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Online Office Hours Before Final Exam

Time: Dec 12, 2022 (Monday) 13:00-14:00

https://cuhk.zoom.us/j/95450969213?pwd=ZIZkWCI9wWMjlhOG5Dal1RkMS82d0V6QT09

Meeting ID: 954 5096 9213
Passcode: 021836



Key points

The Final exam will focus on the lectures after mid-term exam (Lecture 8-13),
but some key points learned before mid-term might also be tested.

Lecture 1 - Introduction
 How to model an engineering problem into an optimization
v’ Lecture 1, pp. 22-27
v’ Lecture 2, pp. 5-6
v’ Lecture 3, pp. 3-5
v' Summary of Lecture 1-4, pp. 3-4
v Homework-2, Q1
v’ Lecture 8, pp. 3



Key points

Lecture 2 — Linear Programming

* Check whether an optimization is a linear program or not
v’ Lecture 2, pp. 8-11
v’ Mid-term, Q1

 How to turn an optimization into a standard form
v’ Lecture 2, pp. 12-18
v' Summary of Lecture 1-4, pp. 5
v Homework-1, Q1

* Solving an LP using graphical method
v’ Lecture 2, pp. 20-24
v' Summary of Lecture 1-4, pp. 7-8
v Homework-1, Q2
v Mid-term, Q2



Key points

Lecture 3 — Dual Theory Part |
* Write down the dual problem of a linear program
v’ Lecture 3, pp. 13-20
v' Summary of Lecture 1-4, pp. 11-12
v Homework-1, Q3
v Mid-term, Q5

 Weak & Strong duality
v’ Lecture 3, pp. 23-28

* Apply the complementary and slackness condition
v’ Lecture 3, pp. 29-31
v' Summary of Lecture 1-4, pp. 14-15
v' Mid-term, Q5



Key points

Lecture 4 — Convex sets and Convex functions
* How to prove a set is a convex set

v’ Lecture 4, pp. 12-13, 16-20

v' Summary of Lecture 1-4, pp. 19-21

v Homework-1, Q4

v Homework-3, Q3

v Mid-term, Q3

 How to prove a function is a convex function
v’ Lecture 4, pp. 32-34
v' Summary of Lecture 1-4, pp. 26-27
v Homework-1, Q5
v Mid-term, Q1, Q4



Key points

Lecture 5 — Unconstrained Optimization (Basics)
* How to determine the candidate optimal points; local optimum or global
optimum? relative optimum or strict optimum?
v’ Lecture 5, pp. 8-9, 22-23, 26-29
v' Summary of Lecture 5-7, pp. 5, 9-15
v Homework-2, Q2
v’ Mid-term, Q4

Lecture 6 — Unconstrained Optimization (Gradient Based Methods)
* How to apply the gradient descent method

v’ Lecture 6, pp. 17-18

v' Summary of Lecture 5-7, pp. 20

v Mid-term, Q4



Key points

Lecture 7 — Linearization Techniques

* Linearization technique for “minimizing a convex objective function”
v’ Lecture 7, pp. 12
v' Summary of Lecture 5-7, pp. 27

* Big-M method
v’ Lecture 7, pp. 20-21
v' Mid-term, Q2

Lecture 8 - Constrained Optimization (Lagrange Multiplier)
* Graphical methods to solve nonlinear optimization

v’ Lecture 8, pp. 4-5

v Homework-3, Q2, Q3



Key points

Lecture 8 - Constrained Optimization (Lagrange Multiplier)
* How to write the KKT condition of an optimization; determine whether a
point is a KKT point or not.
v’ Lecture 8, pp. 11-16, 18-19, 28-29
v' Summary of Lecture 8-10, pp. 8-12
v Homework-3, Q1

Lecture 9 — Convex Optimization

* Determine whether an optimization is a convex optimization and solve it
v’ Lecture 9, pp. 11-19
v' Summary of Lecture 8-10, pp. 15-18
v Homework-3, Q2, Q3



Key points

Lecture 10 — Dual Theory Part Il

* Write down the dual problem of a nonlinear optimization
v’ Lecture 10, pp. 7, 12-14, 16-17
v' Summary of Lecture 8-10, pp. 20-21
v Homework-3, Q2

Lecture 11 — Distributed Optimization

* How to apply the dual decomposition method
v’ Lecture 11, pp. 10-13
v Homework-4, Q1



Key points

Lecture 12 — Multi-objective Optimization

* Determine the dominance relationship between two points
v’ Lecture 12, pp. 10
v Homework-4, Q2

* Pros and Cons of different multi-objective optimization methods
v’ Lecture 12, pp. 19, 21

Lecture 13 — Robust Optimization

* How to solve a static robust optimization with discrete uncertainty set
v’ The “cake” example last week
v Homework-4, Q3

* Understand the concept of “robust feasible” and “robust optima
v’ Lecture 13, pp. 17

I”



Comparison 1 — Unconstrained v.s. Constrained

Unconstrained optimization

Constrained optimization

Stationary point

Vf(x*) =0

Convex function & global optimum

min f(x)

Hessian matrix positive semi-definite
- f(x) convex - global minimum

KKT point Regular point

VaeL(x*, N, ") =0
hi(z*)=0,Vi=1,...,m
0<—g(z") Lp; >0,Vi=1,..r

Convex optimization & global optimum

convex
min f(x) _
x «— linear
s.t. a,.?:r; — iy =i W = 1, e, R

gi(2)<0,j =1,...,r
N

convex




Comparison 2 — Linear Programming v.s. Nonlinear Optimization

Linear Programming Nonlinear Optimization
Graphical method Graphical method
\X\z\ (4,2) 4x, = 16 = / . [
=2 13 \ ° SN
R 4x, = 12 N i
: , ~[0
\\ RN . 5
i — - X1
0 a8 T .
N 0 A . fx)=—V2
Strong duality Strong duality
Suppose x* and A* are the optimal solutions of Suppose f* and Q* are the primal and dual
the primal and dual problems, respectively, then optimal objective values, however,
cTx* =d 2 f* may not equal to Q*




Comparison 2 — Linear Programming v.s. Nonlinear Optimization

Construct the dual optimization of this LP:

T

Primal min ¢ x Dual max pulby + A\by
x T s A
s.t. Aja(>)by or — Ay < —by e st Al p+ AN =c
Aoxr = by or — Aox = —by \\,u, 0

The Lagrangian is

Lz, \) = o —pl (Arz — b)) — N (Agz — by)
= (CT — ,u,TAl — )\TAQ);TC- + ,u,Tbl + A,

If any element i of ¢! — put A1 — A4y > 0, let z; — —o0, rj4; = 0, then L = —oo0.
If any element i of ¢! — T A} — AT Ay <0, let 2; — o0, rj4; = 0, then L = —o0.
Therefore, L — ,u,TAl — M Ay =0 and min, L = ;.1,T51 + \p,.

The dual problem is

max ,u,.Tbl + \by
s A

s.t. A-Tp, + Ag)\ =c
(>0



Comparison 2 — Linear Programming v.s. Nonlinear Optimization

Linear Programming Nonlinear Optimization
Complementary and Slackness Complementary and Slackness
Primal problem Dual problem
o VoL(x* X\, p1*) =0
min e max ) hi(z™) =0,Vi=1,...,m
x>0 A >0

If gj(x) is linear, then it can be linearized:
0<u; <Mz
0<—g;(x") =M -—2z2)

0<A< Mz z € {0,1}
0<(Ax—b) <M —2z)
z € {0,1}

0<ALl(Ax—b)=0




Comparison 3 — Gradient descent v.s. Dual Decomposition

Gradient descent

X = Xp—1 — aVf(Xp_1)

=

Dual ascent

k+1

Ak+l__

argmin, L(z, \F)
A af (ATt —p)

=

Dual decomposition

Rl — argmin,, Ly (x,, A),¥n =1,.. N

“n

N
A/ﬂ—{—l _ )\A+QA(Z An.rﬁ—i—l _b)

Comparison 4 — Single Objective & Multi-objective

s.t. gi(x) <0,Vi=1,...,1
hslm) =09 = 1; v

Better — dominant
Best solution — Pareto optimal sets
Optimal value — Pareto optimal front

n=1

min fi(z)

xz
max

T

min f,(x)

x

s.t.gi(x) <0,Vi=1,..,1

figle) =0,¥5 = 10, S




Some Tips

1. Check clearly whether it is a “min” or “max” problem

2. Remember to turn it into a standard form, e.g., g(x) <0

3. To solve a “max f(x)” problem, you can solve “min —f(x)” instead
X X

4. To prove a matrix A is negative definite, you can try to prove that
— A is positive definite instead
5. ...



Final exam

Time: Dec 13, 2022 12:30-14:30
Location: Multi-purpose Hall, Pommerenke Student Center

Closed-book, no calculator.

Formal answer books and scratch papers will be provided.

No discussion or communication with others during the exam.
Coverage: Lecture 1-13

Good luck!
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