MAEG4070 Engineering Optimization

Lecture 1 Introduction: What is Optimization?

Yue Chen

MAE, CUHK

email: yuechen@mae.cuhk.edu.hk

Sep 5, 2022

Course Setup

Welcome to the course on Engineering Optimization, with an introduction of its application in energy systems!

Basic administrative details:

• Instructor:

- Prof. Yue CHEN yuechen@mae.cuhk.edu.hk (FYB 604C)
- Office hour: 13:00-14:00, every Friday (online)
- English, Cantonese, Mandarin

Teaching assistants:

- DENG Zhiyu <u>zydeng@mae.cuhk.edu.hk</u> (ERB113)
- INNERO Gino ginnero@mae.cuhk.edu.hk (AB1 205)
- JIN Liuchao <u>lcjin@mae.cuhk.edu.hk</u> (ERB 201)
- LIU Jingjun jingjunliu@mae.cuhk.edu.hk (AB1 2F)
- TANG Yunxi yxtang@mae.cuhk.edu.hk (AB1 2F)

Time for tutorial? Posted on: Thursday, September 1, 2022 10:42:27 AM HKT Dear MAEG4070 students, Please select your time available for tutorial via the following link before Sep 7. https://forms.gle/zseCDZk6qdcqJFWFA The tutorial will be given by TAs, starting from week 2. Thanks! Your time available for tutorial Tuesday 13:30 - 14:15 Wednesday 10:30 - 11:15 Wednesday 12:30 - 13:15 Thursday 14:30 - 15:15 Friday 11:30 - 12:15

Course Grading Scheme

- Due days for assignments will be specified.
- Assignments will carry a 50 % penalty if handed in late.
- No credit will be given to assignments which are more than three days late.
- Copying is strictly prohibited.
- No make-up exam is given unless you get approval from the Director of Registry Services for permission for absence.
- If not permitted, a zero grade in that exam will be given.

Perquisite and reference

Assuming work with knowledge of:

- Calculus, Linear Algebra
- Formal mathematical thinking
- Programming (Matlab, Python, ...)

If you fall short on any one of these things, don't worry!

Reference:

- S. Boyd, L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
- R. Sioshansi, A. J. Conejo. Optimization in Engineering: Models and Algorithms. Springer, 2017.
- S. S. Rao. Engineering optimization: theory and practice. John Wiley & Sons, 2019.

Orientation of this course

Basic models:

- Linear programming
- Convex optimization
- Integer programming

•

Algorithms & Solvers:

- Lagrange / Dual Methods
- Linearization approaches
- CPLEX, MOSEK, ...

Engineering problems:

- Scheduling
- Machine Learning
- Market Analysis
-

A course bridges mathematical models and engineering applications

A course combining math and programming

What's optimization?

Different people may have different understanding about optimization

- Listing all possibilities and pick up the best?
- qualitative suggestions that lead to a better product design?
- trial and error?

A quantitative and systematic methodology to search for the best design among numerous possibilities while satisfying given constraints.

Where can we see optimization?

As a matter of fact, any rational human behavior could be modelled as an optimization problem (intentionally or subconsciously) almost all the time.

warehouse placement

Location of warehouses

Where can we see optimization?

Historical stock prices, economy

Stock Portfolio

stock market

Where can we see optimization?

Successful Applications in Real-world

Organization	Application	Cost Saving
AT&T	Location planning of telephone selling centers	\$ 406 million
79 electric utilities	Purchasing and energy management	\$ 125 million
Delta Air Line	Aircraft scheduling	\$ 100 million
SNCF	Train scheduling	\$ 15 million

- Not all engineering problems can be quantitatively modelled as an optimization and solved with current technologies.
- With the development of more advanced mathematics and computational tools, we can model and simulate more sophisticated process, behaviors, etc.
- The application of optimization is increasingly practical, significant, and worthwhile!

Greek mathematicians considers geometrical optimization problems.

Euclid

- the minimal distance between a point and a line.
- the greatest area among the rectangles with given total length of edges

Zenodorus

A sphere encloses the greatest volume for a given surface area

Heron

 light travels between two points through the path with shortest traveling time when reflected at or refracted through a boundary

The Earliest Optimization Approach: Calculus

- where $\frac{df(x)}{dx} = 0$ gives a maximum or minimum.
- Pierre De Fermat & Joseph-Louis Lagrange: calculus-based formulae for identifying optima
- Isaac Newton & Johann C.F. Gauss: iterative methods to search for an optimum.

Classic Optimization approaches

- Leonid Kantorovich: Linear Programming, 1939
- George Dantzig: the Simplex Method, 1947
- John von Neumann: the Theory of Duality, 1947
- The Karush-Kuhn-Tucker (KKT) condition, 1939 and 1951 by two separate groups
- Models: Unconstrained/Constrained optimization, single-/multi-objective optimization, etc.
- Algorithms: the steepest descent method, Newton's method, the penalty method, etc.

First Generation Optimization: Local, Iterative, and Gradient-based

- Considers a local optimal
- Iterative methods: based on the location of the previously explored point
- Reliance on gradients or higher order derivatives
- Cons: hard to explain why optimal is optimal, limited computing power

Second Generation Optimization: The Metaheuristic Approach

- Genetic Algorithms, "survival of the fittest"; Particle Swarm Optimization
- Pros: global optimization approaches; do not require gradients; support parallel computation.
- Cons: an enormous amount of trial points; the computation time could be hours or days.

Particle swarm optimization

Third Generation Optimization: The Al-Based Approach

- Also called surrogate-based optimization
- Pros: support parallel computation, do not need gradients, use fewer design trials than before,
 offer insight and knowledge about the design problem
- Cons: curse-of-dimensionality (Richard E. Bellman)

Basic concept

$$P: \min_{x \in \mathcal{X}} f(x)$$

- Variable: x entities and parameters that a designer can change
- Objective: f(x) the goals that a designer wants to achieve
- Constraints: \mathcal{X} technical restrictions that a product or process must satisfy; or can be called *feasible region*; x is a feasible point if $x \in \mathcal{X}$.

An optimization is either:

- Infeasible, where $\mathcal{X} = \Phi$
- Unbounded, where $\mathcal{X} \neq \Phi$, but f(x) can go to infinitely negative (unbounded below, also called "optimum/minimum not attained") or infinitely positive (unbounded above, usually treated as an infeasible point) when x varies in \mathcal{X}
- Feasible, where $\mathcal{X} \neq \Phi$, and the value f(x) is finite.

Basic concept

Global optimum. Let f(x) be the objective function, \mathcal{X} be the feasible region, and $x_0 \in \mathcal{X}$. Then x_0 is the global optimum if and only if $f(x) \ge f(x_0)$, $\forall x \in \mathcal{X}$.

Local optimum. Let f(x) be the objective function, \mathcal{X} be the feasible region, and $x_0 \in \mathcal{X}$. If there is a neighborhood of x_0 with radius $\varepsilon > 0$:

$$\mathcal{N}_{\epsilon}(x_0) = \{x \mid ||x - x_0|| < \epsilon\}$$

Such that $\forall x \in \chi \cap N_{\varepsilon}(x_0)$, we have $f(x) \ge f(x_0)$. Then x_0 is a local optimum.

Classification of optimization problems

Problem:

- Constrained v.s. nonconstrained
- Single-objective v.s. multi-objective
- Single-level v.s. multi-level
- Deterministic v.s. uncertain

Response:

- Linear v.s. nonlinear
- Convex v.s. nonconvex
- Smooth v.s. nonsmooth

Variable:

Continuous v.s. discrete (integer/binary)

Content of this course (tentative)

Procedure of applying optimization in engineering

In general, applying optimization in engineering follows five steps:

Step 1: Propose optimization problems, collect relevant data and information

Step 2: Establish mathematical model: determine the variables, the objective function and constraints

Step 3: Analyze the model and select the appropriate optimization method

Step 4: Solve: obtain the optimal solution via programming

Step 5: Test and implementation of optimal solution

Example-1 Parametric Regression

Given a data set $\{y_i, x_i\}$, $\forall i = 1, ..., N$ we assume that the relationship between the dependent variable y and the regressor x is linear.

$$y = b_0 + b_1 x + \varepsilon$$

We want to minimize the sum of square error.

$$\min_{b_0,b_1} \sum_{i=1}^{N} (y_i - b_0 - b_1 x_i)^2$$

Example-2 Production planning

A company has some resources to produce three products (denoted as A, B, C). Each product consumes a different mix of resources, and there will be a profit from selling the product. The endowment of resources and its relationship with products are:

	Α	В	С	Endowment
Steel	3	4	2	600
Wood	2	1	2	400
Label	1	3	3	300
Machine	1	4	4	200
Profit	2	4	3	

Question: How to maximize the total profit?

Example-2 Production planning

Variables: Denote x_1, x_2, x_3 be the production of products A, B, C, respectively.

Objective: How to maximize the total profit?

Constraints: do not violate the resource endowment

$$\max_{x_1, x_2, x_3} 2x_1 + 4x_2 + 3x_3$$
 s.t. $3x_1 + 4x_2 + 2x_3 \le 600$ Endowment limits
$$2x_1 + x_2 + 3x_3 \le 400$$

$$x_1 + 3x_2 + 3x_3 \le 300$$

$$x_1 + 4x_2 + 4x_3 \le 200$$

$$x_1, x_2, x_3 \ge 0$$
 Production must larger than 0

Example-3 Transportation

A building materials company has three cement factories A_1, A_2, A_3 and four dealers B_1, B_2, B_3, B_4 . Its output, sales volume and freight are shown in the table below

	B_1	B_2	B_3	B_4	Production
A_1	8	7	3	2	2000
A_2	4	7	5	1	10000
A_3	2	4	9	6	4000
Sales	3000	2000	4000	5000	

Question: How to minimize the freight?

Example-3 Transportation

Variables: Denote x_{ij} as the quantity from factory A_i to dealer B_i

Constraints: Production ability limits; selling requirement

Objective: Minimize the total freight

$$\begin{array}{ll} \min\limits_{x_{ij},\forall i,j} \ 8x_{11} + 7x_{12} + 3x_{13} + 2x_{14} + 4x_{21} + 7x_{22} \\ & + 5x_{23} + x_{24} + 2x_{31} + 4x_{32} + 9x_{33} + 6x_{34} \\ \mathrm{s.t.} \ x_{11} + x_{12} + x_{13} + x_{14} \leq 2000 & \mathsf{Production ability} \\ & x_{21} + x_{22} + x_{23} + x_{24} \leq 10000 & \mathsf{x}_{31} + x_{32} + x_{33} + x_{34} \leq 4000 \\ & x_{11} + x_{21} + x_{31} \geq 3000 & \mathsf{Sells requirement} \\ & x_{12} + x_{22} + x_{32} \geq 2000 & \mathsf{Sells requirement} \\ & x_{13} + x_{23} + x_{33} \geq 4000 & \mathsf{Quantity must larger than 0} \\ & x_{14} + x_{24} + x_{34} \geq 5000 & \mathsf{Quantity must larger than 0} \\ & x_{ij} \geq 0, i = 1, 2, 3; j = 1, 2, 3, 4 & \mathsf{Quantity must larger than 0} \end{array}$$

Example-4 Location problem

Suppose there are j=1,...,n markets whose location is (a_j,b_j) . Market j needs q_j product. We plan to build m warehouse whose capacities are c_i , i=1,...,m. How to choose the location of these warehouses so that the total cost is minimized?

$$\min_{x_i, y_i, w_{ij}} \sum_{j=1}^n \sum_{i=1}^m w_{ij} \sqrt{(x_i - a_j)^2 + (y_i - b_j)^2}$$
s.t.
$$\sum_{j=1}^n w_{ij} \le c_i, \forall i = 1, ..., m$$

$$\sum_{i=1}^m w_{ij} = q_j, \forall j = 1, ..., n$$

$$w_{ij} \ge 0, i = 1, ..., m, j = 1, ..., n$$

Thanks!