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History of Linear Programming

Linear programming was developed as a discipline in the 1940's, to solve 
complex planning problems in wartime operations. 

Founders of LP are generally regarded as George B. Dantzig (1914-2005)

Contributions:
• Developed the simplex algorithm
• Dantzig-Wolfe decomposition algorithm
• Stochastic programming

Publications:
Linear Programming and Extensions, 1963.

Honors:
• John von Neumann Theory Prize, 1974
• National Medal of Science, 1975
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History of Linear Programming

In 1947, John von Neumann established the theory of duality.

In 1975, The Nobel prize in economics to Leonid Kantorovich (1912-1986)

Contributions:
• Linear Programming
• Functional analysis
• Infinite-dimensional optimization problems

Publications:
• The Mathematical Method of Production 

Planning and Organization, 1939
• The Best Uses of Economic Resources, 1959

Honors:
• Stalin Prize, 1949; Nobel Prize, 1975
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LP examples

Recall the “production planning”, “transportation” examples in our previous lecture.
One more example as follows:

A health center wants to provide a healthy breakfast for citizens.

Breakfast should include at least 420 calories, 5mg iron, 400mg calcium, 20g 
protein, 12g fiber; and no more than 20g fat and 30mg cholesterol.
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LP examples

Objective: minimizes the total cost
Variables? Constraints?
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Standard Form of Linear Programming

Element-wise form Compact form

What if the form is not so standard?

𝒄𝒄𝟏𝟏×𝑵𝑵 𝒙𝒙𝑵𝑵×𝟏𝟏

𝑨𝑨𝑴𝑴×𝑵𝑵 𝒃𝒃𝑴𝑴×𝟏𝟏

Features:
• Decision variables are continuous
• Objective function is linear
• Constraints are linear
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Identification of LP

Are the following problems LPs?

(1) (2)

(3) (4)
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Identification of LP

Are the following problems LPs?
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Identification of LP

Are the following problems LPs?

(1) (2)

(3)

Can the above nonlinear problems be 
turned into a linear programming?
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From non-standard form to standard form

1. From “maximization” problem to “minimization” problem

Let 𝑧𝑧′ = −𝑧𝑧, then
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𝑥𝑥∗
0

−𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑥𝑥)

Minimum of -f(x)

Maximum of f(x)



From non-standard form to standard form

2. Inequality constraints to equality constraints

For inequality ≤, introduce slack variable

For inequality ≥, introduce surplus variable
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From non-standard form to standard form

3. About the last constraint on 𝑥𝑥

• If there is no limit on 𝑥𝑥1
Let 𝑥𝑥1 = 𝑦𝑦1 − 𝑦𝑦2

𝑦𝑦1 ≥ 0,𝑦𝑦2 ≥ 0

• If general range constraint on 𝑥𝑥

Let 𝑦𝑦1 = 𝑥𝑥1 − 5
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From non-standard form to standard form

4. Problem with absolute value |x|
• Absolute values in constraints

2𝑥𝑥1 + 3𝑥𝑥2 ≤ 2
is equivalent to

−2 ≤ 2𝑥𝑥1 + 3𝑥𝑥2 ≤ 2

• Absolute values in the objective function
If it is “min 𝑥𝑥1 + ⋯” or “max − 𝑥𝑥1 + ⋯”, we can
Let 𝑢𝑢 = 𝑥𝑥1 and add constraints 𝑥𝑥1 ≤ 𝑢𝑢,−𝑥𝑥1 ≤ 𝑢𝑢

Proof:
If 𝑥𝑥1 > 0, then 𝑥𝑥1 = 𝑢𝑢 and −𝑥𝑥1 ≤ 0 ≤ 𝑢𝑢
If 𝑥𝑥1 = 0, then 𝑢𝑢 ≥ 0, since it is minimize over 𝑢𝑢, we have 𝑢𝑢 = 0 = 𝑥𝑥1
If 𝑥𝑥1 < 0, then −𝑥𝑥1 = 𝑢𝑢, 𝑥𝑥1 ≤ 0 ≤ 𝑢𝑢
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However, if “min − 𝑥𝑥1 + ⋯” or 
“max 𝑥𝑥1 + ⋯”, it cannot be turned 
into an LP 
Nonconvex problem (future lectures)



Try to turn this example into a standard form and write its compact form

Example
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1. From “maximization” problem to “minimization” problem
2. Inequality constraints to equality constraints
3. About the last constraint on 𝑥𝑥
4. Absolute value in constraints



Exercise
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Exercise
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Graphical method for solving LP

Procedure:

Step 1:  Draw the feasible region of the
LP problem

Step 2: Draw the contours of the objective
function

Step 3: Move the contour until it reaches
the optimal point
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graphical method for solving LP - example 1

Vertices are
0,0 , 6,0 , 4

3
, 14
3

, (0,4)
The contour is 𝑥𝑥 + 3𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
The optimal point is 𝑥𝑥∗ = 4

3
, 14
3
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Graphical method for solving LP – example 2

Vertices are
0,0 , 4,0 , 0,3 , 4,2 , (2,3)

The contour is 2𝑥𝑥1 + 3𝑥𝑥2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
The optimal point is 𝑥𝑥∗ = (4,2).

0 4 8

3

4

𝑥𝑥1

𝑥𝑥2 4𝑥𝑥1 = 16

4𝑥𝑥2 = 12

𝑥𝑥1 + 2𝑥𝑥2 = 8

(4,2)
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graphical method for solving LP - special case 1

The LP might have multiple solutions

This happens when the contour is 
parallel to one of the boundary

0 50 100 150

100

50

(30,80)

2𝑥𝑥1 + 3𝑥𝑥2 = 300

2𝑥𝑥1 + 1.5𝑥𝑥2 = 180
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graphical method for solving LP - special case 2

The LP might be infeasible

This happens when the feasible set 
of the LP is empty.

0 50 100 150

50

100

150

5𝑥𝑥1 + 6𝑥𝑥2 = 900

2𝑥𝑥1 + 3𝑥𝑥2 = 300

A

B

A∩B=∅
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graphical method for solving LP - special case 3

The LP might have unbounded solution

This happens when the feasible set 
of LP is unbounded.

0 1 2 3

1

2

𝑥𝑥1 = 3

𝑥𝑥1 − 𝑥𝑥2 =1
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Solutions for LP

LP problem

feasible

infeasible

has optimal solution

no optimal solution (unbounded)

unique

multiple
Special case 1

Special case 2

Special case 3

Example 1 & 2
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Algorithms for solving LPs

Algorithm Complexity
Simplex algorithm Non-polynomial

Ellipsoid Polynomial
Interior point algorithm Polynomial

Simplex algorithm Interior point algorithm
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Algorithms for solving LPs - Simplex

From the above examples, we notice that the optimal point is located at a vertex of 
the feasible region. Recall the standard form:

• 𝐴𝐴𝑥𝑥 = 𝑏𝑏 defines the feasible region (𝑀𝑀 equations 
in 𝑁𝑁 unknowns, 𝑁𝑁 > 𝑀𝑀).

• To find a vertex of the feasible region, we can set 
𝑁𝑁 −𝑀𝑀 variables to zero and solve for the others. 

• If all the obtained variables are non-negative, 
this point is in fact a vertex of the feasible region.
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Algorithms for solving LPs - Simplex

We could generate all possible vertexes (basic feasible solutions), check the value of 
the cost function, and find the optimum by enumeration.

However…

• There are 𝑁𝑁
𝑁𝑁 −𝑀𝑀 = 𝑁𝑁!

𝑀𝑀! 𝑁𝑁−𝑀𝑀 !
candidates

• Even for a small problem, we need to try many times. For example, 𝑁𝑁 = 10,𝑀𝑀 =
4, we get 210 candidates.

• The typical size of realistic LPs is such that 𝑁𝑁,𝑀𝑀 are often in the range of several 
hundreds or even thousands. 

• Computational inefficient
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Algorithms for solving LPs - Simplex

Idea of the Simplex:
• Start at a vertex of the feasible region, e.g. P1
• While there is an adjacent vertex that has a better 

objective value, move to that vertex, e.g. P2
• Usually, the algorithm reaches an optimal solution 

in a finite number of steps

Key points:
• A vertex is identified by setting 𝑁𝑁 −𝑀𝑀 variables to 

zero and compute the others (basic variables) uniquely.
• Two vertices are adjacent if they share all their (non-) 

basic variables, except one.
• So: in order to find neighbors to a vertex, remove one 

of the (non-) basic variables and add another one.
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Algorithms for solving LPs - Interior point algorithm

Consider optimization problem:

Convert the above problem into an unconstrained minimization problem 
by adding barrier functions.

or

convex (future lectures)

Increase t to get more accurate solution
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Algorithms for solving LPs - Interior point algorithm

Interior point methods are widely applicable to convex optimization problems
(future lectures), linear programs are just an example.

For example:

Different start points
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Solve LPs using Solvers

Free LP Solvers:
• CDD, CLP, GLPK, LPSOLVE, QSOPT, SCIP
• LINPROG (not free but is embedded in MATLAB)

Commercial LP Solvers (free for academia):
• CPLEX, GUROBI
• MOSEK

How to choose a solver?
How to describe the model in coding?
…
Will discuss in future lectures.
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Thanks！
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