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Dual Optimization

The primal problem:

The Lagrangian function is

We define the dual function as

Then the dual optimization is

3



4

Explanation – Finding the best lower bound

Still remember what we have learned in Lecture 3?
Dual problem can be interpreted as finding the best lower bound of a minimization problem.
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Explanation – Finding the best lower bound

(1)

(2)



6

Explanation – Finding the best lower bound

Dual problem

If a function is larger or 
equal to some value, the 
minimal of that function 
is still larger or equal to 
that value.



Dual Optimization
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Principles for LP duality (Lecture 3)
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Principles for LP duality (Lecture 3)

• The dual problem derived from Lagrangian provides a third interpretation of LP duality
• The dual theory for LP is a special case
• For LP, using the principles in the TABLE may be more convenient

Primal problem Dual problem
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Dual Optimization
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Example in Lecture 4 - Minimization
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Example
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Example
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Example
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Dual Theorems

Weak duality: suppose the optimal value of the primal problem is 𝑓𝑓∗ and the 
optimal value  of the dual problem is 𝑄𝑄∗, then 𝑓𝑓∗ ≥ 𝑄𝑄∗.
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Example
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𝜇𝜇 ≥ 0



Example

17



Dual Theorems

Recall that we have 𝑓𝑓∗ ≥ 𝑄𝑄∗ (weak duality). In some problems, we have 
𝑓𝑓∗ = 𝑄𝑄∗, which is called strong duality.

Slater’s condition: if the primal is a convex problem (i.e. 𝑓𝑓 and 𝑔𝑔𝑗𝑗 ,∀𝑗𝑗 are 
convex, ℎ𝑖𝑖 ,∀𝑖𝑖 are affine), and there exists at least one strictly feasible 𝑥𝑥:

𝑔𝑔𝑗𝑗 𝑥𝑥 < 0,∀𝑗𝑗 = 1, … , 𝑟𝑟; ℎ𝑖𝑖 𝑥𝑥 = 0,∀𝑖𝑖 = 1, … ,𝑚𝑚
Then strong duality holds.

An important refinement: strict inequalities only need to hold over 
functions 𝑔𝑔𝑗𝑗(. ) that are not affine.
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Comparison

Weak duality: Let 𝑥𝑥0, 𝜆𝜆0 be a feasible solution of the primal problem and the 
dual problem, respectively. We have 𝑐𝑐𝑇𝑇𝑥𝑥0 ≥ 𝑏𝑏𝑇𝑇𝜆𝜆0.

Weak duality: suppose the optimal value of the primal problem is 𝑓𝑓∗ and the 
optimal value  of the dual problem is 𝑄𝑄∗, then 𝑓𝑓∗ ≥ 𝑄𝑄∗.

Strong duality:
• Refined version of Slater’s condition indicates that strong duality holds for an 

LP if it is feasible.
• Similarly, strong duality holds for the dual LP if it is feasible
• Moreover, the dual of dual LP is the primal LP
• We nearly always have strong duality for LPs.

Similar
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Example

In the previous example, we already have

Primal problem Dual problem

It is easy to check that the primal problem is a convex optimization, and there 
is at least one strictly feasible point, e.g. 𝑥𝑥 = (0.5,0.5). Therefore, we can 
apply Slater’s condition and should have 𝑓𝑓∗ = 𝑄𝑄∗.

The optimal solution of the primal problem is 𝑥𝑥∗ = 0,0 with 𝑓𝑓∗ = 0.
The optimal solution of the dual problem is 𝜇𝜇∗ = 0, 𝜆𝜆∗ = 0 with 𝑄𝑄∗ = 0.
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Complementary and slackness condition
0 ≤ (2 − 𝑥𝑥1 − 𝑥𝑥2) ⊥ 𝜇𝜇 ≥ 0



Thanks！
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