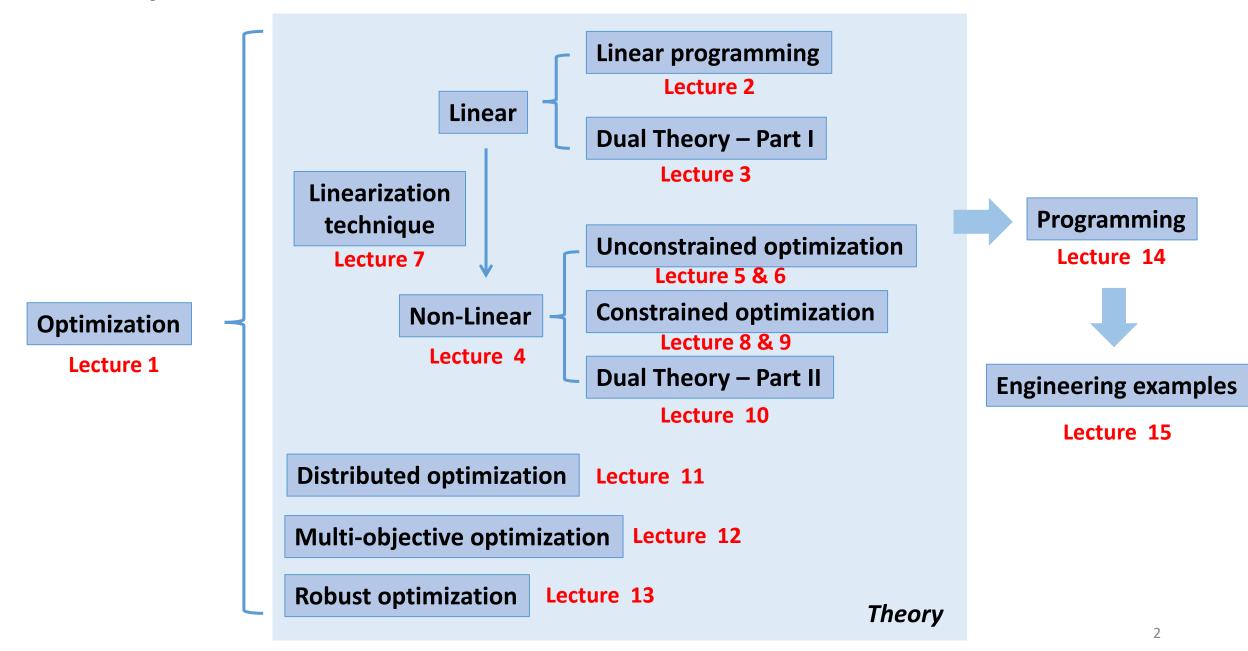
MAEG4070 Engineering Optimization

Final Review

Yue Chen
MAE, CUHK
email: yuechen@mae.cuhk.edu.hk

Nov 28, 2022

Content of this course



Online Office Hours Before Final Exam

Time: Dec 12, 2022 (Monday) 13:00-14:00

https://cuhk.zoom.us/j/95450969213?pwd=ZlZkWC9wMjlhOG5Da1RkMS82d0V6QT09

Meeting ID: 954 5096 9213

Passcode: 021836

The Final exam will focus on the lectures after mid-term exam (Lecture 8-13), but some key points learned before mid-term might also be tested.

Lecture 1 - Introduction

- How to model an engineering problem into an optimization
 - ✓ Lecture 1, pp. 22-27
 - ✓ Lecture 2, pp. 5-6
 - ✓ Lecture 3, pp. 3-5
 - ✓ Summary of Lecture 1-4, pp. 3-4
 - ✓ Homework-2, Q1
 - ✓ Lecture 8, pp. 3

Lecture 2 – Linear Programming

- Check whether an optimization is a linear program or not
 - ✓ Lecture 2, pp. 8-11
 - ✓ Mid-term, Q1
- How to turn an optimization into a standard form
 - ✓ Lecture 2, pp. 12-18
 - ✓ Summary of Lecture 1-4, pp. 5
 - √ Homework-1, Q1
- Solving an LP using graphical method
 - ✓ Lecture 2, pp. 20-24
 - ✓ Summary of Lecture 1-4, pp. 7-8
 - ✓ Homework-1, Q2
 - ✓ Mid-term, Q2

Lecture 3 – Dual Theory Part I

- Write down the dual problem of a linear program
 - ✓ Lecture 3, pp. 13-20
 - ✓ Summary of Lecture 1-4, pp. 11-12
 - ✓ Homework-1, Q3
 - ✓ Mid-term, Q5
- Weak & Strong duality
 - ✓ Lecture 3, pp. 23-28
- Apply the complementary and slackness condition
 - ✓ Lecture 3, pp. 29-31
 - ✓ Summary of Lecture 1-4, pp. 14-15
 - ✓ Mid-term, Q5

Lecture 4 – Convex sets and Convex functions

- How to prove a set is a convex set
 - ✓ Lecture 4, pp. 12-13, 16-20
 - ✓ Summary of Lecture 1-4, pp. 19-21
 - ✓ Homework-1, Q4
 - √ Homework-3, Q3
 - ✓ Mid-term, Q3
- How to prove a function is a convex function
 - ✓ Lecture 4, pp. 32-34
 - ✓ Summary of Lecture 1-4, pp. 26-27
 - ✓ Homework-1, Q5
 - ✓ Mid-term, Q1, Q4

Lecture 5 – Unconstrained Optimization (Basics)

- How to determine the candidate optimal points; local optimum or global optimum? relative optimum or strict optimum?
 - ✓ Lecture 5, pp. 8-9, 22-23, 26-29
 - ✓ Summary of Lecture 5-7, pp. 5, 9-15
 - ✓ Homework-2, Q2
 - ✓ Mid-term, Q4

Lecture 6 – Unconstrained Optimization (Gradient Based Methods)

- How to apply the gradient descent method
 - ✓ Lecture 6, pp. 17-18
 - ✓ Summary of Lecture 5-7, pp. 20
 - ✓ Mid-term, Q4

Lecture 7 – Linearization Techniques

- Linearization technique for "minimizing a convex objective function"
 - ✓ Lecture 7, pp. 12
 - ✓ Summary of Lecture 5-7, pp. 27
- Big-M method
 - ✓ Lecture 7, pp. 20-21
 - ✓ Mid-term, Q2

Lecture 8 - Constrained Optimization (Lagrange Multiplier)

- Graphical methods to solve nonlinear optimization
 - ✓ Lecture 8, pp. 4-5
 - ✓ Homework-3, Q2, Q3

Lecture 8 - Constrained Optimization (Lagrange Multiplier)

- How to write the KKT condition of an optimization; determine whether a point is a KKT point or not.
 - ✓ Lecture 8, pp. 11-16, 18-19, 28-29
 - ✓ Summary of Lecture 8-10, pp. 8-12
 - ✓ Homework-3, Q1

Lecture 9 – Convex Optimization

- Determine whether an optimization is a convex optimization and solve it
 - ✓ Lecture 9, pp. 11-19
 - ✓ Summary of Lecture 8-10, pp. 15-18
 - ✓ Homework-3, Q2, Q3

Lecture 10 – Dual Theory Part II

- Write down the dual problem of a nonlinear optimization
 - ✓ Lecture 10, pp. 7, 12-14, 16-17
 - ✓ Summary of Lecture 8-10, pp. 20-21
 - ✓ Homework-3, Q2

Lecture 11 – Distributed Optimization

- How to apply the dual decomposition method
 - ✓ Lecture 11, pp. 10-13
 - √ Homework-4, Q1

Lecture 12 – Multi-objective Optimization

- Determine the dominance relationship between two points
 - ✓ Lecture 12, pp. 10
 - ✓ Homework-4, Q2
- Pros and Cons of different multi-objective optimization methods
 - ✓ Lecture 12, pp. 19, 21

Lecture 13 – Robust Optimization

- How to solve a static robust optimization with discrete uncertainty set
 - ✓ The "cake" example last week
 - ✓ Homework-4, Q3
- Understand the concept of "robust feasible" and "robust optimal"
 - ✓ Lecture 13, pp. 17

Comparison 1 – Unconstrained v.s. Constrained

Unconstrained optimization

Stationary point

$$\nabla f(x^*) = 0$$

Convex function & global optimum

$$\min_{x} f(x)$$

Hessian matrix positive semi-definite $\rightarrow f(x)$ convex \rightarrow global minimum

Constrained optimization

KKT point

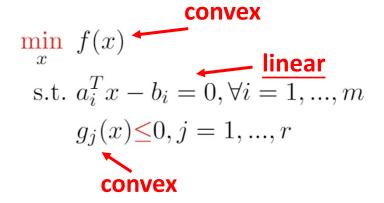
Regular point

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$h_i(x^*) = 0, \forall i = 1, ..., m$$

$$0 \le -g_j(x^*) \perp \mu_j^* \ge 0, \forall j = 1, ..., r$$

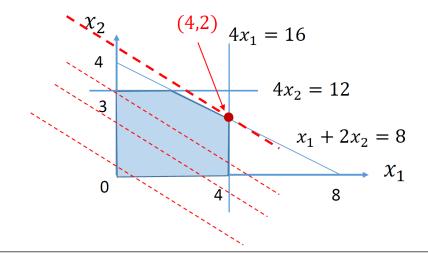
Convex optimization & global optimum



Comparison 2 – Linear Programming v.s. Nonlinear Optimization

Linear Programming

Graphical method

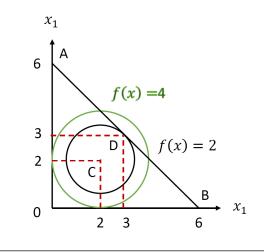


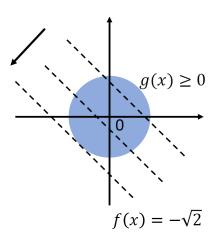
Strong duality

Suppose x^* and λ^* are the optimal solutions of the primal and dual problems, respectively, then $c^T x^* = d^T \lambda^*$

Nonlinear Optimization

Graphical method





Strong duality

Suppose f^* and Q^* are the primal and dual optimal objective values, however,

 f^* may not equal to Q^*

Comparison 2 – Linear Programming v.s. Nonlinear Optimization

Construct the dual optimization of this LP:

Primal
$$\min_{x} c^T x$$
 Dual $\max_{\mu,\lambda} \mu^T b_1 + \lambda^T b_2$ s.t. $A_1 x \geqslant b_1$ or $-A_1 x \leq -b_1$ s.t. $A_1^T \mu + A_2^T \lambda = c$ $A_2 x = b_2$ or $-A_2 x = -b_2$

The Lagrangian is

$$L(x, \mu, \lambda) = c^{T}x - \mu^{T}(A_{1}x - b_{1}) - \lambda^{T}(A_{2}x - b_{2})$$
$$= (c^{T} - \mu^{T}A_{1} - \lambda^{T}A_{2})x + \mu^{T}b_{1} + \lambda^{T}b_{2}$$

If any element i of $c^T - \mu^T A_1 - \lambda^T A_2 > 0$, let $x_i \to -\infty$, $x_{j \neq i} = 0$, then $L = -\infty$. If any element i of $c^T - \mu^T A_1 - \lambda^T A_2 < 0$, let $x_i \to \infty$, $x_{j \neq i} = 0$, then $L = -\infty$. Therefore, $c^T - \mu^T A_1 - \lambda^T A_2 = 0$ and $\min_x L = \mu^T b_1 + \lambda^T b_2$. The dual problem is

$$\max_{\mu,\lambda} \mu^T b_1 + \lambda^T b_2$$

s.t. $A_1^T \mu + A_2^T \lambda = c$
 $\mu \ge 0$

Comparison 2 – Linear Programming v.s. Nonlinear Optimization

Linear Programming

Complementary and Slackness

Primal problem

$\min_{x} c^{T} x$

s.t.
$$Ax \ge b$$

$$x \ge 0$$

Dual problem

$$\max_{\lambda} b^{T} \lambda$$
$$A^{T} \lambda \le c$$
$$\lambda > 0$$

$$0 \le \lambda \perp (Ax - b) \ge 0$$

$$0 \le \lambda \le Mz$$

$$0 \le (Ax - b) \le M(1 - z)$$

$$z \in \{0,1\}$$

Nonlinear Optimization

Complementary and Slackness

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$h_i(x^*) = 0, \forall i = 1, ..., m$$

$$0 \le -g_j(x^*) \perp \mu_j^* \ge 0, \forall j = 1, ..., r$$

If $g_i(x)$ is linear, then it can be linearized:

$$0 \le \mu_j^* \le Mz$$

$$0 \le -g_j(x^*) \le M(1-z)$$

$$z \in \{0,1\}$$

Comparison 3 – Gradient descent v.s. Dual Decomposition

Gradient descent

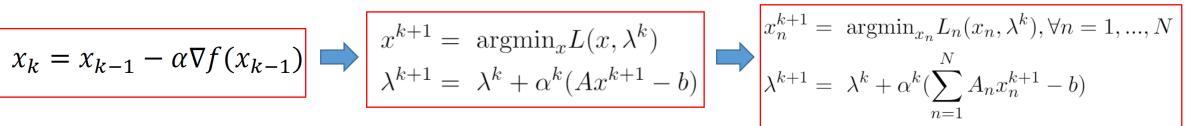
Dual ascent

Dual decomposition

$$x_k = x_{k-1} - \alpha \nabla f(x_{k-1}) \implies$$

$$x^{k+1} = \operatorname{argmin}_x L(x, \lambda^k)$$

 $\lambda^{k+1} = \lambda^k + \alpha^k (Ax^{k+1} - b)$

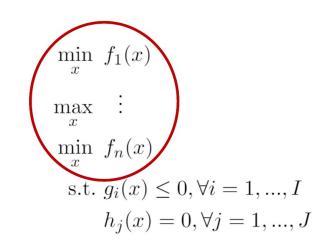


Comparison 4 – Single Objective & Multi-objective

$$\underbrace{\min_{x} f(x)}_{\text{s.t. } g_i(x)} \leq 0, \forall i = 1, ..., I$$

$$h_j(x) = 0, \forall j = 1, ..., J$$

Better – dominant Best solution – Pareto optimal sets Optimal value – Pareto optimal front



Some Tips

- 1. Check clearly whether it is a "min" or "max" problem
- 2. Remember to turn it into a standard form, e.g., $g(x) \le 0$
- 3. To solve a " $\max_{x} f(x)$ " problem, you can solve " $\min_{x} -f(x)$ " instead
- 4. To prove a matrix A is negative definite, you can try to prove that -A is positive definite instead
- 5. ...

Final exam

Time: **Dec 13, 2022 12:30-14:30**

Location: Multi-purpose Hall, Pommerenke Student Center

- Closed-book, no calculator.
- Formal answer books and scratch papers will be provided.
- No discussion or communication with others during the exam.
- Coverage: Lecture 1-13

Good luck!