MAEG4070 Engineering Optimization

Lecture 15 Engineering Example Electricity Market

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk

Nov 23, 2022

Content of this course

Congratulations! **Linear programming** Lecture 2 Linear **Dual Theory – Part I** Lecture 3 Linearization **Programming** technique **Unconstrained optimization** Lecture 14 **Lecture 7** Lecture 5 & 6 **Constrained optimization** Non-Linear Lecture 8 & 9 Lecture 4 **Dual Theory – Part II Engineering examples** Lecture 10 Lecture 15 **Distributed optimization** Lecture 11 **Multi-objective optimization** Lecture 12 **Robust optimization** Lecture 13 Theory

Optimization

Lecture 1

Economic Environment of Power System

Total Welfare Maximization

Utility's investment v.s.
Quality of electricity

Economic Environment of Power System

Utility's investment & Quality of electricity

Long term provisions:

- 2-15 years, or even more
- Examples:
 - ✓ Type, capacity, timing of new generations or lines
 - ✓ Fuel contracts
- Earnings over the whole service life, uncertainty is a determining factor

Medium-term planning:

- 1-3 years
- Example:
 - Facility maintenance management: steam plants (interrupted 20 days/a year), nuclear plants (every 18 months to recharge the fuel)
 - hydroelectric management

Rough approximation of technical behaviors of the system is enough

Economic Environment of Power System

Utility's investment & Quality of electricity

Short-term specifications:

- Weekly scale, a few days up to a month
- Examples:
 - ✓ Generating unit connection: steam power plants (8-10h), Gas plants (1-2h or a few minutes), hydroelectric plants (zero lead time)
 - ✓ operating capacity in reserve

Real-time operation:

- Based essentially on the safety criteria rather than the financial consideration
- Examples:
 - ✓ Economic dispatching
 - ✓ Frequency regulation
 - ✓ Response to emergency situations

System Details are extremely relevant

History of electricity markets

From regulated to deregulated

Regulated:

- Prices (energy, transmission, distribution) are all determined by the operator
- Vertically centralized structure
- Cannot choose supplier
- Not motivating enough, needs local information

Deregulated:

- Prices are determined by the market
- Horizontal peer-to-peer structure
- Competition among producers, prosumers,...
- More flexible, possible market power → market failure

Reference: Gómez-Expósito, Antonio, Antonio J. Conejo, and Claudio Cañizares, eds. Electric energy systems: analysis and operation. CRC press, 2018.

Participants of the electricity market

Regulator

- Responsible for the market design and its specific rules
- Monitors the market to spot misbehaviors

Market Operator

- Organizes and operates the marketplace
- Definitions of bid products/forms, maintenance of the trading platform, etc.

Regional transmission organization (RTO)

- Coordinates, controls, and monitors a multi-state electric grid
- Initiated by FERC Order No. 2000, issued on December 20, 1999

Independent System Operator (ISO)

Coordinates, controls, and monitors operation within a single state

Participants of the electricity market

RTOs typically perform the same functions as ISOs but cover a larger geographic area

Participants of the electricity market

Producers

 Generating companies, own production assets, whose generation is offered through the electricity market

Retailers

 Buys electricity from the wholesale market and then sells to end-consumers

Consumers:

- Those eventually use the electricity for any purpose
- Large consumers can buy directly from the producers

Why electricity is special?

Electricity differs from other commodity:

1. Real-time power balance

- ✓ Cannot be stored in large-scale
- ✓ Batteries? price, performance, and inconvenience make this impractical

2. Performed on a power network

- ✓ Pathways cannot be chosen
- ✓ Determined by Kirchhoff's laws
- ✓ Any variation in one transmission facility may influence others

Different types of markets

Power

Energy per time unit

Energy

Measured in watts (W)

- Reserve market
- Regulation market

Supports the power system operation

Measured in Wh

- Forward markets
- Day-ahead markets
- Adjustment (intra-day) markets
- Balancing market

Optimal scheduling and settlement of energy exchange

Different types of markets

Roles of different markets

Forward markets

- Financial contracts with time horizons up to six years
- MW quantity, delivery period, fixed price per MWh

Day-ahead (or spot) markets

- Everyday matching of supply and demand
- Cleared by LP, MILP, Stochastic programming, Robust optimization

Adjustment (or intra-day) markets

- Correct original schedules, between day-ahead and balancing markets
- Just like the day-ahead market but in a small scale

Balancing markets

- for operator to ensure power balance
- just minutes prior to energy delivery

Examples of electricity markets

EEX: Germany spot and Futures

https://www.eex.com/en/

OMIE: Iberian Peninsula Spot

https://www.omie.es/

Examples of electricity markets

ISO New England Spot

https://www.iso-ne.com/

NordPool: Scandinavia Spot

https://www.nordpoolgroup.com/

Bilateral Contracts

Bilateral contracts

- Direct exchange between a buyer and a seller
- In a decentralized manner
- Most likely a broker is involved

Procedure

- First, both the buyers and sellers submit offers
- When a match is found
- Approved by the operator
- Removed from the list

Key Challenge

- Hard to find the optimal match
- Ensure the feasibility of the outcome

Reference: Morstyn T, Teytelboym A, McCulloch M D. Bilateral contract networks for peer-to-peer energy trading[J]. IEEE Transactions on Smart Grid, 2018, 10(2): 2026-2035.

Bilateral Contracts

Customized long-term contracts

- Flexible (can negotiate whatever you want)
- High transactions costs
- Large amount of energy, over a long time

Over the counter (OTC) trading

- Standard contracts
- Low transactions costs
- Smaller amount of energy, over a short time

Electronic trading

- Electronic platform supported
- Nearly zero transactions cost
- Very fast, "until the last second"

Pool markets / auctions

Procedure

- All sellers and buyers bid at the same time
- Offers consist of quantity *P* and price *λ*
- No one knows others' offers
- The market is cleared centrally

Sellers (N_G generators G_i)

- Maximum quantity P_i^G
- Price for offer λ_j^G

Buyers (N_D loads D_i)

- Maximum quantity P_i^D
- Price for offer λ_i^D

Pool markets / auctions

Sellers (N_G generators G_i)

- Maximum quantity P_j^G
- Price for offer λ_j^G

Buyers (N_D loads D_i)

- Maximum quantity P_i^D
- Price for offer λ_i^D

Outcome

- Generation schedule $p^G = \left[p_j^G\right]^T$, $0 \le p_j^G \le P_j^G$
- Consumption schedule $p^D = \left[p_i^D\right]^T$, $0 \le p_i^D \le P_i^D$
- Total Welfare Maximization

Reference: Morales J M, Conejo A J, Madsen H, et al. Integrating renewables in electricity markets: operational problems[M]. Springer Science & Business Media, 2013.

Pool markets / auctions

	p_1	p^*	p_2
Consumer surplus	Α	A+C	A+C-F
Producer surplus	В	B+D	B+D-E
Total welfare	A+B	A+B+C+D	A+B+C+D-E-F

Market clearing optimization problem – without network

$$\begin{aligned} \max_{\{p_{j}^{G}\},\{p_{i}^{D}\}} & \sum_{i=1}^{N_{D}} \lambda_{i}^{D} p_{i}^{D} - \sum_{j=1}^{N_{G}} \lambda_{j}^{G} p_{j}^{G} \\ \text{s.t.} & \sum_{j=1}^{N_{G}} p_{j}^{G} - \sum_{i=1}^{N_{D}} p_{i}^{D} = 0 : \lambda^{S} \text{ Dual variable} \\ & 0 \leq p_{i}^{D} \leq P_{i}^{D}, \ \forall i = 1, ..., N_{D} \\ & 0 \leq p_{j}^{G} \leq P_{j}^{G}, \ \forall j = 1, ..., N_{G} \end{aligned}$$

- Sellers/buyers which sell/buy (mostly $p_i^G=P_i^G$, $p_i^D=P_i^D$) and which don't ($p_i^G=0$, $p_i^D=0$)
- Linear programming
- Can be solved by Matlab, GAMS, Gurobi, etc
- Can directly output the dual variables

Market clearing optimization problem – pay as bid/uniform price

Lagrange:

$$D(\lambda^S)$$

$$\min_{\substack{\lambda^s \\ p_i^D \in [0, P_i^D], \forall i \\ p_j^G \in [0, P_j^G], \forall j}} \sum_{i=1}^{N_D} (\lambda_i^D - \lambda^S) p_i^D + \sum_{j=1}^{N_G} (\lambda^S - \lambda_j^G) p_j^G$$

For a given λ^S , the maximizer is $p_i^D = P_i^D$ if $\lambda_i^D \geq \lambda^S$; otherwise, $p_i^D = 0$ $p_j^G = P_j^G$ if $\lambda_j^G \leq \lambda^S$; otherwise, $p_j^G = 0$

Therefore, the $D(\lambda^S)$ can be shown in the figure, and is minimized at λ^{S*} .

Market clearing optimization problem – pay as bid/uniform price

Pay as bid

- Seller: $R_i^{DA,G} = \lambda_i^G p_i^G$ (revenue)
- Buyer: $R_i^{DA,D} = \lambda_i^D p_i^D$ (payment)

Uniform pricing

- Seller: $R_j^{DA,G} = \lambda^S p_j^G$ (revenue)
- Buyer: $R_i^{DA,D} = \lambda^S p_i^D$ (payment)

Comments:

- Both approaches can guarantee individual rationality, $R_j^{DA,G} \geq \lambda_j^G p_j^G$, $R_i^{DA,D} \leq \lambda_i^D p_i^D$
- Both approaches can guarantee <u>revenue adequacy</u>, $\sum_i R_i^{DA,D} \ge \sum_j R_j^{DA,G}$
- Uniform pricing yields <u>budget balance</u>

Future Trends: supplier-centric → consumer-centric

Proliferation of DERs that are low-carbon

- 2003-2017 over 1076 MW distributed wind turbines
- 2004 to 2014 residential PV panels rise from 3,700 MW to 150,000 MW

Reduce the pressure on resource and environment

More flexibility & More unpredictable behavior

Future Trends: supplier-centric → consumer-centric

Figure 1 | Structural attributes of three prosumer markets. a, Peer-to-peer model, in which prosumers interconnect directly with each other, buying and selling energy services. **b**,**c**, More structured models involving prosumers connected to microgrids. These entail prosumer-to-interconnected microgrids, in which prosumers provide services to a microgrid that is connected to a larger grid (**b**), or prosumer-to-islanded microgrids, in which prosumers provide services to an independent, standalone microgrid (**c**). **d**, Organized prosumer group model, in which a group of prosumers pools resources or forms a virtual power plant. Dots represent prosuming agents; lines represent a transaction of prosuming service; circles represent an organized group of prosumers.

Reference: Parag Y, Sovacool B K. Electricity market design for the prosumer era[J]. Nature energy, 2016, 1(4): 1-6. 26

Future Trends: Integration of renewable energy

Reference: California ISO. What the duck curve tells us about managing a green grid. Available at: http://www.caiso.com/documents/flexibleresourceshelprenewables_fastfacts.pdf

Future Trends: Integration of renewable energy

Volatile, intermittent, uncertain Nearly zero cost

Demand-side response

Generation units, power lines

Integrated energy system

Thanks!