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Convex optimization solvers

LP Solvers
v’ Cplex, Gurobi, GLPK, Excel, Matlab’s linprog, ...

Cone solvers
v" Typically handle combinations of LP, SOCP, SDP cones
v' SDPT3, SeDuMi, CSDP, ...

General convex solvers
v’ CVXOPT, MOSEK, ...

Others
v Some solvers developed for specific purpose or application



Example-1 Linear Programming

A company has some resources to produce three products (denoted as A, B, C). Each
product consumes a different mix of resources, and there will be a profit from selling
the product. The endowment of resources and its relationship with products are:

A B C Endowment
Steel 3 4 2 600
Wood 2 1 2 400
Label 1 3 3 300
Machine 1 4 4 200
Profit 2 4 3

Question: How to maximize the total profit?



Example-1 Linear Programming

max 2x1 + 4xo + 33 .
T1,22,23 Endowment limits

s.t. 3x1 + 4xo + 223 < 600
2x1 + x9 + 3rz < 400
r1 + 3xo + 3x3 < 300
r1 +4xo + 4z < 200
x1, 22,23 > 0 Production must larger than 0

Solve it by Matlab’s linprog

[x, fval] = linprog(f, A, b, Aeq, beq, |b, ub) solves for the optimal solution x and
optimal value fval of
ngnfo
s.t. A-x<bh
Aeq - x = beq
b <x<ub



Example 1 - Linear Programming

In this case f = [2.4,3] b = (600,400, 300,200]"
(34 2] Aeq =[], beq =
4_ | 213 . T
_ 1 3 3 lb: 0,0,0] ,’tLb:H
|1 4 4 |
Code:
f=1[2,4,3];

A=1[3,4,2;2,1,3;1,3,3; 1,4,4];
b =[600,400,300,200];

b =[0,0,0];

[x,fval] = linprog(f,A,b,[],[],1b);

More examples: https://www.mathworks.com/help/optim/ug/linprog.html



https://www.mathworks.com/help/optim/ug/linprog.html

Example 2 — Constrained Nonlinear optimization

Consider this optimization problem:

min 100(z% — z2)* + (1 — x1)?

T1,T2

s.t. 1+ 220 < 1
201 + 19 = 1

Solve it by Matlab’s fmincon

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) solves for the optimal solution x
and optimal value fval of
min f(x)
s.t. A-x<b
Aeq - x = beq
b <x<ub
X0 is the initial point.



Example 2 — Constrained Nonlinear optimization

In this case A= [1,2],b=1
Aeq = [2,1],beq =1
b= [J,ub=]
Code:

fun = @(x)100*(x(2)-x(1)*2)"2 + (1-x(1))"2;
x0 =[0.5, 0]; % start point

A=(1,2];

b=1;

Aeq = [2,1];

beq=1;

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq);

More examples: https://www.mathworks.com/help/optim/ug/fmincon.html



https://www.mathworks.com/help/optim/ug/fmincon.html

Drawback

* To apply these solvers, we need to transform a problem into an equivalent
one that has a standard form. For example, we need to get the values of
matrix/vector A, b, Aeq, beq, etc.

* For some problems without a standard form, we can apply some techniques
(e.g. linearization technique) to turn it into a solvable form.

* For engineering problems, writing code to carry out this transformation is
often painful.

* Modeling systems can partly automate this step.



Modeling systems

A modeling system can

 Automates most of the transformation to standard form; supports
v’ Declaring optimization variables
v' Describing the objective function
v’ Describing the constraints
v Choosing the solver

e Call the solver and returns the result (optimal, infeasible, ...)



Modeling systems

YALMIP

* First matlab-based object-oriented modeling system with special support
for convex optimization

e (Can use different solvers, e.g. Cplex, Gurobi,etc; can handle some
nonconvex problems

AMPL & GAMS
 Developed in 1980s, widely used in traditional OR

CVXPY/CVXMOD
 Python based, has cone and custom solvers

CVX
 Matlab based, uses SDPT3/SeDuMi



Yalmip

You can go to this website to download and install YALMIP for free.

& C & yalmip.github.io

YALMIP Download Tutorials Examples

!

YALMIPY”

.
&

SDP cones in BMIBNB
8 Updated: May 18, 2021
The first cut is not the deepest

Inside

Commands

General discussion
Welcome to YALMIP Discussions

aw g

Github discussion
#8 Updated: May 14, 2021

Alternative to Google groups

Solvers

Index FAQ

\

Optimizing integrated
piecewise affine functions
) Updated: May 05, 2021

From hard to a one-liner

References

B r n@ :

Forum

Bad SDPs and beginner
mistakes

Updated: April 01, 2021
Common mistakes and

misunderstandings in semidefinite
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Yalmip

& C @& yalmip.github.io/tutorials/ & % » 0 :

YALMIP Download Tutorials Inside Commands Solvers Index FAQ References Forum

Examples

Installation
#8 Updated: September 17, 2016

If it's hard, you're doing it wrong.

Second order cone
programming
£ Updated: September 17, 2016

Ice-cream cone! Yummy.

Exponential cone
programming
# Updated: September 17, 2016

Getting started
#8 Updated: September 17, 2016

Tutorial introduces essentially
everything you'll ever need. The
remaining 95% is syntactic sugar.

Semidefinite
programming
#3 Updated: September 17, 2016

Who wudda thought? Optimization
over positive definite symmetric
matrices is easy.

Geometric programming
#8 Updated: September 17, 2016

Geometric programming. Not about

Linear programming
i Updated: September 17, 2016

As easy as it gets. Linear separation
with linear norms.

Determinant
maximization

9 Updated: September 17, 2016
Optimization with ellipsoids and
likelihood functions are typical
applications of determinant
maximization.

General nonlinear
programming
i Updated: September 17, 2016

Quadratic programming
#9 Updated: September 17, 2016

Almost as easy as linear
programming. Be careful though,
symbolics might start to cause
overhead.

Power cone programming
3 Updated: April 09, 2021

Convex conic optimization over
power cones

Global optimization
# Updated: September 17, 2016
The holy grail! 60% of the time it
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Yalmip — variable declaration

First, we need to define the variables.

is used to define YALMIPs symbolic decision variables.

Syntax Examples
/x = [x1, .00, X ] A square real-valued symmetric matrix is obtained with
x = sdpvar(n) X11 " X1m
x = sdpvar(n,m) <— X = : A : P = sdpvar(n,n)
x = sdpvar(n,m, 'type") Xn1 " Xnm

x = sdpvar(n,m, 'type’', 'field")

x = sdpvar(diml,dim2,dim3,...,dimn, "type’, 'field") , . . . )
A fully parameterized (i.e., not necessarily symmetric) square matrix

P = sdpvar'(n,n,

More information: https://valmip.github.io/command/sdpvar/

sdpvar x

14


https://yalmip.github.io/command/sdpvar/

Yalmip — variable declaration

binvar is used to define decision variables constrained to be binary (0 or 1).

intvar used to define decision variables with integer elements.

Syntax Syntax
x = binvar(n) X = intvar(n)
X = binvar(n,m,) X = intvar(n,m,)
X = binvar(n,m, "type’ x = intvar(n,m, "type’
X = binvar(n,m, "type’, 'field") X = intvar(n,m, "type’, 'field")
binvar x intvar x

More information:
https://valmip.github.io/command/binvar/
https://valmip.github.io/command/intvar/



https://yalmip.github.io/command/binvar/
https://yalmip.github.io/command/intvar/

Yalmip — objective function & constraints

% Define variables/ Variable declaration
X = sdpvar(10,1);

10

Constraints Z x;<10,x, =0,0.5<x, <1.5
% Define constraints ‘/,,/” i=1
Constraints = [sum(x) 2= 18, x{1l) == 8, 8.5 <= x(d) «= 1.5];
forr 1 =1 : 7
Constraints = [Constraints, x(i) + x(i+1l) <= x(i+2) + x(i+3)];

end

% Define an objective / Objective function

Objective = x'*x+norm(x,1);

N\

largest column sum of A, max(sum(abs(A))
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Yalmip — solve the optimization

optimize is the common function for solving optimization problems.

Syntax Defined in previous slide

diagnostics = optimize(Constraints, Objective

Examples

A linear program can be solved with the following piece of code

x = sdpvar(length(c),1);
F = [A*x<=b];

h = ¢'*x;
optimize(F,h);

solution = value(x);

17



Yalmip — solve the optimization

A diagnostic structure is returned which can be used, e.g, to check feasibility as reported by the
solver (see yalmiperror for the possible return values)

<[>
diagnostics = optimize(F);
if diagnostics.problem == ©
disp('Solver thinks it is feasible')

elseif diagnostics.problem == 1

disp('Solver thinks it is infeasible')
else
disp('Something else happened')

end

18



Yalmip — solve the optimization

sdpsetiings is used to communicate options to YALMIP and solvers. It is used as the third
argument in commands such optimize, optimizer, solvesos, solvemoment and solvemp.

Syntax

<>
options = sdpsettings('field’',value, 'field’',value,...)

optimize(Constraints, Objective, options)

Select solvers, can change it to ‘cplex’, ‘gurobi’, etc.
For example Need to install the solvers first

/

ops = sdpsettings('solver', 'sedumi’, 'sedumi.eps’,le-12);

More information: https://valmip.github.io/command/sdpsettings/
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https://yalmip.github.io/command/sdpsettings/

Yalmip — output some useful information

Consider a Lyapunov stability problem

<>

h—
1l

randn(5,5);A = -A*A’; Variable declaration
sdpvar(5,5); 4””””

[A'*P+P*A <= @, P >= eye(5)]; «—— Constraints
obj = trace(P);

MmO
1l 1l

Objective

Exporting this to a model in sedumi format is done by specifying the solver and calling export
in the same way as optimize would have been called.

<>

[model, recoverymodel] = export(F,obj,sdpsettings('solver’, 'sedumi'));

model =
A: [506x15 double]
b: [15x1 double] Command “model.A” can output the corresponding matrix
C: [50x1 double]
K: [1x1 struct]
pars: [1x1 struct]

20



Yalmip — output some useful information

Syntax

<[>

[KKTsystem, details] = kkt(Constraint,Objective,z)

Comments

The command derives the KKT system for a linear or quadratic program parametrized in the
variable z. The second output contains information about the analyzed problem, primal and
dual variables, and possibly derived bounds on primal and dual variables.

The KKT system will contain a complementarity constraint which can be addressed by YALMIP
using either integer programming or global nonlinear programming. Both methods require
bounds on the dual variables. YALMIP tries to derive these bounds by default and add them to
the KKT system. If this is unsuccessful (see details.dualbounds) you must manually add
reasonable bounds on the variable details.duals)
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Yalmip — output some useful information

Example

The following example derives the KKT conditions of a linear program in the decision variable x,
with a cost depending on a parameter z. In this case, kkt successfully derives upper bounds the
dual variables.

<>

o

min c(z)"'*x s.t Ax<=b

randn(6,2);

o ¥
I

= rand(6,1);
rand(2,1);

X = sdpvar‘(Z,l);/ parameter
z = sdpvar(1l);

c = c + randn(2,1)*z;

(@}
1

[Constraints,details] = kkt([A*x <= b, -1 <= z <= 1],c"'*x,2);
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CVXPY — Python based modeling system

import cvxpy as cp| 1 A2

import numpy as np

# Generate a random non-trivial linear program.

m =15

n =10

np.random.seed(1)

s@ = np.random.randn(m)

lamb® = np.maximum(-s@, 0)

s® = np.maximum(s®, 0)

X0 = np.random.randn(n)

= np.random.randn(m, n)

= A@Xx0 + s0

-A.T @ lambo

Define and solve the CVXPY problem.

= cp.Variable(n)

prob = cp.Problem(cp.Minimize(c.T@x),
[A@x <=b])

X|H®* o T >
1

Define variable and solve the problem

prob.solve()

# Print result.
print("\nThe optimal value is", prob.value)
print("A solution x is")

print(x.value)

print("A dual solution is")
print(prob.constraints[@].dual_value)

More information: https://www.cvxpy.org/index.html
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https://www.cvxpy.org/index.html

Some useful websites

O machine learning Pull requests Issues Marketplace Explore

Array 987  String 487  Dynamic Programming 344  Hash Table 342  Math 330  Depth-First Search 232 Expand¥

LeetCode's

Pick

Repositories [ 362 ] . . T All Topics Algorithms B Database $> Shell S Concurrency
Machine learning ¢ star
Code @ Machine learning is a way of modeling and interpreting data that allows a piece of software to
_ respond intelligently. Lists v Difficulty v Status Vv Tags Vv Q o 9 Pick One
Commits @ Featured Lists
See topic
Issues m Status Title Solution  Acceptance Difficulty Frequency P
r\‘ | LeetCode Curated Algo 170
Discussions <] 362,085 repository results Sort: Best match v =] 952. Largest Component Size by Common ... 38.7% Hard @ LeetCode Curated SQL 70
Packages
o 1. Two Sum B3] 47.9% Easy
Marketplace [15] & josephmisiti/awesome-machine-learning &) Top 100 Liked Questions
A curated list of awesome Machine Learning frameworks, libraries and software. 2. Add Two Numbers 37.3%
Topics { <01 Y¥ 519 @Python Updated 5 hours ago Top Amazon Questions
; ; ; o,
Wikis 3. Longest Substring Without Repeating Ch... 5] 32.5%
. o Top Facebook Questions
Users & = wepe/MachineLearning 4. Median of Two Sorted Arrays 33.1% Hard
Basic Machine Learning and Deep Learning T | i
Y742k @Python Updated on 4 Oct 5. Longest Palindromic Substring 31.5% op Google Questions
Languages
6. Zigzag Conversion 40.2% - Top Interview Questions
Jupyter Notebook 145,976 O
& udacity/machine-learning N u . .
Python 76,252 Content for Udacity's Machine Learning curriculum 7. Reverse Integer B 26.2% u Top Microsoft Questions

Ao rl M Nl nediaidAn e o

Github LeetCode
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Thanks!
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