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Motivation

In engineering, “Big Data” has had a significant impact in areas as varied as
artificial intelligence, internet applications, medicine, finance, marketing,
network analysis, and logistics.

However…
• The datasets are often extremely large
• The data is often very high dimensional
• The data is often stored or even collected in a distributed manner

As a result, we want to develop algorithms:
• rich enough to capture the complexity of modern data
• Scalable enough to process huge datasets in a parallelized or fully

decentralized fashion.
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History

• Dual decomposition (early 1960s), similar ideas appear in well known work
by Dantzig and Wolfe and Benders on large-scale linear programming

• Augmented Lagrangians and the method of multipliers for constrained
optimization (late 1960s) by Hestenes and Powell.

• decentralized optimization, an active topic of research since the 1980s.

decomposition-coordination procedure
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Dual problem

5



Dual ascent

x-minimization

dual update

This algorithm works with lots of strong assumptions
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𝜆𝜆
−𝑔𝑔(𝜆𝜆)



Dual decomposition

Dual ascent is still centralized, how to turn it into distributed?

?
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Dual decomposition
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Dual decomposition

𝝀𝝀𝒌𝒌

𝝀𝝀𝒌𝒌
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𝑨𝑨𝟐𝟐𝒙𝒙𝟐𝟐𝒌𝒌+𝟏𝟏
𝑨𝑨𝑵𝑵𝒙𝒙𝑵𝑵𝒌𝒌+𝟏𝟏

�
𝒏𝒏=𝟏𝟏

𝑵𝑵
𝑨𝑨𝒏𝒏𝒙𝒙𝒏𝒏𝒌𝒌+𝟏𝟏

Solve a large problem
• By iteratively solving subproblems (in parallel)
• Dual variable update provides coordination

Works, with lots of assumptions; often slow
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Example-1
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Example-1
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Example-2
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Example-2
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Method of multipliers*

Augmented Lagrangian methods
• Bring robustness to the dual ascent method
• Yield convergence without assumptions like strict convexity or finiteness of f.

• Good news: converges under much more relaxed conditions
• Bad news: quadratic penalty destroys splitting of the x-update, so can’t be 

decomposed
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Alternating Direction Method of Multipliers (ADMM)*

ADMM method (Gabay, Mercier, Glowinski, Marrocco, 1976)
• With good robustness of method of multipliers
• Can support decomposition

Convex, closed, proper
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Example – Consensus Problem*

For example, In model fitting, 𝑥𝑥 represents the
parameters in a model and 𝑓𝑓𝑛𝑛 represents the
loss function associated with the n-th block of
data or measurements. In this case, we would
say that 𝑥𝑥 is found by collaborative filtering,
since the data sources are ‘collaborating’ to
develop a global model.

𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝑵𝑵
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Each block only knows part 
of the objective function



Example – Consensus Problem*
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Example – Consensus Problem*
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Example – Consensus Problem* 
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Example – Consensus Problem* 
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Example – Consensus Problem* 
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Example – Optimal Exchange*

• Components of 𝑥𝑥𝑛𝑛: quantities of commodities that are 
exchanged among N agents. 

• When (𝑥𝑥𝑛𝑛)𝑗𝑗≥ 0: the amount of commodity j received by 
subsystem n from the exchange. 

• When (𝑥𝑥𝑛𝑛)𝑗𝑗≤ 0: −(𝑥𝑥𝑛𝑛)𝑗𝑗 is the amount of commodity j 
contributed by subsystem n to the exchange.

• The equilibrium constraint that each commodity clears
• have a long history in economics, particularly in the theories 

of market exchange, resource allocation, and general 
equilibrium (Walras, Arrow and Debreu, and Uzawa)
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Example – Optimal Exchange*
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Syncrhonous v.s. Asynchronous*

Asynchronous
(non-stop, no wait)

Synchronous
(wait for the slowest)

Synchronous parallel algorithm:
• Easy to implement; easy to analyze
• Unevenly job distribution: more idle time

Asynchronous parallel algorithm:
• Hard to implement; hard to analyze
• Unevenly job distribution: less idle time
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Thanks！
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