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Overview

In previous lectures, the optimization problems aim to minimize or
maximize a single objective. In practice, sometimes we care about more
than one objectives.

These objectives are usually competing. Therefore, multi-objective
analysis is used to reveal the tradeoff among different objectives.

Multi-objective optimization (MOO) try to find the set of solutions that
define the best tradeoff between competing objectives



Example

Production Planning:

* max {total net revenue}

* min {overtime}

* min {finished goods inventory}

Energy system operation:

* min {total operation cost}
* min {total pollution}

* max {system reliability}

Aircraft Design:

* max {passenger volume}
* min {fuel consumption}
* min {lifecycle cost}



History

F. Y. Edgeworth:

e King’s College (London) and later Oxford

* is the first to define an optimum for multicriteria economic decision-making
e application in the multiutility problem of two consumers.

Vilfredo Pareto:

* While working in Florence as a civil engineer from 1870-1893, Pareto takes
up the study of philosophy and politics and is one of the first to analyze
economic problems with mathematical tools

* In 1893, Pareto became the Chair of Political Economy at the University of
Lausanne in Switzerland, where he created his two famous theory:
circulation of the elites, the Pareto Optimum.



History

Wolfram Stadler:
* Began to apply the notion of Pareto Optimality to the fields of engineering
and science in middle 1970’s.

* Applications of multi-objective optimization in engineering design grew
over the following decades.
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Basic model

Single-objective optimization

s.t. gi(r) <0,Vi=1,...,1
hi(x)=0,Vj=1,....J

where

* x is the decision variables

* g;(x), Vi are inequality constraints
. hj (x), V] are equality constraints

Multi-objective optimization

min fi(x)
T

max
x

min f,(z
X

Final grade [

Invested hours



Dominance

In single-objective optimization, we can easily determine whether a solution is
better than the other by comparing their objective function values. But how can
we do that in multi-objective optimization?

Dominance
* Solution x; dominates x, if:
v’ Solution x; is no worse than x, in all objectives
v" Solution x; is strictly better than x, in at least one objective
* |f x; dominates x,, then x, is dominated by x,
* If x; does not dominate x, and x, does not dominate x;, then we say x;
and x, are non-dominated solutions



Dominance
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Dominance
f1(x)

(min) 1

=f2 (%)

(min)
Non-dominated solutions

Try it yourself:
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f1(x)

(max)

f2 (%)

(min)

2 is dominated by 1; 1 dominates 2

Answer:

1 & 2:2 dominates 1
1 & 3: non-dominated solutions
2 & 3: 2 dominates 3
2 & 4: 2 dominates 4
3 & 4: non-dominated solutions



Pareto optimal

Given a set of solutions, the non-dominated solution set is a set of all the
solutions that are not dominated by any member of the solution set.

The non-dominated set of the entire feasible decision space is called the
Pareto-optimal set.

The boundary defined by the set of all points mapped from the Pareto
optimal set is called the Pareto-optimal front.
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Pareto optimal

Decision space Objective space
f2(x)
X5 (minimize)

f1(x)

(minimize)

Pareto optimal solution set Pareto optimal front
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Pareto optimal
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Goal of multi-objective optimization

Two goals:

* Find set of solutions as close as possible to the Pareto-optimal front

* Find a set of solutions as diverse as possible

J5()

y 3

feasible
objective

space
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Pareto-optimal front
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Solution algorithms

Multi-objective optimization aims to find a set of solutions whose objective
values are close to the Pareto-optimal front, and these solutions can be as
diverse as possible.

Classic solution algorithms include:
 Weighted sum method
g-Constraint method

Nash bargaining

Benson’s method



Weighted sum method

Basic idea: Turn a set of objectives into a single
objective by adding each objective times a user-
specified weight wy,.

min 7 (x)
T

e Step 1: turn all objectives into “minimization” max
e Step 2: Normalize the objectives (Nonlinear ’
problems are sensitive to scale)

» Step 3: calculate the weighted sum s.t.gi(r) <0 Vi=1,...,1
mxin wifi(x) + -+ w,f,,(x) hi(x)=0,Vj=1,...,J

min f,(x)
€T

These weights can be chosen according to the
relative importance of the objectives.



Weighted sum method

fi(x) 1

(min)

fi(x) 1

(min)

Change wy, w, we have different solutions, can we get the whole Pareto front?
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Weighted sum method

Two undesired cases:
* Two different set of weights does not necessarily lead to two different Pareto-
optimal solutions.

A0 f10)

(min) (min)

", (%) " f2(x)

(min) (m|n)

* Cannot find certain Pareto-optimal solution if the objective space is nonconvex.



Weighted sum method

Advantages:

* Easy to implement, straightforward

* For convex problems, it guarantees to find solutions on the entire Pareto-
optimal set

Disadvantages:

e Uniformly distributed set of weights does not guarantee a uniformly distributed
set of Pareto-optimal solution

* Two different set of weights does not necessarily lead to two different Pareto-
optimal solutions

* Cannot find certain Pareto-optimal solution if the objective space is nonconvex



&g-Constrained Method

Basic idea: Keep just one of the objectives, and
treat the rest as constraints (set expectation for
other objectives)

min fi(x)
st fr(xr) <e,Ve=1,...,n,k #1
gi(x) <0, Vi=1,...,1
hi(r)=0,Vj=1,...J

If we aims to maximize the objective, then the
related constraint can be replaced by

fr(x) = &

min 7 (x)
T

max
W

min f,(x)
€T

s.t. gi(r) <0, Vi=1,..,1
hi(x)=0,Vj=1,...,J
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&g-Constrained Method

Advantages:

» Different Pareto-optimal solutions can be found using different € values
* Appliable to either convex or nonconvex problems

Disadvantages:

* The value of € should be carefully chosen so that it is within the minimum and

maximum values of the individual objective function; otherwise, the problem
may become infeasible.

fi(x) 1

(min)
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What is a game?

n-person Normal Form game < N, A, u >

* Players: who makes the decisions?
« N ={1,...,n}is afinite set, indexed by i

e Action sets: what can agents do? { ;

* q;istheactionof i, A; is the action set, a; € A;
* a=(aq..,a,) € A=A X XA, action profile

» Utility function: How do agents value the outcome?
* Foragenti,u;: A - R

* u = (uUy,..,Uy) the profile of utility functions

Extensive Form: include timing of moves (outside the scope of this course)
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Strategic Reasoning

If you knew what other players was going to do, it would be easy to pick your own
action. Leta_; =< a4, ...,a;_1,4i41, ...,0,, > and a = (a_;, a;)

Definition (Best response)
a; € BR(a_;) iff Va; € A;, ui(a;,a_;) = u;(a;,a_;)

Definition (Nash equilibrium)
a=<ay,..,a, >isa (“pure strategy”) Nash equilibrium iff Vi, a; € BR(a_;)

Nobody has incentive to deviate from their action if an equilibrium profile is played.

You may read:
Osborne M J. An introduction to game theory[M]. New York: Oxford university press, 2004.



What if the objectives are pursued by different agents? (game theory)

The game in homework-3:
ok
e Each player names an integer e
between 0 and 100 Y
* The player who names the integer % X,

closest to 2/3 of the average integer T ——
wins! Player 2 close to - X wins

* Three questions:
* What will other players do?
* What should | do in response? | .& XN
* Each player best responds to the

o Player N
others: equilibrium ayer

24



Result from students

Many students bid
around [20, 25]
Very close to 23.33, why?

One student bids 0
(theoretical equilibrium)

The bids of four students
have the digit 8
the number 8 is lucky?

[0,10] [11,20] [21,30] [31,40] [41,50] [51,60] [61,70] [71,80] [81,90] [91,100]

The average integer is 35, and % X 35 = 23.33, the student names 24 wins!
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Strategic Reasoning

* Suppose a player believes the average will be x

* That player’s optimal strategy is to say the closest integer to - x

wilN

* X has to be less than 100, so the optimal strategy is no more than 67

_ . . . 2
* If X is no more than 67, then the optimal strategy is no more than 3 67

2
_ . 2 . : 2
e If X is no more than 3 67, then the optimal strategy is no more than (5) 67

* [terating, the unique Nash equilibrium of this game is everyone bids 0.

Theoretically, everyone will bid O, but.... 24 wins, why? Bounded rationality
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Thanks!



