MAEG4070 Engineering Optimization

Lecture 11 Distributed Optimization

Yue Chen
MAE, CUHK

email: yuechen@mae.cuhk.edu.hk
Nov 14, 2022

Content of this course (tentative)

Optimization

Lecture 1

Linear programming

Lecture 2
Linear
Dual Theory — Part |

. . . Lecture 3
Linearization

technique

Lecture 7 Unconstrained optimization

Lecture5 & 6

Non-Linear Constrained optimization
Lecture 8 & 9

Dual Theory — Part Il
Lecture 10

Lecture 4

Distributed optimization Lecture 11

Multi-objective optimization Lecture 12

Robust optimization | Lecture 13
Theory

Programming
Lecture 14

Engineering examples

Lecture 15

Motivation

In engineering, “Big Data” has had a significant impact in areas as varied as
artificial intelligence, internet applications, medicine, finance, marketing,
network analysis, and logistics.

However...

 The datasets are often extremely large

 The data is often very high dimensional

 The data is often stored or even collected in a distributed manner

As a result, we want to develop algorithms:

* rich enough to capture the complexity of modern data

* Scalable enough to process huge datasets in a parallelized or fully
decentralized fashion.

History

* Dual decomposition (early 1960s), similar ideas appear in well known work
by Dantzig and Wolfe and Benders on large-scale linear programming

* Augmented Lagrangians and the method of multipliers for constrained
optimization (late 1960s) by Hestenes and Powell.

* decentralized optimization, an active topic of research since the 1980s.

decomposition-coordination procedure

master node Thousands

(parameter server)

{l CLOUD | Data Centers

kN

- 5= \Billions
{l {' . .. {l EDGE | Devices . \ ; Eﬁ /\: o |
/N g/ —T—
/ \ A ; —
worker | worker 2 worker P . m - / '
4

Pictures from Google image

Dual problem

Consider the convex equality constrained optimization problem:

min f(x)
xT

s.t. Ar =0
The Lagrange function is
L(xz,\) = f(x) + N (Az —b)
The dual function is
g(A\) = ir;fL(:r:, A)
The dual problem is
max g(N)

Finally, we can recover x* by

x* = argmin_ L(x, \")

Dual ascent

The Lagrange function is L(xz, \) = f(x) + A\ (Az — b).
The dual function is g(\) = inf, L(x, A).
The dual problem is max) g()\).%

min —g (1)

We can apply the gradient method to the dual problem:
AL — \F L aFwg(AF)

Note that Vg(*) = A% — b, where & = argmin, L(z, \").
Therefore, the dual ascent method can be summarized as
" = argmin, L(z, \¥) X-minimization

AL — AP 1 0¥ (Az"T —b) dual update

This algorithm works with lots of strong assumptions

Dual decomposition

Dual ascent is still centralized, how to turn it into distributed?

Suppose f is separable:

f(x) = fi(z) + fo(@2) + .. + fn(an), @ = (21,22, ..., 2N)
Then the Lagrange function is also separable

L(x,\) = f(x)+ XAz —D)
= fi(z1) + folma) 4+ ... + fv(zn) + M (Arzy + Aszo + ...+ Ayay — b)
— fl(Tl) +)\T(A;L:I,‘ll%—,fg(mg) + AT(AQ.T:QZ_"... +fN($N) -+)\T(AN.’L‘NZ—)\TZJ

'

Li(xz1,M) La(xz2,\) Ln(zn,\)

"t = argmin, L(z, \¥) |- ?

AL — 2P oF (APt — D) :

Dual decomposition

First, for 2! = argmin, L(x, *):
.”}Tfi-l-l — argminmnl).n(:}:n,)\’f) — argminxn |ifn(Tn) 4+ ()\IC)TAn-@n} Vn=1,...N

Then, for \¥t1 = \F + oF(AxF Tt — p):

N
Ak-l—l _)\k + Odk(z Anﬂ?ﬁ_’_l o b)

n=1

Thus, we can derive a distributed version of dual ascent:

n

T argming, Ly (y,)\k),Vn -1,...N

N
)\k-i-l _)\k 4 ak(z An:}:ﬁ—i_l o b)
n=1

Dual decomposition

master node
(parameter server)

=

).k

Iiliﬁ

worker | worker 2 worker P

Solve a large problem

X1 ™ Xq

master node

(parameter server)

€I€l

worker | worker 2
k+1 xlzc N xlzc+1 .

-

worker P

k

- XN ™ XN

e By iteratively solving subproblems (in parallel)
* Dual variable update provides coordination

Works, with lots of assumptions; often slow

master node
(parameter server)

{| N
k+1

Anxn
I n=1
k+1
Arxy” - iﬁ AN"
{| {l A2x12(+1 '
worker | worker 2 worker P

9
Pictures from Google image

Example-1

For example, to solve problem:

The Lagrange function is

The updates are

L(."L‘,)\) —

min :1;% + :'L'%
Iy,T2

sty +a9 =2

2, .2 |
x] + x5+ N + 29 — 2)
."L‘% + A\x1 + .“'L'% + ATo —2\
N - N -

Li(z1,)) La(z2,))

)\k
argmin,,, (’E% +)\k,q:l) =5
)\k.
argmin,,, (:c% —)\km) -5

A oF (b 4 bt 2)

10

Example-1

The updates are

)\k
i = argmin,, (:1:% +)\kl‘l) Y
k)\k

Ak+1 — /\k + ak(xllﬁ-l—l + $§+1 o 2)

e
o AEREEREEEEE

A small a, converges slow
A large a, might not converge

Example-2

To solve the optimization problem:

The Lagrangian function is

The updates are

min (z; — 2)% + (23 — 1)*

I1,r2

s.t. 1+ 10 =2

(7 —2)? 4+ (29 — 1)% + N2y + 29 — 2)
(.’El — 2)2 + Ar1 + (Tz — 1) + Axo —2A

Vo

Lyi(z1,M) La(x2,\)

)\k.

= argmin, (r1 — 2)2 + Ny =2 — 3
)\k

argmin, (29 — 1) +)\" — 1 —)

)\k—|—(}f (k—|—1_|_,rk—}—1 2)

12

Example-2

The updates are

k
k+1 _ o 2 k _ A
)y = argmin, (r; —2)°+ A'r =2 — 5
k+1 . 2 L)\k
Ty = argmin, (r2 — 1)+ Nro =1~ 5
D N I s)
2.5
2 W
. |
1
) \\‘\‘*‘“—‘AA«\ AAAAAAAAAAAA
0
0 s 10 15 20 25 30 35 A small a, converges slow
—@—x1,a=0.2 —@—x2,a=0.2 x1,a=0.5 x2,a=0.5

A large a, might not converge

13

Method of multipliers*

Augmented Lagrangian methods
* Bring robustness to the dual ascent method
* Yield convergence without assumptions like strict convexity or finiteness of f.

The augmented Lagrangian (Hestenes, Powell 1969) is

Ly(x,\) = f(z) + N (Az —b) +|(p/2)

Az — b5

Similarly, the updates (method of multipliers) are

gl = argmin, L ,(z, AF)

AL — N\F L p(AxP L —p)

* Good news: converges under much more relaxed conditions

* Bad news: quadratic penalty destroys splitting of the x-update, so can’t be
decomposed

14

Alternating Direction Method of Multipliers (ADMM)*

ADMM method (Gabay, Mercier, Glowinski, Marrocco, 1976)
* With good robustness of method of multipliers
e Can support decomposition

ADMDM method deals with problem with form of:
Convex, closed, proper

min f() + g(y)

T,y
s.t. Ar + By = ¢
The Lagrangian is:

Ly(x,y,\) = f(x)+g(y) + M (Az + By —¢) + (p/2)||Az + By — ¢||3

The updates are

" = argmin, L, (x, y", \F)
it = argnlirlpr(;:f:kH, y, \F)
Netl — Ak ,O(A:}:kle + Bykﬂ —b)

15

Example — Consensus Problem*

The consensus problem is modeled as

mm Z fnlx

s.it. x, =y, Vn =1, ...

For example, In model fitting, x represents the
parameters in a model and f,, represents the
loss function associated with the n-th block of
data or measurements. In this case, we would
say that x is found by collaborative filtering,
since the data sources are ‘collaborating’” to
develop a global model.

Each block only knows part
of the objective function

, N

master node
(parameter server)

-

P,
t,v

@t

- N

-

worker | worker 2 worker P

fi [z Y

16
Pictures from Google image

Example — Consensus Problem*

The consensus problem is modeled as

The augmented Lagrangian is

Lp(:}j: y?)\)

mln Z fnlx

st.zp, =y, Vn=1,....N

N

— Z\(f”(/r”) + Xz —)+ (p/2)||2n — !!Hj)J

n=1

Lp,-n,(ﬁn,y,)\)

is decomposible. Then the ADMM updates are

k+1 __
xn _

i =

k+1
)\n

argming L, n(2n, Yy N Vn=1,..,N
argmmpr(ALy N
= \Nppaftt M yn =1, N

17

Example — Consensus Problem*

Consider this problem:

min (23 — 2z1 + 2) + (22 — 49 + 3)

L1,L2

St =Y, 2 =Y
This problem is equivalent to

min 222 — 6x + 5
€T

So the optimal solution is z* = 1.5.

The augmented Lagrangian is

Ly(x,y,\) = (27 — 221 +2) + A\ (21 —y) + (p/2)(z1 — y)*
+ (25 — a9 +3) + Xa(22 — y) + (p/2) (22 — y)?

18

Example — Consensus Problem*

The augmented Lagrangian is

Ly(z,y,\) = (27 — 221 +2) + A (21 —y) + (p/2) (21 — y)*
+ (22 — 4o 4 3) + X2 — y) + (p/2) (22 — y)?

We then calculate argmin, L, q(x1,y", A"):

We have

Similarly

0L,

T =21 — 24+ A+ plar —y") = (2+ p)z1 — (2 = AT + py™)

1
k+1 k k
T = —(2 =\ + p
1 21 (1 Py)

1 o
! = s, A5+ oyt

19

Example — Consensus Problem*

We then calculate argmin, L, (x

oL, _

dy
We have

Ly,)
” k k
AT =23 = p(ay T = y) = plas T -
yk’H _)\’{ + /\S + p:BlH + p:z:2+1
2p

Therefore, the ADMM updates are

1
k+1 k k
xT = ——(2 = \}Y + pi
1 p(1 p.y)

1
k41 k k
X = — (4 = A5 +p
2 —I—p(2 y")

k+1)‘]1{T + /\]5 + pT

Y =
M= AT +
AT =5+

y) =0

20

Example — Consensus Problem*

1.8
1.6
14
1.2

1
0.8
0.6
0.4
0.2

0

1.8
1.6
1.4
1.2
x 1
0.8
0.6
0.4
0.2

p=0.38
p=0.3

10 15 20 25 30

Iteration

—0—x1

—@— X2

35

—0—x1
—@— X2

35

1
= —— (2= +py")

2+ p

1
(4= Nty

A A+ ! o e

2p
AT+ p(a Tt =y

k 2 k
Ay + ﬂ(szH — Y H)

A smaller p takes longer to converge

21

Example — Optimal Exchange*

The optimal exchange problem is

N
min E fnl(xy)
Tn,VN
n=1
N
S.t. E ry = 0
n=1

* Components of x,,: quantities of commodities that are
exchanged among N agents.

* When (x5,);= 0: the amount of commodity j received by
subsystem n from the exchange.

* When (x,);< 0: —(xy); is the amount of commaodity j
contributed by subsystem n to the exchange.

* The equilibrium constraint that each commodity clears

* have a long history in economics, particularly in the theories
of market exchange, resource allocation, and general
equilibrium (Walras, Arrow and Debreu, and Uzawa)

COWORKING

CAR SHARING PROPERTY SHARING

@ TOOLS SHARING

DEVICE SHARING

REDUCE
EXPENSES
? ﬁ a
LS
o .

SHARING ECONOMY
CROWDFUNDING BICYCLE SHARING

@ INNOVATION

22
Pictures from Google image

Example — Optimal Exchange*

where ¢(.) is the indicator function:

Q(Z y-n) = 4

N
min E fn(xy)
Tn. VN
n=1
N
s.t. E xr, =0
n=1

N N
min Z f-n-(q;n) + Q(Z y-n-)
T Yn,VN
n=1 n=1
st.x, =vy,.Vvn=1,.... N

(

N
a large constant, V > y, =0
n=1

N
0, VY yn#0
n=1

23

Syncrhonous v.s. Asynchronous*

Agent 1| | idle [| idle I Agent 1I I I I I I
Agent 2| | idle [| Agent 2| | | |
Agent 3| I I idle I ‘Ag(!llt 3' I I I I
Synchronous Asynchronous
(wait for the slowest) (non-stop, no wait)

Synchronous parallel algorithm:
* Easy to implement; easy to analyze
 Unevenly job distribution: more idle time

Asynchronous parallel algorithm:
 Hard to implement; hard to analyze
 Unevenly job distribution: less idle time

24
Pictures from Google image

Thanks!

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25

