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Dual Optimization

The primal problem:

mjn f(x)

s.t. hi(xr) =0,Vi=1,....,m
gi(r) <0,Vj=1,..r
The Lagrangian function is
Lz, A\, ) = ) + Z)\ hi(x) + lejqj(m)? p; > 0,Yj
1=1

We define the dual functlon as
Q(A, 1) = min L(x, A, j1)

Then the dual optimization is

max Q(A\, )
W

s.t. >0



Explanation — Finding the best lower bound

Still remember what we have learned in Lecture 3?
Dual problem can be interpreted as finding the best lower bound of a minimization problem.
Consider the optimization:
min f(z)

s.t. gi(x) <0OVi=1,....m

We want to find the best lower bound v.
Since v is a lower bound, we have

fx)>v,Veed{r|gi(r) <0,Vi=1,...,m}

It means that the following equation has no feasible solution:

flz) <w
gi(r) <0, Vi=1,...m



Explanation — Finding the best lower bound

It means that the following equation has no feasible solution:

flx) <w
gi(r) <0,Vi=1,....m (1)

It is further equivalent to the following condition has no feasible solution:

du >0, f(x +Zuggz < (2)

(Otherwise, if (2) has no feasible solution, but (1) has. Suppose the solution of (1) is z*, it
satisfies f(z*) < v, g;i(2*) <0,Vi = 1,...,m; then for any p > 0, we have f(x*) 4+ > ", pg;(x*) < v;
so x* is also a feasible solution of (2). We have contradiction!!)



Explanation — Finding the best lower bound

Moreover, (2) has no feasible solution is equivalent to

du >0, f(x)+ Z:,u%gZ ) > v,V

which is equivalent to

> 0, mm{j ) + Zp@gz )} >

A >y

L(ft,u)

If a function is larger or
equal to some value, the
minimal of that function
is still larger or equal to
that value.

As we want to find the "best” lower bound, we want v to be as large as possible, so

max min L(z, u)

pu>0 x
\

Dual problem




Dual Optimization

Construct the dual optimization of this LP:

min ¢z
I

S.t. Al.“L‘ 2 bl or | — Al;f{? § _bl

Aox = by or|— Asx = —by

The Lagrangian is

Lz, p,\) = ¢ta—pl (Arz —b1) — M (Agz — bo)
= (cT — /LTAl — )\TAQ)SC + /LTbl + \b,

If any element i of ¢! — pul' Ay — AT Ay > 0, let x; — —o0, rj4; = 0, then L = —o0.
If any element i of ¢! — pT Ay — M4y <0, let 2; — oo, rj+; = 0, then L = —o0.
Therefore, ¢! — pt' Ay — AN Ay = 0 and min, L = by + Abs.

The dual problem is

max ,u,.Tbl + Ny
A

s.t. A%ﬁ,u + Ag)\ =c
(>0



Principles for LP duality (Lecture 3)

Primal LP

Dual LP

Objective: min
Objective coefficient: cT
Constraint coefficient: (A,b)

Objective: max
Objective coefficient: bT
Constraint coefficient: (AT,c)

n-th variable

n-th constraint

Vars: =0 Cons: | =
<0 >
free =
m-th constraint m-th variable
< <0
Cons: > Vars: | =20

free




Principles for LP duality (Lecture 3)

Primal problem Dual problem
. T - .
min ¢ x max b + M b
& T Ly A
s.t. Al:}; bl \\\\‘\Sqt\' Ar{/; - Ag)\ —as
Aox = bo li 0

 The dual problem derived from Lagrangian provides a third interpretation of LP duality
* The dual theory for LP is a special case
* For LP, using the principles in the TABLE may be more convenient



Dual Optimization

The dual problem is always a convex optimization, i.e. —Q(A\, u) is a convex function.

—Q(A\ ) = — min Lz, p, \) = max —L(x, p, A)

Notice that —L(x, u, A) is a linear function (also convex) of p, A.

Moreover,

1. max{ci(x),...,cp(x)} is a convex function if all ¢;, Vi = 1, ..., m are convex.

2. if a function c¢(x,y) is convex about y, then max, c¢(x,y) is also a convex function.
Therefore, —Q(A, i) is a convex function.
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Example in Lecture 4 - Minimization

C is a convex set, f(z,y) is convex in the (z,y) space, then the function

g(xr) =min f(x,y)
. . yec
1S convex 111 »r

Proof: For any x; and x5, the minimizers are y; and y»

g($1) — f(xlayl)a 9(332) — f(IQ:QQ)

g(try + (1 —t)xe) = rynelg fltey + (1 —t)z2,y)

< f(toy 4+ (1 —t)aa, tyr + (1 — t)y2)
< tf(xr.yn) + (1 —1) f(x2, y2)
= tg(x1) + (1 —t)g(x2)
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Example

Construct the dual optimization of:

min :r:% + :r%
L1,T2

s.t.xp + a0 < 2

r1— a9 =20

The Lagrangian is

Let 1 =

Lz, pi, \) = 2% + 25 + p(xy + 29 — 2) + My — 22)

= 29+ (p+ Ny + a5+ (0 — Nag — 2u

DRt AS o =y (AR (p— N
= (a1 + )° + (x2 + )< — — — 2
2 2 4 4
—‘“’_2”‘ and xo = —?: then

L, - :
min L(x, j1, \) = —5(,{1,2 + %) —2pu
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Example

Therefore, the dual optimization is

max — —(p? + A\%) — 2u

[T
s.t. u >0

which is equivalent to

1, . ‘
min —(u? + \?) + 2
A 2

s.t. <0

%( 12 4+ A?) 4+ 2p and —p are all convex.
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Example

Construct the dual optimization of:

The Lagrangian is

. ) 2 .
min ry + I;

r1,22

2

s.t.x1+a9 >4
xry > 0,29 >0

L(x,pn) = I’% + ’I% — pp (1 + 10 —4) — poxy — p3ao

= r% — (p1 + p2)xy + :1:% — (g1 + p3)xs + 4y

_H1 2

pr— (:El 2

Therefore,

min L(x, pn) =

£L1,T2

The dual optimization problem is:

max —
12,443

)* + (2

2

M1t g

)? —

(1 + !LQ)Q

4

(pe1 + 112)2

4

(11 + p3)?

(pe1 + /152)2

(pe1 + IL:S)Q

4

(po1 + MS)Q

4

4

s.t. u1 20,02 20,3 >0

4

+ 4/L1

+ 4/1,1

— 4;51
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Dual Theorems

Weak duality: suppose the optimal value of the primal problem is f* and the
optimal value of the dual problem is Q*, then f* = Q".

Proof: Suppose the optimal solution of the dual problem is (A", ™)
The optimal solution of the primal problem is x*.

Q* e IIEII L(Q’l’;? /\* lu’*)
T

= 111111f +Z)\h +Z;1Jg]

m

< min A hi(
< a0+ 30000+ 30

< min f(x) = f*

reX

where & = {alhi(x) = 0.¥i = 1, .omi g;(2) < 0.5 = 1.7},
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Example

Consider the optimization problem:

min x1xo
r1,T2

2 2
s.t.x] + x5 <2

We know that (z1 + 22)? > 0, so

2 2
xr] 1+ T3

T1T9 > — 5 > —1
Equality holds when z* = (1, —1) or 2* = (—1, 1).
The L ian i =0
The Lagrangian is /

L(z, i) = x1290 + p(a? + 22 — 2)

1. If p =0, min, L(x, u) — —oc.
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Example
2. If p # 0, take the derivative of L(x, u):

OL L
— = To+2ur1, — = 1 + 2119
0x1 Oxo

210 1
H(z) = [ { 2#]

‘ 1
H (x) is positive semidefinite iff 4% —1 >0, i.e. p > :.

1)if p= 1 , let gf‘ — g;; = 0, we have r1 = —ux».

1
L(x,p) = —a2 + 5(2:1:% —2)=-1

2) If > 3, let 8L = 9L — (), we have 21 = x9 = 0. Therefore, Q(u) = —24.

Oxo

max Q(p) = —1.
1L



Dual Theorems

Recall that we have f* = Q™ (weak duality). In some problems, we have
f* = Q7, which is called strong duality.

Slater’s condition: if the primal is a convex problem (i.e. f and g;, Vj are

convex, h;, Vi are affine), and there exists at least one strictly feasible x:
gix)<0,vj=1,.,r hx)=0Vi=1,..,m

Then strong duality holds.

An important refinement: strict inequalities only need to hold over
functions g;(.) that are not affine.



Comparison

Weak duality: suppose the optimal value of the primal problem is f* and the
optimal value of the dual problem is Q*, then f* = Q".

Weak duality: Let x,, Ay be a feasible solution of the prMoblem and the
dual problem, respectively. We have c¢Txq > bT 2. ~—__ Sirmilar

Strong duality:

* Refined version of Slater’s condition indicates that strong duality holds for an
LP if it is feasible.

e Similarly, strong duality holds for the dual LP if it is feasible

 Moreover, the dual of dual LP is the primal LP

* We nearly always have strong duality for LPs.



Example
Complementary and slackness condition
In the previous example, we already have 0<Z-x—x)Llpu=0

Primal problem Dual problem

i 222 1, . ‘

min xry +x nax — —(u? 2y

r1,02 1 2 11;;& 2(;1. + A%) — 2u
s.t. 1+ a9 <2 s.t. >0

r1 — a9 =0

It is easy to check that the primal problem is a convex optimization, and there
is at least one strictly feasible point, e.g. x = (0.5,0.5). Therefore, we can
apply Slater’s condition and should have f* = Q".

The optimal solution of the primal problem is x* = (0,0) with f* = 0.
The optimal solution of the dual problemis u* = 0,A4* = 0 with Q* = 0.



Thanks!
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