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Course Setup

Welcome to the course on Engineering Optimization, with an introduction 
of its application in energy systems!

Basic administrative details:
• Instructor: 

- Prof. Yue CHEN yuechen@mae.cuhk.edu.hk (FYB 604C)
- Office hour: 13:00-14:00, every Friday (online)
- English, Cantonese, Mandarin

• Teaching assistants:
- DENG Zhiyu zydeng@mae.cuhk.edu.hk (ERB113)
- INNERO Gino  ginnero@mae.cuhk.edu.hk (AB1 205)
- JIN Liuchao lcjin@mae.cuhk.edu.hk (ERB 201)
- LIU Jingjun jingjunliu@mae.cuhk.edu.hk (AB1 2F)
- TANG Yunxi yxtang@mae.cuhk.edu.hk (AB1 2F)
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Course Grading Scheme

Assignments
25%

Mid-term exam
25%

Final exam
50%

• Due days for assignments will be specified.
• Assignments will carry a 50 % penalty if 

handed in late. 
• No credit will be given to assignments 

which are more than three days late.
• Copying is strictly prohibited.

• No make-up exam is given unless you get 
approval from the Director of Registry Services 
for permission for absence.  

• If not permitted, a zero grade in that exam will 
be given. 
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Assuming work with knowledge of:
• Calculus, Linear Algebra
• Formal mathematical thinking
• Programming (Matlab, Python, …)

If you fall short on any one of these things, don’t worry!

Reference:
• S. Boyd, L. Vandenberghe. Convex optimization. Cambridge university 

press, 2004.
• R. Sioshansi, A. J. Conejo. Optimization in Engineering: Models and 

Algorithms. Springer, 2017.
• S. S. Rao. Engineering optimization: theory and practice. John Wiley & 

Sons, 2019.

Perquisite and reference
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Orientation of this course

Algorithms & Solvers:
• Lagrange / Dual Methods
• Linearization approaches
• CPLEX, MOSEK, …

Basic models:
• Linear programming
• Convex optimization
• Integer programming
• ……

Engineering problems:
• Scheduling
• Machine Learning
• Market Analysis
• …..

A course bridges mathematical models and engineering applications
A course combining math and programming
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What’s optimization?

Different people may have different understanding about optimization
• Listing all possibilities and pick up the best?
• qualitative suggestions that lead to a better product design?
• trial and error?

intoTranslate 𝑃𝑃: min
𝑥𝑥∈𝒳𝒳

𝑓𝑓(𝑥𝑥)

Conceptual idea Optimization problem

A quantitative and systematic methodology to search for the best design 
among numerous possibilities while satisfying given constraints.
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Where can we see optimization?

As a matter of fact, any rational human behavior could be modelled as an
optimization problem (intentionally or subconsciously) almost all the time.

Location of warehouses

Minimize
Travel time

Demand & supply
of goods
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warehouse placement



Detailed Design

Maximize
Load Bearing

Parameters, Plan

Stock Portfolio

Maximize
Returns

Historical stock prices,
economy
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Where can we see optimization?

bridge construction

stock market



Design

Minimize
Weight

Parameters, Use plan

Number of items

Maximize
Total value

List of items
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Where can we see optimization?

Airplane design 

knapsack problem



Successful Applications in Real-world

Organization Application Cost Saving

AT&T Location planning of 
telephone selling centers

$ 406 million

79 electric utilities Purchasing and energy 
management

$ 125 million

Delta Air Line Aircraft scheduling $ 100 million

SNCF Train scheduling $ 15 million

• Not all engineering problems can be quantitatively modelled as an
optimization and solved with current technologies.

• With the development of more advanced mathematics and computational
tools, we can model and simulate more sophisticated process, behaviors, etc.

• The application of optimization is increasingly practical, significant, and
worthwhile!
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History of optimization

Greek mathematicians considers geometrical optimization problems.

Euclid • the minimal distance between a point and a line.
• the greatest area among the rectangles with given total length of edges

• A sphere encloses the greatest volume for a given surface area

• light travels between two points through the path with shortest traveling 
time when reflected at or refracted through a boundary

Zenodorus

Heron
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History of optimization

The Earliest Optimization Approach: Calculus
• where 𝑑𝑑𝑑𝑑 𝑥𝑥

𝑑𝑑𝑥𝑥
= 0 gives a maximum or minimum.

• Pierre De Fermat & Joseph-Louis Lagrange: calculus-based formulae for identifying optima
• Isaac Newton & Johann C.F. Gauss: iterative methods to search for an optimum.

Classic Optimization approaches
• Leonid Kantorovich: Linear Programming, 1939
• George Dantzig: the Simplex Method, 1947
• John von Neumann: the Theory of Duality, 1947
• The Karush-Kuhn-Tucker (KKT) condition, 1939 and 1951 by two separate groups

• Models: Unconstrained/Constrained optimization, single-/multi-objective optimization, etc.
• Algorithms: the steepest descent method, Newton’s method, the penalty method, etc.
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History of optimization

First Generation Optimization: Local, Iterative, and Gradient-based
• Considers a local optimal
• Iterative methods: based on the location of the previously explored point
• Reliance on gradients or higher order derivatives
• Cons: hard to explain why optimal is optimal, limited computing power
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History of optimization

Second Generation Optimization: The Metaheuristic Approach
• Genetic Algorithms, “survival of the fittest”; Particle Swarm Optimization
• Pros: global optimization approaches; do not require gradients; support parallel computation. 
• Cons: an enormous amount of trial points; the computation time could be hours or days.
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History of optimization

Third Generation Optimization: The Al-Based Approach
• Also called surrogate-based optimization 
• Pros: support parallel computation, do not need gradients, use fewer design trials than before, 

offer insight and knowledge about the design problem
• Cons: curse-of-dimensionality (Richard E. Bellman)
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Basic concept

An optimization is either:
• Infeasible, where 𝒳𝒳 = Φ
• Unbounded, where 𝒳𝒳 ≠ Φ, but 𝑓𝑓(𝑥𝑥) can go to infinitely negative (unbounded 

below, also called "optimum/minimum not attained") or infinitely positive 
(unbounded above, usually treated as an infeasible point) when 𝑥𝑥 varies in 𝒳𝒳

• Feasible, where 𝒳𝒳 ≠ Φ, and the value 𝑓𝑓(𝑥𝑥) is finite.

• Variable: 𝑥𝑥 - entities and parameters that a designer can change
• Objective: 𝑓𝑓 𝑥𝑥 - the goals that a designer wants to achieve
• Constraints: 𝒳𝒳 – technical restrictions that a product or process must satisfy; or 

can be called feasible region; 𝑥𝑥 is a feasible point if 𝑥𝑥 ∈ 𝒳𝒳.

𝑃𝑃: min
𝑥𝑥∈𝒳𝒳

𝑓𝑓(𝑥𝑥)
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Basic concept

Global optimum. Let 𝑓𝑓(𝑥𝑥) be the objective function, 𝒳𝒳 be the feasible region, and 
𝑥𝑥0 ∈ 𝒳𝒳. Then 𝑥𝑥0 is the global optimum if and only if 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓 𝑥𝑥0 ,∀𝑥𝑥 ∈ 𝒳𝒳.

Local optimum. Let 𝑓𝑓(𝑥𝑥) be the objective function, 𝒳𝒳 be the feasible region , and 
𝑥𝑥0 ∈ 𝒳𝒳. If there is a neighborhood of 𝑥𝑥0 with radius 𝜀𝜀 > 0:

Such that ∀𝑥𝑥 ∈ 𝜒𝜒 ∩ 𝑁𝑁𝜀𝜀(𝑥𝑥0), we have 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓 𝑥𝑥0 . Then 𝑥𝑥0 is a local optimum.
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Classification of optimization problems

Problem:
• Constrained v.s. nonconstrained
• Single-objective v.s. multi-objective
• Single-level v.s. multi-level
• Deterministic v.s. uncertain

Response:
• Linear v.s. nonlinear
• Convex v.s. nonconvex
• Smooth v.s. nonsmooth

Variable:
• Continuous v.s. discrete (integer/binary)
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Optimization

Linear

Non-Linear

Linear programming

Dual Theory – Part I

Linearization 
technique

Unconstrained optimization

Constrained optimization

Dual Theory – Part II

Multi-objective optimization

Distributed optimization

Programming

Engineering examples

Content of this course (tentative)

Lecture 1
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Procedure of applying optimization in engineering

In general, applying optimization in engineering follows five steps:

Step 1: Propose optimization problems, collect relevant data and information

Step 2: Establish mathematical model: determine the variables, the objective
function and constraints

Step 3: Analyze the model and select the appropriate optimization method

Step 4: Solve: obtain the optimal solution via programming

Step 5: Test and implementation of optimal solution

21
Pictures from Google image



Example-1 Parametric Regression
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Given a data set 𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖 ,∀𝑖𝑖 = 1, … ,𝑁𝑁
we assume that the relationship between the
dependent variable 𝑦𝑦 and the regressor 𝑥𝑥 is
linear.

𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝜀𝜀
We want to minimize the sum of square error.

min
𝑏𝑏0,𝑏𝑏1

�
𝑖𝑖=1

𝑁𝑁
𝑦𝑦𝑖𝑖 − 𝑏𝑏0 − 𝑏𝑏1𝑥𝑥𝑖𝑖 2



Example-2 Production planning

A company has some resources to produce three products (denoted as A, B, C). Each
product consumes a different mix of resources, and there will be a profit from selling
the product. The endowment of resources and its relationship with products are:

A B C Endowment
Steel 3 4 2 600
Wood 2 1 2 400
Label 1 3 3 300

Machine 1 4 4 200
Profit 2 4 3

Question: How to maximize the total profit?

23



Variables: Denote 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 be the production of products A, B, C, respectively.

Objective: How to maximize the total profit? 

Constraints: do not violate the resource endowment

Endowment limits

Production must larger than 0

Example-2 Production planning
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Example-3 Transportation

A building materials company has three cement factories 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 and four dealers 
𝐵𝐵1,𝐵𝐵2,𝐵𝐵3,𝐵𝐵4. Its output, sales volume and freight are shown in the table below

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵4 Production
𝐴𝐴1 8 7 3 2 2000
𝐴𝐴2 4 7 5 1 10000
𝐴𝐴3 2 4 9 6 4000

Sales 3000 2000 4000 5000

Question: How to minimize the freight?
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Example-3 Transportation

Variables: Denote 𝑥𝑥𝑖𝑖𝑖𝑖 as the quantity from factory 𝐴𝐴𝑖𝑖 to dealer 𝐵𝐵𝑖𝑖

Constraints: Production ability limits; selling requirement

Objective: Minimize the total freight

Production ability

Sells requirement

Quantity must larger than 0
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Example-4 Location problem

Suppose there are 𝑗𝑗 = 1, … ,𝑛𝑛 markets whose location is (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖). Market 𝑗𝑗 needs 𝑞𝑞𝑖𝑖
product. We plan to build 𝑚𝑚 warehouse whose capacities are 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚. How to 
choose the location of these warehouses so that the total cost is minimized?
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Thanks！
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