θ2 + θ3
1 − θ1

=
1 − θ1
1 − θ1

= 1.

Since C is convex and x2, x3 ∈ C, we conclude that µ2x2 + µ3x3 ∈ C. Since this point
and x1 are in C, y ∈ C.

2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.
Solution. We prove the first part. The intersection of two convex sets is convex. There-
fore if S is a convex set, the intersection of S with a line is convex.
Conversely, suppose the intersection of S with any line is convex. Take any two distinct
points x1 and x2 ∈ S. The intersection of S with the line through x1 and x2 is convex.
Therefore convex combinations of x1 and x2 belong to the intersection, hence also to S.

2.3 Midpoint convexity. A set C is midpoint convex if whenever two points a, b are in C, the
average or midpoint (a+ b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C is closed and midpoint convex, then C is convex.
Solution. We have to show that θx + (1 − θ)y ∈ C for all θ ∈ [0, 1] and x, y ∈ C. Let

θ(k) be the binary number of length k, i.e., a number of the form

θ(k) = c12
−1 + c22

−2 + · · · + ck2−k

with ci ∈ {0, 1}, closest to θ. By midpoint convexity (applied k times, recursively),

θ(k)x+ (1 − θ(k))y ∈ C. Because C is closed,

lim
k→∞

(θ(k)x+ (1 − θ(k))y) = θx+ (1 − θ)y ∈ C.

2.4 Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)
Solution. Let H be the convex hull of S and let D be the intersection of all convex sets
that contain S, i.e.,

D =
⋂

{D | D convex, D ⊇ S}.
We will show that H = D by showing that H ⊆ D and D ⊆ H.
First we show that H ⊆ D. Suppose x ∈ H, i.e., x is a convex combination of some
points x1, . . . , xn ∈ S. Now let D be any convex set such that D ⊇ S. Evidently, we have
x1, . . . , xn ∈ D. Since D is convex, and x is a convex combination of x1, . . . , xn, it follows
that x ∈ D. We have shown that for any convex set D that contains S, we have x ∈ D.
This means that x is in the intersection of all convex sets that contain S, i.e., x ∈ D.
Now let us show that D ⊆ H. Since H is convex (by definition) and contains S, we must
have H = D for some D in the construction of D, proving the claim.
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Examples

2.5 What is the distance between two parallel hyperplanes {x ∈ Rn | aTx = b1} and {x ∈
Rn | aTx = b2}?
Solution. The distance between the two hyperplanes is |b1 − b2|/‖a‖2. To see this,
consider the construction in the figure below.

PSfrag replacements
a x1 = (b1/‖a‖2)a

x2 = (b2/‖a‖2)a

aTx = b2

aTx = b1

The distance between the two hyperplanes is also the distance between the two points
x1 and x2 where the hyperplane intersects the line through the origin and parallel to the
normal vector a. These points are given by

x1 = (b1/‖a‖2
2)a, x2 = (b2/‖a‖2

2)a,

and the distance is
‖x1 − x2‖2 = |b1 − b2|/‖a‖2.

2.6 When does one halfspace contain another? Give conditions under which

{x | aTx ≤ b} ⊆ {x | ãTx ≤ b̃}

(where a 6= 0, ã 6= 0). Also find the conditions under which the two halfspaces are equal.

Solution. Let H = {x | aTx ≤ b} and H̃ = {x | ãTx ≤ b̃}. The conditions are:

• H ⊆ H̃ if and only if there exists a λ > 0 such that ã = λa and b̃ ≥ λb.

• H = H̃ if and only if there exists a λ > 0 such that ã = λa and b̃ = λb.

Let us prove the first condition. The condition is clearly sufficient: if ã = λa and b̃ ≥ λb
for some λ > 0, then

aTx ≤ b =⇒ λaTx ≤ λb =⇒ ãTx ≤ b̃,

i.e., H ⊆ H̃.

To prove necessity, we distinguish three cases. First suppose a and ã are not parallel. This
means we can find a v with ãT v = 0 and aT v 6= 0. Let x̂ be any point in the intersection
of H and H̃, i.e., aT x̂ ≤ b and ãTx ≤ b̃. We have aT (x̂ + tv) = aT x̂ ≤ b for all t ∈ R.

However ãT (x̂ + tv) = ãT x̂ + tãT v, and since ãT v 6= 0, we will have ãT (x̂ + tv) > b̃ for
sufficiently large t > 0 or sufficiently small t < 0. In other words, if a and ã are not
parallel, we can find a point x̂+ tv ∈ H that is not in H̃, i.e., H 6⊆ H̃.

Next suppose a and ã are parallel, but point in opposite directions, i.e., ã = λa for some
λ < 0. Let x̂ be any point in H. Then x̂− ta ∈ H for all t ≥ 0. However for t large enough
we will have ãT (x̂− ta) = ãT x̂+ tλ‖a‖2

2 > b̃, so x̂− ta 6∈ H̃. Again, this shows H 6⊆ H̃.
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Finally, we assume ã = λa for some λ > 0 but b̃ < λb. Consider any point x̂ that satisfies
aT x̂ = b. Then ãT x̂ = λaT x̂ = λb > b̃, so x̂ 6∈ H̃.

The proof for the second part of the problem is similar.

2.7 Voronoi description of halfspace. Let a and b be distinct points in Rn. Show that the set
of all points that are closer (in Euclidean norm) to a than b, i.e., {x | ‖x−a‖2 ≤ ‖x−b‖2},
is a halfspace. Describe it explicitly as an inequality of the form cTx ≤ d. Draw a picture.

Solution. Since a norm is always nonnegative, we have ‖x− a‖2 ≤ ‖x− b‖2 if and only
if ‖x− a‖2

2 ≤ ‖x− b‖2
2, so

‖x− a‖2
2 ≤ ‖x− b‖2

2 ⇐⇒ (x− a)T (x− a) ≤ (x− b)T (x− b)
⇐⇒ xTx− 2aTx+ aT a ≤ xTx− 2bTx+ bT b
⇐⇒ 2(b− a)Tx ≤ bT b− aT a.

Therefore, the set is indeed a halfspace. We can take c = 2(b − a) and d = bT b − aT a.
This makes good geometric sense: the points that are equidistant to a and b are given by
a hyperplane whose normal is in the direction b− a.

2.8 Which of the following sets S are polyhedra? If possible, express S in the form S =
{x | Ax � b, Fx = g}.
(a) S = {y1a1 + y2a2 | − 1 ≤ y1 ≤ 1, − 1 ≤ y2 ≤ 1}, where a1, a2 ∈ Rn.

(b) S = {x ∈ Rn | x � 0, 1Tx = 1,
∑n

i=1
xiai = b1,

∑n

i=1
xia

2
i = b2}, where

a1, . . . , an ∈ R and b1, b2 ∈ R.

(c) S = {x ∈ Rn | x � 0, xT y ≤ 1 for all y with ‖y‖2 = 1}.
(d) S = {x ∈ Rn | x � 0, xT y ≤ 1 for all y with

∑n

i=1
|yi| = 1}.

Solution.

(a) S is a polyhedron. It is the parallelogram with corners a1 + a2, a1 − a2, −a1 + a2,
−a1 − a2, as shown below for an example in R2.

PSfrag replacements

a1
a2c2

c1

For simplicity we assume that a1 and a2 are independent. We can express S as the
intersection of three sets:

• S1: the plane defined by a1 and a2

• S2 = {z+ y1a1 + y2a2 | aT
1 z = aT

2 z = 0,−1 ≤ y1 ≤ 1}. This is a slab parallel to
a2 and orthogonal to S1

• S3 = {z+ y1a1 + y2a2 | aT
1 z = aT

2 z = 0,−1 ≤ y2 ≤ 1}. This is a slab parallel to
a1 and orthogonal to S1

Each of these sets can be described with linear inequalities.

• S1 can be described as

vT
k x = 0, k = 1, . . . , n− 2

where vk are n−2 independent vectors that are orthogonal to a1 and a2 (which
form a basis for the nullspace of the matrix [a1 a2]

T ).
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• Let c1 be a vector in the plane defined by a1 and a2, and orthogonal to a2. For
example, we can take

c1 = a1 − aT
1 a2

‖a2‖2
2

a2.

Then x ∈ S2 if and only if

−|cT
1 a1| ≤ cT

1 x ≤ |cT
1 a1|.

• Similarly, let c2 be a vector in the plane defined by a1 and a2, and orthogonal
to a1, e.g.,

c2 = a2 − aT
2 a1

‖a1‖2
2

a1.

Then x ∈ S3 if and only if

−|cT
2 a2| ≤ cT

2 x ≤ |cT
2 a2|.

Putting it all together, we can describe S as the solution set of 2n linear inequalities

vT
k x ≤ 0, k = 1, . . . , n− 2

−vT
k x ≤ 0, k = 1, . . . , n− 2
cT1 x ≤ |cT

1 a1|
−cT

1 x ≤ |cT
1 a1|

cT2 x ≤ |cT
2 a2|

−cT
2 x ≤ |cT

2 a2|.

(b) S is a polyhedron, defined by linear inequalities xk ≥ 0 and three equality con-
straints.

(c) S is not a polyhedron. It is the intersection of the unit ball {x | ‖x‖2 ≤ 1} and the
nonnegative orthant Rn

+. This follows from the following fact, which follows from
the Cauchy-Schwarz inequality:

xT y ≤ 1 for all y with ‖y‖2 = 1 ⇐⇒ ‖x‖2 ≤ 1.

Although in this example we define S as an intersection of halfspaces, it is not a
polyhedron, because the definition requires infinitely many halfspaces.

(d) S is a polyhedron. S is the intersection of the set {x | |xk| ≤ 1, k = 1, . . . , n} and
the nonnegative orthant Rn

+. This follows from the following fact:

xT y ≤ 1 for all y with

n∑

i=1

|yi| = 1 ⇐⇒ |xi| ≤ 1, i = 1, . . . , n.

We can prove this as follows. First suppose that |xi| ≤ 1 for all i. Then

xT y =
∑

i

xiyi ≤
∑

i

|xi||yi| ≤
∑

i

|yi| = 1

if
∑

i
|yi| = 1.

Conversely, suppose that x is a nonzero vector that satisfies xT y ≤ 1 for all y with∑
i
|yi| = 1. In particular we can make the following choice for y: let k be an index

for which |xk| = maxi |xi|, and take yk = 1 if xk > 0, yk = −1 if xk < 0, and yi = 0
for i 6= k. With this choice of y we have

xT y =
∑

i

xiyi = ykxk = |xk| = max
i

|xi|.
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Therefore we must have maxi |xi| ≤ 1.

All this implies that we can describe S by a finite number of linear inequalities: it
is the intersection of the nonnegative orthant with the set {x | − 1 � x � 1}, i.e.,
the solution of 2n linear inequalities

−xi ≤ 0, i = 1, . . . , n
xi ≤ 1, i = 1, . . . , n.

Note that as in part (c) the set S was given as an intersection of an infinite number of
halfspaces. The difference is that here most of the linear inequalities are redundant,
and only a finite number are needed to characterize S.

None of these sets are affine sets or subspaces, except in some trivial cases. For example,
the set defined in part (a) is a subspace (hence an affine set), if a1 = a2 = 0; the set
defined in part (b) is an affine set if n = 1 and S = {1}; etc.

2.9 Voronoi sets and polyhedral decomposition. Let x0, . . . , xK ∈ Rn. Consider the set of
points that are closer (in Euclidean norm) to x0 than the other xi, i.e.,

V = {x ∈ R
n | ‖x− x0‖2 ≤ ‖x− xi‖2, i = 1, . . . ,K}.

V is called the Voronoi region around x0 with respect to x1, . . . , xK .

(a) Show that V is a polyhedron. Express V in the form V = {x | Ax � b}.
(b) Conversely, given a polyhedron P with nonempty interior, show how to find x0, . . . , xK

so that the polyhedron is the Voronoi region of x0 with respect to x1, . . . , xK .

(c) We can also consider the sets

Vk = {x ∈ R
n | ‖x− xk‖2 ≤ ‖x− xi‖2, i 6= k}.

The set Vk consists of points in Rn for which the closest point in the set {x0, . . . , xK}
is xk.

The sets V0, . . . , VK give a polyhedral decomposition of Rn. More precisely, the sets

Vk are polyhedra,
⋃K

k=0
Vk = Rn, and intVi ∩ intVj = ∅ for i 6= j, i.e., Vi and Vj

intersect at most along a boundary.

Suppose that P1, . . . , Pm are polyhedra such that
⋃m

i=1
Pi = Rn, and intPi ∩

intPj = ∅ for i 6= j. Can this polyhedral decomposition of Rn be described as
the Voronoi regions generated by an appropriate set of points?

Solution.

(a) x is closer to x0 than to xi if and only if

‖x− x0‖2 ≤ ‖x− xi‖2 ⇐⇒ (x− x0)
T (x− x0) ≤ (x− xi)

T (x− xi)

⇐⇒ xTx− 2xT
0 x+ xT

0 x0 ≤ xTx− 2xT
i x+ xT

i xi

⇐⇒ 2(xi − x0)
Tx ≤ xT

i xi − xT
0 x0,

which defines a halfspace. We can express V as V = {x | Ax � b} with

A = 2




x1 − x0

x2 − x0

...
xK − x0


 , b =




xT
1 x1 − xT

0 x0

xT
2 x2 − xT

0 x0

...
xT

KxK − xT
0 x0


 .
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(b) Conversely, suppose V = {x | Ax � b} with A ∈ RK×n and b ∈ RK . We can pick
any x0 ∈ {x | Ax ≺ b}, and then construct K points xi by taking the mirror image
of x0 with respect to the hyperplanes {x | aT

i x = bi}. In other words, we choose xi

of the form xi = x0 +λai, where λ is chosen in such a way that the distance of xi to
the hyperplane defined by aT

i x = bi is equal to the distance of x0 to the hyperplane:

bi − aT
i x0 = aT

i xi − bi.

Solving for λ, we obtain λ = 2(bi − aT
i x0)/‖ai‖2

2, and

xi = x0 +
2(bi − aT

i x0)

‖ai‖2
ai.

(c) A polyhedral decomposition of Rn can not always be described as Voronoi regions
generated by a set of points {x1, . . . , xm}. The figure shows a counterexample in
R2.

PSfrag replacements

P1

P2

P3P4

P̃1

P̃2

H1H2

R2 is decomposed into 4 polyhedra P1, . . . , P4 by 2 hyperplanes H1, H2. Suppose
we arbitrarily pick x1 ∈ P1 and x2 ∈ P2. x3 ∈ P3 must be the mirror image of x1

and x2 with respect to H2 and H1, respectively. However, the mirror image of x1

with respect to H2 lies in P̃1, and the mirror image of x2 with respect to H1 lies in
P̃2, so it is impossible to find such an x3.

2.10 Solution set of a quadratic inequality. Let C ⊆ Rn be the solution set of a quadratic
inequality,

C = {x ∈ R
n | xTAx+ bTx+ c ≤ 0},

with A ∈ Sn, b ∈ Rn, and c ∈ R.

(a) Show that C is convex if A � 0.

(b) Show that the intersection of C and the hyperplane defined by gTx+ h = 0 (where
g 6= 0) is convex if A+ λggT � 0 for some λ ∈ R.

Are the converses of these statements true?

Solution. A set is convex if and only if its intersection with an arbitrary line {x̂+ tv | t ∈
R} is convex.

(a) We have

(x̂+ tv)TA(x̂+ tv) + bT (x̂+ tv) + c = αt2 + βt+ γ

where
α = vTAv, β = bT v + 2x̂TAv, γ = c+ bT x̂+ x̂TAx̂.
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The intersection of C with the line defined by x̂ and v is the set

{x̂+ tv | αt2 + βt+ γ ≤ 0},

which is convex if α ≥ 0. This is true for any v, if vTAv ≥ 0 for all v, i.e., A � 0.

The converse does not hold; for example, take A = −1, b = 0, c = −1. Then A 6� 0,
but C = R is convex.

(b) Let H = {x | gTx + h = 0}. We define α, β, and γ as in the solution of part (a),
and, in addition,

δ = gT v, ε = gT x̂+ h.

Without loss of generality we can assume that x̂ ∈ H, i.e., ε = 0. The intersection
of C ∩H with the line defined by x̂ and v is

{x̂+ tv | αt2 + βt+ γ ≤ 0, δt = 0}.

If δ = gT v 6= 0, the intersection is the singleton {x̂}, if γ ≤ 0, or it is empty. In
either case it is a convex set. If δ = gT v = 0, the set reduces to

{x̂+ tv | αt2 + βt+ γ ≤ 0},

which is convex if α ≥ 0. Therefore C ∩H is convex if

gT v = 0 =⇒ vTAv ≥ 0. (2.10.A)

This is true if there exists λ such that A+ λggT � 0; then (2.10.A) holds, because
then

vTAv = vT (A+ λggT )v ≥ 0

for all v satisfying gT v = 0.

Again, the converse is not true.

2.11 Hyperbolic sets. Show that the hyperbolic set {x ∈ R2
+ | x1x2 ≥ 1} is convex. As a

generalization, show that {x ∈ Rn
+ |

∏n

i=1
xi ≥ 1} is convex. Hint. If a, b ≥ 0 and

0 ≤ θ ≤ 1, then aθb1−θ ≤ θa+ (1 − θ)b; see §3.1.9.

Solution.

(a) We prove the first part without using the hint. Consider a convex combination z of
two points (x1, x2) and (y1, y2) in the set. If x � y, then z = θx+ (1 − θ)y � y and
obviously z1z2 ≥ y1y2 ≥ 1. Similar proof if y � x.

Suppose y 6� 0 and x 6� y, i.e., (y1 − x1)(y2 − x2) < 0. Then

(θx1 + (1 − θ)y1)(θx2 + (1 − θ)y2)

= θ2x1x2 + (1 − θ)2y1y2 + θ(1 − θ)x1y2 + θ(1 − θ)x2y1

= θx1x2 + (1 − θ)y1y2 − θ(1 − θ)(y1 − x1)(y2 − x2)

≥ 1.

(b) Assume that
∏

i
xi ≥ 1 and

∏
i
yi ≥ 1. Using the inequality in the hint, we have

∏

i

(θxi + (1 − θ)yi) ≥
∏

xθ
i y

1−θ
i = (

∏

i

xi)
θ(
∏

i

yi)
1−θ ≥ 1.

2.12 Which of the following sets are convex?

(a) A slab, i.e., a set of the form {x ∈ Rn | α ≤ aTx ≤ β}.
(b) A rectangle, i.e., a set of the form {x ∈ Rn | αi ≤ xi ≤ βi, i = 1, . . . , n}. A rectangle

is sometimes called a hyperrectangle when n > 2.
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(c) A wedge, i.e., {x ∈ Rn | aT
1 x ≤ b1, a

T
2 x ≤ b2}.

(d) The set of points closer to a given point than a given set, i.e.,

{x | ‖x− x0‖2 ≤ ‖x− y‖2 for all y ∈ S}

where S ⊆ Rn.

(e) The set of points closer to one set than another, i.e.,

{x | dist(x, S) ≤ dist(x, T )},

where S, T ⊆ Rn, and

dist(x, S) = inf{‖x− z‖2 | z ∈ S}.

(f) [HUL93, volume 1, page 93] The set {x | x+ S2 ⊆ S1}, where S1, S2 ⊆ Rn with S1

convex.

(g) The set of points whose distance to a does not exceed a fixed fraction θ of the
distance to b, i.e., the set {x | ‖x − a‖2 ≤ θ‖x − b‖2}. You can assume a 6= b and
0 ≤ θ ≤ 1.

Solution.

(a) A slab is an intersection of two halfspaces, hence it is a convex set (and a polyhedron).

(b) As in part (a), a rectangle is a convex set and a polyhedron because it is a finite
intersection of halfspaces.

(c) A wedge is an intersection of two halfspaces, so it is convex set. It is also a polyhe-
dron. It is a cone if b1 = 0 and b2 = 0.

(d) This set is convex because it can be expressed as

⋂

y∈S

{x | ‖x− x0‖2 ≤ ‖x− y‖2},

i.e., an intersection of halfspaces. (For fixed y, the set

{x | ‖x− x0‖2 ≤ ‖x− y‖2}

is a halfspace; see exercise 2.9).

(e) In general this set is not convex, as the following example in R shows. With S =
{−1, 1} and T = {0}, we have

{x | dist(x, S) ≤ dist(x, T )} = {x ∈ R | x ≤ −1/2 or x ≥ 1/2}

which clearly is not convex.

(f) This set is convex. x+ S2 ⊆ S1 if x+ y ∈ S1 for all y ∈ S2. Therefore

{x | x+ S2 ⊆ S1} =
⋂

y∈S2

{x | x+ y ∈ S1} =
⋂

y∈S2

(S1 − y),

the intersection of convex sets S1 − y.

(g) The set is convex, in fact a ball.

{x | ‖x− a‖2 ≤ θ‖x− b‖2}
= {x | ‖x− a‖2

2 ≤ θ2‖x− b‖2
2}

= {x | (1 − θ2)xTx− 2(a− θ2b)Tx+ (aT a− θ2bT b) ≤ 0}
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If θ = 1, this is a halfspace. If θ < 1, it is a ball

{x | (x− x0)
T (x− x0) ≤ R2},

with center x0 and radius R given by

x0 =
a− θ2b

1 − θ2
, R =

(
θ2‖b‖2

2 − ‖a‖2
2

1 − θ2
− ‖x0‖2

2

)1/2

.

2.13 Conic hull of outer products. Consider the set of rank-k outer products, defined as
{XXT | X ∈ Rn×k, rankX = k}. Describe its conic hull in simple terms.

Solution. We have XXT � 0 and rank(XXT ) = k. A positive combination of such
matrices can have rank up to n, but never less than k. Indeed, Let A and B be positive
semidefinite matrices of rank k, with rank(A + B) = r < k. Let V ∈ Rn×(n−r) be a
matrix with R(V ) = N (A+B), i.e.,

V T (A+B)V = V TAV + V TBV = 0.

Since A,B � 0, this means
V TAV = V TBV = 0,

which implies that rankA ≤ r and rankB ≤ r. We conclude that rank(A+B) ≥ k for
any A,B such that rank(A,B) = k and A,B � 0.

It follows that the conic hull of the set of rank-k outer products is the set of positive
semidefinite matrices of rank greater than or equal to k, along with the zero matrix.

2.14 Expanded and restricted sets. Let S ⊆ Rn, and let ‖ · ‖ be a norm on Rn.

(a) For a ≥ 0 we define Sa as {x | dist(x, S) ≤ a}, where dist(x, S) = infy∈S ‖x − y‖.
We refer to Sa as S expanded or extended by a. Show that if S is convex, then Sa

is convex.

(b) For a ≥ 0 we define S−a = {x | B(x, a) ⊆ S}, where B(x, a) is the ball (in the norm
‖ · ‖), centered at x, with radius a. We refer to S−a as S shrunk or restricted by a,
since S−a consists of all points that are at least a distance a from Rn\S. Show that
if S is convex, then S−a is convex.

Solution.

(a) Consider two points x1, x2 ∈ Sa. For 0 ≤ θ ≤ 1,

dist(θx1 + (1 − θ)x2, X) = inf
y∈S

‖θx1 + (1 − θ)x2 − y‖

= inf
y1,y2∈S

‖θx1 + (1 − θ)x2 − θy1 − (1 − θ)y2‖

= inf
y1,y2∈S

‖θ(x1 − y1) + (1 − θ)(x2 − y2)‖

≤ inf
y1,y2∈S

(θ‖x1 − y1‖ + (1 − θ)‖x2 − y2‖)

= θ inf
y1∈S

‖x1 − y1‖ + (1 − θ) inf
y2∈s

‖x2 − y2‖)

≤ a,

so θx1 + (1 − θ)x2 ∈ Sa, proving convexity.

(b) Consider two points x1, x2 ∈ S−a, so for all u with ‖u‖ ≤ a,

x1 + u ∈ S, x2 + u ∈ S.

For 0 ≤ θ ≤ 1 and ‖u‖ ≤ a,

θx1 + (1 − θ)x2 + u = θ(x1 + u) + (1 − θ)(x2 + u) ∈ S,

because S is convex. We conclude that θx1 + (1 − θ)x2 ∈ S−a.
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2.15 Some sets of probability distributions. Let x be a real-valued random variable with
prob(x = ai) = pi, i = 1, . . . , n, where a1 < a2 < · · · < an. Of course p ∈ Rn lies
in the standard probability simplex P = {p | 1T p = 1, p � 0}. Which of the following
conditions are convex in p? (That is, for which of the following conditions is the set of
p ∈ P that satisfy the condition convex?)

(a) α ≤ E f(x) ≤ β, where E f(x) is the expected value of f(x), i.e., E f(x) =∑n

i=1
pif(ai). (The function f : R → R is given.)

(b) prob(x > α) ≤ β.

(c) E |x3| ≤ αE |x|.
(d) Ex2 ≤ α.

(e) Ex2 ≥ α.

(f) var(x) ≤ α, where var(x) = E(x− Ex)2 is the variance of x.

(g) var(x) ≥ α.

(h) quartile(x) ≥ α, where quartile(x) = inf{β | prob(x ≤ β) ≥ 0.25}.
(i) quartile(x) ≤ α.

Solution. We first note that the constraints pi ≥ 0, i = 1, . . . , n, define halfspaces, and∑n

i=1
pi = 1 defines a hyperplane, so P is a polyhedron.

The first five constraints are, in fact, linear inequalities in the probabilities pi.

(a) E f(x) =
∑n

i=1
pif(ai), so the constraint is equivalent to two linear inequalities

α ≤
n∑

i=1

pif(ai) ≤ β.

(b) prob(x ≥ α) =
∑

i: ai≥α
pi, so the constraint is equivalent to a linear inequality

∑

i: ai≥α

pi ≤ β.

(c) The constraint is equivalent to a linear inequality

n∑

i=1

pi(|a3
i | − α|ai|) ≤ 0.

(d) The constraint is equivalent to a linear inequality

n∑

i=1

pia
2
i ≤ α.

(e) The constraint is equivalent to a linear inequality

n∑

i=1

pia
2
i ≥ α.

The first five constraints therefore define convex sets.
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(f) The constraint

var(x) = Ex2 − (Ex)2 =

n∑

i=1

pia
2
i − (

n∑

i=1

piai)
2 ≤ α

is not convex in general. As a counterexample, we can take n = 2, a1 = 0, a2 = 1,
and α = 1/5. p = (1, 0) and p = (0, 1) are two points that satisfy var(x) ≤ α, but
the convex combination p = (1/2, 1/2) does not.

(g) This constraint is equivalent to

n∑

i=1

a2
i pi + (

n∑

i=1

aipi)
2 = bT p+ pTAp ≤ α

where bi = a2
i and A = aaT . This defines a convex set, since the matrix aaT is

positive semidefinite.

Let us denote quartile(x) = f(p) to emphasize it is a function of p. The figure illustrates
the definition. It shows the cumulative distribution for a distribution p with f(p) = a2.

PSfrag replacements

β

prob(x ≤ β)

a1 a2 an

p1

p1 + p2

p1 + p2 + · · · + pn−1

0.25

1

(h) The constraint f(p) ≥ α is equivalent to

prob(x ≤ β) < 0.25 for all β < α.

If α ≤ a1, this is always true. Otherwise, define k = max{i | ai < α}. This is a fixed
integer, independent of p. The constraint f(p) ≥ α holds if and only if

prob(x ≤ ak) =

k∑

i=1

pi < 0.25.

This is a strict linear inequality in p, which defines an open halfspace.

(i) The constraint f(p) ≤ α is equivalent to

prob(x ≤ β) ≥ 0.25 for all β ≥ α.

This can be expressed as a linear inequality

n∑

i=k+1

pi ≥ 0.25.

(If α ≤ a1, we define k = 0.)
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Operations that preserve convexity

2.16 Show that if S1 and S2 are convex sets in Rm×n, then so is their partial sum

S = {(x, y1 + y2) | x ∈ R
m, y1, y2 ∈ R

n, (x, y1) ∈ S1, (x, y2) ∈ S2}.
Solution. We consider two points (x̄, ȳ1 + ȳ2), (x̃, ỹ1 + ỹ2) ∈ S, i.e., with

(x̄, ȳ1) ∈ S1, (x̄, ȳ2) ∈ S2, (x̃, ỹ1) ∈ S1, (x̃, ỹ2) ∈ S2.

For 0 ≤ θ ≤ 1,

θ(x̄, ȳ1 + ȳ2) + (1 − θ)(x̃, ỹ1 + ỹ2) = (θx̄+ (1 − θ)x̃, (θȳ1 + (1 − θ)ỹ1) + (θȳ2 + (1 − θ)ỹ2))

is in S because, by convexity of S1 and S2,

(θx̄+ (1 − θ)x̃, θȳ1 + (1 − θ)ỹ1) ∈ S1, (θx̄+ (1 − θ)x̃, θȳ2 + (1 − θ)ỹ2) ∈ S2.

2.17 Image of polyhedral sets under perspective function. In this problem we study the image
of hyperplanes, halfspaces, and polyhedra under the perspective function P (x, t) = x/t,
with domP = Rn × R++. For each of the following sets C, give a simple description of

P (C) = {v/t | (v, t) ∈ C, t > 0}.
(a) The polyhedron C = conv{(v1, t1), . . . , (vK , tK)} where vi ∈ Rn and ti > 0.

Solution. The polyhedron

P (C) = conv{v1/t1, . . . , vK/tK}.
We first show that P (C) ⊆ conv{v1/t1, . . . , vK/tK}. Let x = (v, t) ∈ C, with

v =

K∑

i=1

θivi, t =

K∑

i=1

θiti,

and θ � 0, 1T θ = 1. The image P (x) can be expressed as

P (x) = v/t =

∑K

i=1
θivi∑K

i=1
θiti

=

K∑

i=1

µivi/ti

where

µi =
θiti∑K

k=1
θktk

, i = 1, . . . ,K.

It is clear that µ � 0, 1Tµ = 1, so we can conclude that P (x) ∈ conv{v1/t1, . . . , vK/tK}
for all x ∈ C.

Next, we show that P (C) ⊇ conv{v1/t1, . . . , vK/tK}. Consider a point

z =

K∑

i=1

µivi/ti

with µ � 0, 1Tµ = 1. Define

θi =
µi

ti
∑K

j=1
µj/tj

, i = 1, . . . ,K.

It is clear that θ � 0 and 1T θ = 1. Moreover, z = P (v, t) where

t =
∑

i

θiti =

∑
i
µi∑

j
µj/tj

=
1∑

j
µj/tj

, v =
∑

i

θivi,

i.e., (v, t) ∈ C.
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(b) The hyperplane C = {(v, t) | fT v + gt = h} (with f and g not both zero).

Solution.

P (C) = {z | fT z + g = h/t for some t > 0}

=





{z | fT z + g = 0} h = 0
{z | fT z + g > 0} h > 0
{z | fT z + g < 0} h < 0.

(c) The halfspace C = {(v, t) | fT v + gt ≤ h} (with f and g not both zero).

Solution.

P (C) = {z | fT z + g ≤ h/t for some t > 0}

=





{z | fT z + g ≤ 0} h = 0
Rn h > 0
{z | fT z + g < 0} h < 0.

(d) The polyhedron C = {(v, t) | Fv + gt � h}.
Solution.

P (C) = {z | Fz + g � (1/t)h for some t > 0}.
More explicitly, z ∈ P (C) if and only if it satisfies the following conditions:

• fT
i z + gi ≤ 0 if hi = 0

• fT
i z + gi < 0 if hi < 0

• (fT
i z + gi)/hi ≤ (fT

k z + gk)/hk if hi > 0 and hk < 0.

2.18 Invertible linear-fractional functions. Let f : Rn → Rn be the linear-fractional function

f(x) = (Ax+ b)/(cTx+ d), dom f = {x | cTx+ d > 0}.

Suppose the matrix

Q =

[
A b
cT d

]

is nonsingular. Show that f is invertible and that f−1 is a linear-fractional mapping.
Give an explicit expression for f−1 and its domain in terms of A, b, c, and d. Hint. It
may be easier to express f−1 in terms of Q.

Solution. This follows from remark 2.2 on page 41. The inverse of f is given by

f−1(x) = P−1(Q−1P(x)),

so f−1 is the projective transformation associated with Q−1.

2.19 Linear-fractional functions and convex sets. Let f : Rm → Rn be the linear-fractional
function

f(x) = (Ax+ b)/(cTx+ d), dom f = {x | cTx+ d > 0}.
In this problem we study the inverse image of a convex set C under f , i.e.,

f−1(C) = {x ∈ dom f | f(x) ∈ C}.

For each of the following sets C ⊆ Rn, give a simple description of f−1(C).
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(a) The halfspace C = {y | gT y ≤ h} (with g 6= 0).

Solution.

f−1(C) = {x ∈ dom f | gT f(x) ≤ h}
= {x | gT (Ax+ b)/(cTx+ d) ≤ h, cTx+ d > 0}
= {x | (AT g − hc)Tx ≤ hd− gT b, cTx+ d > 0},

which is another halfspace, intersected with dom f .

(b) The polyhedron C = {y | Gy � h}.
Solution. The polyhedron

f−1(C) = {x ∈ dom f | Gf(x) � h}
= {x | G(Ax+ b)/(cTx+ d) � h, cTx+ d > 0}
= {x | (GA− hcT )x ≤ hd−Gb, cTx+ d > 0},

a polyhedron intersected with dom f .

(c) The ellipsoid {y | yTP−1y ≤ 1} (where P ∈ Sn
++).

Solution.

f−1(C) = {x ∈ dom f | f(x)TP−1f(x) ≤ 1}
= {x ∈ dom f | (Ax+ b)TP−1(Ax+ b) ≤ (cTx+ d)2},
= {x | xTQx+ 2qTx ≤ r, cTx+ d > 0}.

where Q = ATP−1A− ccT , q = bTP−1A+ dc, r = d2 − bTP−1b. If ATP−1A � ccT

this is an ellipsoid intersected with dom f .

(d) The solution set of a linear matrix inequality, C = {y | y1A1 + · · · + ynAn � B},
where A1, . . . , An, B ∈ Sp.

Solution. We denote by aT
i the ith row of A.

f−1(C) = {x ∈ dom f | f1(x)A1 + f2(x)A2 + · · · + fn(x)An � B}
= {x ∈ dom f | (aT

1 x+ b1)A1 + · · · + (aT
nx+ bn)An � (cTx+ d)B}

= {x ∈ dom f | G1x1 + · · · +Gmxm � H, cTx+ d > 0}

where

Gi = a1iA1 + a2iA2 + · · · + aniAn − ciB, H = dB − b1A1 − b2A2 − · · · − bnAn.

f−1(C) is the intersection of dom f with the solution set of an LMI.

Separation theorems and supporting hyperplanes

2.20 Strictly positive solution of linear equations. Suppose A ∈ Rm×n, b ∈ Rm, with b ∈ R(A).
Show that there exists an x satisfying

x � 0, Ax = b

if and only if there exists no λ with

ATλ � 0, ATλ 6= 0, bTλ ≤ 0.

Hint. First prove the following fact from linear algebra: cTx = d for all x satisfying
Ax = b if and only if there is a vector λ such that c = ATλ, d = bTλ.
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Solution. We first prove the result in the hint. Suppose that there exists a λ such that
c = ATλ, d = bTλ. It is clear that if Ax = b then

cTx = λTAx = λT b = d.

Conversely, suppose Ax = b implies cTx = d, and that rankA = r. Let F ∈ Rn×(n−r)

be a matrix with R(F ) = N (A), and let x0 be a solution of Ax = b. Then Ax = b if and
only if x = Fy + x0 for some y, and cTx = d for all x = Fy + x0 implies

cTFy + cTx0 = d

for all y. This is only possible if F T c = 0, i.e., c ∈ N (F T ) = R(AT ), i.e., there exists
a λ such that c = ATλ. The condition cTFy + cTx0 = d then reduces to cTx0 = d, i.e.,
λTAx0 = λT b = d. In conclusion, if cTx = d for all x with Ax = b, then there there exists
a λ such that c = ATλ and d = bTλ.

To prove the main result, we use a standard separating hyperplane argument, applied to
the sets C = Rn

++ and D = {x | Ax = b}. If they are disjoint, there exists c 6= 0 and d

such that cTx ≥ d for all x ∈ C and cTx ≤ d for all x ∈ D. The first condition means that
c � 0 and d ≤ 0. Since cTx ≤ d on D, which is an affine set, we must have cTx constant
on D. (If cTx weren’t constant on D, it would take on all values.) We can relabel d to be
this constant value, so we have cTx = d on D. Now using the hint, there is some λ such
that c = ATλ, d = bTλ.

2.21 The set of separating hyperplanes. Suppose that C and D are disjoint subsets of Rn.
Consider the set of (a, b) ∈ Rn+1 for which aTx ≤ b for all x ∈ C, and aTx ≥ b for all
x ∈ D. Show that this set is a convex cone (which is the singleton {0} if there is no
hyperplane that separates C and D).

Solution. The conditions aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D, form a set
of homogeneous linear inequalities in (a, b). Therefore K is the intersection of halfspaces
that pass through the origin. Hence it is a convex cone.

Note that this does not require convexity of C or D.

2.22 Finish the proof of the separating hyperplane theorem in §2.5.1: Show that a separating
hyperplane exists for two disjoint convex sets C and D. You can use the result proved
in §2.5.1, i.e., that a separating hyperplane exists when there exist points in the two sets
whose distance is equal to the distance between the two sets.

Hint. If C and D are disjoint convex sets, then the set {x− y | x ∈ C, y ∈ D} is convex
and does not contain the origin.

Solution. Following the hint, we first confirm that

S = {x− y | x ∈ C, y ∈ D},

is convex, since it is the sum of two convex sets.

Since C and D are disjoint, 0 6∈ S. We distinguish two cases. First suppose 0 6∈ clS. The
partial separating hyperplane in §2.5.1 applies to the sets {0} and clS, so there exists an
a 6= 0 such that

aT (x− y) > 0

for all x− y ∈ clS. In particular this also holds for all x− y ∈ S, i.e., aTx > aT y for all
x ∈ C and y ∈ D.

Next, assume 0 ∈ clS. Since 0 6∈ S, it must be in the boundary of S. If S has empty
interior, it is contained in a hyperplane {z | aT z = b}, which must include the origin,
hence b = 0. In other words, aTx = aT y for all x ∈ C and all y ∈ D, so we have a trivial
separating hyperplane.

If S has nonempty interior, we consider the set

S−ε = {z | B(z, ε) ⊆ S},
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where B(z, ε) is the Euclidean ball with center z and radius ε > 0. S−ε is the set S,
shrunk by ε (see exercise 2.14). clS−ε is closed and convex, and does not contain 0, so
by the partial separating hyperplane result, it is strictly separated from {0} by at least
one hyperplane with normal vector a(ε):

a(ε)T z > 0 for all z ∈ S−ε.

Without loss of generality we assume ‖a(ε)‖2 = 1. Now let εk, k = 1, 2, . . . be a sequence
of positive values of εk with limk→∞ εk = 0. Since ‖a(εk)‖2 = 1 for all k, the sequence
a(εk) contains a convergent subsequence, and we will denote its limit by ā. We have

a(εk)T z > 0 for all z ∈ S−εk

for all k, and therefore āT z > 0 for all z ∈ intS, and āT z ≥ 0 for all z ∈ S, i.e.,

āTx ≥ āT y

for all x ∈ C, y ∈ D.

2.23 Give an example of two closed convex sets that are disjoint but cannot be strictly sepa-
rated.

Solution. Take C = {x ∈ R2 | x2 ≤ 0} and D = {x ∈ R2
+ | x1x2 ≥ 1}.

2.24 Supporting hyperplanes.

(a) Express the closed convex set {x ∈ R2
+ | x1x2 ≥ 1} as an intersection of halfspaces.

Solution. The set is the intersection of all supporting halfspaces at points in its
boundary, which is given by {x ∈ R2

+ | x1x2 = 1}. The supporting hyperplane at
x = (t, 1/t) is given by

x1/t
2 + x2 = 2/t,

so we can express the set as

⋂

t>0

{x ∈ R
2 | x1/t

2 + x2 ≥ 2/t}.

(b) Let C = {x ∈ Rn | ‖x‖∞ ≤ 1}, the `∞-norm unit ball in Rn, and let x̂ be a point
in the boundary of C. Identify the supporting hyperplanes of C at x̂ explicitly.

Solution. sTx ≥ sT x̂ for all x ∈ C if and only if

si < 0 x̂i = 1
si > 0 x̂i = −1
si = 0 −1 < x̂i < 1.

2.25 Inner and outer polyhedral approximations. Let C ⊆ Rn be a closed convex set, and
suppose that x1, . . . , xK are on the boundary of C. Suppose that for each i, aT

i (x−xi) = 0
defines a supporting hyperplane for C at xi, i.e., C ⊆ {x | aT

i (x− xi) ≤ 0}. Consider the
two polyhedra

Pinner = conv{x1, . . . , xK}, Pouter = {x | aT
i (x− xi) ≤ 0, i = 1, . . . ,K}.

Show that Pinner ⊆ C ⊆ Pouter. Draw a picture illustrating this.

Solution. The points xi are in C because C is closed. Any point in Pinner = conv{x1, . . . , xK}
is also in C because C is convex. Therefore Pinner ⊆ C.

If x ∈ C then aT
i (x− xi) ≤ 0 for i = 1, . . . ,K, i.e., x ∈ Pouter. Therefore C ⊆ Pouter.

The figure shows an example with K = 4.
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2.26 Support function. The support function of a set C ⊆ Rn is defined as

SC(y) = sup{yTx | x ∈ C}.

(We allow SC(y) to take on the value +∞.) Suppose that C and D are closed convex sets
in Rn. Show that C = D if and only if their support functions are equal.

Solution. Obviously if C = D the support functions are equal. We show that if the
support functions are equal, then C = D, by showing that D ⊆ C and C ⊆ D.

We first show that D ⊆ C. Suppose there exists a point x0 ∈ D, x 6∈ C. Since C is
closed, x0 can be strictly separated from C, i.e., there exists an a 6= 0 with aTx0 > b and
aTx < b for all x ∈ C. This means that

sup
x∈C

aTx ≤ b < aTx0 ≤ sup
x∈D

aTx,

which implies that SC(a) 6= SD(a). By repeating the argument with the roles of C and
D reversed, we can show that C ⊆ D.

2.27 Converse supporting hyperplane theorem. Suppose the set C is closed, has nonempty
interior, and has a supporting hyperplane at every point in its boundary. Show that C is
convex.

Solution. Let H be the set of all halfspaces that contain C. H is a closed convex set,
and contains C by definition.

The support function SC of a set C is defined as SC(y) = supx∈C y
Tx. The set H and its

interior can be defined in terms of the support function as

H =
⋂

y 6=0

{x | yTx ≤ SC(y)}, intH =
⋂

y 6=0

{x | yTx < SC(y)},

and the boundary of H is the set of all points in H with yTx = SC(y) for at least one
y 6= 0.

By definition intC ⊆ intH. We also have bdC ⊆ bdH: if x̄ ∈ bdC, then there exists
a supporting hyperplane at x̄, i.e., a vector a 6= 0 such that aT x̄ = SC(a), i.e., x̄ ∈ bdH.

We now show that these properties imply that C is convex. Consider an arbitrary line
intersecting intC. The intersection is a union of disjoint open intervals Ik, with endpoints
in bdC (hence also in bdH), and interior points in intC (hence also in intH). Now
intH is a convex set, so the interior points of two different intervals I1 and I2 can not
be separated by boundary points (since boundary points are in bdH, not in intH).
Therefore there can be at most one interval, i.e., intC is convex.
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Convex cones and generalized inequalities

2.28 Positive semidefinite cone for n = 1, 2, 3. Give an explicit description of the positive
semidefinite cone Sn

+, in terms of the matrix coefficients and ordinary inequalities, for
n = 1, 2, 3. To describe a general element of Sn, for n = 1, 2, 3, use the notation

x1,

[
x1 x2

x2 x3

]
,

[
x1 x2 x3

x2 x4 x5

x3 x5 x6

]
.

Solution. For n = 1 the condition is x1 ≥ 0. For n = 2 the condition is

x1 ≥ 0, x3 ≥ 0, x1x3 − x2
2 ≥ 0.

For n = 3 the condition is

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1x4 −x2
2 ≥ 0, x4x6 −x2

5 ≥ 0, x1x6 −x2
3 ≥ 0

and
x1x4x6 + 2x2x3x5 − x1x

2
5 − x6x

2
2 − x4x

2
3 ≥ 0,

i.e., all principal minors must be nonnegative.

We give the proof for n = 3, assuming the result is true for n = 2. The matrix

X =

[
x1 x2 x3

x2 x4 x5

x3 x5 x6

]

is positive semidefinite if and only if

zTXz = x1z
2
1 + 2x2z1z2 + 2x3z1z3 + x4z

2
2 + 2x5z2z3 + x6z

2
3 ≥ 0

for all z.

If x1 = 0, we must have x2 = x3 = 0, so X � 0 if and only if
[
x4 x5

x5 x6

]
� 0.

Applying the result for the 2 × 2-case, we conclude that if x1 = 0, X � 0 if and only if

x2 = x3 = 0, x4 ≥ 0, x6 ≥ 0, x4x6 − x2
5 ≥ 0.

Now assume x1 6= 0. We have

zTXz = x1(z1+(x2/x1)z2+(x3/x1)z3)
2+(x4−x2

2/x1)z
2
2+(x6−x2

3/x1)z
2
3+2(x5−x2x3/x1)z2z3,

so it is clear that we must have x1 > 0 and
[

x4 − x2
2/x1 x5 − x2x3/x1

x5 − x2x3/x1 x6 − x2
3/x1

]
� 0.

By the result for 2 × 2-case studied above, this is equivalent to

x1x4 − x2
2 ≥ 0, x1x6 − x2

3 ≥ 0, (x4 − x2
2/x1)(x6 − x2

3/x1) − (x5 − x2x3/x1)
2 ≥ 0.

The third inequality simplifies to

(x1x4x6 − 2x2x3x5 − x1x
2
5 − x6x

2
2 − x4x

2
3)/x1 ≥ 0.

Therefore, if x1 > 0, then X � 0 if and only if

x1x4 − x2
2 ≥ 0, x1x6 − x2

3 ≥ 0, (x1x4x6 − 2x2x3x5 − x1x
2
5 − x6x

2
2 − x4x

2
3)/x1 ≥ 0.

We can combine the conditions for x1 = 0 and x1 > 0 by saying that all 7 principal minors
must be nonnegative.
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2.29 Cones in R2. Suppose K ⊆ R2 is a closed convex cone.

(a) Give a simple description of K in terms of the polar coordinates of its elements
(x = r(cosφ, sinφ) with r ≥ 0).

(b) Give a simple description of K∗, and draw a plot illustrating the relation between
K and K∗.

(c) When is K pointed?

(d) When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating
what x �K y means when K is proper.

Solution.

(a) In R2 a cone K is a “pie slice” (see figure).

PSfrag replacements

K

α
β

In terms of polar coordinates, a pointed closed convex cone K can be expressed

K = {(r cosφ, r sinφ) | r ≥ 0, α ≤ φ ≤ β}

where 0 ≤ β − α < 180◦. When β − α = 180◦, this gives a non-pointed cone (a
halfspace). Other possible non-pointed cones are the entire plane

K = {(r cosφ, r sinφ) | r ≥ 0, 0 ≤ φ ≤ 2π} = R
2,

and lines through the origin

K = {(r cosα, r sinα) | r ∈ R}.

(b) By definition, K∗ is the intersection of all halfspaces xT y ≥ 0 where x ∈ K. However,
as can be seen from the figure, if K is pointed, the two halfspaces defined by the
extreme rays are sufficient to define K∗, i.e.,

K∗ = {y | y1 cosα+ y2 sinα ≥ 0, y1 cosβ + y2 sinβ ≥ 0}.
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PSfrag replacements

K
K∗

If K is a halfspace, K = {x | vTx ≥ 0}, the dual cone is the ray

K∗ = {tv | t ≥ 0}.

If K = R2, the dual cone is K∗ = {0}. If K is a line {tv | t ∈ R} through the origin,
the dual cone is the line perpendicular to v

K∗ = {y | vT y = 0}.

(c) See part (a).

(d) K must be closed convex and pointed, and have nonempty interior. From part (a),
this means K can be expressed as

K = {(r cosφ, r sinφ) | r ≥ 0, α ≤ φ ≤ β}

where 0 < β − α < 180◦.

x �K y means y ∈ x+K.

2.30 Properties of generalized inequalities. Prove the properties of (nonstrict and strict) gen-
eralized inequalities listed in §2.4.1.

Solution.

Properties of generalized inequalities.

(a) �K is preserved under addition. If y − x ∈ K and v − u ∈ K, where K is a convex
cone, then the conic combination (y − x) + (v − u) ∈ K, i.e., x+ u �K y + v.

(b) �K is transitive. If y − x ∈ K and z − y ∈ K then the conic combination (y − x) +
(z − y) = z − x ∈ K, i.e., x �K z.

(c) �K is preserved under nonnegative scaling. Follows from the fact that K is a cone.

(d) �K is reflexive. Any cone contains the origin.

(e) �K is antisymmetric. If y − x ∈ K and x − y ∈ K, then y − x = 0 because K is
pointed.

(f) �K is preserved under limits. If yi−xi ∈ K and K is closed, then limi→∞(yi−xi) ∈
K.
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Properties of strict inequality.

(a) If x ≺K y then x �K y. Every set contains its interior.

(b) If x ≺K y and u �K v then x+ u ≺K y + v. If y − x ∈ intK, then (y − x) + z ∈ K
for all sufficiently small nonzero z. Since K is a convex cone and v − u ∈ K,
(y − x) + z + (u− v) ∈ K for all sufficiently small u, i.e., x+ u ≺K y + v.

(c) If x ≺K y and α > 0 then αx ≺K αy. If y−x+ z ∈ K for sufficiently small nonzero
z, then α(y − x + z) ∈ K for all α > 0, i.e., α(y − x) + z̃ ∈ K for all sufficiently
small nonzero z̃.

(d) x 6≺K x. 0 6∈ intK because K is a pointed cone.

(e) If x ≺K y, then for u and v small enough, x + u ≺K y + v. If y − x ∈ intK, then
(y − x) + (v − u) ∈ intK for sufficiently small u and v.

2.31 Properties of dual cones. Let K∗ be the dual cone of a convex cone K, as defined in (2.19).
Prove the following.

(a) K∗ is indeed a convex cone.

Solution. K∗ is the intersection of a set of homogeneous halfspaces (meaning,
halfspaces that include the origin as a boundary point). Hence it is a closed convex
cone.

(b) K1 ⊆ K2 implies K∗
2 ⊆ K∗

1 .

Solution. y ∈ K∗
2 means xT y ≥ 0 for all x ∈ K2, which is includes K1, therefore

xT y ≥ 0 for all x ∈ K1.

(c) K∗ is closed.

Solution. See part (a).

(d) The interior of K∗ is given by intK∗ = {y | yTx > 0 for all x ∈ K}.
Solution. If yTx > 0 for all x ∈ K then (y + u)Tx > 0 for all x ∈ K and all
sufficiently small u; hence y ∈ intK.

Conversely if y ∈ K∗ and yTx = 0 for some x ∈ K, then y 6∈ intK∗ because
(y − tx)Tx < 0 for all t > 0.

(e) If K has nonempty interior then K∗ is pointed.

Solution. Suppose K∗ is not pointed, i.e., there exists a nonzero y ∈ K∗ such that
−y ∈ K∗. This means yTx ≥ 0 and −yTx ≥ 0 for all x ∈ K, i.e., yTx = 0 for all
x ∈ K, hence K has empty interior.

(f) K∗∗ is the closure of K. (Hence if K is closed, K∗∗ = K.)

Solution. By definition of K∗, y 6= 0 is the normal vector of a (homogeneous)
halfspace containing K if and only if y ∈ K∗. The intersection of all homogeneous
halfspaces containing a convex cone K is the closure of K. Therefore the closure of
K is

clK =
⋂

y∈K∗

{x | yTx ≥ 0} = {x | yTx ≥ 0 for all y ∈ K∗} = K∗∗.

(g) If the closure of K is pointed then K∗ has nonempty interior.

Solution. If K∗ has empty interior, there exists an a 6= 0 such that aT y = 0 for all
y ∈ K∗. This means a and −a are both in K∗∗, which contradicts the fact that K∗∗

is pointed.

As an example that shows that it is not sufficient that K is pointed, consider K =
{0} ∪ {(x1, x2) | x1 > 0}. This is a pointed cone, but its dual has empty interior.

2.32 Find the dual cone of {Ax | x � 0}, where A ∈ Rm×n.

Solution. K∗ = {y | AT y � 0}.
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2.33 The monotone nonnegative cone. We define the monotone nonnegative cone as

Km+ = {x ∈ R
n | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}.

i.e., all nonnegative vectors with components sorted in nonincreasing order.

(a) Show that Km+ is a proper cone.

(b) Find the dual cone K∗
m+. Hint. Use the identity

n∑

i=1

xiyi = (x1 − x2)y1 + (x2 − x3)(y1 + y2) + (x3 − x4)(y1 + y2 + y3) + · · ·

+ (xn−1 − xn)(y1 + · · · + yn−1) + xn(y1 + · · · + yn).

Solution.

(a) The set Km+ is defined by n homogeneous linear inequalities, hence it is a closed
(polyhedral) cone.

The interior of Km+ is nonempty, because there are points that satisfy the inequal-
ities with strict inequality, for example, x = (n, n− 1, n− 2, . . . , 1).

To show that Km+ is pointed, we note that if x ∈ Km+, then −x ∈ Km+ only if
x = 0. This implies that the cone does not contain an entire line.

(b) Using the hint, we see that yTx ≥ 0 for all x ∈ Km+ if and only if

y1 ≥ 0, y1 + y2 ≥ 0, . . . , y1 + y2 + · · · + yn ≥ 0.

Therefore

K∗
m+ = {y |

k∑

i=1

yi ≥ 0, k = 1, . . . , n}.

2.34 The lexicographic cone and ordering. The lexicographic cone is defined as

Klex = {0} ∪ {x ∈ R
n | x1 = · · · = xk = 0, xk+1 > 0, for some k, 0 ≤ k < n},

i.e., all vectors whose first nonzero coefficient (if any) is positive.

(a) Verify that Klex is a cone, but not a proper cone.

(b) We define the lexicographic ordering on Rn as follows: x ≤lex y if and only if
y − x ∈ Klex. (Since Klex is not a proper cone, the lexicographic ordering is not a
generalized inequality.) Show that the lexicographic ordering is a linear ordering :
for any x, y ∈ Rn, either x ≤lex y or y ≤lex x. Therefore any set of vectors can be
sorted with respect to the lexicographic cone, which yields the familiar sorting used
in dictionaries.

(c) Find K∗
lex.

Solution.

(a) Klex is not closed. For example, (ε,−1, 0, . . . , 0) ∈ Klex for all ε > 0, but not for
ε = 0.

(b) If x 6= y then x ≤lex y and y ≤lex x. If not, let k = min{i ∈ {1, . . . , n} | xi 6= yi},
be the index of the first component in which x and y differ. If xk < yk, we have
x ≤lex y. If xk > yk, we have x ≥lex y.

(c) K∗
lex = R+e1 = {(t, 0, . . . , 0) | t ≥ 0}. To prove this, first note that if y = (t, 0, . . . , 0)

with t ≥ 0, then obviously yTx = tx1 ≥ 0 for all x ∈ Klex.

Conversely, suppose yTx ≥ 0 for all x ∈ Klex. In particular yT e1 ≥ 0, so y1 ≥ 0.
Furthermore, by considering x = (ε,−1, 0, . . . , 0), we have εy1 − y2 ≥ 0 for all ε > 0,
which is only possible if y2 = 0. Similarly, one can prove that y3 = · · · = yn = 0.
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2.35 Copositive matrices. A matrix X ∈ Sn is called copositive if zTXz ≥ 0 for all z � 0.
Verify that the set of copositive matrices is a proper cone. Find its dual cone.

Solution. We denote by K the set of copositive matrices in Sn. K is a closed convex
cone because it is the intersection of (infinitely many) halfspaces defined by homogeneous
inequalities

zTXz =
∑

i,j

zizjXij ≥ 0.

K has nonempty interior, because it includes the cone of positive semidefinite matrices,
which has nonempty interior. K is pointed because X ∈ K, −X ∈ K means zTXz = 0
for all z � 0, hence X = 0.

By definition, the dual cone of a cone K is the set of normal vectors of all homogeneous
halfspaces containing K (plus the origin). Therefore,

K∗ = conv{zzT | z � 0}.

2.36 Euclidean distance matrices. Let x1, . . . , xn ∈ Rk. The matrix D ∈ Sn defined by Dij =
‖xi − xj‖2

2 is called a Euclidean distance matrix. It satisfies some obvious properties such

as Dij = Dji, Dii = 0, Dij ≥ 0, and (from the triangle inequality) D
1/2
ik ≤ D

1/2
ij +D

1/2
jk .

We now pose the question: When is a matrix D ∈ Sn a Euclidean distance matrix (for
some points in Rk, for some k)? A famous result answers this question: D ∈ Sn is a
Euclidean distance matrix if and only if Dii = 0 and xTDx ≤ 0 for all x with 1Tx = 0.
(See §8.3.3.)
Show that the set of Euclidean distance matrices is a convex cone. Find the dual cone.

Solution. The set of Euclidean distance matrices in Sn is a closed convex cone because
it is the intersection of (infinitely many) halfspaces defined by the following homogeneous
inequalities:

eT
i Dei ≤ 0, eT

i Dei ≥ 0, xTDx =
∑

j,k

xjxkDjk ≤ 0,

for all i = 1, . . . , n, and all x with 1Tx = 1.

It follows that dual cone is given by

K∗ = conv({−xxT | 1Tx = 1}
⋃

{e1eT
1 ,−e1eT

1 , . . . , ene
T
n ,−ene

T
n}).

This can be made more explicit as follows. Define V ∈ Rn×(n−1) as

Vij =

{
1 − 1/n i = j
−1/n i 6= j.

The columns of V form a basis for the set of vectors orthogonal to 1, i.e., a vector x
satisfies 1Tx = 0 if and only if x = V y for some y. The dual cone is

K∗ = {VWV T + diag(u) |W � 0, u ∈ R
n}.

2.37 Nonnegative polynomials and Hankel LMIs. Let Kpol be the set of (coefficients of) non-
negative polynomials of degree 2k on R:

Kpol = {x ∈ R
2k+1 | x1 + x2t+ x3t

2 + · · · + x2k+1t
2k ≥ 0 for all t ∈ R}.

(a) Show that Kpol is a proper cone.
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(b) A basic result states that a polynomial of degree 2k is nonnegative on R if and only
if it can be expressed as the sum of squares of two polynomials of degree k or less.
In other words, x ∈ Kpol if and only if the polynomial

p(t) = x1 + x2t+ x3t
2 + · · · + x2k+1t

2k

can be expressed as
p(t) = r(t)2 + s(t)2,

where r and s are polynomials of degree k.

Use this result to show that

Kpol =

{
x ∈ R

2k+1

∣∣∣∣∣ xi =
∑

m+n=i+1

Ymn for some Y ∈ Sk+1
+

}
.

In other words, p(t) = x1 + x2t+ x3t
2 + · · · + x2k+1t

2k is nonnegative if and only if

there exists a matrix Y ∈ Sk+1
+ such that

x1 = Y11

x2 = Y12 + Y21

x3 = Y13 + Y22 + Y31

...

x2k+1 = Yk+1,k+1.

(c) Show that K∗
pol = Khan where

Khan = {z ∈ R
2k+1 | H(z) � 0}

and

H(z) =




z1 z2 z3 · · · zk zk+1

z2 z3 z4 · · · zk+1 zk+2

z3 z4 z5 · · · zk+2 zk+4

...
...

...
. . .

...
...

zk zk+1 zk+2 · · · z2k−1 z2k

zk+1 zk+2 zk+3 · · · z2k z2k+1



.

(This is the Hankel matrix with coefficients z1, . . . , z2k+1.)

(d) Let Kmom be the conic hull of the set of all vectors of the form (1, t, t2, . . . , t2k),
where t ∈ R. Show that y ∈ Kmom if and only if y1 ≥ 0 and

y = y1(1,Eu,Eu2, . . . ,Eu2k)

for some random variable u. In other words, the elements of Kmom are nonnegative
multiples of the moment vectors of all possible distributions on R. Show that Kpol =
K∗

mom.

(e) Combining the results of (c) and (d), conclude that Khan = clKmom.

As an example illustrating the relation between Kmom and Khan, take k = 2 and
z = (1, 0, 0, 0, 1). Show that z ∈ Khan, z 6∈ Kmom. Find an explicit sequence of
points in Kmom which converge to z.

Solution.

(a) It is a closed convex cone, because it is the intersection of (infinitely many) closed
halfspaces, and also obviously a cone.

It has nonempty interior because (1, 0, 1, 0, . . . , 0, 1) ∈ intKpol (i.e., the polynomial
1 + t2 + t4 + · · ·+ t2k). It is pointed because p(t) ≥ 0 and −p(t) ≥ 0 imply p(t) = 0.
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(b) First assume that xi =
∑

m+n=i+1
Ymn for some Y � 0. It easily verified that, for

all t ∈ R,

p(t) = x1 + x2t+ · · · + x2k+1t
2k =

2k+1∑

i=1

∑

m+n=i+1

Ymnt
i−1

=

k+1∑

m,n=1

Ymnt
m+n−2

=

k+1∑

m,n=1

Ymnt
m−1tn−1

= vTY v

where v = (1, t, t2, . . . , tk). Therefore p(t) ≥ 0.

Conversely, assume x ∈ Kpol. By the theorem, we can express the corresponding
polynomial p(t) as p(t) = r(t)2 + s(t)2, where

r(t) = a1 + a2t+ · · · + ak+1t
k, s(t) = b1 + b2t+ · · · + bk+1t

k,

The coefficient of ti−1 in r(t)2 + s(t)2 is
∑

m+n=i+1
(aman + bmbn). Therefore,

xi =
∑

m+n=i+1

(aman + bmbn) =
∑

m+n=i+1

Ymn

for Y = aaT + bbT .

(c) z ∈ K∗
pol if and only if xT z ≥ 0 for all x ∈ Kpol. Using the previous result, this is

equivalent to the condition that for all Y � 0,

2k+1∑

i=1

zi

∑

m+n=i+1

Ymn =

k+1∑

m,n=1

Ymnzm+n−1 = tr(Y H(z)) ≥ 0,

i.e., H(z) � 0.

(d) The conic hull of the vectors of the form (1, t, . . . , t2k) is the set of nonnegative multi-
ples of all convex combinations of vectors of the form (1, t, . . . , t2k), i.e., nonnegative
multiples of vectors of the form

E(1, t, t2, . . . , t2k).

xT z ≥ 0 for all z ∈ Kmom if and only if

E(x1 + x2t+ x3t
2 + · · · + x2k+1t

2k) ≥ 0

for all distributions on R. This is true if and only if

x1 + x2t+ x3t
2 + · · · + x2k+1t

2k ≥ 0

for all t.

(e) This follows from the last result in §2.6.1, and the fact that we have shown that
Khan = K∗

pol = K∗∗
mom.

For the example, note that E t2 = 0 means that the distribution concentrates prob-
ability one at t = 0. But then we cannot have E t4 = 1. The associated Hankel
matrix is H = diag(1, 0, 1), which is clearly positive semidefinite.

Let’s put probability pk at t = 0, and (1 − pk)/2 at each of the points t = ±k.
Then we have, for all k, E t = E t3 = 0. We also have E t2 = (1 − pk)k2 and
E t4 = (1 − pk)k4. Let’s now choose pk = 1 − 1/k4, so we have E t4 = 1, and
E t2 = 1/k2. Thus, the moments of this sequence of measures converge to 1, 0, 0, 1.
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2.38 [Roc70, pages 15, 61] Convex cones constructed from sets.

(a) The barrier cone of a set C is defined as the set of all vectors y such that yTx is
bounded above over x ∈ C. In other words, a nonzero vector y is in the barrier cone
if and only if it is the normal vector of a halfspace {x | yTx ≤ α} that contains C.
Verify that the barrier cone is a convex cone (with no assumptions on C).

Solution. Take two points x1, x2 in the barrier cone. We have

sup
y∈C

xT
1 y <∞, sup

y∈C

xT
2 y <∞,

so for all θ1, θ2 ≥ 0,

sup
y∈C

(θ1x1 + θ2x2)
T y ≤ sup

y∈C

(θ1x
T
1 y) + sup

y∈C

(θ2x
T
2 y) <∞.

Therefore θx1 + θ2x2 is also in the barrier cone.

(b) The recession cone (also called asymptotic cone) of a set C is defined as the set of
all vectors y such that for each x ∈ C, x − ty ∈ C for all t ≥ 0. Show that the
recession cone of a convex set is a convex cone. Show that if C is nonempty, closed,
and convex, then the recession cone of C is the dual of the barrier cone.

Solution. It is clear that the recession cone is a cone. We show that it is convex if
C is convex.

Let y1, y2 be in the recession cone, and suppose 0 ≤ θ ≤ 1. Then if x ∈ C

x− t(θy1 + (1 − θ)y2) = θ(x− ty1) + (1 − θ)(x− ty2) ∈ C,

for all t ≥ 0, because C is convex and x − ty1 ∈ C, x − ty2 ∈ C for all t ≥ 0.
Therefore θy1 + (1 − θ)y2 is in the recession cone.

Before establishing the second claim, we note that if C is closed and convex, then
its recession cone RC can be defined by choosing any arbitrary point x̂ ∈ C, and
letting

RC = {y | x̂− ty ∈ C ∀t ≥ 0}.
This follows from the following observation. For x ∈ C, define

RC(x) = {y | x− ty ∈ C ∀t ≥ 0}.

We want to show that RC(x1) = RC(x2) for any x1, x2 ∈ C. We first show RC(x1) ⊆
RC(x2). If y ∈ RC(x1), then x1−(t/θ)y ∈ C for all t ≥ 0, 0 < θ < 1, so by convexity
of C,

θ(x1 − (t/θ)y) + (1 − θ)x2 ∈ C.

Since C is closed,

x2 − ty = lim
θ↘0

(θ(x1 − (t/θ)y) + (1 − θ)x2) ∈ C.

This holds for any t ≥ 0, i.e., y ∈ RC(x2). The reverse inclusion RC(x2) ⊆ RC(x1)
follows similarly.

We now show that the recession cone is the dual of the barrier cone. Let SC(y) =
supx∈C y

Tx. By definition of the barrier cone, SC(y) is finite if and only if y is in
the barrier cone, and every halfspace that contains C can be expressed as

yTx ≤ SC(y)

for some nonzero y in the barrier cone. A closed convex set C is the intersection of
all halfspaces that contain it. Therefore

C = {x | yTx ≤ SC(y) for all y ∈ BC},
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Let x̂ ∈ C. A vector v is in the recession cone if and only if x̂− tv ∈ C for all t ≥ 0,
i.e.,

yT (x̂− tv) ≤ SC(y) for all y ∈ BC .

This is true if and only if yT v ≥ 0 for all y ∈ BC , i.e., if and only if v is in the dual
cone of BC .

(c) The normal cone of a set C at a boundary point x0 is the set of all vectors y such
that yT (x − x0) ≤ 0 for all x ∈ C (i.e., the set of vectors that define a supporting
hyperplane to C at x0). Show that the normal cone is a convex cone (with no
assumptions on C). Give a simple description of the normal cone of a polyhedron
{x | Ax � b} at a point in its boundary.

Solution. The normal cone is defined by a set of homogeneous linear inequalities
in y, so it is a closed convex cone.

Let x0 be a boundary point of {x | Ax � b}. Suppose A and b are partitioned as

A =

[
AT

1

AT
2

]
, b =

[
b1
b2

]

in such a way that
A1x0 = b1, A2x0 ≺ b2.

Then the normal at x0 is
{AT

1 λ | λ � 0},
i.e., it is the conic hull of the normal vectors of the constraints that are active at x0.

2.39 Separation of cones. Let K and K̃ be two convex cones whose interiors are nonempty and
disjoint. Show that there is a nonzero y such that y ∈ K∗, −y ∈ K̃∗.

Solution. Let y 6= 0 be the normal vector of a separating hyperplane separating the
interiors: yTx ≥ α for x ∈ intK1 and yTx ≤ α for x ∈ intK2. We must have α = 0
because K1 and K2 are cones, so if x ∈ intK1, then tx ∈ intK1 for all t > 0.

This means that

y ∈ (intK1)
∗ = K∗

1 , −y ∈ (intK2)
∗ = K∗

2 .
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Convex functions
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Exercises

Definition of convexity

3.1 Suppose f : R → R is convex, and a, b ∈ dom f with a < b.

(a) Show that

f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b)

for all x ∈ [a, b].

Solution. This is Jensen’s inequality with λ = (b− x)/(b− a).

(b) Show that
f(x) − f(a)

x− a
≤ f(b) − f(a)

b− a
≤ f(b) − f(x)

b− x

for all x ∈ (a, b). Draw a sketch that illustrates this inequality.

Solution. We obtain the first inequality by subtracting f(a) from both sides of the
inequality in (a). The second inequality follows from subtracting f(b). Geometri-
cally, the inequalities mean that the slope of the line segment between (a, f(a)) and
(b, f(b)) is larger than the slope of the segment between (a, f(a)) and (x, f(x)), and
smaller than the slope of the segment between (x, f(x)) and (b, f(b)).

PSfrag replacements

a x b

(c) Suppose f is differentiable. Use the result in (b) to show that

f ′(a) ≤ f(b) − f(a)

b− a
≤ f ′(b).

Note that these inequalities also follow from (3.2):

f(b) ≥ f(a) + f ′(a)(b− a), f(a) ≥ f(b) + f ′(b)(a− b).

Solution. This follows from (b) by taking the limit for x → a on both sides of
the first inequality, and by taking the limit for x → b on both sides of the second
inequality.

(d) Suppose f is twice differentiable. Use the result in (c) to show that f ′′(a) ≥ 0 and
f ′′(b) ≥ 0.

Solution. From part (c),
f ′(b) − f ′(a)

b− a
≥ 0,

and taking the limit for b→ a shows that f ′′(a) ≥ 0.

3.2 Level sets of convex, concave, quasiconvex, and quasiconcave functions. Some level sets
of a function f are shown below. The curve labeled 1 shows {x | f(x) = 1}, etc.
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PSfrag replacements

1

2

3

Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat
for the level curves shown below.

PSfrag replacements

1 2 3 4 5 6

Solution. The first function could be quasiconvex because the sublevel sets appear to be
convex. It is definitely not concave or quasiconcave because the superlevel sets are not
convex.

It is also not convex, for the following reason. We plot the function values along the
dashed line labeled I.

PSfrag replacements

1

2

3

I

II

Along this line the function passes through the points marked as black dots in the figure
below. Clearly along this line segment, the function is not convex.
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If we repeat the same analysis for the second function, we see that it could be concave
(and therefore it could be quasiconcave). It cannot be convex or quasiconvex, because
the sublevel sets are not convex.

3.3 Inverse of an increasing convex function. Suppose f : R → R is increasing and convex
on its domain (a, b). Let g denote its inverse, i.e., the function with domain (f(a), f(b))
and g(f(x)) = x for a < x < b. What can you say about convexity or concavity of g?

Solution. g is concave. Its hypograph is

hypo g = {(y, t) | t ≤ g(y)}
= {(y, t) | f(t) ≤ f(g(y))} (because f is increasing)

= {(y, t) | f(t) ≤ y)}

=

[
0 1
1 0

]
epi f.

For differentiable g, f , we can also prove the result as follows. Differentiate g(f(x)) = x
once to get

g′(f(x)) = 1/f ′(x).

so g is increasing. Differentiate again to get

g′′(f(x)) = − f ′′(x)

f ′(x)3
,

so g is concave.

3.4 [RV73, page 15] Show that a continuous function f : Rn → R is convex if and only if for
every line segment, its average value on the segment is less than or equal to the average
of its values at the endpoints of the segment: For every x, y ∈ Rn,

∫ 1

0

f(x+ λ(y − x)) dλ ≤ f(x) + f(y)

2
.

Solution. First suppose that f is convex. Jensen’s inequality can be written as

f(x+ λ(y − x)) ≤ f(x) + λ(f(y) − f(x))

for 0 ≤ λ ≤ 1. Integrating both sides from 0 to 1 we get

∫ 1

0

f(x+ λ(y − x)) dλ ≤
∫ 1

0

(f(x) + λ(f(y) − f(x))) dλ =
f(x) + f(y)

2
.

Now we show the converse. Suppose f is not convex. Then there are x and y and
θ0 ∈ (0, 1) such that

f(θ0x+ (1 − θ0)y) > θ0f(x) + (1 − θ0)f(y).
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Consider the function of θ given by

F (θ) = f(θx+ (1 − θ)y) − θf(x) − (1 − θ)f(y),

which is continuous since f is. Note that F is zero for θ = 0 and θ = 1, and positive at θ0.
Let α be the largest zero crossing of F below θ0 and let β be the smallest zero crossing
of F above θ0. Define u = αx+ (1 − α)y and v = βx+ (1 − β)y. On the interval (α, β),
we have

F (θ) = f(θx+ (1 − θ)y) > θf(x) + (1 − θ)f(y),

so for θ ∈ (0, 1),
f(θu+ (1 − θ)v) > θf(u) + (1 − θ)f(v).

Integrating this expression from θ = 0 to θ = 1 yields
∫ 1

0

f(u+ θ(u− v)) dθ >

∫ 1

0

(f(u) + θ(f(u) − f(v))) dθ =
f(u) + f(v)

2
.

In other words, the average of f over the interval [u, v] exceeds the average of its values
at the endpoints. This proves the converse.

3.5 [RV73, page 22] Running average of a convex function. Suppose f : R → R is convex,
with R+ ⊆ dom f . Show that its running average F , defined as

F (x) =
1

x

∫ x

0

f(t) dt, domF = R++,

is convex. You can assume f is differentiable.

Solution. F is differentiable with

F ′(x) = −(1/x2)

∫ x

0

f(t) dt+ f(x)/x

F ′′(x) = (2/x3)

∫ x

0

f(t) dt− 2f(x)/x2 + f ′(x)/x

= (2/x3)

∫ x

0

(f(t) − f(x) − f ′(x)(t− x)) dt.

Convexity now follows from the fact that

f(t) ≥ f(x) + f ′(x)(t− x)

for all x, t ∈ dom f , which implies F ′′(x) ≥ 0.

3.6 Functions and epigraphs. When is the epigraph of a function a halfspace? When is the
epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?

Solution. If the function is affine, positively homogeneous (f(αx) = αf(x) for α ≥ 0),
and piecewise-affine, respectively.

3.7 Suppose f : Rn → R is convex with dom f = Rn, and bounded above on Rn. Show that
f is constant.

Solution. Suppose f is not constant, i.e., there exist x, y with f(x) < f(y). The function

g(t) = f(x+ t(y − x))

is convex, with g(0) < g(1). By Jensen’s inequality

g(1) ≤ t− 1

t
g(0) +

1

t
g(t)

for all t > 1, and therefore

g(t) ≥ tg(1) − (t− 1)g(0) = g(0) + t(g(1) − g(0)),

so g grows unboundedly as t→ ∞. This contradicts our assumption that f is bounded.
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3.8 Second-order condition for convexity. Prove that a twice differentiable function f is convex
if and only if its domain is convex and ∇2f(x) � 0 for all x ∈ dom f . Hint. First consider
the case f : R → R. You can use the first-order condition for convexity (which was proved
on page 70).

Solution. We first assume n = 1. Suppose f : R → R is convex. Let x, y ∈ dom f with
y > x. By the first-order condition,

f ′(x)(y − x) ≤ f(y) − f(x) ≤ f ′(y)(y − x).

Subtracting the righthand side from the lefthand side and dividing by (y − x)2 gives

f ′(y) − f ′(x)

y − x
≥ 0.

Taking the limit for y → x yields f ′′(x) ≥ 0.

Conversely, suppose f ′′(z) ≥ 0 for all z ∈ dom f . Consider two arbitrary points x, y ∈
dom f with x < y. We have

0 ≤
∫ y

x

f ′′(z)(y − z) dz

= (f ′(z)(y − z))
∣∣z=y

z=x
+

∫ y

x

f ′(z) dz

= −f ′(x)(y − x) + f(y) − f(x),

i.e., f(y) ≥ f(x) + f ′(x)(y − x). This shows that f is convex.

To generalize to n > 1, we note that a function is convex if and only if it is convex on
all lines, i.e., the function g(t) = f(x0 + tv) is convex in t for all x0 ∈ dom f and all v.
Therefore f is convex if and only if

g′′(t) = vT∇2f(x0 + tv)v ≥ 0

for all x0 ∈ dom f , v ∈ Rn, and t satisfying x0 + tv ∈ dom f . In other words it is
necessary and sufficient that ∇2f(x) � 0 for all x ∈ dom f .

3.9 Second-order conditions for convexity on an affine set. Let F ∈ Rn×m, x̂ ∈ Rn. The
restriction of f : Rn → R to the affine set {Fz + x̂ | z ∈ Rm} is defined as the function

f̃ : Rm → R with

f̃(z) = f(Fz + x̂), dom f̃ = {z | Fz + x̂ ∈ dom f}.

Suppose f is twice differentiable with a convex domain.

(a) Show that f̃ is convex if and only if for all z ∈ dom f̃

FT∇2f(Fz + x̂)F � 0.

(b) Suppose A ∈ Rp×n is a matrix whose nullspace is equal to the range of F , i.e.,

AF = 0 and rankA = n − rankF . Show that f̃ is convex if and only if for all
z ∈ dom f̃ there exists a λ ∈ R such that

∇2f(Fz + x̂) + λATA � 0.

Hint. Use the following result: If B ∈ Sn and A ∈ Rp×n, then xTBx ≥ 0 for all
x ∈ N (A) if and only if there exists a λ such that B + λATA � 0.

Solution.
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(a) The Hessian of f̃ must be positive semidefinite everywhere:

∇2f̃(z) = F T∇2f(Fz + x̂)F � 0.

(b) The condition in (a) means that vT∇2f(Fz + x̂)v ≥ 0 for all v with Av = 0, i.e.,

vTATAv = 0 =⇒ vT∇2f(Fz + x̂)v ≥ 0.

The result immediately follows from the hint.

3.10 An extension of Jensen’s inequality. One interpretation of Jensen’s inequality is that
randomization or dithering hurts, i.e., raises the average value of a convex function: For
f convex and v a zero mean random variable, we have E f(x0 + v) ≥ f(x0). This leads
to the following conjecture. If f0 is convex, then the larger the variance of v, the larger
E f(x0 + v).

(a) Give a counterexample that shows that this conjecture is false. Find zero mean
random variables v and w, with var(v) > var(w), a convex function f , and a point
x0, such that E f(x0 + v) < E f(x0 + w).

(b) The conjecture is true when v and w are scaled versions of each other. Show that
E f(x0 + tv) is monotone increasing in t ≥ 0, when f is convex and v is zero mean.

Solution.

(a) Define f : R → R as

f(x) =

{
0, x ≤ 0
x, x > 0,

x0 = 0, and scalar random variables

w =

{
1 with probability 1/2
−1 with probability 1/2

v =

{
4 with probability 1/10
−4/9 with probability 9/10.

w and v are zero-mean and

var(v) = 16/9 > 1 = var(w).

However,
E f(v) = 2/5 < 1/2 = E f(w).

(b) f(x0+tv) is convex in t for fixed v, hence if v is a random variable, g(t) = E f(x0+tv)
is a convex function of t. From Jensen’s inequality,

g(t) = E f(x0 + tv) ≥ f(x0) = g(0).

Now consider two points a, b, with 0 < a < b. If g(b) < g(a), then

b− a

b
g(0) +

a

b
g(b) <

b− a

b
g(a) +

a

b
g(a) = g(a)

which contradicts Jensen’s inequality. Therefore we must have g(b) ≥ g(a).

3.11 Monotone mappings. A function ψ : Rn → Rn is called monotone if for all x, y ∈ domψ,

(ψ(x) − ψ(y))T (x− y) ≥ 0.

(Note that ‘monotone’ as defined here is not the same as the definition given in §3.6.1.
Both definitions are widely used.) Suppose f : Rn → R is a differentiable convex function.
Show that its gradient ∇f is monotone. Is the converse true, i.e., is every monotone
mapping the gradient of a convex function?



Exercises

Solution. Convexity of f implies

f(x) ≥ f(y) + ∇f(y)T (x− y), f(y) ≥ f(x) + ∇f(x)T (y − x)

for arbitrary x, y ∈ dom f . Combining the two inequalities gives

(∇f(x) −∇f(y))T (x− y) ≥ 0,

which shows that ∇f is monotone.

The converse not true in general. As a counterexample, consider

ψ(x) =

[
x1

x1/2 + x2

]
=

[
1 0

1/2 1

][
x1

x2

]
.

ψ is monotone because

(x− y)T

[
1 0

1/2 1

]
(x− y) = (x− y)T

[
1 1/4

1/4 1

]
(x− y) ≥ 0

for all x, y.

However, there does not exist a function f : R2 → R such that ψ(x) = ∇f(x), because
such a function would have to satisfy

∂2f

∂x1∂x2
=
∂ψ1

∂x2
= 0,

∂2f

∂x1∂x2
=
∂ψ2

∂x1
= 1/2.

3.12 Suppose f : Rn → R is convex, g : Rn → R is concave, dom f = dom g = Rn, and
for all x, g(x) ≤ f(x). Show that there exists an affine function h such that for all x,
g(x) ≤ h(x) ≤ f(x). In other words, if a concave function g is an underestimator of a
convex function f , then we can fit an affine function between f and g.

Solution. We first note that int epi f is nonempty (since dom f = Rn), and does not
intersect hypo g (since f(x) < t for (x, t) ∈ int epi f and t ≥ g(x) for (x, t) ∈ hypo g).
The two sets can therefore be separated by a hyperplane, i.e., there exist a ∈ Rn, b ∈ R,
not both zero, and c ∈ R such that

aTx+ bt ≥ c ≥ aT y + bv

if t > f(x) and v ≤ g(y). We must have b 6= 0, since otherwise the condition would reduce
to aTx ≥ aT y for all x and y, which is only possible if a = 0. Choosing x = y, and using
the fact that f(x) ≥ g(x), we also see that b > 0.

Now we apply the separating hyperplane conditions to a point (x, t) ∈ int epi f , and
(y, v) = (x, g(x)) ∈ hypo g, and obtain

aTx+ bt ≥ c ≥ aTx+ bg(x),

and dividing by b,

t ≥ (c− aTx)/b ≥ g(x),

for all t > f(x). Therefore the affine function h(x) = (c− aTx)/b lies between f and g.

3.13 Kullback-Leibler divergence and the information inequality. Let Dkl be the Kullback-
Leibler divergence, as defined in (3.17). Prove the information inequality : Dkl(u, v) ≥ 0
for all u, v ∈ Rn

++. Also show that Dkl(u, v) = 0 if and only if u = v.

Hint. The Kullback-Leibler divergence can be expressed as

Dkl(u, v) = f(u) − f(v) −∇f(v)T (u− v),
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where f(v) =
∑n

i=1
vi log vi is the negative entropy of v.

Solution. The negative entropy is strictly convex and differentiable on Rn
++, hence

f(u) > f(v) + ∇f(v)T (u− v)

for all u, v ∈ Rn
++ with u 6= v. Evaluating both sides of the inequality, we obtain

n∑

i=1

ui log ui >

n∑

i=1

vi log vi +

n∑

i=1

(log vi + 1)(ui − vi)

=

n∑

i=1

ui log vi + 1
T (u− v).

Re-arranging this inequality gives the desired result.

3.14 Convex-concave functions and saddle-points. We say the function f : Rn × Rm → R
is convex-concave if f(x, z) is a concave function of z, for each fixed x, and a convex
function of x, for each fixed z. We also require its domain to have the product form
dom f = A×B, where A ⊆ Rn and B ⊆ Rm are convex.

(a) Give a second-order condition for a twice differentiable function f : Rn × Rm → R
to be convex-concave, in terms of its Hessian ∇2f(x, z).

(b) Suppose that f : Rn×Rm → R is convex-concave and differentiable, with ∇f(x̃, z̃) =
0. Show that the saddle-point property holds: for all x, z, we have

f(x̃, z) ≤ f(x̃, z̃) ≤ f(x, z̃).

Show that this implies that f satisfies the strong max-min property :

sup
z

inf
x

f(x, z) = inf
x

sup
z

f(x, z)

(and their common value is f(x̃, z̃)).

(c) Now suppose that f : Rn × Rm → R is differentiable, but not necessarily convex-
concave, and the saddle-point property holds at x̃, z̃:

f(x̃, z) ≤ f(x̃, z̃) ≤ f(x, z̃)

for all x, z. Show that ∇f(x̃, z̃) = 0.

Solution.

(a) The condition follows directly from the second-order conditions for convexity and
concavity: it is

∇2
xxf(x, z) � 0, ∇2

zzf(x, z) � 0,

for all x, z. In terms of ∇2f , this means that its 1, 1 block is positive semidefinite,
and its 2, 2 block is negative semidefinite.

(b) Let us fix z̃. Since ∇xf(x̃, z̃) = 0 and f(x, z̃) is convex in x, we conclude that x̃
minimizes f(x, z̃) over x, i.e., for all z, we have

f(x̃, z̃) ≤ f(x, z̃).

This is one of the inequalities in the saddle-point condition. We can argue in the
same way about z̃. Fix x̃, and note that ∇zf(x̃, z̃) = 0, together with concavity of
this function in z, means that z̃ maximizes the function, i.e., for any x we have

f(x̃, z̃) ≥ f(x̃, z).

(c) To establish this we argue the same way. If the saddle-point condition holds, then
x̃ minimizes f(x, z̃) over all x. Therefore we have ∇fx(x̃, z̃) = 0. Similarly, since z̃
maximizes f(x̃, z) over all z, we have ∇fz(x̃, z̃) = 0.
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Examples

3.15 A family of concave utility functions. For 0 < α ≤ 1 let

uα(x) =
xα − 1

α
,

with domuα = R+. We also define u0(x) = log x (with domu0 = R++).

(a) Show that for x > 0, u0(x) = limα→0 uα(x).

(b) Show that uα are concave, monotone increasing, and all satisfy uα(1) = 0.

These functions are often used in economics to model the benefit or utility of some quantity
of goods or money. Concavity of uα means that the marginal utility (i.e., the increase
in utility obtained for a fixed increase in the goods) decreases as the amount of goods
increases. In other words, concavity models the effect of satiation.

Solution.

(a) In this limit, both the numerator and denominator go to zero, so we use l’Hopital’s
rule:

lim
α→0

uα(x) = lim
α→0

(d/dα)(xα − 1)

(d/dα)α
= lim

α→0

xα log x

1
= log x.

(b) By inspection we have

uα(1) =
1α − 1

α
= 0.

The derivative is given by
u′

α(x) = xα−1,

which is positive for all x (since 0 < α < 1), so these functions are increasing. To
show concavity, we examine the second derivative:

u′′
α(x) = (α− 1)xα−2.

Since this is negative for all x, we conclude that uα is strictly concave.

3.16 For each of the following functions determine whether it is convex, concave, quasiconvex,
or quasiconcave.

(a) f(x) = ex − 1 on R.

Solution. Strictly convex, and therefore quasiconvex. Also quasiconcave but not
concave.

(b) f(x1, x2) = x1x2 on R2
++.

Solution. The Hessian of f is

∇2f(x) =

[
0 1
1 0

]
,

which is neither positive semidefinite nor negative semidefinite. Therefore, f is
neither convex nor concave. It is quasiconcave, since its superlevel sets

{(x1, x2) ∈ R
2
++ | x1x2 ≥ α}

are convex. It is not quasiconvex.

(c) f(x1, x2) = 1/(x1x2) on R2
++.

Solution. The Hessian of f is

∇2f(x) =
1

x1x2

[
2/(x2

1) 1/(x1x2)
1/(x1x2) 2/x2

2

]
� 0

Therefore, f is convex and quasiconvex. It is not quasiconcave or concave.
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(d) f(x1, x2) = x1/x2 on R2
++.

Solution. The Hessian of f is

∇2f(x) =

[
0 −1/x2

2

−1/x2
2 2x1/x

3
2

]

which is not positive or negative semidefinite. Therefore, f is not convex or concave.

It is quasiconvex and quasiconcave (i.e., quasilinear), since the sublevel and super-
level sets are halfspaces.

(e) f(x1, x2) = x2
1/x2 on R × R++.

Solution. f is convex, as mentioned on page 72. (See also figure 3.3). This is easily
verified by working out the Hessian:

∇2f(x) =

[
2/x2 −2x1/x

2
2

−2x1/x
2
2 2x2

1/x
3
2

]
= (2/x2)

[
1

−2x1/x2

] [
1 −2x1/x2

]
� 0.

Therefore, f is convex and quasiconvex. It is not concave or quasiconcave (see the
figure).

(f) f(x1, x2) = xα
1 x

1−α
2 , where 0 ≤ α ≤ 1, on R2

++.

Solution. Concave and quasiconcave. The Hessian is

∇2f(x) =

[
α(α− 1)xα−2

1 x1−α
2 α(1 − α)xα−1

1 x−α
2

α(1 − α)xα−1
1 x−α

2 (1 − α)(−α)xα
1 x

−α−1
2

]

= α(1 − α)xα
1 x

1−α
2

[
−1/x2

1 1/x1x2

1/x1x2 −1/x2
2

]

= −α(1 − α)xα
1 x

1−α
2

[
1/x1

−1/x2

][
1/x1

−1/x2

]T

� 0.

f is not convex or quasiconvex.

3.17 Suppose p < 1, p 6= 0. Show that the function

f(x) =

(
n∑

i=1

xp
i

)1/p

with dom f = Rn
++ is concave. This includes as special cases f(x) = (

∑n

i=1
x

1/2
i )2 and

the harmonic mean f(x) = (
∑n

i=1
1/xi)

−1. Hint. Adapt the proofs for the log-sum-exp
function and the geometric mean in §3.1.5.

Solution. The first derivatives of f are given by

∂f(x)

∂xi
= (

n∑

i=1

xp
i )(1−p)/pxp−1

i =

(
f(x)

xi

)1−p

.

The second derivatives are

∂2f(x)

∂xi∂xj
=

1 − p

xi

(
f(x)

xi

)−p(
f(x)

xj

)1−p

=
1 − p

f(x)

(
f(x)2

xixj

)1−p

for i 6= j, and

∂2f(x)

∂x2
i

=
1 − p

f(x)

(
f(x)2

x2
i

)1−p

− 1 − p

xi

(
f(x)

xi

)1−p

.
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We need to show that

yT∇2f(x)y =
1 − p

f(x)

((
n∑

i=1

yif(x)1−p

x1−p
i

)2

−
n∑

i=1

y2
i f(x)2−p

x2−p
i

)
≤ 0

This follows by applying the Cauchy-Schwarz inequality aT b ≤ ‖a‖2‖b‖2 with

ai =

(
f(x)

xi

)−p/2

, bi = yi

(
f(x)

xi

)1−p/2

,

and noting that
∑

i
a2

i = 1.

3.18 Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the follow-
ing.

(a) f(X) = tr
(
X−1

)
is convex on dom f = Sn

++.

(b) f(X) = (detX)1/n is concave on dom f = Sn
++.

Solution.

(a) Define g(t) = f(Z + tV ), where Z � 0 and V ∈ Sn.

g(t) = tr((Z + tV )−1)

= tr
(
Z−1(I + tZ−1/2V Z−1/2)−1

)

= tr
(
Z−1Q(I + tΛ)−1QT

)

= tr
(
QTZ−1Q(I + tΛ)−1

)

=

n∑

i=1

(QTZ−1Q)ii(1 + tλi)
−1,

where we used the eigenvalue decomposition Z−1/2V Z−1/2 = QΛQT . In the last
equality we express g as a positive weighted sum of convex functions 1/(1 + tλi),
hence it is convex.

(b) Define g(t) = f(Z + tV ), where Z � 0 and V ∈ Sn.

g(t) = (det(Z + tV ))1/n

=
(
detZ1/2 det(I + tZ−1/2V Z−1/2) detZ1/2

)1/n

= (detZ)1/n

(
n∏

i=1

(1 + tλi)

)1/n

where λi, i = 1, . . . , n, are the eigenvalues of Z−1/2V Z−1/2. From the last equality
we see that g is a concave function of t on {t | Z + tV � 0}, since detZ > 0 and the

geometric mean (
∏n

i=1
xi)

1/n is concave on Rn
++.

3.19 Nonnegative weighted sums and integrals.

(a) Show that f(x) =
∑r

i=1
αix[i] is a convex function of x, where α1 ≥ α2 ≥ · · · ≥

αr ≥ 0, and x[i] denotes the ith largest component of x. (You can use the fact that

f(x) =
∑k

i=1
x[i] is convex on Rn.)

Solution. We can express f as

f(x) = αr(x[1] + x[2] + · · · + x[r]) + (αr−1 − αr)(x[1] + x[2] + · · · + x[r−1])

+(αr−2 − αr−1)(x[1] + x[2] + · · · + x[r−2]) + · · · + (α1 − α2)x[1],
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which is a nonnegative sum of the convex functions

x[1], x[1] + x[2], x[1] + x[2] + x[3], . . . , x[1] + x[2] + · · · + x[r].

(b) Let T (x, ω) denote the trigonometric polynomial

T (x, ω) = x1 + x2 cosω + x3 cos 2ω + · · · + xn cos(n− 1)ω.

Show that the function

f(x) = −
∫ 2π

0

log T (x, ω) dω

is convex on {x ∈ Rn | T (x, ω) > 0, 0 ≤ ω ≤ 2π}.
Solution. The function

g(x, ω) = − log(x1 + x2 cosω + x3 cos 2ω + · · · + +xn cos(n− 1)ω)

is convex in x for fixed ω. Therefore

f(x) =

∫ 2π

0

g(x, ω)dω

is convex in x.

3.20 Composition with an affine function. Show that the following functions f : Rn → R are
convex.

(a) f(x) = ‖Ax− b‖, where A ∈ Rm×n, b ∈ Rm, and ‖ · ‖ is a norm on Rm.

Solution. f is the composition of a norm, which is convex, and an affine function.

(b) f(x) = − (det(A0 + x1A1 + · · · + xnAn))1/m, on {x | A0 + x1A1 + · · ·+ xnAn � 0},
where Ai ∈ Sm.

Solution. f is the composition of the convex function h(X) = −(detX)1/m and an
affine transformation. To see that h is convex on Sm

++, we restrict h to a line and

prove that g(t) = − det(Z + tV )1/m is convex:

g(t) = −(det(Z + tV ))1/m

= −(detZ)1/m(det(I + tZ−1/2V Z−1/2))1/m

= −(detZ)1/m(

m∏

i=1

(1 + tλi))
1/m

where λ1, . . . , λm denote the eigenvalues of Z−1/2V Z−1/2. We have expressed g as
the product of a negative constant and the geometric mean of 1 + tλi, i = 1, . . . ,m.
Therefore g is convex. (See also exercise 3.18.)

(c) f(X) = tr (A0 + x1A1 + · · · + xnAn)−1, on {x | A0+x1A1+ · · ·+xnAn � 0}, where
Ai ∈ Sm. (Use the fact that tr(X−1) is convex on Sm

++; see exercise 3.18.)

Solution. f is the composition of trX−1 and an affine transformation

x 7→ A0 + x1A1 + · · · + xnAn.

3.21 Pointwise maximum and supremum. Show that the following functions f : Rn → R are
convex.
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(a) f(x) = maxi=1,...,k ‖A(i)x− b(i)‖, where A(i) ∈ Rm×n, b(i) ∈ Rm and ‖ · ‖ is a norm
on Rm.

Solution. f is the pointwise maximum of k functions ‖A(i)x− b(i)‖. Each of those
functions is convex because it is the composition of an affine transformation and a
norm.

(b) f(x) =
∑r

i=1
|x|[i] on Rn, where |x| denotes the vector with |x|i = |xi| (i.e., |x| is

the absolute value of x, componentwise), and |x|[i] is the ith largest component of
|x|. In other words, |x|[1], |x|[2], . . . , |x|[n] are the absolute values of the components
of x, sorted in nonincreasing order.

Solution. Write f as

f(x) =

r∑

i=1

|x|[i] = max
1≤i1<i2<···<ir≤n

|xi1 | + · · · + |xir |

which is the pointwise maximum of n!/(r!(n− r)!) convex functions.

3.22 Composition rules. Show that the following functions are convex.

(a) f(x) = − log(− log(
∑m

i=1
eaT

i
x+bi)) on dom f = {x |

∑m

i=1
eaT

i
x+bi < 1}. You can

use the fact that log(
∑n

i=1
eyi) is convex.

Solution. g(x) = log(
∑m

i=1
eaT

i
x+bi) is convex (composition of the log-sum-exp

function and an affine mapping), so −g is concave. The function h(y) = − log y is
convex and decreasing. Therefore f(x) = h(−g(x)) is convex.

(b) f(x, u, v) = −
√
uv − xTx on dom f = {(x, u, v) | uv > xTx, u, v > 0}. Use the

fact that xTx/u is convex in (x, u) for u > 0, and that −√
x1x2 is convex on R2

++.

Solution. We can express f as f(x, u, v) = −
√
u(v − xTx/u). The function

h(x1, x2) = −√
x1x2 is convex on R2

++, and decreasing in each argument. The

functions g1(u, v, x) = u and g2(u, v, x) = v − xTx/u are concave. Therefore
f(u, v, x) = h(g(u, v, x)) is convex.

(c) f(x, u, v) = − log(uv − xTx) on dom f = {(x, u, v) | uv > xTx, u, v > 0}.
Solution. We can express f as

f(x, u, v) = − log u− log(v − xTx/u).

The first term is convex. The function v− xTx/u is concave because v is linear and
xTx/u is convex on {(x, u) | u > 0}. Therefore the second term in f is convex: it is
the composition of a convex decreasing function − log t and a concave function.

(d) f(x, t) = −(tp −‖x‖p
p)1/p where p > 1 and dom f = {(x, t) | t ≥ ‖x‖p}. You can use

the fact that ‖x‖p
p/u

p−1 is convex in (x, u) for u > 0 (see exercise 3.23), and that

−x1/py1−1/p is convex on R2
+ (see exercise 3.16).

Solution. We can express f as

f(x, t) = −
(
tp−1

(
t− ‖x‖p

p

tp−1

))1/p

= −t1−1/p

(
t− ‖x‖p

p

tp−1

)1/p

.

This is the composition of h(y1, y2) = −y1/p
1 y

1−1/p
2 (convex and decreasing in each

argument) and two concave functions

g1(x, t) = t1−1/p, g2(x, t) = t− ‖x‖p
p

tp−1
.
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(e) f(x, t) = − log(tp − ‖x‖p
p) where p > 1 and dom f = {(x, t) | t > ‖x‖p}. You can

use the fact that ‖x‖p
p/u

p−1 is convex in (x, u) for u > 0 (see exercise 3.23).

Solution. Express f as

f(x, t) = − log tp−1 − log(t− ‖x‖p
p/t

p−1)

= −(p− 1) log t− log(t− ‖x‖p
p/t

p−1).

The first term is convex. The second term is the composition of a decreasing convex
function and a concave function, and is also convex.

3.23 Perspective of a function.

(a) Show that for p > 1,

f(x, t) =
|x1|p + · · · + |xn|p

tp−1
=

‖x‖p
p

tp−1

is convex on {(x, t) | t > 0}.
Solution. This is the perspective function of ‖x‖p

p = |x1|p + · · · + |xn|p.

(b) Show that

f(x) =
‖Ax+ b‖2

2

cTx+ d

is convex on {x | cTx+ d > 0}, where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and d ∈ R.

Solution. This function is the composition of the function g(y, t) = yT y/t with an
affine transformation (y, t) = (Ax + b, cTx + d). Therefore convexity of f follows
from the fact that g is convex on {(y, t) | t > 0}.
For convexity of g one can note that it is the perspective of xTx, or directly verify
that the Hessian

∇2g(y, t) =

[
I/t −y/t2

−yT /t yT y/t3

]

is positive semidefinite, since

[
v
w

]T [
I/t −y/t2

−yT /t yT y/t3

][
v
w

]
= ‖tv − yw‖2

2/t
3 ≥ 0

for all v and w.

3.24 Some functions on the probability simplex. Let x be a real-valued random variable which
takes values in {a1, . . . , an} where a1 < a2 < · · · < an, with prob(x = ai) = pi,
i = 1, . . . , n. For each of the following functions of p (on the probability simplex {p ∈
Rn

+ | 1T p = 1}), determine if the function is convex, concave, quasiconvex, or quasicon-
cave.

(a) Ex.

Solution. Ex = p1a1 + · · · + pnan is linear, hence convex, concave, quasiconvex,
and quasiconcave

(b) prob(x ≥ α).

Solution. Let j = min{i | ai ≥ α}. Then prob(x ≥ α) =
∑n

i=j
pi, This is a linear

function of p, hence convex, concave, quasiconvex, and quasiconcave.

(c) prob(α ≤ x ≤ β).

Solution. Let j = min{i | ai ≥ α} and k = max{i | ai ≤ β}. Then prob(α ≤ x ≤
β) =

∑k

i=j
pi. This is a linear function of p, hence convex, concave, quasiconvex,

and quasiconcave.
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(d)
∑n

i=1
pi log pi, the negative entropy of the distribution.

Solution. p log p is a convex function on R+ (assuming 0 log 0 = 0), so
∑

i
pi log pi

is convex (and hence quasiconvex).

The function is not concave or quasiconcave. Consider, for example, n = 2, p1 =
(1, 0) and p2 = (0, 1). Both p1 and p2 have function value zero, but the convex com-
bination (0.5, 0.5) has function value log(1/2) < 0. This shows that the superlevel
sets are not convex.

(e) varx = E(x− Ex)2.

Solution. We have

varx = Ex2 − (Ex)2 =

n∑

i=1

pia
2
i − (

n∑

i=1

piai)
2,

so varx is a concave quadratic function of p.

The function is not convex or quasiconvex. Consider the example with n = 2, a1 = 0,
a2 = 1. Both (p1, p2) = (1/4, 3/4) and (p1, p2) = (3/4, 1/4) lie in the probability
simplex and have varx = 3/16, but the convex combination (p1, p2) = (1/2, 1/2) has
a variance varx = 1/4 > 3/16. This shows that the sublevel sets are not convex.

(f) quartile(x) = inf{β | prob(x ≤ β) ≥ 0.25}.
Solution. The sublevel and the superlevel sets of quartile(x) are convex (see
problem 2.15), so it is quasiconvex and quasiconcave.

quartile(x) is not continuous (it takes values in a discrete set {a1, . . . , an}, so it is
not convex or concave. (A convex or a concave function is always continuous on the
relative interior of its domain.)

(g) The cardinality of the smallest set A ⊆ {a1, . . . , an} with probability ≥ 90%. (By
cardinality we mean the number of elements in A.)

Solution. f is integer-valued, so it can not be convex or concave. (A convex or a
concave function is always continuous on the relative interior of its domain.)

f is quasiconcave because its superlevel sets are convex. We have f(p) ≥ α if and
only if

k∑

i=1

p[i] < 0.9,

where k = max{i = 1, . . . , n | i < α} is the largest integer less than α, and p[i] is

the ith largest component of p. We know that
∑k

i=1
p[i] is a convex function of p,

so the inequality
∑k

i=1
p[i] < 0.9 defines a convex set.

In general, f(p) is not quasiconvex. For example, we can take n = 2, a1 = 0 and
a2 = 1, and p1 = (0.1, 0.9) and p2 = (0.9, 0.1). Then f(p1) = f(p2) = 1, but
f((p1 + p2)/2) = f(0.5, 0.5) = 2.

(h) The minimum width interval that contains 90% of the probability, i.e.,

inf {β − α | prob(α ≤ x ≤ β) ≥ 0.9} .

Solution. The minimum width interval that contains 90% of the probability must
be of the form [ai, aj ] with 1 ≤ i ≤ j ≤ n, because

prob(α ≤ x ≤ β) =

j∑

k=i

pk = prob(ai ≤ x ≤ ak)

where i = min{k | ak ≥ α}, and j = max{k | ak ≤ β}.
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We show that the function is quasiconcave. We have f(p) ≥ γ if and only if all
intervals of width less than γ have a probability less than 90%,

j∑

k=i

pk < 0.9

for all i, j that satisfy aj − ai < γ. This defines a convex set.

The function is not convex, concave nor quasiconvex in general. Consider the ex-
ample with n = 3, a1 = 0, a2 = 0.5 and a3 = 1. On the line p1 + p3 = 0.95, we
have

f(p) =

{
0 p1 + p3 = 0.95, p1 ∈ [0.05, 0.1] ∪ [0.9, 0.95]
0.5 p1 + p3 = 0.95, p1 ∈ (0.1, 0.15] ∪ [0.85, 0.9)
1 p1 + p3 = 0.95, p1 ∈ (0.15, 0.85)

It is clear that f is not convex, concave nor quasiconvex on the line.

3.25 Maximum probability distance between distributions. Let p, q ∈ Rn represent two proba-
bility distributions on {1, . . . , n} (so p, q � 0, 1T p = 1T q = 1). We define the maximum
probability distance dmp(p, q) between p and q as the maximum difference in probability
assigned by p and q, over all events:

dmp(p, q) = max{|prob(p, C) − prob(q, C)| | C ⊆ {1, . . . , n}}.

Here prob(p, C) is the probability of C, under the distribution p, i.e., prob(p, C) =∑
i∈C

pi.

Find a simple expression for dmp, involving ‖p− q‖1 =
∑n

i=1
|pi − qi|, and show that dmp

is a convex function on Rn × Rn. (Its domain is {(p, q) | p, q � 0, 1T p = 1T q = 1}, but
it has a natural extension to all of Rn × Rn.)

Solution. Noting that

prob(p, C) − prob(q, C) = −(prob(p, C̃) − prob(q, C̃)),

where C̃ = {1, . . . , n} \ C, we can just as well express dmp as

dmp(p, q) = max{prob(p, C) − prob(q, C) | C ⊆ {1, . . . , n}}.

This shows that dmp is convex, since it is the maximum of 2n linear functions of (p, q).

Let’s now identify the (or a) subset C that maximizes

prob(p, C) − prob(q, C) =
∑

i∈C

(pi − qi).

The solution is
C? = {i ∈ {1, . . . , n} | pi > qi}.

Let’s show this. The indices for which pi = qi clearly don’t matter, so we will ignore
them, and assume without loss of generality that for each index, p>qi or pi < qi. Now
consider any other subset C. If there is an element k in C? but not C, then by adding
k to C we increase prob(p, C) − prob(q, C) by pk − qk > 0, so C could not have been
optimal. Conversely, suppose that k ∈ C \ C?, so pk − qk < 0. If we remove k from C,
we’d increase prob(p, C)−prob(q, C) by qk − pk > 0, so C could not have been optimal.

Thus, we have dmp(p, q) =
∑

pi>qi
(pi − qi). Now let’s express this in terms of ‖p − q‖1.

Using ∑

pi>qi

(pi − qi) +
∑

pi≤qi

(pi − qi) = 1
T p− 1

T q = 0,
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we have
∑

pi>qi

(pi − qi) = −
(
∑

pi≤qi

(pi − qi)

)
,

so

dmp(p, q) = (1/2)
∑

pi>qi

(pi − qi) − (1/2)
∑

pi≤qi

(pi − qi)

= (1/2)

n∑

i=1

|pi − qi|

= (1/2)‖p− q‖1.

This makes it very clear that dmp is convex.

The best way to interpret this result is as an interpretation of the `1-norm for probability
distributions. It states that the `1-distance between two probability distributions is twice
the maximum difference in probability, over all events, of the distributions.

3.26 More functions of eigenvalues. Let λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) denote the eigenvalues
of a matrix X ∈ Sn. We have already seen several functions of the eigenvalues that are
convex or concave functions of X.

• The maximum eigenvalue λ1(X) is convex (example 3.10). The minimum eigenvalue
λn(X) is concave.

• The sum of the eigenvalues (or trace), trX = λ1(X) + · · · + λn(X), is linear.

• The sum of the inverses of the eigenvalues (or trace of the inverse), tr(X−1) =∑n

i=1
1/λi(X), is convex on Sn

++ (exercise 3.18).

• The geometric mean of the eigenvalues, (detX)1/n = (
∏n

i=1
λi(X))1/n, and the

logarithm of the product of the eigenvalues, log detX =
∑n

i=1
log λi(X), are concave

on X ∈ Sn
++ (exercise 3.18 and page 74).

In this problem we explore some more functions of eigenvalues, by exploiting variational
characterizations.

(a) Sum of k largest eigenvalues. Show that
∑k

i=1
λi(X) is convex on Sn. Hint. [HJ85,

page 191] Use the variational characterization

k∑

i=1

λi(X) = sup{tr(V TXV ) | V ∈ R
n×k, V TV = I}.

Solution. The variational characterization shows that f is the pointwise supremum
of a family of linear functions tr(V TXV ).

(b) Geometric mean of k smallest eigenvalues. Show that (
∏n

i=n−k+1
λi(X))1/k is con-

cave on Sn
++. Hint. [MO79, page 513] For X � 0, we have

(
n∏

i=n−k+1

λi(X)

)1/k

=
1

k
inf{tr(V TXV ) | V ∈ R

n×k, detV TV = 1}.

Solution. f is the pointwise infimum of a family of linear functions tr(V TXV ).

(c) Log of product of k smallest eigenvalues. Show that
∑n

i=n−k+1
log λi(X) is concave

on Sn
++. Hint. [MO79, page 513] For X � 0,

n∏

i=n−k+1

λi(X) = inf

{
k∏

i=1

(V TXV )ii

∣∣∣∣∣ V ∈ R
n×k, V TV = I

}
.
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Solution. f is the pointwise infimum of a family of concave functions

log
∏

i

(V TXV )ii =
∑

i

log(V TXV )ii.

3.27 Diagonal elements of Cholesky factor. Each X ∈ Sn
++ has a unique Cholesky factorization

X = LLT , where L is lower triangular, with Lii > 0. Show that Lii is a concave function
of X (with domain Sn

++).

Hint. Lii can be expressed as Lii = (w − zTY −1z)1/2, where
[
Y z
zT w

]

is the leading i× i submatrix of X.
Solution. The function f(z, Y ) = zTY −1z with dom f = {(z, Y ) | Y � 0} is convex
jointly in z and Y . To see this note that

(z, Y, t) ∈ epi f ⇐⇒ Y � 0,

[
Y z
zT t

]
� 0,

so epi f is a convex set. Therefore, w − zTY −1z is a concave function of X. Since the
squareroot is an increasing concave function, it follows from the composition rules that
lkk = (w − zTY −1z)1/2 is a concave function of X.

Operations that preserve convexity

3.28 Expressing a convex function as the pointwise supremum of a family of affine functions.
In this problem we extend the result proved on page 83 to the case where dom f 6= Rn.
Let f : Rn → R be a convex function. Define f̃ : Rn → R as the pointwise supremum of
all affine functions that are global underestimators of f :

f̃(x) = sup{g(x) | g affine, g(z) ≤ f(z) for all z}.
(a) Show that f(x) = f̃(x) for x ∈ int dom f .

(b) Show that f = f̃ if f is closed (i.e., epi f is a closed set; see §A.3.3).

Solution.

(a) The point (x, f(x)) is in the boundary of epi f . (If it were in int epi f , then for
small, positive ε we would have (x, f(x) − ε) ∈ epi f , which is impossible.) From
the results of §2.5.2, we know there is a supporting hyperplane to epi f at (x, f(x)),
i.e., a ∈ Rn, b ∈ R such that

aT z + bt ≥ aTx+ bf(x) for all (z, t) ∈ epi f.

Since t can be arbitrarily large if (z, t) ∈ epi f , we conclude that b ≥ 0.
Suppose b = 0. Then

aT z ≥ aTx for all z ∈ dom f

which contradicts x ∈ int dom f . Therefore b > 0. Dividing the above inequality
by b yields

t ≥ f(x) + (a/b)T (x− z) for all (z, t) ∈ epi f.

Therefore the affine function

g(z) = f(x) + (a/b)T (x− z)

is an affine global underestimator of f , and hence by definition of f̃ ,

f(x) ≥ f̃(x) ≥ g(x).

However g(x) = f(x), so we must have f(x) = f̃(x).



Exercises

(b) A closed convex set is the intersection of all halfspaces that contain it (see chapter 2,
example 2.20). We will apply this result to epi f . Define

H = {(a, b, c) ∈ R
n+2 | (a, b) 6= 0, inf

(x,t)∈epi f
(aTx+ bt) ≥ c}.

Loosely speaking, H is the set of all halfspaces that contain epi f . By the result in
chapter 2,

epi f =
⋂

(a,b,c)∈H

{(x, t) | aTx+ bt ≥ c}. (3.28.A)

It is clear that all elements of H satisfy b ≥ 0. If in fact b > 0, then the affine
function

h(x) = −(a/b)Tx+ c/b,

minorizes f , since

t ≥ f(x) ≥ −(a/b)Tx+ c/t = h(x)

for all (x, t) ∈ epi f . Conversely, if h(x) = −aTx+ c minorizes f , then (a, 1, c) ∈ H.
We need to prove that

epi f =
⋂

(a,b,c)∈H, b>0

{(x, t) | aTx+ bt ≥ c}.

(In words, epi f is the intersection of all ‘non-vertical’ halfspaces that contain epi f .)
Note that H may contain elements with b = 0, so this does not immediately follow
from (3.28.A).

We will show that
⋂

(a,b,c)∈H, b>0

{(x, t) | aTx+ bt ≥ c} =
⋂

(a,b,c)∈H

{(x, t) | aTx+ bt ≥ c}. (3.28.B)

It is obvious that the set on the left includes the set on the right. To show that
they are identical, assume (x̄, t̄) lies in the set on the left, i.e.,

aT x̄+ bt̄ ≥ c

for all halfspaces aTx + bt ≥ c that are nonvertical (i.e., b > 0) and contain epi f .

Assume that (x̄, t̄) is not in the set on the right, i.e., there exist (ã, b̃, c̃) ∈ H

(necessarily with b̃ = 0), such that

ãT x̄ < c̃.

H contains at least one element (a0, b0, c0) with b0 > 0. (Otherwise epi f would be
an intersection of vertical halfspaces.) Consider the halfspace defined by (ã, 0, c̃) +
ε(a0, b0, c0) for small positive ε. This halfspace is nonvertical and it contains epi f :

(ã+ εa0)
Tx+ εb0t ≥ ãTx+ ε(aT

0 x+ b0t) ≥ c̃+ εc0,

for all (x, t) ∈ epi f , because the halfspaces ãTx ≥ c̃ and aT
0 x+b0t ≥ c0 both contain

epi f . However,

(ã+ εa0)
T x̄+ εb0t̄ = ãT x̄+ ε(aT

0 x̄+ b0t̄) < c̃+ εc0

for small ε, so the halfspace does not contain (x̄, t̄). This contradicts our assumption
that (x̄, t̄) is in the intersection of all nonvertical halfspaces containing epi f . We
conclude that the equality (3.28.B) holds.



3 Convex functions

3.29 Representation of piecewise-linear convex functions. A function f : Rn → R, with
dom f = Rn, is called piecewise-linear if there exists a partition of Rn as

R
n = X1 ∪X2 ∪ · · · ∪XL,

where intXi 6= ∅ and intXi ∩ intXj = ∅ for i 6= j, and a family of affine functions
aT
1 x+ b1, . . . , aT

Lx+ bL such that f(x) = aT
i x+ bi for x ∈ Xi.

Show that this means that f(x) = max{aT
1 x+ b1, . . . , a

T
Lx+ bL}.

Solution. By Jensen’s inequality, we have for all x, y ∈ dom f , and t ∈ [0, 1],

f(y + t(x− y)) ≤ f(y) + t(f(x) − f(y)),

and hence

f(x) ≥ f(y) +
f(y + t(x− y)) − f(y)

t
.

Now suppose x ∈ Xi. Choose any y ∈ intXj , for some j, and take t sufficiently small so
that y + t(x− y) ∈ Xj . The above inequality reduces to

aT
i x+ bi ≥ aT

j y + bj +
(aT

j (y + t(x− y)) + bj − aT
j y − bj)

t
= aT

j x+ bj .

This is true for any j, so aT
i x+ bi ≥ maxj=1,...,L(aT

j x+ bj). We conclude that

aT
i x+ bi = max

j=1,...,L
(aT

j x+ bj).

3.30 Convex hull or envelope of a function. The convex hull or convex envelope of a function
f : Rn → R is defined as

g(x) = inf{t | (x, t) ∈ conv epi f}.

Geometrically, the epigraph of g is the convex hull of the epigraph of f .

Show that g is the largest convex underestimator of f . In other words, show that if h is
convex and satisfies h(x) ≤ f(x) for all x, then h(x) ≤ g(x) for all x.

Solution. It is clear that g is convex, since by construction its epigraph is a convex set.

Let h be a convex lower bound on f . Since h is convex, epih is a convex set. Since h is a
lower bound on f , epi f ⊆ epih. By definition the convex hull of a set is the intersection
of all the convex sets that contain the set. It follows that conv epi f = epi g ⊆ epih,
i.e., g(x) ≥ h(x) for all x.

3.31 [Roc70, page 35] Largest homogeneous underestimator. Let f be a convex function. Define
the function g as

g(x) = inf
α>0

f(αx)

α
.

(a) Show that g is homogeneous (g(tx) = tg(x) for all t ≥ 0).

(b) Show that g is the largest homogeneous underestimator of f : If h is homogeneous
and h(x) ≤ f(x) for all x, then we have h(x) ≤ g(x) for all x.

(c) Show that g is convex.

Solution.

(a) If t > 0,

g(tx) = inf
α>0

f(αtx)

α
= t inf

α>0

f(αtx)

tα
= tg(x).

For t = 0, we have g(tx) = g(0) = 0.
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(b) If h is a homogeneous underestimator, then

h(x) =
h(αx)

α
≤ f(αx)

α

for all α > 0. Taking the infimum over α gives h(x) ≤ g(x).

(c) We can express g as
g(x) = inf

t>0
tf(x/t) = inf

t>0
h(x, t)

where h is the perspective function of f . We know h is convex, jointly in x and t,
so g is convex.

3.32 Products and ratios of convex functions. In general the product or ratio of two convex
functions is not convex. However, there are some results that apply to functions on R.
Prove the following.

(a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions
on an interval, then fg is convex.

(b) If f , g are concave, positive, with one nondecreasing and the other nonincreasing,
then fg is concave.

(c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and
positive, then f/g is convex.

Solution.

(a) We prove the result by verifying Jensen’s inequality. f and g are positive and convex,
hence for 0 ≤ θ ≤ 1,

f(θx+ (1 − θ)y) g(θx+ (1 − θ)y) ≤ (θf(x) + (1 − θ)f(y)) (θg(x) + (1 − θ)g(y))

= θf(x)g(x) + (1 − θ)f(y)g(y)

+ θ(1 − θ)(f(y) − f(x))(g(x) − g(y)).

The third term is less than or equal to zero if f and g are both increasing or both
decreasing. Therefore

f(θx+ (1 − θ)y) g(θx+ (1 − θ)y) ≤ θf(x)g(x) + (1 − θ)f(y)g(y).

(b) Reverse the inequalities in the solution of part (a).

(c) It suffices to note that 1/g is convex, positive and increasing, so the result follows
from part (a).

3.33 Direct proof of perspective theorem. Give a direct proof that the perspective function g,
as defined in §3.2.6, of a convex function f is convex: Show that dom g is a convex set,
and that for (x, t), (y, s) ∈ dom g, and 0 ≤ θ ≤ 1, we have

g(θx+ (1 − θ)y, θt+ (1 − θ)s) ≤ θg(x, t) + (1 − θ)g(y, s).

Solution. The domain dom g = {(x, t) | x/t ∈ dom f, t > 0} is the inverse image of
dom f under the perspective function P : Rn+1 → Rn, P (x, t) = x/t for t > 0, so it is
convex (see §2.3.3).
Jensen’s inequality can be proved directly as follows. Suppose s, t > 0, x/t ∈ dom f ,
y/s ∈ dom f , and 0 ≤ θ ≤ 1. Then

g(θx+ (1 − θ)y, θt+ (1 − θ)s)

= (θt+ (1 − θ)s)f((θx+ (1 − θ)y)/(θt+ (1 − θ)s))

= (θt+ (1 − θ)s)f((θt(x/t) + (1 − θ)s(y/s))/(θt+ (1 − θ)s))

≤ θtf(x/t) + (1 − θ)sf(y/s).
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3.34 The Minkowski function. The Minkowski function of a convex set C is defined as

MC(x) = inf{t > 0 | t−1x ∈ C}.
(a) Draw a picture giving a geometric interpretation of how to find MC(x).

(b) Show that MC is homogeneous, i.e., MC(αx) = αMC(x) for α ≥ 0.

(c) What is domMC?

(d) Show that MC is a convex function.

(e) Suppose C is also closed, symmetric (if x ∈ C then −x ∈ C), and has nonempty
interior. Show that MC is a norm. What is the corresponding unit ball?

Solution.

(a) Consider the ray, excluding 0, generated by x, i.e., sx for s > 0. The intersection
of this ray and C is either empty (meaning, the ray doesn’t intersect C), a finite
interval, or another ray (meaning, the ray enters C and stays in C).

In the first case, the set {t > 0 | t−1x ∈ C} is empty, so the infimum is ∞. This
means MC(x) = ∞. This case is illustrated in the figure below, on the left.

In the third case, the set {s > 0 | sx ∈ C} has the form [a,∞) or (a,∞), so the set
{t > 0 | t−1x ∈ C} has the form (0, 1/a] or (0, 1/a). In this case we have MC(x) = 0.
That is illustrated in the figure below to the right.
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In the second case, the set {s > 0 | sx ∈ C} is a bounded , interval with endpoints
a ≤ b, so we have MC(x) = 1/b. That is shown below. In this example, the optimal
scale factor is around s? ≈ 3/4, so MC(x) ≈ 4/3.
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In any case, if x = 0 ∈ C then MC(0) = 0.

(b) If α > 0, then

MC(αx) = inf{t > 0 | t−1αx ∈ C}
= α inf{t/α > 0 | t−1αx ∈ C}
= αMC(x).
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If α = 0, then

MC(αx) = MC(0) =

{
0 0 ∈ C
∞ 0 6∈ C.

(c) domMC = {x | x/t ∈ C for some t > 0}. This is also known as the conic hull of C,
except that 0 ∈ domMC only if 0 ∈ C.

(d) We have already seen that domMC is a convex set. Suppose x, y ∈ domMC , and
let θ ∈ [0, 1]. Consider any tx, ty > 0 for which x/tx ∈ C, y/ty ∈ C. (There exists
at least one such pair, because x, y ∈ domMC .) It follows from convexity of C that

θx+ (1 − θ)y

θtx + (1 − θ)ty)
=
θtx(x/tx) + (1 − θ)ty(y/ty)

θtx + (1 − θ)ty
∈ C

and therefore
MC(θx+ (1 − θ)y) ≤ θtx + (1 − θ)ty.

This is true for any tx, ty > 0 that satisfy x/tx ∈ C, y/ty ∈ C. Therefore

MC(θx+ (1 − θ)y) ≤ θ inf{tx > 0 | x/tx ∈ C} + (1 − θ) inf{ty > 0 | y/ty ∈ C}
= θMC(x) + (1 − θ)MC(y).

Here is an alternative snappy, modern style proof:

• The indicator function of C, i.e., IC , is convex.

• The perspective function, tIC(x/t) is convex in (x, t). But this is the same as
IC(x/t), so IC(x/t) is convex in (x, t).

• The function t+ IC(x/t) is convex in (x, t).

• Now let’s minimize over t, to obtain inft(t+IC(x/t)) = MC(x), which is convex
by the minimization rule.

(e) It is the norm with unit ball C.

(a) Since by assumption, 0 ∈ intC, MC(x) > 0 for x 6= 0. By definitionMC(0) = 0.

(b) Homogeneity: for λ > 0,

MC(λx) = inf{t > 0 | (tλ)−1x ∈ C}
= λ inf{u > 0 | u−1x ∈ C}
= λMC(x).

By symmetry of C, we also have MC(−x) = −MC(x).

(c) Triangle inequality. By convexity (part d), and homogeneity,

MC(x+ y) = 2MC((1/2)x+ (1/2)y) ≤MC(x) +MC(y).

3.35 Support function calculus. Recall that the support function of a set C ⊆ Rn is defined as
SC(y) = sup{yTx | x ∈ C}. On page 81 we showed that SC is a convex function.

(a) Show that SB = Sconv B .

(b) Show that SA+B = SA + SB .

(c) Show that SA∪B = max{SA, SB}.
(d) Let B be closed and convex. Show that A ⊆ B if and only if SA(y) ≤ SB(y) for all

y.

Solution.
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(a) Let A = convB. Since B ⊆ A, we obviously have SB(y) ≤ SA(y). Suppose we have
strict inequality for some y, i.e.,

yTu < yT v

for all u ∈ B and some v ∈ A. This leads to a contradiction, because by definition v
is the convex combination of a set of points ui ∈ B, i.e., v =

∑
i
θiui, with θi ≥ 0,∑

i
θi = 1. Since

yTui < yT v

for all i, this would imply

yT v =
∑

i

θiy
Tui <

∑

i

θiy
T v = yT v.

We conclude that we must have equality SB(y) = SA(y).

(b) Follows from

SA+B(y) = sup{yT (u+ v) | u ∈ A, v ∈ B}
= sup{yTu | u ∈ A} + sup{yT v | u ∈ B}
= SA(y) + SB(y).

(c) Follows from

SA∪B(y) = sup{yTu | u ∈ A ∪B}
= max{sup{yTu | u ∈ A}, sup{yT v | u ∈ B}
= max{SA(y), SB(y)}.

(d) Obviously, if A ⊆ B, then SA(y) ≤ SB(y) for all y. We need to show that if A 6⊆ B,
then SA(y) > SB(y) for some y.

Suppose A 6⊆ B. Consider a point x̄ ∈ A, x̄ 6∈ B. Since B is closed and convex, x̄
can be strictly separated from B by a hyperplane, i.e., there is a y 6= 0 such that

yT x̄ > yTx

for all x ∈ B. It follows that SB(y) < yT x̄ ≤ SA(y).

Conjugate functions

3.36 Derive the conjugates of the following functions.

(a) Max function. f(x) = maxi=1,...,n xi on Rn.

Solution. We will show that

f∗(y) =

{
0 if y � 0, 1T y = 1
∞ otherwise.

We first verify the domain of f∗. First suppose y has a negative component, say
yk < 0. If we choose a vector x with xk = −t, xi = 0 for i 6= k, and let t go to
infinity, we see that

xT y − max
i
xi = −tyk → ∞,

so y is not in dom f∗. Next, assume y � 0 but 1T y > 1. We choose x = t1 and let
t go to infinity, to show that

xT y − max
i
xi = t1T y − t
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is unbounded above. Similarly, when y � 0 and 1T y < 1, we choose x = −t1 and
let t go to infinity.

The remaining case for y is y � 0 and 1T y = 1. In this case we have

xT y ≤ max
i
xi

for all x, and therefore xT y−maxi xi ≤ 0 for all x, with equality for x = 0. Therefore
f∗(y) = 0.

(b) Sum of largest elements. f(x) =
∑r

i=1
x[i] on Rn.

Solution. The conjugate is

f∗(y) =

{
0 0 � y � 1, 1T y = r
∞ otherwise,

We first verify the domain of f∗. Suppose y has a negative component, say yk < 0.
If we choose a vector x with xk = −t, xi = 0 for i 6= k, and let t go to infinity, we
see that

xT y − f(x) = −tyk → ∞,

so y is not in dom f∗.

Next, suppose y has a component greater than 1, say yk > 1. If we choose a vector
x with xk = t, xi = 0 for i 6= k, and let t go to infinity, we see that

xT y − f(x) = tyk − t→ ∞,

so y is not in dom f∗.

Finally, assume that 1Tx 6= r. We choose x = t1 and find that

xT y − f(x) = t1T y − tr

is unbounded above, as t→ ∞ or t→ −∞.

If y satisfies all the conditions we have

xT y ≤ f(x)

for all x, with equality for x = 0. Therefore f∗(y) = 0.

(c) Piecewise-linear function on R. f(x) = maxi=1,...,m(aix + bi) on R. You can
assume that the ai are sorted in increasing order, i.e., a1 ≤ · · · ≤ am, and that none
of the functions aix + bi is redundant, i.e., for each k there is at least one x with
f(x) = akx+ bk.

Solution. Under the assumption, the graph of f is a piecewise-linear, with break-
points (bi − bi+1)/(ai+1 − ai), i = 1, . . . ,m− 1. We can write f∗ as

f∗(y) = sup
x

(
xy − max

i=1,...,m
(aix+ bi)

)

We see that dom f∗ = [a1, am], since for y outside that range, the expression inside
the supremum is unbounded above. For ai ≤ y ≤ ai+1, the supremum in the
definition of f∗ is reached at the breakpoint between the segments i and i+ 1, i.e.,
at the point (bi+1 − bi)/(ai+1 − ai), so we obtain

f∗(y) = −bi − (bi+1 − bi)
y − ai

ai+1 − ai

where i is defined by ai ≤ y ≤ ai+1. Hence the graph of f∗ is also a piecewise-linear
curve connecting the points (ai,−bi) for i = 1, . . . ,m. Geometrically, the epigraph
of f∗ is the epigraphical hull of the points (ai,−bi).
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(d) Power function. f(x) = xp on R++, where p > 1. Repeat for p < 0.

Solution. We’ll use standard notation: we define q by the equation 1/p+ 1/q = 1,
i.e., q = p/(p− 1).

We start with the case p > 1. Then xp is strictly convex on R+. For y < 0 the
function yx− xp achieves its maximum for x > 0 at x = 0, so f∗(y) = 0. For y > 0

the function achieves its maximum at x = (y/p)1/(p−1), where it has value

y(y/p)1/(p−1) − (y/p)p/(p−1) = (p− 1)(y/p)q.

Therefore we have

f∗(y) =

{
0 y ≤ 0
(p− 1)(y/p)q y > 0.

For p < 0 similar arguments show that dom f∗ = −R++ and f∗(y) = −p
q

(−y/p)q.

(e) Geometric mean. f(x) = −(
∏
xi)

1/n on Rn
++.

Solution. The conjugate function is

f∗(y) =

{
0 if y � 0,

(∏
i
(−yi)

)1/n ≥ 1/n

∞ otherwise.

We first verify the domain of f∗. Assume y has a positive component, say yk > 0.
Then we can choose xk = t and xi = 1, i 6= k, to show that

xT y − f(x) = tyk +
∑

i6=k

yi − t1/n

is unbounded above as a function of t > 0. Hence the condition y � 0 is indeed
required.

Next assume that y � 0, but (
∏

i
(−yi))

1/n < 1/n. We choose xi = −t/yi, and
obtain

xT y − f(x) = −tn− t

(
∏

i

(− 1

yi
)

)1/n

→ ∞

as t→ ∞. This demonstrates that the second condition for the domain of f ∗ is also
needed.

Now assume that y � 0 and
(∏

i
(−yi)

)1/n ≥ 1/n, and x � 0. The arithmetic-
geometric mean inequality states that

xT y

n
≥
(
∏

i

(−yixi)

)1/n

≥ 1

n

(
∏

i

xi

)1/n

,

i.e., xT y ≥ f(x) with equality for xi = −1/yi. Hence, f∗(y) = 0.

(f) Negative generalized logarithm for second-order cone. f(x, t) = − log(t2 − xTx) on
{(x, t) ∈ Rn × R | ‖x‖2 < t}.
Solution.

f∗(y, u) = −2 + log 4 − log(u2 − yT y), dom f∗ = {(y, u) | ‖y‖2 < −u}.

We first verify the domain. Suppose ‖y‖2 ≥ −u. Choose x = sy, t = s(‖x‖2 + 1) >
s‖y‖2 ≥ −su, with s ≥ 0. Then

yTx+ tu > syT y − su2 = s(u2 − yT y) ≥ 0,
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so yx + tu goes to infinity, at a linear rate, while the function − log(t2 − xTx) goes
to −∞ as − log s. Therefore

yTx+ tu+ log(t2 − xTx)

is unbounded above.

Next, assume that ‖y‖2 < u. Setting the derivative of

yTx+ ut+ log(t2 − xTx)

with respect to x and t equal to zero, and solving for t and x we see that the
maximizer is

x =
2y

u2 − yT y
, t = − 2u

u2 − yT y
.

This gives

f∗(y, u) = ut+ yTx+ log(t2 − xTx)

= −2 + log 4 − log(y2 − utu).

3.37 Show that the conjugate of f(X) = tr(X−1) with dom f = Sn
++ is given by

f∗(Y ) = −2 tr(−Y )1/2, dom f∗ = −S
n
+.

Hint. The gradient of f is ∇f(X) = −X−2.

Solution. We first verify the domain of f∗. Suppose Y has eigenvalue decomposition

Y = QΛQT =

n∑

i=1

λiqiq
T
i

with λ1 > 0. Let X = Qdiag(t, 1, . . . , 1)QT = tq1q
T
1 +

∑n

i=2
qiq

T
i . We have

trXY − trX−1 = tλ1 +

n∑

i=2

λi − 1/t− (n− 1),

which grows unboundedly as t→ ∞. Therefore Y 6∈ dom f ∗.

Next, assume Y � 0. If Y ≺ 0, we can find the maximum of

trXY − trX−1

by setting the gradient equal to zero. We obtain Y = −X−2, i.e., X = (−Y )−1/2, and

f∗(Y ) = −2 tr(−Y )1/2.

Finally we verify that this expression remains valid when Y � 0, but Y is singular.
This follows from the fact that conjugate functions are always closed, i.e., have closed
epigraphs.

3.38 Young’s inequality. Let f : R → R be an increasing function, with f(0) = 0, and let g be
its inverse. Define F and G as

F (x) =

∫ x

0

f(a) da, G(y) =

∫ y

0

g(a) da.

Show that F and G are conjugates. Give a simple graphical interpretation of Young’s
inequality,

xy ≤ F (x) +G(y).

Solution. The inequality xy ≤ F (x) +G(y) has a simple geometric meaning, illustrated
below.



3 Convex functions

PSfrag replacements

x

y

F (x)G(y)

f(x)

F (x) is the shaded area under the graph of f , from 0 to x. G(y) is the area above the
graph of f , from 0 to y. For fixed x and y, F (x) + G(y) is the total area below the
graph, up to x, and above the graph, up to y. This is at least equal to xy, the area of the
rectangle defined by x and y, hence

F (x) +G(y) ≥ xy

for all x, y.

It is also clear that F (x) +G(y) = xy if and only if y = f(x). In other words

G(y) = sup
x

(xy − F (x)), F (x) = sup
y

(xy −G(y)),

i.e., the functions are conjugates.

3.39 Properties of conjugate functions.

(a) Conjugate of convex plus affine function. Define g(x) = f(x) + cTx+ d, where f is
convex. Express g∗ in terms of f∗ (and c, d).

Solution.

g∗(y) = sup(yTx− f(x) − cTx− d)

= sup((y − c)Tx− f(x)) − d

= f∗(y − c) − d.

(b) Conjugate of perspective. Express the conjugate of the perspective of a convex
function f in terms of f∗.

Solution.

g∗(y, s) = sup
x/t∈dom f,t>0

(yTx+ st− tf(x/t))

= sup
t>0

sup
x/t∈dom f

(t(yT (x/t) + s− f(x/t)))

= sup
t>0

t(s+ sup
x/t∈dom f

(yT (x/t) − f(x/t)))

= sup
t>0

t(s+ f∗(y))

=

{
0 s+ f∗(y) ≤ 0
∞ otherwise.
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(c) Conjugate and minimization. Let f(x, z) be convex in (x, z) and define g(x) =
infz f(x, z). Express the conjugate g∗ in terms of f∗.

As an application, express the conjugate of g(x) = infz{h(z) | Az+ b = x}, where h
is convex, in terms of h∗, A, and b.

Solution.

g∗(y) = sup
x

(xT y − inf
z
f(x, z))

= sup
x,z

(xT y − f(x, z))

= f∗(y, 0).

To answer the second part of the problem, we apply the previous result to

f(x, z) =

{
h(z) Az + b = x
∞ otherwise.

We have

f∗(y, v) = inf(yTx− vT z − f(x, z))

= inf
Az+b=x

(yTx− vT z − h(z))

= inf
z

(yT (Az + b) − vT z − h(z))

= bT y + inf
z

(yTAz − vT z − h(z))

= bT y + h∗(AT y − v).

Therefore
g∗(y) = f∗(y, 0) = bT y + h∗(AT y).

(d) Conjugate of conjugate. Show that the conjugate of the conjugate of a closed convex
function is itself: f = f∗∗ if f is closed and convex. (A function is closed if its
epigraph is closed; see §A.3.3.) Hint. Show that f ∗∗ is the pointwise supremum of
all affine global underestimators of f . Then apply the result of exercise 3.28.

Solution. By definition of f∗,

f∗(y) = sup
x

(yTx− f(x)).

If y ∈ dom f∗, then the affine function h(x) = yTx−f∗(y), minorizes f . Conversely,
if h(x) = aTx + b minorizes f , then a ∈ dom f∗ and f∗(a) ≤ −b. The set of all
affine functions that minorize f is therefore exactly equal to the set of all functions
h(x) = yTx+ c where

y ∈ dom f∗, c ≤ −f∗(y).

Therefore, by the result of exercise 3.28,

f(x) = sup
y∈dom f∗

(yTx− f∗(y)) = f∗∗(y).

3.40 Gradient and Hessian of conjugate function. Suppose f : Rn → R is convex and twice
continuously differentiable. Suppose ȳ and x̄ are related by ȳ = ∇f(x̄), and that ∇2f(x̄) �
0.

(a) Show that ∇f∗(ȳ) = x̄.

(b) Show that ∇2f∗(ȳ) = ∇2f(x̄)−1.
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Solution. We use the implicit function theorem: Suppose F : Rn × Rm → R satisfies

• F (ū, v̄) = 0

• F is continuously differentiable and DvF (u, v) is nonsingular in a neighborhood of
(ū, v̄).

Then there exists a continuously differentiable function φ : Rn → Rm, that satisfies
v̄ = φ(ū) and

F (u, φ(u)) = 0

in a neighborhood of ū.

Applying this to u = y, v = x, and F (u, v) = ∇f(x) − y, we see that there exists a
continuously differentiable function g such that

x̄ = g(ȳ),

and
∇f(g(y)) = y

in a neighborhood around ȳ. Differentiating both sides with respect to y gives

∇2f(g(y))Dg(y) = I,

i.e., Dg(y) = ∇2f(g(y))−1, in a neighborhood of ȳ.

Now suppose y is near ȳ. The maximum in the definition of f ∗(y),

f∗(y) = sup
x

(ỹTx− f(x)),

is attained at x = g(y), and the maximizer is unique, by the fact that ∇2f(x̄) � 0. We
therefore have

f∗(y) = yT g(y) − f(g(y)).

Differentiating with respect to y gives

∇f∗(y) = g(y) +Dg(y)T y −Dg(y)T∇f(g(y))

= g(y) +Dg(y)T y −Dg(y)T y

= g(y)

and
∇2f∗(y) = Dg(y) = ∇2f(g(y))−1.

In particular,
∇f∗(ȳ) = x̄, ∇2f∗(ȳ) = ∇2f(x̄)−1.

3.41 Domain of conjugate function. Suppose f : Rn → R is a twice differentiable convex
function and x ∈ dom f . Show that for small enough u we have

y = ∇f(x) + ∇2f(x)u ∈ dom f∗,

i.e., yTx− f(x) is bounded above. It follows that dim(dom f∗) ≥ rank∇2f(x).

Hint. Consider ∇f(x+ tv), where t is small, and v is any vector in Rn.

Solution. Clearly ∇f(x) ∈ dom f∗, since ∇f(x) maximizes ∇f(x)T z− f(z) over z. Let
v ∈ Rn. For t small enough, we have x+ tv ∈ dom f , and therefore w(t) = ∇f(x+ tv) ∈
dom f∗, since x+ tv maximizes w(t)T z− f(z) over z. Thus, w(t) = ∇f(x+ tv) defines a
curve (or just a point), passing through ∇f(x), that lies in dom f ∗. The tangent to the
curve at ∇f(x) is given by

w′(0) =
d

dt
∇f(x+ tv)

∣∣∣
t=0

= ∇2f(x)v.
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Now in general, the tangent to a curve that lies in a convex set must lie in the linear part
of the affine hull of the set, since it is a limit of (scaled) differences of points in the set.
(Differences of two points in a convex set lie in the linear part of its affine hull.) It follows
that for s small enough, we have ∇f(x) + s∇2f(x)v ∈ dom f∗.

Examples:

• f = aTx+ b linear: dom f∗ = {a}.
• functions with dom f∗ = Rn

• f = log
∑

exp(x): dom f∗ = {y � 0 | 1T y = 1} and

∇2f(x) = −(1/1T z)2zzT + (1/1T z)diag(z))

where 1T z = 1.

• f = xTPx+ qTx+ r: dom f∗ = q + R(P )

Quasiconvex functions

3.42 Approximation width. Let f0, . . . , fn : R → R be given continuous functions. We consider
the problem of approximating f0 as a linear combination of f1, . . . , fn. For x ∈ Rn, we
say that f = x1f1 + · · · + xnfn approximates f0 with tolerance ε > 0 over the interval
[0, T ] if |f(t)− f0(t)| ≤ ε for 0 ≤ t ≤ T . Now we choose a fixed tolerance ε > 0 and define
the approximation width as the largest T such that f approximates f0 over the interval
[0, T ]:

W (x) = sup{T | |x1f1(t) + · · · + xnfn(t) − f0(t)| ≤ ε for 0 ≤ t ≤ T}.
Show that W is quasiconcave.

Solution. To show that W is quasiconcave we show that the sets {x | W (x) ≥ α} are
convex for all α. We have W (x) ≥ α if and only if

−ε ≤ x1f1(t) + · · · + xnfn(t) − f0(t) ≤ ε

for all t ∈ [0, α). Therefore the set {x | W (x) ≥ α} is an intersection of infinitely many
halfspaces (two for each t), hence a convex set.

3.43 First-order condition for quasiconvexity. Prove the first-order condition for quasiconvexity
given in §3.4.3: A differentiable function f : Rn → R, with dom f convex, is quasiconvex
if and only if for all x, y ∈ dom f ,

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0.

Hint. It suffices to prove the result for a function on R; the general result follows by
restriction to an arbitrary line.

Solution. First suppose f is a differentiable function on R and satisfies

f(y) ≤ f(x) =⇒ f ′(x)(y − x) ≤ 0. (3.43.A)

Suppose f(x1) ≥ f(x2) where x1 6= x2. We assume x2 > x1 (the other case can be handled
similarly), and show that f(z) ≤ f(x1) for z ∈ [x1, x2]. Suppose this is false, i.e., there
exists a z ∈ [x1, x2] with f(z) > f(x1). Since f is differentiable, we can choose a z that
also satisfies f ′(z) < 0. By (3.43.A), however, f(x1) < f(z) implies f ′(z)(x1 − z) ≤ 0,
which contradicts f ′(z) < 0.

To prove sufficiency, assume f is quasiconvex. Suppose f(x) ≥ f(y). By the definition of
quasiconvexity f(x+ t(y− x)) ≤ f(x) for 0 < t ≤ 1. Dividing both sides by t, and taking
the limit for t→ 0, we obtain

lim
t→0

f(x+ t(y − x)) − f(x)

t
= f ′(x)(y − x) ≤ 0,

which proves (3.43.A).
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3.44 Second-order conditions for quasiconvexity. In this problem we derive alternate repre-
sentations of the second-order conditions for quasiconvexity given in §3.4.3. Prove the
following.

(a) A point x ∈ dom f satisfies (3.21) if and only if there exists a σ such that

∇2f(x) + σ∇f(x)∇f(x)T � 0. (3.26)

It satisfies (3.22) for all y 6= 0 if and only if there exists a σ such

∇2f(x) + σ∇f(x)∇f(x)T � 0. (3.27)

Hint. We can assume without loss of generality that ∇2f(x) is diagonal.

(b) A point x ∈ dom f satisfies (3.21) if and only if either ∇f(x) = 0 and ∇2f(x) � 0,
or ∇f(x) 6= 0 and the matrix

H(x) =

[
∇2f(x) ∇f(x)
∇f(x)T 0

]

has exactly one negative eigenvalue. It satisfies (3.22) for all y 6= 0 if and only if
H(x) has exactly one nonpositive eigenvalue.

Hint. You can use the result of part (a). The following result, which follows from
the eigenvalue interlacing theorem in linear algebra, may also be useful: If B ∈ Sn

and a ∈ Rn, then

λn

([
B a
aT 0

])
≥ λn(B).

Solution.

(a) We prove the equivalence of (3.21) and (3.26). If ∇f(x) = 0, both conditions
reduce to ∇2f(x) � 0, and they are obviously equivalent. We prove the result for
∇f(x) 6= 0.

To simplify the proof, we adopt the following notation. Let a ∈ Rn, a 6= 0, and
B ∈ Sn. We show that

aTx = 0 =⇒ xTBx ≥ 0 (3.44.A)

if and only if there exists a σ such that B + σaaT � 0.

It is obvious that the condition is sufficient: if B + σaaT � 0, then

aTx = 0 =⇒ xTBx = xT (B + σaaT )x ≥ 0.

Conversely, suppose (3.44.A) holds for all y. Without loss of generality we can
assume that B is diagonal, B = diag(b), with the elements of b sorted in decreasing
order (b1 ≥ b2 ≥ · · · ≥ bn). We know that

aTx = 0 =⇒
n∑

i=1

bix
2
i ≥ 0.

If bn ≥ 0, there is nothing to prove: diag(b) + σaaT � 0 for all σ ≥ 0.

Suppose bn < 0. Then we must have an 6= 0. (Otherwise, x = en would satisfy
aTx = 0 and xT diag(b)x = bn < 0, a contradiction.) Moreover, we must have
bn−1 ≥ 0. Otherwise, the vector x with

x1 = · · · = xn−2 = 0, xn−1 = 1, xn = −an−1/an,
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would satisfy aTx = 0 and xT diag(b)x = bn−1 + bn(an−1/an)2 < 0, which is a
contradiction. In summary,

an 6= 0, bn < 0, b1 ≥ · · · ≥ bn−1 ≥ 0. (3.44.B)

We can derive conditions on σ guaranteeing that

C = diag(b) + σaaT � 0.

Define ā = (a1, . . . , an−1), b̄ = (b1, . . . , bn−1). We have Cnn = bn + σa2
n > 0 if

σ > −bn/a2
n. The Schur complement of Cnn is

diag(b̄) + σāāT − a2
n

bn + σa2
n
āāT = diag(b̄) +

a2
nσ

2 + bnσ − a2
n

bn + σa2
n

āāT

and is positive semidefinite if if a2
nσ

2 + bnσ − a2
n ≥ 0, i.e.,

σ ≥ −bn
2a2

n
+

√
b2n
4a4

n
+ 1.

Next, we prove the equivalence of (3.22) and (3.27). We need to show that

aTx = 0 =⇒ xTBx > 0 (3.44.C)

if and only if there exists a σ such that B + σaaT � 0.

Again, it is obvious that the condition is sufficient: if B + σaaT � 0, then

aTx = 0 =⇒ xTBx = xT (B + σaaT )x > 0.

for all nonzero x.

Conversely, suppose (3.44.C) holds for all x 6= 0. We use the same notation as above
and assume B is diagonal. If bn > 0 there is nothing to prove. If bn ≤ 0, we must
have an 6= 0 and bn−1 > 0. Indeed, if bn−1 ≤ 0, choosing

x1 = · · · = xn−2 = 0, xn−1 = 1, xn = −an−1/an

would provide a vector with aTx = 0 and xTBx ≤ 0. Therefore,

an 6= 0, bn ≤ 0, b1 ≥ · · · ≥ bn−1 > 0. (3.44.D)

We can now proceed as in the proof above and construct a σ satisfying B+σaaT � 0.

(b) We first consider (3.21). If ∇f(x) = 0, both conditions reduce to ∇2f(x) � 0, so
they are obviously equivalent. We prove the result for ∇f(x) 6= 0. We use the same
notation as in part (a), and consider the matrix

C =

[
B a
aT 0

]
∈ S

n+1

with a 6= 0. We need to show that C has exactly one negative eigenvalue if and
only if (3.44.A) holds, or equivalently, if and only if there exists a σ such that
B + σaaT � 0.

We first note that C has at least one negative eigenvalue: the vector v = (a, t) with
t < aTBa/(2‖a‖2

2) satisfies

vTCv = aTBa+ 2taTa < 0.
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Assume that C has exactly one negative eigenvalue. Suppose (3.44.A) does not
hold, i.e., there exists an x satisfying aTx = 0 and xTBx < 0. The vector u = (x, 0)
satisfies

uTCu = uTBu < 0.

We also note that u is orthogonal to the vector v defined above. So we have two
orthogonal vectors u and v with uTCu < 0 and vTCv < 0, which contradicts our
assumption that C has only one negative eigenvalue.

Conversely, suppose (3.44.A) holds, or, equivalently, B + σaaT � 0 for some σ.
Define

C(σ) =

[
I

√
σ

0 1

][
B a
aT 0

][
I 0√
σ 1

]
=

[
B + σaaT a

aT 0

]
.

Since B+σaaT � 0, it follows from the hint that λn(C(σ)) ≥ 0, i.e., C(σ) has exactly
one negative eigenvalue. Since the inertia of a symmetric matrix is preserved under
a congruence, C has exactly one negative eigenvalue.

The equivalence of (3.21) and (3.26) follows similarly. Note that if ∇f(x) = 0, both
conditions reduce to ∇2f(x) � 0. If ∇f(x) 6= 0, H(x) has at least one negative
eigenvalue, and we need to show that the other eigenvalues are positive.

3.45 Use the first and second-order conditions for quasiconvexity given in §3.4.3 to verify
quasiconvexity of the function f(x) = −x1x2, with dom f = R2

++.

Solution. The first and second derivatives of f are

∇f(x) =

[
−x2

−x1

]
, ∇2f(x) =

[
0 −1

−1 0

]
.

We start with the first-order condition

f(x) ≤ f(y) =⇒ ∇f(x)T (y − x) ≤ 0,

which in this case reduces to

−y1y2 ≤ −x1x2 =⇒ −x2(y1 − x1) − x1(y2 − x2) ≤ 0

for x, y � 0. Simplifying each side we get

y1y2 ≥ x1x2 =⇒ 2x1x2 ≤ x1y2 + x2y1,

and dividing by x1x2 (which is positive) we get the equivalent statement

(y1/x1)(y2/x2) ≥ 1 =⇒ 1 ≤ ((y2/x2) + (y1/x1)) /2,

which is true (it is the arithmetic-geometric mean inequality).

The second-order condition is

yT∇f(x) = 0, y 6= 0 =⇒ yT∇2f(x)y > 0,

which reduces to
−y1x2 − y2x1 = 0, y 6= 0 =⇒ −2y1y2 > 0

for x � 0, i.e.,
y2 = −y1x2/x1 =⇒ −2y1y2 > 0,

which is correct if x � 0.
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3.46 Quasilinear functions with domain Rn. A function on R that is quasilinear (i.e., qua-
siconvex and quasiconcave) is monotone, i.e., either nondecreasing or nonincreasing. In
this problem we consider a generalization of this result to functions on Rn.

Suppose the function f : Rn → R is quasilinear and continuous with dom f = Rn. Show
that it can be expressed as f(x) = g(aTx), where g : R → R is monotone and a ∈ Rn.
In other words, a quasilinear function with domain Rn must be a monotone function of
a linear function. (The converse is also true.)

Solution. The sublevel set {x | f(x) ≤ α} are closed and convex (note that f is continu-
ous), and their complements {x | f(x) > α} are also convex. Therefore the sublevel sets
are closed halfspaces, and can be expressed as

{x | f(x) ≤ α} = {x | a(α)Tx ≤ b(α)}
with ‖a(α)‖2 = 1.

The sublevel sets are nested, i.e., they have the same normal vector a(α) = a for all α,
and b(α1) ≥ b(α2) if α1 > α2. In other words,

{x | f(x) ≤ α} = {x | aTx ≤ b(α)}
where b is nondecreasing. If b is in fact increasing, we can define g = b−1 and say that

{x | f(x) ≤ α} = {x | g(aTx) ≤ α}

and by continuity of f , f(x) = g(aTx). If b is merely nondecreasing, we define

g(t) = sup{α | b(α) ≤ t}.

Log-concave and log-convex functions

3.47 Suppose f : Rn → R is differentiable, dom f is convex, and f(x) > 0 for all x ∈ dom f .
Show that f is log-concave if and only if for all x, y ∈ dom f ,

f(y)

f(x)
≤ exp

(
∇f(x)T (y − x)

f(x)

)
.

Solution. This is the basic inequality

h(y) ≥ h(x) + ∇h(x)T (y − x)

applied to the convex function h(x) = − log f(x), combined with ∇h(x) = (1/f(x))∇f(x).

3.48 Show that if f : Rn → R is log-concave and a ≥ 0, then the function g = f − a is
log-concave, where dom g = {x ∈ dom f | f(x) > a}.
Solution. We have for x, y ∈ dom f with f(x) > a, f(y) > a, and 0 ≤ θ ≤ 1,

f(θx+ (1 − θ)y) − a ≥ f(x)θf(y)1−θ) − a

≥ (f(x) − a)θ(f(y) − a)1−θ.

The last inequality follows from Hölder’s inequality

u1v1 + u2v2 ≤ (u
1/θ
1 + u

1/θ
2 )θ(v

1/(1−θ)
1 + v

1/(1−θ)
2 )1−θ,

applied to

u1 = (f(x) − a)θ, v1 = (f(y) − a)1−θ, u2 = aθ, v2 = a1−θ,

which yields
f(x)θf(y)1−θ ≥ (f(x) − a)θ(f(y) − a)1−θ + a.
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3.49 Show that the following functions are log-concave.

(a) Logistic function: f(x) = ex/(1 + ex) with dom f = R.

Solution. We have

log(ex/(1 + ex)) = x− log(1 + ex).

The first term is linear, hence concave. Since the function log(1 + ex) is convex (it
is the log-sum-exp function, evaluated at x1 = 0, x2 = x), the second term above is
concave. Thus, ex/(1 + ex) is log-concave.

(b) Harmonic mean:

f(x) =
1

1/x1 + · · · + 1/xn
, dom f = R

n
++.

Solution. The first and second derivatives of

h(x) = log f(x) = − log(1/x1 + · · · + 1/xn)

are

∂h(x)

∂xi
=

1/x2
i

1/x1 + · · · + 1/xn

∂2h(x)

∂x2
i

=
−2/x3

i

1/x1 + · · · + 1/xn
+

1/x4
i

(1/x1 + · · · + 1/xn)2

∂2h(x)

∂xi∂xj
=

1/(x2
ix

2
j )

(1/x1 + · · · + 1/xn)2
(i 6= j).

We show that yT∇2h(x)y ≺ 0 for all y 6= 0, i.e.,

(

n∑

i=1

yi/x
2
i )

2 < 2(

n∑

i=1

1/xi)(

n∑

i=1

y2
i /x

3
i )

This follows from the Cauchy-Schwarz inequality (aT b)2 ≤ ‖a‖2
2‖b‖2

2, applied to

ai =
1√
xi

, bi =
yi

xi
√
xi

.

(c) Product over sum:

f(x) =

∏n

i=1
xi∑n

i=1
xi

, dom f = R
n
++.

Solution. We must show that

f(x) =

n∑

i=1

log xi − log

n∑

i=1

xi

is concave on x � 0. Let’s consider a line described by x+ tv, where and x, v ∈ Rn

and x � 0: define

f̃(t) =
∑

i

log(xi + tvi) − log
∑

i

(xi + tvi).

The first derivative is

f̃ ′(t) =
∑

i

vi

xi + tvi
− 1T v

1Tx+ t1T v
,
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and the second derivative is

f̃ ′′(t) = −
∑

i

v2
i

(xi + tvi)2
+

(1T v)2

(1Tx+ t1T v)2
.

Therefore to establish concavity of f , we need to show that

f̃ ′′(0) = −
∑

i

v2
i

x2
i

+
(1T v)2

(1Tx)2
≤ 0

holds for all v, and all x � 0.

The inequality holds if 1T v = 0. If 1T v 6= 0, we note that the inequality is ho-
mogeneous of degree two in v, so we can assume without loss of generality that
1T v = 1Tx. This reduces the problem to verifying that

∑

i

v2
i

x2
i

≥ 1

holds whenever x � 0 and 1T v = 1Tx.

To establish this, let’s fix x, and minimize the convex, quadratic form over 1T v =
1Tx. The optimality conditions give

vi

x2
i

= λ,

so we have vi = λx2
i . From 1T v = 1Tx we can obtain λ, which gives

v?
i =

∑
k
xk∑

k
x2

k

x2
i .

Therefore the minimum value of
∑

i
v2

i /x
2
i over 1T v = 1Tx is

∑

i

(
v?

i

xi
)2 =

(∑
k
xk∑

k
x2

k

)2∑

i

x2
i =

(
1Tx

‖x‖2

)2

≥ 1,

because ‖x‖2 ≤ ‖x‖1. This proves the inequality.

(d) Determinant over trace:

f(X) =
detX

trX
, dom f = S

n
++.

Solution. We prove that

h(X) = log f(X) = log detX − log trX

is concave. Consider the restriction on a line X = Z + tV with Z � 0, and use the
eigenvalue decomposition Z−1/2V Z−1/2 = QΛQT =

∑n

i=1
λiqiq

T
i :

h(Z + tV ) = log det(Z + tV ) − log tr(Z + tV )

= log detZ − log det(I + tZ−1/2V Z−1/2) − log trZ(I + tZ−1/2V Z1/2)

= log detZ −
n∑

i=1

log(1 + tλi) − log

n∑

i=1

(qT
i Zqi)(1 + tλi))

= log detZ +

n∑

i=1

log(qT
i Zqi) −

n∑

i=1

log((qT
i Zqi)(1 + tλi))

− log

n∑

i=1

((qT
i Zqi)(1 + tλi)),



3 Convex functions

which is a constant, plus the function

n∑

i=1

log yi − log

n∑

i=1

yi

(which is concave; see (c)), evaluated at yi = (qT
i Zqi)(1 + tλi).

3.50 Coefficients of a polynomial as a function of the roots. Show that the coefficients of a
polynomial with real negative roots are log-concave functions of the roots. In other words,
the functions ai : Rn → R, defined by the identity

sn + a1(λ)sn−1 + · · · + an−1(λ)s+ an(λ) = (s− λ1)(s− λ2) · · · (s− λn),

are log-concave on −Rn
++.

Hint. The function

Sk(x) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik
,

with domSk ∈ Rn
+ and 1 ≤ k ≤ n, is called the kth elementary symmetric function on

Rn. It can be shown that S
1/k
k is concave (see [ML57]).

Solution. The coefficients are given by ak(λ) = Sk(−λ). The result follows from the
hint, because the logarithm of a nonnegative concave function is log-concave.

3.51 [BL00, page 41] Let p be a polynomial on R, with all its roots real. Show that it is
log-concave on any interval on which it is positive.

Solution. We assume the polynomial has the form

p(x) = α(x− s1)(x− s2) . . . (x− sn),

with s1 ≤ s2 ≤ · · · ≤ sn, and α > 0. (The case α < 0 can be handled similarly).

Suppose p is positive on the interval (sk, sk+1), which means n− k (the number of roots
to the right of the interval) must be even. We can write log p as

log p(x) = logα+

n∑

i=1

log(x− sk)

+ log((x− sk+1)(x− sk+2))

+ log((x− sk+3)(x− sk+4))

+ · · · + log((x− sn−1)(x− sn)).

The first terms are obviously concave. We need to show that

f(x) = log((x− a)(x− b)) = log(x2 − (a+ b)x+ ab)

is concave if x < a ≤ b. We have

f ′(x) =
2x− (a+ b)

x2 − (a+ b) + ab
, f ′′(x) =

2(x− a)(x− b) − (2x− (a+ b))2

(x2 − (a+ b)x+ ab)2
.

It is easily shown that the second derivative is less than or equal to zero:

2(x− a)(x− b) − ((x− a) + (x− b))2

≤ 2(x− a)(x− b) − (x− a)2 − (x− b)2 − 2(x− a)(x− b)

= −(x− a)2 − (x− b)2

≤ 0.
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3.52 [MO79, §3.E.2] Log-convexity of moment functions. Suppose f : R → R is nonnegative
with R+ ⊆ dom f . For x ≥ 0 define

φ(x) =

∫ ∞

0

uxf(u) du.

Show that φ is a log-convex function. (If x is a positive integer, and f is a probability
density function, then φ(x) is the xth moment of the distribution.)

Use this to show that the Gamma function,

Γ(x) =

∫ ∞

0

ux−1e−u du,

is log-convex for x ≥ 1.

Solution. g(x, u) = uxf(u) is log-convex (as well as log-concave) in x for all u > 0. It
follows directly from the property on page 106 that

φ(x) =

∫ ∞

0

g(x, u) du =

∫ ∞

0

uxf(u) du

is log-convex.

3.53 Suppose x and y are independent random vectors in Rn, with log-concave probability
density functions f and g, respectively. Show that the probability density function of the
sum z = x+ y is log-concave.

Solution. The probability density function of x+ y is f ∗ g.
3.54 Log-concavity of Gaussian cumulative distribution function. The cumulative distribution

function of a Gaussian random variable,

f(x) =
1√
2π

∫ x

−∞
e−t2/2 dt,

is log-concave. This follows from the general result that the convolution of two log-concave
functions is log-concave. In this problem we guide you through a simple self-contained
proof that f is log-concave. Recall that f is log-concave if and only if f ′′(x)f(x) ≤ f ′(x)2

for all x.

(a) Verify that f ′′(x)f(x) ≤ f ′(x)2 for x ≥ 0. That leaves us the hard part, which is to
show the inequality for x < 0.

(b) Verify that for any t and x we have t2/2 ≥ −x2/2 + xt.

(c) Using part (b) show that e−t2/2 ≤ ex2/2−xt. Conclude that
∫ x

−∞
e−t2/2 dt ≤ ex2/2

∫ x

−∞
e−xt dt.

(d) Use part (c) to verify that f ′′(x)f(x) ≤ f ′(x)2 for x ≤ 0.

Solution. The derivatives of f are

f ′(x) = e−x2/2/
√

2π, f ′′(x) = −xe−x2/2/
√

2π.

(a) f ′′(x) ≤ 0 for x ≥ 0.

(b) Since t2/2 is convex we have

t2/2 ≥ x2/2 + x(t− x) = xt− x2/2.

This is the general inequality

g(t) ≥ g(x) + g′(x)(t− x),

which holds for any differentiable convex function, applied to g(t) = t2/2.
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(c) Take exponentials and integrate.

(d) This basic inequality reduces to

−xe−x2/2

∫ x

−∞
e−t2/2 dt ≤ e−x2

i.e., ∫ x

−∞
e−t2/2 dt ≤ e−x2/2

−x .

This follows from part (c) because

∫ x

−∞
e−xt dt =

e−x2

−x .

3.55 Log-concavity of the cumulative distribution function of a log-concave probability density.
In this problem we extend the result of exercise 3.54. Let g(t) = exp(−h(t)) be a differ-
entiable log-concave probability density function, and let

f(x) =

∫ x

−∞
g(t) dt =

∫ x

−∞
e−h(t) dt

be its cumulative distribution. We will show that f is log-concave, i.e., it satisfies
f ′′(x)f(x) ≤ (f ′(x))2 for all x.

(a) Express the derivatives of f in terms of the function h. Verify that f ′′(x)f(x) ≤
(f ′(x))2 if h′(x) ≥ 0.

(b) Assume that h′(x) < 0. Use the inequality

h(t) ≥ h(x) + h′(x)(t− x)

(which follows from convexity of h), to show that

∫ x

−∞
e−h(t) dt ≤ e−h(x)

−h′(x)
.

Use this inequality to verify that f ′′(x)f(x) ≤ (f ′(x))2 if h′(x) ≥ 0.

Solution.

(a) f(x) =
∫ x

−∞ e−h(t) dt, f ′(x) = e−h(x), f ′′(x) = −h′(x)e−h(x). Log-concavity means

−h′(x)e−h(x)

∫ x

−∞
e−h(t) dt ≤ e−2h(x),

which is obviously true if −h′(x) ≤ 0.

(b) Take exponentials and integrate both sides of −h(t) ≤ −h(x) − h′(x)(t− x):
∫ x

−∞
e−h(t) dt ≤ exh′(x)−h(x)

∫ x

−∞
e−th′(x) dt

= exh′(x)−h(x)e−xh′(x)/(−h′(x))

=
e−h(x)

−h′(x)

(−h′(x))

∫ x

−∞
e−h(t) dt ≤ e−h(x).
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3.56 More log-concave densities. Show that the following densities are log-concave.

(a) [MO79, page 493] The gamma density, defined by

f(x) =
αλ

Γ(λ)
xλ−1e−αx,

with dom f = R+. The parameters λ and α satisfy λ ≥ 1, α > 0.

Solution.
log f(x) = log((αλ/Γ(λ)) + (λ− 1) log x− αx.

(b) [MO79, page 306] The Dirichlet density

f(x) =
Γ(1Tλ)

Γ(λ1) · · ·Γ(λn+1)
xλ1−1

1 · · ·xλn−1
n

(
1 −

n∑

i=1

xi

)λn+1−1

with dom f = {x ∈ Rn
++ | 1Tx < 1}. The parameter λ satisfies λ � 1.

Solution.

log f(x)

= log(Γ(λ)/(Γ(λ1) · · ·Γ(λn+1))) +

n∑

i=1

(λi − 1) log xi + (λn+1 − 1) log(1 − 1
Tx).

Convexity with respect to a generalized inequality

3.57 Show that the function f(X) = X−1 is matrix convex on Sn
++.

Solution. We must show that for arbitrary v ∈ Rn, the function

g(X) = vTX−1v.

is convex in X on Sn
++. This follows from example 3.4.

3.58 Schur complement. Suppose X ∈ Sn partitioned as

X =

[
A B
BT C

]
,

where A ∈ Sk. The Schur complement of X (with respect to A) is S = C − BTA−1B
(see §A.5.5). Show that the Schur complement, viewed as function from Sn into Sn−k, is
matrix concave on Sn

++.

Solution. Let v ∈ Rn−k. We must show that the function

vT (C −BTA−1B)v

is concave in X on Sn
++. This follows from example 3.4.

3.59 Second-order conditions for K-convexity. Let K ⊆ Rm be a proper convex cone, with
associated generalized inequality �K . Show that a twice differentiable function f : Rn →
Rm, with convex domain, is K-convex if and only if for all x ∈ dom f and all y ∈ Rn,

n∑

i,j=1

∂2f(x)

∂xi∂xj
yiyj �K 0,

i.e., the second derivative is a K-nonnegative bilinear form. (Here ∂2f/∂xi∂xj ∈ Rm,
with components ∂2fk/∂xi∂xj , for k = 1, . . . ,m; see §A.4.1.)
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Solution. f is K-convex if and only if vT f is convex for all v �K∗ 0. The Hessian of
vT f(x) is

∇2(vT f(x)) =

n∑

k=1

vi∇2fk(x).

This is positive semidefinite if and only if for all y

yT∇2(vT f(x))y =

n∑

i,j=1

n∑

k=1

vk∇2fk(x)yiyj =

n∑

k=1

vk(

n∑

i,j=1

∇2fk(x)yiyj) ≥ 0,

which is equivalent to
n∑

i,j=1

∇2fk(x)yiyj �K 0

by definition of dual cone.

3.60 Sublevel sets and epigraph of K-convex functions. Let K ⊆ Rm be a proper convex cone
with associated generalized inequality �K , and let f : Rn → Rm. For α ∈ Rm, the
α-sublevel set of f (with respect to �K) is defined as

Cα = {x ∈ R
n | f(x) �K α}.

The epigraph of f , with respect to �K , is defined as the set

epiKf = {(x, t) ∈ R
n+m | f(x) �K t}.

Show the following:

(a) If f is K-convex, then its sublevel sets Cα are convex for all α.

(b) f is K-convex if and only if epiK f is a convex set.

Solution.

(a) For any x, y ∈ Cα, and 0 ≤ θ ≤ 1,

f(θx+ (1 − θ)y) �K θf(x) + (1 − θ)f(y) �K α.

(b) For any (x, u), (y, v) ∈ epi f , and 0 ≤ θ ≤ 1,

f(θx+ (1 − θ)y) �K θf(x) + (1 − θ)f(y) �K θu+ (1 − θ)v.
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Convex optimization problems
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Exercises

Basic terminology and optimality conditions

4.1 Consider the optimization problem

minimize f0(x1, x2)
subject to 2x1 + x2 ≥ 1

x1 + 3x2 ≥ 1
x1 ≥ 0, x2 ≥ 0.

Make a sketch of the feasible set. For each of the following objective functions, give the
optimal set and the optimal value.

(a) f0(x1, x2) = x1 + x2.

(b) f0(x1, x2) = −x1 − x2.

(c) f0(x1, x2) = x1.

(d) f0(x1, x2) = max{x1, x2}.
(e) f0(x1, x2) = x2

1 + 9x2
2.

Solution. The feasible set is the convex hull of (0,∞), (0, 1), (2/5, 1/5), (1, 0), (∞, 0).

(a) x? = (2/5, 1/5).

(b) Unbounded below.

(c) Xopt = {(0, x2) | x2 ≥ 1}.
(d) x? = (1/3, 1/3).

(e) x? = (1/2, 1/6). This is optimal because it satisfies 2x1+x2 = 7/6 > 1, x1+3x2 = 1,
and

∇f0(x?) = (1, 3)

is perpendicular to the line x1 + 3x2 = 1.

4.2 Consider the optimization problem

minimize f0(x) = −
∑m

i=1
log(bi − aT

i x)

with domain dom f0 = {x | Ax ≺ b}, where A ∈ Rm×n (with rows aT
i ). We assume that

dom f0 is nonempty.

Prove the following facts (which include the results quoted without proof on page 141).

(a) dom f0 is unbounded if and only if there exists a v 6= 0 with Av � 0.

(b) f0 is unbounded below if and only if there exists a v with Av � 0, Av 6= 0. Hint.
There exists a v such that Av � 0, Av 6= 0 if and only if there exists no z � 0
such that AT z = 0. This follows from the theorem of alternatives in example 2.21,
page 50.

(c) If f0 is bounded below then its minimum is attained, i.e., there exists an x that
satisfies the optimality condition (4.23).

(d) The optimal set is affine: Xopt = {x? + v | Av = 0}, where x? is any optimal point.

Solution. We assume x0 ∈ dom f .

(a) If such a v exists, then dom f0 is clearly unbounded, since x0 + tv ∈ dom f0 for all
t ≥ 0.

Conversely, suppose xk is a sequence of points in dom f0 with ‖xk‖2 → ∞. Define
vk = xk/‖xk‖2. The sequence has a convergent subsequence because ‖vk‖2 = 1 for
all k. Let v be its limit. We have ‖v‖2 = 1 and, since aT

i v
k < bi/‖xk‖2 for all k,

aT
i v ≤ 0. Therefore Av � 0 and v 6= 0.
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(b) If there exists such a v, then f0 is clearly unbounded below. Let j be an index with
aT

j v < 0. For t ≥ 0,

f0(x0 + tv) = −
m∑

i=1

log(bi − aT
i x0 − taT

i v)

≤ −
m∑

i6=j

log(bi − aT
i x0) − log(bj − aT

j x0 − taT
j v),

and the righthand side decreases without bound as t increases.

Conversely, suppose f is unbounded below. Let xk be a sequence with b−Axk � 0,
and f0(x

k) → −∞. By convexity,

f0(x
k) ≥ f0(x0) +

m∑

i=1

1

bi − aT
i x0

aT
i (xk − x0) = f0(x0) +m−

m∑

i=1

bi − aT
i x

k

bi − aT
i x0

so if f0(x
k) → −∞, we must have maxi(bi − aT

i x
k) → ∞.

Suppose there exists a z with z � 0, AT z = 0. Then

zT b = zT (b−Axk) ≥ zi max
i

(bi − aT
i x

k) → ∞.

We have reached a contradiction, and conclude that there is no such z. Using the
theorem of alternatives, there must be a v with Av � 0, Av 6= 0.

(c) We can assume that rankA = n.

If dom f0 is bounded, then the result follows from the fact that the sublevel sets of
f0 are closed.

If dom f0 is unbounded, let v be a direction in which it is unbounded, i.e., v 6= 0,
Av � 0. Since rankA = 0, we must have Av 6= 0, but this implies f0 is unbounded.

We conclude that if rankA = n, then f0 is bounded below if and only if its domain
is bounded, and therefore its minimum is attained.

(d) Again, we can limit ourselves to the case in which rankA = n. We have to show
that f0 has at most one optimal point. The Hessian of f0 at x is

∇2f(x) = AT
diag(d)A, di =

1

(bi − aT
i x)

2
, i = 1, . . . ,m,

which is positive definite if rankA = n, i.e., f0 is strictly convex. Therefore the
optimal point, if it exists, is unique.

4.3 Prove that x? = (1, 1/2,−1) is optimal for the optimization problem

minimize (1/2)xTPx+ qTx+ r
subject to −1 ≤ xi ≤ 1, i = 1, 2, 3,

where

P =

[
13 12 −2
12 17 6
−2 6 12

]
, q =

[ −22.0
−14.5

13.0

]
, r = 1.

Solution. We verify that x? satisfies the optimality condition (4.21). The gradient of
the objective function at x? is

∇f0(x?) = (−1, 0, 2).

Therefore the optimality condition is that

∇f0(x?)T (y − x) = −1(y1 − 1) + 2(y2 + 1) ≥ 0

for all y satisfying −1 ≤ yi ≤ 1, which is clearly true.
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4.4 [P. Parrilo] Symmetries and convex optimization. Suppose G = {Q1, . . . , Qk} ⊆ Rn×n is a
group, i.e., closed under products and inverse. We say that the function f : Rn → R is G-
invariant, or symmetric with respect to G, if f(Qix) = f(x) holds for all x and i = 1, . . . , k.

We define x = (1/k)
∑k

i=1
Qix, which is the average of x over its G-orbit. We define the

fixed subspace of G as
F = {x | Qix = x, i = 1, . . . , k}.

(a) Show that for any x ∈ Rn, we have x ∈ F .

(b) Show that if f : Rn → R is convex and G-invariant, then f(x) ≤ f(x).

(c) We say the optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

is G-invariant if the objective f0 is G-invariant, and the feasible set is G-invariant,
which means

f1(x) ≤ 0, . . . , fm(x) ≤ 0 =⇒ f1(Qix) ≤ 0, . . . , fm(Qix) ≤ 0,

for i = 1, . . . , k. Show that if the problem is convex and G-invariant, and there exists
an optimal point, then there exists an optimal point in F . In other words, we can
adjoin the equality constraints x ∈ F to the problem, without loss of generality.

(d) As an example, suppose f is convex and symmetric, i.e., f(Px) = f(x) for every
permutation P . Show that if f has a minimizer, then it has a minimizer of the form
α1. (This means to minimize f over x ∈ Rn, we can just as well minimize f(t1)
over t ∈ R.)

Solution.

(a) Qjx = (1/k)
∑k

i=1
QjQix ∈ F , because for each Ql ∈ G there exists a Qi ∈ G s.t.

QjQi = Ql.

(b) Using convexity and invariance of f ,

f(x) ≤ (1/k)

k∑

i=1

f(Qix) = (1/k)

k∑

i=1

f(x) = f(x).

(c) Suppose x? is an optimal solution. Then x? is feasible, with

f0(x?) = f0((1/k)

k∑

i=1

Qix)

≤ (1/k)

k∑

i=1

f0(Qix)

= f0(x
?).

Therefore x? is also optimal.

(d) Suppose x? is a minimizer of f . Let x = (1/n!)
∑

P
Px?, where the sum is over all

permutations. Since x is invariant under any permutation, we conclude that x = α1
for some α ∈ R. By Jensen’s inequality we have

f(x) ≤ (1/n!)
∑

P

f(Px?) = f(x?),

which shows that x is also a minimizer.
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4.5 Equivalent convex problems. Show that the following three convex problems are equiva-
lent. Carefully explain how the solution of each problem is obtained from the solution of
the other problems. The problem data are the matrix A ∈ Rm×n (with rows aT

i ), the
vector b ∈ Rm, and the constant M > 0.

(a) The robust least-squares problem

minimize
∑m

i=1
φ(aT

i x− bi),

with variable x ∈ Rn, where φ : R → R is defined as

φ(u) =

{
u2 |u| ≤M
M(2|u| −M) |u| > M.

(This function is known as the Huber penalty function; see §6.1.2.)

(b) The least-squares problem with variable weights

minimize
∑m

i=1
(aT

i x− bi)
2/(wi + 1) +M21Tw

subject to w � 0,

with variables x ∈ Rn and w ∈ Rm, and domain D = {(x,w) ∈ Rn×Rm | w � −1}.
Hint. Optimize over w assuming x is fixed, to establish a relation with the problem
in part (a).

(This problem can be interpreted as a weighted least-squares problem in which we
are allowed to adjust the weight of the ith residual. The weight is one if wi = 0, and
decreases if we increase wi. The second term in the objective penalizes large values
of w, i.e., large adjustments of the weights.)

(c) The quadratic program

minimize
∑m

i=1
(u2

i + 2Mvi)
subject to −u− v � Ax− b � u+ v

0 � u �M1

v � 0.

Solution.

(a) Problems (a) and (b). For fixed u, the solution of the minimization problem

minimize u2/(w + 1) +M2w
subject to w � 0

is given by

w =

{
|u|/M − 1 |u| ≥M
0 otherwise.

(w = 0|u|/M−1 is the unconstrained minimizer of the objective function. If |u|/M−
1 ≥ 0 it is the optimum. Otherwise w = 0 is the optimum.) The optimal value is

inf
w�0

(
u2/(w + 1) +M2w

)
=

{
M(2|u| −M) |u| ≥M
u2 otherwise.

It follows that the optimal value of x in both problems is the same. The optimal w
in the second problem is given by

wi =

{
|aT

i x− bi|/M − 1 |aT
i x− bi| ≥M

0 otherwise.
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(b) Problems (a) and (c). Suppose we fix x in problem (c).

First we note that at the optimum we must have ui + vi = |aT
i x − bi|. Otherwise,

i.e., if ui, vi satisfy ui + vi > |aT
i x + bi with 0 ≤ ui ≤ M and vi ≥ 0, then, since

ui and vi are not both zero, we can decrease ui and/or vi without violating the
constraints. This also decreases the objective.

At the optimum we therefore have

vi = |aT
i x− bi| − ui.

Eliminating v yields the equivalent problem

minimize
∑m

i=1
(u2

i − 2Mui + 2M |aT
i x− bi|)

subject to 0 ≤ ui ≤ min{M, |aT
i x− bi|}

If |aT
i x− bi| ≤ M , the optimal choice for ui is ui = |aT

i x− bi|. In this case the ith
term in the objective function reduces to |aT

i x − bi|. If |aT
i x − bi| > M , we choose

ui = M , and the ith term in the objective function reduces to 2M |aT
i x− bi| −M2.

We conclude that, for fixed x, the optimal value of the problem in (c) is given by

m∑

i=1

φ(aT
i x− bi).

4.6 Handling convex equality constraints. A convex optimization problem can have only linear
equality constraint functions. In some special cases, however, it is possible to handle
convex equality constraint functions, i.e., constraints of the form g(x) = 0, where g is
convex. We explore this idea in this problem.

Consider the optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

h(x) = 0,
(4.65)

where fi and h are convex functions with domain Rn. Unless h is affine, this is not a
convex optimization problem. Consider the related problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

h(x) ≤ 0,
(4.66)

where the convex equality constraint has been relaxed to a convex inequality. This prob-
lem is, of course, convex.

Now suppose we can guarantee that at any optimal solution x? of the convex prob-
lem (4.66), we have h(x?) = 0, i.e., the inequality h(x) ≤ 0 is always active at the solution.
Then we can solve the (nonconvex) problem (4.65) by solving the convex problem (4.66).

Show that this is the case if there is an index r such that

• f0 is monotonically increasing in xr

• f1, . . . , fm are nonincreasing in xr

• h is monotonically decreasing in xr.

We will see specific examples in exercises 4.31 and 4.58.

Solution. Suppose x? is optimal for the relaxed problem, and h(x?) < 0. By the last
property, we can decrease xr while staying in the boundary of g. By decreasing xr we
decrease the objective, preserve the inequalities fi(x) ≤ 0, and increase the function h.
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4.7 Convex-concave fractional problems. Consider a problem of the form

minimize f0(x)/(c
Tx+ d)

subject to fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

where f0, f1, . . . , fm are convex, and the domain of the objective function is defined as
{x ∈ dom f0 | cTx+ d > 0}.
(a) Show that this is a quasiconvex optimization problem.

Solution. The domain of the objective is convex, because f0 is convex. The sublevel
sets are convex because f0(x)/(c

Tx+ d) ≤ α if and only if cTx+ d > 0 and f0(x) ≤
α(cTx+ d).

(b) Show that the problem is equivalent to

minimize g0(y, t)
subject to gi(y, t) ≤ 0, i = 1, . . . ,m

Ay = bt
cT y + dt = 1,

where gi is the perspective of fi (see §3.2.6). The variables are y ∈ Rn and t ∈ R.
Show that this problem is convex.

Solution. Suppose x is feasible in the original problem. Define t = 1/(cTx + d)
(a positive number), y = x/(cTx + d). Then t > 0 and it is easily verified that
t, y are feasible in the transformed problem, with the objective value g0(y, t) =
f0(x)/(c

Tx+ d).

Conversely, suppose y, t are feasible for the transformed problem. We must have
t > 0, by definition of the domain of the perspective function. Define x = y/t. We
have x ∈ dom fi for i = 0, . . . ,m (again, by definition of perspective). x is feasible
in the original problem, because

fi(x) = gi(y, t)/t ≤ 0, i = 1, . . . ,m Ax = A(y/t) = b.

From the last equality, cTx+ d = (cT y + dt)/t = 1/t, and hence,

t = 1/(cTx+ d), f0(x)/(c
Tx+ d) = tf0(x) = g0(y, t).

Therefore x is feasible in the original problem, with the objective value g0(y, t).

In conclusion, from any feasible point of one problem we can derive a feasible point
of the other problem, with the same objective value.

(c) Following a similar argument, derive a convex formulation for the convex-concave
fractional problem

minimize f0(x)/h(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

where f0, f1, . . . , fm are convex, h is concave, the domain of the objective function
is defined as {x ∈ dom f0 ∩ domh | h(x) > 0} and f0(x) ≥ 0 everywhere.

As an example, apply your technique to the (unconstrained) problem with

f0(x) = (trF (x))/m, h(x) = (det(F (x))1/m,

with dom(f0/h) = {x | F (x) � 0}, where F (x) = F0 + x1F1 + · · · + xnFn for given
Fi ∈ Sm. In this problem, we minimize the ratio of the arithmetic mean over the
geometric mean of the eigenvalues of an affine matrix function F (x).

Solution.
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(a) We first verify that the problem is quasiconvex. The domain of the objec-
tive function is convex, and its sublevel sets are convex because for α ≥ 0,
f0(x)/h(x) ≤ α if and only if f0(x) − αh(x) ≤ 0, which is a convex inequality.
For α < 0, the sublevel sets are empty.

(b) The convex formulation is

minimize g0(y, t)
subject to gi(y, t) ≤ 0, i = 1, . . . ,m

Ay = bt

h̃(y, t) ≤ −1

where gi is the perspective of fi and h̃ is the perspective of −h.
To verify the equivalence, assume first that x is feasible in the original problem.
Define t = 1/h(x) and y = x/h(x). Then t > 0 and

gi(y, t) = tfi(y/t) = tfi(x) ≤ 0, i = 1, . . . ,m, Ay = Ax/h(x) = bt.

Moreover, h̃(y, t) = th(y/t) = h(x)/h(x) = 1 and

g0(y, t) = tf0(y/t) = f0(x)/h(x).

We see that for every feasible point in the original problem we can find a feasible
point in the transformed problem, with the same objective value.
Conversely, assume y, t are feasible in the transformed problem. By definition
of perspective, t > 0. Define x = y/t. We have

fi(x) = fi(y/t) = gi(y, t)/t ≤ 0, i = 1, . . . ,m, Ax = A(y/t) = b.

From the last inequality, we have

h̃(y, t) = −th(y/t) = −th(x) ≤ −1.

This implies that h(x) > 0 and th(x) ≥ 1. And finally, the objective is

f0(x)/h(x) = g0(y, t)/(th(x)) ≤ g0(y, t).

We conclude that with every feasible point in the transformed problem there is
a corresponding feasible point in the original problem with the same or lower
objective value.
Putting the two parts together, we can conclude that the two problems have
the same optimal value, and that optimal solutions for one problem are optimal
for the other (if both are solvable).

(c)

minimize (1/m) tr(tF0 + y1F1 + · · · + ynFn)

subject to det(tF0 + y1F1 + · · · + ynFn)1/m ≥ 1

with domain

{(y, t) | t > 0, tF0 + y1F1 + · · · + ynFn � 0}.

Linear optimization problems

4.8 Some simple LPs. Give an explicit solution of each of the following LPs.

(a) Minimizing a linear function over an affine set.

minimize cTx
subject to Ax = b.

Solution. We distinguish three possibilities.
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• The problem is infeasible (b 6∈ R(A)). The optimal value is ∞.

• The problem is feasible, and c is orthogonal to the nullspace of A. We can
decompose c as

c = ATλ+ ĉ, Aĉ = 0.

(ĉ is the component in the nullspace of A; ATλ is orthogonal to the nullspace.)
If ĉ = 0, then on the feasible set the objective function reduces to a constant:

cTx = λTAx+ ĉTx = λT b.

The optimal value is λT b. All feasible solutions are optimal.

• The problem is feasible, and c is not in the range of AT (ĉ 6= 0). The problem
is unbounded (p? = −∞). To verify this, note that x = x0 − tĉ is feasible for
all t; as t goes to infinity, the objective value decreases unboundedly.

In summary,

p? =

{
+∞ b 6∈ R(A)
λT b c = ATλ for some λ
−∞ otherwise.

(b) Minimizing a linear function over a halfspace.

minimize cTx
subject to aTx ≤ b,

where a 6= 0.

Solution. This problem is always feasible. The vector c can be decomposed into a
component parallel to a and a component orthogonal to a:

c = aλ+ ĉ,

with aT ĉ = 0.

• If λ > 0, the problem is unbounded below. Choose x = −ta, and let t go to
infinity:

cTx = −tcT a = −tλaT a→ −∞
and

aTx− b = −taT a− b ≤ 0

for large t, so x is feasible for large t. Intuitively, by going very far in the
direction −a, we find feasible points with arbitrarily negative objective values.

• If ĉ 6= 0, the problem is unbounded below. Choose x = ba − tĉ and let t go to
infinity.

• If c = aλ for some λ ≤ 0, the optimal value is cT ab = λb.

In summary, the optimal value is

p? =

{
λb c = aλ for some λ ≤ 0
−∞ otherwise.

(c) Minimizing a linear function over a rectangle.

minimize cTx
subject to l � x � u,

where l and u satisfy l � u.

Solution. The objective and the constraints are separable: The objective is a sum of
terms cixi, each dependent on one variable only; each constraint depends on only one
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variable. We can therefore solve the problem by minimizing over each component of x
independently. The optimal x?

i minimizes cixi subject to the constraint li ≤ xi ≤ ui.
If ci > 0, then x?

i = li; if ci < 0, then x?
i = ui; if ci = 0, then any xi in the interval

[li, ui] is optimal. Therefore, the optimal value of the problem is

p? = lT c+ + uT c−,

where c+i = max{ci, 0} and c−i = max{−ci, 0}.
(d) Minimizing a linear function over the probability simplex.

minimize cTx
subject to 1Tx = 1, x � 0.

What happens if the equality constraint is replaced by an inequality 1Tx ≤ 1?

We can interpret this LP as a simple portfolio optimization problem. The vector
x represents the allocation of our total budget over different assets, with xi the
fraction invested in asset i. The return of each investment is fixed and given by −ci,
so our total return (which we want to maximize) is −cTx. If we replace the budget
constraint 1Tx = 1 with an inequality 1Tx ≤ 1, we have the option of not investing
a portion of the total budget.

Solution. Suppose the components of c are sorted in increasing order with

c1 = c2 = · · · = ck < ck+1 ≤ · · · ≤ cn.

We have
cTx ≥ c1(1

Tx) = cmin

for all feasible x, with equality if and only if

x1 + · · · + xk = 1, x1 ≥ 0, . . . , xk ≥ 0, xk+1 = · · · = xn = 0.

We conclude that the optimal value is p? = c1 = cmin. In the investment interpreta-
tion this choice is quite obvious. If the returns are fixed and known, we invest our
total budget in the investment with the highest return.

If we replace the equality with an inequality, the optimal value is equal to

p? = min{0, cmin}.
(If cmin ≤ 0, we make the same choice for x as above. Otherwise, we choose x = 0.)

(e) Minimizing a linear function over a unit box with a total budget constraint.

minimize cTx
subject to 1Tx = α, 0 � x � 1,

where α is an integer between 0 and n. What happens if α is not an integer (but
satisfies 0 ≤ α ≤ n)? What if we change the equality to an inequality 1Tx ≤ α?

Solution. We first consider the case of integer α. Suppose

c1 ≤ · · · ≤ ci−1 < ci = · · · = cα = · · · = ck < ck+1 ≤ · · · ≤ cn.

The optimal value is
c1 + c2 + · · · + cα

i.e., the sum of the smallest α elements of c. x is optimal if and only if

x1 = · · · = xi−1 = 1, xi + · · · + xk = α− i+ 1, xk+1 = · · · = xn = 0.

If α is not an integer, the optimal value is

p? = c1 + c2 + · · · + cbαc + c1+bαc(α− bαc).

In the case of an inequality constraint 1Tx ≤ α, with α an integer between 0 and n,
the optimal value is the sum of the α smallest nonpositive coefficients of c.
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(f) Minimizing a linear function over a unit box with a weighted budget constraint.

minimize cTx
subject to dTx = α, 0 � x � 1,

with d � 0, and 0 ≤ α ≤ 1T d.

Solution. We make a change of variables yi = dixi, and consider the problem

minimize
∑n

i=1
(ci/di)yi

subject to 1Tx = α, 0 � y � d.

Suppose the ratios ci/di have been sorted in increasing order:

c1
d1

≤ c2
d2

≤ · · · ≤ cn
dn
.

To minimize the objective, we choose

y1 = d1, y2 = d2, . . . , yk = dk,

yk+1 = α− (d1 + · · · + dk), yk+2 = · · · = yn = 0,

where k = max{i ∈ {1, . . . , n} | d1 + · · · + di ≤ α} (and k = 0 if d1 > α). In terms
of the original variables,

x1 = · · · = xk = 1, xk+1 = (α− (d1 + · · ·+ dk))/dk+1, xk+2 = · · · = xn = 0.

4.9 Square LP. Consider the LP
minimize cTx
subject to Ax � b

with A square and nonsingular. Show that the optimal value is given by

p? =

{
cTA−1b A−T c � 0
−∞ otherwise.

Solution. Make a change of variables y = Ax. The problem is equivalent to

minimize cTA−1y
subject to y � b.

If A−T c � 0, the optimal solution is y = b, with p? = cTA−1b. Otherwise, the LP is
unbounded below.

4.10 Converting general LP to standard form. Work out the details on page 147 of §4.3.
Explain in detail the relation between the feasible sets, the optimal solutions, and the
optimal values of the standard form LP and the original LP.

Solution. Suppose x is feasible in (4.27). Define

x+
i = min{0, xi}, x−i = min{0,−xi}, s = h−Gx.

It is easily verified that x+, x−, s are feasible in the standard form LP, with objective
value

cTx+ − cTx− + d = cTx− d.

Hence, for each feasible point in (4.27) we can find a feasible point in the standard form
LP with the same objective value. In particular, this implies that the optimal value of
the standard form LP is less than or equal to the optimal value of (4.27).
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Conversely, suppose x+, x−, s are feasible in the standard form LP. Define x = x+ − x−.
It is clear that x is feasible for (4.27), with objective value cTx+ d = cTx+ − cTx− + d.
Hence, for each feasible point in the standard form LP we can find a feasible point in (4.27)
with the same objective value. This implies that the optimal value of the standard form
LP is greater than or equal to the optimal value of (4.27).

We conclude that the optimal values are equal.

4.11 Problems involving `1- and `∞-norms. Formulate the following problems as LPs. Explain
in detail the relation between the optimal solution of each problem and the solution of its
equivalent LP.

(a) Minimize ‖Ax− b‖∞ (`∞-norm approximation).

(b) Minimize ‖Ax− b‖1 (`1-norm approximation).

(c) Minimize ‖Ax− b‖1 subject to ‖x‖∞ ≤ 1.

(d) Minimize ‖x‖1 subject to ‖Ax− b‖∞ ≤ 1.

(e) Minimize ‖Ax− b‖1 + ‖x‖∞.

In each problem, A ∈ Rm×n and b ∈ Rm are given. (See §6.1 for more problems involving
approximation and constrained approximation.)

Solution.

(a) Equivalent to the LP
minimize t
subject to Ax− b � t1

Ax− b ≥ −t1.
in the variables x, t. To see the equivalence, assume x is fixed in this problem, and
we optimize only over t. The constraints say that

−t ≤ aT
k x− bk ≤ t

for each k, i.e., t ≥ |aT
k x− bk|, i.e.,

t ≥ max
k

|aT
k x− bk| = ‖Ax− b‖∞.

Clearly, if x is fixed, the optimal value of the LP is p?(x) = ‖Ax − b‖∞. Therefore
optimizing over t and x simultaneously is equivalent to the original problem.

(b) Equivalent to the LP
minimize 1T s
subject to Ax− b � s

Ax− b ≥ −s.
Assume x is fixed in this problem, and we optimize only over s. The constraints say
that

−sk ≤ aT
k x− bk ≤ sk

for each k, i.e., sk ≥ |aT
k x − bk|. The objective function of the LP is separable, so

we achieve the optimum over s by choosing

sk = |aT
k x− bk|,

and obtain the optimal value p?(x) = ‖Ax− b‖1. Therefore optimizing over t and s
simultaneously is equivalent to the original problem.

(c) Equivalent to the LP

minimize 1T y
subject to −y � Ax− b � y

−1 ≤ x ≤ 1,

with variables x ∈ Rn and y ∈ Rm.
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(d) Equivalent to the LP

minimize 1T y
subject to −y ≤ x ≤ y

−1 ≤ Ax− b ≤ 1

with variables x and y.

Another good solution is to write x as the difference of two nonnegative vectors
x = x+ − x−, and to express the problem as

minimize 1Tx+ + 1Tx−

subject to −1 � Ax+ −Ax− − b � 1

x+ � 0, x− � 0,

with variables x+ ∈ Rn and x− ∈ Rn.

(e) Equivalent to

minimize 1T y + t
subject to −y � Ax− b � y

−t1 � x � t1,

with variables x, y, and t.

4.12 Network flow problem. Consider a network of n nodes, with directed links connecting each
pair of nodes. The variables in the problem are the flows on each link: xij will denote the
flow from node i to node j. The cost of the flow along the link from node i to node j is
given by cijxij , where cij are given constants. The total cost across the network is

C =

n∑

i,j=1

cijxij .

Each link flow xij is also subject to a given lower bound lij (usually assumed to be
nonnegative) and an upper bound uij .

The external supply at node i is given by bi, where bi > 0 means an external flow enters
the network at node i, and bi < 0 means that at node i, an amount |bi| flows out of the
network. We assume that 1T b = 0, i.e., the total external supply equals total external
demand. At each node we have conservation of flow: the total flow into node i along links
and the external supply, minus the total flow out along the links, equals zero.

The problem is to minimize the total cost of flow through the network, subject to the
constraints described above. Formulate this problem as an LP.

Solution. This can be formulated as the LP

minimize C =
∑n

i,j=1
cijxij

subject to bi +
∑n

j=1
xij −

∑n

j=1
xji = 0, i = 1, . . . , n

lij ≤ xij ≤ uij .

4.13 Robust LP with interval coefficients. Consider the problem, with variable x ∈ Rn,

minimize cTx
subject to Ax � b for all A ∈ A,

where A ⊆ Rm×n is the set

A = {A ∈ R
m×n | Āij − Vij ≤ Aij ≤ Āij + Vij , i = 1, . . . ,m, j = 1, . . . , n}.
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(The matrices Ā and V are given.) This problem can be interpreted as an LP where each
coefficient of A is only known to lie in an interval, and we require that x must satisfy the
constraints for all possible values of the coefficients.

Express this problem as an LP. The LP you construct should be efficient, i.e., it should
not have dimensions that grow exponentially with n or m.

Solution. The problem is equivalent to

minimize cTx
subject to Āx+ V |x| � b

where |x| = (|x1|, |x2|, . . . , |xn|). This in turn is equivalent to the LP

minimize cTx
subject to Āx+ V y � b

−y � x � y

with variables x ∈ Rn, y ∈ Rn.

4.14 Approximating a matrix in infinity norm. The `∞-norm induced norm of a matrix A ∈
Rm×n, denoted ‖A‖∞, is given by

‖A‖∞ = sup
x6=0

‖Ax‖∞
‖x‖∞

= max
i=1,...,m

n∑

j=1

|aij |.

This norm is sometimes called the max-row-sum norm, for obvious reasons (see §A.1.5).

Consider the problem of approximating a matrix, in the max-row-sum norm, by a linear
combination of other matrices. That is, we are given k+1 matrices A0, . . . , Ak ∈ Rm×n,
and need to find x ∈ Rk that minimizes

‖A0 + x1A1 + · · · + xkAk‖∞.

Express this problem as a linear program. Explain the significance of any extra variables
in your LP. Carefully explain how your LP formulation solves this problem, e.g., what is
the relation between the feasible set for your LP and this problem?

Solution. The problem can be formulated as an LP

minimize t
subject to −S �K A0 + x1A1 + · · · + xkak �K S

S1 � t1,

with variables S ∈ Rm×n, t ∈ R and x ∈ Rk. The inequality �K denotes componentwise
inequality between matrices, i.e., with respect to the cone

K = {X ∈ R
m×n | Xij ≥ 0, i = 1, . . . ,m, j = 1 . . . , n}.

To see the equivalence, suppose x and S are feasible in the LP. The last constraint means
that

t ≥
n∑

j=1

sij , i = 1, . . . ,m,

so the optimal choice of t is

t = max
i

n∑

j=1

Sij .
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This shows that the LP is equivalent to

minimize maxi(
∑n

j=1
Sij)

subject to −S �K A0 + x1A1 + · · · + xkak �K S.

Suppose x is given in this problem, and we optimize over S. The constraints in the LP
state that

−Sij ≤ A(x)ij ≤ Sij ,

(where A(x) = A0 + x1A1 + · · · + xkAk), and since the objective is monotone increasing
in Sij , the optimal choice for Sij is

Sij = |A(x)ij |.

The problem is now reduced to the original problem

minimize maxi=1,...,m

∑n

j=1
|A(x)ij |.

4.15 Relaxation of Boolean LP. In a Boolean linear program, the variable x is constrained to
have components equal to zero or one:

minimize cTx
subject to Ax � b

xi ∈ {0, 1}, i = 1, . . . , n.
(4.67)

In general, such problems are very difficult to solve, even though the feasible set is finite
(containing at most 2n points).

In a general method called relaxation, the constraint that xi be zero or one is replaced
with the linear inequalities 0 ≤ xi ≤ 1:

minimize cTx
subject to Ax � b

0 ≤ xi ≤ 1, i = 1, . . . , n.
(4.68)

We refer to this problem as the LP relaxation of the Boolean LP (4.67). The LP relaxation
is far easier to solve than the original Boolean LP.

(a) Show that the optimal value of the LP relaxation (4.68) is a lower bound on the
optimal value of the Boolean LP (4.67). What can you say about the Boolean LP
if the LP relaxation is infeasible?

(b) It sometimes happens that the LP relaxation has a solution with xi ∈ {0, 1}. What
can you say in this case?

Solution.

(a) The feasible set of the relaxation includes the feasible set of the Boolean LP. It
follows that the Boolean LP is infeasible if the relaxation is infeasible, and that
the optimal value of the relaxation is less than or equal to the optimal value of the
Boolean LP.

(b) The optimal solution of the relaxation is also optimal for the Boolean LP.

4.16 Minimum fuel optimal control. We consider a linear dynamical system with state x(t) ∈
Rn, t = 0, . . . , N , and actuator or input signal u(t) ∈ R, for t = 0, . . . , N − 1. The
dynamics of the system is given by the linear recurrence

x(t+ 1) = Ax(t) + bu(t), t = 0, . . . , N − 1,

where A ∈ Rn×n and b ∈ Rn are given. We assume that the initial state is zero, i.e.,
x(0) = 0.
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The minimum fuel optimal control problem is to choose the inputs u(0), . . . , u(N − 1) so
as to minimize the total fuel consumed, which is given by

F =

N−1∑

t=0

f(u(t)),

subject to the constraint that x(N) = xdes, where N is the (given) time horizon, and
xdes ∈ Rn is the (given) desired final or target state. The function f : R → R is the fuel
use map for the actuator, and gives the amount of fuel used as a function of the actuator
signal amplitude. In this problem we use

f(a) =

{
|a| |a| ≤ 1
2|a| − 1 |a| > 1.

This means that fuel use is proportional to the absolute value of the actuator signal, for
actuator signals between −1 and 1; for larger actuator signals the marginal fuel efficiency
is half.

Formulate the minimum fuel optimal control problem as an LP.

Solution.
minimize 1T t
subject to Hu = xdes

−y � u � y
t � y
t � 2y − 1

where
H =

[
AN−1b AN−2b · · · Ab b

]
.

4.17 Optimal activity levels. We consider the selection of n nonnegative activity levels, denoted
x1, . . . , xn. These activities consume m resources, which are limited. Activity j consumes
Aijxj of resource i, where Aij are given. The total resource consumption is additive, so
the total of resource i consumed is ci =

∑n

j=1
Aijxj . (Ordinarily we have Aij ≥ 0, i.e.,

activity j consumes resource i. But we allow the possibility that Aij < 0, which means
that activity j actually generates resource i as a by-product.) Each resource consumption
is limited: we must have ci ≤ cmax

i , where cmax
i are given. Each activity generates revenue,

which is a piecewise-linear concave function of the activity level:

rj(xj) =

{
pjxj 0 ≤ xj ≤ qj

pjqj + pdisc
j (xj − qj) xj ≥ qj .

Here pj > 0 is the basic price, qj > 0 is the quantity discount level, and pdisc
j is the

quantity discount price, for (the product of) activity j. (We have 0 < pdisc
j < pj .) The

total revenue is the sum of the revenues associated with each activity, i.e.,
∑n

j=1
rj(xj).

The goal is to choose activity levels that maximize the total revenue while respecting the
resource limits. Show how to formulate this problem as an LP.

Solution. The basic problem can be expressed as

maximize
∑n

j=1
rj(xj)

subject to x � 0
Ax � cmax.

This is a convex optimization problem since the objective is concave and the constraints
are a set of linear inequalities. To transform it to an equivalent LP, we first express the
revenue functions as

rj(xj) = min{pjxj , pjqj + pdisc
j (xj − qj)},
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which holds since rj is concave. It follows that rj(xj) ≥ uj if and only if

pjxj ≥ uj , pjqj + pdisc
j (xj − qj) ≥ uj .

We can form an LP as

maximize 1Tu
subject to x � 0

Ax � cmax

pjxj ≥ uj , pjqj + pdisc
j (xj − qj) ≥ uj , j = 1, . . . , n,

with variables x and u.

To show that this LP is equivalent to the original problem, let us fix x. The last set of
constraints in the LP ensure that ui ≤ ri(x), so we conclude that for every feasible x, u
in the LP, the LP objective is less than or equal to the total revenue. On the other hand,
we can always take ui = ri(x), in which case the two objectives are equal.

4.18 Separating hyperplanes and spheres. Suppose you are given two sets of points in Rn,
{v1, v2, . . . , vK} and {w1, w2, . . . , wL}. Formulate the following two problems as LP fea-
sibility problems.

(a) Determine a hyperplane that separates the two sets, i.e., find a ∈ Rn and b ∈ R
with a 6= 0 such that

aT vi ≤ b, i = 1, . . . ,K, aTwi ≥ b, i = 1, . . . , L.

Note that we require a 6= 0, so you have to make sure that your formulation excludes
the trivial solution a = 0, b = 0. You can assume that

rank

[
v1 v2 · · · vK w1 w2 · · · wL

1 1 · · · 1 1 1 · · · 1

]
= n+ 1

(i.e., the affine hull of the K + L points has dimension n).

(b) Determine a sphere separating the two sets of points, i.e., find xc ∈ Rn and R ≥ 0
such that

‖vi − xc‖2 ≤ R, i = 1, . . . ,K, ‖wi − xc‖2 ≥ R, i = 1, . . . , L.

(Here xc is the center of the sphere; R is its radius.)

(See chapter 8 for more on separating hyperplanes, separating spheres, and related topics.)

Solution.

(a) The conditions

aT vi ≤ b, i = 1, . . . ,K, aTwi ≥ b, i = 1, . . . , L

form a set of K + L linear inequalities in the variables a, b, which we can write in
matrix form as

Bx � 0

where

B =




−(v1)T 1
...

...
−(vK)T 1
−(w1)T −1

...
...

−(wL)T −1




∈ R
(K+L)×(n+1), x =

[
a
b

]
.
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We are interested in nonzero solutions of Bx � 0.

The rank assumption implies that rankB = n+1. Therefore, its nullspace contains
only the zero vector, i.e., x 6= 0 implies Bx 6= 0. We can force x to be nonzero by
adding a constraint 1TBx = 1. (On the right hand side we could choose any other
positive constraint instead of 1.) This forces at least one component of Bx to be
positive. In other words we can find nonzero solution to Bx � 0 by solving the LP
feasibility problem

Bx � 0, 1
TBx = 1.

(b) We begin by writing the inequalities as

‖vi‖2
2 − 2(vi)Txc + ‖xc‖2

2 ≤ R2, i = 1, . . . ,K,
‖wi‖2

2 − 2(wi)Txc + ‖xc‖2
2 ≥ R2, i = 1, . . . , L.

These inequalities are not linear in xc and R. However, if we use as variables xc and
γ = R2 − ‖xc‖2

2, then they reduce to

‖vi‖2
2 − 2(vi)Txc ≤ γ, i = 1, . . . ,K, ‖wi‖2

2 − 2(wi)Txc ≥ γ, i = 1, . . . , L,

which is a set of linear inequalities in xc ∈ Rn and γ ∈ R. We can solve this
feasibility problem for xc and γ, and compute R as

R =
√
γ + ‖xc‖2

2.

We can be certain that γ + ‖xc‖2 ≥ 0: If xc and γ are feasible, then

γ + ‖xc‖2
2 ≥ ‖vi‖2

2 − 2(vi)Txc + ‖xc‖2
2 = ‖vi − xc‖2

2 ≥ 0.

4.19 Consider the problem
minimize ‖Ax− b‖1/(c

Tx+ d)
subject to ‖x‖∞ ≤ 1,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. We assume that d > ‖c‖1, which implies
that cTx+ d > 0 for all feasible x.

(a) Show that this is a quasiconvex optimization problem.

(b) Show that it is equivalent to the convex optimization problem

minimize ‖Ay − bt‖1

subject to ‖y‖∞ ≤ t
cT y + dt = 1,

with variables y ∈ Rn, t ∈ R.

Solution.

(a) f0(x) ≤ α if and only if

‖Ax− b‖1 − α(cTx+ d) ≤ 0,

which is a convex constraint.

(b) Suppose ‖x‖∞ ≤ 1. We have cTx+ d > 0, because d > ‖c‖1. Define

y = x/(cTx+ d), t = 1/(cTx+ d).

Then y and t are feasible in the convex problem with objective value

‖Ay − bt‖1 = ‖Ax− b‖1/(c
Tx+ d).
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Conversely, suppose y, t are feasible for the convex problem. We must have t > 0,
since t = 0 would imply y = 0, which contradicts cT y + dt = 1. Define

x = y/t.

Then ‖x‖∞ ≤ 1, and cTx+ d = 1/t, and hence

‖Ax− b‖1/(c
Tx+ d) = ‖Ay − bt‖1.

4.20 Power assignment in a wireless communication system. We consider n transmitters with
powers p1, . . . , pn ≥ 0, transmitting to n receivers. These powers are the optimization
variables in the problem. We let G ∈ Rn×n denote the matrix of path gains from the
transmitters to the receivers; Gij ≥ 0 is the path gain from transmitter j to receiver i.
The signal power at receiver i is then Si = Giipi, and the interference power at receiver i
is Ii =

∑
k 6=i

Gikpk. The signal to interference plus noise ratio, denoted SINR, at receiver

i, is given by Si/(Ii + σi), where σi > 0 is the (self-) noise power in receiver i. The
objective in the problem is to maximize the minimum SINR ratio, over all receivers, i.e.,
to maximize

min
i=1,...,n

Si

Ii + σi
.

There are a number of constraints on the powers that must be satisfied, in addition to the
obvious one pi ≥ 0. The first is a maximum allowable power for each transmitter, i.e.,
pi ≤ Pmax

i , where Pmax
i > 0 is given. In addition, the transmitters are partitioned into

groups, with each group sharing the same power supply, so there is a total power constraint
for each group of transmitter powers. More precisely, we have subsets K1, . . . ,Km of
{1, . . . , n} with K1 ∪ · · · ∪Km = {1, . . . , n}, and Kj ∩Kl = 0 if j 6= l. For each group Kl,
the total associated transmitter power cannot exceed P gp

l > 0:

∑

k∈Kl

pk ≤ P gp
l , l = 1, . . . ,m.

Finally, we have a limit P rc
k > 0 on the total received power at each receiver:

n∑

k=1

Gikpk ≤ P rc
i , i = 1, . . . , n.

(This constraint reflects the fact that the receivers will saturate if the total received power
is too large.)

Formulate the SINR maximization problem as a generalized linear-fractional program.

Solution.

minimize maxi(
∑

k 6=i
Gikpk + σi)/(Giipi)

0 ≤ pi ≤ Pmax
i∑

k∈Kl
pk ≤ P gp

l∑n

k=1
Gikpk ≤ P rc

i

Quadratic optimization problems

4.21 Some simple QCQPs. Give an explicit solution of each of the following QCQPs.

(a) Minimizing a linear function over an ellipsoid centered at the origin.

minimize cTx
subject to xTAx ≤ 1,
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where A ∈ Sn
++ and c 6= 0. What is the solution if the problem is not convex

(A 6∈ Sn
+)?

Solution. If A � 0, the solution is

x? = − 1√
cTA−1c

A−1c, p? = −‖A−1/2c‖2 = −
√
cTA−1c.

This can be shown as follows. We make a change of variables y = A1/2x, and write
c̃ = A−1/2c. With this new variable the optimization problem becomes

minimize c̃T y
subject to yT y ≤ 1,

i.e., we minimize a linear function over the unit ball. The answer is y? = −c̃/‖c̃‖2.

In the general case, we can make a change of variables based on the eigenvalue
decomposition

A = Qdiag(λ)QT =

n∑

i=1

λiqiq
T
i .

We define y = Qx, b = Qc, and express the problem as

minimize
∑n

i=1
biyi

subject to
∑n

i=1
λiy

2
i ≤ 1.

If λi > 0 for all i, the problem reduces to the case we already discussed. Otherwise,
we can distinguish several cases.

• λn < 0. The problem is unbounded below. By letting yn → ±∞, we can make
any point feasible.

• λn = 0. If for some i, bi 6= 0 and λi = 0, the problem is unbounded below.

• λn = 0, and bi = 0 for all i with λi = 0. In this case we can reduce the problem
to a smaller one with all λi > 0.

(b) Minimizing a linear function over an ellipsoid.

minimize cTx
subject to (x− xc)

TA(x− xc) ≤ 1,

where A ∈ Sn
++ and c 6= 0.

Solution. We make a change of variables

y = A1/2(x− xc), x = A−1/2y + xc,

and consider the problem

minimize cTA−1/2y + cTxc

subject to yT y ≤ 1.

The solution is

y? = −(1/‖A−1/2c‖2)A
−1/2c, x? = xc − (1/‖A−1/2c‖2)A

−1c.
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(c) Minimizing a quadratic form over an ellipsoid centered at the origin.

minimize xTBx
subject to xTAx ≤ 1,

where A ∈ Sn
++ and B ∈ Sn

+. Also consider the nonconvex extension with B 6∈ Sn
+.

(See §B.1.)

Solution. If B � 0, then the optimal value is obviously zero (since xTBx ≥ 0 for
all x, with equality if x = 0).

In the general case, we use the following fact from linear algebra. The smallest
eigenvalue of B ∈ Sn, can be characterized as

λmin(B) = inf
xT x=1

xTBx.

To solve the optimization problem

minimize xTBx
subject to xTAx ≤ 1,

with A � 0, we make a change of variables y = A1/2x. This is possible since A � 0,
so A1/2 is defined and nonsingular. In the new variables the problem becomes

minimize yTA−1/2BA−1/2y
subject to yT y ≤ 1.

If the constraint yT y ≤ 1 is active at the optimum (yT y = 1), then the optimal
value is

λmin(A−1/2BA−1/2),

by the result mentioned above. If yT y < 1 at the optimum, then it must be at a
point where the gradient of the objective function vanishes, i.e., By = 0. In that
case the optimal value is zero.

To summarize, the optimal value is

p? =

{
λmin(A−1/2BA−1/2) λmin(A−1/2BA−1/2) ≤ 0
0 otherwise.

In the first case any (normalized) eigenvector of A−1/2BA−1/2 corresponding to the
smallest eigenvalue is an optimal y. In the second case y = 0 is optimal.

4.22 Consider the QCQP
minimize (1/2)xTPx+ qTx+ r
subject to xTx ≤ 1,

with P ∈ Sn
++. Show that x? = −(P + λI)−1q where λ = max{0, λ̄} and λ̄ is the largest

solution of the nonlinear equation

qT (P + λI)−2q = 1.

Solution. x is optimal if and only if

xTx < 1, Px+ q = 0

or
xTx = 1, Px+ q = −λx
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for some λ ≥ 0. (Geometrically, either x is in the interior of the ball and the gradient
vanishes, or x is on the boundary, and the negative gradient is parallel to the outward
pointing normal.)

The algorithm goes as follows. First solve Px = −q. If the solution has norm less than
or equal to one (‖P−1q‖2 ≤ 1), it is optimal. Otherwise, from the optimality conditions,
x must satisfy ‖x‖2 = 1 and (P + λ)x = −q for some λ ≥ 0. Define

f(λ) = ‖(P + λ)−1q‖2
2 =

n∑

i=1

q2i
(λ+ λi)2

,

where λi > 0 are the eigenvalues of P . (Note that P + λI � 0 for all λ ≥ 0 because
P � 0.) We have f(0) = ‖P−1q‖2

2 > 1. Also f monotonically decreases to zero as λ→ ∞.
Therefore the nonlinear equation f(λ) = 1 has exactly one nonnegative solution λ̄. Solve
for λ̄. The optimal solution is x? = −(P + λ̄I)−1q.

4.23 `4-norm approximation via QCQP. Formulate the `4-norm approximation problem

minimize ‖Ax− b‖4 = (
∑m

i=1
(aT

i x− bi)
4)1/4

as a QCQP. The matrix A ∈ Rm×n (with rows aT
i ) and the vector b ∈ Rm are given.

Solution.

minimize
∑m

i=1
z2

i

subject to aT
i x− bi = yi, i = 1, . . . ,m
y2

i ≤ zi, i = 1, . . . ,m

4.24 Complex `1-, `2- and `∞-norm approximation. Consider the problem

minimize ‖Ax− b‖p,

where A ∈ Cm×n, b ∈ Cm, and the variable is x ∈ Cn. The complex `p-norm is defined
by

‖y‖p =

(
m∑

i=1

|yi|p
)1/p

for p ≥ 1, and ‖y‖∞ = maxi=1,...,m |yi|. For p = 1, 2, and ∞, express the complex `p-norm
approximation problem as a QCQP or SOCP with real variables and data.

Solution.

(a) Minimizing ‖Ax − b‖2 is equivalent to minimizing its square. So, let us expand
‖Ax− b‖2

2 around the real and complex parts of Ax− b:

‖Ax− b‖2
2 = ‖<(Ax− b)‖2

2 + ‖=(Ax− b)‖2
2

= ‖<A<x−=A=x−<b‖2
2 + ‖<A=x+ =A<x−=b‖2

2.

If we define zT = [<xT =xT ] as requested, then this becomes

‖Ax− b‖2
2 = ‖[<A −=A]z −<b‖2 + ‖[=A <A]z −=b‖2

=

∥∥∥∥
[

<A −=A
=A <A

]
z −

[
<b
=b

]∥∥∥∥
2

2

.

The values of F and g can be extracted from the above expression.
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(b) First, let’s write out the optimization problem term-by-term:

minimize ‖Ax− b‖∞
is equivalent to

minimize t
subject to |aT

i x− b| < t
i = 1, . . . ,m,

where aT
1 , . . . , a

T
m are the rows of A. We have introduced a new optimization variable

t.

Each term |aT
i x − b| must now be written in terms of real variables (we’ll use the

same z as before):

|aT
i x− b|2 = (<aT

i <x−=aT
i =x−<b)2 + (<aT

i =x+ =aT
i <x−=b)2

=

∥∥∥∥
[

<aT
i −=aT

i

=aT
i <aT

i

]
z −

[
<b
=b

]∥∥∥∥
2

2

.

So now we have reduced the problem to the real minimization,

minimize t

subject to

∥∥∥∥
[

<aT
i −=aT

i

=aT
i <aT

i

]
z −

[
<b
=b

]∥∥∥∥
2

< t

i = 1, . . . ,m.

This is a minimization over a second-order cone. It can be converted into a QCQP
by squaring both sides of the constraint and defining λ = t2:

minimize λ

subject to

∥∥∥∥
[

<aT
i −=aT

i

=aT
i <aT

i

]
z −

[
<b
=b

]∥∥∥∥
2

2

< λ

i = 1, . . . ,m.

(c) The `1-norm minimization problem is to minimize ‖Ax− b‖1, i.e.,

minimize
∑m

i=1
|aT

i x− b|
Let us introduce new variables t1, . . . , tm, and rewrite the minimization as follows:

minimize
∑m

i=1
ti

subject to |aT
i x− b| < ti,

i = 1, . . . ,m.

The conversion to second-order constraints is similar to part (b):

minimize
∑m

i=1
ti

subject to

∥∥∥∥
[

<aT
i −=aT

i

=aT
i <aT

i

]
z −

[
<b
=b

]∥∥∥∥
2

< ti, i = 1, . . . ,m.

4.25 Linear separation of two sets of ellipsoids. Suppose we are given K + L ellipsoids

Ei = {Piu+ qi | ‖u‖2 ≤ 1}, i = 1, . . . ,K + L,

where Pi ∈ Sn. We are interested in finding a hyperplane that strictly separates E1, . . . ,
EK from EK+1, . . . , EK+L, i.e., we want to compute a ∈ Rn, b ∈ R such that

aTx+ b > 0 for x ∈ E1 ∪ · · · ∪ EK , aTx+ b < 0 for x ∈ EK+1 ∪ · · · ∪ EK+L,
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or prove that no such hyperplane exists. Express this problem as an SOCP feasibility
problem.

Solution. We first note that the problem is homogeneous in a and b, so we can replace
the strict inequalities aTx+ b > 0 and aTx+ b < 0 with aTx+ b ≥ 1 and aTx+ b ≤ −1,
respectively.

The variables a and b must satisfy

inf
‖u‖2≤1

(aTPiu+ aT qi) ≥ 1, 1, . . . , L

and
sup

‖u‖2≤1

(aTPiu+ aT qi) ≤ −1, i = K + 1, . . . ,K + L.

The lefthand sides can be expressed as

inf
‖u‖2≤1

(aTPiu+a
T qi) = −‖P T

i a‖2+a
T qi+b, sup

‖u‖2≤1

(aTPiu+a
T qi) = ‖PT

i a‖2+a
T qi+b.

We therefore obtain a set of second-order cone constraints in a, b:

−‖PT
i a‖2 + aT qi + b ≥ 1, i = 1, . . . , L

‖PT
i a‖2 + aT qi + b ≤ −1, i = K + 1, . . . ,K + L.

4.26 Hyperbolic constraints as SOC constraints. Verify that x ∈ Rn, y, z ∈ R satisfy

xTx ≤ yz, y ≥ 0, z ≥ 0

if and only if ∥∥∥∥
[

2x
y − z

]∥∥∥∥
2

≤ y + z, y ≥ 0, z ≥ 0.

Use this observation to cast the following problems as SOCPs.

(a) Maximizing harmonic mean.

maximize
(∑m

i=1
1/(aT

i x− bi)
)−1

,

with domain {x | Ax � b}, where aT
i is the ith row of A.

(b) Maximizing geometric mean.

maximize
(∏m

i=1
(aT

i x− bi)
)1/m

,

with domain {x | Ax � b}, where aT
i is the ith row of A.

Solution.

(a) The problem is equivalent to

minimize 1T t
subject to ti(a

T
i x+ bi) ≥ 1, i = 1, . . . ,m

t � 0.

Writing the hyperbolic constraints as SOC constraints yields an SOCP

minimize 1T t

subject to

∥∥∥∥
[

2
aT

i x+ bi − ti

]∥∥∥∥
2

≤ aT
i x+ bi + ti, i = 1, . . . ,m

ti ≥ 0, aT
i x+ bi ≥ 0, i = 1, . . . ,m.
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(b) We can assume without loss of generality that m = 2K for some positive integer K.
(If not, define ai = 0 and bi = −1 for i = m + 1, . . . , 2K , where 2K is the smallest
power of two greater than m.)

Let us first take m = 4 (K = 2) as an example. The problem is equivalent to

maximize y1y2y3y4
subject to y = Ax− b

y � 0,

which we can write as

maximize t1t2
subject to y = Ax− b

y1y2 ≥ t21
y3y4 ≥ t22
y � 0, t1 ≥ 0, t2 ≥ 0,

and also as
maximize t
subject to y = Ax− b

y1y2 ≥ t21
y3y4 ≥ t22
t1t2 ≥ t2

y � 0, t1, t2, t ≥ 0.

Expressing the three hyperbolic constraints

y1y2 ≥ t21, y3y4 ≥ t22, t1t2 ≥ t2

as SOC constraints yields an SOCP:

minimize −t

subject to

∥∥∥∥
[

2t1
y1 − y2

]∥∥∥∥
2

≤ y1 + y2, y1 ≥ 0, y2 ≥ 0

∥∥∥∥
[

2t2
y3 − y4

]∥∥∥∥
2

≤ y3 + y4, y3 ≥ 0, y4 ≥ 0

∥∥∥∥
[

2t
t1 − t2

]∥∥∥∥
2

≤ t1 + t2, t1 ≥ 0, t2 ≥ 0

y = Ax− b.

We can express the problem as

maximize y00
subject to yK−1,j−1 = aT

j x− bj , j = 1, . . . ,m
y2

ik ≤ yi+1,2kyi+1,2k+1, i = 0, . . . ,K − 2, k = 0, . . . 2i − 1
Ax � b,

where we have introduced auxiliary variables yij for i = 0, . . . ,K−1, j = 0, . . . , 2i−1.
Expressing the hyperbolic constraints as SOC constraints yields an SOCP.

The equivalence can be proved by recursively expanding the objective function:

y00 ≤ y10y11

≤ (y20y21) (y22y23)
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≤ (y30y31)(y32y33)(y34y35)(y36y37)

· · ·
≤ yK−1,0 yK−1,1 · · · yK−1,2K−1

= (aT
1 x− b1) · · · (aT

mx− bm).

4.27 Matrix fractional minimization via SOCP. Express the following problem as an SOCP:

minimize (Ax+ b)T (I +B diag(x)BT )−1(Ax+ b)
subject to x � 0,

with A ∈ Rm×n, b ∈ Rm, B ∈ Rm×n. The variable is x ∈ Rn.

Hint. First show that the problem is equivalent to

minimize vT v + wT diag(x)−1w
subject to v +Bw = Ax+ b

x � 0,

with variables v ∈ Rm, w, x ∈ Rn. (If xi = 0 we interpret w2
i /xi as zero if wi = 0 and as

∞ otherwise.) Then use the results of exercise 4.26.

Solution. To show the equivalence with the problem in the hint, we assume x � 0 is
fixed, and optimize over v and w. This is a quadratic problem with equality constraints.
The optimality conditions are

v = ν, w = diag(x)BT ν

for some ν. Substituting in the equality constraint, we see that ν must satisfy

(I +B diag(x)BT )ν = Ax+ b,

and, since the matrix on the left is invertible for x � 0,

v = ν = (I+B diag(x)BT )−1(Ax+b), w = diag(x)BT (I+B diag(x)BT )−1(Ax+b).

Substituting in the objective of the problem in the hint, we obtain

vT v + wT
diag(x)−1w = (Ax+ b)T (I +B diag(x)BT )−1(Ax+ b).

This shows that the problem is equivalent to the problem in the hint.

As in exercise 4.26, we now introduce hyperbolic constraints and formulate the problem
in the hint as

minimize t+ 1T s
subject to vT v ≤ t

w2
i ≤ sixi, i = 1, . . . , n

x � 0

with variables t ∈ R, s, x, w ∈ Rn, v ∈ Rm. Converting the hyperbolic constraints into
SOC constraints results in an SOCP.

4.28 Robust quadratic programming. In §4.4.2 we discussed robust linear programming as an
application of second-order cone programming. In this problem we consider a similar
robust variation of the (convex) quadratic program

minimize (1/2)xTPx+ qTx+ r
subject to Ax � b.

For simplicity we assume that only the matrix P is subject to errors, and the other
parameters (q, r, A, b) are exactly known. The robust quadratic program is defined as

minimize supP∈E((1/2)xTPx+ qTx+ r)
subject to Ax � b



4 Convex optimization problems

where E is the set of possible matrices P .

For each of the following sets E , express the robust QP as a convex problem. Be as specific
as you can. If the problem can be expressed in a standard form (e.g., QP, QCQP, SOCP,
SDP), say so.

(a) A finite set of matrices: E = {P1, . . . , PK}, where Pi ∈ Sn
+, i = 1, . . . ,K.

(b) A set specified by a nominal value P0 ∈ Sn
+ plus a bound on the eigenvalues of the

deviation P − P0:
E = {P ∈ S

n | −γI � P − P0 � γI}
where γ ∈ R and P0 ∈ Sn

+,

(c) An ellipsoid of matrices:

E =

{
P0 +

K∑

i=1

Piui

∣∣∣∣∣ ‖u‖2 ≤ 1

}
.

You can assume Pi ∈ Sn
+, i = 0, . . . ,K.

Solution.

(a) The objective function is a maximum of convex function, hence convex.

We can write the problem as

minimize t
subject to (1/2)xTPix+ qTx+ r ≤ t, i = 1, . . . ,K

Ax � b,

which is a QCQP in the variable x and t.

(b) For given x, the supremum of xT ∆Px over −γI � ∆P � γI is given by

sup
−γI�∆P�γI

xT ∆Px = γxTx.

Therefore we can express the robust QP as

minimize (1/2)xT (P0 + γI)x+ qTx+ r
subject to Ax � b

which is a QP.

(c) For given x, the quadratic objective function is

(1/2)

(
xTP0x+ sup

‖u‖2≤1

K∑

i=1

ui(x
TPix)

)
+ qTx+ r

= (1/2)xTP0x+ (1/2)

(
K∑

i=1

(xTPix)
2

)1/2

+ qTx+ r.

This is a convex function of x: each of the functions xTPix is convex since Pi � 0.
The second term is a composition h(g1(x), . . . , gK(x)) of h(y) = ‖y‖2 with gi(x) =
xTPix. The functions gi are convex and nonnegative. The function h is convex and,
for y ∈ RK

+ , nondecreasing in each of its arguments. Therefore the composition is
convex.

The resulting problem can be expressed as

minimize (1/2)xTP0x+ ‖y‖2 + qTx+ r
subject to (1/2)xTPix ≤ yi, i = 1, . . . ,K

Ax � b
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which can be further reduced to an SOCP

minimize u+ t

subject to

∥∥∥∥
[

P
1/2
0 x

2u− 1/4

]∥∥∥∥
2

≤ 2u+ 1/4

∥∥∥∥
[

P
1/2
i x

2yi − 1/4

]∥∥∥∥
2

≤ 2yi + 1/4, i = 1, . . . ,K

‖y‖2 ≤ t
Ax � b.

The variables are x, u, t, and y ∈ RK .

Note that if we square both sides of the first inequality, we obtain

xTP0x+ (2u− 1/4)2 ≤ (2u+ 1/4)2,

i.e., xTP0x ≤ 2u. Similarly, the other constraints are equivalent to (1/2)xTPix ≤ yi.

4.29 Maximizing probability of satisfying a linear inequality. Let c be a random variable in Rn,
normally distributed with mean c̄ and covariance matrix R. Consider the problem

maximize prob(cTx ≥ α)
subject to Fx � g, Ax = b.

Find the conditions under which this is equivalent to a convex or quasiconvex optimization
problem. When these conditions hold, formulate the problem as a QP, QCQP, or SOCP
(if the problem is convex), or explain how you can solve it by solving a sequence of QP,
QCQP, or SOCP feasibility problems (if the problem is quasiconvex).

Solution. The problem can be expressed as a convex or quasiconvex problem if α < c̄Tx
for all feasible x.

Before working out the details, we first consider the special case with c̄ = 0. In this case
cTx is a random variable, normally distributed with E(cTx) = 0 and E(cTx)2 = xTRx.
If α < 0, maximizing prob(cTx ≥ α) means minimizing the variance, i.e., minimizing
xTRx, subject to the constraints on x, which is a convex problem (in fact a QP). On the
other hand, if α > 0, we maximize prob(cTx ≥ α) by maximizing the variance xTRx,
which is very difficult.

We now turn to the general case with c̄ 6= 0. Define u = cTx, a scalar random variable,
normally distributed with Eu = c̄Tx and E(u− Eu)2 = xTRx. The random variable

u− c̄Tx√
xTRx

has a normal distribution with mean zero, and unit variance, so

prob(u ≥ α) = prob

(
u− c̄Tx√
xTRx

≥ α− c̄Tx√
xTRx

)
= 1 − Φ

(
α− c̄Tx√
xTRx

)
,

where Φ(z) = 1√
2π

∫ z

−∞ e−t2/2dt, a monotonically increasing function.

To maximize 1 − Φ, we can minimize (α− c̄Tx)/
√
xTRx, i.e., solve the problem

maximize (c̄Tx− α)/
√
xTRx

subject to Fx � g
Ax = b.
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Equivalently, if c̄Tx > α for all feasible x, we can also minimize the reciprocal of the
objective function:

minimize
√
xTRx/(c̄Tx− α)

subject to Fx � g
Ax = b.

If c̄Tx > α for all feasible x, this is a quasiconvex optimization problem, which we can
solve by bisection. Each bisection step requires the solution of of an SOCP feasibility
problem √

xTRx ≤ t(c̄Tx− α), Fx � g, Ax = b.

The problem can also be expressed as a convex problem, by making a change of variables

y =
x

c̄Tx− α
, t =

1

c̄Tx− α
.

This yields the problem

minimize
√
yTRy

subject to Fy � gt
Ay = bt
cT0 y − αt = 1
t ≥ 0.

If we square the objective this is a quadratic program.

Geometric programming

4.30 A heated fluid at temperature T (degrees above ambient temperature) flows in a pipe
with fixed length and circular cross section with radius r. A layer of insulation, with
thickness w � r, surrounds the pipe to reduce heat loss through the pipe walls. The
design variables in this problem are T , r, and w.

The heat loss is (approximately) proportional to Tr/w, so over a fixed lifetime, the energy
cost due to heat loss is given by α1Tr/w. The cost of the pipe, which has a fixed wall
thickness, is approximately proportional to the total material, i.e., it is given by α2r. The
cost of the insulation is also approximately proportional to the total insulation material,
i.e., α3rw (using w � r). The total cost is the sum of these three costs.

The heat flow down the pipe is entirely due to the flow of the fluid, which has a fixed
velocity, i.e., it is given by α4Tr

2. The constants αi are all positive, as are the variables
T , r, and w.

Now the problem: maximize the total heat flow down the pipe, subject to an upper limit
Cmax on total cost, and the constraints

Tmin ≤ T ≤ Tmax, rmin ≤ r ≤ rmax, wmin ≤ w ≤ wmax, w ≤ 0.1r.

Express this problem as a geometric program.

Solution. The problem is

maximize α4Tr
2

subject to α1Tw
−1 + α2r + α3rw ≤ Cmax

Tmin ≤ T ≤ Tmax

rmin ≤ r ≤ rmax

wmin ≤ w ≤ wmax

w ≤ 0.1r.
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This is equivalent to the GP

minimize (1/α4)T
−1r−2

subject to (α1/Cmax)Tw
−1 + (α2/Cmax)r + (α3/Cmax)rw ≤ 1

(1/Tmax)T ≤ 1, TminT
−1 ≤ 1

(1/rmax)r ≤ 1, rminr
−1 ≤ 1

(1/wmax)w ≤ 1, wminw
−1 ≤ 1

10wr−1 ≤ 1.

4.31 Recursive formulation of optimal beam design problem. Show that the GP (4.46) is equiv-
alent to the GP

minimize
∑N

i=1
wihi

subject to wi/wmax ≤ 1, wmin/wi ≤ 1, i = 1, . . . , N
hi/hmax ≤ 1, hmin/hi ≤ 1, i = 1, . . . , N
hi/(wiSmax) ≤ 1 i = 1, . . . , N
6iF/(σmaxwih

2
i ) ≤ 1, i = 1, . . . , N

(2i− 1)di/vi + vi+1/vi ≤ 1, i = 1, . . . , N
(i− 1/3)di/yi + vi+1/yi + yi+1/yi ≤ 1, i = 1, . . . , N
y1/ymax ≤ 1
Ewih

3
i di/(6F ) = 1, i = 1, . . . , N.

The variables are wi, hi, vi, di, yi for i = 1, . . . , N .

Solution. The problem is then

minimize
∑N

i=1
wihi

subject to wmin ≤ wi ≤ wmax, i = 1, . . . , N
hmin ≤ hi ≤ hmax, i = 1, . . . , N
Smin ≤ hi/wi ≤ Smax i = 1, . . . , N
6iF/(wih

2
i ) ≤ σmax, i = 1, . . . , N

vi = (2i− 1)di + vi+1, i = 1, . . . , N
yi = (i− 1/3)di + vi+1 + yi+1, i = 1, . . . , N
y1 ≤ ymax

di = 6F/(Ewih
3
i ), i = 1, . . . , N,

(4.31.A)

where to simplify notation we use variables di = 6F/(Ewih
3
i ), and define yN+1 = dN+1 =

0. The variables in the problem are wi, hi, vi, yi, di, for i = 1, . . . , N .

This problem is not a GP, since the equalities that define vi and yi are not monomial
inequalities. (The objective and other constraints, however, are fine.) Two approaches can
be used to transform the problem (4.31.A) into an equivalent GP. One simple approach is
to eliminate v1, . . . , vN and y2, . . . , yN , using the recursion (4.45). This recursion shows
that yi and vi are all posynomials in the variables wi, hi, and in particular, the constraint
y1 ≤ ymax is a posynomial inequality.

We now describe another method, that would be better in practice if the number of
segments is more than a small number, since it preserves the problem structure. To
express this as a GP, we replace the equalities that define vi and yi by the inequalities

vi ≥ (2i− 1)di + vi+1, yi ≥ (i− 1/3)di + vi+1 + yi+1, i = 1, . . . , N. (4.31.B)

This can be done without loss of generality. To see this, suppose we substitute the
inequalities (4.31.B) in (4.31.A), and suppose h, w, v, y, d are feasible. The variables v1

and y1 appear in the following four inequalities

v1 ≥ d1, y1 ≥ (2/3)d1, v2 ≥ 3d2 + v1, y2 ≥ (5/3)d2 + v1 + y1.
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It is clear that setting v1 = d1 and y1 = (2/3)d1, without changing any of the other
variables, yields a feasible point with the same objective value. Next, consider the four
inequalities that involve v2 and y2:

v2 ≥ 3d2 + v1, y2 ≥ (5/3)d2 + v1 + y1, v3 ≥ 5d3 + v2, y3 ≥ (7/3)d3 + v2 + y2.

Again, it is clear that we can decrease v2 and y2 until the first two inequalities are tight,
without changing the objective value. Continuing the argument, we conclude that the
two problems are equivalent.

It is now straightforward to express the problem as the GP

minimize
∑N

i=1
wihi

subject to wi/wmax ≤ 1, wmin/wi ≤ 1, i = 1, . . . , N
hi/hmax ≤ 1, hmin/hi ≤ 1, i = 1, . . . , N
hi/(wiSmax) ≤ 1 i = 1, . . . , N
6iF/(σmaxwih

2
i ) ≤ 1, i = 1, . . . , N

(2i− 1)di/vi + vi+1/vi ≤ 1, i = 1, . . . , N
(i− 1/3)di/yi + vi+1/yi + yi+1/yi ≤ 1, i = 1, . . . , N
y1/ymax ≤ 1
Ewih

3
i /(6Fdi) = 1, i = 1, . . . , N.

4.32 Approximating a function as a monomial. Suppose the function f : Rn → R is differ-
entiable at a point x0 � 0, with f(x0) > 0. How would you find a monomial function

f̂ : Rn → R such that f(x0) = f̂(x0) and for x near x0, f̂(x) is very near f(x)?

Solution. We’ll give two ways to solve this problem. They both end up with the same
solution.

Let the monomial approximant have the form

f̂(x) = cxa1

1 · · ·xan
n ,

where c > 0.

Method 1. First-order matching. To make f̂(x) very near f(x) in the vicinity of x0, we
will make the function values agree, and also set the gradient of both functions equal at
the point x0:

f̂(x0) = f(x0),
∂f̂

∂xi

∣∣∣∣
x0

=
∂f

∂xi

∣∣∣
x0

.

We have
∂f̂

∂xi
= caix

a1

1 · · ·xai−1
i · · ·xan

n = aix
−1
i f̂(x),

which gives us an explicit expression for the exponents ai:

ai =
xi

f̂(x)

∂f

∂xi

∣∣∣∣
x0

.

All that is left is to find the coefficient c of the monomial approximant. To do this we use

the condition f̂(x0) = f(x0):

c =
f(x)

xa1

1 · · ·xan
n

∣∣∣∣
x0

.

Method 2. Log transformation. As is done to transform a GP to convex form, we take the
log of the function f and the variables, to get

g(y) = log f(y), yi = log xi,
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and similarly for the approximating monomial:

ĝ(y) = log f̂(y) = c̃+ aT y,

where c̃ = log c. Note that the transformation takes the monomial into an affine function.
After this transformation, the problem is this: find an affine function that fits g(y) very
well near the point y0 = log x0. That’s easy — the answer is to form the first-order Taylor
approximation of g at y0:

g(y0) + ∇g(y0)T (y − y0) = c̃+ aT y.

This implies
c̃ = g(y0) −∇g(y0)T y0, a = ∇g(y0).

If we work out what this means in terms of f , we end up with the same formulas for c
and ai as in method 1 above.

4.33 Express the following problems as convex optimization problems.

(a) Minimize max{p(x), q(x)}, where p and q are posynomials.

(b) Minimize exp(p(x)) + exp(q(x)), where p and q are posynomials.

(c) Minimize p(x)/(r(x) − q(x)), subject to r(x) > q(x), where p, q are posynomials,
and r is a monomial.

Solution.

(a) This is equivalent to the GP

minimize t
subject to p(x)/t ≤ 1, q(x)/t ≤ 1.

Now make the logarithmic change of variables xi = eyi .

(b) Equivalent to
minimize exp(t1) + exp(t2)
subject to p(x) ≤ t1, q(x) ≤ t2.

Now make the logarithmic change of variables xi = eyi (but not to t1, t2).

(c) Equivalent to
minimize t
subject to p(x) ≤ t(r(x) − q(x)),

and
minimize t
subject to (p(x)/t+ q(x))/r(x) ≤ 1,

which is a GP.

4.34 Log-convexity of Perron-Frobenius eigenvalue. Let A ∈ Rn×n be an elementwise positive
matrix, i.e., Aij > 0. (The results of this problem hold for irreducible nonnegative
matrices as well.) Let λpf(A) denotes its Perron-Frobenius eigenvalue, i.e., its eigenvalue
of largest magnitude. (See the definition and the example on page 165.) Show that
log λpf(A) is a convex function of logAij . This means, for example, that we have the
inequality

λpf(C) ≤ (λpf(A)λpf(B))1/2 ,

where Cij = (AijBij)
1/2, and A and B are elementwise positive matrices.

Hint. Use the characterization of the Perron-Frobenius eigenvalue given in (4.47), or,
alternatively, use the characterization

log λpf(A) = lim
k→∞

(1/k) log(1TAk
1).
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Solution. Define αij = logAij . From the characterization in the text

log λpf(A) = inf
v�0

max
i=1,...,n

log(

n∑

j=1

eαijvj/vi)

= inf
y

max
i=1,...,n

(
log(

n∑

j=1

eαij+yj ) − yi

)

where we made a change of variables vi = eyi . The functions

log

(
n∑

j=1

eαij+yj

)
− yi

are convex, jointly in α and y, so

max
i

log

(
n∑

j=1

eαij+yj

)
− yi

is jointly convex in α and y. Minimizing over y therefore gives a convex function of α.

From the characterization in the hint

log λpf(A) = lim
k→∞

(1/k) log(
∑

i,j

(Ak)ij).

Ak expanded as a sum of exponentials of linear functions of αij . So log λpf(A) is the
pointwise limit of a set of convex functions.

4.35 Signomial and geometric programs. A signomial is a linear combination of monomials of
some positive variables x1, . . . , xn. Signomials are more general than posynomials, which
are signomials with all positive coefficients. A signomial program is an optimization
problem of the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

where f0, . . . , fm and h1, . . . , hp are signomials. In general, signomial programs are very
difficult to solve.

Some signomial programs can be transformed to GPs, and therefore solved efficiently.
Show how to do this for a signomial program of the following form:

• The objective signomial f0 is a posynomial, i.e., its terms have only positive coeffi-
cients.

• Each inequality constraint signomial f1, . . . , fm has exactly one term with a negative
coefficient: fi = pi − qi where pi is posynomial, and qi is monomial.

• Each equality constraint signomial h1, . . . , hp has exactly one term with a positive
coefficient and one term with a negative coefficient: hi = ri − si where ri and si are
monomials.

Solution. For the inequality constraints, move the single negative term to the righthand
side, then divide by it, to get a posynomial inequality: fi(x) ≤ 0 is equivalent to pi/qi ≤ 1.

For the equality constraints, move the negative term to the righthand side, then divide
by it, to get a monomial equality: hi(x) = 0 is equivalent to ri/si = 1.
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4.36 Explain how to reformulate a general GP as an equivalent GP in which every posynomial
(in the objective and constraints) has at most two monomial terms. Hint. Express each
sum (of monomials) as a sum of sums, each with two terms.

Solution. Consider a posynomial inequality with t > 2 terms,

f(x) =

t∑

i=1

gi(x) ≤ 1,

where gi are monomials. We introduce new variables s1, . . . , st−2, and express the posyn-
omial inequality as the set of posynomial inequalities

g1(x) + g2(x) ≤ s1

g3(x) + s1 ≤ s2

...

gt(x) + st−2 ≤ 1.

By dividing by the righthand side, these become posynomial inequalities with two terms
each. They are clearly equivalent to the original posynomial inequality. Clearly si is

an upper bound on
∑i+1

j=1
gj(x), so the last inequality, gt(x) + st−2 ≤ 1, implies the

original posynomial inequality. Conversely, we can always take si =
∑i+1

j=1
gj(x), so if the

original posynomial is satisfied, there are s1, . . . , st−2 that satisfy the two-term posynomial
inequalities above.

4.37 Generalized posynomials and geometric programming. Let x1, . . . , xn be positive variables,
and suppose the functions fi : Rn → R, i = 1, . . . , k, are posynomials of x1, . . . , xn. If
φ : Rk → R is a polynomial with nonnegative coefficients, then the composition

h(x) = φ(f1(x), . . . , fk(x)) (4.69)

is a posynomial, since posynomials are closed under products, sums, and multiplication
by nonnegative scalars. For example, suppose f1 and f2 are posynomials, and consider
the polynomial φ(z1, z2) = 3z2

1z2 + 2z1 + 3z3
2 (which has nonnegative coefficients). Then

h = 3f2
1 f2 + 2f1 + f3

2 is a posynomial.

In this problem we consider a generalization of this idea, in which φ is allowed to be
a posynomial, i.e., can have fractional exponents. Specifically, assume that φ : Rk →
R is a posynomial, with all its exponents nonnegative. In this case we will call the
function h defined in (4.69) a generalized posynomial. As an example, suppose f1 and f2
are posynomials, and consider the posynomial (with nonnegative exponents) φ(z1, z2) =
2z0.3

1 z1.2
2 + z1z

0.5
2 + 2. Then the function

h(x) = 2f1(x)
0.3f2(x)

1.2 + f1(x)f2(x)
0.5 + 2

is a generalized posynomial. Note that it is not a posynomial, however (unless f1 and f2
are monomials or constants).

A generalized geometric program (GGP) is an optimization problem of the form

minimize h0(x)
subject to hi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p,
(4.70)

where g1, . . . , gp are monomials, and h0, . . . , hm are generalized posynomials.

Show how to express this generalized geometric program as an equivalent geometric pro-
gram. Explain any new variables you introduce, and explain how your GP is equivalent
to the GGP (4.70).
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Solution.
We first start by transforming to the epigraph form, by introducing a variable t and
introducing a new inequality constraint h0(x) ≤ t, which can be written as h0(x)/t ≤ 1,
which is a valid generalized posynomial inequality constraint. Now we’ll show how to deal
with the generalized posynomial inequality constraint

φ(f1(x), . . . , fk(x)) ≤ 1, (4.37.A)

where φ is a posynomial with nonnegative exponents, and f1, . . . , fk are posynomials.

We’ll use the standard trick: introduce new variables t1, . . . , tk, and replace the single
generalized posynomial inequality constraint (4.37.A) with

φ(t1, . . . , tk) ≤ 1, f1(x) ≤ t1, . . . , fk(x) ≤ tk, (4.37.B)

which is easily transformed to a set of k+1 ordinary posynomial inequalities (by dividing
the last inequalities by ti). We claim that this set of posynomial inequalities is equivalent
to the original generalized posynomial inequality. To see this, suppose that x, t1, . . . , xk

satisfy (4.37.B). Now we use the fact that the function φ is monotone nondecreasing in
each argument (since its exponents are all nonnegative), which implies that

φ(f1(x), . . . , fk(x)) ≤ 1.

Conversely, suppose that (4.37.A) holds. Then, defining ti = fi(x), i = 1, . . . , k, we find
that

φ(t1, . . . , tk) ≤ 1, f1(x) = t1, . . . , fk(x) = tk

holds, which implies (4.37.B).

If we carry out this procedure for each generalized posynomial inequality, we obtain a GP.
Since the inequalities are each equivalent, using the argument above, the two problems
are equivalent.

Semidefinite programming and conic form problems

4.38 LMIs and SDPs with one variable. The generalized eigenvalues of a matrix pair (A,B),
where A,B ∈ Sn, are defined as the roots of the polynomial det(λB −A) (see §A.5.3).

Suppose B is nonsingular, and that A and B can be simultaneously diagonalized by a
congruence, i.e., there exists a nonsingular R ∈ Rn×n such that

RTAR = diag(a), RTBR = diag(b),

where a, b ∈ Rn. (A sufficient condition for this to hold is that there exists t1, t2 such
that t1A+ t2B � 0.)

(a) Show that the generalized eigenvalues of (A,B) are real, and given by λi = ai/bi,
i = 1, . . . , n.

(b) Express the solution of the SDP

minimize ct
subject to tB � A,

with variable t ∈ R, in terms of a and b.

Solution.

(a) If B is nonsingular, RTBR must be nonsingular, i.e., bi 6= 0 for all i. We have

det(λB −A) = (detR)2
∏

(λbi − ai) = 0

so λ is a generalized eigenvalue if and only if λ = ai/bi for some i.



Exercises

(b) We have tB � A if and only if tb � a, i.e.,

{
t ≤ ai/bi bi > 0
t ≥ ai/bi bi < 0.

The feasible set is an interval defined by,

max
bi<0

ai/bi ≤ t ≤ min
bi>0

ai/bi.

If the interval is nonempty and bounded, the optimal solution is one of the endpoints,
depending on the sign of c.

4.39 SDPs and congruence transformations. Consider the SDP

minimize cTx
subject to x1F1 + x2F2 + · · · + xnFn +G � 0,

with Fi, G ∈ Sk, c ∈ Rn.

(a) Suppose R ∈ Rk×k is nonsingular. Show that the SDP is equivalent to the SDP

minimize cTx

subject to x1F̃1 + x2F̃2 + · · · + xnF̃n + G̃ � 0,

where F̃i = RTFiR, G̃ = RTGR.

(b) Suppose there exists a nonsingular R such that F̃i and G̃ are diagonal. Show that
the SDP is equivalent to an LP.

(c) Suppose there exists a nonsingular R such that F̃i and G̃ have the form

F̃i =

[
αiI ai

aT
i αi

]
, i = 1, . . . , n, G̃ =

[
βI b
b β

]
,

where αi, β ∈ R, ai, b ∈ Rk−1. Show that the SDP is equivalent to an SOCP with
a single second-order cone constraint.

Solution.

(a) Let A ∈ Sn and R ∈ Rn×n with R nonsingular. A � 0 if and only if xTAx ≥ 0 for
all x. Hence, with x = Ry, yTRTARy ≥ 0 for all y, i.e., yTRTAR � 0.

(b) A diagonal matrix is positive semidefinite if and only if its diagonal elements are
nonnegative.

(c) The LMI is equivalent to

F̃ (x) =

[
(αtx+ β)I Ax+ b
(Ax+ b)T (αTx+ β)I

]
� 0.

where A has columns ai, i.e., ‖Ax+ b‖2 ≤ αTx+ β.

4.40 LPs, QPs, QCQPs, and SOCPs as SDPs. Express the following problems as SDPs.

(a) The LP (4.27).

Solution.
minimize cTx+ d
subject to diag(Gx− h) � 0

Ax = b.
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(b) The QP (4.34), the QCQP (4.35) and the SOCP (4.36). Hint. Suppose A ∈ Sr
++,

C ∈ Ss, and B ∈ Rr×s. Then
[

A B
BT C

]
� 0 ⇐⇒ C −BTA−1B � 0.

For a more complete statement, which applies also to singular A, and a proof,
see §A.5.5.

Solution.

(a) QP. Express P = WW T with W ∈ Rn×r.

minimize t+ 2qTx+ r

subject to

[
I WTx

xTW tI

]
� 0

diag(Gx− h) � 0
Ax = b,

with variables x, t ∈ R.

(b) QCQP. Express Pi = WiW
T
i with Wi ∈ Rn×ri .

minimize t0 + 2qT
0 x+ r0

subject to ti + 2qT
i x+ ri ≤ 0, i = 1, . . . ,m[

I WT
i x

xTWi tiI

]
� 0, i = 0, 1, . . . ,m

Ax = b,

with variables x, ti ∈ R.

(c) SOCP.

minimize cTx

subject to

[
(cT

i x+ di)I Aix+ bi
(Axi + bi)

T (cT
i x+ di)I

]
� 0, i = 1, . . . , N

Fx = g.

By the result in the hint, the constraint is equivalent with ‖Aix+bi‖2 < cT
i x+di

when cT
i x+ di > 0. We have to check the case cT

i x+ di = 0 separately. In this
case, the LMI constraint means Aix+ bi = 0, so we can conclude that the LMI
constraint and the SOC constraint are equivalent.

(c) The matrix fractional optimization problem

minimize (Ax+ b)TF (x)−1(Ax+ b)

where A ∈ Rm×n, b ∈ Rm,

F (x) = F0 + x1F1 + · · · + xnFn,

with Fi ∈ Sm, and we take the domain of the objective to be {x | F (x) � 0}. You
can assume the problem is feasible (there exists at least one x with F (x) � 0).

Solution.
minimize t

subject to

[
F (x) Ax+ b

(Ax+ b)T t

]
� 0

with variables x, t ∈ R. The LMI constraint is equivalent to

(Ax+ b)TF (x)−1(Ax+ b) ≤ t
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if F (x) � 0.

More generally, let

f0(x) = (Ax+ b)TF (x)−1(Ax+ b), dom f0(x) = {x | F (x) � 0}.

We have

epi f0 =

{
(x, t)

∣∣∣∣ F (x) � 0,

[
F (x) Ax+ b

(Ax+ b)T t

]
� 0

}
.

Then cl(epi f0) = epi g where g is defined by

epi g =

{
(x, t)

∣∣∣∣
[

F (x) Ax+ b
(Ax+ b)T t

]
� 0

}

g(x) = inf

{
t

∣∣∣∣
[

F (x) Ax+ b
(Ax+ b)T t

]
� 0

}
.

We conclude that both problems have the same optimal values. An optimal solution
for the matrix fractional problem is optimal for the SDP. An optimal solution for
the SDP, with F (x) � 0, is optimal for the matrix fractional problem. If F (x)
is singular at the optimal solution of the SDP, then the optimum for the matrix
fractional problem is not attained.

4.41 LMI tests for copositive matrices and P0-matrices. A matrix A ∈ Sn is said to be copositive
if xTAx ≥ 0 for all x � 0 (see exercise 2.35). A matrix A ∈ Rn×n is said to be a P0-
matrix if maxi=1,...,n xi(Ax)i ≥ 0 for all x. Checking whether a matrix is copositive or
a P0-matrix is very difficult in general. However, there exist useful sufficient conditions
that can be verified using semidefinite programming.

(a) Show that A is copositive if it can be decomposed as a sum of a positive semidefinite
and an elementwise nonnegative matrix:

A = B + C, B � 0, Cij ≥ 0, i, j = 1, . . . , n. (4.71)

Express the problem of finding B and C that satisfy (4.71) as an SDP feasibility
problem.

(b) Show that A is a P0-matrix if there exists a positive diagonal matrix D such that

DA+ATD � 0. (4.72)

Express the problem of finding aD that satisfies (4.72) as an SDP feasibility problem.

Solution.

(a) Suppose A satisfies (4.71). Let x � 0. Then

xTAx = xTBx+ xTCx ≥ 0,

because B � 0 and Cij ≥ 0 for all i, j.

(b) Suppose A satisfies (4.72). Then

xT (DA+ATD)x = 2

n∑

k=1

dkxk(Axk) ≥ 0

for all x. Since dk > 0, we must have xk(Axk) ≥ 0 for at least one k.
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4.42 Complex LMIs and SDPs. A complex LMI has the form

x1F1 + · · · + xnFn +G � 0

where F1, . . . , Fn, G are complex n× n Hermitian matrices, i.e., FH
i = Fi, G

H = G, and
x ∈ Rn is a real variable. A complex SDP is the problem of minimizing a (real) linear
function of x subject to a complex LMI constraint.

Complex LMIs and SDPs can be transformed to real LMIs and SDPs, using the fact that

X � 0 ⇐⇒
[

<X −=X
=X <X

]
� 0,

where <X ∈ Rn×n is the real part of the complex Hermitian matrix X, and =X ∈ Rn×n

is the imaginary part of X.

Verify this result, and show how to pose a complex SDP as a real SDP.

Solution. For a Hermitian matrix <X = (<X)T and =X = −=XT . Now let z = u+ iv,
where u, v are real vectors, and i =

√
−1. We have

zHXz = (u− iv)T (<X + i=X)(u+ iv)

= uT<Xu+ vT<Xv − uT=Xv + vT=Xu

=
[
uT vT

] [ <X −=X
=X <X

][
u
v

]
.

Therefore zHXz ≥ 0 for all z if and only if the 2n× 2n real (symmetric) matrix above is
positive semidefinite.

Thus, we can convert a complex LMI into a real LMI with twice the size. The conversion
is linear, a complex LMI becomes a real LMI, of twice the size.

To pose

4.43 Eigenvalue optimization via SDP. Suppose A : Rn → Sm is affine, i.e.,

A(x) = A0 + x1A1 + · · · + xnAn

where Ai ∈ Sm. Let λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) denote the eigenvalues of A(x). Show
how to pose the following problems as SDPs.

(a) Minimize the maximum eigenvalue λ1(x).

(b) Minimize the spread of the eigenvalues, λ1(x) − λm(x).

(c) Minimize the condition number of A(x), subject to A(x) � 0. The condition number
is defined as κ(A(x)) = λ1(x)/λm(x), with domain {x | A(x) � 0}. You may assume
that A(x) � 0 for at least one x.

Hint. You need to minimize λ/γ, subject to

0 ≺ γI � A(x) � λI.

Change variables to y = x/γ, t = λ/γ, s = 1/γ.

(d) Minimize the sum of the absolute values of the eigenvalues, |λ1(x)| + · · · + |λm(x)|.
Hint. Express A(x) as A(x) = A+ −A−, where A+ � 0, A− � 0.

Solution.

(a) We use the property that λ1(x) ≤ t if and only if A(x) � tI. We minimize the
maximum eigenvalue by solving the SDP

minimize t
subject to A(x) � tI.

The variables are x ∈ Rn and t ∈ R.
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(b) λ1(x) ≤ t1 if and only if A(x) � t1I and λm(A(x)) ≥ t2 if and only if A(x) � t2I,
so we can minimize λ1 − λm by solving

minimize t1 − t2
subject to t2I � A(x) � t1I.

This is an SDP with variables t1 ∈ R, t2 ∈ R, and x ∈ Rn.

(c) We first note that the problem is equivalent to

minimize λ/γ
subject to γI � A(x) � λI

(4.43.A)

if we take as domain of the objective {(λ, γ) | γ > 0}. This problem is quasiconvex,
and can be solved by bisection: The optimal value is less than or equal to α if and
only if the inequalities

λ ≤ γα, γI � A(x) � λI, γ > 0

(with variables γ, λ, x) are feasible.

Following the hint we can also pose the problem as the SDP

minimize t
subject to I � sA0 + y1A1 + · · · + ynAn � tI

s ≥ 0.
(4.43.B)

We now verify more carefully that the two problems are equivalent. Let p? be the
optimal value of (4.43.A), and p?

sdp is the optimal value of the SDP (4.43.B).

We first show that p? ≥ p?
sdp. Let λ/γ be the objective value of (4.43.A), evaluated

at a feasible point (γ, λ, x). Define s = 1/γ, y = x/γ, t = λ/γ. This yields a feasible
point in (4.43.B), with objective value t = λ/γ. This proves that p? ≥ p?

sdp.

Next, we show that p∗sdp ≥ p∗. Suppose that s, y, t are feasible in (4.43.B). If s > 0,
then γ = 1/s, x = y/s, λ = t/s are feasible in (4.43.A) with objective value t. If
s = 0, we have

I � y1A1 + · · · + ynAn � tI.

Choose x = τy, with τ sufficiently large so that A(τy) � A0 + τI � 0. We have

λ1(τy) ≤ λ1(0) + τt, λm(τy) ≥ λm(0) + τ

so for τ sufficiently large,

κ(x0 + τy) ≤ λ1(0) + tτ

λm(0) + τ
.

Letting τ go to infinity, we can construct feasible points in (4.43.A), with objective
value arbitrarily close to t. We conclude that t ≥ p? if (s, y, t) are feasible in (4.43.B).
Minimizing over t yields p?

sdp ≥ p?.

(d) This problem can be expressed as the SDP

minimize trA+ + trA−

subject to A(x) = A+ −A−

A+ � 0, A− � 0,
(4.43.C)

with variables x, A+, A−. We can show the equivalence as follows. First assume x
is fixed in (4.43.C), and that A+ and A− are the only variables. We will show that
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the optimal A+ and A− are easily constructed from the eigenvalue decomposition
of A(x), and that at the optimum we have

trA+ + trA− =

n∑

i=1

|λi(A(x))|.

Let A(x) = QΛQT be the eigenvalue decomposition of A(x). Defining Ã+ =

QTA+Q, Ã− = QTA−Q, we can write problem (4.43.C) as

minimize tr Ã+ + tr Ã−

subject to Λ = Ã+ − Ã−

Ã+ � 0, Ã− � 0,

(4.43.D)

with variables Ã+ and Ã−. Here we have used the fact that

trA+ = trQQTA+ = trQTA+Q = tr Ã+.

When solving problem (4.43.D), we can assume without loss of generality that the

matrices Ã+ and Ã− are diagonal. (If they are not diagonal, we can set the off-
diagonal elements equal to zero, without changing the objective value and without
changing feasibility.) The optimal values for the diagonal elements are:

Ã+
ii = max{λi, 0}, Ã−

ii = max{−λi, 0},
and the optimal value

∑
i
|λi|. Going back to the problem (4.43.C), we have shown

that if we fix x, and optimize over A+ and A−, the optimal value of the problem is

m∑

i=1

|λi(A(x))|.

Since the constraints are linear in x, we can allow x to be a variable. Minimizing
over x, A+, and A− jointly is equivalent to minimizing

∑m

i=1
|λi(A(x))|.

4.44 Optimization over polynomials. Pose the following problem as an SDP. Find the polyno-
mial p : R → R,

p(t) = x1 + x2t+ · · · + x2k+1t
2k,

that satisfies given bounds li ≤ p(ti) ≤ ui, at m specified points ti, and, of all the
polynomials that satisfy these bounds, has the greatest minimum value:

maximize inft p(t)
subject to li ≤ p(ti) ≤ ui, i = 1, . . . ,m.

The variables are x ∈ R2k+1.
Hint. Use the LMI characterization of nonnegative polynomials derived in exercise 2.37,
part (b).
Solution. First reformulate the problem as

maximize γ
subject to p(t) − γ ≥ 0, t ∈ R

li ≤ p(ti) ≤ ui, i = 1, . . . ,m

(variables x, γ). Now use the LMI characterization to get an SDP:

maximize γ
subject to x1 − γ = Y11

xi =
∑

m+n=i+1
Ymn, i = 2, . . . , 2k + 1

li ≤
∑

i
p(ti) ≤ ui, i = 1, . . . ,m

Y � 0.

The variables are x ∈ R2k+1, γ ∈ R, Y ∈ Sk+1.
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4.45 [Nes00, Par00] Sum-of-squares representation via LMIs. Consider a polynomial p : Rn →
R of degree 2k. The polynomial is said to be positive semidefinite (PSD) if p(x) ≥ 0
for all x ∈ Rn. Except for special cases (e.g., n = 1 or k = 1), it is extremely difficult
to determine whether or not a given polynomial is PSD, let alone solve an optimization
problem, with the coefficients of p as variables, with the constraint that p be PSD.

A famous sufficient condition for a polynomial to be PSD is that it have the form

p(x) =

r∑

i=1

qi(x)
2,

for some polynomials qi, with degree no more than k. A polynomial p that has this
sum-of-squares form is called SOS.

The condition that a polynomial p be SOS (viewed as a constraint on its coefficients)
turns out to be equivalent to an LMI, and therefore a variety of optimization problems,
with SOS constraints, can be posed as SDPs. You will explore these ideas in this problem.

(a) Let f1, . . . , fs be all monomials of degree k or less. (Here we mean monomial in
the standard sense, i.e., xm1

1 · · ·xmn
n , where mi ∈ Z+, and not in the sense used in

geometric programming.) Show that if p can be expressed as a positive semidefinite
quadratic form p = fTV f , with V ∈ Ss

+, then p is SOS. Conversely, show that if
p is SOS, then it can be expressed as a positive semidefinite quadratic form in the
monomials, i.e., p = fTV f , for some V ∈ Ss

+.

(b) Show that the condition p = fTV f is a set of linear equality constraints relating the
coefficients of p and the matrix V . Combined with part (a) above, this shows that
the condition that p be SOS is equivalent to a set of linear equalities relating V and
the coefficients of p, and the matrix inequality V � 0.

(c) Work out the LMI conditions for SOS explicitly for the case where p is polynomial
of degree four in two variables.

Solution.

(a) Factor V as V = WW T , where W ∈ Rs×r and let wi denote the ith column of W .
We have

p = fT

r∑

i=1

wiw
T
i f =

r∑

i=1

(wT
i f)2,

i.e., p is SOS.

Conversely, if p is SOS, it can be expressed as p =
∑r

i=1
(wT

i f)2, so p = fTV F for

V =
∑r

i=1
wiw

T
i .

(b) Expanding the quadratic form gives

p =

s∑

i,j=1

Vijfifj ,

and equating coefficients on both sides proves the result.

(c) Solution for degree 2: The monomials of degree 2 or less are

f1 = 1, f2 = x1, f3 = x2, f5 = x2
1, f6 = x1x2, f7 = x2

2

and the general expression for p

p(x) = c1 + c2x1 + c3x2 + c4x
2
1 + c5x1x2 + c6x

2
2 + c7x

3
1 + c8x

2
1x2

+ c9x1x
2
2 + c10x

3
2 + c11x

4
1 + c12x

3
1x2 + c13x

2
1x

2
2 + c14x1x

3
2 + c15x

4
2
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The equality constraints are

c1 = V11, c2 = 2V12, c3 = 2V13, c4 = V22 + 2V15, c5 = 2V23 + 2V16,

c6 = V33 + 2V17, c7 = 2V25, c8 = 2V26 + 2V25, c9 = 2V27 + 2V36, c10 = 2V37,

c11 = V55, c12 = 2V56, c13 = 2V57, c14 = 2V67, c15 = V77.

These, together with V ∈ S7
+, are the (necessary and sufficient) LMI conditions for

p to be SOS.

4.46 Multidimensional moments. The moments of a random variable t on R2 are defined as
µij = E ti1t

j
2, where i, j are nonnegative integers. In this problem we derive necessary

conditions for a set of numbers µij , 0 ≤ i, j ≤ 2k, i + j ≤ 2k, to be the moments of a
distribution on R2.

Let p : R2 → R be a polynomial of degree k with coefficients cij ,

p(t) =

k∑

i=0

k−i∑

j=0

cijt
i
1t

j
2,

and let t be a random variable with moments µij . Suppose c ∈ R(k+1)(k+2)/2 contains

the coefficients cij in some specific order, and µ ∈ R(k+1)(2k+1) contains the moments µij

in the same order. Show that E p(t)2 can be expressed as a quadratic form in c:

E p(t)2 = cTH(µ)c,

where H : R(k+1)(2k+1) → S(k+1)(k+2)/2 is a linear function of µ. From this, conclude
that µ must satisfy the LMI H(µ) � 0.

Remark: For random variables on R, the matrix H can be taken as the Hankel matrix
defined in (4.52). In this case, H(µ) � 0 is a necessary and sufficient condition for µ to be
the moments of a distribution, or the limit of a sequence of moments. On R2, however,
the LMI is only a necessary condition.

Solution.

y = (c00, c10, c01, c20, c11, c02, c30, c21, c12, c03, . . . , ck0, ck−1,1, . . . , c0k)

E p(t)2 = E

(
k∑

i=0

k−i∑

j=0

cijt
i
1t

j
2

)2

= E

k∑

i=0

k−i∑

j=0

k∑

m=0

k−m∑

n=0

cijcmn(ti+m
1 tj+n

2 )

=

k∑

i=0

k−i∑

j=0

k∑

m=0

k−m∑

n=0

cijcmnµi+m,j+n,

i.e.,
Hij,mn = µi+m,j+n.

For example, with k = 2,

E(c00 + c10t1 + c01t2 + c20t
2
1 + c11t1t2 + c02t

2
2)

2

=
[
c00 c10 c01 c20 c11 c02

]




µ00 µ10 µ01 µ20 µ11 µ02

µ10 µ20 µ11 µ30 µ21 µ12

µ01 µ11 µ02 µ21 µ12 µ03

µ20 µ30 µ21 µ40 µ31 µ22

µ11 µ21 µ12 µ31 µ22 µ13

µ02 µ12 µ03 µ22 µ13 µ04







c00
c10
c01
c20
c11
c02



.
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4.47 Maximum determinant positive semidefinite matrix completion. We consider a matrix
A ∈ Sn, with some entries specified, and the others not specified. The positive semidefinite
matrix completion problem is to determine values of the unspecified entries of the matrix
so that A � 0 (or to determine that such a completion does not exist).

(a) Explain why we can assume without loss of generality that the diagonal entries of
A are specified.

(b) Show how to formulate the positive semidefinite completion problem as an SDP
feasibility problem.

(c) Assume that A has at least one completion that is positive definite, and the diag-
onal entries of A are specified (i.e., fixed). The positive definite completion with
largest determinant is called the maximum determinant completion. Show that the
maximum determinant completion is unique. Show that if A? is the maximum de-
terminant completion, then (A?)−1 has zeros in all the entries of the original matrix
that were not specified. Hint. The gradient of the function f(X) = log detX is
∇f(X) = X−1 (see §A.4.1).

(d) Suppose A is specified on its tridiagonal part, i.e., we are given A11, . . . , Ann and
A12, . . . , An−1,n. Show that if there exists a positive definite completion of A, then
there is a positive definite completion whose inverse is tridiagonal.

Solution.

(a) If a diagonal entry, say Aii, were not specified, then we would take it to be infinitely
large, i.e., we would take Aii → ∞. Then, the condition that A � 0 reduces to
Ã � 0, where Ã is the matrix A with ith row and column removed. Repeating
this procedure for each unspecified diagonal entry of A, we see that we can just as
well consider the submatrix of A corresponding to rows and columns with specified
diagonal entries.

(b) The problem is evidently an LMI, since A is clearly an affine function of its unspec-
ified entries, and we require A � 0.

(c) We can just as well minimize f(A) = − log detA, which is a strictly convex function
of A (provided A � 0. Since the objective is strictly convex, there is at most one
optimum point. The objective grows unboundedly as A approaches the boundary
of the positive definite set, and the set of feasible entries for the matrix is bounded
(since the diagonal entries are fixed, and for a matrix to be positive definite, no
entry can exceed the maximum diagonal entry). Therefore, there is exactly one
minimizer of − log detA, and it occurs away from the boundary. The optimality
condition is simple: it is that the gradient vanishes. Now suppose the i, j entry of
A is unspecified (i.e., a variable). Then we have, at the optimal A?,

∂f

∂Aij
= 2 tr(A?)−1Eij = 0.

But this is nothing more than twice the i, j entry of (A?)−1. Thus, all entries of
(A?)−1 corresponding to unspecified entries in A must vanish.

(d) The maximum determinant positive definite completion will be tridiagonal, by part (c).

4.48 Generalized eigenvalue minimization. Recall (from example 3.37, or §A.5.3) that the
largest generalized eigenvalue of a pair of matrices (A,B) ∈ Sk × Sk

++ is given by

λmax(A,B) = sup
u6=0

uTAu

uTBu
= max{λ | det(λB −A) = 0}.

As we have seen, this function is quasiconvex (if we take Sk × Sk
++ as its domain).

We consider the problem

minimize λmax(A(x), B(x)) (4.73)
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where A,B : Rn → Sk are affine functions, defined as

A(x) = A0 + x1A1 + · · · + xnAn, B(x) = B0 + x1B1 + · · · + xnBn.

with Ai, Bi ∈ Sk.

(a) Give a family of convex functions φt : Sk × Sk → R, that satisfy

λmax(A,B) ≤ t ⇐⇒ φt(A,B) ≤ 0

for all (A,B) ∈ Sk × Sk
++. Show that this allows us to solve (4.73) by solving a

sequence of convex feasibility problems.

(b) Give a family of matrix-convex functions Φt : Sk × Sk → Sk that satisfy

λmax(A,B) ≤ t ⇐⇒ Φt(A,B) � 0

for all (A,B) ∈ Sk × Sk
++. Show that this allows us to solve (4.73) by solving a

sequence of convex feasibility problems with LMI constraints.

(c) Suppose B(x) = (aTx+b)I, with a 6= 0. Show that (4.73) is equivalent to the convex
problem

minimize λmax(sA0 + y1A1 + · · · + ynAn)
subject to aT y + bs = 1

s ≥ 0,

with variables y ∈ Rn, s ∈ R.

Solution.

(a) Take φt(A,B) = λmax(A− tB). f0(A,B) ≤ t if and only if

B−1/2AB−1/2 � tI ⇐⇒ tB −A � 0

⇐⇒ λmax(A− tB) ≤ 0.

(b) Take Φt(A,B) = A− tB.

(c) We will refer to the generalized eigenvalue minimization problem as the GEVP, and
to the eigenvalue optimization problem as the EVP.

The GEVP is feasible because a 6= 0, so there exist x with aTx+ b > 0.

Suppose x is feasible for the GEVP. Then

y = (1/(aTx+ b))x, s = 1/(aTx+ b)

is feasible for the EVP (aT y + bs = 1 and s ≥ 0). The objective value of (y, s) in
the EVP is equal to the objective value of x in the GEVP:

λmax

(
1

aTx+ b)
(A0 + x1A1 + · · · + xnAn)

)
= λmax(A(x), (aTx+ b)I).

Conversely, suppose y, s are feasible for the EVP. If s 6= 0, then x = y/s satisfies
aTx+ b = 1/s > 0, so x is feasible for the GEVP. Moreover,

λmax(A(x), (aTx+ b)I) = λmax(
1

(aTx+ b)
A(x)) = λmax(sA0 + y1A1 + · · · + ynAn),

i.e., the objective values are the same.
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If y, s are feasible for the EVP with s = 0, then for all x̂ with aT x̂ + b > 0,
aT (x̂+ ty)+ b = aT x̂+ b+ t > 0, so x = x̂ = ty is feasible in the GEVP for all t ≥ 0.
The objective value of x is

λmax(A(x̂+ ty), (aT (x0 + ty) + b)I) = sup
u6=0

uT (A(x̂) + t(y1A1 + · · · + ynAn))u

(aT x̂+ b+ t)uTu

→ sup
u6=0

tuT (y1A1 + · · · + ynAn))u

tuTu

= λmax(y1A1 + · · · + ynAn)

so there are feasible points in the GEVP with objective values arbitrarily close to
the objective value of y, s in the EVP.

We conclude that the optimal values of the EVP and the GEVP are equal.

4.49 Generalized fractional programming. Let K ∈ Rm be a proper cone. Show that the
function f0 : Rn → Rm, defined by

f0(x) = inf{t | Cx+ d �K t(Fx+ g)}, dom f0 = {x | Fx+ g �K 0},

with C,F ∈ Rm×n, d, g ∈ Rm, is quasiconvex.

A quasiconvex optimization problem with objective function of this form is called a gen-
eralized fractional program. Express the generalized linear-fractional program of page 152
and the generalized eigenvalue minimization problem (4.73) as generalized fractional pro-
grams.

Solution.

(a) f0(x) ≤ α if and only if Cx+ d �K α(Fx+ g) and Fx+ g �K 0.

To see this, we first note that if Cx + d �K α(Fx + g), and Fx + g �K 0, then
obviously f0(x) ≤ α.

Conversely, if f0(x) ≤ α and Fx + g �K 0, then Cx + d �K t̂(Fx + g) for at least
one t̂ ≤ α, and therefore (since Fx+ g �K 0),

Cx+ d �K t(Fx+ g)

for all t ≥ t̂. In particular, Cx+ d �K α(Fx+ g).

(b) Choose K = Rr
+.

Cx+ d � t(Fx+ g), Fx+ g � 0 ⇐⇒ t ≥ max
i

cTi x+ di

fT
i x+ gi

.

(c) Choose K ∈ Sk
+.

A(x) � tB(x), B(x) � 0 ⇐⇒ λmax(A(x), B(x)) ≤ t.

Vector and multicriterion optimization

4.50 Bi-criterion optimization. Figure 4.11 shows the optimal trade-off curve and the set of
achievable values for the bi-criterion optimization problem

minimize (w.r.t. R2
+) (‖Ax− b‖2, ‖x‖2

2),

for some A ∈ R100×10, b ∈ R100. Answer the following questions using information from
the plot. We denote by xls the solution of the least-squares problem

minimize ‖Ax− b‖2
2.
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(a) What is ‖xls‖2?

(b) What is ‖Axls − b‖2?

(c) What is ‖b‖2?

(d) Give the optimal value of the problem

minimize ‖Ax− b‖2
2

subject to ‖x‖2
2 = 1.

(e) Give the optimal value of the problem

minimize ‖Ax− b‖2
2

subject to ‖x‖2
2 ≤ 1.

(f) Give the optimal value of the problem

minimize ‖Ax− b‖2
2 + ‖x‖2

2.

(g) What is the rank of A?

Solution.

(a) ‖xls‖2 = 3.

(b) ‖Axls − b‖2
2 = 2.

(c) ‖b‖2 =
√

10.

(d) About 5.

(e) About 5.

(f) About 3 + 4.

(g) rankA = 10, since the LS solution is unique.

4.51 Monotone transformation of objective in vector optimization. Consider the vector opti-
mization problem (4.56). Suppose we form a new vector optimization problem by replacing
the objective f0 with φ ◦ f0, where φ : Rq → Rq satisfies

u �K v, u 6= v =⇒ φ(u) �K φ(v), φ(u) 6= φ(v).

Show that a point x is Pareto optimal (or optimal) for one problem if and only if it is
Pareto optimal (optimal) for the other, so the two problems are equivalent. In particular,
composing each objective in a multicriterion problem with an increasing function does
not affect the Pareto optimal points.

Solution. Follows from

f0(x) �K f0(y) ⇐⇒ φ(f0(x)) �K φ(f0(y))

with equality only if f0(x) = f0(y).

4.52 Pareto optimal points and the boundary of the set of achievable values. Consider a vector
optimization problem with cone K. Let P denote the set of Pareto optimal values, and
let O denote the set of achievable objective values. Show that P ⊆ O ∩ bdO, i.e., every
Pareto optimal value is an achievable objective value that lies in the boundary of the set
of achievable objective values.

Solution. P ⊆ O, because that is part of the definition of Pareto optimal points. Suppose
f0(x) ∈ P, f0(x) ∈ intO. Then f0(x) + z ∈ O for all sufficiently small z, including small
values of z ≺K 0. This means that f0(x) is not a Pareto optimal value.



Exercises

4.53 Suppose the vector optimization problem (4.56) is convex. Show that the set

A = O +K = {t ∈ R
q | f0(x) �K t for some feasible x},

is convex. Also show that the minimal elements of A are the same as the minimal points
of O.

Solution. If f0(x1) �K t1 and f0(x2) �K t2 for feasible x1, x2, then for 0 ≤ θ ≤ 1,
θx1 + (1 − θ)x2 is feasible, and

f0(θx1 + (1 − θ)x2) �K θf0(x1) + (1 − θ)f0(y1)

�K θt1 + (1 − θ)t2,

i.e., θt1 + (1 − θ)t2 ∈ A.

Suppose u is minimal for A, i.e.,

v ∈ A, v �K u =⇒ v = u.

We can express u as u = û+ z, where û ∈ O and z �K 0. We must have z = 0, otherwise
the point v = û+ z/2 ∈ A, v �K u and v 6= u. In other words, u ∈ O. Furthermore, u is
minimal in O, because

v ∈ O, v �K u =⇒ v ∈ A, v �K u =⇒ v = u.

Conversely, suppose u is minimal for O, i.e.,

v ∈ O, v �K u =⇒ v = u.

Then for all v = v̂ + z ∈ A, with v̂ ∈ O, z �K 0,

v̂ + z �K u, v̂ ∈ O, z �K 0 =⇒ v̂ �K u, v̂ ∈ O
=⇒ v̂ = u, z = 0.

4.54 Scalarization and optimal points. Suppose a (not necessarily convex) vector optimization
problem has an optimal point x?. Show that x? is a solution of the associated scalarized
problem for any choice of λ �K∗ 0. Also show the converse: If a point x is a solution of
the scalarized problem for any choice of λ �K∗ 0, then it is an optimal point for the (not
necessarily convex) vector optimization problem.

Solution. Follows from the dual characterization of minimum elements in §2.6.3: f0(x
?)

is the minimum element of the achievable set O, if and only if for all λ �K∗ 0, λT f0(x
?)

is the unique minimizer of λT z over O.

4.55 Generalization of weighted-sum scalarization. In §4.7.4 we showed how to obtain Pareto
optimal solutions of a vector optimization problem by replacing the vector objective f0 :
Rn → Rq with the scalar objective λT f0, where λ �K∗ 0. Let ψ : Rq → R be a
K-increasing function, i.e., satisfying

u �K v, u 6= v =⇒ ψ(u) < ψ(v).

Show that any solution of the problem

minimize ψ(f0(x))
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

is Pareto optimal for the vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.
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Note that ψ(u) = λTu, where λ �K∗ 0, is a special case.

As a related example, show that in a multicriterion optimization problem (i.e., a vector
optimization problem with f0 = F : Rn → Rq, and K = R

q
+), a unique solution of the

scalar optimization problem

minimize maxi=1,...,q Fi(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

is Pareto optimal.

Solution. Suppose x? is a solution of the scalar problem. Now, suppose

u ∈ O, u �K f0(x
?), u 6= f0(x

?).

Because ψ is increasing, ψ(u) < ψ(f0(x
?)). However, this contradicts the fact that x? is

minimizes ψ ◦ f0.

Miscellaneous problems

4.56 [P. Parrilo] We consider the problem of minimizing the convex function f0 : Rn → R

over the convex hull of the union of some convex sets, conv
(⋃q

i=1
Ci

)
. These sets are

described via convex inequalities,

Ci = {x | fij(x) ≤ 0, j = 1, . . . , ki},

where fij : Rn → R are convex. Our goal is to formulate this problem as a convex
optimization problem.

The obvious approach is to introduce variables x1, . . . , xq ∈ Rn, with xi ∈ Ci, θ ∈ Rq

with θ � 0, 1T θ = 1, and a variable x ∈ Rn, with x = θ1x1 + · · · + θqxq. This equality
constraint is not affine in the variables, so this approach does not yield a convex problem.

A more sophisticated formulation is given by

minimize f0(x)
subject to sifij(zi/si) ≤ 0, i = 1, . . . , q, j = 1, . . . , ki

1T s = 1, s � 0
x = z1 + · · · + zq,

with variables z1, . . . , zq ∈ Rn, x ∈ Rn, and s1, . . . , sq ∈ R. (When si = 0, we take
sifij(zi/si) to be 0 if zi = 0 and ∞ if zi 6= 0.) Explain why this problem is convex, and
equivalent to the original problem.

Solution. Since fij are convex functions, so are the perspectives sifij(zi/si). Thus the
problem is convex.

Now we show it is equivalent to the original problem. First, suppose that x is feasible for
the original problem, and can be expressed as x = θ1x1 + · · · + θqxq, where xi ∈ Ci, and
θ � 0, 1T θ = 1. Define zi = θixi, and si = θi. We claim that z1, . . . , zq, s1, . . . , sq, x
are feasible for the reformulated problem. Clearly we have x = z1 + · · · + zq, and s � 0,
1T s = 1. For si > 0, we have zi/si = xi ∈ Ci, so

fij(zi/si) ≤ 0, j = 1, . . . , ki.

Multiplying by si yields the inequalities in the reformulated problem. For si = 0, the
inequalities hold since we take sifij(zi/si) = 0.

Conversely, let z1, . . . , zq, s1, . . . , sq, x be feasible for the reformulated problem. When
si = 0, we must also have zi = 0, so we can ignore these, and assume without loss of
generality that all si > 0. Define xi = zi/si. Dividing the inequalities

fij(zi/si) ≤ 0, j = 1, . . . , ki
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by si yields
fij(xi) ≤ 0, j = 1, . . . , ki,

which shows xi ∈ Ci. From

x = z1 + · · · + zq = s1x1 + · · · + sqxq

we see that x is a convex combination of x1, . . . , xq, and therefore is feasible for the original
problem.

It follows that the two problems are equivalent.

4.57 Capacity of a communication channel. We consider a communication channel, with input
X(t) ∈ {1, . . . , n}, and output Y (t) ∈ {1, . . . ,m}, for t = 1, 2, . . . (in seconds, say). The
relation between the input and the output is given statistically:

pij = prob(Y (t) = i|X(t) = j), i = 1, . . . ,m, j = 1, . . . , n.

The matrix P ∈ Rm×n is called the channel transition matrix, and the channel is called
a discrete memoryless channel.

A famous result of Shannon states that information can be sent over the communication
channel, with arbitrarily small probability of error, at any rate less than a number C,
called the channel capacity, in bits per second. Shannon also showed that the capacity of
a discrete memoryless channel can be found by solving an optimization problem. Assume
that X has a probability distribution denoted x ∈ Rn, i.e.,

xj = prob(X = j), j = 1, . . . , n.

The mutual information between X and Y is given by

I(X;Y ) =

m∑

i=1

n∑

j=1

xjpij log2

pij∑n

k=1
xkpik

.

Then the channel capacity C is given by

C = sup
x

I(X;Y ),

where the supremum is over all possible probability distributions for the input X, i.e.,
over x � 0, 1Tx = 1.

Show how the channel capacity can be computed using convex optimization.

Hint. Introduce the variable y = Px, which gives the probability distribution of the
output Y , and show that the mutual information can be expressed as

I(X;Y ) = cTx−
m∑

i=1

yi log2 yi,

where cj =
∑m

i=1
pij log2 pij , j = 1, . . . , n.

Solution. The capacity is the optimal value of the problem

maximize f0(x) =
∑n

i=1

∑m

j=1
xjpij log

pij∑
m

k=1
xkpik

subject to x � 0, 1Tx = 1,

with variable x. It is possible to argue directly that the objective f0 (which is the mutual
information between X and Y ) is concave in x. This can be done several ways, starting
from the example 3.19.
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Another (related) approach is to follow the hint given, and introduce y = Px as another
variable. We can express the mutual information in terms of x and y as

I(X;Y ) =
∑

i,j

xjpij log
pij∑

k
xkpik

=
∑

j

xj

∑

i

pij log pij −
∑

i

yi log yi

= −cTx−
∑

i

yi log yi,

where cj = −
∑

i
pij log pij . Therefore the channel capacity problem can be expressed as

maximize I(X;Y ) = −cTx−
∑

i
yi log yi

subject to x � 0, 1Tx = 1
y = Px,

with variables x and y. The objective is a constant plus the entropy of y, hence concave,
so this is a convex optimization problem.

4.58 Optimal consumption. In this problem we consider the optimal way to consume (or spend)
an initial amount of money (or other asset) k0 over time. The variables are c1, . . . , cT ,
where ct ≥ 0 denotes the consumption in period t. The utility derived from a consumption
level c is given by u(c), where u : R → R is an increasing concave function. The present
value of the utility derived from the consumption is given by

U =

T∑

t=1

βtu(ct),

where 0 < β < 1 is a discount factor.

Let kt denote the amount of money available for investment in period t. We assume
that it earns an investment return given by f(kt), where f : R → R is an increasing,
concave investment return function, which satisfies f(0) = 0. For example if the funds
earn simple interest at rate R percent per period, we have f(a) = (R/100)a. The amount
to be consumed, i.e., ct, is withdrawn at the end of the period, so we have the recursion

kt+1 = kt + f(kt) − ct, t = 0, . . . , T.

The initial sum k0 > 0 is given. We require kt ≥ 0, t = 1, . . . , T+1 (but more sophisticated
models, which allow kt < 0, can be considered).

Show how to formulate the problem of maximizing U as a convex optimization problem.
Explain how the problem you formulate is equivalent to this one, and exactly how the
two are related.

Hint. Show that we can replace the recursion for kt given above with the inequalities

kt+1 ≤ kt + f(kt) − ct, t = 0, . . . , T.

(Interpretation: the inequalities give you the option of throwing money away in each
period.) For a more general version of this trick, see exercise 4.6.

Solution. We start with the problem

maximize U =
∑T

t=1
βtu(ct)

subject to kt+1 = kt + f(kt) − ct, t = 0, . . . , T
kt ≥ 0, t = 1, . . . , T + 1,

with variables c1, . . . , cT and k1, . . . , kT+1. The objective is concave, since it is a positive
weighted sum of concave functions. But the budget recursion constraints are not convex,
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since they are equality constraints involving the (possibly) nonlinear function f . The hint
explains what to do: we look instead at the modified problem

maximize U =
∑T

t=1
βtu(ct)

subject to kt+1 ≤ kt + f(kt) − ct, t = 0, . . . , T
kt ≥ 0, t = 1, . . . , T + 1.

This problem is convex, since the budget inequalities can be written as

kt+1 − kt − f(kt) + ct ≤ 0,

where the lefthand side is a convex function of the variables c and k.

We will now show that when we solve the modified problem with the inequality constraints,
for any optimal solution we actually get equality for each of the budget constraints. This
means that the solution of the modified problem is actually optimal for the original prob-
lem as well. To see this, we note that by changing the equality constraints into inequalities,
we are relaxing the constraints (i.e., making them looser), and therefore, if anything, we
improve the objective compared to the original problem.

Let c? and k? be optimal for the modified problem. Suppose that at some period s, we
have

k?
s+1 < k?

s + f(k?
s ) − c?

s .

This looks pretty suspicious, since it means that in period t, we are actually throwing
away money (i.e., we are not investing or consuming all of our available funds). Now
consider a new consumption stream c̃ defined as

c̃t =

{
c?t t 6= s
c?t + ε t = s

where ε is a small positive number such that

k?
s+1 ≤ k?

s + f(k?
s ) − c?

s

holds. In words, c̃ is the same consumption stream as c?, except in the period when
we throw away some money (in c?) we just consume a little more. Clearly we have
U(c̃) ≥ U(c?), since the two streams consume the same amount for every period except
one, in which we consume more with c̃. (Here we use the fact that U is increasing.)

Let k̃ be the asset stream that results from the consumption stream c̃. Then all the
constraints of the original problem are satisfied for c̃ and k̃, and yet c? has a lower
objective value than c̃. That contradicts optimality of c?. We conclude that for c?, we
have

k?
t+1 = k?

t + f(k?
t ) − c?

t .

4.59 Robust optimization. In some optimization problems there is uncertainty or variation
in the objective and constraint functions, due to parameters or factors that are either
beyond our control or unknown. We can model this situation by making the objective
and constraint functions f0, . . . , fm functions of the optimization variable x ∈ Rn and
a parameter vector u ∈ Rk that is unknown, or varies. In the stochastic optimization
approach, the parameter vector u is modeled as a random variable with a known dis-
tribution, and we work with the expected values Eu fi(x, u). In the worst-case analysis
approach, we are given a set U that u is known to lie in, and we work with the maximum
or worst-case values supu∈U fi(x, u). To simplify the discussion, we assume there are no
equality constraints.

(a) Stochastic optimization. We consider the problem

minimize E f0(x, u)
subject to E fi(x, u) ≤ 0, i = 1, . . . ,m,
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where the expectation is with respect to u. Show that if fi are convex in x for each
u, then this stochastic optimization problem is convex.

(b) Worst-case optimization. We consider the problem

minimize supu∈U f0(x, u)
subject to supu∈U fi(x, u) ≤ 0, i = 1, . . . ,m.

Show that if fi are convex in x for each u, then this worst-case optimization problem
is convex.

(c) Finite set of possible parameter values. The observations made in parts (a) and (b)
are most useful when we have analytical or easily evaluated expressions for the
expected values E fi(x, u) or the worst-case values supu∈U fi(x, u).

Suppose we are given the set of possible values of the parameter is finite, i.e., we
have u ∈ {u1, . . . , uN}. For the stochastic case, we are also given the probabilities
of each value: prob(u = ui) = pi, where p ∈ RN , p � 0, 1T p = 1. In the worst-case
formulation, we simply take U ∈ {u1, . . . , uN}.
Show how to set up the worst-case and stochastic optimization problems explicitly
(i.e., give explicit expressions for supu∈U fi and Eu fi).

Solution.

(a) Follows from the fact that the inequality

fi(θx+ (1 − θ)y, u) ≤ θf(x, u) + (1 − θ)f(y, u)

is preserved when we take expectations on both sides.

(b) If fi(x, u) is convex in x for fixed u, then supu fi(x, u) is convex in x.

(c) Stochastic formulation:

minimize
∑

i
pkf0(x, uk)

subject to
∑

k
pkfi(x, uk) ≤ 0, i = 1, . . . ,m.

Worst-case formulation:

minimize maxk f0(x, uk)
subject to maxk fi(x, uk) ≤ 0, i = 1, . . . ,m.

4.60 Log-optimal investment strategy. We consider a portfolio problem with n assets held over
N periods. At the beginning of each period, we re-invest our total wealth, redistributing
it over the n assets using a fixed, constant, allocation strategy x ∈ Rn, where x � 0,
1Tx = 1. In other words, if W (t − 1) is our wealth at the beginning of period t, then
during period t we invest xiW (t−1) in asset i. We denote by λ(t) the total return during
period t, i.e., λ(t) = W (t)/W (t − 1). At the end of the N periods our wealth has been

multiplied by the factor
∏N

t=1
λ(t). We call

1

N

N∑

t=1

log λ(t)

the growth rate of the investment over the N periods. We are interested in determining
an allocation strategy x that maximizes growth of our total wealth for large N .

We use a discrete stochastic model to account for the uncertainty in the returns. We
assume that during each period there are m possible scenarios, with probabilities πj ,
j = 1, . . . ,m. In scenario j, the return for asset i over one period is given by pij .
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Therefore, the return λ(t) of our portfolio during period t is a random variable, with
m possible values pT

1 x, . . . , p
T
mx, and distribution

πj = prob(λ(t) = pT
j x), j = 1, . . . ,m.

We assume the same scenarios for each period, with (identical) independent distributions.
Using the law of large numbers, we have

lim
N→∞

1

N
log

(
W (N)

W (0)

)
= lim

N→∞

1

N

N∑

i=1

log λ(t) = E log λ(t) =

m∑

j=1

πj log(pT
j x).

In other words, with investment strategy x, the long term growth rate is given by

Rlt =

m∑

j=1

πj log(pT
j x).

The investment strategy x that maximizes this quantity is called the log-optimal invest-
ment strategy, and can be found by solving the optimization problem

maximize
∑m

j=1
πj log(pT

j x)

subject to x � 0, 1Tx = 1,

with variable x ∈ Rn.

Show that this is a convex optimization problem.

Solution. Actually, there’s not much to do in this problem. The constraints, x � 0,
1Tx = 1, are clearly convex, so we just need to show that the objective is concave (since
it is to be maximized). We can do that in just a few steps: First, note that log is concave,
so log(pT

j x) is concave in x (on the domain, which is the open halfspace {x | pT
j x � 0}).

Since πj ≥ 0, we conclude that the sum of concave functions

m∑

j=1

πj log(pT
j x)

is concave.

4.61 Optimization with logistic model. A random variable X ∈ {0, 1} satisfies

prob(X = 1) = p =
exp(aTx+ b)

1 + exp(aTx+ b)
,

where x ∈ Rn is a vector of variables that affect the probability, and a and b are known
parameters. We can think of X = 1 as the event that a consumer buys a product, and
x as a vector of variables that affect the probability, e.g., advertising effort, retail price,
discounted price, packaging expense, and other factors. The variable x, which we are to
optimize over, is subject to a set of linear constraints, Fx � g.

Formulate the following problems as convex optimization problems.

(a) Maximizing buying probability. The goal is to choose x to maximize p.

(b) Maximizing expected profit. Let cTx+d be the profit derived from selling the product,
which we assume is positive for all feasible x. The goal is to maximize the expected
profit, which is p(cTx+ d).

Solution.
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(a) The function eu/(1 + eu) is monotonically increasing in u, so we can maximize
exp(aTx+ b)/(1 + exp(aTx+ b)) by maximizing aTx+ b, which leads to the LP

maximize aTx+ b
subject to Fx � g.

(b) Here we have to maximize p(cTx+ d), or equivalently, its logarithm:

maximize aTx+ b− log
(
1 + exp(aTx+ b)

)
+ log(cTx+ d)

subject to Fx � g.

This is a convex problem, since the objective is a concave function of x. (Recall that
f(x) = log

∑m

i=1
exp(aT

i x+ bi) is convex.)

4.62 Optimal power and bandwidth allocation in a Gaussian broadcast channel. We consider a
communication system in which a central node transmits messages to n receivers. (‘Gaus-
sian’ refers to the type of noise that corrupts the transmissions.) Each receiver channel
is characterized by its (transmit) power level Pi ≥ 0 and its bandwidth Wi ≥ 0. The
power and bandwidth of a receiver channel determine its bit rate Ri (the rate at which
information can be sent) via

Ri = αiWi log(1 + βiPi/Wi),

where αi and βi are known positive constants. For Wi = 0, we take Ri = 0 (which is
what you get if you take the limit as Wi → 0).

The powers must satisfy a total power constraint, which has the form

P1 + · · · + Pn = Ptot,

where Ptot > 0 is a given total power available to allocate among the channels. Similarly,
the bandwidths must satisfy

W1 + · · · +Wn = Wtot,

where Wtot > 0 is the (given) total available bandwidth. The optimization variables in
this problem are the powers and bandwidths, i.e., P1, . . . , Pn, W1, . . . ,Wn.

The objective is to maximize the total utility,

n∑

i=1

ui(Ri),

where ui : R → R is the utility function associated with the ith receiver. (You can
think of ui(Ri) as the revenue obtained for providing a bit rate Ri to receiver i, so the
objective is to maximize the total revenue.) You can assume that the utility functions ui

are nondecreasing and concave.

Pose this problem as a convex optimization problem.

Solution. If we substitute the expression for Ri in the objective, we obtain

maximize
∑n

i=1
u (αiWi log(1 + βiPi/Wi))

subject to 1TP = Ptot, 1TW = Wtot

P � 0, W � 0

with variables P, W ∈ Rn. We show that Ri is a concave function of (Pi,Wi). It will
follow that u(Ri) is concave since it is a nondecreasing concave function of a concave
function. The total utility U is then concave since it is the sum of concave functions.
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To show that Ri is concave in (Pi,Wi) we can derive the Hessian, which is

∇2Ri =
−αiβ

2
i

Wi(1 + βiPi/Wi)2

[
1

−Pi

][
1

−Pi

]T

.

Since αi, βi, Wi, and Pi are positive, ∇2Ri is negative semidefinite.

An alternative proof follows fromt the fact that t log(1+x/t) is concave in (x, t) for t > 0,
since it is the perspective of log(1 + x), and log(1 + x) is concave.

Another approach is to relax the bit-rate equality constraint, and write the problem as

maximize U =
∑n

i=1
u(Ri)

subject to Ri ≤ αiWi log(1 + βiPi/Wi)
1TP = Ptot, 1TW = Wtot,

with variables Pi, Wi, and Ri. The bit-rate inequality is convex, since the lefthand side
is a convex function of the variables (actually, linear), and the righthand side is a concave
function of the variables. Since the objective is concave, this is a convex optimization
problem. We need to show now is that when we solve this convex optimization problem,
we end up with equality in the bit-rate inequality constraints. But this is easy: for each
variable Ri, the objective is monotonically increasing in Ri, so we want each Ri are large
as possible. Examining the constraints, we see that this occurs when

Ri = αiWi log(1 + βiPi/Wi).

4.63 Optimally balancing manufacturing cost and yield. The vector x ∈ Rn denotes the nomi-
nal parameters in a manufacturing process. The yield of the process, i.e., the fraction of
manufactured goods that is acceptable, is given by Y (x). We assume that Y is log-concave
(which is often the case; see example 3.43). The cost per unit to manufacture the product
is given by cTx, where c ∈ Rn. The cost per acceptable unit is cTx/Y (x). We want to
minimize cTx/Y (x), subject to some convex constraints on x such as a linear inequalities
Ax � b. (You can assume that over the feasible set we have cTx > 0 and Y (x) > 0.)

This problem is not a convex or quasiconvex optimization problem, but it can be solved
using convex optimization and a one-dimensional search. The basic ideas are given below;
you must supply all details and justification.

(a) Show that the function f : R → R given by

f(a) = sup{Y (x) | Ax � b, cTx = a},

which gives the maximum yield versus cost, is log-concave. This means that by
solving a convex optimization problem (in x) we can evaluate the function f .

(b) Suppose that we evaluate the function f for enough values of a to give a good approx-
imation over the range of interest. Explain how to use these data to (approximately)
solve the problem of minimizing cost per good product.

Solution. We first verify that the objective is not convex or quasiconvex. For cTx/Y (x)
to be quasiconvex, we need the constraint

cTx/Y (x) ≤ t ⇐⇒ log(cTx) − log Y (x) ≤ log t

to be convex. By assumption, − log Y (x) is convex, but in general we can’t assume that
the sum with log(cTx) is convex.
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(a) The function f(a) is log-concave because

log f(a) = sup
a

F (x, a)

where

F (x, a) =

{
log Y (x) Ax � b, cTx = a
−∞ otherwise.

F has domain {(x, a) | Ax � b, cTx = a}, which is a convex set. On its domain it is
equal to log Y (x), a concave function. Therefore F is concave, and maximizing over
a gives another concave function.

(b) We would like to solve the problem

maximize log(Y (x)/cTx)
subject to Ax � b.

or, equivalently,
maximize log Y (x) − log a
subject to Ax � b

cTx = a,

with variables x and a. By first optimizing over x and then over a, we can write the
problem as

maximize log f(a) − log a,

with variable a. The objective function is the sum of a concave and a convex function.
By evaluating log f(a) − log a for a large set of values of a, we can approximately
solve the problem.

Another useful observation is as follows. If we evaluate the objective function at
some a = â. This yields not only the value, but also a concave lower bound

log f(a) − log a ≥ log f(a) − log â− (a− â)/â

= log f(a) − a/â− log â+ 1.

By repeatedly maximizing the lower bound and linearizing, we can find a local
maximum of f(a)/a.

4.64 Optimization with recourse. In an optimization problem with recourse, also called two-
stage optimization, the cost function and constraints depend not only on our choice of
variables, but also on a discrete random variable s ∈ {1, . . . , S}, which is interpreted as
specifying which of S scenarios occurred. The scenario random variable s has known
probability distribution π, with πi = prob(s = i), i = 1, . . . , S.

In two-stage optimization, we are to choose the values of two variables, x ∈ Rn and
z ∈ Rq. The variable x must be chosen before the particular scenario s is known; the
variable z, however, is chosen after the value of the scenario random variable is known.
In other words, z is a function of the scenario random variable s. To describe our choice
z, we list the values we would choose under the different scenarios, i.e., we list the vectors

z1, . . . , zS ∈ R
q.

Here z3 is our choice of z when s = 3 occurs, and so on. The set of values

x ∈ R
n, z1, . . . , zS ∈ R

q

is called the policy, since it tells us what choice to make for x (independent of which
scenario occurs), and also, what choice to make for z in each possible scenario.

The variable z is called the recourse variable (or second-stage variable), since it allows
us to take some action or make a choice after we know which scenario occurred. In



Exercises

contrast, our choice of x (which is called the first-stage variable) must be made without
any knowledge of the scenario.

For simplicity we will consider the case with no constraints. The cost function is given by

f : Rn × R
q × {1, . . . , S} → R,

where f(x, z, i) gives the cost when the first-stage choice x is made, second-stage choice
z is made, and scenario i occurs. We will take as the overall objective, to be minimized
over all policies, the expected cost

E f(x, zs, s) =

S∑

i=1

πif(x, zi, i).

Suppose that f is a convex function of (x, z), for each scenario i = 1, . . . , S. Explain
how to find an optimal policy, i.e., one that minimizes the expected cost over all possible
policies, using convex optimization.

Solution. The variables in the problem are

x, z1, . . . , zq,

i.e., the policy. The (total) dimension of the variables is n+ Sq. Our problem is nothing
more than

minimize F (x) =
∑S

i=1
πif(x, zi, i),

which is convex since for each i, f(x, z, i) is convex in (x, zi), and πi ≥ 0.

4.65 Optimal operation of a hybrid vehicle. A hybrid vehicle has an internal combustion engine,
a motor/generator connected to a storage battery, and a conventional (friction) brake. In
this exercise we consider a (highly simplified) model of a parallel hybrid vehicle, in which
both the motor/generator and the engine are directly connected to the drive wheels. The
engine can provide power to the wheels, and the brake can take power from the wheels,
turning it into heat. The motor/generator can act as a motor, when it uses energy stored
in the battery to deliver power to the wheels, or as a generator, when it takes power from
the wheels or engine, and uses the power to charge the battery. When the generator takes
power from the wheels and charges the battery, it is called regenerative braking ; unlike
ordinary friction braking, the energy taken from the wheels is stored, and can be used
later. The vehicle is judged by driving it over a known, fixed test track to evaluate its
fuel efficiency.

A diagram illustrating the power flow in the hybrid vehicle is shown below. The arrows
indicate the direction in which the power flow is considered positive. The engine power
peng, for example, is positive when it is delivering power; the brake power pbr is positive
when it is taking power from the wheels. The power preq is the required power at the
wheels. It is positive when the wheels require power (e.g., when the vehicle accelerates,
climbs a hill, or cruises on level terrain). The required wheel power is negative when the
vehicle must decelerate rapidly, or descend a hill.
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All of these powers are functions of time, which we discretize in one second intervals, with
t = 1, 2, . . . , T . The required wheel power preq(1), . . . , preq(T ) is given. (The speed of
the vehicle on the track is specified, so together with known road slope information, and
known aerodynamic and other losses, the power required at the wheels can be calculated.)

Power is conserved, which means we have

preq(t) = peng(t) + pmg(t) − pbr(t), t = 1, . . . , T.

The brake can only dissipate power, so we have pbr(t) ≥ 0 for each t. The engine can only
provide power, and only up to a given limit Pmax

eng , i.e., we have

0 ≤ peng(t) ≤ Pmax
eng , t = 1, . . . , T.

The motor/generator power is also limited: pmg must satisfy

Pmin
mg ≤ pmg(t) ≤ Pmax

mg , t = 1, . . . , T.

Here Pmax
mg > 0 is the maximum motor power, and −Pmin

mg > 0 is the maximum generator
power.

The battery charge or energy at time t is denoted E(t), t = 1, . . . , T + 1. The battery
energy satisfies

E(t+ 1) = E(t) − pmg(t) − η|pmg(t)|, t = 1, . . . , T + 1,

where η > 0 is a known parameter. (The term −pmg(t) represents the energy removed
or added the battery by the motor/generator, ignoring any losses. The term −η|pmg(t)|
represents energy lost through inefficiencies in the battery or motor/generator.)

The battery charge must be between 0 (empty) and its limit Emax
batt (full), at all times. (If

E(t) = 0, the battery is fully discharged, and no more energy can be extracted from it;
when E(t) = Emax

batt , the battery is full and cannot be charged.) To make the comparison
with non-hybrid vehicles fair, we fix the initial battery charge to equal the final battery
charge, so the net energy change is zero over the track: E(1) = E(T + 1). We do not
specify the value of the initial (and final) energy.

The objective in the problem is the total fuel consumed by the engine, which is

Ftotal =

T∑

t=1

F (peng(t)),

where F : R → R is the fuel use characteristic of the engine. We assume that F is
positive, increasing, and convex.

Formulate this problem as a convex optimization problem, with variables peng(t), pmg(t),
and pbr(t) for t = 1, . . . , T , and E(t) for t = 1, . . . , T + 1. Explain why your formulation
is equivalent to the problem described above.

Solution. We first collect the given objective and constraints to form the problem

minimize
∑T

t=1
F (peng(t))

subject to preq(t) = peng(t) + pmg(t) − pbr(t)
E(t+ 1) = E(t) − pmg(t)) − η|pmg(t))|
0 ≤ E(t) ≤ Emax

batt

E(1) = E(T + 1)
0 ≤ peng(t) ≤ Pmax

eng

Pmin
mg ≤ pmg(t) ≤ Pmax

mg

0 ≤ pbr(t),

where each constraint is imposed for the appropriate range of t. The fuel use function F
is convex, so the objective function is convex. With the exception of the battery charge
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equations, each constraint is a linear equality or linear inequality. So in this form the
problem is not convex.

We need to show how to deal with the nonconvex constraints

E(t+ 1) = E(t) − pmg(t)) − η|pmg(t))|.

One approach is to replace this constraint with the relaxation,

E(t+ 1) ≤ E(t) − pmg(t)) − η|pmg(t))|,

which is convex, in fact, two linear inequalities. Intuitively, this relaxation means that we
open the possibility of throwing energy from the battery away at each step. This sounds
like a bad idea, when fuel efficiency is the goal, and indeed, it is easy to see that if we
solve the problem with the relaxed battery charge constraints, the optimal E? satisfies

E?(t+ 1) = E?(t) − pmg(t)) − η|pmg(t))|,

and therefore solves the original problem. To argue formally that this is the case, suppose
that the solution of the relaxed problem does throw away some energy at some step t.
We then construct a new trajectory, where we do not throw away the extra energy, and
instead, use the energy to power the wheels, and reduce the engine power. This reduces
the fuel consumption since the fuel consumption characteristic is increasing, which shows
that the original could not have been optimal.



Chapter 5

Duality
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Exercises

Basic definitions

5.1 A simple example. Consider the optimization problem

minimize x2 + 1
subject to (x− 2)(x− 4) ≤ 0,

with variable x ∈ R.

(a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal
solution.

(b) Lagrangian and dual function. Plot the objective x2 +1 versus x. On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(x, λ) versus
x for a few positive values of λ. Verify the lower bound property (p? ≥ infx L(x, λ)
for λ ≥ 0). Derive and sketch the Lagrange dual function g.

(c) Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution λ?.
Does strong duality hold?

(d) Sensitivity analysis. Let p?(u) denote the optimal value of the problem

minimize x2 + 1
subject to (x− 2)(x− 4) ≤ u,

as a function of the parameter u. Plot p?(u). Verify that dp?(0)/du = −λ?.

Solution.

(a) The feasible set is the interval [2, 4]. The (unique) optimal point is x? = 2, and the
optimal value is p? = 5.

The plot shows f0 and f1.
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(b) The Lagrangian is

L(x, λ) = (1 + λ)x2 − 6λx+ (1 + 8λ).

The plot shows the Lagrangian L(x, λ) = f0 + λf1 as a function of x for different
values of λ ≥ 0. Note that the minimum value of L(x, λ) over x (i.e., g(λ)) is always
less than p?. It increases as λ varies from 0 toward 2, reaches its maximum at λ = 2,
and then decreases again as λ increases above 2. We have equality p? = g(λ) for
λ = 2.
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For λ > −1, the Lagrangian reaches its minimum at x̃ = 3λ/(1 + λ). For λ ≤ −1 it
is unbounded below. Thus

g(λ) =

{
−9λ2/(1 + λ) + 1 + 8λ λ > −1
−∞ λ ≤ −1

which is plotted below.
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We can verify that the dual function is concave, that its value is equal to p? = 5 for
λ = 2, and less than p? for other values of λ.

(c) The Lagrange dual problem is

maximize −9λ2/(1 + λ) + 1 + 8λ
subject to λ ≥ 0.

The dual optimum occurs at λ = 2, with d? = 5. So for this example we can directly
observe that strong duality holds (as it must — Slater’s constraint qualification is
satisfied).

(d) The perturbed problem is infeasible for u < −1, since infx(x2 − 6x+ 8) = −1. For
u ≥ −1, the feasible set is the interval

[3 −
√

1 + u, 3 +
√

1 + u],

given by the two roots of x2 − 6x + 8 = u. For −1 ≤ u ≤ 8 the optimum is
x?(u) = 3 −

√
1 + u. For u ≥ 8, the optimum is the unconstrained minimum of f0,
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i.e., x?(u) = 0. In summary,

p?(u) =

{ ∞ u < −1
11 + u− 6

√
1 + u −1 ≤ u ≤ 8

1 u ≥ 8.

The figure shows the optimal value function p?(u) and its epigraph.
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Finally, we note that p?(u) is a differentiable function of u, and that

dp?(0)

du
= −2 = −λ?.

5.2 Weak duality for unbounded and infeasible problems. The weak duality inequality, d? ≤ p?,
clearly holds when d? = −∞ or p? = ∞. Show that it holds in the other two cases as
well: If p? = −∞, then we must have d? = −∞, and also, if d? = ∞, then we must have
p? = ∞.

Solution.

(a) p? = −∞. The primal problem is unbounded, i.e., there exist feasible x with
arbitrarily small values of f0(x). This means that

L(x, λ) = f0(x) +

m∑

i=1

λifi(x)

is unbounded below for all λ � 0, i.e., g(λ) = −∞ for λ � 0. Therefore the dual
problem is infeasible (d? = −∞).

(b) d? = ∞. The dual problem is unbounded above. This is only possible if the primal
problem is infeasible. If it were feasible, with fi(x̃) ≤ 0 for i = 1, . . . ,m, then for all
λ � 0,

g(λ) = inf(f0(x) +
∑

i

λifi(x)) ≤ f0(x̃) +
∑

i

λifi(x̃),

so the dual problem is bounded above.

5.3 Problems with one inequality constraint. Express the dual problem of

minimize cTx
subject to f(x) ≤ 0,
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with c 6= 0, in terms of the conjugate f∗. Explain why the problem you give is convex.
We do not assume f is convex.

Solution. For λ = 0, g(λ) = inf cTx = −∞. For λ > 0,

g(λ) = inf(cTx+ λf(x))

= λ inf((c/λ)Tx+ λf(x))

= −λf∗
1 (−c/λ),

i.e., for λ ≥ 0, −g is the perspective of f∗
1 , evaluated at −c/λ. The dual problem is

minimize −λf∗
1 (−c/λ)

subject to λ ≥ 0.

Examples and applications

5.4 Interpretation of LP dual via relaxed problems. Consider the inequality form LP

minimize cTx
subject to Ax � b,

with A ∈ Rm×n, b ∈ Rm. In this exercise we develop a simple geometric interpretation
of the dual LP (5.22).

Let w ∈ Rm
+ . If x is feasible for the LP, i.e., satisfies Ax � b, then it also satisfies the

inequality

wTAx ≤ wT b.

Geometrically, for any w � 0, the halfspace Hw = {x | wTAx ≤ wT b} contains the feasible
set for the LP. Therefore if we minimize the objective cTx over the halfspace Hw we get
a lower bound on p?.

(a) Derive an expression for the minimum value of cTx over the halfspace Hw (which
will depend on the choice of w � 0).

(b) Formulate the problem of finding the best such bound, by maximizing the lower
bound over w � 0.

(c) Relate the results of (a) and (b) to the Lagrange dual of the LP, given by (5.22).

Solution.

(a) The optimal value is

inf
x∈Hw

cTx =

{
λwT b c = λATw for some λ ≤ 0
−∞ otherwise.

(See exercise 4.8.)

(b) We maximize the lower bound by solving

maximize λwT b
subject to c = λATw

λ ≤ 0, w � 0

with variables λ and w. Note that, as posed, this is not a convex problem.
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(c) Defining z = −λw, we obtain the equivalent problem

maximize −bT z
subject to AT z + c = 0

z � 0.

This is the dual of the original LP.

5.5 Dual of general LP. Find the dual function of the LP

minimize cTx
subject to Gx � h

Ax = b.

Give the dual problem, and make the implicit equality constraints explicit.

Solution.

(a) The Lagrangian is

L(x, λ, ν) = cTx+ λT (Gx− h) + νT (Ax− b)
= (cT + λTG+ νTA)x− hλT − νT b,

which is an affine function of x. It follows that the dual function is given by

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−λTh− νT b c+GTλ+AT ν = 0
−∞ otherwise.

(b) The dual problem is
maximize g(λ, ν)
subject to λ � 0.

After making the implicit constraints explicit, we obtain

maximize −λTh− νT b
subject to c+GTλ+AT ν = 0

λ � 0.

5.6 Lower bounds in Chebyshev approximation from least-squares. Consider the Chebyshev
or `∞-norm approximation problem

minimize ‖Ax− b‖∞, (5.103)

where A ∈ Rm×n and rankA = n. Let xch denote an optimal solution (there may be
multiple optimal solutions; xch denotes one of them).

The Chebyshev problem has no closed-form solution, but the corresponding least-squares
problem does. Define

xls = argmin ‖Ax− b‖2 = (ATA)−1AT b.

We address the following question. Suppose that for a particular A and b we have com-
puted the least-squares solution xls (but not xch). How suboptimal is xls for the Chebyshev
problem? In other words, how much larger is ‖Axls − b‖∞ than ‖Axch − b‖∞?

(a) Prove the lower bound

‖Axls − b‖∞ ≤ √
m ‖Axch − b‖∞,

using the fact that for all z ∈ Rm,

1√
m

‖z‖2 ≤ ‖z‖∞ ≤ ‖z‖2.
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(b) In example 5.6 (page 254) we derived a dual for the general norm approximation
problem. Applying the results to the `∞-norm (and its dual norm, the `1-norm), we
can state the following dual for the Chebyshev approximation problem:

maximize bT ν
subject to ‖ν‖1 ≤ 1

AT ν = 0.
(5.104)

Any feasible ν corresponds to a lower bound bT ν on ‖Axch − b‖∞.

Denote the least-squares residual as rls = b−Axls. Assuming rls 6= 0, show that

ν̂ = −rls/‖rls‖1, ν̃ = rls/‖rls‖1,

are both feasible in (5.104). By duality bT ν̂ and bT ν̃ are lower bounds on ‖Axch −
b‖∞. Which is the better bound? How do these bounds compare with the bound
derived in part (a)?

Solution.

(a) Simple manipulation yields

‖Axcheb − b‖∞ ≥ 1√
m

‖Axcheb − b‖2 ≥ 1√
m

‖Axls − b‖2 ≥ 1√
m

‖Axls − b‖∞.

(b) From the expression xls = (ATA)−1AT b we note that

AT rls = AT (b−A(ATA)−1b) = AT b−AT b = 0.

Therefore AT ν̂ = 0 and AT ν̃ = 0. Obviously we also have ‖ν̂‖1 = 1 and ‖ν̃‖1 = 1,
so ν̂ and ν̃ are dual feasible.

We can write the dual objective value at ν̂ as

bT ν̂ =
−bT rls
‖rls‖1

=
(Axls − b)T rls

‖rls‖1
= −‖rls‖2

2

‖rls‖1

and, similarly,

bT ν̃ =
‖rls‖2

2

‖rls‖1
.

Therefore ν̃ gives a better bound than ν̂.

Finally, to show that the resulting lower bound is better than the bound in part (a),
we have to verify that

‖rls‖2
2

‖rls‖1
≥ 1√

m
‖rls‖∞.

This follows from the inequalities

‖x‖1 ≤ √
m‖x‖2, ‖x‖∞ ≤ ‖x‖2

which hold for general x ∈ Rm.

5.7 Piecewise-linear minimization. We consider the convex piecewise-linear minimization
problem

minimize maxi=1,...,m(aT
i x+ bi) (5.105)

with variable x ∈ Rn.
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(a) Derive a dual problem, based on the Lagrange dual of the equivalent problem

minimize maxi=1,...,m yi

subject to aT
i x+ bi = yi, i = 1, . . . ,m,

with variables x ∈ Rn, y ∈ Rm.

(b) Formulate the piecewise-linear minimization problem (5.105) as an LP, and form the
dual of the LP. Relate the LP dual to the dual obtained in part (a).

(c) Suppose we approximate the objective function in (5.105) by the smooth function

f0(x) = log

(
m∑

i=1

exp(aT
i x+ bi)

)
,

and solve the unconstrained geometric program

minimize log
(∑m

i=1
exp(aT

i x+ bi)
)
. (5.106)

A dual of this problem is given by (5.62). Let p?
pwl and p?

gp be the optimal values
of (5.105) and (5.106), respectively. Show that

0 ≤ p?
gp − p?

pwl ≤ logm.

(d) Derive similar bounds for the difference between p?
pwl and the optimal value of

minimize (1/γ) log
(∑m

i=1
exp(γ(aT

i x+ bi))
)
,

where γ > 0 is a parameter. What happens as we increase γ?

Solution.

(a) The dual function is

g(λ) = inf
x,y

(
max

i=1,...,m
yi +

m∑

i=1

λi(a
T
i x+ bi − yi)

)
.

The infimum over x is finite only if
∑

i
λiai = 0. To minimize over y we note that

inf
y

(max
i
yi − λT y) =

{
0 λ � 0, 1Tλ = 1
−∞ otherwise.

To prove this, we first note that if λ � 0, 1Tλ = 1, then

λT y =
∑

j

λjyj ≤
∑

j

λj max
i
yi = max

i
yi,

with equality if y = 0, so in that case

inf
y

(max
i
yi − λT y) = 0.

If λ 6� 0, say λj < 0, then choosing yi = 0, i 6= j, and yj = −t, with t ≥ 0, and
letting t go to infinity, gives

max
i
yi − λT y = 0 + tλk → −∞.
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Finally, if 1Tλ 6= 1, choosing y = t1, gives

max
i
yi − λT y = t(1 − 1

Tλ) → −∞,

if t→ ∞ and 1 < 1Tλ, or if t→ −∞ and 1 > 1Tλ.

Summing up, we have

g(λ) =

{
bTλ

∑
i
λiai = 0, λ � 0, 1Tλ = 1

−∞ otherwise.

The resulting dual problem is

maximize bTλ
subject to ATλ = 0

1Tλ = 1
λ � 0.

(b) The problem is equivalent to the LP

minimize t
subject to Ax+ b � t1.

The dual problem is

maximize bT z
subject to AT z = 0, 1T z = 1, z � 0,

which is identical to the dual derived in (a).

(c) Suppose z? is dual optimal for the dual GP (5.62),

maximize bT z −
∑m

i=1
zi log zi

subject to 1T z = 1
AT z = 0.

Then z? is also feasible for the dual of the piecewise-linear formulation, with objective
value

bT z = p?
gp +

m∑

i=1

z?
i log z?

i .

This provides a lower bound on p?
pwl:

p?
pwl ≥ p?

gp +

m∑

i=1

z?
i log z?

i ≥ p?
gp − logm.

The bound follows from

inf
1T z=1

m∑

i=1

zi log zi = − logm.

On the other hand, we also have

max
i

(aT
i x+ bi) ≤ log

∑

i

exp(aT
i x+ bi)

for all x, and therefore p?
pwl ≤ p?

gp.

In conclusion,
p?
gp − logm ≤ p?

pwl ≤ p?
gp.
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(d) We first reformulate the problem as

minimize (1/γ) log
∑m

i=1
exp(γyi)

subject to Ax+ b = y.

The Lagrangian is

L(x, y, z) =
1

γ
log

m∑

i=1

exp(γyi) + zT (Ax+ b− y).

L is bounded below as a function of x only if AT z = 0. To find the optimum over
y, we set the gradient equal to zero:

eγyi

∑m

i=1
eγyi

= zi.

This is solvable for yi if 1T z = 1 and z � 0. The Lagrange dual function is

g(z) = bT z − 1

γ

m∑

i=1

zi log zi,

and the dual problem is

maximize bT z − (1/γ)
∑m

i=1
zi log zi

subject to AT z = 0
1T z = 1.

Let p?
gp(γ) be the optimal value of the GP. Following the same argument as above,

we can conclude that

p?
gp(γ) − 1

γ
logm ≤ p?

pwl ≤ p?
gp(γ).

In other words, p?
gp(γ) approaches p?

pwl as γ increases.

5.8 Relate the two dual problems derived in example 5.9 on page 257.

Solution. Suppose for example that ν is feasible in (5.71). Then choosing λ1 = (AT ν +
c)− and λ2 = (AT ν + c)+, yields a feasible solution in (5.69), with the same objective
value. Conversely, suppose ν, λ1 and λ2 are feasible in (5.69). The equality constraint
implies that

λ1 = (AT ν + c)− + v, λ2 = (AT ν + c)+ + v,

for some v � 0. Therefore we can write (5.69) as

maximize −bT ν − uT (AT ν + c)− + lT (AT ν + c)+ − (u− l)T v
subject to v � 0,

and it is clear that at the optimum v = 0. Therefore the optimum ν in (5.69) is also
optimal in (5.71).

5.9 Suboptimality of a simple covering ellipsoid. Recall the problem of determining the min-
imum volume ellipsoid, centered at the origin, that contains the points a1, . . . , am ∈ Rn

(problem (5.14), page 222):

minimize f0(X) = log det(X−1)
subject to aT

i Xai ≤ 1, i = 1, . . . ,m,

with dom f0 = Sn
++. We assume that the vectors a1, . . . , am span Rn (which implies that

the problem is bounded below).
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(a) Show that the matrix

Xsim =

(
m∑

k=1

aka
T
k

)−1

,

is feasible. Hint. Show that
[ ∑m

k=1
aka

T
k ai

aT
i 1

]
� 0,

and use Schur complements (§A.5.5) to prove that aT
i Xai ≤ 1 for i = 1, . . . ,m.

Solution.
[ ∑m

k=1
aka

T
k ak

aT
i 1

]
=

[ ∑
k 6=i

aka
T
k 0

0 0

]
+

[
ai

1

][
ai

1

]T

is the sum of two positive semidefinite matrices, hence positive semidefinite. The
Schur complement of the 1, 1 block of this matrix is therefore also positive semidef-
inite:

1 − aT
i

(
m∑

k=1

aka
T
k

)−1

ai ≥ 0,

which is the desired conclusion.

(b) Now we establish a bound on how suboptimal the feasible point Xsim is, via the dual
problem,

maximize log det
(∑m

i=1
λiaia

T
i

)
− 1Tλ+ n

subject to λ � 0,

with the implicit constraint
∑m

i=1
λiaia

T
i � 0. (This dual is derived on page 222.)

To derive a bound, we restrict our attention to dual variables of the form λ = t1,
where t > 0. Find (analytically) the optimal value of t, and evaluate the dual
objective at this λ. Use this to prove that the volume of the ellipsoid {u | uTXsimu ≤
1} is no more than a factor (m/n)n/2 more than the volume of the minimum volume
ellipsoid.

Solution. The dual function evaluated at λ = t1 is

g(λ) = log det

(
m∑

i=1

aia
T
i

)
+ n log t−mt+ n.

Now we’ll maximize over t > 0 to get the best lower bound. Setting the derivative
with respect to t equal to zero yields the optimal value t = n/m. Using this λ we
get the dual objective value

g(λ) = log det

(
m∑

i=1

aia
T
i

)
+ n log(n/m).

The primal objective value for X = Xsim is given by

− log det

(
m∑

i=1

aia
T
i

)−1

,

so the duality gap associated with Xsim and λ is n log(m/n). (Recall that m ≥
n, by our assumption that a1, . . . , am span Rn.) It follows that, in terms of the
objective function, Xsim is no more than n log(m/n) suboptimal. The volume V of
the ellipsoid E associated with the matrix X is given by V = exp(−O/2), where O
is the associated objective function, O = − log detX. The bound follows.
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5.10 Optimal experiment design. The following problems arise in experiment design (see §7.5).

(a) D-optimal design.

minimize log det
(∑p

i=1
xiviv

T
i

)−1

subject to x � 0, 1Tx = 1.

(b) A-optimal design.

minimize tr
(∑p

i=1
xiviv

T
i

)−1

subject to x � 0, 1Tx = 1.

The domain of both problems is {x |
∑p

i=1
xiviv

T
i � 0}. The variable is x ∈ Rp; the

vectors v1, . . . , vp ∈ Rn are given.

Derive dual problems by first introducing a new variable X ∈ Sn and an equality con-
straint X =

∑p

i=1
xiviv

T
i , and then applying Lagrange duality. Simplify the dual prob-

lems as much as you can.

Solution.

(a) D-optimal design.

minimize log det(X−1)
subject to X =

∑p

i=1
xiviv

T
i

x � 0, 1Tx = 1.

The Lagrangian is

L(x, Z, z, ν) = log det(X−1) + tr(ZX) −
p∑

i=1

xiv
T
i Zvi − zTx+ ν(1Tx− 1)

= log det(X−1) + tr(ZX) +

p∑

i=1

xi(−vT
i Zvi − zi + ν) − ν.

The minimum over xi is bounded below only if ν−vT
i Zvi = zi. Setting the gradient

with respect to X equal to zero gives X−1 = Z. We obtain the dual function

g(Z, z) =

{
log detZ + n− ν ν − vT

i Zvi = zi, i = 1, . . . , p
−∞ otherwise.

The dual problem is

maximize log detZ + n− ν
subject to vT

i Zvi ≤ ν, i = 1, . . . , p,

with domain Sn
++ × R. We can eliminate ν by first making a change of variables

W = (1/ν)Z, which gives

maximize log detW + n+ n log ν − ν

subject to vT
i Ŵvi ≤ 1, i = 1, . . . , p.

Finally, we note that we can easily optimize n log ν − ν over ν. The optimum is
ν = n, and substituting gives

maximize log detW + n logn
subject to vT

i Wvi ≤ 1, i = 1, . . . , p.
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(b) A-optimal design.

minimize tr(X−1)

subject to X =
(∑p

i=1
xiviv

T
i

)−1

x � 0, 1Tx = 1.

The Lagrangian is

L(X,Z, z, ν) = tr(X−1) + tr(ZX) −
p∑

i=1

xiv
T
i Zvi − zTx+ ν(1Tx− 1)

= tr(X−1) + tr(ZX) +

p∑

i=1

xi(−vT
i Zvi − zi + ν) − ν.

The minimum over x is unbounded below unless vT
i Zvi + zi = ν. The minimum

over X can be found by setting the gradient equal to zero: X−2 = Z, or X = Z−1/2

if Z � 0, which gives

inf
X�0

(tr(X−1) + tr(ZX)) =

{
2 tr(Z1/2) Z � 0
−∞ otherwise.

The dual function is

g(Z, z, ν) =

{
−ν + 2 tr(Z1/2) Z � 0, vT

i Zvi + zi = ν
−∞ otherwise.

The dual problem is

maximize −ν + 2 tr(Z1/2)
subject to vT

i Zvi ≤ nu, i = 1, . . . , p
Z � 0.

As a first simplification, we define W = (1/ν)Z, and write the problem as

maximize −ν + 2
√
ν tr(W 1/2)

subject to vT
i Wvi ≤ 1, i = 1, . . . , p
W � 0.

By optimizing over ν > 0, we obtain

maximize (tr(W 1/2))2

subject to vT
i Wvi ≤ 1, i = 1, . . . , p
W � 0.

5.11 Derive a dual problem for

minimize
∑N

i=1
‖Aix+ bi‖2 + (1/2)‖x− x0‖2

2.

The problem data are Ai ∈ Rmi×n, bi ∈ Rmi , and x0 ∈ Rn. First introduce new variables
yi ∈ Rmi and equality constraints yi = Aix+ bi.

Solution. The Lagrangian is

L(x, z1, . . . , zN ) =

N∑

i=1

‖yi‖2 +
1

2
‖x− x0‖2

2 −
N∑

i=1

zT
i (yi −Aix− bi).
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We first minimize over yi. We have

inf
yi

(‖yi‖2 + zT
i yi) =

{
0 ‖zi‖2 ≤ 1
−∞ otherwise.

(If ‖zi‖2 > 1, choose yi = −tzi and let t → ∞, to show that the function is unbounded
below. If ‖zi‖2 ≤ 1, it follows from the Cauchy-Schwarz inequality that ‖yi‖2 + zT

i yi ≥ 0,
so the minimum is reached when yi = 0.)
We can minimize over x by setting the gradient with respect to x equal to zero. This
yields

x = x0 +

N∑

i=1

AT
i z.

Substituting in the Lagrangian gives the dual function

g(z1, . . . , zN ) =

{ ∑N

i=1
(Aix0 + bi)

T zi − 1
2
‖
∑N

i=1
AT

i zi‖2
2 ‖zi‖2 ≤ 1, i = 1, . . . , N

−∞ otherwise.

The dual problem is

maximize
∑N

i=1
(Aix0 + bi)

T zi − 1
2
‖
∑N

i=1
AT

i zi‖2

subject to ‖zi‖2 ≤ 1, i = 1, . . . , N.

5.12 Analytic centering. Derive a dual problem for

minimize −
∑m

i=1
log(bi − aT

i x)

with domain {x | aT
i x < bi, i = 1, . . . ,m}. First introduce new variables yi and equality

constraints yi = bi − aT
i x.

(The solution of this problem is called the analytic center of the linear inequalities aT
i x ≤

bi, i = 1, . . . ,m. Analytic centers have geometric applications (see §8.5.3), and play an
important role in barrier methods (see chapter 11).)
Solution. We derive the dual of the problem

minimize −
∑m

i=1
log yi

subject to y = b−Ax,

where A ∈ Rm×n has aT
i as its ith row. The Lagrangian is

L(x, y, ν) = −
m∑

i=1

log yi + νT (y − b+Ax)

and the dual function is

g(ν) = inf
x,y

(
−

m∑

i=1

log yi + νT (y − b+Ax)

)
.

The term νTAx is unbounded below as a function of x unless AT ν = 0. The terms in y
are unbounded below if ν 6� 0, and achieve their minimum for yi = 1/νi otherwise. We
therefore find the dual function

g(ν) =

{ ∑m

i=1
log νi +m− bT ν AT ν = 0, ν � 0

−∞ otherwise

and the dual problem

maximize
∑m

i=1
log νi − bT ν +m

subject to AT ν = 0.
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5.13 Lagrangian relaxation of Boolean LP. A Boolean linear program is an optimization prob-
lem of the form

minimize cTx
subject to Ax � b

xi ∈ {0, 1}, i = 1, . . . , n,

and is, in general, very difficult to solve. In exercise 4.15 we studied the LP relaxation of
this problem,

minimize cTx
subject to Ax � b

0 ≤ xi ≤ 1, i = 1, . . . , n,
(5.107)

which is far easier to solve, and gives a lower bound on the optimal value of the Boolean
LP. In this problem we derive another lower bound for the Boolean LP, and work out the
relation between the two lower bounds.

(a) Lagrangian relaxation. The Boolean LP can be reformulated as the problem

minimize cTx
subject to Ax � b

xi(1 − xi) = 0, i = 1, . . . , n,

which has quadratic equality constraints. Find the Lagrange dual of this problem.
The optimal value of the dual problem (which is convex) gives a lower bound on
the optimal value of the Boolean LP. This method of finding a lower bound on the
optimal value is called Lagrangian relaxation.

(b) Show that the lower bound obtained via Lagrangian relaxation, and via the LP
relaxation (5.107), are the same. Hint. Derive the dual of the LP relaxation (5.107).

Solution.

(a) The Lagrangian is

L(x, µ, ν) = cTx+ µT (Ax− b) − νTx+ xT
diag(ν)x

= xT
diag(ν)x+ (c+ATµ− ν)Tx− bTµ.

Minimizing over x gives the dual function

g(µ, ν) =

{
−bTµ− (1/4)

∑n

i=1
(ci + aT

i µ− νi)
2/νi ν � 0

−∞ otherwise

where ai is the ith column of A, and we adopt the convention that a2/0 = ∞ if
a 6= 0, and a2/0 = 0 if a = 0.

The resulting dual problem is

maximize −bTµ− (1/4)
∑n

i=1
(ci + aT

i µ− νi)
2/νi

subject to ν � 0.

In order to simplify this dual, we optimize analytically over ν, by noting that

sup
νi≥0

(
− (ci + aT

i µ− νi)
2

νi

)
=

{
(ci + aT

i µ) ci + aT
i µ ≤ 0

0 ci + aT
i µ ≥ 0

= min{0, (ci + aT
i µ)}.

This allows us to eliminate ν from the dual problem, and simplify it as

maximize −bTµ+
∑n

i=1
min{0, ci + aT

i µ}
subject to µ � 0.
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(b) We follow the hint. The Lagrangian and dual function of the LP relaxation re

L(x, u, v, w) = cTx+ uT (Ax− b) − vTx+ wT (x− 1)

= (c+ATu− v + w)Tx− bTu− 1
Tw

g(u, v, w) =

{
−bTu− 1Tw ATu− v + w + c = 0
−∞ otherwise.

The dual problem is

maximize −bTu− 1Tw
subject to ATu− v + w + c = 0

u � 0, v � 0, w � 0,

which is equivalent to the Lagrange relaxation problem derived above. We conclude
that the two relaxations give the same value.

5.14 A penalty method for equality constraints. We consider the problem

minimize f0(x)
subject to Ax = b,

(5.108)

where f0 : Rn → R is convex and differentiable, and A ∈ Rm×n with rankA = m.

In a quadratic penalty method, we form an auxiliary function

φ(x) = f(x) + α‖Ax− b‖2
2,

where α > 0 is a parameter. This auxiliary function consists of the objective plus the
penalty term α‖Ax−b‖2

2. The idea is that a minimizer of the auxiliary function, x̃, should
be an approximate solution of the original problem. Intuition suggests that the larger the
penalty weight α, the better the approximation x̃ to a solution of the original problem.

Suppose x̃ is a minimizer of φ. Show how to find, from x̃, a dual feasible point for (5.108).
Find the corresponding lower bound on the optimal value of (5.108).

Solution. If x̃ minimizes φ, then

∇f0(x̃) + 2αAT (Ax̃− b) = 0.

Therefore x̃ is also a minimizer of

f0(x) + νT (Ax− b)

where ν = 2α(Ax̃− b). Therefore ν is dual feasible with

g(ν) = inf
x

(f0(x) + νT (Ax− b))

= f0(x̃) + 2α‖Ax̃− b‖2
2.

Therefore,
f0(x) ≥ f0(x̃) + 2α‖Ax̃− b‖2

2

for all x that satisfy Ax = b.

5.15 Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

(5.109)
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where the functions fi : Rn → R are differentiable and convex. Let h1, . . . , hm : R → R
be increasing differentiable convex functions. Show that

φ(x) = f0(x) +

m∑

i=1

hi(fi(x))

is convex. Suppose x̃ minimizes φ. Show how to find from x̃ a feasible point for the dual
of (5.109). Find the corresponding lower bound on the optimal value of (5.109).

Solution. x̃ satisfies

0 = ∇f0(x̃) +

m∑

i=1

(h′
i(fi(x̃)))∇fi(x̃)) = ∇f0(x̃) +

m∑

i=1

λi∇fi(x̃))

where λi = h′
i(fi(x̃)). λ is dual feasible: λi ≥ 0, since hi is increasing, and

g(λ) = f0(x̃) +

m∑

i=1

λifi(x̃)

= f0(x̃) +

m∑

i=1

h′
i(fi(x̃))fi(x̃).

5.16 An exact penalty method for inequality constraints. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

(5.110)

where the functions fi : Rn → R are differentiable and convex. In an exact penalty
method, we solve the auxiliary problem

minimize φ(x) = f0(x) + αmaxi=1,...,m max{0, fi(x)}, (5.111)

where α > 0 is a parameter. The second term in φ penalizes deviations of x from feasibility.
The method is called an exact penalty method if for sufficiently large α, solutions of the
auxiliary problem (5.111) also solve the original problem (5.110).

(a) Show that φ is convex.

(b) The auxiliary problem can be expressed as

minimize f0(x) + αy
subject to fi(x) ≤ y, i = 1, . . . ,m

0 ≤ y

where the variables are x and y ∈ R. Find the Lagrange dual of this problem, and
express it in terms of the Lagrange dual function g of (5.110).

(c) Use the result in (b) to prove the following property. Suppose λ? is an optimal
solution of the Lagrange dual of (5.110), and that strong duality holds. If α >
1Tλ?, then any solution of the auxiliary problem (5.111) is also an optimal solution
of (5.110).

Solution.

(a) The first term is convex. The second term is convex since it can be expressed as

max{f1(x), . . . , fm(x), 0},

i.e., the pointwise maximum of a number of convex functions.
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(b) The Lagrangian is

L(x, y, λ, µ) = f0(x) + αy +

m∑

i=1

λi(fi(x) − y) − µy.

The dual function is

inf
x,y

L(x, y, λ, µ) = inf
x,y

f0(x) + αy +

m∑

i=1

λi(fi(x) − y) − µy

= inf
x

(f0(x) +

m∑

i=1

λifi(x)) + inf
y

(α−
m∑

i=1

λi − µ)y

=

{
g(λ) 1Tλ+ µ = α
−∞ otherwise,

and the dual problem is

maximize g(λ)
subject to 1Tλ+ µ = α

λ � 0, µ ≥ 0,

or, equivalently,
maximize g(λ)
subject to 1Tλ ≤ α

λ � 0.

(c) If 1Tλ? < α, then λ? is also optimal for the dual problem derived in part (b). By
complementary slackness y = 0 in any optimal solution of the primal problem, so the
optimal x satisfies fi(x) ≤ 0, i = 1, . . . ,m, i.e., it is feasible in the original problem,
and therefore also optimal.

5.17 Robust linear programming with polyhedral uncertainty. Consider the robust LP

minimize cTx
subject to supa∈Pi

aTx ≤ bi, i = 1, . . . ,m,

with variable x ∈ Rn, where Pi = {a | Cia � di}. The problem data are c ∈ Rn,
Ci ∈ Rmi×n, di ∈ Rmi , and b ∈ Rm. We assume the polyhedra Pi are nonempty.

Show that this problem is equivalent to the LP

minimize cTx
subject to dT

i zi ≤ bi, i = 1, . . . ,m
CT

i zi = x, i = 1, . . . ,m
zi � 0, i = 1, . . . ,m

with variables x ∈ Rn and zi ∈ Rmi , i = 1, . . . ,m. Hint. Find the dual of the problem
of maximizing aT

i x over ai ∈ Pi (with variable ai).

Solution. The problem can be expressed as

minimize cTx
subject to fi(x) ≤ bi, i = 1, . . . ,m

if we define fi(x) as the optimal value of the LP

maximize xT a
subject to Cia � d,
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where a is the variable, and x is treated as a problem parameter. It is readily shown that
the Lagrange dual of this LP is given by

minimize dT
i z

subject to CT
i z = x

z � 0.

The optimal value of this LP is also equal to fi(x), so we have fi(x) ≤ bi if and only if
there exists a zi with

dT
i z ≤ bi, CT

i zi = x, zi � 0.

5.18 Separating hyperplane between two polyhedra. Formulate the following problem as an LP
or an LP feasibility problem. Find a separating hyperplane that strictly separates two
polyhedra

P1 = {x | Ax � b}, P2 = {x | Cx � d},
i.e., find a vector a ∈ Rn and a scalar γ such that

aTx > γ for x ∈ P1, aTx < γ for x ∈ P2.

You can assume that P1 and P2 do not intersect.

Hint. The vector a and scalar γ must satisfy

inf
x∈P1

aTx > γ > sup
x∈P2

aTx.

Use LP duality to simplify the infimum and supremum in these conditions.

Solution. Define p?
1(a) and p?

2(a) as

p?
1(a) = inf{aTx | Ax � b}, p?

2(a) = sup{aTx | Cx � d}.

A hyperplane aTx = γ strictly separates the two polyhedra if

p?
2(a) < γ < p?

1(a).

For example, we can find a by solving

maximize p?
1(a) − p?

2(a)
subject to ‖a‖1 ≤ 1

and selecting γ = (p?
1(a) + p?

2(a))/2. (The bound ‖a‖1 is added because the objective is
homogeneous in a, so it unbounded unless we add a constraint on a.)

Using LP duality we have

p?
1(a) = sup{−bT z1 | AT z1 + a = 0, z1 � 0}
p?
2(a) = inf{−aTx | Cx � d}

= sup{−dT z2 | CT z2 − a = 0, z2 � 0},
so we can reformulate the problem as

maximize −bT z1 − dT z2
subject to AT z1 + a = 0

CT z2 − a = 0
z1 � 0, z2 � 0
‖a‖1 ≤ 1.

The variables are a, z1 and z2.

Another solution is based on theorems of alternative. The hyperplane separates the two
polyhedra if the following two sets of linear inequalities are infeasible:
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• Ax � b, aTx ≤ γ

• Cx � d, aTx ≥ γ.

Using a theorem of alternatives this is equivalent to requiring that the following two sets
of inequalities are both feasible:

• z1 � 0, w1 ≥ 0, AT z1 + aw1 = 0, bT z1 − γw1 < 0

• z2 � 0, w2 ≥ 0, CT z2 − aw2 = 0, dT z2 + γw2 < 0

w1 and w2 must be nonzero. If w1 = 0, then AT z1 = 0, bT z1 < 0. which means P1

is empty, and similarly, w2 = 0 means P2 is empty. We can therefore simplify the two
conditions as

• z1 � 0, AT z1 + a = 0, bT z1 < γ

• z2 � 0, CT z2 − a = 0, dT z2 < −γ,
which is basically the same as the conditions derived above.

5.19 The sum of the largest elements of a vector. Define f : Rn → R as

f(x) =

r∑

i=1

x[i],

where r is an integer between 1 and n, and x[1] ≥ x[2] ≥ · · · ≥ x[r] are the components of
x sorted in decreasing order. In other words, f(x) is the sum of the r largest elements of
x. In this problem we study the constraint

f(x) ≤ α.

As we have seen in chapter 3, page 80, this is a convex constraint, and equivalent to a set
of n!/(r!(n− r)!) linear inequalities

xi1 + · · · + xir ≤ α, 1 ≤ i1 < i2 < · · · < ir ≤ n.

The purpose of this problem is to derive a more compact representation.

(a) Given a vector x ∈ Rn, show that f(x) is equal to the optimal value of the LP

maximize xT y
subject to 0 � y � 1

1T y = r

with y ∈ Rn as variable.

(b) Derive the dual of the LP in part (a). Show that it can be written as

minimize rt+ 1Tu
subject to t1 + u � x

u � 0,

where the variables are t ∈ R, u ∈ Rn. By duality this LP has the same optimal
value as the LP in (a), i.e., f(x). We therefore have the following result: x satisfies
f(x) ≤ α if and only if there exist t ∈ R, u ∈ Rn such that

rt+ 1
Tu ≤ α, t1 + u � x, u � 0.

These conditions form a set of 2n+1 linear inequalities in the 2n+1 variables x, u, t.
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(c) As an application, we consider an extension of the classical Markowitz portfolio
optimization problem

minimize xT Σx
subject to pTx ≥ rmin

1Tx = 1, x � 0

discussed in chapter 4, page 155. The variable is the portfolio x ∈ Rn; p and Σ are
the mean and covariance matrix of the price change vector p.

Suppose we add a diversification constraint, requiring that no more than 80% of
the total budget can be invested in any 10% of the assets. This constraint can be
expressed as

b0.1nc∑

i=1

x[i] ≤ 0.8.

Formulate the portfolio optimization problem with diversification constraint as a
QP.

Solution.

(a) See also chapter 4, exercise 4.8.

For simplicity we assume that the elements of x are sorted in decreasing order:

x1 ≥ x2 ≥ · · · ≥ xn.

It is easy to see that the optimal value is

x1 + x2 + · · · + xr,

obtained by choosing y1 = y2 = · · · = yr = 1 and yr+1 = · · · = yn = 0.

(b) We first change the objective from maximization to minimization:

minimize −xT y
subject to 0 � y � 1

1T y = r.

We introduce a Lagrange multiplier λ for the lower bound, u for the upper bound,
and t for the equality constraint. The Lagrangian is

L(y, λ, u, t) = −xT y − λT y + uT (y − 1) + t(1T y − r)

= −1
Tu− rt+ (−x− λ+ u+ t1)T y.

Minimizing over y yields the dual function

g(λ, u, t) =

{
−1Tu− rt −x− λ+ u+ t1 = 0
−∞ otherwise.

The dual problem is to maximize g subject to λ � 0 and u � 0:

maximize −1Tu− rt
subject to −λ+ u+ t1 = x

λ � 0, u � 0,

or after changing the objective to minimization (i.e., undoing the sign change we
started with),

minimize 1Tu+ rt
subject to u+ t1 � x

u � 0.

We eliminated λ by noting that it acts as a slack variable in the first constraint.
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(c)

minimize xT Σx
subject to pTx ≥ rmin

1Tx = 1, x � 0
bn/20ct+ 1Tu ≤ 0.9
λ1 + u � 0
u � 0,

with variables x, u, t, v.

5.20 Dual of channel capacity problem. Derive a dual for the problem

minimize −cTx+
∑m

i=1
yi log yi

subject to Px = y
x � 0, 1Tx = 1,

where P ∈ Rm×n has nonnegative elements, and its columns add up to one (i.e., P T 1 =
1). The variables are x ∈ Rn, y ∈ Rm. (For cj =

∑m

i=1
pij log pij , the optimal value is,

up to a factor log 2, the negative of the capacity of a discrete memoryless channel with
channel transition probability matrix P ; see exercise 4.57.)
Simplify the dual problem as much as possible.
Solution. The Lagrangian is

L(x, y, λ, ν, z) = −cTx+

m∑

i=1

yi log yi − λTx+ ν(1Tx− 1) + zT (Px− y)

= (−c− λ+ ν1 + P T z)Tx+

m∑

i=1

yi log yi − zT y − ν.

The minimum over x is bounded below if and only if

−c− λ+ ν1 + P T z = 0.

To minimize over y, we set the derivative with respect to yi equal to zero, which gives
log yi + 1 − zi = 0, and conclude that

inf
yi≥0

(yi log yi − ziyi) = −ezi−1.

The dual function is

g(λ, ν, z) =

{
−
∑m

i=1
ezi−1 − ν −c− λ+ ν1 + P T z = 0

−∞ otherwise.

The dual problem is
maximize −

∑m

i=1
exp(zi − 1) − ν

subject to P T z − c+ ν1 � 0.

This can be simplified by introducing a variable w = z + ν1 (and using the fact that
1 = PT 1), which gives

maximize −
∑m

i=1
exp(wi − ν − 1) − ν

subject to P Tw � c.

Finally we can easily maximize the objective function over ν by setting the derivative
equal to zero (the optimal value is ν = − log(

∑
i
e1−wi), which leads to

maximize − log(
∑m

i=1
expwi) − 1

subject to P Tw � c.

This is a geometric program, in convex form, with linear inequality constraints (i.e.,
monomial inequality constraints in the associated geometric program).
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Strong duality and Slater’s condition

5.21 A convex problem in which strong duality fails. Consider the optimization problem

minimize e−x

subject to x2/y ≤ 0

with variables x and y, and domain D = {(x, y) | y > 0}.
(a) Verify that this is a convex optimization problem. Find the optimal value.

(b) Give the Lagrange dual problem, and find the optimal solution λ? and optimal value
d? of the dual problem. What is the optimal duality gap?

(c) Does Slater’s condition hold for this problem?

(d) What is the optimal value p?(u) of the perturbed problem

minimize e−x

subject to x2/y ≤ u

as a function of u? Verify that the global sensitivity inequality

p?(u) ≥ p?(0) − λ?u

does not hold.

Solution.

(a) p? = 1.

(b) The Lagrangian is L(x, y, λ) = e−x + λx2/y. The dual function is

g(λ) = inf
x,y>0

(e−x + λx2/y) =

{
0 λ ≥ 0
−∞ λ < 0,

so we can write the dual problem as

maximize 0
subject to λ ≥ 0,

with optimal value d? = 0. The optimal duality gap is p? − d? = 1.

(c) Slater’s condition is not satisfied.

(d) p?(u) = 1 if u = 0, p?(u) = 0 if u > 0 and p?(u) = ∞ if u < 0.

5.22 Geometric interpretation of duality. For each of the following optimization problems,
draw a sketch of the sets

G = {(u, t) | ∃x ∈ D, f0(x) = t, f1(x) = u},
A = {(u, t) | ∃x ∈ D, f0(x) ≤ t, f1(x) ≤ u},

give the dual problem, and solve the primal and dual problems. Is the problem convex?
Is Slater’s condition satisfied? Does strong duality hold?

The domain of the problem is R unless otherwise stated.

(a) Minimize x subject to x2 ≤ 1.

(b) Minimize x subject to x2 ≤ 0.

(c) Minimize x subject to |x| ≤ 0.
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(d) Minimize x subject to f1(x) ≤ 0 where

f1(x) =

{ −x+ 2 x ≥ 1
x −1 ≤ x ≤ 1
−x− 2 x ≤ −1.

(e) Minimize x3 subject to −x+ 1 ≤ 0.

(f) Minimize x3 subject to −x+ 1 ≤ 0 with domain D = R+.

Solution. For the first four problems G is the curve

G = {(u, t) | u ∈ D, u = f1(t)}.
For problem (e), G is the curve

G = {(u, t) | t = (1 − u)3}.
For problem (f), G is the curve

G = {(u, t) | u ≤ 1, t = (1 − u)3}.
A is the set of points above and to the right of G.

(a) x? = −1. λ? = 1. p? = −1. d? = −1. Convex. Strong duality. Slater’s condition
holds.

This is the generic convex case.

(b) x? = 0. p? = 0. d? = 0. Dual optimum is not achieved. Convex. Strong duality.
Slater’s condition does not hold.

We have strong duality although Slater’s condition does not hold. However the dual
optimum is not attained.

(c) x? = 0. p? = 0. λ? = 1. d? = 0. Convex. Strong duality. Slater’s condition not
satisfied.

We have strong duality and the dual is attained, although Slater’s condition does
not hold.

(d) x? = −2. p? = −2. λ? = 1. d? = −2. Not convex. Strong duality.

We have strong duality, although this is a very nonconvex problem.

(e) x? = 1. p? = 1. d? = −∞. Not convex. No strong duality.

The problem has a convex feasibility set, and the objective is convex on the feasible
set. However the problem is not convex, according to the definition used in this
book. Lagrange duality gives a trivial bound −∞.

(f) x? = 1. p? = 1. λ? = 1. d? = 1. Convex. Strong duality. Slater’s condition is
satisfied.

Adding the domain condition seems redundant at first. However the new problem
is convex (according to our definition). Now strong duality holds and the dual
optimum is attained.

5.23 Strong duality in linear programming. We prove that strong duality holds for the LP

minimize cTx
subject to Ax � b

and its dual
maximize −bT z
subject to AT z + c = 0, z � 0,

provided at least one of the problems is feasible. In other words, the only possible excep-
tion to strong duality occurs when p? = ∞ and d? = −∞.
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(a) Suppose p? is finite and x? is an optimal solution. (If finite, the optimal value of an
LP is attained.) Let I ⊆ {1, 2, . . . ,m} be the set of active constraints at x?:

aT
i x

? = bi, i ∈ I, aT
i x

? < bi, i 6∈ I.

Show that there exists a z ∈ Rm that satisfies

zi ≥ 0, i ∈ I, zi = 0, i 6∈ I,
∑

i∈I

ziai + c = 0.

Show that z is dual optimal with objective value cTx?.

Hint. Assume there exists no such z, i.e., −c 6∈ {
∑

i∈I
ziai | zi ≥ 0}. Reduce

this to a contradiction by applying the strict separating hyperplane theorem of
example 2.20, page 49. Alternatively, you can use Farkas’ lemma (see §5.8.3).

(b) Suppose p? = ∞ and the dual problem is feasible. Show that d? = ∞. Hint. Show
that there exists a nonzero v ∈ Rm such that AT v = 0, v � 0, bT v < 0. If the dual
is feasible, it is unbounded in the direction v.

(c) Consider the example

minimize x

subject to

[
0
1

]
x �

[
−1

1

]
.

Formulate the dual LP, and solve the primal and dual problems. Show that p? = ∞
and d? = −∞.

Solution.

(a) Without loss of generality we can assume that I = {1, 2, . . . , k}. Let Ā ∈ Rk×n be
the matrix formed by the first k rows of A. We assume there is no z̄ � 0 such that
c+ ĀT z̄ = 0, i.e.,

−c 6∈ S = {ĀT z̄ | z̄ � 0}.
By the strict separating hyperplane theorem, applied to −c and S, there exists a u
such that

−uT c > uT ĀT z̄

for all z̄ � 0. This means cTu < 0 (evaluate the righthand side at z̄ = 0), and
Āu � 0.

Now consider x = x? + tu. We have

aT
i x = aT

i x
? + taT

i u = bi + taT
i u ≤ bi, i ∈ I,

for all t ≥ 0, and

aT
i x = aT

i x
? + taT

i u < bi + taT
i u < bi, i 6∈ I,

for sufficiently small positive t. Finally

cTx = cTx? + tcTu < cTx?

for all positive t. This is a contradiction, because we have constructed primal feasible
points with a lower objective value than x?.

We conclude that there exists a z̄ � 0 with ĀT z̄ + c = 0. Choosing z = (z̄, 0) yields
a dual feasible point. Its objective value is

−bT z = −(x?)T ĀT z = cTx?.
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(b) The primal problem is infeasible, i.e.,

−b 6∈ S = {Ax+ s | s � 0}.

The righthand side is a closed convex set, so we can apply the strict separating
hyperplane theorem and conclude there exists a v ∈ Rm such that −vT b > vT (Ax+
s) for all x and all s � 0. This is equivalent to

bT v < 0, AT v = 0, v � 0.

This only leaves two possibilities. Either the dual problem is infeasible, or it is
feasible and unbounded above. (If z0 is dual feasible, then z = z0 + tv is dual
feasible for all t ≥ 0, with −bT z = −bT z0 + tbT v).

(c) The dual LP is

maximize z1 − z2
subject to z2 + 1 = 0

z1, z2 ≥ 0,

which is also infeasible (d? = −∞).

5.24 Weak max-min inequality. Show that the weak max-min inequality

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z)

always holds, with no assumptions on f : Rn × Rm → R, W ⊆ Rn, or Z ⊆ Rm.

Solution. If W and Z are empty, the inequality reduces to −∞ ≤ ∞.

If W is nonempty, with w̃ ∈W , we have

inf
w∈W

f(w, z) ≤ f(w̃, z)

for all z ∈ Z. Taking the supremum over z ∈ Z on both sides we get

sup
z∈Z

inf
w∈W

f(w, z) ≤ sup
z∈Z

f(w̃, z).

Taking the inf over w̃ ∈W we get the max-min inequality.

The proof for nonempty Z is similar.

5.25 [BL00, page 95] Convex-concave functions and the saddle-point property. We derive con-
ditions under which the saddle-point property

sup
z∈Z

inf
w∈W

f(w, z) = inf
w∈W

sup
z∈Z

f(w, z) (5.112)

holds, where f : Rn × Rm → R, W × Z ⊆ dom f , and W and Z are nonempty. We will
assume that the function

gz(w) =

{
f(w, z) w ∈W
∞ otherwise

is closed and convex for all z ∈ Z, and the function

hw(z) =

{
−f(w, z) z ∈ Z
∞ otherwise

is closed and convex for all w ∈W .
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(a) The righthand side of (5.112) can be expressed as p(0), where

p(u) = inf
w∈W

sup
z∈Z

(f(w, z) + uT z).

Show that p is a convex function.

(b) Show that the conjugate of p is given by

p∗(v) =

{
− infw∈W f(w, v) v ∈ Z
∞ otherwise.

(c) Show that the conjugate of p∗ is given by

p∗∗(u) = sup
z∈Z

inf
w∈W

(f(w, z) + uT z).

Combining this with (a), we can express the max-min equality (5.112) as p∗∗(0) =
p(0).

(d) From exercises 3.28 and 3.39 (d), we know that p∗∗(0) = p(0) if 0 ∈ int dom p.
Conclude that this is the case if W and Z are bounded.

(e) As another consequence of exercises 3.28 and 3.39, we have p∗∗(0) = p(0) if 0 ∈
dom p and p is closed. Show that p is closed if the sublevel sets of gz are bounded.

Solution.

(a) For fixed z, Fz(u,w) = gz(w)−uT z is a (closed) convex function of (w, u). Therefore

F (w, u) = sup
z∈Z

(gz(w) + uT z)

is a convex function of (w, u). (It is also closed because it epigraph is the intersection
of closed sets, the epigraphs of the functions Fz.)

Minimizing F over w yields a convex function

inf
w

F (w, u) = inf
w

sup
z∈Z

(gz(w) + uT z)

= inf
w∈W

sup
z∈Z

(f(w, z) + uT z)

= p(u).

(b) The conjugate is

p∗(v) = sup
u

(vTu− p(u))

= sup
u

(vTu− inf
w∈W

sup
z∈Z

(f(w, z) + uT z))

= sup
u

sup
w∈W

(vTu− sup
z∈Z

(f(w, z) + uT z))

= sup
u

sup
w∈W

(− sup
z∈Z

(f(w, z) + (z − v)Tu))

= sup
u

sup
w∈W

inf
z∈Z

(−f(w, z) + (v − z)Tu)

= sup
w∈W

sup
u

inf
z∈Z

(−f(w, z) + (v − z)Tu).

By assumption, for all w, the set

Cw = epihw = {(z, t) | z ∈ Z, t ≥ −f(z, w)}
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is closed and convex. We show that this implies that

sup
u

inf
z∈Z

(−f(w, z) + (z − v)Tu) =

{
−f(w, v) v ∈ Z
∞ otherwise.

First assume v ∈ Z. It is clear that

inf
z∈Z

(−f(w, z) + zTu) ≤ −f(w, v) + vTu (5.25.A)

for all u. Since hw is closed and convex, there exists a nonvertical supporting
hyperplane to its epigraph Cw at the point (z, f(z, w)), i.e., there exists a ũ such
that

inf
z∈Z

(ũT z − f(z, w)) = inf
(z,t)∈Cw

(ũT z − t) = ũT v − f(v, w). (5.25.B)

Combining (5.25.A) and (5.25.B) we conclude that

inf
z∈Z

(−f(w, z) + (z − v)Tu) ≤ −f(w, v)

for all u, with equality for u = ũ. Therefore

sup
u

inf
z∈Z

(−f(w, z) + zTu− vTu) = −f(w, v).

Next assume v 6= Z. For all w, and all t, (v, t) 6= Cw, hence it can be strictly
separated from Cw by a nonvertical hyperplane: for all t and w ∈ W there exists a
u such that

t+ uT v < inf
z∈Z

(−f(w, z) + uT z),

i.e.,

t < inf
z∈Z

(−f(w, z) + uT (z − v)).

This holds for all t, so

sup
u

inf
z∈Z

(−f(w, z) + uT (z − v)) = ∞.

(c) The conjugate of p∗ is

p∗∗(u) = sup
v∈Z

(uT v + inf
w∈W

f(w, v))

= sup
v∈Z

inf
w∈W

(f(w, v) + uT v).

(d) We noted in part (a) that F (w, u) = supz∈Z(f(w, z) + zTu) is a closed convex
function. If Z is bounded, then the maximum in the definition is attained for all
(w, u) ∈W × Rm, so W × Rm ⊆ domFz.

If W is bounded, the minimum in p(u) = infw∈W F (w, u) is also attained for all u,
so dom p = Rm.

(e) epi p is the projection of epiF ⊆ Rn × Rm × R (a closed set) on Rm × R.

Now in general, the projection of a closed convex set C ∈ Rp × Rq on Rp is closed
if C does not contain any half-lines of the form {(x̄, ȳ+ sv) ∈ Rp ×Rq | s ≥ 0} with
v 6= 0 (i.e., no directions of recession of the form (0, v)).

Applying this result to the epigraph of F and its projection epi p, we conclude that
epi p is closed if epiF does not contain any half-lines {(w̄, ū, t̄) + s(v, 0, 0) | s ≥ 0}.
This is the case if the sublevel sets of gz are bounded.
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Optimality conditions

5.26 Consider the QCQP

minimize x2
1 + x2

2

subject to (x1 − 1)2 + (x2 − 1)2 ≤ 1
(x1 − 1)2 + (x2 + 1)2 ≤ 1

with variable x ∈ R2.

(a) Sketch the feasible set and level sets of the objective. Find the optimal point x? and
optimal value p?.

(b) Give the KKT conditions. Do there exist Lagrange multipliers λ?
1 and λ?

2 that prove
that x? is optimal?

(c) Derive and solve the Lagrange dual problem. Does strong duality hold?

Solution.

(a) The figure shows the feasible set (the intersection of the two shaded disks) and some
contour lines of the objective function. There is only one feasible point, (1, 0), so it
is optimal for the primal problem, and we have p? = 1.
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x

PSfrag replacements

p

f1(x) ≤ 0

f2(x) ≤ 0

(b) The KKT conditions are

(x1 − 1)2 + (x2 − 1)2 ≤ 1, (x1 − 1)2 + (x2 + 1)2 ≤ 1,
λ1 ≥ 0, λ2 ≥ 0

2x1 + 2λ1(x1 − 1) + 2λ2(x1 − 1) = 0
2x2 + 2λ1(x2 − 1) + 2λ2(x2 + 1) = 0

λ1((x1 − 1)2 + (x2 − 1)2 − 1) = λ2((x1 − 1)2 + (x2 + 1)2 − 1) = 0.

At x = (1, 0), these conditions reduce to

λ1 ≥ 0, λ2 ≥ 0, 2 = 0, −2λ1 + 2λ2 = 0,

which (clearly, in view of the third equation) have no solution.

(c) The Lagrange dual function is given by

g(λ1, λ2) = inf
x1,x2

L(x1, x2, λ1, λ2)

where

L(x1, x2, λ1, λ2)

= x2
1 + x2

2 + λ1((x1 − 1)2 + (x2 − 1)2 − 1) + λ2((x1 − 1)2 + (x2 + 1)2 − 1)

= (1 + λ1 + λ2)x
2
1 + (1 + λ1 + λ2)x

2
2 − 2(λ1 + λ2)x1 − 2(λ1 − λ2)x2 + λ1 + λ2.



Exercises

L reaches its minimum for

x1 =
λ1 + λ2

1 + λ1 + λ2
, x2 =

λ1 − λ2

1 + λ1 + λ2
,

and we find

g(λ1, λ2) =

{
− (λ1+λ2)2+(λ1−λ2)2

1+λ1+λ2
+ λ1 + λ2 1 + λ1 + λ2 ≥ 0

−∞ otherwise,

where we interpret a/0 = 0 if a = 0 and as −∞ if a < 0. The Lagrange dual problem
is given by

maximize (λ1 + λ2 − (λ1 − λ2)
2)/(1 + λ1 + λ2)

subject to λ1, λ2 ≥ 0.

Since g is symmetric, the optimum (if it exists) occurs with λ1 = λ2. The dual
function then simplifies to

g(λ1, λ1) =
2λ1

2λ1 + 1
.

We see that g(λ1, λ2) tends to 1 as λ1 → ∞. We have d? = p? = 1, but the dual
optimum is not attained.

Recall that the KKT conditions only hold if (1) strong duality holds, (2) the primal
optimum is attained, and (3) the dual optimum is attained. In this example, the
KKT conditions fail because the dual optimum is not attained.

5.27 Equality constrained least-squares. Consider the equality constrained least-squares prob-
lem

minimize ‖Ax− b‖2
2

subject to Gx = h

where A ∈ Rm×n with rankA = n, and G ∈ Rp×n with rankG = p.

Give the KKT conditions, and derive expressions for the primal solution x? and the dual
solution ν?.

Solution.

(a) The Lagrangian is

L(x, ν) = ‖Ax− b‖2
2 + νT (Gx− h)

= xTATAx+ (GT ν − 2AT b)Tx− νTh,

with minimizer x = −(1/2)(ATA)−1(GT ν − 2AT b). The dual function is

g(ν) = −(1/4)(GT ν − 2AT b)T (ATA)−1(GT ν − 2AT b) − νTh

(b) The optimality conditions are

2AT (Ax? − b) +GT ν? = 0, Gx? = h.

(c) From the first equation,

x? = (ATA)−1(AT b− (1/2)GT ν?).

Plugging this expression for x? into the second equation gives

G(ATA)−1AT b− (1/2)G(ATA)−1GT ν? = h

i.e.,
ν? = −2(G(ATA)−1GT )−1(h−G(ATA)−1AT b).

Substituting in the first expression gives an analytical expression for x?.
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5.28 Prove (without using any linear programming code) that the optimal solution of the LP

minimize 47x1 + 93x2 + 17x3 − 93x4

subject to




−1 −6 1 3
−1 −2 7 1

0 3 −10 −1
−6 −11 −2 12

1 6 −1 −3






x1

x2

x3

x4


 �




−3
5

−8
−7

4




is unique, and given by x? = (1, 1, 1, 1).

Solution.

Clearly, x? = (1, 1, 1, 1) is feasible (it satisfies the first four constraints with equality).
The point z? = (3, 2, 2, 7, 0) is a certificate of optimality of x = (1, 1, 1, 1):

• z? is dual feasible: z? � 0 and AT z? + c = 0.

• z? satisfies the complementary slackness condition:

z?
i (aT

i x− bi) = 0, i = 1, . . . ,m,

since the first four components of Ax− b and the last component of z? are zero.

5.29 The problem
minimize −3x2

1 + x2
2 + 2x2

3 + 2(x1 + x2 + x3)
subject to x2

1 + x2
2 + x2

3 = 1,

is a special case of (5.32), so strong duality holds even though the problem is not convex.
Derive the KKT conditions. Find all solutions x, ν that satisfy the KKT conditions.
Which pair corresponds to the optimum?

Solution.

(a) The KKT conditions are

x2
1+x2

2+x2
3 = 1, (−3+ν)x1+1 = 0, (1+ν)x2+1 = 0, (2+ν)x3+1 = 0.

(b) A first observation is that the KKT conditions imply ν 6= 2, ν 6= −1, ν 6= 3. We can
therefore eliminate x and reduce the KKT conditions to a nonlinear equation in ν:

1

(−3 + ν)2
+

1

(1 + ν)2
+

1

(2 + ν)2
= 1

The lefthand side is plotted in the figure.
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There are four solutions:

ν = −3.15, ν = 0.22, ν = 1.89, ν = 4.04,

corresponding to

x = (0.16, 0.47,−0.87), x = (0.36,−0.82, 0.45),

x = (0.90,−0.35, 0.26), x = (−0.97,−0.20, 0.17).

(c) ν? is the largest of the four values: ν? = 4.0352. This can be seen several ways. The
simplest way is to compare the objective values of the four solutions x, which are

f0(x) = 1.17, f0(x) = 0.67, f0(x) = −0.56, f0(x) = −4.70.

We can also evaluate the dual objective at the four candidate values for ν. Finally
we can note that we must have

∇2f0(x
?) + ν?∇2f?

1 (x?) � 0,

because x? is a minimizer of L(x, ν?). In other words

[ −3 0 0
0 1 0
0 0 2

]
+ ν?

[
1 0 0
0 1 0
0 0 1

]
� 0,

and therefore ν? ≥ 3.

5.30 Derive the KKT conditions for the problem

minimize trX − log detX
subject to Xs = y,

with variable X ∈ Sn and domain Sn
++. y ∈ Rn and s ∈ Rn are given, with sT y = 1.

Verify that the optimal solution is given by

X? = I + yyT − 1

sT s
ssT .

Solution. We introduce a Lagrange multiplier z ∈ Rn for the equality constraint. The
KKT optimality conditions are:

X � 0, Xs = y, X−1 = I +
1

2
(zsT + szT ). (5.30.A)

We first determine z from the condition Xs = y. Multiplying the gradient equation on
the right with y gives

s = X−1y = y +
1

2
(z + (zT y)s). (5.30.B)

By taking the inner product with y on both sides and simplifying, we get zT y = 1− yT y.
Substituting in (5.30.B) we get

z = −2y + (1 + yT y)s,

and substituting this expression for z in (5.30.A) gives

X−1 = I +
1

2
(−2ysT − 2syT + 2(1 + yT y)ssT )

= I + (1 + yT y)ssT − ysT − syT .
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Finally we verify that this is the inverse of the matrix X? given above:

(
I + (1 + yT y)ssT − ysT − syT

)
X?

= (I + yyT − (1/sT s)ssT ) + (1 + yT y)(ssT + syT − ssT )

− (ysT + yyT − ysT ) − (syT + (yT y)syT − (1/sT s)ssT )

= I.

To complete the solution, we prove that X? � 0. An easy way to see this is to note that

X? = I + yyT − ssT

sT s
=

(
I +

ysT

‖s‖2
− ssT

sT s

)(
I +

ysT

‖s‖2
− ssT

sT s

)T

.

5.31 Supporting hyperplane interpretation of KKT conditions. Consider a convex problem with
no equality constraints,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

Assume that x? ∈ Rn and λ? ∈ Rm satisfy the KKT conditions

fi(x
?) ≤ 0, i = 1, . . . ,m
λ?

i ≥ 0, i = 1, . . . ,m
λ?

i fi(x
?) = 0, i = 1, . . . ,m

∇f0(x?) +
∑m

i=1
λ?

i ∇fi(x
?) = 0.

Show that
∇f0(x?)T (x− x?) ≥ 0

for all feasible x. In other words the KKT conditions imply the simple optimality criterion
of §4.2.3.
Solution. Suppose x is feasible. Since fi are convex and fi(x) ≤ 0 we have

0 ≥ fi(x) ≥ fi(x
?) + ∇fi(x

?)T (x− x?), i = 1, . . . ,m.

Using λ?
i ≥ 0, we conclude that

0 ≥
m∑

i=1

λ?
i

(
fi(x

?) + ∇fi(x
?)T (x− x?)

)

=

m∑

i=1

λ?
i fi(x

?) +

m∑

i=1

λ?
i ∇fi(x

?)T (x− x?)

= −∇f0(x?)T (x− x?).

In the last line, we use the complementary slackness condition λ?
i fi(x

?) = 0, and the last
KKT condition. This shows that ∇f0(x?)T (x−x?) ≥ 0, i.e., ∇f0(x?) defines a supporting
hyperplane to the feasible set at x?.

Perturbation and sensitivity analysis

5.32 Optimal value of perturbed problem. Let f0, f1, . . . , fm : Rn → R be convex. Show that
the function

p?(u, v) = inf{f0(x) | ∃x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m, Ax− b = v}
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is convex. This function is the optimal cost of the perturbed problem, as a function of
the perturbations u and v (see §5.6.1).
Solution. Define the function

G(x, u, v) =

{
f0(x) fi(x) ≤ ui, i = 1, . . . ,m, Ax− b = v
∞ otherwise.

G is convex on its domain

domG = {(x, u, v) | x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m, Ax− b = v},

which is easily shown to be convex. Therefore G is convex, jointly in x, u, v. Therefore

p?(u, v) = inf
x
G(x, u, v)

is convex.

5.33 Parametrized `1-norm approximation. Consider the `1-norm minimization problem

minimize ‖Ax+ b+ εd‖1

with variable x ∈ R3, and

A =




−2 7 1
−5 −1 3
−7 3 −5
−1 4 −4

1 5 5
2 −5 −1



, b =




−4
3
9
0

−11
5



, d =




−10
−13
−27
−10
−7
14



.

We denote by p?(ε) the optimal value as a function of ε.

(a) Suppose ε = 0. Prove that x? = 1 is optimal. Are there any other optimal points?

(b) Show that p?(ε) is affine on an interval that includes ε = 0.

Solution. The dual problem of

minimize ‖Ax+ b‖1

is given by

maximize bT z
subject to AT z = 0

‖z‖∞ ≤ 1.

If x and z are both feasible, then

‖Ax+ b‖1 ≥ zT (Ax+ b) = bT z

(this follows from the inequality uT v ≤ ‖u‖∞‖v‖1). We have equality (‖Ax+ b‖1 = bT z)
only if zi(Ax+ b)i = |(Ax+ b)i| for all i. In other words, the optimality conditions are: x
and z are optimal if and only if AT z = 0, ‖z‖∞ ≤ 1 and the following ‘complementarity
conditions’ hold:

−1 < zi < 1 =⇒ (Ax+ b)i = 0
(Ax+ b)i > 0 =⇒ zi = 1
(Ax+ b)i < 0 =⇒ zi = −1.



5 Duality

(a) b+Ax = (2, 0, 0,−1, 0, 1), so the optimality conditions tell us that the dual optimal
solution must satisfy z1 = 1, z4 = −1, and z5 = 1. It remains to find the other 3
components z2, z3, z6. We can do this by solving

AT z =

[ −5 −7 1
−1 3 5

3 −5 5

][
z2
z3
z5

]
+

[ −2 −1 2
7 4 −5
1 −4 −1

][
1

−1
1

]
= 0,

in the three variables z2, z3, z6. The solution is z? = (1,−0.5, 0.5,−1, 0, 1). By
construction z? satisfies AT z? = 0, and the complementarity conditions. It also
satisfies ‖z?‖∞ ≤ 1, hence it is optimal.

(b) All primal optimal points x must satisfy the complementarity conditions with the
dual optimal z? we have constructed. This implies that

(Ax+ b)2 = (Ax+ b)3 = (Ax+ b)5 = 0.

This forms a set of three linearly independent equations in three variables. Therefore
the solution is unique.

(c) z? remains dual feasible for nonzero ε. It will be optimal as long as at the optimal
x?(ε),

(b+ εd+Ax?(ε))k = 0, k = 2, 3, 5.

Solving this three equations for x?(ε) yields

x?(ε) = (1, 1, 1) + ε(−3, 2, 0).

To find the limits on ε, we note that z? and x?(ε) are optimal as long as

(A(x?(ε) + b+ εd)1 = 2 + 10ε ≥ 0

(A(x?(ε) + b+ εd)4 = −1 + ε ≤ 0

(A(x?(ε) + b+ εd)6 = 1 − 2ε ≥ 0

i.e., −1/5 ≤ ε ≤ 1/2.

The optimal value is
p?(ε) = (b+ εd)T z? = 4 + 7ε.

5.34 Consider the pair of primal and dual LPs

minimize (c+ εd)Tx
subject to Ax � b+ εf

and
maximize −(b+ εf)T z
subject to AT z + c+ εd = 0

z � 0

where

A =




−4 12 −2 1
−17 12 7 11

1 0 −6 1
3 3 22 −1

−11 2 −1 −8


 , b =




8
13
−4
27

−18


 , f =




6
15

−13
48
8


 ,

c = (49,−34,−50,−5), d = (3, 8, 21, 25), and ε is a parameter.

(a) Prove that x? = (1, 1, 1, 1) is optimal when ε = 0, by constructing a dual optimal
point z? that has the same objective value as x?. Are there any other primal or dual
optimal solutions?
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(b) Give an explicit expression for the optimal value p?(ε) as a function of ε on an
interval that contains ε = 0. Specify the interval on which your expression is valid.
Also give explicit expressions for the primal solution x?(ε) and the dual solution
z?(ε) as a function of ε, on the same interval.

Hint. First calculate x?(ε) and z?(ε), assuming that the primal and dual constraints
that are active at the optimum for ε = 0, remain active at the optimum for values
of ε around 0. Then verify that this assumption is correct.

Solution.

(a) All constraints except the first are active at x = (1, 1, 1, 1), so complementary slack-
ness implies that z1 = 0 at the dual optimum.

For this problem, the complementary slackness condition uniquely determines z: We
must have

ĀT z̄ + c = 0,

where

Ā =




−17 12 7 11
1 0 −6 1
3 3 22 −1

−11 2 −1 −8


 , z̄ =



z2
z3
z4
z5




Ā is nonsingular, so ĀT z̄ + c = 0 has a unique solution: z̄ = (2, 1, 2, 2). All compo-
nents are nonnegative, so we conclude that z = (0, 2, 1, 2, 2) is dual feasible.

(b) We expect that for small ε the same primal and dual constraints remain active.
Let us first construct x?(ε) and z?(ε) under that assumption, and then verify using
complementary slackness that they are optimal for the perturbed problem.

To keep the last four constraints of x?(ε) active, we must have

x?(ε) = (1, 1, 1, 1) + ε∆x

where Ā∆x = (f2, f3, f4, f5). We find ∆x = (0, 1, 2,−1). x?(ε) is primal feasible as
long as

A((1, 1, 1, 1) + ε(0, 1, 2,−1) ≤ b+ εf.

By construction, this holds with equality for constraints 2–5. For the first inequality
we obtain

7 + 7ε ≤ 8 + 6ε.

i.e., ε ≤ 1.

If we keep the first component of z?(ε) zero, the other components follow from
AT z?(ε) + c+ εd = 0. We must have

z?(ε) = (0, 2, 1, 2, 2) + ε∆z

where AT ∆z + f = 0 and ∆z1 = 0. We find ∆z = (0,−1, 2, 0, 2). By construction,
z?(ε) satisfies the equality constraints AT z?(ε) + c+ εf = 0, so it is dual feasible if
its components are nonnegative:

z?(ε) = (0, 2 − ε, 1 + 2ε, 2, 2 + 2ε) ≥ 0,

i.e., −1/2 ≤ ε ≤ 2.

In conclusion, we constructed x?(ε) and z?(ε) that are primal and dual feasible for
the perturbed problem, and complementary. Therefore they must be optimal for
the perturbed problems in the interval −1/2 ≤ ε ≤ 1..

(c) The optimal value is quadratic

p?(ε) = (c+ εd)Tx?(ε) = −(b+ εf)T z?(ε) = −40 − 72ε+ 25ε2.
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5.35 Sensitivity analysis for GPs. Consider a GP

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p,

where f0, . . . , fm are posynomials, h1, . . . , hp are monomials, and the domain of the prob-
lem is Rn

++. We define the perturbed GP as

minimize f0(x)
subject to fi(x) ≤ eui , i = 1, . . . ,m

hi(x) = evi , i = 1, . . . , p,

and we denote the optimal value of the perturbed GP as p?(u, v). We can think of ui and
vi as relative, or fractional, perturbations of the constraints. For example, u1 = −0.01
corresponds to tightening the first inequality constraint by (approximately) 1%.

Let λ? and ν? be optimal dual variables for the convex form GP

minimize log f0(y)
subject to log fi(y) ≤ 0, i = 1, . . . ,m

log hi(y) = 0, i = 1, . . . , p,

with variables yi = log xi. Assuming that p?(u, v) is differentiable at u = 0, v = 0, relate
λ? and ν? to the derivatives of p?(u, v) at u = 0, v = 0. Justify the statement “Relaxing
the ith constraint by α percent will give an improvement in the objective of around αλ?

i

percent, for α small.”

Solution. −λ?, −ν? are ‘shadow prices’ for the perturbed problem

minimize log f0(y)
subject to log fi(y) ≤ ui, i = 1, . . . ,m

log hi(y) = vi, i = 1, . . . , p,

i.e., if the optimal value log p?(u, v) is differentiable at the origin, they are the derivatives
of the optimal value,

−λ?
i =

∂ log p?(0, 0)

∂ui
=
∂p?(0, 0)/∂ui

p?(0, 0)
− ν?

i =
∂ log p∗(0, 0)

∂vi
=
∂p?(0, 0)/∂vi

p?(0, 0)
.

Theorems of alternatives

5.36 Alternatives for linear equalities. Consider the linear equations Ax = b, where A ∈ Rm×n.
From linear algebra we know that this equation has a solution if and only b ∈ R(A), which
occurs if and only if b ⊥ N (AT ). In other words, Ax = b has a solution if and only if
there exists no y ∈ Rm such that AT y = 0 and bT y 6= 0.

Derive this result from the theorems of alternatives in §5.8.2.

Solution. We first note that we can’t directly apply the results on strong alternatives
for systems of the form

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

or
fi(x) < 0, i = 1, . . . ,m, Ax = b,

because the theorems all assume that Ax = b is feasible.
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We can apply the theorem for strict inequalities to

t < −1, Ax+ bt = b. (5.36.A)

This is feasible if and only if Ax = b is feasible: Indeed, if Ax̃ = b is feasible, then
A(3x̃) − 2b = b. so x = 3x̃, t = −2 satisfies (5.36.A). Conversely, if x̃, t̃ satisfies (5.36.A)
then 1 − t̃ > 2 and

A(x̃/(1 − t̃)) = b,

so Ax = b is feasible.

Moreover Ax+ bt = b is always feasible (choose x = 0, t = 1, so we can apply the theorem
of alternatives for strict inequalities to (5.36.A). The dual function is

g(λ, ν) = inf
x,t

(λ(t+ 1) + νT (Ax+ bt− b)) =

{
λ− bT ν AT ν = 0, λ+ bT ν = 0
−∞ otherwise.

The alternative reduces to
AT ν = 0, bT ν < 0.

5.37 [BT97] Existence of equilibrium distribution in finite state Markov chain. Let P ∈ Rn×n

be a matrix that satisfies

pij ≥ 0, i, j = 1, . . . , n, P T
1 = 1,

i.e., the coefficients are nonnegative and the columns sum to one. Use Farkas’ lemma to
prove there exists a y ∈ Rn such that

Py = y, y � 0, 1
T y = 1.

(We can interpret y as an equilibrium distribution of the Markov chain with n states and
transition probability matrix P .)

Solution. Suppose there exists no such y, i.e.,

[
P − I
1T

]
y =

[
0
1

]
, y � 0,

is infeasible. From Farkas’ lemma there exist z ∈ Rn and w ∈ R such that

(P − I)T z + w1 � 0, w < 0,

i.e.,

PT z � z.

Since the elements of P are nonnegative with unit column sums we must have

(PT z)i ≤ max
j
zj

which contradicts P T z � 1.

5.38 [BT97] Option pricing. We apply the results of example 5.10, page 263, to a simple
problem with three assets: a riskless asset with fixed return r > 1 over the investment
period of interest (for example, a bond), a stock, and an option on the stock. The option
gives us the right to purchase the stock at the end of the period, for a predetermined
price K.

We consider two scenarios. In the first scenario, the price of the stock goes up from
S at the beginning of the period, to Su at the end of the period, where u > r. In this
scenario, we exercise the option only if Su > K, in which case we make a profit of Su−K.
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Otherwise, we do not exercise the option, and make zero profit. The value of the option
at the end of the period, in the first scenario, is therefore max{0, Su−K}.
In the second scenario, the price of the stock goes down from S to Sd, where d < 1. The
value at the end of the period is max{0, Sd−K}.
In the notation of example 5.10,

V =

[
r uS max{0, Su−K}
r dS max{0, Sd−K}

]
, p1 = 1, p2 = S, p3 = C,

where C is the price of the option.

Show that for given r, S, K, u, d, the option price C is uniquely determined by the
no-arbitrage condition. In other words, the market for the option is complete.

Solution. The condition V T y = p reduces to

y1 + y2 = 1/r, uy1 + dy2 = 1, y1 max{0, Su−K} + y2 max{0, Sd−K} = C.

The first two equations determine y1 and y2 uniquely:

y1 =
r − d

r(u− d)
, y2 =

u− r

r(u− d)
,

and these values are positive because u > r > d. Hence

C =
(r − d) max{0, Su−K} + (u− r) max{0, Sd−K}

r(u− d)
.

Generalized inequalities

5.39 SDP relaxations of two-way partitioning problem. We consider the two-way partitioning
problem (5.7), described on page 219,

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n,
(5.113)

with variable x ∈ Rn. The Lagrange dual of this (nonconvex) problem is given by the
SDP

maximize −1T ν
subject to W + diag(ν) � 0

(5.114)

with variable ν ∈ Rn. The optimal value of this SDP gives a lower bound on the optimal
value of the partitioning problem (5.113). In this exercise we derive another SDP that
gives a lower bound on the optimal value of the two-way partitioning problem, and explore
the connection between the two SDPs.

(a) Two-way partitioning problem in matrix form. Show that the two-way partitioning
problem can be cast as

minimize tr(WX)
subject to X � 0, rankX = 1

Xii = 1, i = 1, . . . , n,

with variable X ∈ Sn. Hint. Show that if X is feasible, then it has the form
X = xxT , where x ∈ Rn satisfies xi ∈ {−1, 1} (and vice versa).

(b) SDP relaxation of two-way partitioning problem. Using the formulation in part (a),
we can form the relaxation

minimize tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n,
(5.115)
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with variable X ∈ Sn. This problem is an SDP, and therefore can be solved effi-
ciently. Explain why its optimal value gives a lower bound on the optimal value of
the two-way partitioning problem (5.113). What can you say if an optimal point
X? for this SDP has rank one?

(c) We now have two SDPs that give a lower bound on the optimal value of the two-way
partitioning problem (5.113): the SDP relaxation (5.115) found in part (b), and the
Lagrange dual of the two-way partitioning problem, given in (5.114). What is the
relation between the two SDPs? What can you say about the lower bounds found
by them? Hint: Relate the two SDPs via duality.

Solution.

(a) Follows from tr(WxxT ) = xTWx and (xxT )ii = x2
i .

(b) It gives a lower bound because we minimize the same objective over a larger set. If
X is rank one, it is optimal.

(c) We write the problem as a minimization problem

minimize 1T ν
subject to W + diag(ν) � 0.

Introducing a Lagrange multiplier X ∈ Sn for the matrix inequality, we obtain the
Lagrangian

L(ν,X) = 1
T ν − tr(X(W + diag(ν)))

= 1
T ν − tr(XW ) −

n∑

i=1

νiXii

= − tr(XW ) +

n∑

i=1

νi(1 −Xii).

This is bounded below as a function of ν only if Xii = 1 for all i, so we obtain the
dual problem

maximize − tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n.

Changing the sign again, and switching from maximization to minimization, yields
the problem in part (a).

5.40 E-optimal experiment design. A variation on the two optimal experiment design problems
of exercise 5.10 is the E-optimal design problem

minimize λmax

(∑p

i=1
xiviv

T
i

)−1

subject to x � 0, 1Tx = 1.

(See also §7.5.) Derive a dual for this problem, by first reformulating it as

minimize 1/t
subject to

∑p

i=1
xiviv

T
i � tI

x � 0, 1Tx = 1,

with variables t ∈ R, x ∈ Rp and domain R++ × Rp, and applying Lagrange duality.
Simplify the dual problem as much as you can.

Solution.
minimize 1/t
subject to

∑p

i=1
xiviv

T
i � tI

x � 0, 1Tx = 1.
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The Lagrangian is

L(t, x, Z, z, ν) = 1/t− tr

(
Z(

p∑

i=1

xiviv
T
i − tI)

)
− zTx+ ν(1Tx− 1)

= 1/t+ t trZ +

p∑

i=1

xi(−vT
i Zvi − zi + ν) − ν.

The minimum over xi is bounded below only if −vT
i Zvi − zi + ν = 0. To minimize over t

we note that

inf
t>0

(1/t+ t trZ) =

{
2
√

trZ Z � 0
−∞ otherwise.

The dual function is

g(Z, z, ν) =

{
2
√

trZ − ν vT
i Zvi + zi = ν, Z � 0

−∞ otherwise.

The dual problem is

maximize 2
√

trZ − ν
subject to vT

i Zvi ≤ ν, i = 1, . . . , p
Z � 0.

We can define W = (1/ν)Z,

maximize 2
√
ν
√

trW − ν
subject to vT

i Wvi ≥ 1, i = 1, . . . , p
W � 0.

Finally, optimizing over ν, gives ν = trW , so the problem simplifies further to

maximize trW
subject to vT

i Wvi ≤ 1, i = 1, . . . , p,
W � 0.

5.41 Dual of fastest mixing Markov chain problem. On page 174, we encountered the SDP

minimize t
subject to −tI � P − (1/n)11T � tI

P1 = 1

Pij ≥ 0, i, j = 1, . . . , n
Pij = 0 for (i, j) 6∈ E ,

with variables t ∈ R, P ∈ Sn.

Show that the dual of this problem can be expressed as

maximize 1T z − (1/n)1TY 1

subject to ‖Y ‖2∗ ≤ 1
(zi + zj) ≤ Yij for (i, j) ∈ E

with variables z ∈ Rn and Y ∈ Sn. The norm ‖ · ‖2∗ is the dual of the spectral norm
on Sn: ‖Y ‖2∗ =

∑n

i=1
|λi(Y )|, the sum of the absolute values of the eigenvalues of Y .

(See §A.1.6, page 639.)



Exercises

Solution. We represent the Lagrange multiplier for the last constraint as Λ ∈ Sn, with
λij = 0 for (i, j) ∈ E .

The Lagrangian is

L(t, P, U, V, z,W,Λ)

= t+ tr(U(−tI − P + (1/n)11
T )) + tr(V (P − (1/n)11

T − tI))

+ zT (1 − P1) − tr(WP ) + tr(ΛP )

= (1 − trU − trV )t+ tr(P (−U + V −W + Λ − (1/2)(1zT − z1T ))

+ 1
T z + (1/n)(1TU1 − 1

TV 1).

Minimizing over t and P gives the conditions

trU + trV = 1, (1/2)(1zT + z1T )) = V − U −W + Λ.

The dual problem is

maximize 1T z − (1/n)1T (V − U)1
subject to U � 0, V � 0, tr(U + V ) = 1

(zi + zj) ≤ Vij − Uij for (i, j) ∈ E .

This problem is equivalent to

maximize 1T z − (1/n)1TY 1

subject to ‖Y ‖∗ ≤ 1
(zi + zj) ≤ Yij for (i, j) ∈ E

with variables z ∈ Rn, Y ∈ Sn.

5.42 Lagrange dual of conic form problem in inequality form. Find the Lagrange dual problem
of the conic form problem in inequality form

minimize cTx
subject to Ax �K b

where A ∈ Rm×n, b ∈ Rm, and K is a proper cone in Rm. Make any implicit equality
constraints explicit.

Solution. We associate with the inequality a multiplier λ ∈ Rm, and form the Lagrangian

L(x, λ) = cTx+ λT (Ax− b).

The dual function is

g(λ) = inf
x

(
cTx+ λT (Ax− b)

)

=

{
−bTλ ATλ+ c = 0
−∞ otherwise.

The dual problem is to maximize g(λ) over all λ �K? 0 or, equivalently,

maximize −bTλ
subject to ATλ+ c = 0

λ �K∗ 0.
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5.43 Dual of SOCP. Show that the dual of the SOCP

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cT

i x+ di, i = 1, . . . ,m,

with variables x ∈ Rn, can be expressed as

maximize
∑m

i=1
(bTi ui + divi)

subject to
∑m

i=1
(AT

i ui + civi) + f = 0
‖ui‖2 ≤ vi, i = 1, . . . ,m,

with variables ui ∈ Rni , vi ∈ R, i = 1, . . . ,m. The problem data are f ∈ Rn, Ai ∈ Rni×n,
bi ∈ Rni , ci ∈ R and di ∈ R, i = 1, . . . ,m.

Derive the dual in the following two ways.

(a) Introduce new variables yi ∈ Rni and ti ∈ R and equalities yi = Aix + bi, ti =
cTi x+ di, and derive the Lagrange dual.

(b) Start from the conic formulation of the SOCP and use the conic dual. Use the fact
that the second-order cone is self-dual.

Solution.

(a) We introduce the new variables, and write the problem as

minimize cTx
subject to ‖yi‖2 ≤ ti, i = 1, . . . ,m

yi = Aix+ bi, i = 1, . . . ,m
ti = cT

i x+ di, i = 1, . . . ,m

The Lagrangian is

L(x, y, t, λ, ν, µ)

= cTx+

m∑

i=1

λi(‖yi‖2 − ti) +

m∑

i=1

νT
i (yi −Aix− bi) +

m∑

i=1

µi(ti − cT
i x− di)

= (c−
m∑

i=1

AT
i νi −

m∑

i=1

µici)
Tx+

m∑

i=1

(λi‖yi‖2 + νT
i yi) +

m∑

i=1

(−λi + µi)ti

−
n∑

i=1

(bTi νi + diµi).

The minimum over x is bounded below if and only if

m∑

i=1

(AT
i νi + µici) = c.

To minimize over yi, we note that

inf
yi

(λi‖yi‖2 + νT
i yi) =

{
0 ‖νi‖2 ≤ λi

−∞ otherwise.

The minimum over ti is bounded below if and only if λi = µi. The Lagrangian is

g(λ, ν, µ) =

{ −
∑n

i=1
(bTi νi + diµi)

∑m

i=1
(AT

i νi + µici) = c,
‖νi‖2 ≤ λi, µ = λ

−∞ otherwise
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which leads to the dual problem

maximize −
∑n

i=1
(bTi νi + diλi)

subject to
∑m

i=1
(AT

i νi + λici) = c
‖νi‖2 ≤ λi, i = 1, . . . ,m.

(b) We express the SOCP as a conic form problem

minimize cTx
subject to −(Aix+ bi, c

T
i x+ di) �Ki 0, i = 1, . . . ,m.

The conic dual is

maximize −
∑n

i=1
(bTi ui + divi)

subject to
∑m

i=1
(AT

i ui + vici) = c
(ui, vi) �K∗

i
0, i = 1, . . . ,m.

5.44 Strong alternatives for nonstrict LMIs. In example 5.14, page 270, we mentioned that
the system

Z � 0, tr(GZ) > 0, tr(FiZ) = 0, i = 1, . . . , n, (5.116)

is a strong alternative for the nonstrict LMI

F (x) = x1F1 + · · · + xnFn +G � 0, (5.117)

if the matrices Fi satisfy

n∑

i=1

viFi � 0 =⇒
n∑

i=1

viFi = 0. (5.118)

In this exercise we prove this result, and give an example to illustrate that the systems
are not always strong alternatives.

(a) Suppose (5.118) holds, and that the optimal value of the auxiliary SDP

minimize s
subject to F (x) � sI

is positive. Show that the optimal value is attained. If follows from the discussion
in §5.9.4 that the systems (5.117) and (5.116) are strong alternatives.

Hint. The proof simplifies if you assume, without loss of generality, that the matrices
F1, . . . , Fn are independent, so (5.118) may be replaced by

∑n

i=1
viFi � 0 ⇒ v = 0.

(b) Take n = 1, and

G =

[
0 1
1 0

]
, F1 =

[
0 0
0 1

]
.

Show that (5.117) and (5.116) are both infeasible.

Solution.

(a) Suppose that the optimal value is finite but not attained, i.e., there exists a sequence

(x(k), s(k)), k = 0, 1, 2, . . . , with

x
(k)
1 F1 + · · · + x(k)

n Fn +G � s(k)I (5.44.A)

for all k, and s(k) → s? > 0. We show that the norms ‖x(k)‖2 are bounded.
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Suppose they are not. Dividing (5.44.A) by ‖x(k)‖2, we have

(1/‖x(k)‖2)G+ v
(k)
1 F1 + · · · + v(k)

n Fn � w(k)I,

where v(k) = x(k)/‖x(k)‖2, w
(k) = s(k)/‖x(k)‖2. The sequence (v(k), w(k)) is bounded,

so it has a convergent subsequence. Let v̄, w̄ be its limit. We have

v̄1F1 + · · · + v̄nFn � 0,

since w̄ must be zero. By assumption, this implies that v = 0, which contradicts our
assumption that the sequence x(k) is unbounded.

Since it is bounded, the sequence x(k) must have a convergent subsequence. Taking
limits in (5.44.A), we get

x̄1F1 + · · · + x̄nFn +G � s?I,

i.e., the optimum is attained.

(b) The LMI is [
x1 1
1 0

]
� 0,

which is infeasible. The alternative system is

[
z11 z12
z12 z22

]
� 0, z22 = 0, z12 > 0,

which is also impossible.
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Exercises

Norm approximation and least-norm problems

6.1 Quadratic bounds for log barrier penalty. Let φ : R → R be the log barrier penalty
function with limit a > 0:

φ(u) =

{
−a2 log(1 − (u/a)2) |u| < a
∞ otherwise.

Show that if u ∈ Rm satisfies ‖u‖∞ < a, then

‖u‖2
2 ≤

m∑

i=1

φ(ui) ≤ φ(‖u‖∞)

‖u‖2∞
‖u‖2

2.

This means that
∑m

i=1
φ(ui) is well approximated by ‖u‖2

2 if ‖u‖∞ is small compared to
a. For example, if ‖u‖∞/a = 0.25, then

‖u‖2
2 ≤

m∑

i=1

φ(ui) ≤ 1.033 · ‖u‖2
2.

Solution. The left inequality follows from log(1 + x) ≤ x for all x > −1.

The right inequality follows from convexity of − log(1 − x):

− log(1 − u2
i /a

2) ≤ − u2
i

‖u‖2∞
log(1 − ‖u‖2

∞/a
2)

and therefore

−a2

m∑

i=1

log(1 − u2
i /a

2) ≤ −a2 ‖u‖2
2

‖u‖2∞
log(1 − ‖u‖2

∞/a
2).

6.2 `1-, `2-, and `∞-norm approximation by a constant vector. What is the solution of the
norm approximation problem with one scalar variable x ∈ R,

minimize ‖x1 − b‖,

for the `1-, `2-, and `∞-norms?

Solution.

(a) `2-norm: the average 1T b/m.

(b) `1-norm: the (or a) median of the coefficients of b.

(c) `∞-norm: the midrange point (max bi − min bi)/2.

6.3 Formulate the following approximation problems as LPs, QPs, SOCPs, or SDPs. The
problem data are A ∈ Rm×n and b ∈ Rm. The rows of A are denoted aT

i .

(a) Deadzone-linear penalty approximation: minimize
∑m

i=1
φ(aT

i x− bi), where

φ(u) =

{
0 |u| ≤ a
|u| − a |u| > a,

where a > 0.
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(b) Log-barrier penalty approximation: minimize
∑m

i=1
φ(aT

i x− bi), where

φ(u) =

{
−a2 log(1 − (u/a)2) |u| < a
∞ |u| ≥ a,

with a > 0.

(c) Huber penalty approximation: minimize
∑m

i=1
φ(aT

i x− bi), where

φ(u) =

{
u2 |u| ≤M
M(2|u| −M) |u| > M,

with M > 0.

(d) Log-Chebyshev approximation: minimize maxi=1,...,m | log(aT
i x)− log bi|. We assume

b � 0. An equivalent convex form is

minimize t
subject to 1/t ≤ aT

i x/bi ≤ t, i = 1, . . . ,m,

with variables x ∈ Rn and t ∈ R, and domain Rn × R++.

(e) Minimizing the sum of the largest k residuals:

minimize
∑k

i=1
|r|[i]

subject to r = Ax− b,

where |r|[1] ≥ |r|[2] ≥ · · · ≥ |r|[m] are the numbers |r1|, |r2|, . . . , |rm| sorted in
decreasing order. (For k = 1, this reduces to `∞-norm approximation; for k = m, it
reduces to `1-norm approximation.) Hint. See exercise 5.19.

Solution.

(a) Deadzone-linear.

minimize 1T y
subject to −y − a1 � Ax− b � y + a1

y � 0.

An LP with variables y ∈ Rm, x ∈ Rn.

(b) Log-barrier penalty. We can express the problem as

maximize
∏m

i=1
t2i

subject to (1 − yi/a)(1 + yi/a) ≥ t2i , i = 1, . . . ,m
−1 ≤ yi/a ≤ 1, i = 1, . . . ,m
y = Ax− b,

with variables t ∈ Rm, y ∈ Rm, x ∈ Rn.

We can now proceed as in exercise 4.26 (maximizing geometric mean), and reduce
the problem to an SOCP or an SDP.

(c) Huber penalty. See exercise 4.5 (c), and also exercise 6.6.

(d) Log-Chebyshev approximation.

minimize t
subject to 1/t ≤ aT

i x/bi ≤ t, i = 1, . . . ,m

over x ∈ Rn and t ∈ R. The left inequalities are hyperbolic constraints

taT
i x ≥ bi, t ≥ 0, aT

i x ≥ 0
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that can be formulated as LMI constraints
[

t
√
bi√

bi aT
i x

]
� 0,

or SOC constraints ∥∥∥∥
[

2
√
bi

t− aT
i x

]∥∥∥∥
2

≤ t+ aT
i x.

(e) Sum of largest residuals.

minimize kt+ 1T z
subject to −t1 − z � Ax− b � t1 + z

z � 0,

with variables x ∈ Rn, t ∈ R, z ∈ Rm.

6.4 A differentiable approximation of `1-norm approximation. The function φ(u) = (u2+ε)1/2,
with parameter ε > 0, is sometimes used as a differentiable approximation of the absolute
value function |u|. To approximately solve the `1-norm approximation problem

minimize ‖Ax− b‖1, (6.26)

where A ∈ Rm×n, we solve instead the problem

minimize
∑m

i=1
φ(aT

i x− bi), (6.27)

where aT
i is the ith row of A. We assume rankA = n.

Let p? denote the optimal value of the `1-norm approximation problem (6.26). Let x̂
denote the optimal solution of the approximate problem (6.27), and let r̂ denote the
associated residual, r̂ = Ax̂− b.

(a) Show that p? ≥
∑m

i=1
r̂2i /(r̂

2
i + ε)1/2.

(b) Show that

‖Ax̂− b‖1 ≤ p? +

m∑

i=1

|r̂i|
(

1 − |r̂i|
(r̂2i + ε)1/2

)
.

(By evaluating the righthand side after computing x̂, we obtain a bound on how subop-
timal x̂ is for the `1-norm approximation problem.)

Solution. One approach is based on duality. The point x̂ minimizes the differentiable
convex function

∑m

i=1
φ(aT

i x− bi), so its gradient vanishes:

m∑

i=1

φ′(r̂i)ai =

m∑

i=1

r̂i(r̂
2
i + ε)−1/2ai = 0.

Now, the dual of the `1-norm approximation problem is

maximize
∑m

i=1
biλi

subject to |λi| ≤ 1, i = 1, . . . ,m∑m

i=1
λiai = 0.

Thus, we see that the vector

λi = − r̂i

(r̂2i + ε)−1/2
, i = 1, . . . ,m,
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is dual feasible. It follows that its dual function value,

m∑

i=1

−biλi =
−bir̂i

(r̂2i + ε)−1/2
,

provides a lower bound on p?. Now we use the fact that
∑m

i=1
λiai = 0 to obtain

p? ≥
m∑

i=1

−biλi

=

m∑

i=1

(aT
i x̂− bi)λi

=

m∑

i=1

r̂iλi

=
r̂2i

(r̂2i + ε)−1/2
.

Now we establish part (b). We start with the result above,

p? ≥
m∑

i=1

r̂2i /(r̂
2
i + ε)1/2,

and subtract ‖Ax̂− b‖1 =
∑m

i=1
|r̂i| from both sides to get

p? − ‖Ax̂− b‖1 ≥
m∑

i=1

(
r̂2i /(r̂

2
i + ε)1/2 − |r̂i|

)
.

Re-arranging gives the desired result,

‖Ax̂− b‖1 ≤ p? +

m∑

i=1

|ri|
(

1 − |ri|
(r2i + ε)1/2

)
.

6.5 Minimum length approximation. Consider the problem

minimize length(x)
subject to ‖Ax− b‖ ≤ ε,

where length(x) = min{k | xi = 0 for i > k}. The problem variable is x ∈ Rn; the
problem parameters are A ∈ Rm×n, b ∈ Rm, and ε > 0. In a regression context, we are
asked to find the minimum number of columns of A, taken in order, that can approximate
the vector b within ε.

Show that this is a quasiconvex optimization problem.

Solution. length(x) ≤ α if and only if xk = 0 for k > α. Thus, the sublevel sets of length
are convex, so length is quasiconvex.

6.6 Duals of some penalty function approximation problems. Derive a Lagrange dual for the
problem

minimize
∑m

i=1
φ(ri)

subject to r = Ax− b,

for the following penalty functions φ : R → R. The variables are x ∈ Rn, r ∈ Rm.
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(a) Deadzone-linear penalty (with deadzone width a = 1),

φ(u) =

{
0 |u| ≤ 1
|u| − 1 |u| > 1.

(b) Huber penalty (with M = 1),

φ(u) =

{
u2 |u| ≤ 1
2|u| − 1 |u| > 1.

(c) Log-barrier (with limit a = 1),

φ(u) = − log(1 − x2), domφ = (−1, 1).

(d) Relative deviation from one,

φ(u) = max{u, 1/u} =

{
u u ≥ 1
1/u u ≤ 1,

with domφ = R++.

Solution. We first derive a dual for general penalty function approximation. The La-
grangian is

L(x, r, λ) =

m∑

i=1

φ(ri) + νT (Ax− b− r).

The minimum over x is bounded if and only if AT ν = 0, so we have

g(ν) =

{
−bT ν +

∑m

i=1
infri(φ(ri) − νiri) AT ν = 0

−∞ otherwise.

Using
inf
ri

(φ(ri) − νiri) = − sup
ri

(νiri − φ(ri)) = −φ∗(νi),

we can express the general dual as

maximize −bT ν −
∑m

i=1
φ∗(νi)

subject to AT ν = 0.

Now we’ll work out the conjugates of the given penalty functions.

(a) Deadzone-linear penalty. The conjugate of the deadzone-linear function is

φ∗(z) =

{
|z| |z| ≤ 1
∞ |z| > 1,

so the dual of the dead-zone linear penalty function approximation problem is

maximize −bT ν − ‖ν‖1

subject to AT ν = 0, ‖ν‖∞ ≤ 1.

(b) Huber penalty.

φ∗(z) =

{
z2/4 |z| ≤ 2
∞ otherwise,

so we get the dual problem

maximize −(1/4)‖ν‖2
2 − bT ν

subject to AT ν = 0
‖ν‖∞ ≤ 2.
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(c) Log-barrier. The conjugate of φ is

φ∗(z) = sup
|x|<1

(
xz + log(1 − x2)

)

= −1 +
√

1 + z2 + log(−1 +
√

1 + z2) − 2 log |z| + log 2.

(d) Relative deviation from one. Here we have

φ∗(z) = sup
x>0

(xz − max{x, 1/x}) =

{ −2
√−z z ≤ −1

z − 1 −1 ≤ z ≤ 1
−∞ z > 1.

Plugging this in the dual problem gives

maximize −bT ν +
∑m

i=1
s(νi)

subject to AT ν = 0, ν � 1,

where

s(νi) =

{
2
√−νi νi ≤ −1

1 − νi νi ≥ −1.

Regularization and robust approximation

6.7 Bi-criterion optimization with Euclidean norms. We consider the bi-criterion optimization
problem

minimize (w.r.t. R2
+) (‖Ax− b‖2

2, ‖x‖2
2),

where A ∈ Rm×n has rank r, and b ∈ Rm. Show how to find the solution of each of the
following problems from the singular value decomposition of A,

A = U diag(σ)V T =

r∑

i=1

σiuiv
T
i

(see §A.5.4).

(a) Tikhonov regularization: minimize ‖Ax− b‖2
2 + δ‖x‖2

2.

(b) Minimize ‖Ax− b‖2
2 subject to ‖x‖2

2 = γ.

(c) Maximize ‖Ax− b‖2
2 subject to ‖x‖2

2 = γ.

Here δ and γ are positive parameters.

Your results provide efficient methods for computing the optimal trade-off curve and the
set of achievable values of the bi-criterion problem.

Solution. Define
x̃ = (V Tx, V T

2 x), b̃ = (UT b, UT
2 b).

where V2 ∈ Rn×(n−r) satisfies V T
2 V2 = I, V T

2 V = 0, and U2 ∈ Rm×(m−r) satisfies
UT

2 U2 = I, UT
2 U = 0. We have

‖Ax− b‖2
2 =

r∑

i=1

(σix̃i − b̃i)
2 +

m∑

i=r+1

b̃2i , ‖x‖2
2 =

n∑

i=1

x̃2
i .

We will use x̃ as variable.
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(a) Tikhonov regularization. Setting the gradient (with respect to x̃) to zero gives

(σ2
i + δ)x̃i = σib̃i, i = 1, . . . , r, x̃i = 0, i = r + 1, . . . , n.

The solution is

x̃i =
b̃iσi

δ + σ2
i

, i = 1, . . . , r, x̃i = 0, i = r + 1, . . . , n.

In terms of the original variables,

x =

r∑

i=1

σi

δ + σ2
i

(uT
i b)vi.

If δ = 0, this is the least-squares solution

x = A†b = V Σ−1UT b =

r∑

i=1

(1/σi)(u
T
i b)vi.

If δ > 0, each component (uT
i b)vi receives a weight σi/(δ + σ2

i ). The function
σ/(δ + σ2) is zero if σ = 0, goes through a maximum of 1/(1 + δ) at σ = δ, and
decreases to zero as 1/σ for σ → ∞.

In other words, if σi is large (σi � δ), we keep the ith term in the LS solution. For
small σi (σi ≈ δ or less), we dampen its weight, replacing 1/σi by σi/(δ + σ2

i ).

(b) After the change of variables, this problem is

minimize
∑r

i=1
(σix̃i − b̃i)

2 +
∑m

i=r+1
b̃2i

subject to
∑n

i=1
x̃2

i = γ.

Although the problem is not convex, it is clear that a necessary and sufficient condi-
tion for a feasible x̃ to be optimal is that either the gradient of the objective vanishes
at x̃, or the gradient is normal to the sphere through x̃, and pointing toward the
interior of the sphere. In other words, the optimality conditions are that ‖x̃‖2

2 = γ
and there exists a ν ≥ 0, such that

(σ2
i + ν)x̃i = σib̃i, i = 1, . . . , r, νx̃i = 0, i = r + 1, . . . , n.

We distinguish two cases.

• If
∑r

i=1
(b̃i/σi)

2 ≤ γ, then ν = 0 and

x̃i = b̃iσi, i = 1, . . . , r,

(i.e., the unconstrained minimum) is optimal. For the other variables we can
choose any x̃i, i = r + 1, . . . , n that gives ‖x̃‖2

2 = γ.

• If
∑r

i=1
(b̃i/σi)

2 > γ, we must take ν > 0, and

x̃i =
b̃iσi

σ2
i + ν

, i = 1, . . . , r, x̃i = 0, i = r + 1, . . . , n.

We determine ν > 0 by solving the nonlinear equation

n∑

i=1

x̃2
i =

r∑

i=1

(
b̃iσi

σ2
i + ν

)2

= γ.

The left hand side is monotonically decreasing with ν, and by assumption it is
greater than γ at ν = 0, so the equation has a unique positive solution.
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(c) After the change of variables to x̃, this problem reduces to

maximize
∑r

i=1
(σix̃i − b̃i)

2 +
∑m

i=r+1
b̃2i

subject to
∑n

i=1
x̃2

i = γ.

Without loss of generality we can replace the equality with an inequality, since a
convex function reaches its maximum over a compact convex on the boundary. As
shown in §B.1, strong duality holds for quadratic optimization problems with one
inequality constraint.

In this case, however, it is also easy to derive this result directly, without appealing
to the general result in §B.1. We will first derive and solve the dual, and then show
strong duality by establishing a feasible x̃ with the same primal objective value as
the dual optimum.

The Lagrangian of the problem above (after switching the sign of the objective) is

L(x̃, ν) = −
r∑

i=1

(σix̃i − b̃i)
2 −

n∑

i=r+1

b̃2i + ν(

n∑

i=1

x̃2
i − γ)

=

r∑

i=1

(ν − σ2
i )x̃2

i + 2

r∑

i=1

σib̃ix̃i −
n∑

i=1

b̃2i − νγ.

L is bounded below as a function of x̃ only if ν > σ2
1 , or if ν = σ2

1 and b̃1 = 0. The
infimum is

inf
x̃
L(x̃, ν) = −

r∑

i=1

(σib̃i)
2

ν − σ2
i

−
n∑

i=1

b̃2i − νγ,

with domain [σ2
1 ,∞), and where for ν = σ2

1 we interpret b̃21/(ν − σ2
1) as ∞ if b̃1 6=

0, and as 0 if b̃1 = 0. The dual problem is therefore (after switching back to
maximization)

minimize g(ν) =
∑r

i=1
(b̃iσi)

2/(ν − σ2
i ) + νγ +

∑n

i=1
b̃2i

subject to ν ≥ σ2
1 .

The derivative of g is

g′(ν) = −
r∑

i=1

(b̃iσi)
2

(ν − σ2
i )2

+ γ.

We can distinguish three cases. We assume that the first singular value is repeated
k times where k ≤ r.

• g(σ2
1) = ∞. This is the case if at least one of the coefficients b̃1, . . . , b̃k is

nonzero.
In this case g first decreases as we increase ν > σ2

1 and then increases as ν goes
to infinity. There is therefore a unique ν > σ2

1 where the derivative is zero:

r∑

i=1

(b̃iσi)
2

(ν − σ2
i )2

= γ.

From ν we compute the optimal primal x̃ as

x̃i =
−σib̃i
ν − σ2

i

, i = 1, . . . , r, x̃i = 0, i = r + 1, . . . , n.



Exercises

This point satisfies ‖x̃‖2 = γ and its objective value is

r∑

i=1

σ2
i x̃

2
i − 2

r∑

i=1

σib̃ix̃i +

n∑

i=1

b̃2i =

r∑

i=1

(σ2
i − ν)x̃2

i − 2

r∑

i=1

σib̃ix̃i +

n∑

i=1

b̃2i + νγ

=

r∑

i=1

σ2
i b̃

2
i

ν − σ2
i

+

n∑

i=1

b̃2i + νγ

= g(ν).

By weak duality, this means x̃ is optimal.

• g(σ2
1) is finite and g′(σ2

1) < 0. This is the case when b̃1 = · · · = b̃k = 0 and

g′(σ2
1) = −

r∑

i=k+1

(b̃iσi)
2

(σ2
1 − σ2

i )2
+ γ < 0.

As we increase ν > σ2
1 , the dual objective first decreases, and then increases as

ν goes to infinity. The solution is the same as in the previous case: we compute
ν by solving g′(ν) = 0, and then calculate x̃ as above.

• g(σ2
1) is finite and g′(σ2

1) ≥ 0. This is the case when b̃1 = · · · = b̃k = 0 and

g′(σ2
1) = −

r∑

i=k+1

(b̃iσi)
2

(σ2
1 − σ2

i )2
+ γ ≥ 0.

In this case ν = σ2
1 is optimal. A primal optimal solution is

x̃i =





√
g′(ν) i = 1

0 i = 1, . . . , k

−b̃iσi/(σ
2
1 − σ2

i ) i = k + 1, . . . , r
0 i = r + 1, . . . , n.

(The first k coefficients are arbitrary as long as their squares add up to g′(ν).)
To verify that x̃ is optimal, we note that it is feasible, i.e.,

‖x̃‖2
2 = g′(ν) +

r∑

i=k+1

b̃2iσ
2
i

(σ2
1 − σ2

i )2
= γ,

and that its objective value equals g(σ2
1):

r∑

i=1

(σ2
i x̃

2
i − 2σib̃ix̃i) = σ2

1g
′(σ2

1) +

r∑

i=k+1

(σ2
i x̃

2
i − 2σib̃ix̃i)

= σ2
1

(
g′(σ2

1) +

r∑

i=k+1

x̃2
i

)
+

r∑

i=k+1

(
(σ2

i − σ2
1)x̃2

i − 2σib̃ix̃i

)

= σ2
1γ +

r∑

i=k+1

(
(σ2

i − σ2
1)x̃2

i − 2σib̃ix̃i

)

= σ2
1γ +

r∑

i=k+1

(b̃iσi)
2

σ2
1 − σ2

i

= g(σ2
1) −

n∑

i=1

b̃2i .
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6.8 Formulate the following robust approximation problems as LPs, QPs, SOCPs, or SDPs.
For each subproblem, consider the `1-, `2-, and the `∞-norms.

(a) Stochastic robust approximation with a finite set of parameter values, i.e., the sum-
of-norms problem

minimize
∑k

i=1
pi‖Aix− b‖

where p � 0 and 1T p = 1. (See §6.4.1.)

Solution.

• `1-norm:

minimize
∑k

i=1
pi1

T yi

subject to −yi � Aix− b � yi, i = 1, . . . , k.

An LP with variables x ∈ Rn, yi ∈ Rm, i = 1, . . . , k.

• `2-norm:
minimize pT y
subject to ‖Aix− b‖2 ≤ yi, i = 1, . . . , k.

An SOCP with variables x ∈ Rn, y ∈ Rk.

• `∞-norm:

minimize pT y
subject to −yi1 � Aix− b ≤ yi1, i = 1, . . . , k.

An LP with variables x ∈ Rn, y ∈ Rk.

(b) Worst-case robust approximation with coefficient bounds:

minimize supA∈A ‖Ax− b‖

where
A = {A ∈ R

m×n | lij ≤ aij ≤ uij , i = 1, . . . ,m, j = 1, . . . , n}.
Here the uncertainty set is described by giving upper and lower bounds for the
components of A. We assume lij < uij .

Solution. We first note that

sup
lij≤aij≤uij

|aT
i x− bi| = sup

lij≤aij≤uij

max{aT
i x− bi,−aT

i x+ bi}

= max{ sup
lij≤aij≤uij

(aT
i x− bi), sup

lij≤aij≤uij

(−aT
i x+ bi)}.

Now,

sup
lij≤aij≤uij

(

n∑

j=1

aijxj − bi) = āT
i x− bi +

n∑

j=1

vij |xj |

where āij = (lij + uij)/2, and vij = (uij − lij)/2, and

sup
lij≤aij≤uij

(−
n∑

j=1

aijxj + bi) = −āT
i x+ bi +

n∑

j=1

vij |xj |.

Therefore

sup
lij≤aij≤uij

|aT
i x− bi| = |āT

i x− bi| +
n∑

j=1

vij |xj |.



Exercises

• `1-norm:

minimize
∑m

i=1

(
|āT

i x− bi| +
∑n

j=1
vij |xj |

)
.

This can be expressed as an LP

minimize 1T (y + V w)
−y � Āx− b � y
−w � x � w.

The variables are x ∈ Rn, y ∈ Rm, w ∈ Rn.

• `2-norm:

minimize
∑m

i=1

(
|āT

i x− bi| +
∑n

j=1
vij |xj |

)2

.

This can be expressed as an SOCP

minimize t
subject to −y � Āx− b � y

−w � x � w
‖y + V w‖2 ≤ t.

The variables are x ∈ Rn, y ∈ Rm, w ∈ Rn, t ∈ R.

• `∞-norm:

minimize maxi=1,...,m

(
|āT

i x− bi| +
∑n

j=1
vij |xj |

)
.

This can be expressed as an LP

minimize t
−y � Āx− b � y
−w � x � w
−t1 � y + V w ≤ t1.

The variables are x ∈ Rn, y ∈ Rm, w ∈ Rn, t ∈ R.

(c) Worst-case robust approximation with polyhedral uncertainty:

minimize supA∈A ‖Ax− b‖

where
A = {[a1 · · · am]T | Ciai � di, i = 1, . . . ,m}.

The uncertainty is described by giving a polyhedron Pi = {ai | Ciai � di} of possible
values for each row. The parameters Ci ∈ Rpi×n, di ∈ Rpi , i = 1, . . . ,m, are given.
We assume that the polyhedra Pi are nonempty and bounded.

Solution. Pi = {a | Cia � di}.

sup
ai∈Pi

|aT
i x− bi| = sup

ai∈Pi

max{aT
i x− bi,−aT

i x+ bi}

= max{ sup
ai∈Pi

(aT
i x) − bi, sup

ai∈Pi

(−aT
i x) + bi}.

By LP duality,

sup
ai∈Pi

aT
i x = inf{dT

i v | CT
i v = x, v � 0}

sup
ai∈Pi

(−aT
i x) = inf{dT

i w | CT
i w = −x, w � 0}.
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Therefore, ti ≥ supai∈Pi
|aT

i x− bi| if and only if there exist v, w, such that

v, w � 0, x = CT
i v = −CT

i w, dT
i v ≤ ti, dT

i w ≤ ti.

This allows us to pose the robust approximation problem as

minimize ‖t‖
subject to x = CT

i vi, x = −CT
i wi, i = 1, . . . ,m

dT
i vi ≤ ti, dT

i wi ≤ ti, i = 1, . . . ,m
vi, wi � 0, i = 1, . . . ,m.

• `1-norm:
minimize 1T t
subject to x = CT

i vi, x = −CT
i wi, i = 1, . . . ,m

dT
i vi ≤ ti, dT

i wi ≤ ti, i = 1, . . . ,m
vi, wi � 0, i = 1, . . . ,m.

• `2-norm:
minimize u
subject to x = CT

i vi, x = −CT
i wi, i = 1, . . . ,m

dT
i vi ≤ ti, dT

i wi ≤ ti, i = 1, . . . ,m
vi, wi � 0, i = 1, . . . ,m
‖t‖2 ≤ u.

• `∞-norm:
minimize t
subject to x = CT

i vi, x = −CT
i wi, i = 1, . . . ,m

dT
i vi ≤ t, dT

i wi ≤ t, i = 1, . . . ,m
vi, wi � 0, i = 1, . . . ,m.

Function fitting and interpolation

6.9 Minimax rational function fitting. Show that the following problem is quasiconvex:

minimize max
i=1,...,k

∣∣∣∣
p(ti)

q(ti)
− yi

∣∣∣∣

where

p(t) = a0 + a1t+ a2t
2 + · · · + amt

m, q(t) = 1 + b1t+ · · · + bnt
n,

and the domain of the objective function is defined as

D = {(a, b) ∈ R
m+1 × R

n | q(t) > 0, α ≤ t ≤ β}.

In this problem we fit a rational function p(t)/q(t) to given data, while constraining the
denominator polynomial to be positive on the interval [α, β]. The optimization variables
are the numerator and denominator coefficients ai, bi. The interpolation points ti ∈ [α, β],
and desired function values yi, i = 1, . . . , k, are given.

Solution. Let’s show the objective is quasiconvex. Its domain is convex. Since q(ti) > 0
for i = 1, . . . , k, we have

max
i=1,...,k

|p(ti)/q(ti) − yi| ≤ γ

if and only if
−γq(ti) ≤ p(ti) − yiq(ti) ≤ γq(ti), i = 1, . . . , k,

which is a pair of linear inequalities.
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6.10 Fitting data with a concave nonnegative nondecreasing quadratic function. We are given
the data

x1, . . . , xN ∈ R
n, y1, . . . , yN ∈ R,

and wish to fit a quadratic function of the form

f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn, q ∈ Rn, and r ∈ R are the parameters in the model (and, therefore, the
variables in the fitting problem).

Our model will be used only on the box B = {x ∈ Rn | l � x � u}. You can assume that
l ≺ u, and that the given data points xi are in this box.

We will use the simple sum of squared errors objective,

N∑

i=1

(f(xi) − yi)
2,

as the criterion for the fit. We also impose several constraints on the function f . First,
it must be concave. Second, it must be nonnegative on B, i.e., f(z) ≥ 0 for all z ∈ B.
Third, f must be nondecreasing on B, i.e., whenever z, z̃ ∈ B satisfy z � z̃, we have
f(z) ≤ f(z̃).

Show how to formulate this fitting problem as a convex problem. Simplify your formula-
tion as much as you can.

Solution. The objective function is a convex quadratic function of the function pa-
rameters, which are the variables in the fitting problem, so we need only consider the
constraints. The function f is concave if and only if P � 0, which is a convex constraint,
in fact, a linear matrix inequality. The nonnegativity constraint states that f(z) ≥ 0 for
each z ∈ B. For each such z, the constraint is a linear inequality in the variables P, q, r,
so the constraint is the intersection of an infinite number of linear inequalities (one for
each z ∈ B) and therefore convex. But we can derive a much simpler representation for
this constraint. Since we will impose the condition that f is nondecreasing, it follows that
the lowest value of f must be attained at the point l. Thus, f is nonnegative on B if and
only if f(l) ≥ 0, which is a single linear inequality.

Now let’s look at the monotonicity constraint. We claim this is equivalent to ∇f(z) � 0
for z ∈ B. Let’s show that first. Suppose f is monotone on B and let z ∈ intB. Then
for small positive t ∈ R, we have f(z + tei) ≥ f(z). Subtracting, and taking the limit as
t → 0 gives the conclusion ∇f(z)i ≥ 0. To show the converse, suppose that ∇f(z) � 0
on B, and let z, z̃ ∈ B, with z � z̃. Define g(t) = f(z + t(z̃ − z)). Then we have

f(z̃) − f(z) = g(1) − g(0)

=

∫ 1

0

g′(t) dt

=

∫ 1

0

(z̃ − z)T∇f(z + t(z̃ − z)) dt

≥ 0,

since z̃ − z � 0 and ∇f � 0 on B. (Note that this result doesn’t depend on f being
quadratic.)

For our function, monotonicity is equivalent to ∇f(z) = Pz + q � 0 for z ∈ B. This
too is convex, since for each z, it is a set of linear inequalities in the parameters of
the function. We replace this abstract constraint with 2n constraints, by insisting that
∇f(z) = Pz+q � 0 must hold at the 2n vertices of B (obtained by setting each component
equal to li or ui). But there is a far better description of the monotonicity constraint.
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Let us express P as P = P+ − P−, where P+ and P− are the elementwise positive and
negative parts of P , respectively:

(P+)ij = max{Pij , 0}, (P−)ij = max{−Pij , 0}.

Then
Pz + q � 0 for all l � z � u

holds if and only if
P+l − P−u+ q � 0.

Note that in contrast to our set of 2n linear inequalities, this representation involves
n(n+ 1) new variables, and n linear inequality constraints.

(Another method to get a compact representation of the monotonicity constraint is based
on deriving the alternative inequality to the condition that Pz+ q � 0 for l � z � u; this
results in an equivalent formulation.)

Finally, we can express the problem as

minimize
∑N

i=1

(
(1/2)xT

i Pxi + qTxi + r − yi

)2
subject to P � 0

(1/2)lTPl + qT l + r ≥ 0
P = P+ − P−, (P+)ij ≥ 0, (P−)ij ≥ 0
P+l − P−u+ q � 0,

with variables P, P+, P− ∈ Sn, q ∈ R, and r ∈ R. The objective is convex quadratic, there
is one linear matrix inequality (LMI) constraint, and some linear equality and inequality
constraints. This problem can be expressed as an SDP.

We should note one common pitfall. We argue that f is concave, so its gradient must be
monotone nonincreasing. Therefore, the argument goes, its ‘lowest’ value in B is achieved
at the upper corner u. Therefore, for Pu+q � 0 is enough to ensure that the monotonicity
condition holds. One variation on this argument holds that it is enough to impose the
two inequalities Pl + q � 0 and Pu+ q � 0.

This sounds very reasonable, and in fact is true for dimensions n = 1 and n = 2. But
sadly, it is false in general. Here is a counterexample:

P =

[ −1 1 −1
1 −10 0

−1 0 −10

]
, l =

[
1

−1
0

]
, u =

[
1.1

1
1

]
, q =

[
2.1
20
20

]
.

It is easily checked that P � 0, Pl+ q � 0, and Pu+ q � 0. However, consider the point

z =

[
1

−1
1

]
,

which satisfies l � z � u. For this point we have

Pz + q =

[ −0.9
31
9

]
6� 0.

6.11 Least-squares direction interpolation. Suppose F1, . . . , Fn : Rk → Rp, and we form the
linear combination F : Rk → Rp,

F (u) = x1F1(u) + · · · + xnFn(u),

where x is the variable in the interpolation problem.
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In this problem we require that 6 (F (vj), qj) = 0, j = 1, . . . ,m, where qj are given vectors
in Rp, which we assume satisfy ‖qj‖2 = 1. In other words, we require the direction of
F to take on specified values at the points vj . To ensure that F (vj) is not zero (which
makes the angle undefined), we impose the minimum length constraints ‖F (vj)‖2 ≥ ε,
j = 1, . . . ,m, where ε > 0 is given.

Show how to find x that minimizes ‖x‖2, and satisfies the direction (and minimum length)
conditions above, using convex optimization.

Solution. Introduce variables yi, and constraints

F (vj) = yjqj , yj ≥ ε,

and minimize ‖x‖2. This is a QP.

6.12 Interpolation with monotone functions. A function f : Rk → R is monotone nondecreas-
ing (with respect to Rk

+) if f(u) ≥ f(v) whenever u � v.

(a) Show that there exists a monotone nondecreasing function f : Rk → R, that satisfies
f(ui) = yi for i = 1, . . . ,m, if and only if

yi ≥ yj whenever ui � uj , i, j = 1, . . . ,m.

(b) Show that there exists a convex monotone nondecreasing function f : Rk → R, with
dom f = Rk, that satisfies f(ui) = yi for i = 1, . . . ,m, if and only if there exist
gi ∈ Rk, i = 1, . . . ,m, such that

gi � 0, i = 1, . . . ,m, yj ≥ yi + gT
i (uj − ui), i, j = 1, . . . ,m.

Solution.

(a) The condition is obviously necessary. It is also sufficient. Define

f(x) = max
ui�x

yi.

This function is monotone, because v � w always implies

f(v) = max
ui�v

yi ≤ max
ui�w

yi = f(w).

f satisfies the interpolation conditions if

f(ui) = max
uj�ui

yj = yi,

which is true if ui � uj implies yi ≥ yj .

If we want dom f = Rk, we can define f as

f(x) =

{
mini yi x 6� ui, i = 1, . . . ,m
maxui�x yi otherwise.

(b) We first show it is necessary. Suppose f is convex, monotone nondecreasing, with
dom f = Rk, and satisfies the interpolation conditions. Let gi be a normal vector
to a supporting hyperplane at ui to f , i.e.,

f(x) ≥ yi + gT
i (x− ui),

for all x. In particular, at x = uj , this inequality reduces to

yj ≥ yi + gT
i (x− ui),
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It also follows that gi � 0: If gik < 0, then choosing x = ui − ek gives

f(x) ≥ yi + gT
i (x− ui) = yi − gij > yi,

so f is not monotone.

To show that the conditions are sufficient, consider

f(x) = max
i=1,...,m

(
yi + gT

i (x− ui)
)
.

f is convex, satisfies the interpolation conditions, and is monotone: if v � w, then

yi + gT
i (v − ui) ≤ yi + gT

i (w − ui)

for all i, and hence f(v) ≤ f(w).

6.13 Interpolation with quasiconvex functions. Show that there exists a quasiconvex function
f : Rk → R, that satisfies f(ui) = yi for i = 1, . . . ,m, if and only if there exist gi ∈ Rk,
i = 1, . . . ,m, such that

gT
i (uj − ui) ≤ −1 whenever yj < yi, i, j = 1, . . . ,m.

Solution. We first show that the condition is necessary. For each i = 1, . . . ,m, define
Ji = {j = 1, . . . ,m | yj < yi}. Suppose the condition does not hold, i.e., for some i, the
set of inequalities

gT
i (uj − ui) ≤ −1, j ∈ Ji

is infeasible. By a theorem of alternatives, there exists λ � 0 such that
∑

j∈Ji

λj(uj − ui) = 0,
∑

j∈Ji

λj = 1.

This means ui is a convex combination of uj , j ∈ Ji. On the other hand, yi > yj for
j ∈ Ji, so if f(ui) = yi and f(uj) = yj , then f cannot be quasiconvex.

Next we prove the condition is sufficient. Suppose the condition holds. Define f : Rk → R
as

f(x) = max
{
ymin,max{yj | gT

j (x− uj) ≥ 0}
}

where ymin = mini yi.

We first verify that f satisfies the interpolation conditions f(ui) = yi. It is immediate
from the definition of f that f(ui) ≥ yi. Also, f(ui) > yi only if gT

j (ui −uj) ≥ 0 for some
j with yj > yi. This contradicts the definition of gj . Therefore f(ui) = yi.

Finally, we check that f is quasiconvex. The sublevel sets of f are convex because f(x) ≤ α
if and only if

gT
j (x− uj) ≥ 0 =⇒ yj ≤ α

or equivalently, gT
j (x− uj) < 0 for all j with yj > α.

6.14 [Nes00] Interpolation with positive-real functions. Suppose z1, . . . , zn ∈ C are n distinct
points with |zi| > 1. We define Knp as the set of vectors y ∈ Cn for which there exists a
function f : C → C that satisfies the following conditions.

• f is positive-real, which means it is analytic outside the unit circle (i.e., for |z| > 1),
and its real part is nonnegative outside the unit circle (<f(z) ≥ 0 for |z| > 1).

• f satisfies the interpolation conditions

f(z1) = y1, f(z2) = y2, . . . , f(zn) = yn.

If we denote the set of positive-real functions as F , then we can express Knp as

Knp = {y ∈ C
n | ∃f ∈ F , yk = f(zk), k = 1, . . . , n}.
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(a) It can be shown that f is positive-real if and only if there exists a nondecreasing
function ρ such that for all z with |z| > 1,

f(z) = i=f(∞) +

∫ 2π

0

eiθ + z−1

eiθ − z−1
dρ(θ),

where i =
√
−1 (see [KN77, page 389]). Use this representation to show that Knp

is a closed convex cone.

Solution. It follows that every element in Knp can be expressed as iα1 + v where
α ∈ R and v is in the conic hull of the vectors

v(θ) =

(
eiθ + z−1

1

eiθ − z−1
1

,
eiθ + z−1

2

eiθ − z−1
2

, . . . ,
eiθ + z−1

n

eiθ − z−1
n

)
, 0 ≤ θ ≤ 2π.

Therefore Knp is the sum of a convex cone and a line, so it is also a convex cone.

Closedness is less obvious. The set

C = {v(θ) | 0 ≤ θ ≤ 2π}
is compact, because v is continuous on [0, 2π]. The convex hull of a compact set is
compact, and the conic hull of a compact set is closed. Therefore Knp is the sum of
two closed sets (the conic hull of C and the line iαR), hence it is closed.

(b) We will use the inner product <(xHy) between vectors x, y ∈ Cn, where xH denotes
the complex conjugate transpose of x. Show that the dual cone of Knp is given by

K∗
np =

{
x ∈ C

n

∣∣∣∣∣ =(1Tx) = 0, <
(

n∑

l=1

xl
e−iθ + z̄−1

l

e−iθ − z̄−1
l

)
≥ 0 ∀θ ∈ [0, 2π]

}
.

Solution. x ∈ K∗
np if

<((iα1 + v)Hx) = α=(1Tx) + <(vHx) ≥ 0

for all α ∈ R and all v in the conic hull of the vectors v(θ). This condition is
equivalent to =(1Tx) = 0 and <(v(θ)Hx) ≥ 0 for all θ ∈ [0, 2π].

(c) Show that

K∗
np =

{
x ∈ C

n

∣∣∣∣∣ ∃Q ∈ H
n
+, xl =

n∑

k=1

Qkl

1 − z−1
k z̄−1

l

, l = 1, . . . , n

}

where Hn
+ denotes the set of positive semidefinite Hermitian matrices of size n× n.

Use the following result (known as Riesz-Fejér theorem; see [KN77, page 60]). A
function of the form

n∑

k=0

(yke
−ikθ + ȳke

ikθ)

is nonnegative for all θ if and only if there exist a0, . . . , an ∈ C such that

n∑

k=0

(yke
−ikθ + ȳke

ikθ) =

∣∣∣∣∣

n∑

k=0

ake
ikθ

∣∣∣∣∣

2

.

Solution. We first show that any x of the form

xl =

n∑

k=1

Qkl

1 − z−1
k z̄−1

l

, l = 1, . . . , n, (6.14.A)
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where Q ∈ Hn
+, belongs to K∗

np. Suppose x satisfies (6.14.A) for some Q ∈ Hn
+. We

have

2i=(1Tx) = 1
Tx− 1

T x̄

=

n∑

k=1

n∑

l=1

Qkl

1 − z−1
k z̄−1

l

−
n∑

k=1

n∑

l=1

Qlk

1 − z̄−1
k z−1

l

=

n∑

k=1

n∑

l=1

Qkl

1 − z−1
k z̄−1

l

−
n∑

l=1

n∑

k=1

Qkl

1 − z̄−1
l z−1

k

= 0.

Also,

<
(

n∑

l=1

xl
e−iθ + z̄−1

l

e−iθ − z̄−1
l

)

= <
(

n∑

k=1

n∑

l=1

Qkl

1 − z−1
k z̄−1

l

e−iθ + z̄−1
l

e−iθ − z̄−1
l

)

=
1

2

n∑

k=1

n∑

l=1

(
Qkl

1 − z−1
k z̄−1

l

e−iθ + z̄−1
l

e−iθ − z̄−1
l

+
Qlk

1 − z̄−1
k z−1

l

eiθ + z−1
l

eiθ − z−1
l

)

=
1

2

n∑

k=1

n∑

l=1

Qkl

1 − z−1
k z̄−1

l

(
e−iθ + z̄−1

l

e−iθ − z̄−1
l

+
eiθ + z−1

k

eiθ − z−1
k

)

=
1

2

n∑

k=1

n∑

l=1

Qkl

1 − z−1
k z̄−1

l

2(1 − z−1
k z̄−1

l )

(eiθ − z−1
k )(e−iθ − z̄−1

l )

=

n∑

k=1

n∑

l=1

Qkl

(eiθ − z−1
k )(e−iθ − z̄−1

l )

≥ 0.

Therefore x ∈ K∗
np.

Conversely, suppose x ∈ K∗
np, i.e., =(1Tx) = 0 and the function

R(θ) = <
(

n∑

l=1

xl
e−iθ + z̄−1

l

e−iθ − z̄−1
l

)

is nonnegative. We can write R as

R(θ) = <
(

n∑

l=1

xl
e−iθ + z̄−1

l

e−iθ − z̄−1
l

)

=
1

2

n∑

l=1

(
xl
e−iθ + z̄−1

l

e−iθ − z̄−1
l

+ x̄l
eiθ + z−1

l

eiθ − z−1
l

)

=

∑n−1

k=0

(
yke

−ikθ + ȳke
ikθ
)

∏n

l=1
|eiθ − z−1

l |2

for some y. The last line follows by bringing all terms in the previous line on the
same denominator. The absence of a term k = n in the numerator on the last line
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requires some explanation. The coefficient of the term einθ/
∏n

l=1
|eiθ − z−1

l |2 is

ȳn =
1

2

n∑

l=1

(
xlz̄

−1
l

∏

k 6=l

(−z̄−1
k ) − x̄lz̄

−1
l

∏

k 6=l

(−z̄−1
k )

)

=
(−1)n−1

2

(
n∏

k=1

z̄−1
k )

)
n∑

l=1

(xl − x̄l)

= 0

because =(1Tx) = 0.

Applying the Riesz-Fejér theorem to the numerator in the last expression for R we
get

R(θ) =

∣∣∣∣
∑n−1

k=0
ake

ikθ

∏n

l=1
(eiθ − z−1

l )

∣∣∣∣
2

for some set of coefficients ak, and hence

R(θ) =

∣∣∣∣∣

n∑

l=1

bl

eiθ − z−1
l

∣∣∣∣∣

2

.

for some b ∈ Cn. Therefore

R(θ) =

n∑

l=1

n∑

k=1

bk b̄l

(eiθ − z−1
k )(e−iθ − z̄−1

l )

=
1

2

n∑

l=1

n∑

k=1

bk b̄l

1 − z−1
k z̄−1

l

(
e−iθ + z̄−1

l

e−iθ − z̄−1
l

+
eiθ + z−1

k

eiθ − z−1
k

)

= <
(

n∑

l=1

n∑

k=1

bk b̄l

1 − z−1
k z̄−1

l

e−iθ + z̄−1
l

e−iθ − z̄−1
l

)
.

Since the functions (e−iθ + z̄−1
l )/(e−iθ − z̄−1

l ) are linearly independent, we conclude
that

xl =

n∑

k=1

bk b̄l

1 − z−1
k z̄−1

l

,

i.e., we can choose Q = bbH .

(d) Show that Knp = {y ∈ Cn | P (y) � 0} where P (y) ∈ Hn is defined as

P (y)kl =
yk + yl

1 − z−1
k z̄−1

l

, l, k = 1, . . . , n.

The matrix P (y) is called the Nevanlinna-Pick matrix associated with the points
zk, yk.

Hint. As we noted in part (a), Knp is a closed convex cone, so Knp = K∗∗
np.

Solution. From the result in (c), x ∈ K∗∗
np if and only if for all Q ∈ Hn

+,

<(xHy) =
1

2
(xHy + yHx)

=
1

2

n∑

l=1

n∑

k=1

(
yl

Qlk

1 − z̄−1
k z−1

l

+ ȳl
Qkl

1 − z−1
k z̄−1

l

)
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=
1

2

n∑

l=1

n∑

k=1

Qlk

(
yl + ȳk

1 − z̄−1
k z−1

l

)

= tr(QP (y))

≥ 0.

In other words, if and only if P (y) � 0.

(e) As an application, pose the following problem as a convex optimization problem:

minimize
∑n

k=1
|f(zk) − wk|2

subject to f ∈ F .

The problem data are n points zk with |zk| > 1 and n complex numbers w1, . . . ,
wn. We optimize over all positive-real functions f .

Solution. We can express this problem as

minimize
∑n

k=1
|yk − wk|2

subject to P (y) � 0,

where P (y) is the Nevanlinna-Pick matrix, and the variable is the (complex) vector
y. Since P is linear in y, the constraint is a (complex) LMI, which can be expressed
as a real LMI in the real and imaginary parts of y, following exercise 4.42. The
objective is (convex) quadratic.



Chapter 7

Statistical estimation
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Exercises

Estimation

7.1 Linear measurements with exponentially distributed noise. Show how to solve the ML
estimation problem (7.2) when the noise is exponentially distributed, with density

p(z) =

{
(1/a)e−z/a z ≥ 0
0 z < 0,

where a > 0.

Solution. Solve the LP
minimize 1T (y −Ax)
subject to Ax � y.

7.2 ML estimation and `∞-norm approximation. We consider the linear measurement model
y = Ax+ v of page 352, with a uniform noise distribution of the form

p(z) =

{
1/(2α) |z| ≤ α
0 |z| > α.

As mentioned in example 7.1, page 352, any x that satisfies ‖Ax − y‖∞ ≤ α is a ML
estimate.

Now assume that the parameter α is not known, and we wish to estimate α, along with
the parameters x. Show that the ML estimates of x and α are found by solving the
`∞-norm approximation problem

minimize ‖Ax− y‖∞,

where aT
i are the rows of A.

Solution. The log-likelihood function is

l(x, α) =

{
m log(1/2α) ‖Ax− y‖∞ ≤ α
−∞ otherwise.

Maximizing over α and y is equivalent to solving the `∞-norm problem.

7.3 Probit model. Suppose y ∈ {0, 1} is random variable given by

y =

{
1 aTu+ b+ v ≤ 0
0 aTu+ b+ v > 0,

where the vector u ∈ Rn is a vector of explanatory variables (as in the logistic model
described on page 354), and v is a zero mean unit variance Gaussian variable.

Formulate the ML estimation problem of estimating a and b, given data consisting of
pairs (ui, yi), i = 1, . . . , N , as a convex optimization problem.

Solution. We have

prob(y = 1) = Q(aTu+ b), prob(y = 0) = 1 −Q(aTu+ b) = P (−aTu− b)

where

Q(z) =
1√
2π

∫ ∞

z

et2/2 dt.

The log-likelihood function is

l(a, b) =
∑

yi=1

logQ(aTui + b) +
∑

yi=0

logQ(−aTui − b),

which is a concave function of a and b.
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7.4 Estimation of covariance and mean of a multivariate normal distribution. We consider the
problem of estimating the covariance matrix R and the mean a of a Gaussian probability
density function

pR,a(y) = (2π)−n/2 det(R)−1/2 exp(−(y − a)TR−1(y − a)/2),

based on N independent samples y1, y2, . . . , yN ∈ Rn.

(a) We first consider the estimation problem when there are no additional constraints
on R and a. Let µ and Y be the sample mean and covariance, defined as

µ =
1

N

N∑

k=1

yk, Y =
1

N

N∑

k=1

(yk − µ)(yk − µ)T .

Show that the log-likelihood function

l(R, a) = −(Nn/2) log(2π) − (N/2) log detR− (1/2)

N∑

k=1

(yk − a)TR−1(yk − a)

can be expressed as

l(R, a) =
N

2

(
−n log(2π) − log detR− tr(R−1Y ) − (a− µ)TR−1(a− µ)

)
.

Use this expression to show that if Y � 0, the ML estimates of R and a are unique,
and given by

aml = µ, Rml = Y.

(b) The log-likelihood function includes a convex term (− log detR), so it is not obvi-
ously concave. Show that l is concave, jointly in R and a, in the region defined
by

R � 2Y.

This means we can use convex optimization to compute simultaneous ML estimates
of R and a, subject to convex constraints, as long as the constraints include R � 2Y ,
i.e., the estimate R must not exceed twice the unconstrained ML estimate.

Solution.

(a) We show that
∑N

k=1
(yk − a)(yk − a)T = N(Y − (a− µ)(a− µ)T ):

N∑

k=1

(yk − a)(yk − a)T =

N∑

k=1

yky
T
k −NaµT −NµaT +NaaT

=

N∑

k=1

(yk − µ)(yk − µ)T +NµµT −NaµT −NµaT +NaaT

= NY +N(a− µ)(a− µT ).

This proves that the two expressions for l are equivalent.

Now let’s maximize l. It is not (in general) a concave function of R, so we have to
be careful. We do know that at the global optimizer, the gradient vanishes (but not
conversely). Setting the gradient with respect to R and µ to zero gives

−R−1 +R−1(Y + (a− µ)(a− µ)T )R−1 = 0, −2R−1(a− µ) = 0,

which has only one solution,

Y + (a− µ)(a− µ)T = R, a = µ.

It must be the global maximizer of l, since l is not unbounded above.
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(b) We show that the function

f(R) = − log detR− tr(R−1Y )

is concave in R for 0 ≺ R � 2Y . This will establish concavity of the log-likelihood
function because the remaining term of l is concave in a and R.

The gradient and Hessian of f are given by

∇f(R) = −R−1 +R−1Y R−1

∇2f(R)[V ] = R−1V R−1 −R−1V R−1Y R−1 −R−1Y R−1V R−1

where by ∇2f(R)[V ] we mean

∇2f(R)[V ] =
d

dt
∇f(R+ tV )

∣∣∣
t=0

.

We show that

tr(V∇2f(R)[V ]) =
d2

dt2
f(R+ tV )

∣∣∣∣
t=0

≤ 0

for all V . We have

tr(V∇2f(R)[V ]) = tr(V R−1V R−1) − 2 tr(V R−1V R−1Y R−1)

= tr
(
(R−1/2V R−1/2)2(I − 2R−1/2Y R−1/2)

)

≤ 0

for all V if
2R−1/2Y R−1/2 � I,

i.e., R � 2Y .

7.5 Markov chain estimation. Consider a Markov chain with n states, and transition proba-
bility matrix P ∈ Rn×n defined as

Pij = prob(y(t+ 1) = i | y(t) = j).

The transition probabilities must satisfy Pij ≥ 0 and
∑n

i=1
Pij = 1, j = 1, . . . , n. We

consider the problem of estimating the transition probabilities, given an observed sample
sequence y(1) = k1, y(2) = k2, . . . , y(N) = kn.

(a) Show that if there are no other prior constraints on Pij , then the ML estimates are

the empirical transition frequencies: P̂ij is the ratio of the number of times the state
transitioned from j into i, divided by the number of times it was j, in the observed
sample.

(b) Suppose that an equilibrium distribution p of the Markov chain is known, i.e., a
vector q ∈ Rn

+ satisfying 1T q = 1 and Pq = q. Show that the problem of computing
the ML estimate of P , given the observed sequence and knowledge of q, can be
expressed as a convex optimization problem.

Solution.

(a) The probability of the sequence y(2), . . . , y(N), given that we start in y(1) is

Pk2,k1
Pk3,k2

· · ·Pkn,kn−1
=

n∏

i,k=1

P
cij

ij

where cij is the number of times the state transitioned from j to i. The ML estima-
tion problem is therefore

maximize
∑n

i,j=1
cij logPij

subject to 1TP = 1T .
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The problem is separable, and can be solved column by column. Let pj = (P1j , . . . , Pnj)
be column j of P . It is the solution of

maximize
∑n

i=1
cij log pij

subject to 1T pj = 1.

Using Lagrange multipliers we find that

Pij =
cij∑n

i=1
cij
.

(b) The ML estimation problem is

maximize
∑n

i,j=1
cij logPij

subject to 1TP = 1T

Pq = q.

7.6 Estimation of mean and variance. Consider a random variable x ∈ R with density p,
which is normalized, i.e., has zero mean and unit variance. Consider a random variable
y = (x+b)/a obtained by an affine transformation of x, where a > 0. The random variable
y has mean b and variance 1/a2. As a and b vary over R+ and R, respectively, we generate
a family of densities obtained from p by scaling and shifting, uniquely parametrized by
mean and variance.

Show that if p is log-concave, then finding the ML estimate of a and b, given samples
y1, . . . , yn of y, is a convex problem.

As an example, work out an analytical solution for the ML estimates of a and b, assuming
p is a normalized Laplacian density, p(x) = e−2|x|.

Solution. The density of y is given by

py(u) = ap(au− b).

The log-likelihood function is given by

log py(u) = log a+ log p(au− b).

If p is log-concave, then this log-likelihood function is a concave function of a and b. This
allows us to compute ML estimates of the mean and variance of a random variable with
a normalized density that is log-concave.

Suppose that n samples y1, . . . , yn are drawn from the distribution of y, which has a
log-concave normalized density. To find the ML estimate of the parameters a and b, we
maximize the concave function

n∑

i=1

py(yi) = n log a+

n∑

i=1

log p(ayi − b).

For the Laplace distribution, you get

n∑

i=1

py(yi) = n log a− 2

n∑

i=1

|ayi − b|,

so the ML estimates solve

minimize −n log a+ 2
∑n

i=1
|ayi − b|.

We can define c = b/a, and solve

minimize −n log a+ 2a
∑n

i=1
|yi − c|.
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The solution c is the median of yi. a can be found by setting the derivative equal to zero:

a =
n

2
∑n

i=1
|yi − c| .

7.7 ML estimation of Poisson distributions. Suppose xi, i = 1, . . . , n, are independent random
variables with Poisson distributions

prob(xi = k) =
e−µiµk

i

k!
,

with unknown means µi. The variables xi represent the number of times that one of n
possible independent events occurs during a certain period. In emission tomography, for
example, they might represent the number of photons emitted by n sources.

We consider an experiment designed to determine the means µi. The experiment involves
m detectors. If event i occurs, it is detected by detector j with probability pji. We assume
the probabilities pji are given (with pji ≥ 0,

∑m

j=1
pji ≤ 1). The total number of events

recorded by detector j is denoted yj ,

yj =

n∑

i=1

yji, j = 1, . . . ,m.

Formulate the ML estimation problem of estimating the means µi, based on observed
values of yj , j = 1, . . . ,m, as a convex optimization problem.

Hint. The variables yji have Poisson distributions with means pjiµi, i.e.,

prob(yji = k) =
e−pjiµi(pjiµi)

k

k!
.

The sum of n independent Poisson variables with means λ1, . . . , λn has a Poisson distri-
bution with mean λ1 + · · · + λn.

Solution. It follows from the two hints that yj has a Poisson distribution with mean

n∑

i=1

pjiµi = pT
j µ.

Therefore,

log(prob(yj = k)) = −pT
j µ+ k log(pT

j µ) − log k!.

Suppose the observed values of yj are kj , j = 1, . . . , n. Then the ML estimation problem
is

maximize −
∑m

j=1
pT

j µ+
∑m

j=1
kj log(pT

j µ)

subject to µ � 0,

which is convex in µ.

For completeness we also prove the two hints. Suppose x is a Poisson random variable
with mean µ (number of times that an event occurs). It is well known that the Poisson
distribution is the limit of a binomial distribution

prob(x = k) =
e−µµk

k!
= lim

n→∞, nq→µ

(
n
k

)
qk(1 − q)n−k,

i.e., we can think of x is the total number of positives in n Bernoulli trials with q = µ/n.
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Now suppose y is the total number of positives that is detected, where the probability of
detection is p. In the binomial formula, we simply replace q with pq, and in the limit

prob(y = k) = lim
n→∞, nq→µ

(
n
k

)
(pq)k(1 − (pq))n−k

= lim
n→∞, nq→pµ

(
n
k

)
qk(1 − q)n−k

=
e−pµ(pµ)k

k!
.

Assume x and y are independent Poisson variables with means µ and λ. Then

prob(x+ y = k) =

k∑

i=0

prob(x = i)prob(y = k − i)

= e−µ−λ

k∑

i=0

µiλk−i

i!(k − i)!

=
e−µ−λ

k!

k∑

i=0

k!

i!(k − i)!
µiλk−i

=
e−µ−λ

k!
(λ+ µ)k.

7.8 Estimation using sign measurements. We consider the measurement setup

yi = sign(aT
i x+ bi + vi), i = 1, . . . ,m,

where x ∈ Rn is the vector to be estimated, and yi ∈ {−1, 1} are the measurements. The
vectors ai ∈ Rn and scalars bi ∈ R are known, and vi are IID noises with a log-concave
probability density. (You can assume that aT

i x+ bi + vi = 0 does not occur.) Show that
maximum likelihood estimation of x is a convex optimization problem.

Solution. We re-order the observations so that yi = 1 for i = 1, . . . , k and yi = 0 for
i = k + 1, . . . ,m. The probability of this event is

∏k

i=1
prob(aT

i x+ bi + vi > 0) ·
∏m

i=k+1
prob(aT

i x+ bi + vi < 0)

=
∏k

i=1
F (−aT

i x− bi) ·
∏m

i=k+1
(1 − F (−aT

i x− bi)),

where F is the cumulative distribution of the noise density. The integral of a log-concave
function is log-concave, so F is log-concave, and so is 1 − F . The log-likelihood function
is

l(x) =

k∑

i=1

logF (−aT
i x− bi) +

m∑

i=k+1

log(1 − F (−aT
i x− bi)),

which is concave. Therefore, maximizing it is a convex problem.

7.9 Estimation with unknown sensor nonlinearity. We consider the measurement setup

yi = f(aT
i x+ bi + vi), i = 1, . . . ,m,

where x ∈ Rn is the vector to be estimated, yi ∈ R are the measurements, ai ∈ Rn,
bi ∈ R are known, and vi are IID noises with log-concave probability density. The function
f : R → R, which represents a measurement nonlinearity, is not known. However, it is
known that f ′(t) ∈ [l, u] for all t, where 0 < l < u are given.
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Explain how to use convex optimization to find a maximum likelihood estimate of x, as
well as the function f . (This is an infinite-dimensional ML estimation problem, but you
can be informal in your approach and explanation.)

Solution. For fixed function f and vector x, we observe y1, . . . , ym if and only if

f−1(yi) − aT
i x− bi = vi, i = 1, . . . ,m.

(Note that the assumption 0 < l < u implies f is invertible.) It follows that the probability
of observing y1, . . . , ym is

m∏

i=1

pv

(
f−1(yi) − aT

i x− bi
)
.

The log of this expression, regarded as a function of x and the function f , is the log-
likelihood function:

l(x, f) =

m∑

i=1

log pv

(
zi − aT

i x− bi
)
,

where zi = f−1(yi). This is a concave function of z and x.

The function f only affects the log-likelihood function through the numbers zi. The
constraints can be expressed in terms of the inverse as

(d/dt)f−1(t) ∈ [1/u, 1/l],

so we conclude that

(1/u)|yi − yj | ≤ |zi − zj | ≤ (1/l)|yi − yj |,

for all i, j. Conversely, if these inequalities hold, then there is a function f that satisfies
the inequality, with f−1(yi) = zi. (Actually, this is true only in the limit, but we’re being
informal here.)

Therefore, to find the ML estimate, we maximize the concave function of x and z above,
subject to the linear inequalities on z.

7.10 Nonparametric distributions on Rk. We consider a random variable x ∈ Rk with values
in a finite set {α1, . . . , αn}, and with distribution

pi = prob(x = αi), i = 1, . . . , n.

Show that a lower bound on the covariance of X,

S � E(X − EX)(X − EX)T ,

is a convex constraint in p.

Solution.

E(X − EX)(X − EX)T =

n∑

i=1

piαiα
T
i −

(
n∑

i=1

piαi

)(
n∑

i=1

piαi

)T

� S

if and only if [ ∑n

i=1
piαiα

T
i − S

∑n

i=1
piαi

(
∑n

i=1
piαi)

T 1

]
� 0.
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Optimal detector design

7.11 Randomized detectors. Show that every randomized detector can be expressed as a convex
combination of a set of deterministic detectors: If

T =
[
t1 t2 · · · tn

]
∈ R

m×n

satisfies tk � 0 and 1T tk = 1, then T can be expressed as

T = θ1T1 + · · · + θNTN ,

where Ti is a zero-one matrix with exactly one element equal to one per column, and

θi ≥ 0,
∑N

i=1
θi = 1. What is the maximum number of deterministic detectors N we may

need?

We can interpret this convex decomposition as follows. The randomized detector can be
realized as a bank of N deterministic detectors. When we observe X = k, the estimator
chooses a random index from the set {1, . . . , N}, with probability prob(j = i) = θi, and
then uses deterministic detector Tj .

Solution. The detector T can be expressed as a convex combination of deterministic
detectors as follows:

T =

m∑

i1=1

m∑

i2=1

· · ·
m∑

in=1

θi1,i2,...,im

[
ei1 ei2 · · · ein

]
.

where
θi1,i2,...,im = ti1,1ti2,2 · · · tin,n.

To see this, note that

m∑

i1=1

m∑

i2=1

· · ·
m∑

in=1

θi1,i2,...,im

[
ei1 ei2 · · · ein

]

=

m∑

in=1

· · ·
m∑

i2=1

(tin,n · · · ti2,2)

(
m∑

i1=1

ti1,1

[
ei1 ei2 · · · ein

]
)

=

m∑

in=1

· · ·
m∑

i2=1

(tin,n · · · ti2,2)
[
t1 ei2 · · · ein

]

=

m∑

in=1

· · ·
m∑

i3=1

(tin,n · · · ti3,3)

(
m∑

i2=1

ti2,2

[
t1 ei2 · · · ein

]
)

=

m∑

in=1

· · ·
m∑

i3=1

(tin,n · · · ti3,3)

m∑

i2=1

[
t1 t2 · · · ein

]

...

=

m∑

in=1

tin,n

[
t1 t2 · · · tn−1 ein

]

=
[
t1 t2 · · · tn−1 tn

]
.

It is also clear that ∑

i1,i2,...,im

θi1,i2,...,im = 1.
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The following general argument (familiar from linear programming) shows that every de-
tector can be expressed as a convex combination of no more than n(m−1)+1 deterministic
detectors.

Suppose v1, . . . , vN are affinely dependent points in Rp, which means that

rank

[
v1 v2 · · · vN

1 1 · · · 1

]
< N,

and suppose x is a strict convex combination of the points vk:

x = θ1v1 + · · · + θNvN , 1 = θ1 + · · · + θN , θ � 0,

Then x is a convex combination of a subset of the points vi. To see this note that the
rank condition implies that there exists a λ 6= 0 such that

N∑

i=1

λivi = 0,

N∑

i=1

λi = 0.

Therefore,

x = (θ1 + tλ1)v1 + · · · + (θN + tλN )vN , 1 = (θ1 + tλ1)v1 + · · · + (θN + tλN )vN ,

for all t. Since λ has at least one negative component and θ � 0, the number

tmax = sup{t | θ + tλ � 0}

is finite and positive. Define θ̂ = θ + tmaxλ. We have

x = θ̂1v1 + · · · + θ̂NvN , 1 = θ̂1 + · · · + θ̂N , θ̂ � 0,

and at least one of the coefficients of θ is zero. We have expressed x as strict convex
combination of a subset of the vectors vi. Repeating this argument, we can express x as
a strict convex combination of an affinely independent subset of {v1, . . . , vN}.
Applied to the detector problem, this means that every randomized detector can be
expressed as a convex combination of affinely independent deterministic detectors. Since
the affine hull of the set of all detectors has dimension n(m − 1), it is impossible to find
more than n(m− 1) + 1 affinely independent deterministic detectors.

7.12 Optimal action. In detector design, we are given a matrix P ∈ Rn×m (whose columns
are probability distributions), and then design a matrix T ∈ Rm×n (whose columns are
probability distributions), so that D = TP has large diagonal elements (and small off-
diagonal elements). In this problem we study the dual problem: Given P , find a matrix

S ∈ Rm×n (whose columns are probability distributions), so that D̃ = PS ∈ Rn×n has
large diagonal elements (and small off-diagonal elements). To make the problem specific,

we take the objective to be maximizing the minimum element of D̃ on the diagonal.

We can interpret this problem as follows. There are n outcomes, which depend (stochas-
tically) on which of m inputs or actions we take: Pij is the probability that outcome i
occurs, given action j. Our goal is find a (randomized) strategy that, to the extent pos-
sible, causes any specified outcome to occur. The strategy is given by the matrix S: Sji

is the probability that we take action j, when we want outcome i to occur. The matrix
D̃ gives the action error probability matrix: D̃ij is the probability that outcome i occurs,

when we want outcome j to occur. In particular, D̃ii is the probability that outcome i
occurs, when we want it to occur.

Show that this problem has a simple analytical solution. Show that (unlike the corre-
sponding detector problem) there is always an optimal solution that is deterministic.

Hint. Show that the problem is separable in the columns of S.
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Solution. Let p̃T
k be kth row of P . The problem is then

maximize mink p̃
T
k sk

subject to sk � 0, k = 1, . . . ,m
1T sk = 1, k = 1, . . . ,m.

This problem is separable (when put in epigraph form): we can just as well choose each
sk to maximize p̃T

k sk subject to sk � 0, 1T sk = 1. But this is easy: we choose an index l
of p̃k which has maximum entry, and take sk = el.

In other words, the optimal strategy is very simple: when the outcome i is desired, simply
choose (deterministically) an input that maximizes the probability of the outcome k.

Chebyshev and Chernoff bounds

7.13 Chebyshev-type inequalities on a finite set. Assume X is a random variable taking values
in the set {α1, α2, . . . , αm}, and let S be a subset of {α1, . . . , αm}. The distribution of X
is unknown, but we are given the expected values of n functions fi:

E fi(X) = bi, i = 1, . . . , n. (7.32)

Show that the optimal value of the LP

minimize x0 +
∑n

i=1
bixi

subject to x0 +
∑n

i=1
fi(α)xi ≥ 1, α ∈ S

x0 +
∑n

i=1
fi(α)xi ≥ 0, α 6∈ S,

with variables x0, . . . , xn, is an upper bound on prob(X ∈ S), valid for all distributions
that satisfy (7.32). Show that there always exists a distribution that achieves the upper
bound.

Solution. The best upper bound on prob(x ∈ S) is the optimal value of

maximize
∑

α∈S
pkα

subject to
∑m

k=1
pk = 1∑m

k=1
pkfi(αk) = bi, i = 1, . . . , n

p � 0.

The dual problem is

minimize x0 +
∑n

i=1
xibi

subject to x0 +
∑n

i=1
xifi(α) ≥ 1, α ∈ S

x0 +
∑n

i=1
xifi(α) ≥ 0, α 6∈ S,

The dual problem is feasible, so strong duality holds. Furthermore, the dual problem
is bounded below, so the optimal value is finite, and hence there is a primal optimal
solution.
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Geometric problems
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Projection on a set

8.1 Uniqueness of projection. Show that if C ⊆ Rn is nonempty, closed and convex, and the
norm ‖ · ‖ is strictly convex, then for every x0 there is exactly one x ∈ C closest to x0. In
other words the projection of x0 on C is unique.

Solution. There is at least one projection (this is true for any norm): Suppose x̂ ∈ C,
then the projection is found by minimizing the continuous function ‖x−x0‖ over a closed
bounded set C ∩ {x | ‖x− x0‖ ≤ ‖x̂− x0‖}, so the minimum is attained.

To show that it is unique if the norm is strictly convex, suppose u, v ∈ C with u 6= v and
‖u− x0‖ = ‖v − x0‖ = D. Then (1/2)(u+ v) ∈ C and

‖(1/2)(u+ v) − x0‖ = ‖(1/2)(u− x0) + (1/2)(v − x0)‖
< (1/2)‖u− x0‖ + (1/2)‖v − x0‖
= D,

so u and v are not the projection of x0 on C.

8.2 [Web94, Val64] Chebyshev characterization of convexity. A set C ∈ Rn is called a Cheby-
shev set if for every x0 ∈ Rn, there is a unique point in C closest (in Euclidean norm)
to x0. From the result in exercise 8.1, every nonempty, closed, convex set is a Chebyshev
set. In this problem we show the converse, which is known as Motzkin’s theorem.

Let C ∈ Rn be a Chebyshev set.

(a) Show that C is nonempty and closed.

(b) Show that PC , the Euclidean projection on C, is continuous.

(c) Suppose x0 6∈ C. Show that PC(x) = PC(x0) for all x = θx0 + (1 − θ)PC(x0) with
0 ≤ θ ≤ 1.

(d) Suppose x0 6∈ C. Show that PC(x) = PC(x0) for all x = θx0 + (1 − θ)PC(x0) with
θ ≥ 1.

(e) Combining parts (c) and (d), we can conclude that all points on the ray with base
PC(x0) and direction x0 − PC(x0) have projection PC(x0). Show that this implies
that C is convex.

Solution.

(a) C is nonempty, because it contains the projection of an arbitrary point x0 ∈ Rn.

To show that C is closed, let xk, k = 1, 2, . . . be a sequence of points in C with limit
x̄. We have

‖x̄− PC(x̄)‖2 ≤ ‖x̄− xk‖2

for all k (by definition of PC(x̄)). Taking the limit of the righthand side for k → ∞
gives ‖x̄− PC(x̄)‖2 = 0. Therefore x̄ = PC(x̄) ∈ C.

(b) Let xk, k = 1, 2, . . ., be a sequence of points converging to x̄. We have

‖xk − PC(xk)‖2 ≤ ‖xk − PC(x̄)‖2 ≤ ‖xk − x̄‖2 + ‖x̄− PC(x̄)‖2.

Taking limits on both sides, we see that

lim
k→∞

‖xk − PC(xk)‖2 = lim
k→∞

‖x̄− PC(xk)‖2 ≤ ‖x̄− PC(x̄)‖2.

Now x̄ has a unique projection, and therefore PC(x̄) is the only element of C in the
ball {x | ‖x− x̄‖2 ≤ dist(x̄, C)}. Moreover C is a closed set. Therefore

lim
k→∞

‖x̄− PC(xk)‖2 ≤ ‖x̄− PC(x̄)‖2

is only possible if PC(xk) converges to PC(x̄).
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(c) Suppose x = θx0 + (1 − θ)PC(x0) with 0 ≤ θ < 1. We have

‖x0 − PC(x)‖2 ≤ ‖x0 − x‖2 + ‖x− PC(x)‖2

≤ ‖x0 − x‖2 + ‖x− PC(x0)‖2

= ‖(1 − θ)(x0 − PC(x0))‖2 + ‖θ(x0 − PC(x0))‖2

= ‖x0 − PC(x0)‖2.

(The first inequality is the triangle inequality. The second inequality follows from
the definition of PC(x).) Since C is a Chebyshev set, PC(x) = PC(x0).

(d) We will use the following fact (which follows from Brouwer’s fixed point theorem):
If g : Rn → Rn is continuous and g(x) 6= 0 for ‖x‖2 = 1, then there exists an x with
‖x‖2 = 1 and g(x)/‖g(x)‖2 = x.

Let x = θx0 + (1 − θ)PC(x0) with θ > 1. To simplify the notation we assume that
x0 = 0 and

‖x− x0‖2 = (θ − 1)‖PC(x0)‖2 = 1.

The function g(x) = −PC(x) is continuous (see part (b)). g(x) 6= 0 for x 6= 0 because
x0 = 0 6∈ C. Using the fixed point theorem, we conclude that there exists a y with
‖y‖2 = 1 such that

y = − PC(y)

‖PC(y)‖2
.

This means that x0 = 0 lies on the line segment between PC(y) and y. Hence, from
(c), PC(x0) = PC(y), and

y = − PC(x0)

‖PC(x0)‖2
= (1 − θ)PC(x0) = x.

We conclude that PC(x) = PC(x0).

(e) It is sufficient to show that C is midpoint convex. Suppose it is not, i.e., there
exist x1, x2 ∈ C with x0 = (1/2)(x1 + x2) 6∈ C. For simplicity we assume that
‖x1 − x2‖2 = 2, so ‖x0 − x2‖2 = ‖x0 − x1‖2 = 1.

Define D = ‖x0 − PC(x0)‖2. We must have 0 < D < 1. (D > 0 because x0 6∈ C
and C is closed; D < 1 because otherwise x0 would have two projections, x1 and x2,
contradicting the fact that C is a Chebyshev set.)

By the result in (c) and (d), all points x(θ) = PC(x0)+θ(x0−PC(x0)) are projected
on PC(x0), i.e.,

dist(x(θ), C) = ‖PC(x0) + θ(x0 − PC(x0)) − PC(x0)‖2 = θ‖x0 − PC(x0)‖2 = θD.

Without loss of generality, assume that

(x0 − PC(x0))
T (x1 − x0) ≤ 0.

(Otherwise, switch the roles of x1 and x2). We have for θ ≥ 1,

θ2D2 = dist(x(θ), C)2

< ‖x(θ) − x1‖2
2

= ‖x(θ) − x0‖2
2 + ‖x0 − x1‖2

2 + 2(x(θ) − x0)
T (x0 − x1)

= (θ − 1)2D2 + 1 + 2(x(θ) − x0)
T (x0 − x1)

= (θ − 1)2D2 + 1 + 2(θ − 1)(x0 − PC(x0))
T (x0 − x1)

≤ (θ − 1)2D2 + 1.

(The first inequality follows from the fact that PC(x0) 6= x1.) Therefore 0 < (1 −
2θ)D2 + 1, which is false for θ ≥ (1/2)(1 + 1/D2).
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8.3 Euclidean projection on proper cones.

(a) Nonnegative orthant. Show that Euclidean projection onto the nonnegative orthant
is given by the expression on page 399.

Solution. The inner product of two nonnegative vectors is zero if and only the
componentwise product is zero. We can therefore solve the equations

x0,i = x+,i − x−,i, x+,i ≥ 0, x−,i ≥ 0, x+,ix−,i = 0,

for i = 1, . . . , n. If x0,i > 0 the solution is x+,i = x0,i, x−,i = 0. If x0,i < 0 the
solution is x+,i = 0, x−,i = −x0,i. If x0,i = 0 the solution is x+,i = x−,i = 0.

(b) Positive semidefinite cone. Show that Euclidean projection onto the positive semidef-
inite cone is given by the expression on page 399.

Solution. Define X̃+ = V TX+V , X̃− = V TX−V . These matrices must satisfy

Λ = X̃+ − X̃−, X̃+ � 0, X̃− � 0, tr(X̃+X̃−) = 0.

The first condition implies that the off-diagonal elements are equal: (X̃+)ij = (X̃−)ij

if i 6= j. The third equation implies

tr(X̃+X−) =

n∑

i=1

(X̃+)ii(X̃−)ii +

n∑

i=1

∑

j 6=i

(X̃+)ij(X̃−)ij = 0

which is only possible if

(X̃+)ij = (X̃−)ij = 0, i 6= j

and
(X̃+)ii(X̃−)ii = 0, i = 1, . . . , n.

In other words, X̃+ and X̃− are diagonal, with a complementary zero-nonzero pat-
tern on the diagonal, i.e.,

(X̃+)ii = max{λi, 0}, (X̃0)ii = max{−λi, 0}.

(c) Second-order cone. Show that the Euclidean projection of (x0, t0) on the second-
order cone

K = {(x, t) ∈ R
n+1 | ‖x‖2 ≤ t}

is given by

PK(x0, t0) =

{
0 ‖x0‖2 ≤ −t0
(x0, t0) ‖x0‖2 ≤ t0
(1/2)(1 + t0/‖x0‖2)(x0, ‖x0‖2) ‖x0‖2 ≥ |t0|.

Solution. The second-order cone is self-dual, so the conditions are

x0 = u− v, t0 = µ− τ, ‖u‖2 ≤ µ, ‖v‖2 ≤ τ, uT v + µτ = 0.

It follows from the Cauchy-Schwarz inequality that the last three conditions are
satisfied if one of the following three cases holds.

• µ = 0, u = 0, ‖v‖2 ≤ τ . The first two conditions give v = −x0, t0 = −τ . The
fourth condition implies t0 ≤ 0, and ‖ − x0‖2 ≤ −t0.
In this case (x0, t0) is in the negative second-order cone, and its projection is
the origin.
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• τ = 0, v = 0, ‖u‖2 ≤ µ. The first two conditions give u = x0, µ = t0. The third
condition implies ‖x0‖2 ≤ t0.
In this case (x0, t0) is in the second-order cone, so it is its own projection.

• ‖u‖2 = µ > 0, ‖v‖2 = τ > 0, τu = −µv. We can express v as v = −(τ/µ)u.
From x0 = u− v,

x0 = (1 + τ/µ)u, µ = ‖u‖2,

and therefore µ+ τ = ‖x0‖2. Also, t0 = µ− τ . Solving for µ and τ gives

µ = (1/2)(t0 + ‖x0‖2), τ = (1/2)(−t0 + ‖x0‖2).

τ is only positive if t0 < ‖x0‖2. We obtain

u =
t0 + ‖x0‖2

2‖x0‖2
x0, µ =

‖x0‖2 + t0
2

, v =
t0 − ‖x0‖2

2‖x0‖2
x0, τ =

‖x0‖2 − t0
2

.

8.4 The Euclidean projection of a point on a convex set yields a simple separating hyperplane

(PC(x0) − x0)
T (x− (1/2)(x0 + PC(x0))) = 0.

Find a counterexample that shows that this construction does not work for general norms.

Solution. We use the `1-norm, with

C = {x ∈ R
2 | x1 + x2/2 ≤ 1}, x0 = (1, 1).

The projection is PC(x0) = (1/2, 1), so the hyperplane as above,

(PC(x0) − x0)
T (x− (1/2)(x0 + PC(x0))) = 0,

simplifies to x1 = 3/4. This does not separate (1, 1) from C.

8.5 [HUL93, volume 1, page 154] Depth function and signed distance to boundary. Let C ⊆ Rn

be a nonempty convex set, and let dist(x,C) be the distance of x to C in some norm.
We already know that dist(x,C) is a convex function of x.

(a) Show that the depth function,

depth(x,C) = dist(x,Rn \ C),

is concave for x ∈ C.

Solution. We will show that the depth function can be expressed as

depth(x,C) = inf
‖y‖∗=1

(SC(y) − yTx),

where SC is the support function of C. This proves that the depth function is
concave because it is the infimum of a family of affine functions of x.

We first prove the following result. Suppose a 6= 0. The distance of a point x0, in
the norm ‖ · ‖, to the hyperplane defined by aTx = b, is given by |aTx − b|/‖a‖∗.
We can show this by applying Lagrange duality for the problem

minimize ‖x− x0‖
subject to aTx = b.

The dual function is

g(ν) = inf
x

(
‖x− x0‖ + ν(aTx− b)

)

= inf
x

(
‖x− x0‖ + νaT (x− x0) + ν(aTx0 − b)

)

=

{
ν(aTx0 − b) ‖νa‖∗ ≤ 1
−∞ otherwise



Exercises

so we obtain the dual problem

maximize ν(aTx0 − b)
subject to |ν| ≤ 1/‖a‖∗.

If aTx0 ≥ b, the solution is ν? = 1/‖a‖∗. If aTx0 ≤ b, the solution is ν? = −1/‖a‖∗.
In both cases the optimal value is |aTx0 − b|/‖a‖∗.
We now give a geometric interpretation and proof of the expression for the depth
function. Let H be the set of all halfspaces defined by supporting hyperplanes of C,
and containing C. We can describe any H ∈ H by a linear inequality xT y ≤ SC(y)
where y is a nonzero vector in domSC(y).

Let H ∈ H. The function dist(x,Rn \H) is affine for all x ∈ C:

dist(x,Rn \H) =
SC(y) − xT y

‖y‖∗
.

The intersection of all H in H is equal to clC and therefore

depth(x,C) = inf
H∈H

dist(x,Rn \H)

= inf
y 6=0

(SC(y) − xT y)/‖y‖∗

= inf
‖y‖∗=1

(SC(y) − xT y).

(b) The signed distance to the boundary of C is defined as

s(x) =

{
dist(x,C) x 6∈ C
−depth(x,C) x ∈ C.

Thus, s(x) is positive outside C, zero on its boundary, and negative on its interior.
Show that s is a convex function.

Solution. We will show that if we extend the expression in part (a) to points x 6∈ C,
we obtain the signed distance:

s(x) = sup
‖y‖∗=1

(yTx− SC(y)).

In part (a) we have shown that this is true for x ∈ C.

If x ∈ bdC, then yTx ≤ SC(y) for all unit norm y, with equality if y is the
normalized normal vector to a supporting hyperplane at x, so the expression for s
holds.

If x 6∈ clC, then for all y with ‖y‖∗ = 1, yTx − SC(y) is the distance of x to a
hyperplane supporting C (as proved in part (a)), and therefore

yTx− SC(y) ≤ dist(x,C).

Equality holds if we take y equal to the optimal solution of

maximize yTx− SC(y)
subject to ‖y‖∗ ≤ 1

with variable y. As we have seen in §8.1.3 the optimal value of this problem is equal
to dist(x,C).
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The geometric interpretation is as follows. As in part (a), we let H be the set of all
halfspaces defined by supporting hyperplanes of C, and containing C. From part (a),
we already know that for H ∈ H

−depth(x,C) = max
H∈H

s(x,H),

where s(x,Rn \H) is the signed distance from x to H. We now have to show that
for x outside of C

dist(x,C) = sup
H∈H

s(x,H).

By construction, we know that for all G ∈ H, we must have dist(x,C) ≥ s(x,G).
Now, let B be a ball of radius dist(x,C) centered at x. Because both B and C
are convex with B closed, there is a separating hyperplane H such that H ∈ H and
s(x,H) = dist(x,C), hence

dist(x,C) ≤ sup
H∈H

s(x,H),

and the desired result.

Distance between sets

8.6 Let C, D be convex sets.

(a) Show that dist(C, x+D) is a convex function of x.

(b) Show that dist(tC, x+ tD) is a convex function of (x, t) for t > 0.

Solution. To prove the first, we note that

dist(C, x+D) = inf
u,v

(IC(u) + IC(x+ v) + ‖u− (x+ v)‖) .

The righthand side is convex in (u, v, x). Therefore dist(C, x + D) is convex by the
minimization rule. To prove the second, we note that

dist(tC, x+ tD) = tdist(C, x/t+D).

The righthand side is the perspective of the convex function from part (a).

8.7 Separation of ellipsoids. Let E1 and E2 be two ellipsoids defined as

E1 = {x | (x− x1)
TP−1

1 (x− x1) ≤ 1}, E2 = {x | (x− x2)
TP−1

2 (x− x2) ≤ 1},
where P1, P2 ∈ Sn

++. Show that E1 ∩ E2 = ∅ if and only if there exists an a ∈ Rn with

‖P 1/2
2 a‖2 + ‖P 1/2

1 a‖2 < aT (x1 − x2).

Solution. The two sets are closed and bounded, so the intersection is nonempty if and
only if there is an a 6= 0 satisfying

inf
x∈E1

aTx > sup
x∈E2

aTx.

The infimum is giving by the optimal value of

minimize aTx
subject to (x− x1)

TP−1
1 (x− x1) ≤ 1.

A change of variables y = P
−1/2
1 (x− x1) yields

minimize aTx1 + aTP 1/2y
subject to yT y ≤ 1,
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which has optimal value aTx1 − ‖P 1/2a‖2.

Similarly,

sup
x∈E2

aTx = aTx2 + ‖P 1/2a‖2.

The condition therefore reduces to

aTx1 − ‖P 1/2a‖2 > aTx2 + ‖P 1/2a‖2.

We can also derive this result directly from duality, without using the separating hyper-
plane theorem. The distance between the two sets is the optimal value of the problem

minimize ‖x− y‖2

subject to ‖P−1/2
1 (x− x1)‖2 ≤ 1

‖P−1/2
2 (y − x2)‖2 ≤ 1,

with variables x and y. The optimal value is positive if and only if the intersection of the
ellipsoids is empty, and zero otherwise.

To derive a dual, we first reformulate the problem as

minimize ‖u‖2

subject to ‖v‖2 ≤ 1, ‖w‖2 ≤ 1

P
1/2
1 v = x− x1

P
1/2
2 w = y − x2

u = x− y,

with new variables u, v, w. The Lagrangian is

L(x, y, u, v, w, λ1, λ2, z1, z2, z)

= ‖u‖2 + λ1(‖v‖2 − 1) + λ2(‖w‖2 − 1) + zT
1 (P

1/2
1 v − x+ x1)

+ zT
2 (P

1/2
2 w − y + x2) + zT (u− x+ y)

= −λ1 − λ2 + zT
1 x1 + zT

2 x2 − (z + z1)
Tx+ (z − z2)

T y

+ ‖u‖2 + zTu+ λ1‖v‖2 + zT
1 P

1/2
1 v + λ2‖w‖2 + zT

2 P
1/2
2 w.

The minimum over x is unbounded below unless z1 = −z. The minimum over y is
unbounded below unless z2 = z. Eliminating z1 and z2 we can therefore write the dual
function as

g(λ1, λ2, z) = −λ1 − λ2 + zT (x2 − x1) + inf
u

(‖u‖2 + zTu)

+ inf
v

(λ1‖v‖2 − zTP
1/2
1 v) + + inf

w
(λ2‖w‖2 + zTP

1/2
2 w).

We have

inf
u

(‖u‖2 + zTu) =

{
0 ‖z‖2 ≤ 1
−∞ otherwise.

This follows from the Cauchy-Schwarz inequality: if ‖z‖2 ≤ 1, then zTu ≥ −‖z‖2‖u‖2 ≥
−‖u‖2, with equality if u = 0. If ‖z‖2 > 1, we can take u = −tz with t → ∞ to show
that ‖u‖2 + zTu = t‖z‖1(1 − ‖z‖2)) is unbounded below.

We also have

inf
v

(λ1‖v‖2 − zTP
1/2
1 v) =

{
0 ‖P 1/2

1 z‖2 ≤ λ1

−∞ otherwise.
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This can be shown by distinguishing two cases: if λ1 = 0 then the infimum is zero if

P
1/2
1 z = 0 and −∞ otherwise. If λ1 < 0 the minimum is −∞. If λ1 > 0, we have

inf
v

(λ1‖v‖2 − zTP
1/2
1 v) = λ1 inf

v
(‖v‖2 − (1/λ1)z

TP
1/2
1 v)

=

{
0 ‖P 1/2

1 z‖2 ≤ λ1

−∞ otherwise.

Similarly,

inf
w

(λ2‖w‖2 + zTP
1/2
2 w) =

{
0 ‖P 1/2

2 z‖2 ≤ λ2

−∞ otherwise.

Putting this all together, we obtain the dual problem

maximize −λ1 − λ2 + zT (x2 − x1)

subject to ‖z‖2 ≤ 1, ‖P 1/2
1 z‖2 ≤ λ1, ‖P 1/2

2 z‖2 ≤ λ2,

which is equivalent to

maximize −‖P 1/2
1 z‖2 − ‖P 1/2

2 z‖2 + zT (x2 − x1)
subject to ‖z‖2 ≤ 1.

The intersection of the ellipsoids is empty if and only if the optimal value is positive, i.e.,
there exists a z with

−‖P 1/2
1 z‖2 − ‖P 1/2

2 z‖2 + zT (x2 − x1) > 0.

Setting a = −z gives the desired inequality.

8.8 Intersection and containment of polyhedra. Let P1 and P2 be two polyhedra defined as

P1 = {x | Ax � b}, P2 = {x | Fx � g},

with A ∈ Rm×n, b ∈ Rm, F ∈ Rp×n, g ∈ Rp. Formulate each of the following problems
as an LP feasibility problem, or a set of LP feasibility problems.

(a) Find a point in the intersection P1 ∩ P2.

(b) Determine whether P1 ⊆ P2.

For each problem, derive a set of linear inequalities and equalities that forms a strong
alternative, and give a geometric interpretation of the alternative.

Repeat the question for two polyhedra defined as

P1 = conv{v1, . . . , vK}, P2 = conv{w1, . . . , wL}.

Solution

Inequality description.

(a) Solve
Ax � b, Fx � g.

The alternative is

ATu+ FT v = 0, u � 0, v � 0, bTu+ gT v < 0.

Interpretation: if the sets do not intersect, then they can be separated by a hyper-
plane with normal vector a = ATu = −FT v. If Ax � b and Fy � g,

aTx = uTAx ≤ uT b < −vT g ≤ −vTFx ≤ aT y.
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(b) P1 ⊆ P2 if and only if

sup
Ax�b

fT
i x ≤ gi, i = 1, . . . , p.

We can solve p LPs, and compare the optimal values with gi. Using LP duality we
can write the same conditions as

inf
AT z=fi, z�0

bT z ≤ gi, i = 1, . . . , p,

which is equivalent to p (decoupled) LP feasibility problems

AT zi = fi, zi � 0, bT zi ≤ gi

with variables zi. The alternative for this system is

Ax � λb, fT
i x > λgi, λ ≥ 0.

If λ > 0, this means that (1/λ)x ∈ P1, (1/λ)x 6∈ P2.

If λ = 0, it means that if x̄ ∈ P1, then x̄+ tx 6∈ P2 for t sufficiently large.

Vertex description.

(a) P1 ∩ P2 = ∅? Solve

λ � 0, 1
Tλ = 1, µ � 0, 1

Tµ = 1, V λ = Wµ,

where V has columns vi and W has columns wi.

From Farkas’ lemma the alternative is

V T z + t1 � 0, t < 0, −W T z + u1 � 0, u < 0,

i.e., V T z � 0, WT z ≺ 0. Therefore z defines a separating hyperplane.

(b) P1 ⊆ P2? For i = 1, . . . ,K,

wi = V µi, µi � 0, 1
Tµi = 1.

The alternative (from Farkas lemma) is

V T zi + ti1 � 0, wT
i zi + ti < 0,

i.e., wT
i zi1 < V T zi. Thus, zi defines a hyperplane separating wi from P2.

Euclidean distance and angle problems

8.9 Closest Euclidean distance matrix to given data. We are given data d̂ij , for i, j = 1, . . . , n,
which are corrupted measurements of the Euclidean distances between vectors in Rk:

d̂ij = ‖xi − xj‖2 + vij , i, j = 1, . . . , n,

where vij is some noise or error. These data satisfy d̂ij ≥ 0 and d̂ij = d̂ji, for all i, j. The
dimension k is not specified.

Show how to solve the following problem using convex optimization. Find a dimension

k and x1, . . . , xn ∈ Rk so that
∑n

i,j=1
(dij − d̂ij)

2 is minimized, where dij = ‖xi − xj‖2,

i, j = 1, . . . , n. In other words, given some data that are approximate Euclidean distances,
you are to find the closest set of actual Euclidean distances, in the least-squares sense.

Solution. The condition that dij are actual Euclidean distances can be expressed in
terms of the associated Euclidean distance matrix, Dij = d2

ij :

Dii = 0, i = 1, . . . , n, Dij ≥ 0, i, j = 1, . . . , n
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(I − (1/n)11
T )D(I − (1/n)11

T ) � 0,

which is a set of convex conditions on D.

The objective can be expressed in terms of D as

n∑

i,j=1

(dij − d̂ij)
2 =

n∑

i,j=1

(D
1/2
ij − d̂ij)

2

=

n∑

i,j=1

(
Dij − 2D

1/2
ij d̂ij + d̂2

ij

)
,

which is a convex function of D (since D
1/2
ij d̂ij is concave). Thus we minimize this

function, subject to the constraints above. We reconstruct xi as described in the text,
using Cholesky factorization.

8.10 Minimax angle fitting. Suppose that y1, . . . , ym ∈ Rk are affine functions of a variable
x ∈ Rn:

yi = Aix+ bi, i = 1, . . . ,m,

and z1, . . . , zm ∈ Rk are given nonzero vectors. We want to choose the variable x, subject
to some convex constraints, (e.g., linear inequalities) to minimize the maximum angle
between yi and zi,

max{ 6 (y1, z1), . . . , 6 (ym, zm)}.
The angle between nonzero vectors is defined as usual:

6 (u, v) = cos−1

(
uT v

‖u‖2‖v‖2

)
,

where we take cos−1(a) ∈ [0, π]. We are only interested in the case when the optimal
objective value does not exceed π/2.

Formulate this problem as a convex or quasiconvex optimization problem. When the
constraints on x are linear inequalities, what kind of problem (or problems) do you have
to solve?

Solution. This is a quasiconvex optimization problem. To see this, we note that

6 (u, v) = cos−1

(
uT v

‖u‖2‖v‖2

)
≤ θ ⇐⇒ uT v

‖u‖2‖v‖2
≥ cos(θ)

⇐⇒ cos(θ)‖u‖2‖v‖2 ≤ uT v,

where in the first line we use the fact that cos−1 is monotone decreasing. Now suppose
that v is fixed, and u is a variable. For θ ≤ π/2, the sublevel set of 6 (u, v) (in u) is a
convex set, in fact, a simple second-order cone constraint. Thus, 6 (u, v) is a quasiconvex
function of u, for fixed v, as long as uT v ≥ 0. It follows that the objective in the angle
fitting problem,

max{ 6 (y1, z1), . . . , 6 (ym, zm)},
is quasiconvex in x, provided it does not exceed π/2.

To formulate the angle fitting problem, we first check whether the optimal objective value
does not exceed π/2. To do this we solve the inequality system

(Aix+ bi)
T zi ≥ 0, i = 1, . . . ,m,

together with inequalities on x, say, Fx � g. This can be done via LP. If this set
of inequalities is not feasible, then the optimal objective for the angle fitting problem
exceeds π/2, and we quit. If it is feasible, we solve the SOC inequality system

Fx � g, (Aix+ bi)
T zi ≥ cos(θ)‖Aix+ bi‖2‖zi‖2, i = 1, . . . ,m,
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to check if the optimal objective is more or less than θ. We can then bisect on θ to find
the smallest value for which this system is feasible. Thus, we need to solve a sequence of
SOCPs to solve the minimax angle fitting problem.

8.11 Smallest Euclidean cone containing given points. In Rn, we define a Euclidean cone, with
center direction c 6= 0, and angular radius θ, with 0 ≤ θ ≤ π/2, as the set

{x ∈ R
n | 6 (c, x) ≤ θ}.

(A Euclidean cone is a second-order cone, i.e., it can be represented as the image of the
second-order cone under a nonsingular linear mapping.)

Let a1, . . . , am ∈ R. How would you find the Euclidean cone, of smallest angular radius,
that contains a1, . . . , am? (In particular, you should explain how to solve the feasibility
problem, i.e., how to determine whether there is a Euclidean cone which contains the
points.)

Solution. First of all, we can assume that each ai is nonzero, since the points that are
zero lie in all cones, and can be ignored. The points lie in some Euclidean cone if and only
if they lie in some halfspace, which is the ‘largest’ Euclidean cone, with angular radius
π/2. This can be checked by solving a set of linear inequalities:

aT
i x ≥ 0, i = 1, . . . ,m.

Now, on to finding the smallest possible Euclidean cone. The points lie in a cone of
angular radius θ if and only if there is a (nonzero) vector x ∈ Rn such that

aT
i x

‖ai‖2‖x‖2
≥ cos θ, i = 1, . . . ,m.

Since θ ≤ π/2, this is the same as

aT
i x ≥ ‖ai‖2‖x‖2 cos θ, i = 1, . . . ,m,

which is a set of second-order cone constraints. Thus, we can find the smallest cone by
bisecting θ, and solving a sequence of SOCP feasibility problems.

Extremal volume ellipsoids

8.12 Show that the maximum volume ellipsoid enclosed in a set is unique. Show that the
Löwner-John ellipsoid of a set is unique.

Solution. Follows from strict convexity of f(A) = log detA−1.

8.13 Löwner-John ellipsoid of a simplex. In this exercise we show that the Löwner-John el-
lipsoid of a simplex in Rn must be shrunk by a factor n to fit inside the simplex. Since
the Löwner-John ellipsoid is affinely invariant, it is sufficient to show the result for one
particular simplex.

Derive the Löwner-John ellipsoid Elj for the simplex C = conv{0, e1, . . . , en}. Show that
Elj must be shrunk by a factor 1/n to fit inside the simplex.

Solution. By symmetry, the center of the LJ ellipsoid must lie in the direction 1, and
its intersection with any hyperplane orthogonal to 1 should be a ball. This means we can
describe the ellipsoid by a quadratic inequality

(x− α1)T (I + β11
T )(x− α1) ≤ γ,

parameterized by three parameters α, β, γ.

The extreme points must be in the boundary of the ellipsoid. For x = 0, this gives the
condition

γ = α2n(1 + nβ).
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For x = ei, we get the condition

α =
1 + β

2(1 + nβ)
.

The volume of the ellipsoid is proportional to

γn det(I + β11
T )−1 =

γn

1 + βn
,

and its logarithm is

n log γ − log(1 + βn) = n log(α2n(1 + nβ)) − log(1 + βn)

= n log

(
(1 + β)2

4(1 + β)

)
− log(1 + βn)

= n log(n/4) + 2n log(1 + β) − (n+ 1) log(1 + nβ).

Setting the derivative equal to zero gives β = 1, and hence

α =
1

n+ 1
, β = 1, γ =

n

1 + n
.

We conclude that Elj is the solution set of the quadratic inequality

(x− 1

n+ 1
1)T (I + 11

T )(x− 1

n+ 1
1) ≤ n

1 + n
,

which simplifies to xTx+ (1 − 1Tx)2 ≤ 1. The shrunk ellipsoid is the solution set of the
quadratic inequality

(x− 1

n+ 1
1)T (I + 11

T )(x− 1

n+ 1
1) ≤ 1

n(1 + n)
,

which simplifies to

xTx+ (1 − 1
Tx)2 ≤ 1

n
.

We verify that the shrunk ellipsoid lies in C by maximizing the linear functions 1Tx, −xi,
i = 1, . . . , n subject to the quadratic inequality. The solution of

maximize 1Tx
subject to xTx+ (1 − 1Tx)2 ≤ 1/n

is the point (1/n)1. The solution of

minimize xi

subject to xTx+ (1 − 1Tx)2 ≤ 1/n

is the point (1/n)(1 − ei).

8.14 Efficiency of ellipsoidal inner approximation. Let C be a polyhedron in Rn described as
C = {x | Ax � b}, and suppose that {x | Ax ≺ b} is nonempty.

(a) Show that the maximum volume ellipsoid enclosed in C, expanded by a factor n
about its center, is an ellipsoid that contains C.

(b) Show that if C is symmetric about the origin, i.e., of the form C = {x | −1 � Ax �
1}, then expanding the maximum volume inscribed ellipsoid by a factor

√
n gives

an ellipsoid that contains C.

Solution.
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(a) The ellipsoid E = {Bu + d | ‖u‖2 ≤ 1} is the maximum volume inscribed ellipsoid,
if B and d solve

minimize log detB−1

subject to ‖Bai‖2 ≤ bi − aT
i d, i = 1, . . . ,m,

or in generalized inequality notation

minimize log detB−1

subject to (Bai, bi − aT
i d) �K 0, i = 1, . . . ,m,

where K is the second-order cone. The Lagrangian is

L(B, d, u, v) = log detB−1 −
m∑

i=1

uT
i Bai − vT (b−Ad).

Minimizing over B and d gives

B−1 = −1

2

m∑

i=1

(aiu
T
i + uia

T
i ), AT v = 0.

The dual problem is

maximize log det(−(1/2)
∑m

i=1
(aiu

T
i + uia

T
i )) − bT v + n

subject to AT v = 0
‖ui‖2 ≤ vi, i = 1, . . . ,m.

The optimality conditions are: primal and dual feasibility and

B−1 = −1

2

m∑

i=1

(aiu
T
i + uia

T
i ), uT

i Bai + vi(bi − aT
i d) = 0, i = 1, . . . ,m.

To simplify the notation we will assume that B = I, d = 0, so the optimality
conditions reduce to

‖ai‖2 ≤ bi, i = 1, . . . ,m, AT v = 0, ‖ui‖2 ≤ vi, i = 1, . . . ,m,

and

I = −1

2

m∑

i=1

(aiu
T
i + uia

T
i ), uT

i ai + vibi = 0, i = 1, . . . ,m. (8.14.A)

From the Cauchy-Schwarz inequality the last inequality, combined with ‖ai‖2 ≤ bi
and ‖ui‖2 ≤ vi, implies that and ui = 0, vi = 0 if ‖ai‖2 < bi, and

ui = −(‖ui‖2/bi)ai, vi = ‖ui‖2

if ‖ai‖2 = bi.

We need to show that ‖x‖2 ≤ n if Ax � b. The optimality conditions (8.14.A) give

n = −
m∑

i=1

aT
i u = bT v

and

xTx = −
m∑

i=1

(uT
i x)(a

T
i x) =

m∑

i=1

‖ui‖2

‖ai‖2
(aT

i x)
2 ≤

m∑

i=1

‖ui‖2

‖ai‖2
b2i .
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Since ui = 0, vi = 0 if ‖ai‖2 < bi, the last sum further simplifies and we obtain

xTx ≤
m∑

i=1

‖ui‖2bi = bT v = n.

(b) Let E = {x | xTQ−1x ≤ 1} be the maximum volume ellipsoid with center at the
origin inscribed in C, where Q ∈ Sn

++. We are asked to show that the ellipsoid

√
nE = {x | xTQ−1x ≤ n}

contains C.

We first formulate this problem as a convex optimization problem. x ∈ E if x =
Q1/2y for some y with ‖y‖2 ≤ 1, so we have E ⊆ C if and only if for i = 1, . . . , p,

sup
‖y‖2≤1

aT
i Q

1/2y = ‖Q1/2ai‖2 ≤ 1, inf
‖y‖2≤1

aT
i Q

1/2y = −‖Q1/2ai‖2 ≥ −1,

or in other words aT
i Qai = ‖Q1/2ai‖2

2 ≤ 1. We find the maximum volume inscribed
ellipsoid by solving

minimize log detQ−1

subject to aT
i Qai ≤ 1, i = 1, . . . , p.

(8.14.B)

The variable is the matrix Q ∈ Sn.

The dual function is

g(λ) = inf
Q�0

L(Q,λ) = inf
Q�0

(
log detQ−1 +

n∑

i=1

λi(a
T
i Qai − 1)

)
.

Minimizing over Q gives

Q−1 =

p∑

i=1

λiaia
T
i ,

and hence

g(λ) =

{
log det

(∑p

i=1
λiaia

T
i

)
−
∑p

i=1
λi + n

∑p

i=1
(λiaia

T
i ) � 0

−∞ otherwise.

The resulting dual problem is

maximize log det
(∑p

i=1
λiaia

T
i

)
−
∑p

i=1
λi + n

subject to λ � 0.

The KKT conditions are primal and dual feasibility (Q � 0, aT
i Qai ≤ 1, λ � 0),

plus

Q−1 =

p∑

i=1

λiaia
T
i , λi(1 − aT

i Qai) = 0, i = 1, . . . , p. (8.14.C)

The third condition (the complementary slackness condition) implies that aT
i Qai = 1

if λi > 0. Note that Slater’s condition for (8.14.B) holds (aT
i Qai < 1 for Q = εI

and ε > 0 small enough), so we have strong duality, and the KKT conditions are
necessary and sufficient for optimality.
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Now suppose Q and λ are primal and dual optimal. If we multiply (8.14.C) with Q
on the left and take the trace, we have

n = tr(QQ−1) =

p∑

i=1

λi tr(Qaia
T
i ) =

p∑

i=1

λia
T
i Qai =

p∑

i=1

λi.

The last inequality follows from the fact that aT
i Qai = 1 when λi 6= 0. This proves

1Tλ = n. Finally, we note that (8.14.C) implies that if x ∈ C,

xTQ−1x =

p∑

i=1

λi(a
T
i x)

2 ≤
p∑

i=1

λi = n.

8.15 Minimum volume ellipsoid covering union of ellipsoids. Formulate the following problem
as a convex optimization problem. Find the minimum volume ellipsoid E = {x | (x −
x0)

TA−1(x− x0) ≤ 1} that contains K given ellipsoids

Ei = {x | xTAix+ 2bTi x+ ci ≤ 0}, i = 1, . . . ,K.

Hint. See appendix B.

Solution. E contains Ei if

sup
x∈Ei

(x− x0)
TA−1(x− x0) ≤ 1,

i.e.,

xTAix+ 2bTi x+ ci ≤ 0 =⇒ xTA−1x− 2xT
0 A

−1x+ xT
0 A

−1x0 − 1 ≤ 0.

From the S-procedure in appendix B, this is true if and only if there exists a λi ≥ 0 such
that

λi

[
Ai bi
bTi ci

]
�
[

A−1 −A−1x0

−(A−1x0)
T xT

0 A
−1x0 − 1

]
.

In other words,

[
λiAi λibi
λib

T
i 1 + λici

]
−
[

I
−xT

0

]
A−1

[
I −x0

]
� 0,

i.e., the LMI 


A I −xT
0

I λiAi λibi
−x0 λib

T
i 1 + λici


 � 0

holds. We therefore obtain the SDP formulation

minimize log detA−1

subject to




A I −xT
0

I λiAi λibi
−x0 λib

T
i 1 + λici


 � 0, i = 1, . . . ,K

λi ≥ 0, i = 1, . . . ,K.

The variables are A ∈ Sn, x0 ∈ Rn, and λi, i = 1, . . . ,K.
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8.16 Maximum volume rectangle inside a polyhedron. Formulate the following problem as a
convex optimization problem. Find the rectangle

R = {x ∈ R
n | l � x � u}

of maximum volume, enclosed in a polyhedron P = {x | Ax � b}. The variables are
l, u ∈ Rn. Your formulation should not involve an exponential number of constraints.

Solution. A straightforward, but very inefficient, way to express the constraint R ⊆ P
is to use the set of m2n inequalities Avi � b, where vi are the (2n) corners of R. (If the
corners of a box lie inside a polyhedron, then the box does.) Fortunately it is possible to
express the constraint in a far more efficient way. Define

a+
ij = max{aij , 0}, a−ij = max{−aij , 0}.

Then we have R ⊆ P if and only if

n∑

i=1

(a+
ijuj − a−ij lj) ≤ bi, i = 1, . . . ,m,

The maximum volume rectangle is the solution of

maximize
(∏n

i=1
(ui − li)

)1/n

subject to
∑n

i=1
(a+

ijuj − a−ij lj) ≤ bi, i = 1, . . . ,m,

with implicit constraint u � l. Another formulation can be found by taking the log of the
objective, which yields

maximize
∑n

i=1
log(ui − li)

subject to
∑n

i=1
(a+

ijuj − a−ij lj) ≤ bi, i = 1, . . . ,m.

Centering

8.17 Affine invariance of analytic center. Show that the analytic center of a set of inequalities is
affine invariant. Show that it is invariant with respect to positive scaling of the inequalities.

Solution. If xac is the minimizer of −
∑m

i=1
log(−fi(x)) then yac = Txac + x0 is the

minimizer of −
∑m

i=1
log(−fi(Tx+ x0)).

Positive scaling of the inequalities adds a constant to the logarithmic barrier function.

8.18 Analytic center and redundant inequalities. Two sets of linear inequalities that describe
the same polyhedron can have different analytic centers. Show that by adding redundant
inequalities, we can make any interior point x0 of a polyhedron

P = {x ∈ R
n | Ax � b}

the analytic center. More specifically, suppose A ∈ Rm×n and Ax0 ≺ b. Show that there
exist c ∈ Rn, γ ∈ R, and a positive integer q, such that P is the solution set of the m+ q
inequalities

Ax � b, cTx ≤ γ, cTx ≤ γ, . . . , cTx ≤ γ (8.36)

(where the inequality cTx ≤ γ is added q times), and x0 is the analytic center of (8.36).

Solution. The optimality conditions are

m∑

i=1

1

bi − aT
i x

?
ai +

q

γ − cTx?
c = 0
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so we have to choose

c = −γ − cTx?

q
AT d

where di = 1/(bi − aT
i x

?). We can choose c = −AT d, and for q any integer satisfying

q ≥ max{cTx|Ax ≤ b} − cTx?,

and γ = q + cTx?.

8.19 Let xac be the analytic center of a set of linear inequalities

aT
i x ≤ bi, i = 1, . . . ,m,

and define H as the Hessian of the logarithmic barrier function at xac:

H =

m∑

i=1

1

(bi − aT
i xac)2

aia
T
i .

Show that the kth inequality is redundant (i.e., it can be deleted without changing the
feasible set) if

bk − aT
k xac ≥ m(aT

kH
−1ak)1/2.

Solution. We have an enclosing ellipsoid defined by

(x− xac)
TH(x− xac) ≤ m(m− 1).

The maximum of aT
k x over the enclosing ellipsoid is

aT
k xac +

√
m(m− 1)

√
aT

kH
−1ak

so if
aT

k xac +
√
m(m− 1)

√
aT

kH
−1ak ≤ bk,

the inequality is redundant.

8.20 Ellipsoidal approximation from analytic center of linear matrix inequality. Let C be the
solution set of the LMI

x1A1 + x2A2 + · · · + xnAn � B,

where Ai, B ∈ Sm, and let xac be its analytic center. Show that

Einner ⊆ C ⊆ Eouter,

where

Einner = {x | (x− xac)
TH(x− xac) ≤ 1},

Eouter = {x | (x− xac)
TH(x− xac) ≤ m(m− 1)},

and H is the Hessian of the logarithmic barrier function

− log det(B − x1A1 − x2A2 − · · · − xnAn)

evaluated at xac.

Solution. Define F (x) = B −
∑

i
xiAi. and Fac = F (xac) The Hessian is given by

Hij = tr(F−1
ac AiF

−1
ac Aj),
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so we have

(x− xac)
TH(x− xac) =

∑

i,j

(xi − xac,i)(xj − xac,j) tr(F
−1
ac AiF

−1
ac Aj)

= tr
(
F−1

ac (F (x) − Fac)F
−1
ac (F (x) − Fac)

)

= tr
(
F−1/2

ac (F (x) − Fac)F
−1/2
ac

)2
.

We first consider the inner ellipsoid. Suppose x ∈ Einner, i.e.,

tr
(
F−1/2

ac (F (x) − Fac)F
−1/2
ac

)2
=
∥∥F−1/2

ac F (x)F−1/2
ac − I

∥∥2

F
≤ 1.

This implies that

−1 ≤ λi(F
−1/2
ac F (x)F−1/2

ac ) − 1 ≤ 1,

i.e.,

0 ≤ λi(F
−1/2
ac F (x)F−1/2

ac ) ≤ 2

for i = 1, . . . ,m. In particular, F (x) � 0, i.e., x ∈ C.

To prove that C ⊆ Eouter, we first note that the gradient of the logarithmic barrier function
vanishes at xac, and therefore,

tr(F−1
ac Ai) = 0, i = 1, . . . , n,

and therefore
tr
(
F−1

ac (F (x) − Fac)
)

= 0, tr
(
F−1

ac F (x)
)

= m.

Now assume x ∈ C. Then

(x− xac)
TH(x− ac)

= tr
(
F−1/2

ac (F (x) − Fac)F
−1/2
ac

)2

= tr
(
F−1

ac (F (x) − Fac)F
−1
ac (F (x) − Fac)

)

= tr
(
F−1

ac F (x)F−1
ac F (x)

)
− 2 tr

(
F−1

ac F (x)
)

+ tr
(
F−1

ac FacF
−1
ac Fac

)

= tr
(
F−1

ac F (x)F−1
ac F (x)

)
− 2m+m

= tr
(
F−1/2

ac F (x)F−1/2
ac

)2 −m

≤
(
tr(F−1/2

ac F (x)F−1/2
ac )

)2 −m

= m2 −m.

The inequality follows by applying the inequality
∑

i
λ2

i ≤ (
∑

i
λi)

2 for λ � 0 to the

eigenvalues of F
−1/2
ac F (x)F

−1/2
ac .

8.21 [BYT99] Maximum likelihood interpretation of analytic center. We use the linear mea-
surement model of page 352,

y = Ax+ v,

where A ∈ Rm×n. We assume the noise components vi are IID with support [−1, 1]. The
set of parameters x consistent with the measurements y ∈ Rm is the polyhedron defined
by the linear inequalities

−1 + y � Ax � 1 + y. (8.37)

Suppose the probability density function of vi has the form

p(v) =

{
αr(1 − v2)r −1 ≤ v ≤ 1
0 otherwise,
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where r ≥ 1 and αr > 0. Show that the maximum likelihood estimate of x is the analytic
center of (8.37).

Solution.

L = m logαr + r

m∑

i=1

(
log(1 + yi − aT

i x) + log(1 − yi + aT
i x)
)
.

8.22 Center of gravity. The center of gravity of a set C ⊆ Rn with nonempty interior is defined
as

xcg =

∫
C
u du∫

C
1 du

.

The center of gravity is affine invariant, and (clearly) a function of the set C, and not
its particular description. Unlike the centers described in the chapter, however, it is very
difficult to compute the center of gravity, except in simple cases (e.g., ellipsoids, balls,
simplexes).

Show that the center of gravity xcg is the minimizer of the convex function

f(x) =

∫

C

‖u− x‖2
2 du.

Solution. Setting the gradient equal to zero gives

∫

C

2(u− x) du = 0

i.e., ∫

C

u du =

(∫

C

1 du

)
x.

Classification

8.23 Robust linear discrimination. Consider the robust linear discrimination problem given
in (8.23).

(a) Show that the optimal value t? is positive if and only if the two sets of points can
be linearly separated. When the two sets of points can be linearly separated, show
that the inequality ‖a‖2 ≤ 1 is tight, i.e., we have ‖a?‖2 = 1, for the optimal a?.

(b) Using the change of variables ã = a/t, b̃ = b/t, prove that the problem (8.23) is
equivalent to the QP

minimize ‖ã‖2

subject to ãTxi − b̃ ≥ 1, i = 1, . . . , N

ãT yi − b̃ ≤ −1, i = 1, . . . ,M.

Solution.

(a) If t? > 0, then

a?T
xi ≥ t? + b? > b? > b? − t? ≥ a?T

yi,

so a?, b? define a separating hyperplane.

Conversely if a, b define a separating hyperplane, then there is a positive t satisfying
the constraints.

The constraint is tight because the other constraints are homogeneous.
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(b) Suppose a, b, t are feasible in problem (8.23), with t > 0. Then ã, b̃ are feasible in
the QP, with objective value ‖ã‖2 = ‖a‖2/t ≤ 1/t.

Conversely, if ã, b̃ are feasible in the QP, then t = 1/‖ã‖2, a = ã/‖ã‖2, b = b̃/‖ã‖2,
are feasible in problem (8.23), with objective value t = 1/‖ã‖2.

8.24 Linear discrimination maximally robust to weight errors. Suppose we are given two sets of
points {x1, . . . , xN} and and {y1, . . . , yM} in Rn that can be linearly separated. In §8.6.1
we showed how to find the affine function that discriminates the sets, and gives the largest
gap in function values. We can also consider robustness with respect to changes in the
vector a, which is sometimes called the weight vector. For a given a and b for which
f(x) = aTx− b separates the two sets, we define the weight error margin as the norm of
the smallest u ∈ Rn such that the affine function (a + u)Tx − b no longer separates the
two sets of points. In other words, the weight error margin is the maximum ρ such that

(a+ u)Txi ≥ b, i = 1, . . . , N, (a+ u)T yj ≤ b, i = 1, . . . ,M,

holds for all u with ‖u‖2 ≤ ρ.

Show how to find a and b that maximize the weight error margin, subject to the normal-
ization constraint ‖a‖2 ≤ 1.

Solution. The weight error margin is the maximum ρ such that

(a+ u)Txi ≥ b, i = 1, . . . , N, (a+ u)T yj ≤ b, i = 1, . . . ,M,

for all u with ‖u‖2 ≤ ρ, i.e.,

aTxi − ρ‖xi‖2 ≥ bi, aT yi + ρ‖yi‖2 ≤ bi.

This shows that the weight error margin is given by

min
i=1,...,N
j=1,...,M

{
aTxi − b

‖xi‖2
,
b− aT yi

‖yi‖2

}
.

We can maximize the weight error margin by solving the problem

maximize t
subject to aTxi − b ≥ t‖xi‖2, i = 1, . . . , N

b− aT yi ≥ t‖yi‖2, j = 1, . . . ,M
‖a‖2 ≤ 1

with variables a, b, t.

8.25 Most spherical separating ellipsoid. We are given two sets of vectors x1, . . . , xN ∈ Rn, and
y1, . . . , yM ∈ Rn, and wish to find the ellipsoid with minimum eccentricity (i.e., minimum
condition number of the defining matrix) that contains the points x1, . . . , xN , but not the
points y1, . . . , yM . Formulate this as a convex optimization problem.

Solution. This can be solved as the SDP

minimize γ
subject to xT

i Pxi + qTxi + r ≥ 0, i = 1, . . . , N
yT

i Pyi + qT yi + r ≤ 0, i = 1, . . . ,M
I � P � γI,

with variables P ∈ Sn, q ∈ Rn, and r, γ ∈ R.
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Placement and floor planning

8.26 Quadratic placement. We consider a placement problem in R2, defined by an undirected
graph A with N nodes, and with quadratic costs:

minimize
∑

(i,j)∈A ‖xi − xj‖2
2.

The variables are the positions xi ∈ R2, i = 1, . . . ,M . The positions xi, i = M+1, . . . , N
are given. We define two vectors u, v ∈ RM by

u = (x11, x21, . . . , xM1), v = (x12, x22, . . . , xM2),

containing the first and second components, respectively, of the free nodes.

Show that u and v can be found by solving two sets of linear equations,

Cu = d1, Cv = d2,

where C ∈ SM . Give a simple expression for the coefficients of C in terms of the graph A.

Solution. The objective function is
∑

(i,j)∈A

(ui − uj)
2 +

∑

(i,j)∈A

(vj − vj)
2.

Setting the gradients with respect to u and v equal to zero gives equations Cu = d1 and
Cv = d2 with

Cij =

{
degree of node i i = j
−(number of arcs between i and j) i 6= j,

and
d1i =

∑

j>M, (i,j)∈A

xj1, d2i =
∑

j>M, (i,j)∈A

xj2.

8.27 Problems with minimum distance constraints. We consider a problem with variables
x1, . . . , xN ∈ Rk. The objective, f0(x1, . . . , xN ), is convex, and the constraints

fi(x1, . . . , xN ) ≤ 0, i = 1, . . . ,m,

are convex (i.e., the functions fi : RNk → R are convex). In addition, we have the
minimum distance constraints

‖xi − xj‖2 ≥ Dmin, i 6= j, i, j = 1, . . . , N.

In general, this is a hard nonconvex problem.

Following the approach taken in floorplanning, we can form a convex restriction of the
problem, i.e., a problem which is convex, but has a smaller feasible set. (Solving the
restricted problem is therefore easy, and any solution is guaranteed to be feasible for the
nonconvex problem.) Let aij ∈ Rk, for i < j, i, j = 1, . . . , N , satisfy ‖aij‖2 = 1.

Show that the restricted problem

minimize f0(x1, . . . , xN )
subject to fi(x1, . . . , xN ) ≤ 0, i = 1, . . . ,m

aT
ij(xi − xj) ≥ Dmin, i < j, i, j = 1, . . . , N,

is convex, and that every feasible point satisfies the minimum distance constraint.

Remark. There are many good heuristics for choosing the directions aij . One simple
one starts with an approximate solution x̂1, . . . , x̂N (that need not satisfy the minimum
distance constraints). We then set aij = (x̂i − x̂j)/‖x̂i − x̂j‖2.

Solution. Follows immediately from the Cauchy-Schwarz inequality:

1 ≤ aT (u− v) ≤ ‖a‖2‖u− v‖2 = ‖u− v‖2.
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Miscellaneous problems

8.28 Let P1 and P2 be two polyhedra described as

P1 = {x | Ax � b} , P2 = {x | −1 � Cx � 1} ,
where A ∈ Rm×n, C ∈ Rp×n, and b ∈ Rm. The polyhedron P2 is symmetric about the
origin. For t ≥ 0 and xc ∈ Rn, we use the notation tP2 + xc to denote the polyhedron

tP2 + xc = {tx+ xc | x ∈ P2},
which is obtained by first scaling P2 by a factor t about the origin, and then translating
its center to xc.

Show how to solve the following two problems, via an LP, or a set of LPs.

(a) Find the largest polyhedron tP2 + xc enclosed in P1, i.e.,

maximize t
subject to tP2 + xc ⊆ P1

t ≥ 0.

(b) Find the smallest polyhedron tP2 + xc containing P1, i.e.,

minimize t
subject to P1 ⊆ tP2 + xc

t ≥ 0.

In both problems the variables are t ∈ R and xc ∈ Rn.

Solution.

(a) We can write the problem as

maximize t
subject to supx∈tP2+xc

aT
i x ≤ bi, i = 1, . . . ,m

or
maximize t
subject to aT

i xc + sup−t1≤Cv≤t1 a
T
i v ≤ bi, i = 1, . . . ,m.

(8.28.A)

If we define
p(ai) = sup

−1≤Cv≤1

aT
i v, (8.28.B)

we can write (8.28.A) as

maximize t
subject to aT

i xc + tp(ai) ≤ bi, i = 1, . . . ,m,
(8.28.C)

which is an LP in xc and t. Note that p(ai) can be evaluated by solving the LP in
the definition (8.28.B).

In summary we can solve the problem by first determining p(ai) for i = 1, . . . ,m,
by solving m LPs, and then solving the LP (8.28.C) for t and xc.

(b) We first note that x ∈ tP2 + xc if and only

−t1 ≤ C(x− xc) ≤ t1.

The problem is therefore equivalent to

minimize t
subject to supx∈P1

cTi x− cT
i xc ≤ t, i = 1, . . . , l

infx∈P1
cTi x− cT

i xc ≥ −t, i = 1, . . . , l
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or

minimize t
subject to −t+ supAx≤b c

T
i x ≤ cT

i xc ≤ t+ infAx≤b c
T
i x, i = 1, . . . , l.

If we define p(ci) and q(ci) as

p(ci) = sup
Ax≤b

cTi x, q(ci) = inf
Ax≤b

cTi x (8.28.D)

then the problem simplifies to

minimize t
subject to −t+ p(ci) ≤ cT

i xc ≤ t+ q(ci), i = 1, . . . , l,
(8.28.E)

which is an LP in xc and t.

In conclusion, we can solve the problem by first determining p(ci) and q(ci), i =
1, . . . , p from the 2l LPs in the definition (8.28.D), and then solving the LP (8.28.E).

8.29 Outer polyhedral approximations. Let P = {x ∈ Rn | Ax � b} be a polyhedron, and
C ⊆ Rn a given set (not necessarily convex). Use the support function SC to formulate
the following problem as an LP:

minimize t
subject to C ⊆ tP + x

t ≥ 0.

Here tP +x = {tu+x | u ∈ P}, the polyhedron P scaled by a factor of t about the origin,
and translated by x. The variables are t ∈ R and x ∈ Rn.

Solution. We have C ⊆ tP + x if and only if (1/t)(C − x) ⊆ P, i.e.,

S(1/t)(C−x)(ai) ≤ bi, i = 1, . . . ,m.

Noting that for t ≥ 0,

S(1/t)(C−x)(a) = sup
u∈C

aT ((1/t)(u− x)) = (1/t)(SC(a) − aTx),

we can express the problem as

minimize t
subject to SC(ai) − aT

i x ≤ tbi, i = 1, . . . ,m
t ≥ 0,

which is an LP in the variables x, t.

8.30 Interpolation with piecewise-arc curve. A sequence of points a1, . . . , an ∈ R2 is given. We
construct a curve that passes through these points, in order, and is an arc (i.e., part of a
circle) or line segment (which we think of as an arc of infinite radius) between consecutive
points. Many arcs connect ai and ai+1; we parameterize these arcs by giving the angle
θi ∈ (−π, π) between its tangent at ai and the line segment [ai, ai+1]. Thus, θi = 0 means
the arc between ai and ai+1 is in fact the line segment [ai, ai+1]; θi = π/2 means the arc
between ai and ai+1 is a half-circle (above the linear segment [a1, a2]); θi = −π/2 means
the arc between ai and ai+1 is a half-circle (below the linear segment [a1, a2]). This is
illustrated below.
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PSfrag replacements

ai ai+1

θi = 0

θi = π/4

θi = π/2

θi = 3π/4

Our curve is completely specified by the angles θ1, . . . , θn, which can be chosen in the
interval (−π, π). The choice of θi affects several properties of the curve, for example, its
total arc length L, or the joint angle discontinuities, which can be described as follows.

At each point ai, i = 2, . . . , n− 1, two arcs meet, one coming from the previous point and
one going to the next point. If the tangents to these arcs exactly oppose each other, so the
curve is differentiable at ai, we say there is no joint angle discontinuity at ai. In general,
we define the joint angle discontinuity at ai as |θi−1+θi+ψi|, where ψi is the angle between
the line segment [ai, ai+1] and the line segment [ai−1, ai], i.e., ψi = 6 (ai−ai+1, ai−1−ai).
This is shown below. Note that the angles ψi are known (since the ai are known).

PSfrag replacements

θi−1

θi

ψi

ai−1

ai ai+1

We define the total joint angle discontinuity as

D =

n∑

i=2

|θi−1 + θi + ψi|.

Formulate the problem of minimizing total arc length length L, and total joint angle
discontinuity D, as a bi-criterion convex optimization problem. Explain how you would
find the extreme points on the optimal trade-off curve.

Solution. The total joint angle discontinuity is

D =

n∑

i=2

|θi−1 + θi + ψi|,

which is evidently convex in θ.

The other objective is the total arc length, which turns out to be

L =

n−1∑

i=1

li
θi

sin θi
,

where li = ‖ai − ai+1‖2. We will show that L is a convex function of θ. Of course we
need only show that the function f(x) = x/ sinx is convex over the interval |x| < π. In
fact f is log-convex. With g = log(x/ sinx), we have

g′′ = − 1

x2
+

1

sin2 x
.

Now since | sinx| ≤ |x| for (all) x, we have 1/x2 ≤ 1/ sin2 x for all x, and hence g′′ ≥ 0.
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Therefore we find that both objectives D and L are convex. To find the optimal trade-off
curve, we minimize various (nonnegative) weighted combinations of D and L, i.e., D+λL,
for various values of λ ≥ 0.

Now let’s consider the extreme points of the trade-off curve. Obviously L is minimized by
taking θi = 0, i.e., with the curve consisting of the line segments connecting the points.
So θ = 0 is one end of the optimal trade-off curve.

We can also say something about the other extreme point, which we claim occurs when
the total joint angle discontinuity is zero (which means that the curve is differentiable).
This occurs when the recursion

θi = −θi−1 − ψi, i = 2, . . . , n,

holds. This shows that once the first angle θ1 is fixed, the whole curve is fixed. Thus,
there is a one-parameter family of piecewise-arc curves that pass through the points,
parametrized by θ1. To find the other extreme point of the optimal trade-off curve, we
need to find the curve in this family that has minimum length. This can be found by
solving the one-dimensional problem of minimizing L, over θ1, using the recursion above.



Chapter 9

Unconstrained minimization
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Exercises

Unconstrained minimization

9.1 Minimizing a quadratic function. Consider the problem of minimizing a quadratic
function:

minimize f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn (but we do not assume P � 0).

(a) Show that if P 6� 0, i.e., the objective function f is not convex, then the problem is
unbounded below.

(b) Now suppose that P � 0 (so the objective function is convex), but the optimality
condition Px? = −q does not have a solution. Show that the problem is unbounded
below.

Solution.

(a) If P 6� 0, we can find v such that vTPv < 0. With x = tv we have

f(x) = t2(vTPv/2) + t(qT v) + r,

which converges to −∞ as t becomes large.

(b) This means q 6∈ R(P ). Express q as q = q̃ + v, where q̃ is the Euclidean projection
of q onto R(P ), and take v = q− q̃. This vector is nonzero and orthogonal to R(P ),
i.e., vTPv = 0. It follows that for x = tv, we have

f(x) = tqT v + r = t(q̃ + v)T v + r = t(vT v) + r,

which is unbounded below.

9.2 Minimizing a quadratic-over-linear fractional function. Consider the problem of minimiz-
ing the function f : Rn → R, defined as

f(x) =
‖Ax− b‖2

2

cTx+ d
, dom f = {x | cTx+ d > 0}.

We assume rankA = n and b 6∈ R(A).

(a) Show that f is closed.

(b) Show that the minimizer x? of f is given by

x? = x1 + tx2

where x1 = (ATA)−1AT b, x2 = (ATA)−1c, and t ∈ R can be calculated by solving
a quadratic equation.

Solution.

(a) Since b 6∈ R(A), the numerator is bounded below by a positive number (‖Axls−b‖2
2).

Therefore f(x) → ∞ as x approaches the boundary of dom f .

(b) The optimality conditions are

∇f(x) =
2

cTx− d
AT (Ax− b) − ‖Ax− b‖2

2

(cTx− d)2
c

=
2

cTx− d
(x− x1) − ‖Ax− b‖2

2

(cTx− d)2
x2

= 0,
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i.e., x = x1 + tx2 where

t =
‖Ax− b‖2

2

2(cTx− d)
=

‖Ax1 + tAx2 − b‖2
2

2(cTx1 + tcTx2 − d)
.

In other words t must satisfy

2t2cTx2 + 2t(cTx1 − d) = t2‖Ax2‖2
2 + 2t(Ax1 − b)TAx2 + ‖Ax1 − b‖2

2

= t2cTx2 + ‖Ax1 − b‖2
2,

which reduces to a quadratic equation

t2cTx2 + 2t(cTx1 − d) − ‖Ax1 − b‖2
2 = 0.

We have to pick the root

t =
−(cTx1 − d) ±

√
(cTx1 − d)2 + (cTx2)‖Ax1 − b‖2

2

cTx2
,

so that

cT (x1 + tx2) − d = cTx1 − d− (cTx1 − d) +
√

(cTx1 − d)2 + (cTx2)‖Ax1 − b‖2
2

=
√

(cTx1 − d)2 + (cTx2)‖Ax1 − b‖2
2

> 0.

9.3 Initial point and sublevel set condition. Consider the function f(x) = x2
1 +x2

2 with domain
dom f = {(x1, x2) | x1 > 1}.
(a) What is p??

(b) Draw the sublevel set S = {x | f(x) ≤ f(x(0))} for x(0) = (2, 2). Is the sublevel set
S closed? Is f strongly convex on S?

(c) What happens if we apply the gradient method with backtracking line search, start-

ing at x(0)? Does f(x(k)) converge to p??

Solution.

(a) p? = limx→(1,0) f(x1.x2) = 1.

(b) No, the sublevel set is not closed. The points (1 + 1/k, 1) are in the sublevel set for
k = 1, 2, . . ., but the limit, (1, 1), is not.

(c) The algorithm gets stuck at (1, 1).

9.4 Do you agree with the following argument? The `1-norm of a vector x ∈ Rm can be
expressed as

‖x‖1 = (1/2) inf
y�0

(
m∑

i=1

x2
i /yi + 1

T y

)
.

Therefore the `1-norm approximation problem

minimize ‖Ax− b‖1

is equivalent to the minimization problem

minimize f(x, y) =
∑m

i=1
(aT

i x− bi)
2/yi + 1T y, (9.62)

with dom f = {(x, y) ∈ Rn ×Rm | y � 0}, where aT
i is the ith row of A. Since f is twice

differentiable and convex, we can solve the `1-norm approximation problem by applying
Newton’s method to (9.62).

Solution. The reformulation is valid. The hitch is that the objective function f is not
closed.
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9.5 Backtracking line search. Suppose f is strongly convex with mI � ∇2f(x) � MI. Let
∆x be a descent direction at x. Show that the backtracking stopping condition holds for

0 < t ≤ −∇f(x)T ∆x

M‖∆x‖2
2

.

Use this to give an upper bound on the number of backtracking iterations.

Solution. The upper bound ∇2f(x) �MI implies

f(x+ t∆x) ≤ f(x) + t∇f(x)T ∆x+ (M/2)t2∆xT ∆x

hence f(x+ t∆x) ≤ f(x) + αt∇f(x)T ∆x if

t(1 − α)∇f(x)T ∆x+ (M/2)t2∆xT ∆x ≤ 0

i.e., the exit condition certainly holds if 0 ≤ t ≤ t0 with

t0 = −2(1 − α)
∇f(x)T ∆x

M∆xT ∆x
≥ −∇f(x)T ∆x

M∆xT ∆x
.

Assume t0 ≤ 1. Then βkt ≤ t0 for k ≥ log(1/t0)/ log(1/β).

Gradient and steepest descent methods

9.6 Quadratic problem in R2. Verify the expressions for the iterates x(k) in the first example
of §9.3.2.

Solution. For k = 0, we get the starting point x(0) = (γ, 1).

The gradient at x(k) is (x
(k)
1 , γx

(k)
2 ), so we get

x(k) − t∇f(x(k)) =

[
(1 − t)x

(k)
1

(1 − γt)x
(k)
2

]
=

(
γ − 1

γ + 1

)k [
(1 − t)γ

(1 − γt)(−1)k

]

and

f(x(k) − t∇f(x(k))) = (γ2(1 − t)2 + γ(1 − γt)2)

(
γ − 1

γ + 1

)2k

.

This is minimized by t = 2/(1 + γ), so we have

x(k+1) = x(k) − t∇f(x(k))

=

[
(1 − t)x

(k)
1

(1 − γt)γx
(k)
2

]

=

(
γ − 1

γ + 1

)[
x

(k)
1

−x(k)
2

]

=

(
γ − 1

γ + 1

)k+1 [
γ

(−1)k

]
.

9.7 Let ∆xsd and ∆xsd be the normalized and unnormalized steepest descent directions at x,
for the norm ‖ · ‖. Prove the following identities.

(a) ∇f(x)T ∆xnsd = −‖∇f(x)‖∗.
(b) ∇f(x)T ∆xsd = −‖∇f(x)‖2

∗.

(c) ∆xsd = argminv(∇f(x)T v + (1/2)‖v‖2).
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Solution.

(a) By definition of dual norm.

(b) By (a) and the definition of ∆xsd.

(c) Suppose v = tw with ‖w‖ = 1 and w fixed. We optimize over t and w separately.

We have
∇f(x)T v + (1/2)‖v‖2 = t∇f(x)Tw + t2/2.

Minimizing over t ≥ 0 gives the optimum t̂ = −∇f(x)Tw if ∇f(x)Tw ≤ 0, and
t̂ = 0 otherwise. This shows that we should choose w such that ∇f(x)Tw ≤ 0.
Substituting t̂ = −∇f(x)Tw gives

t̂∇f(x)Tw + t̂2/2 = −(∇f(x)Tw)2/2.

We now minimize over w, i.e., solve

minimize −(∇f(x)Tw)2/2
subject to ‖w‖ = 1.

The solution is w = ∆xnsd by definition. This gives

t̂ = −∆xT
nsd∇f(x) = ‖∇f(x)‖∗,

and v = t̂w = ∆xsd.

9.8 Steepest descent method in `∞-norm. Explain how to find a steepest descent direction in
the `∞-norm, and give a simple interpretation.

Solution. The normalized steepest descent direction is given by

∆xnsd = − sign(∇f(x)),

where the sign is taken componentwise. Interpretation: If the partial derivative with
respect to xk is positive we take a step that reduces xk; if it is positive, we take a step
that increases xk.

The unnormalized steepest descent direction is given by

∆xsd = −‖∇f(x)‖1 sign(∇f(x)).

Newton’s method

9.9 Newton decrement. Show that the Newton decrement λ(x) satisfies

λ(x) = sup
vT ∇2f(x)v=1

(−vT∇f(x)) = sup
v 6=0

−vT∇f(x)

(vT∇2f(x)v)1/2
.

Solution. The first expression follows from a a change of variables

w = ∇2f(x)1/2v, v = ∇2f(x)−1/2w

and from
sup

‖w‖2=1

−wT∇2f(x)−1/2∇f(x) = ‖∇f(x)−1/2∇f(x)‖2 = λ(x).

The second expression follows immediately from the first.

9.10 The pure Newton method. Newton’s method with fixed step size t = 1 can diverge if the
initial point is not close to x?. In this problem we consider two examples.
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(a) f(x) = log(ex + e−x) has a unique minimizer x? = 0. Run Newton’s method with

fixed step size t = 1, starting at x(0) = 1 and at x(0) = 1.1.

(b) f(x) = − log x+x has a unique minimizer x? = 1. Run Newton’s method with fixed

step size t = 1, starting at x(0) = 3.

Plot f and f ′, and show the first few iterates.

Solution.

• f(x) = log(ex + e−x) is a smooth convex function, with a unique minimum at

the origin. The pure Newton method started at x(0) = 1 produces the following
sequence.

k x(k) f(x(k)) − p?

1 −8.134 · 10−01 4.338 · 10−1

2 4.094 · 10−01 2.997 · 10−1

3 −4.730 · 10−02 8.156 · 10−2

4 7.060 · 10−05 1.118 · 10−3

5 −2.346 · 10−13 2.492 · 10−9

Started at x(0) = 1.1, the method diverges.

k x(k) f(x(k)) − p?

1 −1.129 · 100 5.120 · 10−1

2 1.234 · 100 5.349 · 10−1

3 −1.695 · 100 6.223 · 10−1

4 5.715 · 100 1.035 · 100

5 −2.302 · 104 2.302 · 104

• f(x) = − log x + x is smooth and convex on dom f = {x | x > 0}, with a unique

minimizer at x = 1. The pure Newton method started at x(0) = 3 gives as first
iterate

x(1) = 3 − f ′(3)/f ′′(3) = −3

which lies outside dom f .

9.11 Gradient and Newton methods for composition functions. Suppose φ : R → R is increasing
and convex, and f : Rn → R is convex, so g(x) = φ(f(x)) is convex. (We assume that
f and g are twice differentiable.) The problems of minimizing f and minimizing g are
clearly equivalent.

Compare the gradient method and Newton’s method, applied to f and g. How are the
search directions related? How are the methods related if an exact line search is used?
Hint. Use the matrix inversion lemma (see §C.4.3).

Solution.

(a) Gradient method. The gradients are positive multiples

∇g(x) = φ′(f(x))∇f(x),

so with exact line search the iterates are identical for f and g. With backtracking
there can be big differences.

(b) Newton method. The Hessian of g is

φ′′(f(x))∇f(x)∇f(x)T + φ′(f(x))∇2f(x),

so the Newton direction for g is

−
(
φ′′(f(x))∇f(x)∇f(x)T + φ′(f(x))∇2f(x)

)−1 ∇f(x).
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From the matrix inversion lemma, we see that this is some positive multiple of the
Newton direction for f . Hence with exact line search, the iterates are identical.

Without exact line search, e.g., with Newton step one, there can be big differences.
Take e.g., f(x) = x2 and φ(x) = x2 for x ≥ 0.

9.12 Trust region Newton method. If ∇2f(x) is singular (or very ill-conditioned), the Newton
step ∆xnt = −∇2f(x)−1∇f(x) is not well defined. Instead we can define a search direction
∆xtr as the solution of

minimize (1/2)vTHv + gT v
subject to ‖v‖2 ≤ γ,

whereH = ∇2f(x), g = ∇f(x), and γ is a positive constant. The point x+∆xtr minimizes
the second-order approximation of f at x, subject to the constraint that ‖(x+∆xtr)−x‖2 ≤
γ. The set {v | ‖v‖2 ≤ γ} is called the trust region. The parameter γ, the size of the trust
region, reflects our confidence in the second-order model.

Show that ∆xtr minimizes

(1/2)vTHv + gT v + β̂‖v‖2
2,

for some β̂. This quadratic function can be interpreted as a regularized quadratic model
for f around x.

Solution. This follows from duality. If we associate a multiplier β with the constraint,
then the optimal v must be a minimizer of the Lagrangian

(1/2)vTHv + gT v + β(‖v‖2
2 − γ).

The value of β̂ can be determined as follows. The optimality conditions are

Hv + g + βv = 0, vT v ≤ γ, β ≥ 0, β(γ − vT v) = 0.

• If H � 0, then H + βI is invertible for all β ≥ 0, so from the first equation,
v = −(H + βI)−1g. The norm of v is a decreasing function of β. If ‖H−1g‖2 ≤ γ,
then the optimal solution is

v = −H−1g, β = 0.

If ‖H−1g‖2 > γ, then β is the unique positive solution of the equation ‖(H +
βI)−1g‖2 = γ.

• If H is singular, then we have β = 0 only if g ∈ R(H) and ‖H†g‖2 ≤ γ.

Otherwise, β is the unique solution positive solution of the equation ‖(H+βI)−1g‖2 =
γ.

Self-concordance

9.13 Self-concordance and the inverse barrier.

(a) Show that f(x) = 1/x with domain (0, 8/9) is self-concordant.

(b) Show that the function

f(x) = α

m∑

i=1

1

bi − aT
i x

with dom f = {x ∈ Rn | aT
i x < bi, i = 1, . . . ,m}, is self-concordant if dom f is

bounded and
α > (9/8) max

i=1,...,m
sup

x∈dom f

(bi − aT
i x).

Solution.
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(a) The derivatives are

f ′(x) = −1/x2, f ′′(x) = 2/x3, f ′′′(x) = −6/x4,

so the self-concordance condition is

6

x4
≤ 2

(
2

x3

)3/2

=
4
√

2

x4
√
x
.

which holds if
√
x ≤ 4

√
2/6 =

√
8/9.

(b) If we make an affine change of variables yi = 8(bi − aT
i x)/(9α), then yi < 8/9 for all

x ∈ dom f . The function f reduces to
∑m

i=1
(1/yi), which is self-concordant by the

result in (a).

9.14 Composition with logarithm. Let g : R → R be a convex function with dom g = R++,
and

|g′′′(x)| ≤ 3
g′′(x)

x
for all x. Prove that f(x) = − log(−g(x))− log x is self-concordant on {x | x > 0, g(x) <
0}. Hint. Use the inequality

3

2
rp2 + q3 +

3

2
p2q + r3 ≤ 1

which holds for p, q, r ∈ R+ with p2 + q2 + r2 = 1.

Solution. The derivatives of f are

f ′(x) = −g
′(x)

g(x)
− 1

x

f ′′(x) =

(
g′(x)

g(x)

)2

− g′′(x)

g(x)
+

1

x2

f ′′′(x) = −g
′′′(x)

g(x)
− 2

(
g′(x)

g(x)

)3

+
3g′′(x)g′(x)

g(x)2
− 2

x3
.

We have

|f ′′′(x)| ≤ |g′′′(x)|
−g(x) + 2

(
|g′(x)|
−g(x)

)3

+
3g′′(x)|g′(x)|

g(x)2
+

2

x3

≤ 3g′′(x)

−xg(x) + 2

(
|g′(x)|
−g(x)

)3

+
3g′′(x)|g′(x)|

g(x)2
+

2

x3
.

We will show that

3g′′(x)

−xg(x) + 2

(
|g′(x)|
−g(x)

)3

+
3g′′(x)|g′(x)|

g(x)2
+

2

x3
≤ 2

((
g′(x)

g(x)

)2

− g′′(x)

g(x)
+

1

x2

)3/2

.

To simplify the formulas we define

p =
(−g′′(x)/g(x))1/2

(−g′′(x)/g(x) + g′(x)2/g(x)2 + 1/x2)1/2

q =
−|g′(x)|/g(x)

(−g′′(x)/g(x) + g′(x)2/g(x)2 + 1/x2)1/2

r =
1/x

(−g′′(x)/g(x) + g′(x)2/g(x)2 + 1/x2)1/2
.
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Note that p ≥ 0, q ≥ 0, r ≥ 0, and p2 + q2 + r2 = 1. With these substitutions, the
inequality reduces to the inequality

3

2
rp2 + q3 +

3

2
p2q + r3 ≤ 1

in the hint.

For completeness we also derive the inequality:

3

2
rp2 + q3 +

3

2
p2q + r3 = (r + q)(

3

2
p2 + q2 + r2 − qr)

= (r + q)(
3

2
(p2 + q2 + r2) − 1

2
(r + q)2)

=
1

2
(r + q)(3 − (r + q)2)

≤ 1.

On the last line we use the inequality (1/2)x(3 − x2) ≤ 1 for 0 ≤ x ≤ 1, which is easily
verified.

9.15 Prove that the following functions are self-concordant. In your proof, restrict the function
to a line, and apply the composition with logarithm rule.

(a) f(x, y) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}.
(b) f(x, y) = −2 log y − log(y2/p − x2), with p ≥ 1, on {(x, y) ∈ R2 | |x|p < y}.
(c) f(x, y) = − log y − log(log y − x) on {(x, y) | ex < y}.

Solution.

(a) To prove this, we write f as f(x, y) = − log y − log(y − xTx/y) and restrict the
function to a line x = x̂+ tv, y = ŷ + tw,

f(x̂+ tv, ŷ + tw) = − log

(
ŷ + tw − x̂T x̂

ŷ + tw
− 2tx̂T v

ŷ + tw
− t2vT v

ŷ + tw

)
− log(ŷ + tw).

If w = 0, the argument of the log reduces to a quadratic function of t, which is the
case considered in example 9.6.

Otherwise, we can use y instead of t as variable (i.e., make a change of variables
t = (y − ŷ)/w). We obtain

f(x̂+ tv, ŷ + tw) = − log(α+ βy − γ/y) − log y

where

α = 2
ŷvT v

w2
− 2

x̂T v

w
, β = 1 − vT v

w
, γ = x̂T x̂− 2

ŷx̂T v

w
+
ŷ2vT v

w2
.

Defining g(y) = −α− βy + γ/y, we have

f(x̂+ tv, ŷ + tw) = − log(−g(y)) − log y

The function g is convex (since γ > 0) and satisfies (9.43) because

g′′′(y) = −6γ/y4, g′′(y) = 2γ/y3.

(b) We can write f as a sum of two functions

f1(x, y) = − log y − log(y1/p − x), f2(x, y) = − log y − log(y1/p + x).
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We restrict the functions to a line x = x̂+ tv, y = ŷ + tw. If w = 0, both functions
reduce to logs of affine functions, so they are self-concordant. If w 6= 0, we can use
y as variable (i.e., make a change of variables t = (y − ŷ)/w), and reduce the proof
to showing that the function

− log y − log(y1/p + ay + b)

is self-concordant. This is true because g(x) = −ax − b − x1/p is convex, with
derivatives

g′′′(x) = − (1 − p)(1 − 2p)

p3
x1/p−3, g′′(x) =

p− 1

p2
x1/p−2,

so the inequality (9.43) reduces

(p− 1)(2p− 1)

p3
≤ 3

p− 1

p2
,

i.e., p ≥ −1.

(c) We restrict the function to a line x = x̂+ tv, y = ŷ + tw:

f(x̂+ tv, ŷ + tw) = − log(ŷ + tw) − log(log(ŷ + tw) − x̂− tw).

If w = 0 the function is obviously self-concordant. If w 6= 0, we use y as variable
(i.e., use a change of variables t = (y − ŷ)/w), and the function reduces to

− log y − log(log y − a− by),

so we need to show that g(y) = a+by− log y satisfies the inequality (9.43). We have

g′′′(y) = − 2

y3
, g′′(y) =

1

y2
,

so (9.43) becomes
2

y3
≤ 3

y3
.

9.16 Let f : R → R be a self-concordant function.

(a) Suppose f ′′(x) 6= 0. Show that the self-concordance condition (9.41) can be ex-
pressed as ∣∣∣ d

dx

(
f ′′(x)−1/2

)∣∣∣ ≤ 1.

Find the ‘extreme’ self-concordant functions of one variable, i.e., the functions f
and f̃ that satisfy

d

dx

(
f ′′(x)−1/2

)
= 1,

d

dx

(
f̃ ′′(x)−1/2

)
= −1,

respectively.

(b) Show that either f ′′(x) = 0 for all x ∈ dom f , or f ′′(x) > 0 for all x ∈ dom f .

Solution.

(a) We have
d

dx
f ′′(x)−1/2 = (−1/2)

f ′′′(x)

f ′′(x)3/2
.

Integrating
d

dx
f ′′(x)−1/2 = 1
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gives f(x) = − log(x+ c0) + c1x+ c2. Integrating

d

dx
f ′′(x)−1/2 = −1

gives
f(x) = − log(−x+ c0) + c1x+ c2.

(b) Suppose f ′′(0) > 0, f ′′(x̄) = 0 for x̄ > 0, and f ′′(x) > 0 on the interval between 0
and x̄. The inequality

−1 ≤ d

dx
f ′′(x)−1/2 ≤ 1

holds for x between 0 and x̄. Integrating gives

f ′′(x̄)−1/2 − f ′′(0)−1/2 ≤ x̄

which contradicts f ′′(x̄) = 0.

9.17 Upper and lower bounds on the Hessian of a self-concordant function.

(a) Let f : R2 → R be a self-concordant function. Show that

∣∣∣∣
∂3f(x)

∂3xi

∣∣∣∣ ≤ 2

(
∂2f(x)

∂x2
i

)3/2

, i = 1, 2,

∣∣∣∣
∂3f(x)

∂x2
i ∂xj

∣∣∣∣ ≤ 2
∂2f(x)

∂x2
i

(
∂2f(x)

∂x2
j

)1/2

, i 6= j

for all x ∈ dom f .

Hint. If h : R2 × R2 × R2 → R is a symmetric trilinear form, i.e.,

h(u, v, w) = a1u1v1w1 + a2(u1v1w2 + u1v2w1 + u2v1w1)

+ a3(u1v2w2 + u2v1w1 + u2v2w1) + a4u2v2w2,

then

sup
u,v,w 6=0

h(u, v, w)

‖u‖2‖v‖2‖w‖2
= sup

u6=0

h(u, u, u)

‖u‖3
2

.

Solution. We first note the following generalization of the result in the hint. Sup-
pose A ∈ S2

++, and h is symmetric and trilinear. Then h(A−1/2u,A−1/2v,A−1/2w)
is a symmetric trilinear function, so

sup
u,v,w 6=0

h(A−1/2u,A−1/2v,A−1/2w)

‖u‖2‖v‖2‖w‖2
= sup

u6=0

h(A−1/2u,A−1/2u,A−1/2u)

‖u‖3
2

,

i.e.,

sup
u,v,w 6=0

h(u, v, w)

(uTAu)1/2(vTAv)1/2(wTAw)1/2
= sup

u6=0

h(u, u, u)

(uTAu)3/2
. (9.17.A)

By definition, f : Rn → R is self-concordant if and only if

∣∣∣uT
(
d

dt
∇2f(x̂+ tu)

∣∣∣
t=0

)
u
∣∣∣ ≤ 2(uT∇2f(x̂)u)3/2.

for all u and all x̂ ∈ dom f . If n = 2 this means that

|h(u, u, u)| ≤ (uTAu)3/2
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for all u, where

h(u, v, w) = uT
(
d

dt
∇2f(x̂+ tv)

∣∣∣
t=0

)
w

= u1v1w1
∂3f(x̂)

∂x3
1

+ (u1v1w2 + u1v2w1 + u2v1w1)
∂3f(x̂)

∂x2
1∂x2

+ (u1v2w2 + u2v1w2 + u2v2w1)
∂3f(x̂)

∂x1∂x2
2

+ u2v2w2
∂3f(x̂)

∂x3
2

uTAu = u2
1
∂2f(x̂)

∂x2
1

+ 2u1u2
∂2f(x̂)

∂x1∂x2
+ u2

2
∂2f(x̂)

∂x2
2

,

i.e., A = ∇2f(x̂). In other words,

sup
u6=0

h(u, u, u)

(uTAu)3/2
≤ 2, sup

u6=0

−h(u, u, u)
(uTAu)3/2

≤ 2.

Applying (9.17.A) (to h and −h), we also have

|h(u, v, u)| ≤ 2(uTAu)(vTAv)1/2 (9.17.B)

for all u and v. The inequalities

∣∣∣∣
∂3f(x)

∂3x1

∣∣∣∣ ≤ 2

(
∂2f(x)

∂x2
1

)3/2

,

∣∣∣∣
∂3f(x)

∂3x2

∣∣∣∣ ≤ 2

(
∂2f(x)

∂x2
2

)3/2

,

follow from (9.17.B) by choosing u = v = (1, 0) and u = v = (0, 1), respectively.
The inequalities

∣∣∣∣
∂3f(x)

∂x2
1∂x2

∣∣∣∣ ≤ 2
∂2f(x)

∂x2
1

(
∂2f(x)

∂x2
2

)1/2

,

∣∣∣∣
∂3f(x)

∂x1∂x2
2

∣∣∣∣ ≤ 2

(
∂2f(x)

∂x2
1

)1/2
∂2f(x)

∂x2
1

,

follow by choosing v = (1, 0), w = (0, 1), and v = (0, 1), w = (1, 0), respectively.

To complete the proof we relax the assumption that ∇2f(x̂) � 0. Note that if f
is self-concordant then f(x) + εxTx is self-concordant for all ε ≥ 0. Applying the
inequalities to f(x) + εxTx gives

∣∣∣∣
∂3f(x)

∂3xi

∣∣∣∣ ≤ 2

(
∂2f(x)

∂x2
i

)3/2

+ ε,

∣∣∣∣
∂3f(x)

∂x2
i ∂xj

∣∣∣∣ ≤ 2
∂2f(x)

∂x2
i

(
∂2f(x)

∂x2
j

)1/2

+ ε

for all ε > 0. This is only possible if the inequalities hold for ε = 0.

(b) Let f : Rn → R be a self-concordant function. Show that the nullspace of ∇2f(x)
is independent of x. Show that if f is strictly convex, then ∇2f(x) is nonsingular
for all x ∈ dom f .

Hint. Prove that if wT∇2f(x)w = 0 for some x ∈ dom f , then wT∇2f(y)w = 0 for
all y ∈ dom f . To show this, apply the result in (a) to the self-concordant function

f̃(t, s) = f(x+ t(y − x) + sw).

Solution. Suppose wT∇2f(x)w = 0. We show that wT∇2f(y)w = 0 for all y ∈
dom f .

Define v = y−x and let f̃ be the restriction of f to the plane through x and defined
by w, v:

f̃(s, t) = f(x+ sw + tv).
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Also define

g(t) = wT∇2f(x+ tv)w =
∂2f̃(0, t)

∂s2
.

f̃ is a self-concordant function of two variables, so from (a),

|g′(t)| =

∣∣∣∣
∂3f̃(0, t)

∂t∂s2

∣∣∣∣ ≤ 2

(
∂2f̃(0, t)

∂t2

)1/2
∂2f̃(0, t)

∂s2
= 2

(
∂2f̃(0, t)

∂s2

)1/2

g(t),

i.e., if g(t) 6= 0, then

d

dt
log g(t) ≥ −2

(
∂2f̃(0, t)

∂s2

)1/2

.

By assumption, g(0) > 0 and g(t) = 0 for t = 1. Assume that g(τ) > 0 for 0 ≤ τ < t.
(If not, replace t with the smallest positive t for which g(t) = 0.) Integrating the
inequality above, we have

log(g(t)/g(0)) ≥ −2

∫ t

0

(
∂2f̃(0, τ)

∂s2

)1/2

dτ

g(t)/g(0) ≥ exp

(
−2

∫ t

0

(
∂2f̃(0, τ)

∂s2

)1/2

dτ

)
,

which contradicts the assumption g(t) = 0. We conclude that either g(t) = 0 for
all t, or g(t) > 0 for all t. This is true for arbitrary x and v, so a vector w either
satisfies wT∇2f(x)w = 0 for all x, or wT∇2f(x)w > 0 for all x.

Finally, suppose f is strictly convex but satisfies vT∇2f(x)v = 0 for some x and
v 6= 0. By the previous result, vT∇2f(x + tv)v = 0 for all t, i.e., f is affine on the
line x+ tv, and not strictly convex.

(c) Let f : Rn → R be a self-concordant function. Suppose x ∈ dom f , v ∈ Rn. Show
that

(1 − tα)2∇2f(x) � ∇2f(x+ tv) � 1

(1 − tα)2
∇2f(x)

for x+ tv ∈ dom f , 0 ≤ t < α, where α = (vT∇2f(x)v)1/2.

Solution. As in part (b), we can prove that

∣∣∣ d
dt

log g(t)
∣∣∣ ≤ 2

(
∂2f̃(0, t)

∂s2

)1/2

where g(t) = wT∇2f(x + tv)w and f̃(s, t) = f(x + sw + tv). Applying the upper

bound in (9.46) to the self-concordant function f̃(0, t) = f(x + tv) of one variable,
t, we obtain

∂2f̃(0, t)

∂s2
≤ α2

(1 − tα)2
,

so
−2α

(1 − tα)
≤ d

dt
log g(t) ≤ 2α

(1 − tα)
.

Integrating gives

2 log(1 − tα) ≤ log(g(t)/g(0)) ≤ −2 log(1 − tα)

g(0)(1 − tα)2 ≤ g(t) ≤ g(0)

(1 − tα)2
.
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Finally, observing that g(0) = α2 gives the inequalities

(1 − tα)2wT∇2f(x)w ≤ wT∇2f(x+ tv)w ≤ wT∇2f(x)w

(1 − tα)2
.

This holds for all w, and hence

(1 − tα)2∇2f(x) � ∇2f(x+ tv) � 1

(1 − tα)2
∇2f(x).

9.18 Quadratic convergence. Let f : Rn → R be a strictly convex self-concordant function.
Suppose λ(x) < 1, and define x+ = x−∇2f(x)−1∇f(x). Prove that λ(x+) ≤ λ(x)2/(1−
λ(x))2. Hint. Use the inequalities in exercise 9.17, part (c).

Solution. Let v = −∇2f(x)−1∇f(x). From exercise 9.17, part (c),

(1 − tλ(x))2∇2f(x) � ∇2f(x+ tv) � 1

(1 − tλ(x))2
∇2f(x).

We can assume without loss of generality that ∇2f(x) = I (hence, v = −∇f(x)), and

(1 − λ(x))2I � ∇2f(x+) � 1

(1 − λ(x))2
I.

We can write λ(x+) as

λ(x+) = ‖∇2f(x+)−1∇f(x+)‖2

≤ (1 − λ(x))−1‖∇f(x+)‖2

= (1 − λ(x))−1

∥∥∥∥
(∫ 1

0

∇2f(x+ tv)v dt+ ∇f(x)

)∥∥∥∥
2

= (1 − λ(x))−1

∥∥∥∥
(∫ 1

0

(∇2f(x+ tv) − I) dt

)
v

∥∥∥∥
2

≤ (1 − λ(x))−1

∥∥∥∥
(∫ 1

0

(
1

(1 − tλ(x))2
− 1) dt

)
v

∥∥∥∥
2

≤ ‖v‖2(1 − λ(x))−1

∫ 1

0

(
1

(1 − tλ(x))2
− 1) dt

=
λ(x)2

(1 − λ(x))2
.

9.19 Bound on the distance from the optimum. Let f : Rn → R be a strictly convex self-
concordant function.

(a) Suppose λ(x̄) < 1 and the sublevel set {x | f(x) ≤ f(x̄)} is closed. Show that the
minimum of f is attained and

(
(x̄− x?)T∇2f(x̄)(x̄− x?)

)1/2 ≤ λ(x̄)

1 − λ(x̄)
.

(b) Show that if f has a closed sublevel set, and is bounded below, then its minimum is
attained.

Solution.
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(a) As in the derivation of (9.47) we consider the function f̃(t) = f(x̂ + tv) for an
arbitrary descent direction v. Note from (9.44) that

1 +
f̃ ′(0)

f̃ ′′(0)1/2
> 0

if λ(x̄) < 1.

We first argue that f̃(t) reaches its minimum for some positive (finite) t?. Let
t0 = sup{t ≥ 0 | x̂ + tv ∈ dom f}. If t0 = ∞ (i.e., x̂ + tv ∈ dom f for all t ≥ 0),

then, from (9.47), f̃ ′(t) > 0 for

t > t̄ =
−f̃ ′(0)

f̃ ′′(0) + f̃ ′′(0)1/2f̃ ′(0)
,

so f̃ must reach a minimum in the interval (0, t̄).

If t0 is finite, then we must have

lim
t→t0

f̃(t) > f̃(0).

since the sublevel set {t | f̃(t) ≤ f̃(0)} is closed. Therefore f̃ reaches a minimum in
the interval (0, t0).

In both cases,

t? ≤ −f̃ ′(0)

f̃ ′′(0) + f̃ ′′(0)1/2f̃ ′(0)
√
f̃ ′′(0)t? ≤ −f̃ ′(0)/

√
f̃ ′′(0)

1 + f̃ ′(0)/
√
f̃ ′′(0)

≤ λ(x)

1 − λ(x)

where again we used (9.44). This bound on t? holds for any descent vector v. In
particular, in the direction v = x? − x, we have t? = 1, so we obtain

(
(x̄− x?)T∇2f(x̄)(x̄− x?)

)1/2 ≤ λ(x̄)

1 − λ(x̄)
.

(b) If f is strictly convex, and self-concordant, with a closed sublevel set, then our
convergence analysis of Newton’s method applies. In other words, after a finite
number of iterations, λ(x) becomes less than one, and from the previous result this
means that the minimum is attained.

9.20 Conjugate of a self-concordant function. Suppose f : Rn → R is closed, strictly convex,
and self-concordant. We show that its conjugate (or Legendre transform) f ∗ is self-
concordant.

(a) Show that for each y ∈ dom f∗, there is a unique x ∈ dom f that satisfies y =
∇f(x). Hint. Refer to the result of exercise 9.19.

(b) Suppose ȳ = ∇f(x̄). Define

g(t) = f(x̄+ tv), h(t) = f∗(ȳ + tw)

where v ∈ Rn and w = ∇2f(x̄)v. Show that

g′′(0) = h′′(0), g′′′(0) = −h′′′(0).

Use these identities to show that f∗ is self-concordant.
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Solution.

(a) y ∈ dom f∗ means that f(x) − yTx is bounded below as a function of f . From
exercise 9.19, part (a), the minimum is attained. The minimizer satisfies ∇f(x) = y,
and is unique because f(x) − yTx is strictly convex.

(b) Let F be the inverse mapping of ∇f , i.e., x = F (y) if and only if y = ∇f(x). We
have x̄ = F (ȳ), and also (from exercise 3.40),

∇f∗(y) = F (y), ∇2f∗(y) = ∇2f(F (y))−1

for all y ∈ dom f∗.

The first equality follows from ∇2f∗(ȳ) = ∇2f(x̄)−1:

g′′(0) = vT∇2f(x̄)v = wT∇2f∗(ȳ)w = h′′(0).

In order to prove the second equality we define

G =
d

dt
∇2f(x̄+ tv)

∣∣∣
t=0

, H =
d

dt
∇2f∗(ȳ + tw)

∣∣∣
t=0

,

i.e., we have

∇2f(x̄+ tv) ≈ ∇2f(x̄) + tG, ∇2f∗(ȳ + tw) ≈ ∇2f∗(ȳ) + tH

for small t, and

∇2f∗(∇f(x̄+ tv)) ≈ ∇2f∗(∇f(x̄) + t∇2f(x̄)v)

= ∇2f∗(ȳ + tw)

≈ ∇2f∗(ȳ) + tH.

Linearizing both sides of the equation

∇2f∗(∇f(x̄+ tv))∇2f(x̄+ tv) = I

gives
H∇2f(x̄) + ∇2f∗(ȳ)G = 0,

i.e., G = −∇2f(x̄)H∇2f(x̄). Therefore

g′′′(0) =
d

dt
vT∇2f(x̄+ tv)v

∣∣∣
t=0

= vTGv

= −wTHw

= − d

dt
wT∇2f∗(ȳ + tw)w

∣∣∣
t=0

= −h′′′(0).

It follows that
|h′′′(0)| ≤ 2h′′(0)3/2,

for any ȳ ∈ dom f∗ and all w, so f∗ is self-concordant.

9.21 Optimal line search parameters. Consider the upper bound (9.56) on the number of
Newton iterations required to minimize a strictly convex self-concordant functions. What
is the minimum value of the upper bound, if we minimize over α and β?

Solution. Clearly, we should take β near one.

The function
20 − 8α

α(1 − 2α)2
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reaches its minimum at α = 0.1748, with a minimum value of about 252, so the lowest
upper bound is

252(f(x(0)) − p?) + log2 log2(1/ε).

9.22 Suppose that f is strictly convex and satisfies (9.42). Give a bound on the number of

Newton steps required to compute p? within ε, starting at x(0).

Solution.
f̃(x(0)) − p̃?

γ
+ log2 log2(4ε/k

2)

where f̃ = (k2/4)f . In other words

(k2/4)
f(x(0)) − p?

γ
+ log2 log2(4ε/k

2).

Implementation

9.23 Pre-computation for line searches. For each of the following functions, explain how the
computational cost of a line search can be reduced by a pre-computation. Give the cost
of the pre-computation, and the cost of evaluating g(t) = f(x+ t∆x) and g′(t) with and
without the pre-computation.

(a) f(x) = −
∑m

i=1
log(bi − aT

i x).

(b) f(x) = log
(∑m

i=1
exp(aT

i x+ bi)
)
.

(c) f(x) = (Ax− b)T (P0 + x1P1 + · · · + xnPn)−1(Ax− b), where Pi ∈ Sm, A ∈ Rm×n,
b ∈ Rm and dom f = {x | P0 +

∑n

i=1
xiPi � 0}.

Solution.

(a) Without pre-computation the cost is order mn.

We can write g as

g(t) = −
m∑

i=1

log(bi − aT
i x) −

m∑

i=1

log(1 − taT
i ∆x/(bi − aT

i x)),

so if we pre-compute wi = aT
i ∆x/(bi − aT

i x), we can express g as

g(t) = g(0) −
m∑

i=1

log(1 − twi), g′(t) = −
m∑

i=1

wi

1 − twi
.

The cost of the pre-computation is 2mn+m (if we assume b− Ax is already com-
puted). After the pre-computation the cost of evaluating g and g′ is linear in m.

(b) Without pre-computation the cost is order mn. We can write g as

g(t) = log

(
m∑

i=1

exp(aT
i x+ bi + taT

i ∆x)

)

= log

m∑

i=1

etαi+βi

where αi = aT
i ∆x and βi = aT

i x + bi. If we pre-compute αi and βi (at a cost that
is order mn), we can reduce the cost of computing g and g′ to order m.
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(c) Without pre-computation the cost is 2mn (for computing Ax − b), plus 2nm2 (for
computing P (x)), followed by (1/3)m3 (for computing P (x)−1(Ax− b), followed by
2m for the inner product. The total cost 2nm2 + (1/3)m3.

The following pre-computation steps reduce the complexity:

• Compute the Cholesky factorization P (x) = LLT

• Compute the eigenvalue decomposition L−1(
∑n

i=1
∆xiPi)L

−T = QΛQT .

• Compute y = QTL−1Ax, and v = QTL−1A∆x.

The pre-computation involves steps that are orderm3 (Cholesky factorization, eigen-
value decomposition), 2nm2 (computing P (x) and

∑
i
∆xiPi), and lower order

terms.

After the pre-computation we can express g as

g(x+ t∆x) =

m∑

i=1

(yi + tvi)
2

1 + tλi
,

which can be evaluated and differentiated in order m operations.

9.24 Exploiting block diagonal structure in the Newton system. Suppose the Hessian ∇2f(x) of
a convex function f is block diagonal. How do we exploit this structure when computing
the Newton step? What does it mean about f?

Solution. If the Hessian is block diagonal, then the objective function is separable, i.e.,
a sum of functions of disjoint sets of variables. This means we might as well solve each of
the problems separately.

9.25 Smoothed fit to given data. Consider the problem

minimize f(x) =
∑n

i=1
ψ(xi − yi) + λ

∑n−1

i=1
(xi+1 − xi)

2

where λ > 0 is smoothing parameter, ψ is a convex penalty function, and x ∈ Rn is the
variable. We can interpret x as a smoothed fit to the vector y.

(a) What is the structure in the Hessian of f?

(b) Extend to the problem of making a smooth fit to two-dimensional data, i.e., mini-
mizing the function

n∑

i,j=1

ψ(xij − yij) + λ

(
n−1∑

i=1

n∑

j=1

(xi+1,j − xij)
2 +

n∑

i=1

n−1∑

j=1

(xi,j+1 − xij)
2

)
,

with variable X ∈ Rn×n, where Y ∈ Rn×n and λ > 0 are given.

Solution.

(a) Tridiagonal.

(b) Block-tridiagonal if we store the elements of X columnwise. The blocks have size
n×n. The diagonal blocks are tridiagonal. The blocks on the first sub-diagonal are
diagonal.

9.26 Newton equations with linear structure. Consider the problem of minimizing a function
of the form

f(x) =

N∑

i=1

ψi(Aix+ bi) (9.63)

where Ai ∈ Rmi×n, bi ∈ Rmi , and the functions ψi : Rmi → R are twice differentiable
and convex. The Hessian H and gradient g of f at x are given by

H =

N∑

i=1

AT
i HiAi, g =

N∑

i=1

AT
i gi. (9.64)
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where Hi = ∇2ψi(Aix+ bi) and gi = ∇ψi(Aix+ bi).

Describe how you would implement Newton’s method for minimizing f . Assume that
n� mi, the matrices Ai are very sparse, but the Hessian H is dense.

Solution.

In many applications, for example, when n is small compared to the dimensions mi, the
simplest and most efficient way to calculate the Newton direction is to evaluate H and g
using (9.64), and solve the Newton system with a dense Cholesky factorization.

It is possible, however, that the matrices Ai are very sparse, whileH itself is dense. In that
case the straightforward method, which involves solving a dense set of linear equations of
size n, may not be the most efficient method, since it does not take advantage of sparsity.
Specifically, assume that n� mi, rankAi = mi, and Hi � 0, so the Hessian is a sum of
N matrices of rank mi. We can introduce new variables yi = AT

i v, and write the Newton
system as

N∑

i=1

AT
i yi = −g, yi = HiA

T
i v, i = 1, . . . , N.

This is an indefinite system of n+
∑

i
mi linear equations in n+

∑
i
mi variables:




−H−1
1 0 · · · 0 A1

0 −H−1
2 · · · 0 A2

...
...

. . .
...

...
0 0 · · · −H−1

N AN

AT
1 AT

2 · · · AT
N 0







y1
y2
...
yN

v




=




0
0
...
0
−g



. (9.26.A)

This system is larger than the Newton system, but if n � mi, and the matrices Ai are
sparse, it may be easier to solve (9.26.A) using a sparse solver than to solve the Newton
system directly.

9.27 Analytic center of linear inequalities with variable bounds. Give the most efficient method
for computing the Newton step of the function

f(x) = −
n∑

i=1

log(xi + 1) −
n∑

i=1

log(1 − xi) −
m∑

i=1

log(bi − aT
i x),

with dom f = {x ∈ Rn | −1 ≺ x ≺ 1, Ax ≺ b}, where aT
i is the ith row of A. Assume A

is dense, and distinguish two cases: m ≥ n and m ≤ n. (See also exercise 9.30.)

Solution. Note that f has the form (9.60) with k = n, p = m, g = b, F = −A, and

ψ0(y) = −
m∑

i=1

log yi, ψi(xi) = − log(1 − x2
i ), i = 1, . . . , n.

The Hessian f at x is given by

H = D +AT D̂A (9.27.A)

where Dii = 1/(1 − xi)
2 + 1/(xi + 1)2, and D̂ii = 1/(bi − aT

i x)
2.

The first possibility is to form H as given by (9.27.A), and to solve the Newton system

using a dense Cholesky factorization. The cost is mn2 operations (to form AT D̂A) plus
(1/3)n3 for the Cholesky factorization.

A second possibility is to introduce a new variable y = D̂Av, and to write the Newton
system as

D∆xnt +AT y = −g, D̂−1y = A∆xnt. (9.27.B)
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From the first equation, ∆xnt = D−1(−g − AT y), and substituting this in the second
equation, we obtain

(D̂−1 +AD−1AT )y = −AD−1g. (9.27.C)

This is a positive definite set ofm linear equations in the variable y ∈ Rm. Given y, we find
∆xnt by evaluating ∆xnt = −D−1(g +AT y). The cost of forming and solving (9.27.C) is
mn2+(1/3)m3 operations (assuming A is dense). Therefore if m < n, this second method
is faster than directly solving the Newton system H∆xnt = −g.
A third possibility is to solve (9.27.B) as an indefinite set of m+ n linear equations

[
D AT

A −D̂−1

][
∆xnt

y

]
=

[
−g
0

]
. (9.27.D)

This method is interesting when A is sparse, and the two matrices D + AT D̂A and

D̂−1 + AD−1AT are not. In that case, solving (9.27.D) using a sparse solver may be
faster than the two methods above.

9.28 Analytic center of quadratic inequalities. Describe an efficient method for computing the
Newton step of the function

f(x) = −
m∑

i=1

log(−xTAix− bTi x− ci),

with dom f = {x | xTAix + bTi x + ci < 0, i = 1, . . . ,m}. Assume that the matrices
Ai ∈ Sn

++ are large and sparse, and m� n.
Hint. The Hessian and gradient of f at x are given by

H =

m∑

i=1

(2αiAi + α2
i (2Aix+ bi)(2Aix+ bi)

T ), g =

m∑

i=1

αi(2Aix+ bi),

where αi = 1/(−xTAi − bTi x− ci).

Solution. We can write H as H = Q+ FF T , where

Q = 2

m∑

i=1

αiAi, F =
[
α1(2A1x+ b1) α2(2A2x+ b2) · · · αm(2Amx+ bm)

]
.

In general the Hessian will be dense, even when the matrices Ai are sparse, because of
the dense rank-one terms. Finding the Newton direction by building and solving the
Newton system Hv = g, therefore costs at least (1/3)n3 operations, since we need a dense
Cholesky factorization.
An alternative that may be faster when n� m is as follows. We introduce a new variable
y ∈ Rm, and write the Newton system as

Qv + Fy = −g, y = F T v.

Substituting v = −Q−1(g + Fy) in the second equation yields

(I + FTQ−1F )y = −F TQ−1g, (9.28.A)

which is a set of m linear equations.
We can therefore also compute the Newton direction as follows. We factor Q using a
sparse Cholesky factorization. Then we calculate the matrix V = Q−1F by solving the
matrix equation QV = F column by column, using the Cholesky factors of Q. For each
colum this involves a sparse forward and backward substitution. We then form the matrix
I +FTV (m2n flops), factor it using a dense Cholesky factorization ((1/3)m3 flops), and
solve for y. Finally we compute v by solving Qv = −g − Fy. The cost of this procedure
is (1/3)m3 +m2n operations plus the cost of the sparse Cholesky factorization of Q, and
the m sparse forward and backward substitutions. If n� m and Q is sparse, the overall
cost can be much smaller than solving Hv = −g by a dense method.
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9.29 Exploiting structure in two-stage optimization. This exercise continues exercise 4.64, which
describes optimization with recourse, or two-stage optimization. Using the notation and
assumptions in exercise 4.64, we assume in addition that the cost function f is a twice
differentiable function of (x, z), for each scenario i = 1, . . . , S.

Explain how to efficiently compute the Newton step for the problem of finding the optimal
policy. How does the approximate flop count for your method compare to that of a generic
method (which exploits no structure), as a function of S, the number of scenarios?

Solution. The problem to be solved is just

minimize F (x) =
∑S

i=1
πif(x, zi, i),

which is convex since for each i, f(x, z, i) is convex in (x, zi), and πi ≥ 0.

Now let’s see how to compute the Newton step efficiently. The Hessian of F has the
block-arrow form

∇2F =




∇2
x,xF ∇2

x,z1
F ∇2

x,z2
F · · · ∇2

zS ,xF
∇2

x,z1
FT ∇2

z1,z1
F 0 · · · 0

∇2
x,z2

FT 0 ∇2
z2,z2

F · · · 0
...

...
...

. . .
...

∇2
x,zS

FT 0 0 · · · ∇2
zS ,zS

F



,

which we can exploit to compute the Newton step efficiently. First, let’s see what happens
if we don’t exploit this structure. We need to solve the set of n+Sq (symmetric, positive
definite) linear equations ∇2F∆nt = −∇F , so the cost is around (1/3)(n+Sq)3 flops. As
a function of the number of scenarios, this grows like S3.

Now let’s exploit the structure to compute ∆nt. We do this by using elimination, elimi-
nating the bottom right block of size Sq×Sq. This block is block diagonal, with S blocks
of size q × q, This situation is described on page 677 of the text. The overall complexity
is

(2/3)Sq3 + 2nSq2 + 2n2Sq + 2n2Sq + (2/3)n3

=
(
(2/3)q3 + 2nq2 + 2n2q + 2n2q

)
S + (2/3)n3,

which grows linearly in S.

Here are the explicit details of how we can exploit structure to solve a block arrow, positive
definite symmetric, system of equations:




A11 A12 A13 · · · A1N

AT
12 A22 0 · · · 0

AT
13 0 A33 · · · 0
...

...
...

. . .
...

AT
1N 0 0 · · · ANN







x1

x2

...
xN


 =




b1
b2
...
bN


 .

We eliminate xj , for j = 2, . . . , N , to obtain

xj = A−1
jj (bj −AT

1jx1), j = 2, . . . , N.

The first block equation becomes
(
A11 −

N∑

j=2

A1jA
−1
jj A

T
1j

)
x1 = b1 −

N∑

j=2

A1jA
−1
jj bj .

We’ll solve this equation to find x1, and then use the equations above to find x2, . . . , xN .
To do this we first carry out a Cholesky factorization of A22, . . . , ANN , and then compute
A−1

22 A
T
12, . . . , A

−1
NNA

T
1N , and A−1

22 b2, . . . , A
−1
NNbN , by back substitution. We then form the

righthand side of the equations above, and the lefthand matrix, which is the Schur com-
plement. We then solve these equations via Cholesky factorization and back substitution.
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Numerical experiments

9.30 Gradient and Newton methods. Consider the unconstrained problem

minimize f(x) = −
∑m

i=1
log(1 − aT

i x) −
∑n

i=1
log(1 − x2

i ),

with variable x ∈ Rn, and dom f = {x | aT
i x < 1, i = 1, . . . ,m, |xi| < 1, i = 1, . . . , n}.

This is the problem of computing the analytic center of the set of linear inequalities

aT
i x ≤ 1, i = 1, . . . ,m, |xi| ≤ 1, i = 1, . . . , n.

Note that we can choose x(0) = 0 as our initial point. You can generate instances of this
problem by choosing ai from some distribution on Rn.

(a) Use the gradient method to solve the problem, using reasonable choices for the back-
tracking parameters, and a stopping criterion of the form ‖∇f(x)‖2 ≤ η. Plot the
objective function and step length versus iteration number. (Once you have deter-
mined p? to high accuracy, you can also plot f − p? versus iteration.) Experiment
with the backtracking parameters α and β to see their effect on the total number of
iterations required. Carry these experiments out for several instances of the problem,
of different sizes.

(b) Repeat using Newton’s method, with stopping criterion based on the Newton decre-
ment λ2. Look for quadratic convergence. You do not have to use an efficient method
to compute the Newton step, as in exercise 9.27; you can use a general purpose dense
solver, although it is better to use one that is based on a Cholesky factorization.

Hint. Use the chain rule to find expressions for ∇f(x) and ∇2f(x).

Solution.

(a) Gradient method. The figures show the function values and step lengths versus
iteration number for an example with m = 200, n = 100. We used α = 0.01,
β = 0.5, and exit condition ‖∇f(x(k))‖2 ≤ 10−3.
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The following is a Matlab implementation.

ALPHA = 0.01;
BETA = 0.5;
MAXITERS = 1000;
GRADTOL = 1e-3;

x = zeros(n,1);
for iter = 1:MAXITERS

val = -sum(log(1-A*x)) - sum(log(1+x)) - sum(log(1-x));
grad = A’*(1./(1-A*x)) - 1./(1+x) + 1./(1-x);
if norm(grad) < GRADTOL, break; end;
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v = -grad;
fprime = grad’*v;
t = 1; while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),

t = BETA*t;
end;
while ( -sum(log(1-A*(x+t*v))) - sum(log(1-(x+t*v).^2)) > ...

val + ALPHA*t*fprime )
t = BETA*t;

end;
x = x+t*v;

end;

(b) Newton method. The figures show the function values and step lengths versus iter-
ation number for the same example. We used α = 0.01, β = 0.5, and exit condition
λ(x(k))2 ≤ 10−8.
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The following is a Matlab implementation.

ALPHA = 0.01;
BETA = 0.5;
MAXITERS = 1000;
NTTOL = 1e-8;

x = zeros(n,1);
for iter = 1:MAXITERS

val = -sum(log(1-A*x)) - sum(log(1+x)) - sum(log(1-x));
d = 1./(1-A*x);
grad = A’*d - 1./(1+x) + 1./(1-x);
hess = A’*diag(d.^2)*A + diag(1./(1+x).^2 + 1./(1-x).^2);
v = -hess\grad;
fprime = grad’*v;
if abs(fprime) < NTTOL, break; end;
t = 1; while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),

t = BETA*t;
end;
while ( -sum(log(1-A*(x+t*v))) - sum(log(1-(x+t*v).^2)) > ...

val + ALPHA*t*fprime )
t = BETA*t;

end;
x = x+t*v;

end;

9.31 Some approximate Newton methods. The cost of Newton’s method is dominated by the
cost of evaluating the Hessian ∇2f(x) and the cost of solving the Newton system. For large
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problems, it is sometimes useful to replace the Hessian by a positive definite approximation
that makes it easier to form and solve for the search step. In this problem we explore
some common examples of this idea.

For each of the approximate Newton methods described below, test the method on some
instances of the analytic centering problem described in exercise 9.30, and compare the
results to those obtained using the Newton method and gradient method.

(a) Re-using the Hessian. We evaluate and factor the Hessian only every N iterations,
whereN > 1, and use the search step ∆x = −H−1∇f(x), whereH is the last Hessian
evaluated. (We need to evaluate and factor the Hessian once every N steps; for the
other steps, we compute the search direction using back and forward substitution.)

(b) Diagonal approximation. We replace the Hessian by its diagonal, so we only have
to evaluate the n second derivatives ∂2f(x)/∂x2

i , and computing the search step is
very easy.

Solution.

(a) The figure shows the function value versus iteration number (for the same example
as in the solution of exercise 9.30), for N = 1 (i.e., Newton’s method), N = 2, and
N = 5.

0 5 10 15 20 2510−10

10−5

100

105

PSfrag replacements

k

f
(x

(k
)
)
−
p

?

Newton

N = 2

N = 5

We see that the speed of convergence deteriorates rapidly as N increases.

(b) The figure shows the function value versus iteration number (for the same example
as in the solution of exercise 9.30), for a diagonal approximation of the Hessian. The
experiment shows that the algorithm converges very much like the gradient method.
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9.32 Gauss-Newton method for convex nonlinear least-squares problems. We consider a (non-
linear) least-squares problem, in which we minimize a function of the form

f(x) =
1

2

m∑

i=1

fi(x)
2,
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where fi are twice differentiable functions. The gradient and Hessian of f at x are given
by

∇f(x) =

m∑

i=1

fi(x)∇fi(x), ∇2f(x) =

m∑

i=1

(
∇fi(x)∇fi(x)

T + fi(x)∇2fi(x)
)
.

We consider the case when f is convex. This occurs, for example, if each fi is either
nonnegative and convex, or nonpositive and concave, or affine.

The Gauss-Newton method uses the search direction

∆xgn = −
(

m∑

i=1

∇fi(x)∇fi(x)
T

)−1( m∑

i=1

fi(x)∇fi(x)

)
.

(We assume here that the inverse exists, i.e., the vectors ∇f1(x), . . . ,∇fm(x) span Rn.)
This search direction can be considered an approximate Newton direction (see exer-
cise 9.31), obtained by dropping the second derivative terms from the Hessian of f .

We can give another simple interpretation of the Gauss-Newton search direction ∆xgn.
Using the first-order approximation fi(x+ v) ≈ fi(x) +∇fi(x)

T v we obtain the approxi-
mation

f(x+ v) ≈ 1

2

m∑

i=1

(fi(x) + ∇fi(x)
T v)2.

The Gauss-Newton search step ∆xgn is precisely the value of v that minimizes this ap-
proximation of f . (Moreover, we conclude that ∆xgn can be computed by solving a linear
least-squares problem.)

Test the Gauss-Newton method on some problem instances of the form

fi(x) = (1/2)xTAix+ bTi x+ 1,

with Ai ∈ Sn
++ and bTi A

−1
i bi ≤ 2 (which ensures that f is convex).

Solution. We generate random Ai ∈ Sn
++, random bi, and scale Ai and bi so that

bTi A
−1
i bi = 2. We take n = 50, m = 100. The figure shows a typical convergence plot.
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We note that the Gauss-Newton method converges linearly, and much more slowly than
Newton’s method (which for this example converged in 2 iterations).

This was to be expected. From the interpretation of the Gauss-Newton method as an
approximate Newton method, we expect that it works well if the second term in the
expression for the Hessian is small compared to the first term, i.e., if either ∇2fi is small
(fi is nearly linear), or fi is small. For this test example neither of these conditions was
satisfied.
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Exercises

Equality constrained minimization

10.1 Nonsingularity of the KKT matrix. Consider the KKT matrix
[
P AT

A 0

]
,

where P ∈ Sn
+, A ∈ Rp×n, and rankA = p < n.

(a) Show that each of the following statements is equivalent to nonsingularity of the
KKT matrix.

• N (P ) ∩N (A) = {0}.
• Ax = 0, x 6= 0 =⇒ xTPx > 0.

• FTPF � 0, where F ∈ Rn×(n−p) is a matrix for which R(F ) = N (A).

• P +ATQA � 0 for some Q � 0.

(b) Show that if the KKT matrix is nonsingular, then it has exactly n positive and p
negative eigenvalues.

Solution.

(a) The second and third are clearly equivalent. To see this, if Ax = 0, x 6= 0, then x
must have the form x = Fz, where z 6= 0. Then we have xTPx = zTFTPFz.

Similarly, the first and second are equivalent. To see this, if x ∈ N (A)∩N (P ), x 6= 0,
then Ax = 0, x 6= 0, but xTPx = 0, contradicting the second statement. Conversely,
suppose the second statement fails to hold, i.e., there is an x with Ax = 0, x 6= 0,
but xTPx = 0. Since P � 0, we conclude Px = 0, i.e., x ∈ N (P ), which contradicts
the first statement.

Finally, the second and fourth statements are equivalent. If the second holds then
the last statement holds with Q = I. If the last statement holds for some Q � 0
then it holds for all Q � 0, and therefore the second statement holds.

Now let’s show that the four statements are equivalent to nonsingularity of the KKT
matrix. First suppose that x satisfies Ax = 0, Px = 0, and x 6= 0. Then

[
P AT

A 0

][
x
0

]
= 0,

which shows that the KKT matrix is singular.

Now suppose the KKT matrix is singular, i.e., there are x, z, not both zero, such
that [

P AT

A 0

][
x
z

]
= 0.

This means that Px+AT z = 0 and Ax = 0, so multiplying the first equation on the
left by xT , we find xTPx + xTAT z = 0. Using Ax = 0, this reduces to xTPx = 0,
so we have Px = 0 (using P � 0). This contradicts (a), unless x = 0. In this case,
we must have z 6= 0. But then AT z = 0 contradicts rankA = p.

(b) From part (a), P+ATA � 0. Therefore there exists a nonsingular matrix R ∈ Rn×n

such that
RT (P +ATA)R = I.

Let AR = UΣV T
1 be the singular value decomposition of AR, with U ∈ Rp×p,

Σ = diag(σ1, . . . , σp) ∈ Rp×p and V1 ∈ Rn×p. Let V2 ∈ Rn×(n−p) be such that

V =
[
V1 V2

]
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is orthogonal, and define
S =

[
Σ 0

]
∈ R

p×n.

We have AR = USV T , so

V TRT (P +ATA)RV = V TRTPRV + STS = I.

Therefore V TRTPRV = I − STS is diagonal. We denote this matrix by Λ:

Λ = V TRTPRV = diag(1 − σ2
1 , . . . , 1 − σ2

p, 1, . . . , 1).

Applying a congruence transformation to the KKT matrix gives
[
V TRT 0

0 UT

][
P AT

A 0

][
RV 0
0 U

]
=

[
Λ ST

S 0

]
,

and the inertia of the KKT matrix is equal to the inertia of the matrix on the right.

Applying a permutation to the matrix on the right gives a block diagonal matrix
with n diagonal blocks

[
λi σi

σi 0

]
, i = 1, . . . , p, λi = 1, i = p+ 1, . . . , n.

The eigenvalues of the 2 × 2-blocks are

λi ±
√
λ2

i + 4σ2
i

2
,

i.e., one eigenvalue is positive and one is negative. We conclude that there are
p+ (n− p) = n positive eigenvalues and p negative eigenvalues.

10.2 Projected gradient method. In this problem we explore an extension of the gradient method
to equality constrained minimization problems. Suppose f is convex and differentiable,
and x ∈ dom f satisfies Ax = b, where A ∈ Rp×n with rankA = p < n. The Euclidean
projection of the negative gradient −∇f(x) on N (A) is given by

∆xpg = argmin
Au=0

‖−∇f(x) − u‖2.

(a) Let (v, w) be the unique solution of
[
I AT

A 0

][
v
w

]
=

[
−∇f(x)

0

]
.

Show that v = ∆xpg and w = argminy ‖∇f(x) +AT y‖2.

(b) What is the relation between the projected negative gradient ∆xpg and the negative
gradient of the reduced problem (10.5), assuming F TF = I?

(c) The projected gradient method for solving an equality constrained minimization
problem uses the step ∆xpg, and a backtracking line search on f . Use the re-
sults of part (b) to give some conditions under which the projected gradient method

converges to the optimal solution, when started from a point x(0) ∈ dom f with
Ax(0) = b.

Solution.

(a) These are the optimality conditions for the problem

minimize ‖−∇f(x) − u‖2
2

subject to Au = 0.
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(b) If FTF = I, then ∆xpg = −F∇f̃(Fz + x̂) where x = Fz + x̂.

(c) By part (b), running the projected gradient from x(0) is the same as running the
gradient method on the reduced problem, assuming F TF = I. This means that
the projected gradient method converges if the initial sublevel set {x | f(x) ≤
f(x(0)), Ax = b} is closed and the objective function of the reduced or eliminated
problem, f(Fz + x̂) is strongly convex.

Newton’s method with equality constraints

10.3 Dual Newton method. In this problem we explore Newton’s method for solving the dual
of the equality constrained minimization problem (10.1). We assume that f is twice
differentiable, ∇2f(x) � 0 for all x ∈ dom f , and that for each ν ∈ Rp, the Lagrangian
L(x, ν) = f(x) + νT (Ax− b) has a unique minimizer, which we denote x(ν).

(a) Show that the dual function g is twice differentiable. Find an expression for the
Newton step for the dual function g, evaluated at ν, in terms of f , ∇f , and ∇2f ,
evaluated at x = x(ν). You can use the results of exercise 3.40.

(b) Suppose there exists a K such that
∥∥∥∥∥

[
∇2f(x) AT

A 0

]−1
∥∥∥∥∥

2

≤ K

for all x ∈ dom f . Show that g is strongly concave, with ∇2g(ν) � −(1/K)I.

Solution.

(a) By the results of exercise 3.40, g is twice differentiable, with

∇g(ν) = A∇f∗(−AT ν) = Ax(ν)

∇2g(ν) = −A∇2f∗(−AT ν)AT = −A∇2f(x(ν))−1AT .

Therefore the Newton step for g at ν is given by

∆νnt = (A∇2f(x(ν))−1AT )−1Ax(ν).

(b) Now suppose ∥∥∥∥∥

[
∇2f(x) AT

A 0

]−1
∥∥∥∥∥

2

≤ K

for all x ∈ x(S) = {x(ν) | ν ∈ S}. Using the expression

[
H AT

A 0

]−1

=

[
H−1 0

0 0

]
−
[
H−1AT

−I

]
(AH−1AT )−1

[
AH−1 −I

]

(with H = ∇2f(x)), we see that
∥∥∥∥∥

[
H AT

A 0

]−1
∥∥∥∥∥

2

≥ sup
‖u‖2=1

∥∥∥∥∥

[
H AT

A 0

]−1 [
0
u

]∥∥∥∥∥
2

= sup
‖u‖2=1

∥∥∥∥
[
H−1AT

−I

]
(AH−1AT )−1u

∥∥∥∥
2

≥ sup
‖u‖2=1

∥∥(AH−1AT )−1u
∥∥

2

= ‖(AH−1AT )−1‖2
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for all x ∈ x(S), which implies that

∇2g(ν) = −A∇2f(x(ν))−1AT � −(1/K)I

for all ν ∈ S.

10.4 Strong convexity and Lipschitz constant of the reduced problem. Suppose f satisfies the
assumptions given on page 529. Show that the reduced objective function f̃(z) = f(Fz+x̂)
is strongly convex, and that its Hessian is Lipschitz continuous (on the associated sublevel

set S̃). Express the strong convexity and Lipschitz constants of f̃ in terms of K, M , L,
and the maximum and minimum singular values of F .

Solution. In the text it was shown that ∇2f̃(z) � mI, for m = σmin(F )2/(K2M). Here

we establish the other properties of f̃ . We have

‖∇2f̃(z)‖2 = ‖FT∇2f(Fz + x̂)F‖2 ≤ ‖F‖2
2M,

using ‖∇f2(x)‖2 ≤M . Therefore we have ∇2f̃(z) � M̃I, with M̃ = ‖F‖2
2M .

Now we establish that ∇2f̃(z) satisfies a Lipschitz condition:

‖∇2f̃(z) −∇2f̃(w)‖2 = ‖FT (∇2f(Fz + x̂) −∇2f(Fw + x̂))F‖2

≤ ‖F‖2
2 ‖∇2f(Fz + x̂) −∇2f(Fw + x̂)‖2

≤ L‖F‖2
2 ‖F (z − w)‖2

≤ L‖F‖3
2 ‖z − w‖2.

Thus, ∇2f̃(z) satisfies a Lipschitz condition with constant L̃ = L‖F‖3
2.

10.5 Adding a quadratic term to the objective. Suppose Q � 0. The problem

minimize f(x) + (Ax− b)TQ(Ax− b)
subject to Ax = b

is equivalent to the original equality constrained optimization problem (10.1). Is the
Newton step for this problem the same as the Newton step for the original problem?

Solution. The Newton step of the new problem satisfies
[
H +ATQA AT

A 0

][
∆x
w

]
=

[
−g − 2ATQAx+ 2ATQb

0

]
.

From the second equation, A∆x = 0. Therefore,
[
H AT

A 0

][
∆x
w

]
=

[
−g − 2ATQAx+ 2ATQb

0

]
,

and [
H AT

A 0

][
∆x
w̃

]
=

[
−g
0

]
,

where ŵ = w + 2QAx − 2Qb. We conclude that the Newton steps are equal. Note the
connection to the last statement in exercise 10.1.

10.6 The Newton decrement. Show that (10.13) holds, i.e.,

f(x) − inf{f̂(x+ v) | A(x+ v) = b} = λ(x)2/2.

Solution. The Newton step is defined by
[
H AT

A 0

][
∆x
w

]
=

[
−g
0

]
.
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We first note that this implies that ∆xTH∆x = −gT ∆x. Therefore

f̂(x+ ∆x) = f(x) + gT v + (1/2)vTHv

= f(x) + (1/2)gT v

= f(x) − (1/2)λ(x)2.

Infeasible start Newton method

10.7 Assumptions for infeasible start Newton method. Consider the set of assumptions given
on page 536.

(a) Suppose that the function f is closed. Show that this implies that the norm of the
residual, ‖r(x, ν)‖2, is closed.

Solution. Recall from §A.3.3 that a continuous function h with an open domain
is closed if h(y) tends to infinity as y approaches the boundary of domh. The
function ‖r‖2 : Rn×Rp → R is clearly continuous (by assumption f is continuously
differentiable), and its domain, dom f × Rp, is open. Now suppose f is closed.

Consider a sequence of points (x(k), ν(k)) ∈ dom ‖r‖2 converging to a limit (x̄, ν̄) ∈
bddom ‖r‖2. Then x̄ ∈ bddom f , and since f is closed, f(x(k)) → ∞, hence

‖∇f(x(k))‖2 → ∞, and ‖r(x(k), ν(k))‖2 → ∞. We conclude that ‖r‖2 is closed.

(b) Show that Dr satisfies a Lipschitz condition if and only if ∇2f does.

Solution. First suppose that ∇2f satisfies the Lipschitz condition

‖∇2f(x) −∇2f(x̃)‖2 ≤ L‖x− x̃‖2

for x, x̃ ∈ S. From this we get a Lipschitz condition on Dr: If y = (x, ν) ∈ S, and
ỹ = (x̃, ν̃) ∈ S, then

‖Dr(y) −Dr(ỹ)‖2 =

∥∥∥∥
[

∇2f(x) AT

A 0

]
−
[

∇2f(x̃) AT

A 0

]∥∥∥∥
2

=

∥∥∥∥
[

∇2f(x) −∇2f(x̃) 0
0 0

]∥∥∥∥
2

= ‖∇2f(x) −∇2f(x̃)‖2

≤ L‖x− x̃‖2

≤ L‖y − ỹ‖2.

To show the converse, suppose that Dr satisfies a Lipschitz condition with constant
L. Using the equations above this means that

‖Dr(y) −Dr(ỹ)‖2 = ‖∇2f(x) −∇2f(x̃)‖2 ≤ L‖y − ỹ‖2

for all y and ỹ. In particular, taking ν = ν̃ = 0, this reduces to a Lipschitz condition
for ∇2f , with constant L.

10.8 Infeasible start Newton method and initially satisfied equality constraints. Suppose we use
the infeasible start Newton method to minimize f(x) subject to aT

i x = bi, i = 1, . . . , p.

(a) Suppose the initial point x(0) satisfies the linear equality aT
i x = bi. Show that the

linear equality will remain satisfied for future iterates, i.e., if aT
i x

(k) = bi for all k.

(b) Suppose that one of the equality constraints becomes satisfied at iteration k, i.e.,

we have aT
i x

(k−1) 6= bi, a
T
i x

(k) = bi. Show that at iteration k, all the equality
constraints are satisfied.
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Solution.
Follows easily from

r(k) =

(
k−1∏

i=0

(1 − t(i))

)
r(0).

10.9 Equality constrained entropy maximization. Consider the equality constrained entropy
maximization problem

minimize f(x) =
∑n

i=1
xi log xi

subject to Ax = b,
(10.42)

with dom f = Rn
++ and A ∈ Rp×n. We assume the problem is feasible and that rankA =

p < n.

(a) Show that the problem has a unique optimal solution x?.

(b) Find A, b, and feasible x(0) for which the sublevel set

{x ∈ R
n
++ | Ax = b, f(x) ≤ f(x(0))}

is not closed. Thus, the assumptions listed in §10.2.4, page 529, are not satisfied for
some feasible initial points.

(c) Show that the problem (10.42) satisfies the assumptions for the infeasible start
Newton method listed in §10.3.3, page 536, for any feasible starting point.

(d) Derive the Lagrange dual of (10.42), and explain how to find the optimal solution
of (10.42) from the optimal solution of the dual problem. Show that the dual problem
satisfies the assumptions listed in §10.2.4, page 529, for any starting point.

The results of part (b), (c), and (d) do not mean the standard Newton method will fail,
or that the infeasible start Newton method or dual method will work better in practice.
It only means our convergence analysis for the standard Newton method does not apply,
while our convergence analysis does apply to the infeasible start and dual methods. (See
exercise 10.15.)

Solution.

(a) If p? is not attained, then either p? is attained asymptotically, as x goes to infinity,
or in the limit as x goes to x?, where x? � 0 with one or more zero components.

The first possibility cannot occur because the entropy goes to infinity as x goes to
infinity. The second possibility can also be ruled out, because by assumption the
problem is feasible. Suppose x̃ � 0 and Ax̃ = b. Define v = x̃− x and

g(t) =

n∑

i=1

(x?
i + tvi) log(x?

i + tvi)

for t > 0. The derivative is

g′(t) =

n∑

i=1

vi(1 + log(x?
i + tvi).

Now if x?
i = 0 for some i, then vi > 0, and hence limt→0 g(t) = −∞. This means it

is impossible that limt→0 g(t) = p?.
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(b) Consider

A =

[
2 1 0
1 1 1

]
, b =

[
1
1

]
,

and starting point x(0) = (1/20, 9/10, 1/20). Eliminating x2 and x3 from the two
equations

2x1 + x2 = 1, x1 + x2 + x3 = 1

gives x2 = 1 − 2x1, x3 = x1. For x(0) = (1/20, 9/10, 1/20), with f(x(0)) = −0.3944

we have f(x1, 1 − 2x1, x1) ≤ f(x(0)) if and only if 1/20 ≤ x1 < 0.5, which is not
closed.

(c) The dual problem is

maximize −bT ν −
∑p

i=1
exp(−1 − aT

i ν)

where ai is the ith column of A. The dual objective function is closed with domain
Rp.

(d) We have

r(x, ν) = (∇f(x) +AT ν,Ax− b)

where
∇f(x)i = log xi + 1, i = 1, . . . , n.

We show that ‖r‖2 is a closed function.

Clearly ‖r‖2 is continuous on its domain, Rn
++ × Rp.

Suppose (x(k), ν(k)), k = 1, 2, . . . is a sequence of points converging to a point (x̄, ν̄) ∈
bddom ‖r‖2. We have x̄i = 0 for at least one i, so log x

(k)
i + 1 + aT

i ν
(k) → −∞.

Hence ‖r(x(k), ν(k)‖2 → ∞.

We conclude that r satisfies the sublevel set condition for arbitrary starting points.

10.10 Bounded inverse derivative condition for strongly convex-concave game. Consider a convex-
concave game with payoff function f (see page 541). Suppose ∇2

uuf(u, v) � mI and
∇2

vvf(u, v) � −mI, for all (u, v) ∈ dom f . Show that

‖Dr(u, v)−1‖2 = ‖∇2f(u, v)−1‖2 ≤ 1/m.

Solution. Let

H = ∇2f(u, v) =

[
D E
ET −F

]

where D ∈ Sp, F ∈ Sq, E ∈ Rp×q, and assume D � mI, F � mI. Let D−1/2EF−1/2 =
U1ΣV

T
1 be the singular value decomposition (U1 ∈ Rp×r, V1 ∈ Rq×r, Σ ∈ Rr×r, r =

rankE). Choose U2 ∈ Rp×(p−r) and V2 ∈ Rq×(q−r), so that UT
2 U2 = I, UT

2 U1 = 0 and
V T

2 V2 = I, V T
2 V1 = 0. Define

U =
[
U1 U2

]
∈ R

p×p, V =
[
V1 V2

]
∈ R

p×p, S =

[
Σ1 0
0 0

]
∈ R

p×q.

With these definitions we have D−1/2EF−1/2 = USV T = U1ΣV
T
1 , and

H =

[
D1/2U 0

0 F 1/2V

][
I S
ST −I

][
UTD1/2 0

0 V TF 1/2

]
.

Therefore

H−1 =

[
UTD−1/2 0

0 V TF−1/2

][
I S
ST −I

]−1 [
D−1/2U 0

0 F−1/2V

]
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and ‖H−1‖2 ≤ (1/m)‖G−1‖2, where

G =

[
I S
ST −I

]
.

We can permute the rows and columns of G so that it is block diagonal with max{p, q}−r
scalar diagonal blocks with value 1, max{p, q} − r scalar diagonal blocks with value −1,
and r diagonal blocks of the form

[
1 σi

σi −1

]
.

Note that
[

1 σi

σi −1

]−1

=
1

1 + σ2
i

[
1 σi

σi −1

]

=

[
1/
√

1 + σ2
i σi/

√
1 + σ2

i

σi/
√

1 + σ2
i −1/

√
1 + σ2

i

]


1√
1+σ2

i

0

0 1√
1+σ2

i


 ,

and therefore ∥∥∥∥∥

[
1 σi

σi −1

]−1
∥∥∥∥∥

2

=
1√

1 + σ2
i

.

If r 6= max{p, q}, then ‖G−1‖2 = 1. Otherwise

‖G−1‖2 = max
i

(1 + σ2
i )−1/2 ≤ 1.

In conclusion,
‖H−1‖2 ≤ (1/m)‖G−1‖2 ≤ 1/m.

Implementation

10.11 Consider the resource allocation problem described in example 10.1. You can assume the
fi are strongly convex, i.e., f ′′

i (z) ≥ m > 0 for all z.

(a) Find the computational effort required to compute a Newton step for the reduced
problem. Be sure to exploit the special structure of the Newton equations.

(b) Explain how to solve the problem via the dual. You can assume that the conjugate
functions f∗

i , and their derivatives, are readily computable, and that the equation
f ′

i(x) = ν is readily solved for x, given ν. What is the computational complexity of
finding a Newton step for the dual problem?

(c) What is the computational complexity of computing a Newton step for the resource
allocation problem? Be sure to exploit the special structure of the KKT equations.

Solution.

(a) The reduced problem is

minimize f̃(z) =
∑n−1

i=1
fi(zi) + fn(b− 1T z).

The Newton equation is
(D + d11

T )∆z = g.

where D is diagonal with Dii = f ′′
i (zi) and d = f ′′

n (b− 1T z).

The cost of computing ∆z is order n, if we use the matrix inversion lemma.
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(b) The dual problem is

maxmize g(ν) = −bν −
∑n

i=1
f∗

i (−ν).
From the solution of exercise 10.3,

g′(ν) = 1
Tx(ν), g′′(ν) = −1

T∇2f(x(ν))−1
1,

where ∇2f(x(ν)) is diagonal with diagonal elements f ′′
i (xi(ν)). The cost of forming

g′′(ν) is order n.

(c) The KKT system is [
D 1

1T 0

][
∆x
w

]
=

[
−g
0

]
,

which can be solved in order n operations by eliminating ∆x.

10.12 Describe an efficient way to compute the Newton step for the problem

minimize tr(X−1)
subject to tr(AiX) = bi, i = 1, . . . , p

with domain Sn
++, assuming p and n have the same order of magnitude. Also derive the

Lagrange dual problem and give the complexity of finding the Newton step for the dual
problem.

Solution.

(a) The gradient of f0 is ∇f0(X) = −X−2. The optimality conditions are

−X−2 +

p∑

i=1

wiAi = 0, tr(AiX) = bi, i = 1, . . . , p.

Linearizing around X gives

−X−2 +X−1∆XX−2 +X−2∆XX−1 +

p∑

i=1

wiAi = 0

tr(Ai(X + ∆X)) = bi, i = 1, . . . , p,

i.e.,

∆XX−1 +X−1∆X +

p∑

i=1

wi(XAiX) = I

tr(Ai∆X) = bi − tr(AiX), i = 1, . . . , p.

We can eliminate ∆X from the first equation by solving p+ 1 Lyapunov equations:

∆X = Y0 +

n∑

i=1

wiYi

where

Y0X
−1 +X−1Y0 = I, YiX

−1 +X−1Yi = XAiX, i = 1, . . . , p.

Substituting in the second equation gives

Hw = g,

with Hi = tr(YiYj), i, j = 1, . . . , p.

The cost is order pn3 for computing Yi, p
2n2 for constructing H and p3 for solving

the equations.
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(b) The conjugate of f0 is given in exercise 3.37:

f∗
0 (Y ) = −2 tr(−Y )−1/2, dom f∗

0 = −S
n
++.

The dual problem is

maximize g(ν) = −bT ν + 2 tr(
∑p

i=1
νiAi)

1/2

with domain {ν ∈ Rp |
∑

i
νiAi � 0}. The optimality conditions are

2 tr(Ai∇g0(Z)) = bi, i = 1, . . . , p, Z =

p∑

i=1

νiAi, (10.12.A)

where g0(Z) = trZ1/2.

The gradient of g0 is ∇ tr(Z1/2) = (1/2)Z−1/2, as can be seen as follows. Suppose

Z � 0. For small symmetric ∆Z, (Z + ∆Z)1/2 ≈ Z1/2 + ∆Y where

Z + ∆Z = (Z1/2 + ∆Y )2

≈ Z + Z1/2∆Y + ∆Y Z1/2,

i.e., ∆Y is the solution of the Lyapunov equation ∆Z = Z1/2∆Y + ∆Y Z1/2. In
particular,

tr∆Y = tr(Z−1/2∆Z) − tr(Z−1/2∆Y Z1/2) = tr(Z−1/2∆Z) − tr∆Y,

i.e., tr∆Y = (1/2) tr(Z−1/2∆Z). Therefore

tr(Z + ∆Z)1/2 ≈ trZ1/2 + tr∆Y

= trZ1/2 + (1/2) tr(Z−1/2∆Z),

i.e., ∇Z trZ1/2 = (1/2)Z−1/2.

We can therefore simplify the optimality conditions (10.12.A) as

tr(AiZ
−1/2) = bi, i = 1, . . . , p, Z =

p∑

i=1

νiAi,

Linearizing around Z, ν gives

tr(AiZ
−1/2) + tr(Ai∆Y ) = bi, i = 1, . . . , p

Z1/2∆Y + ∆Y Z1/2 = ∆Z

Z + ∆Z =

p∑

i=1

νiAi +

p∑

i=1

∆νiAi,

i.e., after a simplification

tr(Ai∆Y ) = bi − tr(AiZ
−1/2), i = 1, . . . , p

Z1/2∆Y + ∆Y Z1/2 −
∑

i

∆νiAi = −Z +

p∑

i=1

νiAi.

These equations have the same form as the Newton equations in part (a) (with X

replaced with Z−1/2).
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10.13 Elimination method for computing Newton step for convex-concave game. Consider a
convex-concave game with payoff function f : Rp × Rq → R (see page 541). We assume
that f is strongly convex-concave, i.e., for all (u, v) ∈ dom f and some m > 0, we have
∇2

uuf(u, v) � mI and ∇2
vvf(u, v) � −mI.

(a) Show how to compute the Newton step using Cholesky factorizations of ∇2
uuf(u, v)

and −∇2fvv(u, v). Compare the cost of this method with the cost of using an LDLT

factorization of ∇f(u, v), assuming ∇2f(u, v) is dense.

(b) Show how you can exploit diagonal or block diagonal structure in ∇2
uuf(u, v) and/or

∇2
vvf(u, v). How much do you save, if you assume ∇2

uvf(u, v) is dense?

Solution.

(a) We use the notation

∇2f(u, v) =

[
D E
ET −F

]
,

with D ∈ S
p
++, E ∈ Rp×q, F ∈ S

p
++, and consider the cost of solving a system of

the form [
D E
ET −F

][
v
w

]
= −

[
g
h

]
.

We have two equations

Dv + Ew = −g, ET v − Fw = −h.

From the first equation we solve for v to obtain

v = −D−1(g + Ew).

Substituting in the other equation gives ETD−1(g + Ew) + Fw = h, so

w = (F + ETD−1E)−1(h− ETD−1g).

We can implement this method using the Cholesky factorization as follows.

• Factor D = L1L
T
1 ((1/3)p3 flops).

• Compute y = D−1g, and Y = L−1
1 E (p2(2 + q) ≈ p2q flops).

• Compute S = F + Y TY (pq2 flops) and d = h− ET y (2pq flops)

• Solve Sw = d via Cholesky factorization ((1/3)q3 flops).

The total number of flops (ignoring lower order terms) is

(1/3)p3 + p2q + pq2 + (1/3)q3 = (1/3)(p+ q)3.

Eliminating w would give the same result.

The cost is the same as using LDLT factorization of ∇f(u, v), i.e., (1/3)(p+ q)3.

A matrix of the form of ∇2f(u, v) above is called a quasidefinite matrix. It has the
special property that it has an LDLT factorization with diagonal D: with the same
notation as above,

[
D E
ET −F

]
=

[
L1 0
Y T L2

][
I 0
0 −I

][
LT

1 Y
0 LT

2

]
.

(b) Assume f is the cost of factoring D, and s is the cost of solving a system Dx = b
after factoring. Then the cost of the algorithm is

f + p2(s/2) + pq2 + (1/3)q3.
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Numerical experiments

10.14 Log-optimal investment. Consider the log-optimal investment problem described in ex-
ercise 4.60. Use Newton’s method to compute the solution, with the following problem
data: there are n = 3 assets, and m = 4 scenarios, with returns

p1 =

[
2

1.3
1

]
, p2 =

[
2

0.5
1

]
, p3 =

[
0.5
1.3
1

]
, p4 =

[
0.5
0.5
1

]
.

The probabilities of the four scenarios are given by π = (1/3, 1/6, 1/3, 1/6).

Solution. Eliminating x3 using the equality constraint x1 + x2 + x3 = 1 gives the
equivalent problem

maximize (1/3) log(1 + x1 + 0.3x2) + (1/6) log(1 + x1 − 0.5x2)
+ (1/3) log(1 − 0.5x1 + 0.3x2) + (1/6) log(1 − 0.5x1 − 0.5x2),

with two variables x1 and x2. The solution is

x1 = 0.4973, x2 = 0.1994, x3 = 0.7021.

We use Newton’s method with backtracking parameters α = 0.01, β = 0.5, stopping
criterion λ < 10−8, and initial point x = (0, 0, 1). The algorithm converges in five steps,
with no backtracking necessary.

10.15 Equality constrained entropy maximization. Consider the equality constrained entropy
maximization problem

minimize f(x) =
∑n

i=1
xi log xi

subject to Ax = b,

with dom f = Rn
++ and A ∈ Rp×n, with p < n. (See exercise 10.9 for some relevant

analysis.)

Generate a problem instance with n = 100 and p = 30 by choosing A randomly (checking
that it has full rank), choosing x̂ as a random positive vector (e.g., with entries uniformly
distributed on [0, 1]) and then setting b = Ax̂. (Thus, x̂ is feasible.)

Compute the solution of the problem using the following methods.

(a) Standard Newton method. You can use initial point x(0) = x̂.

(b) Infeasible start Newton method. You can use initial point x(0) = x̂ (to compare with

the standard Newton method), and also the initial point x(0) = 1.

(c) Dual Newton method, i.e., the standard Newton method applied to the dual problem.

Verify that the three methods compute the same optimal point (and Lagrange multiplier).
Compare the computational effort per step for the three methods, assuming relevant
structure is exploited. (Your implementation, however, does not need to exploit structure
to compute the Newton step.)

Solution.

(a) Standard Newton method. A typical convergence plot is shown below.
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The Matlab code is as follows.

MAXITERS = 100;
ALPHA = 0.01;
BETA = 0.5;
NTTOL = 1e-7;
x = x0;
for iter=1:MAXITERS

val = x’*log(x);
grad = 1+log(x);
hess = diag(1./x);
sol = -[hess A’; A zeros(p,p)] \ [grad; zeros(p,1)];
v = sol(1:n);
fprime = grad’*v;
if (abs(fprime) < NTTOL), break; end;
t=1;
while (min(x+t*v) <= 0), t = BETA*t; end;
while ((x+t*v)’*log(x+t*v) >= val + t*ALPHA*fprime), t=BETA*t; end;
x = x + t*v;

end;

(b) Infeasible start Newton method. The figure shows the norm of the residual versus
(∇(f(x)) + AT ν,Ax − b) verus iteration number for the same example. The lower

curve uses starting point x(0) = 1; the other curve uses the same starting point as
in part (a).
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x(0) = 1

MAXITERS = 100;
ALPHA = 0.01;
BETA = 0.5;
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RESTOL = 1e-7;

x=x0; nu=zeros(p,1);
for i=1:MAXITERS
r = [1+log(x)+A’*nu; A*x-b]; resdls = [resdls, norm(r)];
sol = -[diag(1./x) A’; A zeros(p,p)] \ r;
Dx = sol(1:n); Dnu = sol(n+[1:p]);
if (norm(r) < RESTOL), break; end;
t=1;
while (min(x+t*Dx) <= 0), t = BETA*t; end;
while norm([1+log(x+t*Dx)+A’*(nu+Dnu); A*(x+Dx)-b]) > ...

(1-ALPHA*t)*norm(r), t=BETA*t; end;
x = x + t*Dx; nu = nu + t*Dnu;

end;

(c) Dual Newton method. The dual problem is

maximize −bT ν −
∑n

i=1
e−aT

i
ν−1

where ai is the ith column of A. The figure shows the dual function value versus
iteration number for the same example.
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MAXITERS = 100;
ALPHA = 0.01;
BETA = 0.5;
NTTOL = 1e-8;
nu = zeros(p,1);
for i=1:MAXITERS

val = b’*nu + sum(exp(-A’*nu-1));
grad = b - A*exp(-A’*nu-1);
hess = A*diag(exp(-A’*nu-1))*A’;
v = -hess\grad;
fprime = grad’*v;
if (abs(fprime) < NTTOL), break; end;
t=1;
while (b’*(nu+t*v) + sum(exp(-A’*(nu+t*v)-1)) > ...

val + t*ALPHA*fprime), t = BETA*t; end;
nu = nu + t*v;

end;

The computational effort is the same for each method. In the standard and infeasible
start Newton methods, we solve equations with coefficient matrix

[
∇2f(x) AT

A 0

]
,
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where
∇2f(x) = diag(x)−1.

Block elimination reduces the equation to one with coefficient matrix Adiag(x)AT .

In the dual method, we solve an equation with coefficient matrix

−∇2g(ν) = ADAT

where D is diagonal with Dii = e−aT
i

ν−1.

In all three methods, the main computation in each iteration is therefore the solution of
a linear system of the form

ATDAv = −g
where D is diagonal with positive diagonal elements.

10.16 Convex-concave game. Use the infeasible start Newton method to solve convex-concave
games of the form (10.32), with randomly generated data. Plot the norm of the residual
and step length versus iteration. Experiment with the line search parameters and initial
point (which must satisfy ‖u‖2 < 1, ‖v‖2 < 1, however).

Solution. See figure 10.5 and the two figures below.
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A Matlab implementation, using the notation

f(x, y) = xTAy + cTx+ dT y − log(1 − xTx) + log(1 − yT y),

is as follows.

BETA = .5;
ALPHA = .01;
MAXITERS = 100;
x = .01*ones(n,1);
y = .01*ones(n,1);

for iters =1:MAXITERS
r = [ A*y + (2/(1-x’*x))*x + c; A’*x - (2/(1-y’*y))*y + d];
if (norm(r) < 1e-8), break; end;
Dr = [ ((2/(1-x’*x))*eye(n) + (4/(1-x’*x)^2)*x*x’) A ;

A’ (-(2/(1-y’*y))*eye(n) - (4/(1-y’*y)^2)*y*y’)];
step = -Dr\r; dx = step(1:n); dy = step(n+[1:n]);
t = 1;
newx = x+t*dx; newy = y+t*dy;
while ((norm(newx) >= 1) | (norm(newy) >= 1)),

t = BETA*t; newx = x+t*dx; newy = y+t*dy;
end;
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newr = [ A*newy + (2/(1-newx’*newx))*newx + c;
A’*newx - (2/(1-newy’*newy))*newy + d ];

while (norm(newr) > (1-ALPHA*t)*norm(r))
t = BETA*t; newx = x+t*dx; newy = y+t*dy;
newr = [ A*newy + (2/(1-newx’*newx))*newx + c;

A’*newx - (2/(1-newy’*newy))*newy + d];
end;
x = x+t*dx; y = y+t*dy;

end;
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Interior-point methods
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Exercises

The barrier method

11.1 Barrier method example. Consider the simple problem

minimize x2 + 1
subject to 2 ≤ x ≤ 4,

which has feasible set [2, 4], and optimal point x? = 2. Plot f0, and tf0 + φ, for several
values of t > 0, versus x. Label x?(t).

Solution. The figure shows the function f0 + (1/t)Î for f0(x) = x2 + 1, with barrier

function Î(x) = − log(x − 2) − log(4 − x), for t = 10−1, 10−0.8, 10−0.6, . . . , 100.8, 10.
The inner curve corresponds to t = 0.1, and the outer curve corresponds to t = 10. The
objective function is shown as a dashed curve.
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11.2 What happens if the barrier method is applied to the LP

minimize x2

subject to x1 ≤ x2, 0 ≤ x2,

with variable x ∈ R2?

Solution. We need to minimize

tf0(x) + φ(x) = tx2 − log(x2 − x1) − log x2,

but this function is unbounded below (letting x1 → −∞), so the first centering step never
converges.

11.3 Boundedness of centering problem. Suppose the sublevel sets of (11.1),

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

are bounded. Show that the sublevel sets of the associated centering problem,

minimize tf0(x) + φ(x)
subject to Ax = b,

are bounded.
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Solution. Suppose a sublevel set {x | tf0(x)+φ(x) ≤M} is unbounded. Let {x+sv | s ≥
0}, with with v 6= 0 and x strictly feasible, be a ray contained in the sublevel set. We have
A(x+sv) = b for all s ≥ 0 (i.e., Ax = b and Av = 0), and fi(x+sv) < 0, i = 1, . . . ,m. By
assumption, the sublevel sets of (11.1) are bounded, which is only possible if f0(x + sv)
increases with s for sufficiently large s. Without loss of generality, we can choose x such
that ∇f0(x)T v > 0.

We have

M ≥ tf0(x+ sv) −
m∑

i=1

log(−fi(x+ sv))

≥ tf0(x) + st∇f0(x)T v −
m∑

i=1

log(−fi(x) − s∇fi(x)
T v)

for all s ≥ 0. This is impossible since ∇f0(x)T v > 0.

11.4 Adding a norm bound to ensure strong convexity of the centering problem. Suppose we
add the constraint xTx ≤ R2 to the problem (11.1):

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
xTx ≤ R2.

Let φ̃ denote the logarithmic barrier function for this modified problem. Find a > 0 for
which ∇2(tf0(x) + φ̃(x)) � aI holds, for all feasible x.

Solution. Let φ denote the logarithmic barrier of the original problem. The constraint
xTx ≤ R2 adds the term − log(R2 − xTx) to the logarithmic barrier, so we have

∇2(tf0 + φ̃) = ∇2(tf0 + φ) +
2

R2 − xTx
I +

4

(R2 − xTx)2
xxT

� ∇2(tf0 + φ) + (2/R2)I

� (2/R2)I,

so we can take m = 2/R2.

11.5 Barrier method for second-order cone programming. Consider the SOCP (without equality
constraints, for simplicity)

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cT

i x+ di, i = 1, . . . ,m.
(11.63)

The constraint functions in this problem are not differentiable (since the Euclidean norm
‖u‖2 is not differentiable at u = 0) so the (standard) barrier method cannot be applied.
In §11.6, we saw that this SOCP can be solved by an extension of the barrier method
that handles generalized inequalities. (See example 11.8, page 599, and page 601.) In this
exercise, we show how the standard barrier method (with scalar constraint functions) can
be used to solve the SOCP.

We first reformulate the SOCP as

minimize fTx
subject to ‖Aix+ bi‖2

2/(c
T
i x+ di) ≤ cT

i x+ di, i = 1, . . . ,m
cTi x+ di ≥ 0, i = 1, . . . ,m.

(11.64)

The constraint function

fi(x) =
‖Aix+ bi‖2

2

cTi x+ di
− cT

i x− di
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is the composition of a quadratic-over-linear function with an affine function, and is twice
differentiable (and convex), provided we define its domain as dom fi = {x | cT

i x+di > 0}.
Note that the two problems (11.63) and (11.64) are not exactly equivalent. If cT

i x
?+di = 0

for some i, where x? is the optimal solution of the SOCP (11.63), then the reformulated
problem (11.64) is not solvable; x? is not in its domain. Nevertheless we will see that
the barrier method, applied to (11.64), produces arbitrarily accurate suboptimal solutions
of (11.64), and hence also for (11.63).

(a) Form the log barrier φ for the problem (11.64). Compare it to the log barrier that
arises when the SOCP (11.63) is solved using the barrier method for generalized
inequalities (in §11.6).

(b) Show that if tfTx+ φ(x) is minimized, the minimizer x?(t) is 2m/t-suboptimal for
the problem (11.63). It follows that the standard barrier method, applied to the
reformulated problem (11.64), solves the SOCP (11.63), in the sense of producing
arbitrarily accurate suboptimal solutions. This is the case even though the optimal
point x? need not be in the domain of the reformulated problem (11.64).

Solution.

(a) The log barrier φ for the problem (11.64) is

−
∑m

i=1
log
(
cTi x+ di − ‖Aix+bi‖2

2

cT
i

x+di

)
−
∑m

i=1
log(cT

i x+ di)

= −
∑m

i=1
log
(
(cT

i x+ di)
2 − ‖Aix+ bi‖2

2

)

The log barrier for the SOCP (11.63), using the generalized logarithm for the second-
order cone given in §11.6, is

−
m∑

i=1

log
(
(cT

i x+ di)
2 − ‖Aix+ bi‖2

2

)
,

which is exactly the same. The log barriers are the same.

(b) The centering problems are the same, and the central paths are the same. The proof
is identical to the derivation in example 11.8.

11.6 General barriers. The log barrier is based on the approximation −(1/t) log(−u) of the

indicator function Î−(u) (see §11.2.1, page 563). We can also construct barriers from
other approximations, which in turn yield generalizations of the central path and barrier
method. Let h : R → R be a twice differentiable, closed, increasing convex function,
with domh = −R++. (This implies h(u) → ∞ as u → 0.) One such function is
h(u) = − log(−u); another example is h(u) = −1/u (for u < 0).

Now consider the optimization problem (without equality constraints, for simplicity)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

where fi are twice differentiable. We define the h-barrier for this problem as

φh(x) =

m∑

i=1

h(fi(x)),

with domain {x | fi(x) < 0, i = 1, . . . ,m}. When h(u) = − log(−u), this is the usual
logarithmic barrier; when h(u) = −1/u, φh is called the inverse barrier. We define the
h-central path as

x?(t) = argmin tf0(x) + φh(x),

where t > 0 is a parameter. (We assume that for each t, the minimizer exists and is
unique.)
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(a) Explain why tf0(x) + φh(x) is convex in x, for each t > 0.

(b) Show how to construct a dual feasible λ from x?(t). Find the associated duality gap.

(c) For what functions h does the duality gap found in part (b) depend only on t and
m (and no other problem data)?

Solution.

(a) The composition rules show that tf0(x) + φh(x) is convex in x, since h is increasing
and convex, and fi are convex.

(b) The minimizer of tf0(x)+φh(x), z = x?(t), satisfies t∇f0(z)+∇φ(z) = 0. Expanding
this we get

t∇f0(z) +

m∑

i=1

h′(fi(z))∇fi(z) = 0.

This shows that z minimizes the Lagrangian f0(z) +
∑m

i=1
λifi(z), for

λi = h′(fi(z))/t, i = 1, . . . ,m.

The associated dual function value is

g(λ) = f0(z) +

m∑

i=1

λifi(z) = f0(z) +

m∑

i=1

h′(fi(z))fi(z)/t,

so the duality gap is

(1/t)

m∑

i=1

h′(fi(z))(−fi(z)).

(c) The only way the expression above does not depend on problem data (except t and
m) is for h′(u)(−u) to be constant. This means h′(u) = a/(−u) for some constant
a, so h(u) = −a log(−u) + b, for some constant b. Since h must be convex and
increasing, we need a > 0. Thus, h gives rise to a scaled, offset log barrier. In
particular, the central path associated with h is the same as for the standard log
barrier.

11.7 Tangent to central path. This problem concerns dx?(t)/dt, which gives the tangent to the
central path at the point x?(t). For simplicity, we consider a problem without equality
constraints; the results readily generalize to problems with equality constraints.

(a) Find an explicit expression for dx?(t)/dt. Hint. Differentiate the centrality equa-
tions (11.7) with respect to t.

(b) Show that f0(x
?(t)) decreases as t increases. Thus, the objective value in the barrier

method decreases, as the parameter t is increased. (We already know that the duality
gap, which is m/t, decreases as t increases.)

Solution.

(a) Differentiating the centrality equation yields

∇f0(x?(t)) +
(
t∇2f0(x

?(t)) + ∇2φ(x?(t))
) dx?

dt
= 0.

Thus, the tangent to the central path at x?(t) is given by

dx?

dt
= −

(
t∇2f0(x

?(t)) + ∇2φ(x?(t))
)−1 ∇f0(x?(t)). (11.7.A)
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(b) We will show that df0(x
?(t))/dt < 0.

df0(x
?(t))

dt
= ∇f0(x?(t))T dx

?(t)

dt

= −∇f0(x?(t))T
(
t∇2f0(x

?(t)) + ∇2φ(x?(t))
)−1 ∇f0(x?(t))

< 0.

11.8 Predictor-corrector method for centering problems. In the standard barrier method, x?(µt)
is computed using Newton’s method, starting from the initial point x?(t). One alternative
that has been proposed is to make an approximation or prediction x̂ of x?(µt), and then
start the Newton method for computing x?(µt) from x̂. The idea is that this should
reduce the number of Newton steps, since x̂ is (presumably) a better initial point than
x?(t). This method of centering is called a predictor-corrector method, since it first makes
a prediction of what x?(µt) is, then corrects the prediction using Newton’s method.

The most widely used predictor is the first-order predictor, based on the tangent to the
central path, explored in exercise 11.7. This predictor is given by

x̂ = x?(t) +
dx?(t)

dt
(µt− t).

Derive an expression for the first-order predictor x̂. Compare it to the Newton update
obtained, i.e., x?(t) + ∆xnt, where ∆xnt is the Newton step for µtf0(x) + φ(x), at x?(t).
What can you say when the objective f0 is linear? (For simplicity, you can consider a
problem without equality constraints.)

Solution. The first-order predictor is, using the expression for dx?/dt found in exer-
cise 11.7,

x̂ = x?(t) +
dx?(t)

dt
(µt− t)

= x?(t) − (µ− 1)t
(
t∇2f0(x

?(t)) + ∇2φ(x?(t))
)−1 ∇f0(x?(t)).

The Newton step for µtf0 + φ, at the point x?(t), is given by

∆xnt = −
(
µt∇2f0(x

?(t)) + ∇2φ(x?(t))
)−1

(µt∇f0(x?(t)) + ∇φ(x?(t)))

= −(µ− 1)t
(
µt∇2f0(x

?(t)) + ∇2φ(x?(t))
)−1 ∇f0(x?(t)),

where we use t∇f0(x?(t)) + ∇φ(x?(t)) = 0. The Newton update is then

x?(t) + ∆xnt = x?(t) − (µ− 1)t
(
µt∇2f0(x

?(t)) + ∇2φ(x?(t))
)−1 ∇f0(x?(t)).

This is similar to, but not quite the same as, the first-order predictor.

Now let’s consider the special case when f0 is linear, say, f0(x) = cTx. Then the first-order
predictor is given by

x̂ = x?(t) − (µ− 1)t∇2φ(x?(t))−1c.

The Newton update is exactly the same. The Newton step for µtf0 + φ at x? is exactly
the tangent to the central path. We conclude that when the objective is linear, the fancy
sounding predictor-corrector method is exactly the same as the simple method of just
starting Newton’s method from the current point x?(t).

11.9 Dual feasible points near the central path. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

with variable x ∈ Rn. We assume the functions fi are convex and twice differentiable. (We
assume for simplicity there are no equality constraints.) Recall (from §11.2.2, page 565)
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that λi = −1/(tfi(x
?(t))), i = 1, . . . ,m, is dual feasible, and in fact, x?(t) minimizes

L(x, λ). This allows us to evaluate the dual function for λ, which turns out to be g(λ) =
f0(x

?(t)) −m/t. In particular, we conclude that x?(t) is m/t-suboptimal.

In this problem we consider what happens when a point x is close to x?(t), but not quite
centered. (This would occur if the centering steps were terminated early, or not carried
out to full accuracy.) In this case, of course, we cannot claim that λi = −1/(tfi(x)),
i = 1, . . . ,m, is dual feasible, or that x is m/t-suboptimal. However, it turns out that
a slightly more complicated formula does yield a dual feasible point, provided x is close
enough to centered.

Let ∆xnt be the Newton step at x of the centering problem

minimize tf0(x) −
∑m

i=1
log(−fi(x)).

Define

λi =
1

−tfi(x)

(
1 +

∇fi(x)
T ∆xnt

−fi(x)

)
, i = 1, . . . ,m.

You will show that for small ∆xnt (i.e., for x nearly centered), λ is dual feasible (i.e.,
λ � 0 and L(x, λ) is bounded below).

In this case, the vector x does not minimize L(x, λ), so there is no general formula for the
dual function value g(λ) associated with λ. (If we have an analytical expression for the
dual objective, however, we can simply evaluate g(λ).)

Hint. Use the results in exercise 3.41 to show that when ∆xnt is small enough, there exist
x0, x1, . . . , xm such that

∇f0(x0) = ∇f0(x) + ∇2f0(x)∆xnt

∇fi(xi) = ∇fi(x) + (1/λi)∇2fi(x)∆xnt, i = 1, . . . ,m.

This implies that

∇f0(x0) +

m∑

i=1

λi∇fi(xi) = 0.

Now use fi(z) ≥ fi(xi) + ∇fi(xi)
T (z − xi), i = 0, . . . ,m, to derive a lower bound on

L(z, λ).

Solution. It is clear that λ � 0 for sufficiently small ∆xnt. We need to show that
f0 +

∑
i
λifi is bounded below.

The Newton equations at x are

∇f0(x) +

m∑

i=1

1

−tfi(x)
∇fi(x) +

m∑

i=1

∇fi(x)
T ∆xnt

tfi(x)2
∇fi(x)

+ ∇2f0(x)∆xnt +

m∑

i=1

1

−tfi(x)
∇2fi(x)∆xnt = 0

i.e., using the above definition of λ,

∇f0(x) +

m∑

i=1

λi∇fi(x) + ∇2f0(x)∆xnt +

m∑

i=1

1

−tfi(x)
∇2fi(x)∆xnt = 0.

Now, from the result in exercise 3.41, if ∆xnt is small enough, there exist x0, x1, . . . , xm

such that
∇f0(x0) = ∇f0(x) + ∇2f0(x)∆xnt,

and
∇fi(xi) = ∇fi(x) + (1/λi)∇2fi(x)∆xnt, i = 1, . . . ,m.
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We can therefore write the Newton equation as

∇f0(x0) +

m∑

i=1

λi∇fi(xi) = 0.

Returning to the question of boundedness of f0 +
∑

i
λifi, we have

f0(x) +

m∑

i=1

λifi(x) ≥ f0(x0) + ∇f0(x0)
T (x− x0) +

m∑

i=1

λi(fi(xi) + ∇fi(xi)
T (x− xi))

= f0(x0) +
∑

i

λifi(xi) +

(
∇f0(x0) +

m∑

i=1

λi∇fi(xi)

)T

x

−∇f0(x0)
Tx0 −

∑

i

λi∇fi(xi)
Txi

= f0(x0) +
∑

i

λifi(xi) −∇f0(x0)
Tx0 −

∑

i

λi∇fi(xi)
Txi,

which shows that f0 +
∑

i
λifi is bounded below.

11.10 Another parametrization of the central path. We consider the problem (11.1), with central
path x?(t) for t > 0, defined as the solution of

minimize tf0(x) −
∑m

i=1
log(−fi(x))

subject to Ax = b.

In this problem we explore another parametrization of the central path.

For u > p?, let z?(u) denote the solution of

minimize − log(u− f0(x)) −
∑m

i=1
log(−fi(x))

subject to Ax = b.

Show that the curve defined by z?(u), for u > p?, is the central path. (In other words,
for each u > p?, there is a t > 0 for which x?(t) = z?(u), and conversely, for each t > 0,
there is an u > p? for which z?(u) = x?(t)).

Solution. z?(u) satisfies the optimality conditions

1

u− f0(z?(u))
∇f0(z?(u)) +

m∑

i=1

1

−fi(z?(u))
∇fi(z

?(u)) +AT ν = 0

for some ν. We conclude that z?(u) = x?(t) for

t =
1

u− f0(z?(u))
.

Conversely, for each t > 0, x?(t) = z?(u) with

u =
1

t
+ f0(x

?(t)) > p?.
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11.11 Method of analytic centers. In this problem we consider a variation on the barrier method,
based on the parametrization of the central path described in exercise 11.10. For simplic-
ity, we consider a problem with no equality constraints,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

The method of analytic centers starts with any strictly feasible initial point x(0), and any
u(0) > f0(x

(0)). We then set

u(1) = θu(0) + (1 − θ)f0(x
(0)),

where θ ∈ (0, 1) is an algorithm parameter (usually chosen small), and then compute the
next iterate as

x(1) = z?(u(1))

(using Newton’s method, starting from x(0)). Here z?(s) denotes the minimizer of

− log(s− f0(x)) −
m∑

i=1

log(−fi(x)),

which we assume exists and is unique. This process is then repeated.

The point z?(s) is the analytic center of the inequalities

f0(x) ≤ s, f1(x) ≤ 0, . . . , fm(x) ≤ 0,

hence the algorithm name.

Show that the method of centers works, i.e., x(k) converges to an optimal point. Find a
stopping criterion that guarantees that x is ε-suboptimal, where ε > 0.

Hint. The points x(k) are on the central path; see exercise 11.10. Use this to show that

u+ − p? ≤ m+ θ

m+ 1
(u− p?),

where u and u+ are the values of u on consecutive iterations.

Solution. Let x = z?(u). From the duality result in exercise 11.10,

p? ≥ f0(x) −m(u− f0(x))

= (m+ 1)f0(x) −mu,

and therefore

f0(x) ≤ p? +mu

m+ 1
.

Let u+ = θu+ (1 − θ)f0(x). We have

u+ − p? = θu+ (1 − θ)f0(x) − p?

≤ (1 − θ)
p? +mu

m+ 1
+ θu− p?

=
(

1 − θ

m+ 1
− 1
)
p? +

(
(1 − θ)m

m+ 1
+ θ

)
u

=
m+ θ

m+ 1
(u− p?).
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11.12 Barrier method for convex-concave games. We consider a convex-concave game with
inequality constraints,

minimizew maximizez f0(w, z)
subject to fi(w) ≤ 0, i = 1, . . . ,m

f̃i(z) ≤ 0, i = 1, . . . , m̃.

Here w ∈ Rn is the variable associated with minimizing the objective, and z ∈ Rñ is
the variable associated with maximizing the objective. The constraint functions fi and f̃i

are convex and differentiable, and the objective function f0 is differentiable and convex-
concave, i.e., convex in w, for each z, and concave in z, for each w. We assume for
simplicity that dom f0 = Rn × Rñ.

A solution or saddle-point for the game is a pair w?, z?, for which

f0(w
?, z) ≤ f0(w

?, z?) ≤ f0(w, z
?)

holds for every feasible w and z. (For background on convex-concave games and functions,
see §5.4.3, §10.3.4 and exercises 3.14, 5.24, 5.25, 10.10, and 10.13.) In this exercise we
show how to solve this game using an extension of the barrier method, and the infeasible
start Newton method (see §10.3).

(a) Let t > 0. Explain why the function

tf0(w, z) −
m∑

i=1

log(−fi(w)) +

m̃∑

i=1

log(−f̃i(z))

is convex-concave in (w, z). We will assume that it has a unique saddle-point,
(w?(t), z?(t)), which can be found using the infeasible start Newton method.

(b) As in the barrier method for solving a convex optimization problem, we can derive
a simple bound on the suboptimality of (w?(t), z?(t)), which depends only on the
problem dimensions, and decreases to zero as t increases. Let W and Z denote the
feasible sets for w and z,

W = {w | fi(w) ≤ 0, i = 1, . . . ,m}, Z = {z | f̃i(z) ≤ 0, i = 1, . . . , m̃}.

Show that

f0(w
?(t), z?(t)) ≤ inf

w∈W

f0(w, z
?(t)) +

m

t
,

f0(w
?(t), z?(t)) ≥ sup

z∈Z

f0(w
?(t), z) − m̃

t
,

and therefore

sup
z∈Z

f0(w
?(t), z) − inf

w∈W

f0(w, z
?(t)) ≤ m+ m̃

t
.

Solution.

(a) Follows from the convex-concave property of f0; convexity of − log(−fi), and con-

cavity of log(−f̃i).

(b) Since (w?(t), z?(t)) is a saddle-point of the function

tf0(w, z) −
m∑

i=1

log(−fi(w)) +

m̃∑

i=1

log(−f̃i(z)),
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its gradient with respect to w, and also with respect to z, vanishes there:

t∇wf0(w
?(t), z?(t)) +

m∑

i=1

1

−fi(w?(t))
∇fi(w

?(t)) = 0

t∇zf0(w
?(t), z?(t)) +

m̃∑

i=1

−1

−f̃i(z?(t))
∇f̃i(z

?(t)) = 0.

It follows that w?(t) minimizes

f0(w, z
?(t)) +

m∑

i=1

λifi(w)

over w, where λi = 1/(−tfi(w
?(t))), i.e., for all w, we have

f0(w
?(t), z?(t)) +

m∑

i=1

λifi(w
?(t)) ≤ f0(w, z

?(t)) +

m∑

i=1

λifi(w).

The lefthand side is equal to f0(w
?(t), z?(t)) −m/t, and for all w ∈ W , the second

term on the righthand side is nonpositive, so we have

f0(w
?(t), z?(t)) ≤ inf

w∈W

f0(w, z
?(t)) +m/t.

A similar argument shows that

f0(w
?(t), z?(t)) ≥ sup

z∈Z

f0(w
?(t), z) −m/t.

Self-concordance and complexity analysis

11.13 Self-concordance and negative entropy.

(a) Show that the negative entropy function x log x (on R++) is not self-concordant.

(b) Show that for any t > 0, tx log x− log x is self-concordant (on R++).

Solution.

(a) First we consider f(x) = x log x, for which

f ′(x) = 1 + log x, f ′′(x) =
1

x
, f ′′′(x) = − 1

x2
.

Thus
|f ′′′(x)|
f ′′(x)3/2

=
1/x2

1/x3/2
=

1√
x

which is unbounded above (as x→ 0+). In particular, the self-concordance inequal-

ity |f ′′′(x)| ≤ 2f ′′(x)3/2 fails for x = 1/5, so f is not self-concordant.

(b) Now we consider g(x) = tx log x− log x, for which

g′(x) = − 1

x
+ t+ t log x, g′′(x) =

1

x2
+
t

x
, g′′′(x) = − 2

x3
− t

x2
.

Therefore
|g′′′(x)|
g′′(x)3/2

=
2/x3 + t/x2

(1/x2 + t/x)3/2
=

2 + tx

(1 + tx)3/2
.
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Define

h(a) =
2 + a

(1 + a)3/2

so that

h(tx) =
|g′′′(x)|
g′′(x)3/2

.

We have h(0) = 2 and we will show that h′(a) < 0 for a > 0, i.e., h is decreasing for
a > 0. This will prove that h(a) ≤ h(0) = 2, and therefore

|g′′′(x)|
g′′(x)3/2

≤ 2.

We have

h′(a) =
(1 + a)3/2 − (3/2)(1 + a)1/2(2 + a)

(1 + a)3

=
(1 + a)1/2((1 + a) − (3/2)(2 + a))

(1 + a)3

= − (2 + a/2)

(1 + a)5/2

< 0,

for a > 0, so we are done.

11.14 Self-concordance and the centering problem. Let φ be the logarithmic barrier function of
problem (11.1). Suppose that the sublevel sets of (11.1) are bounded, and that tf0 + φ is
closed and self-concordant. Show that t∇2f0(x) + ∇2φ(x) � 0, for all x ∈ domφ. Hint.
See exercises 9.17 and 11.3.

Solution. From exercise 11.3, the sublevel sets of tf0 + φ are bounded.

From exercise 9.17, the nullspace of tf0 + φ is independent of x. So if the Hessian is not
positive definite, tf0 +φ is linear along certain lines, which would contradict the fact that
the sublevel sets are bounded.

Barrier method for generalized inequalities

11.15 Generalized logarithm is K-increasing. Let ψ be a generalized logarithm for the proper
cone K. Suppose y �K 0.

(a) Show that ∇ψ(y) �K∗ 0, i.e., that ψ is K-nondecreasing. Hint. If ∇ψ(y) 6�K∗ 0,
then there is some w �K 0 for which wT∇ψ(y) ≤ 0. Use the inequality ψ(sw) ≤
ψ(y) + ∇ψ(y)T (sw − y), with s > 0.

(b) Now show that ∇ψ(y) �K∗ 0, i.e., that ψ is K-increasing. Hint. Show that
∇2ψ(y) ≺ 0, ∇ψ(y) �K∗ 0 imply ∇ψ(y) �K∗ 0.

Solution.

(a) If ∇ψ(y) 6�K∗ 0, there exists a w �K 0 such that wT∇ψ(y) ≤ 0. By concavity of ψ
we have

ψ(sw) ≤ ψ(y) + ∇ψ(y)T (sw − y)

= ψ(y) − θ + swT∇ψ(y)

≤ ψ(y) − θ

for all s > 0. In particular, ψ(sw) is bounded, for s ≥ 0. But we have ψ(sw) =
ψ(w) + θ log s, which is unbounded as s → ∞. (We need w �K 0 to ensure that
sw ∈ domψ.)
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(b) We now know that ∇ψ(y) �K∗ 0. For small v we have

∇ψ(y + v) ≈ ∇ψ(y) + ∇2ψ(y)v,

and by part (a) we have ∇ψ(y+v) �K∗ 0. Since ∇2ψ(y) is nonsingular, we conclude
that we must have ∇ψ(y) �K∗ 0.

11.16 [NN94, page 41] Properties of a generalized logarithm. Let ψ be a generalized logarithm
for the proper cone K, with degree θ. Prove that the following properties hold at any
y �K 0.

(a) ∇ψ(sy) = ∇ψ(y)/s for all s > 0.

(b) ∇ψ(y) = −∇2ψ(y)y.

(c) yT∇ψ2(y)y = −θ.
(d) ∇ψ(y)T∇2ψ(y)−1∇ψ(y) = −θ.

Solution.

(a) Differentiate ψ(sy) = ψ(y) + θ log s with respect to y to get s∇ψ(sy) = ∇ψ(y).

(b) Differentiating (y + tv)T∇ψ(y + tv) = θ with respect to t gives

∇ψ(y + tv)T v + (y + tv)T∇2ψ(y + tv)v = 0.

At t = 0 we get
∇ψ(y)T v + yT∇2ψ(y)v = 0.

This holds for all v, so ∇ψ(y) = −∇2ψ(y)y.

(c) From part (b),

yT∇ψ2(y)y = −yT∇ψ(y) = −θ.
(d) From part (b),

∇ψ(y)T∇2ψ(y)−1∇ψ(y) = −∇ψ(y)T y = −θ.

11.17 Dual generalized logarithm. Let ψ be a generalized logarithm for the proper cone K, with
degree θ. Show that the dual generalized logarithm ψ, defined in (11.49), satisfies

ψ(sv) = ψ(v) + θ log s,

for v �K∗ 0, s > 0.

Solution.
ψ(sv) = inf

u

(
svTu− ψ(u)

)
= inf

ũ

(
vT ũ− ψ(ũ/s)

)

where ũ = su. Using the logarithm property for ψ, we have ψ(ũ/s) = ψ(ũ) − θ log s, so

ψ(sv) = inf
ũ

(
vT ũ− ψ(ũ)

)
+ θ log s = ψ(u) + θ log s.

11.18 Is the function

ψ(y) = log

(
yn+1 −

∑n

i=1
y2

i

yn+1

)
,

with domψ = {y ∈ Rn+1 | yn+1 >
∑n

i=1
y2

i }, a generalized logarithm for the second-

order cone in Rn+1?

Solution. It is not. It satisfies all the required properties except closedness.

To see this, take any a > 0, and suppose y approaches the origin along the path

(y1, . . . , yn) =
√
t(t− a)/n, yn+1 = t
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where t > 0. We have

(

n∑

i=1

y2
i )1/2 =

√
t(t− a) < yn+1

so y ∈ intK. However,

ψ(y) = log(t− t(t− a)/t) = log a.

Therefore we can find sequences of points with any arbitrary limit.

Implementation

11.19 Yet another method for computing the Newton step. Show that the Newton step for the
barrier method, which is given by the solution of the linear equations (11.14), can be
found by solving a larger set of linear equations with coefficient matrix



t∇2f0(x) +

∑
i

1
−fi(x)

∇2fi(x) Df(x)T AT

Df(x) −diag(f(x))2 0
A 0 0




where f(x) = (f1(x), . . . , fm(x)).

For what types of problem structure might solving this larger system be interesting?

Solution.



t∇2f0(x) +

∑
i

1
−fi(x)

∇2fi(x) Df(x)T AT

Df(x) −diag(f(x))2 0
A 0 0



[

∆xnt

y
νnt

]
= −

[
g
0
0

]
.

where g = t∇f0(x) + ∇φ(x). From the second equation,

yi =
∇fi(x)

T ∆xnt

fi(x)2

and substituting in the first equation gives (11.14).

This might be useful if the big matrix is sparse, and the 2× 2 block system (obtained by
pivoting on the diag(f(x))2 block) has a dense (1,1) block. For example if the (1,1) block
of the big system is block diagonal, m� n is small, and Df(x) is dense.

11.20 Network rate optimization via the dual problem. In this problem we examine a dual method
for solving the network rate optimization problem of §11.8.4. To simplify the presentation
we assume that the utility functions Ui are strictly concave, with domUi = R++, and
that they satisfy U ′

i(xi) → ∞ as xi → 0 and U ′
i(xi) → 0 as xi → ∞.

(a) Express the dual problem of (11.62) in terms of the conjugate utility functions
Vi = (−Ui)

∗, defined as
Vi(λ) = sup

x>0

(λx+ Ui(x)).

Show that domVi = −R++, and that for each λ < 0 there is a unique x with
U ′

i(x) = −λ.

(b) Describe a barrier method for the dual problem. Compare the complexity per iter-
ation with the complexity of the method in §11.8.4. Distinguish the same two cases
as in §11.8.4 (ATA is sparse and AAT is sparse).

Solution.
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(a) Suppose λ < 0. Since Ui is strictly concave and increasing, with U ′
i(xi) → ∞ as

xi → 0 and U ′
i(xi) → 0 as xi → ∞, there is a unique x with

U ′
i(x) = −λ.

After changing problem (11.62) its Lagrangian is

L(x, λ, z) =

n∑

i=1

(−Ui(x)) + λT (Ax− c) − zTx

= −
n∑

i=1

(
Ui(x) − (ATλ)ixi + zixi

)
− cTλ.

The minimum over x is

inf
x
L(x, λ, z) = inf

x

(
−

n∑

i=1

(Ui(x) − (ATλ)ixi + zixi) − cTλ

)

= −
n∑

i=1

sup
x

(Ui(x) − (ATλ)ixi + zixi) − cTλ

= −
n∑

i=1

Vi(−(ATλ)i + zi) − cTλ,

so the dual problem is (after changing the sign again)

minimize cTλ+
∑n

i=1
Vi(−(ATλ)i + zi)

subject to λ � 0, z � 0.

The function Vi is increasing on its domain −R++, so z = 0 at the optimum and
the dual problem simplifies to

minimize cTλ+
∑n

i=1
Vi(−(ATλ)i)

subject to λ � 0

−λi can be interpreted as the price on link i. −(ATλ)i is the sum of the prices along
the path of flow i.

(b) The Hessian of

t

(
cTλ+

n∑

i=1

Vi(−(ATλ)i)

)
−
∑

i

log λi

is
H = tAdiag(−ATλ)−2AT + diag(λ)−2.

If AAT is sparse, we solve the Newton equation H∆λ = −g.
If ATA is sparse, we apply the matrix inversion lemma and compute the Newton
step by first solving an equation with coefficient matrix of the form D1 + ATD2A,
where D1 and D2 are diagonal (see §11.8.4).

Numerical experiments

11.21 Log-Chebyshev approximation with bounds. We consider an approximation problem: find
x ∈ Rn, that satisfies the variable bounds l � x � u, and yields Ax ≈ b, where b ∈ Rm.
You can assume that l ≺ u, and b � 0 (for reasons we explain below). We let aT

i denote
the ith row of the matrix A.
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We judge the approximation Ax ≈ b by the maximum fractional deviation, which is

max
i=1,...,n

max{(aT
i x)/bi, bi/(a

T
i x)} = max

i=1,...,n

max{aT
i x, bi}

min{aT
i x, bi}

,

when Ax � 0; we define the maximum fractional deviation as ∞ if Ax 6� 0.

The problem of minimizing the maximum fractional deviation is called the fractional
Chebyshev approximation problem, or the logarithmic Chebyshev approximation problem,
since it is equivalent to minimizing the objective

max
i=1,...,n

| log aT
i x− log bi|.

(See also exercise 6.3, part (c).)

(a) Formulate the fractional Chebyshev approximation problem (with variable bounds)
as a convex optimization problem with twice differentiable objective and constraint
functions.

(b) Implement a barrier method that solves the fractional Chebyshev approximation

problem. You can assume an initial point x(0), satisfying l ≺ x(0) ≺ u, Ax(0) � 0, is
known.

Solution.

(a) We can formulate the fractional Chebyshev approximation problem with variable
bounds as

minimize s
subject to (aT

i x)/bi ≤ s, i = 1, . . . ,m
bi/(a

T
i x) ≤ s, i = 1, . . . ,m

aT
i x ≥ 0, i = 1, . . . ,m
l � x � u,

This is clearly a convex problem, since the inequalities are linear, except for the
second group, which involves the inverse.

The sublevel sets are bounded (by the last constraint).

Note that we can, without loss of generality, take bi = 1, and replace ai with ai/bi.
We will assume this has been done. To simplify the notation, we will use ai to
denote the scaled version (i.e., ai/bi in the original problem data).

(b) In the centering problems we must minimize the function

ts+ φ(s, x) = ts−
m∑

i=1

log(s− aT
i x) −

m∑

i=1

log aT
i x−

m∑

i=1

log(s− 1/aT
i x)

−
n∑

i=1

log(ui − xi) −
n∑

i=1

log(xi − li)

= φ1(s, x) + φ2(s, x) + φ3(s, x)

with variables x, s, where

φ1(s, x) = ts−
n∑

i=1

log(ui − xi) −
n∑

i=1

log(xi − li)

φ2(s, x) = −
m∑

i=1

log(s− aT
i x)

φ3(s, x) = −
m∑

i=1

log(s(aT
i x) − 1).
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The gradient and Hessian of φ1 are

∇φ1(s, x) =

[
t

diag(u− x)−11 − diag(x− l)−11

]

∇2φ1(s, x) =

[
0 0
0 diag(u− x)−2 + diag(x− l)−2

]
.

The gradient and Hessian of φ2 are

∇φ2(x) =

[
−1T

AT

]
diag(s−Ax)−1

1

∇2φ2(x) =

[
−1T

AT

]
diag(s−Ax)−2

[
−1 A

]
.

We can find the gradient and Hessian of φ3 by expressing it as φ3(s, x) = h(s,Ax)
where

h(s, y) = −
m∑

i=1

log(syi − 1),

and then applying the chain rule. The gradient and Hesian of h are

∇h(s, y) = −




∑m

i=1
yi/(syi − 1)

s/(sy1 − 1)
...

s/(sym − 1)


 = −

[
yT diag(sy − 1)−11

sdiag(sy − 1)−11

]

and

∇2h(s, y)

=




∑
i
y2

i /(syi − 1)2 1/(sy1 − 1)2 1/(sy2 − 1)2 · · · 1/(sym − 1)2

1/(sy1 − 1)2 s2/(sy1 − 1)2 0 · · · 0
1/(sy2 − 1)2 0 s2/(sy2 − 1)2 · · · 0

...
...

...
. . .

...
1/(sym − 1)2 0 0 · · · s2/(sym − 1)2




=

[
yT diag(sy − 1)−2y 1T diag(sy − 1)−2

diag(sy − 1)−21 s2 diag(sy − 1)−2

]
.

We therefore obtain

∇φ3(s, x) =

[
1 0
0 AT

]
∇h(s,Ax)

= −
[

yT

sAT

]
diag(sAx− 1)−1

1

∇2φ3(s, x) =

[
1 0
0 AT

]
∇2h(s,Ax)

[
1 0
0 A

]

=

[
xTAdiag(sAx− 1)−2Ax 1T diag(sAx− 1)−2A
AT diag(sAx− 1)−21 s2AT diag(sAx− 1)−2A

]
.

A Matlab implementation is given below.
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MAXITERS = 200;
ALPHA = 0.01;
BETA = 0.5;
NTTOL = 1e-8; % terminate Newton iterations if lambda^2 < NTTOL
MU = 20;
TOL = 1e-4; % terminate if duality gap less than TOL

x = x0; y = A*x; s = 1.1*max([max(A*x), max(1./y)]);
t = 1;
for iter = 1:MAXITERS

val = t*s - sum(log(u-x)) - sum(log(x-l)) - sum(log(s-y)) - ...
sum(log(s*y-1));

grad = [t-sum(1./(s-y))-sum(y./(s*y-1));
1./(u-x)-1./(x-l)+A’*(1./(s-y)-s./(s*y-1))];

hess = [sum((s-y).^(-2)+(y./(s*y-1)).^2) ...
(-(s-y).^(-2) + (s*y-1).^(-2))’*A;

A’*(-(s-y).^(-2) + (s*y-1).^(-2)) ...
diag((u-x).^(-2) + (x-l).^(-2)) + ...

A’*(diag((s-y).^(-2)+(s./(s*y-1)).^2))*A];
step = -hess\grad; fprime = grad’*step;
if (abs(fprime) < NTTOL),

gap = (3*m+2*n)/t;
if (gap<TOL); break; end;
t = MU*t;

else
ds = step(1); dx = step(1+[1:n]); dy = A*dx;
tls = 1;
news = s+tls*ds; newx = x+tls*dx; newy = y+tls*dy;
while (min([news-newy; news-1./newy; newy; newx-l; u-newx]) <= 0),

tls = BETA*tls;
news = s+tls*ds; newx = x+tls*dx; newy = y+tls*dy;

end;
newval = t*news - sum(log(u-newx)) - sum(log(newx-l)) ...

- sum(log(news-newy)) - sum(log(news*newy-1));
while (newval >= val + tls*ALPHA*fprime),

tls = BETA*tls;
news = s+tls*ds; newx = x+tls*dx; newy = y+tls*dy;
newval = t*news - sum(log(u-newx)) - sum(log(newx-l)) ...

- sum(log(news-newy)) - sum(log(news*newy-1));
end;
x = x+tls*dx; y = A*x; s = s+tls*ds;

end;
end;

11.22 Maximum volume rectangle inside a polyhedron. Consider the problem described in exer-
cise 8.16, i.e., finding the maximum volume rectangle R = {x | l � x � u} that lies in
a polyhedron described by a set of linear inequalities, P = {x | Ax � b}. Implement a
barrier method for solving this problem. You can assume that b � 0, which means that
for small l ≺ 0 and u � 0, the rectangle R lies inside P.

Test your implementation on several simple examples. Find the maximum volume rect-
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angle that lies in the polyhedron defined by

A =




0 −1
2 −4
2 1

−4 4
−4 0


 , b = 1.

Plot this polyhedron, and the maximum volume rectangle that lies inside it.

Solution. We use the formulation

minimize −
∑n

i=1
log(ui − li)

subject to A+u−A−l � b,

(with implicit constraint u � l) worked out in exercise 8.16. Here a+
ij = max{aij , 0},

a−ij = max{−aij , 0}.
The gradient and Hessian of the function

ψ(l, u) = −t
n∑

i=1

log(ui − li) −
n∑

i=1

log((b−A+u+A−l)i)

are

∇ψ(l, u) = t

[
I
−I

]
diag(u− l)−1

1 +

[
−A−T

A+T

]
diag(b−A+u+A−l)−1

1

∇2ψ(l, u) = t

[
I
−I

]
diag(u− l)−2

[
I −I

]

+

[
−A−T

A+T

]
diag(b−A+u+A−l)−2

[
−A− A+

]
.

A plot of the particular polyhedron and the maximum volume box is given below.
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An implementation in Matlab is given below.

MAXITERS = 200;
ALPHA = 0.01;
BETA = 0.5;
NTTOL = 1e-8; % terminate Newton iterations if lambda^2 < NTTOL
MU = 20;
TOL = 1e-4; % terminate if duality gap less than TOL
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Ap = max(A,0); Am = max(-A,0);
r = max(Ap*ones(n,1) + Am*ones(n,1));
u = (.5/r)*ones(n,1); l = -(.5/r)*ones(n,1);
t = 1;
for iter = 1:MAXITERS

y = b+Am*l-Ap*u;
val = -t*sum(log(u-l)) - sum(log(y));
grad = t*[1./(u-l); -1./(u-l)] + [-Am’; Ap’]*(1./y);
hess = t*[diag(1./(u-l).^2), -diag(1./(u-l).^2);

-diag(1./(u-l).^2), diag(1./(u-l).^2)] + ...
[-Am’; Ap’]*diag(1./y.^2)*[-Am Ap];

step = -hess\grad; fprime = grad’*step;
if (abs(fprime) < NTTOL),

gap = (2*m)/t;
disp([’iter ’, int2str(iter), ’; gap = ’, num2str(gap)]);
if (gap<TOL); break; end;
t = MU*t;

else
dl = step(1:n); du = step(n+[1:n]); dy = Am*dl-Ap*du;
tls = 1;
while (min([u-l+tls*(du-dl); y+tls*dy]) <= 0)

tls = BETA*tls;
end;
while (-t*sum(log(u-l+tls*(du-dl))) - sum(log(y+tls*dy)) >= ...

val + tls*ALPHA*fprime),
tls = BETA*tls;

end;
l = l+tls*dl; u = u+tls*du;

end;
end;

11.23 SDP bounds and heuristics for the two-way partitioning problem. In this exercise we
consider the two-way partitioning problem (5.7), described on page 219, and also in ex-
ercise 5.39:

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n,
(11.65)

with variable x ∈ Rn. We assume, without loss of generality, that W ∈ Sn satisfies
Wii = 0. We denote the optimal value of the partitioning problem as p?, and x? will
denote an optimal partition. (Note that −x? is also an optimal partition.)

The Lagrange dual of the two-way partitioning problem (11.65) is given by the SDP

maximize −1T ν
subject to W + diag(ν) � 0,

(11.66)

with variable ν ∈ Rn. The dual of this SDP is

minimize tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n,
(11.67)

with variable X ∈ Sn. (This SDP can be interpreted as a relaxation of the two-way
partitioning problem (11.65); see exercise 5.39.) The optimal values of these two SDPs
are equal, and give a lower bound, which we denote d?, on the optimal value p?. Let ν?

and X? denote optimal points for the two SDPs.
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(a) Implement a barrier method that solves the SDP (11.66) and its dual (11.67), given
the weight matrix W . Explain how you obtain nearly optimal ν and X, give for-
mulas for any Hessians and gradients that your method requires, and explain how
you compute the Newton step. Test your implementation on some small problem
instances, comparing the bound you find with the optimal value (which can be found
by checking the objective value of all 2n partitions). Try your implementation on a
randomly chosen problem instance large enough that you cannot find the optimal
partition by exhaustive search (e.g., n = 100).

(b) A heuristic for partitioning. In exercise 5.39, you found that if X? has rank one,
then it must have the form X? = x?(x?)T , where x? is optimal for the two-way
partitioning problem. This suggests the following simple heuristic for finding a good
partition (if not the best): solve the SDPs above, to find X? (and the bound d?).
Let v denote an eigenvector of X? associated with its largest eigenvalue, and let
x̂ = sign(v). The vector x̂ is our guess for a good partition.

Try this heuristic on some small problem instances, and the large problem instance
you used in part (a). Compare the objective value of your heuristic partition, x̂TWx̂,
with the lower bound d?.

(c) A randomized method. Another heuristic technique for finding a good partition,
given the solution X? of the SDP (11.67), is based on randomization. The method

is simple: we generate independent samples x(1), . . . , x(K) from a normal distribution
on Rn, with zero mean and covarianceX?. For each sample we consider the heuristic
approximate solution x̂(k) = sign(x(k)). We then take the best among these, i.e.,
the one with lowest cost. Try out this procedure on some small problem instances,
and the large problem instance you considered in part (a).

(d) A greedy heuristic refinement. Suppose you are given a partition x, i.e., xi ∈ {−1, 1},
i = 1, . . . , n. How does the objective value change if we move element i from one
set to the other, i.e., change xi to −xi? Now consider the following simple greedy
algorithm: given a starting partition x, move the element that gives the largest
reduction in the objective. Repeat this procedure until no reduction in objective
can be obtained by moving an element from one set to the other.

Try this heuristic on some problem instances, including the large one, starting from
various initial partitions, including x = 1, the heuristic approximate solution found
in part (b), and the randomly generated approximate solutions found in part (c).
How much does this greedy refinement improve your approximate solutions from
parts (b) and (c)?

Solution.

(a) We implement a barrier method to solve the SDP (11.66). The only constraint in
the problem is the LMI W + diag(ν) � 0, for which we will use the log barrier
− log det(W + diag(ν)). To start the barrier method, we need a strictly feasible
point, but this is easily found. If λmin(W ) is the smallest eigenvalue of the matrix
W , thenW+(−λmin(W )+1)I has smallest eigenvalue one, and so is positive definite.
Thus, ν = (−λmin(W ) + 1)1 is a strictly feasible starting point.

At each outer iteration, we use Newton’s method to minimize

f(ν) = t1T ν − log det(W + diag(ν)). (11.23.A)

We can start with t = 1, and at the end of each outer iteration increase t by a factor
µ = 10 (say) until the desired accuracy is reached. At the end of each iteration, the
duality gap is exactly n/t, with dual feasible point

Z = (n/t)(W + diag(ν))−1.

We will return ν and Z, at the end of the first outer iteration to satisfy n/t ≤ ε,
where ε is the required tolerance.
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Now we turn to the question of how to compute the gradient and Hessian of f . We
know that for X ∈ Sn

++, the gradient of the function g(X) = log det(X) at X is
given by

∇g(X) = X−1.

We use the chain rule, with

X = W + diag(ν) = W +

n∑

i=1

νiEii,

where Eii is the matrix with a one in the i, i entry and zeros elsewhere, to obtain

∇f(ν)i = t− tr((W + diag(ν))−1Eii)

= t−
(
(W + diag(ν))−1

)
ii

for i = 1, . . . , n. Thus we have the simple formula

∇f(ν) = t1 − diag((W + diag(ν))−1).

The second derivative of log detX, at X ∈ Sn
++, is given by the bilinear form

∇2g(X)[Y, Z] = − tr(X−1Y X−1Z).

Applying this to our function f yields, with X = W + diag(ν),

∇2f(ν)ij = tr(X−1EiiX
−1Ejj) =

(
X−1

)2
ij
,

for i, j = 1, . . . , n. Thus we have the very simple formula for the Hessian:

∇2f(ν) =
(
(W + diag(ν))−1

)
◦
(
(W + diag(ν))−1

)
,

where for U, V ∈ Sn, the Schur (or Hadamard, or elementwise) product of U and
V , denoted W = U ◦ V , is defined by Wij = UijVij .

We first test the method on some small problems. We generate random symmetric
matrices W ∈ S10, with off-diagonal elements generated from independent N (0, 1)
distributions, and zero diagonal elements. The figure shows the distribution of the
relative error

−1T ν? − p?

|p?|
for 100 randomly generated matrices.
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We notice that the lower bound is equal (or very close) to p? in 10 cases, and never
less than about 15% below p?.

We also generate a larger problem instance, with n = 100. The optimal value of the
relaxation is −1687.5. The lower bound from the eigenvalue decomposition of W
(see remark 5.1) is nλmin(W ) = −1898.4.

(b) We first try the heuristic on the family of 100 problems with n = 10. The heuristic
gave the correct solution in 70 instances. For the larger problem, the heuristic gives
the upper bound −1336.5. At this point we can say that the optimal value of the
larger problem lies between −1336.5 and −1687.5.

(c) We first try this heuristic, with K = 10, on the family of 100 problems with n = 10.
The heuristic gave the correct solution in 88 instances.

We plot below a histogram of the objective obtained by the randomized heuristic,
over 1000 samples.
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objective value

Many of these samples have an objective value larger than the one found in part (b)
above, but some have a lower cost. The minimum value is −1421.7, so p? lies between
−1421.7 and −1687.5.

(d) The contribution of xj to the cost is (
∑n

i=1
Wijxi)xj . If this number is positive,

then switching the sign of xj will decrease the objective by 2
∑n

i=1
Wijxi.

We apply the greedy heuristic to the larger problem instance. For x = 1, the cost
is reduced from 13.6 to −1344.8. For the solution from part (b), the cost is reduced
from −1336.5 to −1440.6. For the solution from part (b), the cost is reduced from
−1421.7 to −1440.6.

11.24 Barrier and primal-dual interior-point methods for quadratic programming. Implement
a barrier method, and a primal-dual method, for solving the QP (without equality con-
straints, for simplicity)

minimize (1/2)xTPx+ qTx
subject to Ax � b,

with A ∈ Rm×n. You can assume a strictly feasible initial point is given. Test your codes
on several examples. For the barrier method, plot the duality gap versus Newton steps.
For the primal-dual interior-point method, plot the surrogate duality gap and the norm
of the dual residual versus iteration number.

Solution. The first figure shows the progress (duality gap) versus Newton iterations for
the barrier method, applied to a randomly generated instance with n = 100 variables and
m = 200 constraints. We use µ = 20, α = 0.01, β = 0.5, and t(0) = 1. We choose b � 0,
and use x(0) = 0.
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The next two figure show the progress (surrogate duality gap η and dual residual norm
‖rdual‖2 versus iteration number) of the primal-dual method applied to the same problem

instance. We use µ = 10, α = 0.01, β = 0.5, x(0) = 1, and λ
(0)
i = 1/bi.
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The Matlab code for the barrier method is as follows.

MAXITERS = 200;
ALPHA = 0.01;
BETA = 0.5;
MU = 20;
TOL = 1e-3;
NTTOL = 1e-6;
x = zeros(n,1); t = 1;
for iter = 1:MAXITERS

y = b-A*x;
val = t*(.5*x’*P*x + q’*x) - sum(log(y));
grad = t*(P*x+q) + A’*(1./y);
hess = t*P + A’*diag(1./y.^2)*A;
v = -hess\grad; fprime = grad’*v;
s = 1; dy = -A*v;
while (min(y+s*dy) <= 0), s = BETA*s; end;
while (t*(.5*(x+s*v)’*P*(x+s*v) + q’*(x+s*v)) - ...

sum(log(y+s*dy)) >= val + ALPHA*s*fprime), s=BETA*s;end;
x = x+s*v;
if (-fprime < NTTOL),
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gap = m/t;
if (gap < TOL), break; end;
t = MU*t;

end;
end;

The Matlab code for the primal-dual method is as follows.

MAXITERS = 200;
TOL = 1e-6;
RESTOL = 1e-8;
MU = 10;
ALPHA = 0.01;
BETA = 0.5;
x = zeros(n,1); s = b-A*x; z = 1./s;
for iters = 1:MAXITERS

gap = s’*z; res = P*x + q + A’*z ;
if ((gap < TOL) & (norm(res) < RESTOL)), break; end;
tinv = gap/(m*MU);
sol = -[ P A’; A diag(-s./z) ] \ ...

[ P*x+q+A’*z; -s + tinv*(1./z) ];
dx = sol(1:n); dz = sol(n+[1:m]); ds = -A*dx;
r = [P*x+q+A’*z; z.*s-tinv];
step = min(1.0, 0.99/max(-dz./z));
while (min(s+step*ds) <= 0), step = BETA*step; end;
newz = z+step*dz; newx = x+step*dx; news = s+step*ds;
newr = [P*newx+q+A’*newz; newz.*news-tinv];
while (norm(newr) > (1-ALPHA*step)*norm(r))

step = BETA*step;
newz = z+step*dz; newx = x+step*dx; news = s+step*ds;
newr = [P*newx+q+A’*newz; newz.*news-tinv];

end;
x = x+step*dx; z = z +step*dz; s = b-A*x;

end;


