MAEG4070 Engineering Optimization

Lecture 11 Distributed Optimization

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk Nov 14, 2022

Content of this course (tentative)

Motivation

In engineering, "Big Data" has had a significant impact in areas as varied as artificial intelligence, internet applications, medicine, finance, marketing, network analysis, and logistics.

However...

- The datasets are often extremely large
- The data is often very high dimensional
- The data is often stored or even collected in a distributed manner

As a result, we want to develop algorithms:

- rich enough to capture the complexity of modern data
- Scalable enough to process huge datasets in a parallelized or fully decentralized fashion.

History

- *Dual decomposition* (early 1960s), similar ideas appear in well known work by Dantzig and Wolfe and Benders on large-scale linear programming
- Augmented Lagrangians and the method of multipliers for constrained optimization (late 1960s) by Hestenes and Powell.
- decentralized optimization, an active topic of research since the 1980s.

decomposition-coordination procedure

Dual problem

Consider the convex equality constrained optimization problem:

$$\min_{x} f(x)$$

s.t. $Ax = b$

The Lagrange function is

$$L(x,\lambda) = f(x) + \lambda^{T} (Ax - b)$$

The dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda)$$

The dual problem is

$$\max_{\lambda} g(\lambda)$$

Finally, we can recover x^* by

$$x^* = \operatorname{argmin}_x L(x, \lambda^*)$$

Dual ascent

The Lagrange function is $L(x,\lambda) = f(x) + \lambda^T (Ax - b)$. The dual function is $g(\lambda) = \inf_x L(x,\lambda)$. The dual problem is $\max_{\lambda} g(\lambda)$. $\min_{\lambda} -g(\lambda)$

We can apply the gradient method to the dual problem:

$$\lambda^{k+1} = \lambda^k + \alpha^k \nabla g(\lambda^k)$$

Note that $\nabla g(\lambda^k) = A\hat{x} - b$, where $\hat{x} = \operatorname{argmin}_x L(x, \lambda^k)$. Therefore, the *dual ascent* method can be summarized as

$$x^{k+1} = \operatorname{argmin}_x L(x, \lambda^k) \qquad \text{x-minimization}$$

$$\lambda^{k+1} = \lambda^k + \alpha^k (Ax^{k+1} - b) \qquad \text{dual update}$$

This algorithm works with lots of strong assumptions

Dual decomposition

Dual ascent is still centralized, how to turn it into distributed?

Suppose f is separable:

$$f(x) = f_1(x_1) + f_2(x_2) + ... + f_N(x_N), x = (x_1, x_2, ..., x_N)$$

Then the Lagrange function is also separable

$$L(x,\lambda) = f(x) + \lambda(Ax - b)$$

$$= f_1(x_1) + f_2(x_2) + \dots + f_N(x_N) + \lambda^T(A_1x_1 + A_2x_2 + \dots + A_Nx_N - b)$$

$$= \underbrace{f_1(x_1) + \lambda^T(A_1x_1)}_{L_1(x_1,\lambda)} + \underbrace{f_2(x_2) + \lambda^T(A_2x_2)}_{L_2(x_2,\lambda)} + \dots + \underbrace{f_N(x_N) + \lambda^T(A_Nx_N)}_{L_N(x_N,\lambda)} - \lambda^T b$$

$$x^{k+1} = \operatorname{argmin}_{x} L(x, \lambda^{k})$$
$$\lambda^{k+1} = \lambda^{k} + \alpha^{k} (Ax^{k+1} - b)$$

Dual decomposition

First, for $x^{k+1} = \operatorname{argmin}_x L(x, \lambda^k)$:

$$x_n^{k+1} = \operatorname{argmin}_{x_n} L_n(x_n, \lambda^k) = \operatorname{argmin}_{x_n} \left[f_n(x_n) + (\lambda^k)^T A_n x_n \right], \forall n = 1, ..., N$$

Then, for $\lambda^{k+1} = \lambda^k + \alpha^k (Ax^{k+1} - b)$:

$$\lambda^{k+1} = \lambda^k + \alpha^k (\sum_{n=1}^N A_n x_n^{k+1} - b)$$

Thus, we can derive a distributed version of dual ascent:

$$x_n^{k+1} = \operatorname{argmin}_{x_n} L_n(x_n, \lambda^k), \forall n = 1, ..., N$$

$$\lambda^{k+1} = \lambda^k + \alpha^k (\sum_{n=1}^N A_n x_n^{k+1} - b)$$

Dual decomposition

Solve a large problem

- By iteratively solving subproblems (in parallel)
- Dual variable update provides coordination

Works, with lots of assumptions; often slow

For example, to solve problem:

$$\min_{x_1, x_2} x_1^2 + x_2^2$$

s.t $x_1 + x_2 = 2$

The Lagrange function is

$$L(x,\lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 2)$$

$$= \underbrace{x_1^2 + \lambda x_1}_{L_1(x_1,\lambda)} + \underbrace{x_2^2 + \lambda x_2}_{L_2(x_2,\lambda)} - 2\lambda$$

$$x_1^{k+1} = \operatorname{argmin}_{x_1} \left(x_1^2 + \lambda^k x_1 \right) = -\frac{\lambda^k}{2}$$

$$x_2^{k+1} = \operatorname{argmin}_{x_2} \left(x_2^2 + \lambda^k x_2 \right) = -\frac{\lambda^k}{2}$$

$$\lambda^{k+1} = \lambda^k + \alpha^k (x_1^{k+1} + x_2^{k+1} - 2)$$

$$x_1^{k+1} = \operatorname{argmin}_{x_1} \left(x_1^2 + \lambda^k x_1 \right) = -\frac{\lambda^k}{2}$$

$$x_2^{k+1} = \operatorname{argmin}_{x_2} \left(x_2^2 + \lambda^k x_2 \right) = -\frac{\lambda^k}{2}$$

$$\lambda^{k+1} = \lambda^k + \alpha^k (x_1^{k+1} + x_2^{k+1} - 2)$$

A small a, converges slow A large a, might not converge

To solve the optimization problem:

$$\min_{x_1, x_2} (x_1 - 2)^2 + (x_2 - 1)^2$$

s.t. $x_1 + x_2 = 2$

The Lagrangian function is

$$L(x,\lambda) = (x_1 - 2)^2 + (x_2 - 1)^2 + \lambda(x_1 + x_2 - 2)$$

$$= \underbrace{(x_1 - 2)^2 + \lambda x_1}_{L_1(x_1,\lambda)} + \underbrace{(x_2 - 1)^2 + \lambda x_2}_{L_2(x_2,\lambda)} - 2\lambda$$

$$x_1^{k+1} = \operatorname{argmin}_{x_1}(x_1 - 2)^2 + \lambda^k x_1 = 2 - \frac{\lambda^k}{2}$$

$$x_2^{k+1} = \operatorname{argmin}_{x_2}(x_2 - 1)^2 + \lambda^k x_2 = 1 - \frac{\lambda^k}{2}$$

$$\lambda^{k+1} = \lambda^k + \alpha^k (x_1^{k+1} + x_2^{k+1} - 2)$$

The updates are

$$x_1^{k+1} = \operatorname{argmin}_{x_1} (x_1 - 2)^2 + \lambda^k x_1 = 2 - \frac{\lambda^k}{2}$$

$$x_2^{k+1} = \operatorname{argmin}_{x_2} (x_2 - 1)^2 + \lambda^k x_2 = 1 - \frac{\lambda^k}{2}$$

$$\lambda^{k+1} = \lambda^k + \alpha^k (x_1^{k+1} + x_2^{k+1} - 2)$$

A small a, converges slow A large a, might not converge

Method of multipliers*

Augmented Lagrangian methods

- Bring robustness to the dual ascent method
- Yield convergence without assumptions like strict convexity or finiteness of f.

The augmented Lagrangian (Hestenes, Powell 1969) is

$$L_{\rho}(x,\lambda) = f(x) + \lambda^{T}(Ax - b) + (\rho/2)||Ax - b||_{2}^{2}$$

Similarly, the updates (method of multipliers) are

$$x^{k+1} = \operatorname{argmin}_{x} L_{\rho}(x, \lambda^{k})$$
$$\lambda^{k+1} = \lambda^{k} + \rho(Ax^{k+1} - b)$$

- Good news: converges under much more relaxed conditions
- Bad news: quadratic penalty destroys splitting of the x-update, so can't be decomposed

Alternating Direction Method of Multipliers (ADMM)*

ADMM method (Gabay, Mercier, Glowinski, Marrocco, 1976)

- With good robustness of method of multipliers
- Can support decomposition

ADMM method deals with problem with form of:

Convex, closed, proper

$$\min_{x,y} f(x) + g(y)$$
s.t. $Ax + By = c$

The Lagrangian is:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + (\rho/2)||Ax + By - c||_{2}^{2}$$

$$x^{k+1} = \operatorname{argmin}_{x} L_{\rho}(x, y^{k}, \lambda^{k})$$

$$y^{k+1} = \operatorname{argmin}_{y} L_{\rho}(x^{k+1}, y, \lambda^{k})$$

$$\lambda^{k+1} = \lambda^{k} + \rho(Ax^{k+1} + By^{k+1} - b)$$

The consensus problem is modeled as

$$\min_{x_n, \forall n} \sum_{n=1}^{N} f_n(x_n)$$
s.t. $x_n = y, \forall n = 1, ..., N$

Each block only knows part of the objective function

For example, In model fitting, x represents the parameters in a model and f_n represents the loss function associated with the n-th block of data or measurements. In this case, we would say that x is found by collaborative filtering, since the data sources are 'collaborating' to develop a global model.

The consensus problem is modeled as

$$\min_{x_n, \forall n} \sum_{n=1}^{N} f_n(x_n)$$
s.t. $x_n = y, \forall n = 1, ..., N$

The augmented Lagrangian is

$$L_{\rho}(x,y,\lambda) = \sum_{n=1}^{N} \underbrace{\left(f_{n}(x_{n}) + \lambda_{n}^{T}(x_{n} - y) + (\rho/2)||x_{n} - y||_{2}^{2}\right)}_{L_{\rho,n}(x_{n},y,\lambda)}$$

is decomposible. Then the ADMM updates are

$$x_n^{k+1} = \operatorname{argmin}_{x_n} L_{\rho,n}(x_n, y^k, \lambda^k), \forall n = 1, ..., N$$

$$y^{k+1} = \operatorname{argmin}_{y} L_{\rho}(x^{k+1}, y, \lambda^k)$$

$$\lambda_n^{k+1} = \lambda_n^k + \rho(x_n^{k+1} - y^{k+1}), \forall n = 1, ..., N$$

Consider this problem:

$$\min_{x_1, x_2} (x_1^2 - 2x_1 + 2) + (x_2^2 - 4x_2 + 3)$$
s.t. $x_1 = y, x_2 = y$

This problem is equivalent to

$$\min_{x} 2x^2 - 6x + 5$$

So the optimal solution is $x^* = 1.5$.

The augmented Lagrangian is

$$L_{\rho}(x,y,\lambda) = (x_1^2 - 2x_1 + 2) + \lambda_1(x_1 - y) + (\rho/2)(x_1 - y)^2 + (x_2^2 - 4x_2 + 3) + \lambda_2(x_2 - y) + (\rho/2)(x_2 - y)^2$$

The augmented Lagrangian is

$$L_{\rho}(x,y,\lambda) = (x_1^2 - 2x_1 + 2) + \lambda_1(x_1 - y) + (\rho/2)(x_1 - y)^2 + (x_2^2 - 4x_2 + 3) + \lambda_2(x_2 - y) + (\rho/2)(x_2 - y)^2$$

We then calculate $\operatorname{argmin}_{x_1} L_{\rho,1}(x_1, y^k, \lambda^k)$:

$$\frac{\partial L_{\rho,1}}{\partial x_1} = 2x_1 - 2 + \lambda_1^k + \rho(x_1 - y^k) = (2 + \rho)x_1 - (2 - \lambda_1^k + \rho y^k)$$

We have

$$x_1^{k+1} = \frac{1}{2+\rho} (2 - \lambda_1^k + \rho y^k)$$

Similarly

$$x_2^{k+1} = \frac{1}{2+\rho} (4 - \lambda_2^k + \rho y^k)$$

We then calculate $\operatorname{argmin}_{y} L_{\rho}(x^{k+1}, y, \rho^{k+1})$:

$$\frac{\partial L_{\rho}}{\partial y} = -\lambda_1^k - \lambda_2^k - \rho(x_1^{k+1} - y) - \rho(x_2^{k+1} - y) = 0$$

We have

$$y^{k+1} = \frac{\lambda_1^k + \lambda_2^k + \rho x_1^{k+1} + \rho x_2^{k+1}}{2\rho}$$

Therefore, the ADMM updates are

$$x_1^{k+1} = \frac{1}{2+\rho} (2 - \lambda_1^k + \rho y^k)$$

$$x_2^{k+1} = \frac{1}{2+\rho} (4 - \lambda_2^k + \rho y^k)$$

$$y^{k+1} = \frac{\lambda_1^k + \lambda_2^k + \rho x_1^{k+1} + \rho x_2^{k+1}}{2\rho}$$

$$\lambda_1^{k+1} = \lambda_1^k + \rho (x_1^{k+1} - y^{k+1})$$

$$\lambda_2^{k+1} = \lambda_2^k + \rho (x_2^{k+1} - y^{k+1})$$

$$x_1^{k+1} = \frac{1}{2+\rho} (2 - \lambda_1^k + \rho y^k)$$

$$x_2^{k+1} = \frac{1}{2+\rho} (4 - \lambda_2^k + \rho y^k)$$

$$y^{k+1} = \frac{\lambda_1^k + \lambda_2^k + \rho x_1^{k+1} + \rho x_2^{k+1}}{2\rho}$$

$$\lambda_1^{k+1} = \lambda_1^k + \rho (x_1^{k+1} - y^{k+1})$$

$$\lambda_2^{k+1} = \lambda_2^k + \rho (x_2^{k+1} - y^{k+1})$$

A smaller ρ takes longer to converge

Example - Optimal Exchange*

The optimal exchange problem is

$$\min_{x_n, \forall n} \sum_{n=1}^{N} f_n(x_n)$$
s.t.
$$\sum_{n=1}^{N} x_n = 0$$

- Components of x_n : quantities of commodities that are exchanged among N agents.
- When $(x_n)_j \ge 0$: the amount of commodity j received by subsystem n from the exchange.
- When $(x_n)_j \le 0$: $-(x_n)_j$ is the amount of commodity j contributed by subsystem n to the exchange.
- The equilibrium constraint that each commodity clears
- have a long history in economics, particularly in the theories of market exchange, resource allocation, and general equilibrium (Walras, Arrow and Debreu, and Uzawa)

Example - Optimal Exchange*

$$\min_{x_n, \forall n} \sum_{n=1}^{N} f_n(x_n)$$

$$\text{s.t. } \sum_{n=1}^{N} x_n = 0$$

$$\min_{x_n, y_n, \forall n} \sum_{n=1}^{N} f_n(x_n) + g(\sum_{n=1}^{N} y_n)$$

$$\text{s.t. } x_n = y_n, \forall n = 1, ..., N$$

where g(.) is the indicator function:

$$g(\sum_{n=1}^{N} y_n) = \begin{cases} \text{a large constant,} & \forall \sum_{n=1}^{N} y_n = 0\\ 0, & \forall \sum_{n=1}^{N} y_n \neq 0 \end{cases}$$

Syncrhonous v.s. Asynchronous*

Synchronous

(wait for the slowest)

Asynchronous

(non-stop, no wait)

Synchronous parallel algorithm:

- Easy to implement; easy to analyze
- Unevenly job distribution: more idle time

Asynchronous parallel algorithm:

- Hard to implement; hard to analyze
- Unevenly job distribution: less idle time

Thanks!