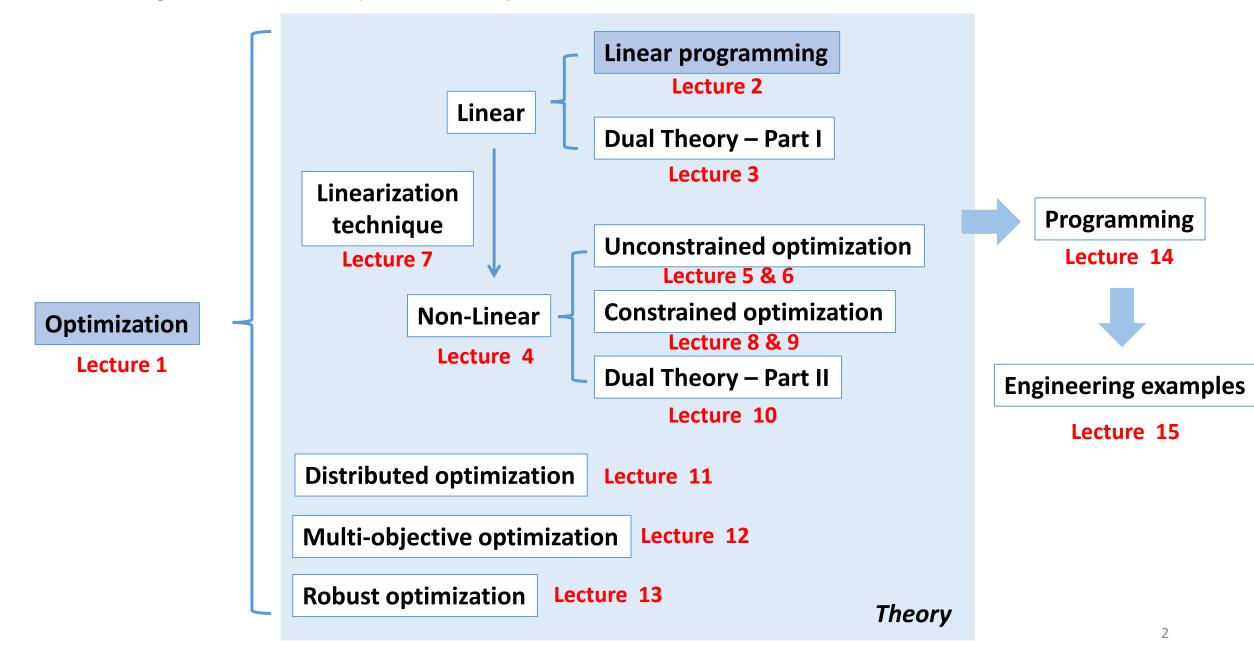
MAEG4070 Engineering Optimization

Lecture 2 Linear Programming

Yue Chen
MAE, CUHK
email: yuechen@mae.cuhk.edu.hk
Sep 5, 2022

Content of this course (tentative)



History of Linear Programming

Linear programming was developed as a discipline in the 1940's, to solve complex planning problems in wartime operations.

Founders of LP are generally regarded as **George B. Dantzig** (1914-2005)

Contributions:

- Developed the simplex algorithm
- Dantzig-Wolfe decomposition algorithm
- Stochastic programming

Publications:

Linear Programming and Extensions, 1963.

Honors:

- John von Neumann Theory Prize, 1974
- National Medal of Science, 1975

History of Linear Programming

In 1947, John von Neumann established the theory of duality.

In 1975, The Nobel prize in economics to Leonid Kantorovich (1912-1986)

Contributions:

- Linear Programming
- Functional analysis
- Infinite-dimensional optimization problems

Publications:

- The Mathematical Method of Production Planning and Organization, 1939
- The Best Uses of Economic Resources, 1959

Honors:

• Stalin Prize, 1949; Nobel Prize, 1975

LP examples

Recall the "production planning", "transportation" examples in our previous lecture. One more example as follows:

A health center wants to provide a healthy breakfast for citizens.

Breakfast Food		Fat	Cholesterol	Iron	Calcium	Protein	Fiber	Cost
	Cal	(g)	(mg)	(mg)	(mg)	(g)	(g)	(\$)
1. Bran cereal (cup)	90	0	0	6	20	3	5	0.18
2. Dry cereal (cup)	110	2	0	4	48	4	2	0.22
3. Oatmeal (cup)	100	2	0	2	12	5	3	0.10
4. Oat bran (cup)	90	2	0	3	8	6	4	0.12
5. Egg	75	5	270	1	30	7	0	0.10
6. Bacon (slice)	35	3	8	0	0	2	0	0.09
7. Orange	65	0	0	1	52	1	1	0.40
8. Milk-2% (cup)	100	4	12	0	250	9	0	0.16
9. Orange juice (cup)	120	0	0	0	3	1	0	0.50
10. Wheat toast (slice)	65	1	0	1	26	3	3	0.07

Breakfast should include at least 420 calories, 5mg iron, 400mg calcium, 20g protein, 12g fiber; and no more than 20g fat and 30mg cholesterol.

LP examples

Objective: minimizes the total cost Variables? Constraints?

Breakfast Food		Fat	Cholesterol	Iron	Calcium	Protein	Fiber	Cost
	Cal	(g)	(mg)	(mg)	(mg)	(g)	(g)	(\$)
1. Bran cereal (cup)	90	0	0	6	20	3	5	0.18
2. Dry cereal (cup)	110	2	0	4	48	4	2	0.22
3. Oatmeal (cup)	100	2	0	2	12	5	3	0.10
4. Oat bran (cup)	90	2	0	3	8	6	4	0.12
5. Egg	75	5	270	1	30	7	0	0.10
6. Bacon (slice)	35	3	8	0	0	2	0	0.09
7. Orange	65	0	0	1	52	1	1	0.40
8. Milk-2% (cup)	100	4	12	0	250	9	0	0.16
9. Orange juice (cup)	120	0	0	0	3	1	0	0.50
10. Wheat toast (slice)	65	1	0	1	26	3	3	0.07

Standard Form of Linear Programming

Element-wise form

$$\min_{x} z = \sum_{i=1}^{N} c_{i} x_{i}$$
s.t.
$$\sum_{i=1}^{N} a_{ji} x_{i} = b_{j}, \forall j = 1, ..., M$$

$$x_{i} \geq 0, \forall i = 1, ..., N$$

Compact form

$$\min_{x} z = cx \qquad \mathbf{c_{1\times N}} \quad \mathbf{x_{N\times 1}}$$
s.t. $Ax = b$ $\mathbf{A_{M\times N}} \quad \mathbf{b_{M\times 1}}$

$$x \ge 0$$

Features:

- Decision variables are continuous
- Objective function is linear
- Constraints are linear

What if the form is not so standard?

$$f(a+b)=f(a)+f(b) \ f(ka)=kf(a)$$

Are the following problems LPs?

(1)
$$\min_{x_1, x_2} 4x_1 + 2x_2$$
s.t.
$$3x_1 + 4x_2 \ge 0$$

$$6x_1 + 4x_2 \le 0$$

$$x_1 \ge 0, x_2 \ge 0$$

(3)
$$\max_{x_1, x_2} 4x_1 + 2x_2$$
s.t. $6x_1 + 5x_2 = 0$

$$7x_1 + 11x_2 \le 0$$

$$x_1 \ge 0, x_2 \ge 0$$

(2)
$$\min_{x_1, x_2} 4x_1 + 2x_2$$
s.t.
$$3x_1x_2 + 4x_2 \ge 0$$

$$6x_1 + 4x_2^2 \le 0$$

$$x_1 \ge 0, x_2 \ge 0$$

(4)
$$\max_{x_1, x_2} 4|x_1| + 2x_2$$
s.t. $6x_1 + 5|x_2| = 0$

$$7x_1 + 11x_2 \le 0$$

$$x_1 \ge 0, x_2 \ge 0$$

Are the following problems LPs?

(1)
$$\min_{x_1, x_2} 4x_1 + 2x_2$$
s.t.
$$3x_1 + 4x_2 \ge 0$$

$$6x_1 + 4x_2 \le 0$$

$$x_1 \ge 0, x_2 \ge 0$$

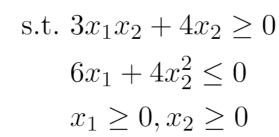
(3)
$$\max_{x_1, x_2} 4x_1 + 2x_2$$
s.t. $6x_1 + 5x_2 = 0$

$$7x_1 + 11x_2 \le 0$$

$$x_1 \ge 0, x_2 \ge 0$$

(2)
$$\min_{x_1, x_2} 4x_1 + 2x_2$$

s.t. $3x_1x_2 + 4x_2$



(4)
$$\max_{x_1, x_2} 4|x_1| + 2x_2$$
 $f(ka) = kf(a)$

s.t.
$$6x_1 + 5|x_2| = 0$$

 $7x_1 + 11x_2 \le 0$
 $x_1 \ge 0, x_2 \ge 0$

Are the following problems LPs?

(1)
$$\max_{x_1, x_2} x_1 x_2 + x_1$$

s.t. $\sin(x_1) + 3x_2 \le 5$
 $x_1 \ge 0$

(3)
$$\max_{x_1, x_3} x_1 + 7x_3$$
s.t. $8x_1 - 5x_3 \le 0$

$$9x_1 + 3x_3 \ge 0$$

$$x_1 \ge 0, x_3 \ge 0$$

(2)
$$\min_{x_1, x_2, x_3} x_1 + x_2 x_3$$

s.t. $7x_1 + 3x_2 x_3 \ge 0$
 $x_1 \ge 0$

Are the following problems LPs?

(1)
$$\max_{x_1, x_2} x_1 x_2 + x_1$$

s.t.
$$\sin(x_1) + 3x_2 \le 5$$

 $x_1 \ge 0$

$$\min_{x_1, x_2, x_3} x_1 + x_2 x_3$$

s.t. $7x_1 + 3x_2 x_3 \ge 0$
 $x_1 > 0$

$$\max_{x_1,x_3} x_1 + 7x_3$$

s.t.
$$8x_1 - 5x_3 \le 0$$

 $9x_1 + 3x_3 \ge 0$
 $x_1 \ge 0, x_3 \ge 0$

Can the above nonlinear problems be turned into a linear programming?

1. From "maximization" problem to "minimization" problem

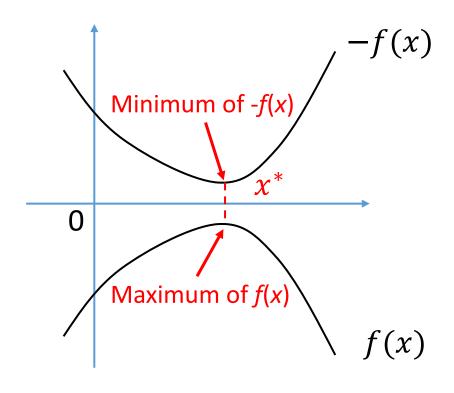
$$\max_{x_1, x_2} 4x_1 + 2x_2$$
s.t. $6x_1 + 5x_2 = 0$

$$x_1 \ge 0, x_2 \ge 0$$

Let
$$z' = -z$$
, then

$$\min_{x_1, x_2} -4x_1 - 2x_2$$
s.t. $6x_1 + 5x_2 = 0$

$$x_1 \ge 0, x_2 \ge 0$$



2. Inequality constraints to equality constraints

For inequality ≤, introduce *slack variable*

$$6x_1 + 5x_2 \le 0$$

$$6x_1 + 5x_2 + y_1 = 0, \ y_1 \ge 0$$

For inequality ≥, introduce *surplus variable*

$$7x_1 + 3x_2 \ge 0$$

$$7x_1 + 3x_2 - y_2 = 0, \ y_2 \ge 0$$

$$\min_{x_1, x_2} -4x_1 - 2x_2$$

s.t.
$$6x_1 + 5x_2 \le 0$$
,

$$7x_1 + 3x_2 \ge 0$$

$$x_1 \ge 0, x_2 \ge 0$$

$$\min_{x_1, x_2, y_1, y_2} -4x_1 - 2x_2$$

s.t.
$$6x_1 + 5x_2 + y_1 = 0$$

 $7x_1 + 3x_2 - y_2 = 0$
 $x_1 \ge 0, x_2 \ge 0, y_1 \ge 0, y_2 \ge 0$

- 3. About the last constraint on x
- If there is no limit on x_1

$$\min_{x_1, x_2} -4x_1 - 2x_2$$
s.t. $6x_1 + 5x_2 \le 0$,
$$7x_1 + 3x_2 \ge 0$$

$$x_2 \ge 0$$

Let
$$x_1 = y_1 - y_2$$

 $y_1 \ge 0, y_2 \ge 0$

If general range constraint on x

$$\min_{x_1, x_2} -4x_1 - 2x_2$$
s.t. $6x_1 + 5x_2 \le 0$,
$$7x_1 + 3x_2 \ge 0$$

$$x_1 \ge 5, x_2 \ge 0$$

Let
$$y_1 = x_1 - 5$$

$$\min_{x_1, x_2, y_1, y_2} -4y_1 + 4y_2 - 2x_2$$
s.t. $6y_1 - 6y_2 + 5x_2 \le 0$,
$$7y_1 - 7y_2 + 3x_2 \ge 0$$

$$y_1 \ge 0, y_2 \ge 0, x_2 \ge 0$$

$$\min_{x_1, x_2, y_1, y_2} -4y_1 - 2x_2 - 20$$
s.t. $6y_1 + 5x_2 \le -30$,
$$7y_1 + 3x_2 \ge -35$$

$$y_1 \ge 0, x_2 \ge 0$$

- 4. Problem with absolute value |x|
- Absolute values in constraints

$$|2x_1 + 3x_2| \le 2$$

is equivalent to

$$-2 \le 2x_1 + 3x_2 \le 2$$

• Absolute values in the objective function If it is "min $|x_1|+\cdots$ " or "max $-|x_1|+\cdots$ ", we can Let $u=|x_1|$ and add constraints $x_1\leq u$, $-x_1\leq u$

However, if "min $-|x_1| + \cdots$ " or "max $|x_1| + \cdots$ ", it cannot be turned into an LP

Nonconvex problem (future lectures)

Proof:

If
$$x_1>0$$
, then $x_1=u$ and $-x_1\leq 0\leq u$
 If $x_1=0$, then $u\geq 0$, since it is minimize over u , we have $u=0=x_1$
 If $x_1<0$, then $-x_1=u$, $x_1\leq 0\leq u$

Example

Try to turn this example into a standard form and write its compact form

$$\max_{x_1, x_2, x_3} 2x_1 + 4x_2 + 3x_3$$
s.t. $|3x_1 + 4x_2| + 2x_3 \le 600$

$$2x_1 + x_2 + 3x_3 \ge 400$$

$$x_1 \ge 0, x_2 \ge 3$$

- 1. From "maximization" problem to "minimization" problem
- 2. Inequality constraints to equality constraints
- 3. About the last constraint on x
- 4. Absolute value in constraints

Exercise

$$\max_{x_1, x_2, x_3} 2x_1 + 4x_2 + 3x_3$$
s.t. $|3x_1 + 4x_2| + 2x_3 \le 600$

$$2x_1 + x_2 + 3x_3 \ge 400$$

$$x_1 \ge 0, x_2 \ge 3$$

$$\min_{x_1, x_2, x_3} -2x_1 - 4x_2 - 3x_3$$
s.t.
$$-600 + 2x_3 \le 3x_1 + 4x_2$$

$$3x_1 + 4x_2 \le 600 - 2x_3$$

$$2x_1 + x_2 + 3x_3 \ge 400$$

$$x_1 \ge 0, x_2 \ge 3$$

$$\min_{x_1, x_2, x_3} -2x_1 - 4x_2 - 3x_3$$
s.t. $|3x_1 + 4x_2| + 2x_3 \le 600$

$$2x_1 + x_2 + 3x_3 \ge 400$$

 $x_1 \ge 0, x_2 > 3$

$$\min_{x_1, x_2, x_3, y_1, y_2, y_3} -2x_1 - 4x_2 - 3x_3$$
s.t.
$$-3x_1 - 4x_2 + 2x_3 + y_1 = 600$$

$$3x_1 + 4x_2 + 2x_3 + y_2 = 600$$

$$2x_1 + x_2 + 3x_3 - y_3 = 400$$

$$x_1 > 0, x_2 > 3, y_1 > 0, y_2 > 0, y_3 > 0$$

Exercise

$$\min_{x_1, x_2, x_3, y_1, y_2, y_3} -2x_1 - 4x_2 - 3x_3$$
s.t.
$$-3x_1 - 4x_2 + 2x_3 + y_1 = 600$$

$$3x_1 + 4x_2 + 2x_3 + y_2 = 600$$

$$2x_1 + x_2 + 3x_3 - y_3 = 400$$

$$x_1 \ge 0, x_2 \ge 3, y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

$$\min_{x_1, u_1, v_1, v_2, y_1, y_2, y_3} -2x_1 - 4u_1 - 3v_1 + 3v_2 - 12$$
s.t.
$$-3x_1 - 4u_1 + 2v_1 - 2v_2 + y_1 = 612$$

$$3x_1 + 4u_1 + 2v_1 - 2v_2 + y_2 = 588$$

$$2x_1 + u_1 + 3v_1 - 3v_2 - y_3 = 397$$

$$x_1 \ge 0, u_1 \ge 0, v_1 \ge 0, v_2 \ge 0, y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

$$\min_{x_1, u_1, x_3, y_1, y_2, y_3} -2x_1 - 4u_1 - 3x_3 - 12$$
s.t.
$$-3x_1 - 4u_1 + 2x_3 + y_1 = 600 + 12$$

$$3x_1 + 4u_1 + 2x_3 + y_2 = 600 - 12$$

$$2x_1 + u_1 + 3x_3 - y_3 = 400 - 3$$

$$x_1 \ge 0, u_1 \ge 0, y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

$$x = [x_1, u_1, v_1, v_2, y_1, y_2, y_3]^T$$

$$c = [-2, -4, -3, 3, 0, 0, 0]$$

$$b = [612, 588, 397]^T$$

$$A = \begin{bmatrix} -3 & -4 & 2 & -2 & 1 & 0 & 0 \\ 3 & 4 & 2 & -2 & 0 & 1 & 0 \\ 2 & 1 & 3 & -3 & 0 & 0 & -1 \end{bmatrix}$$

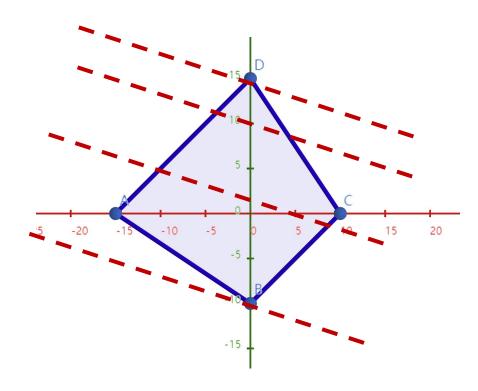
Graphical method for solving LP

Procedure:

Step 1: Draw the feasible region of the LP problem

Step 2: Draw the contours of the objective function

Step 3: Move the contour until it reaches the optimal point



graphical method for solving LP - example 1

$$\max_{x,y} x + 3y$$
s.t. $x + y \le 6$

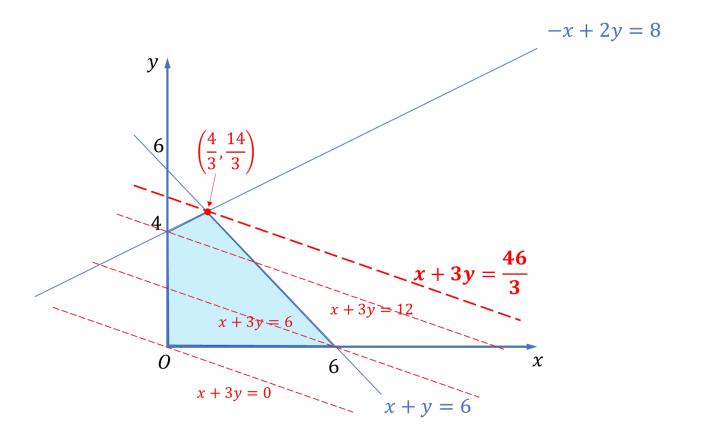
$$-x + 2y \le 8$$

$$x \ge 0, y \ge 0$$

Vertices are

$$(0,0), (6,0), \left(\frac{4}{3}, \frac{14}{3}\right), (0,4)$$

The contour is $x + 3y = const$
The optimal point is $x^* = \left(\frac{4}{3}, \frac{14}{3}\right)$



Graphical method for solving LP – example 2

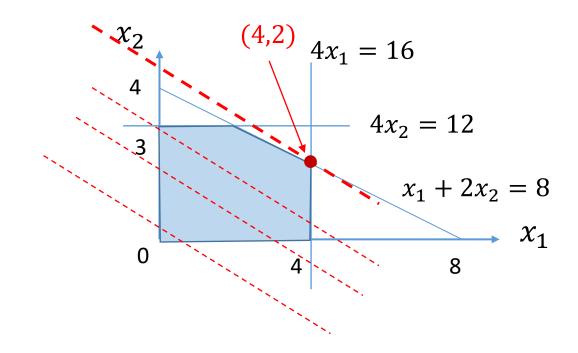
$$\max_{x_1, x_2} 2x_1 + 3x_2$$
s.t. $x_1 + 2x_2 \le 8$

$$4x_1 \le 16$$

$$4x_2 \le 12$$

$$x_1 \ge 0, x_2 \ge 0$$

Vertices are (0,0), (4,0), (0,3), (4,2), (2,3)The contour is $2x_1 + 3x_2 = const$ The optimal point is $x^* = (4,2)$.



graphical method for solving LP - special case 1

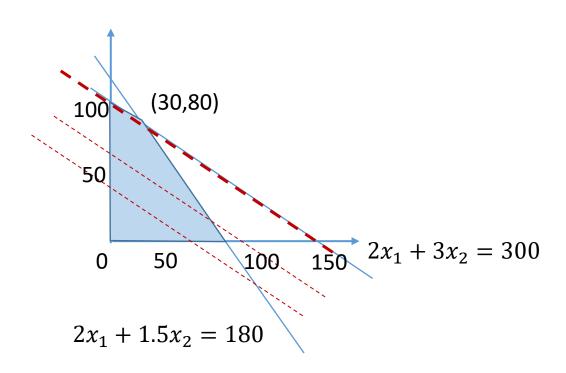
The LP might have multiple solutions

$$\min_{x_1, x_2} -10x_1 - 15x_2$$
s.t. $2x_1 + 3x_2 \le 300$

$$2x_1 + 1.5x_2 \le 180$$

$$x_1 \ge 0, x_2 \ge 0$$

This happens when the contour is parallel to one of the boundary



graphical method for solving LP - special case 2

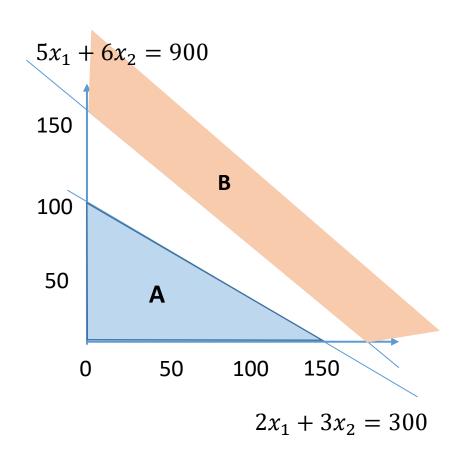
The LP might be infeasible

$$\min_{x_1, x_2} -10x_1 - 12x_2$$
s.t. $5x_1 + 6x_2 \ge 900$

$$2x_1 + 3x_2 \le 300$$

$$x_1 \ge 0, x_2 \ge 0$$

This happens when the feasible set of the LP is empty.



$$A \cap B = \emptyset$$

graphical method for solving LP - special case 3

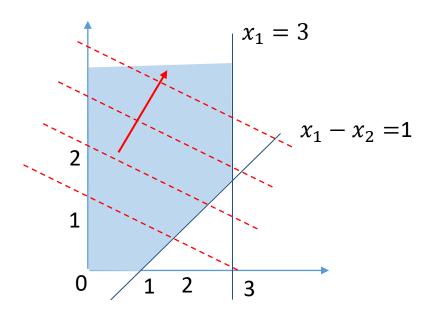
The LP might have unbounded solution

$$\min_{x_1, x_2} -3x_1 - 4x_2$$
s.t. $x_1 \le 3$

$$x_1 - x_2 \le 1$$

$$x_1 \ge 0, x_2 \ge 0$$

This happens when the feasible set of LP is unbounded.

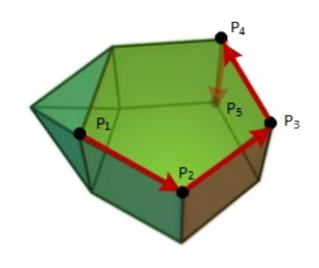


Solutions for LP

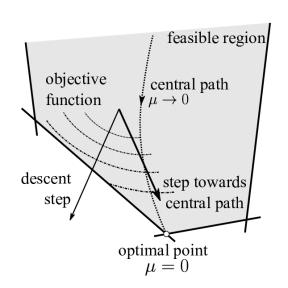


Algorithms for solving LPs

Algorithm	Complexity
Simplex algorithm	Non-polynomial
Ellipsoid	Polynomial
Interior point algorithm	Polynomial



Simplex algorithm



Interior point algorithm

Algorithms for solving LPs - Simplex

From the above examples, we notice that the optimal point is located at a vertex of the feasible region. Recall the standard form:

$$\min_{x} z = cx$$

$$\text{s.t. } Ax = b$$

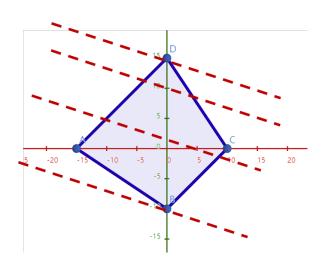
$$x \ge 0$$

$$\min_{y,s} c_y y + c_s s$$

$$\text{s.t. } A_y y + Is = b$$

$$y, s \ge 0$$

- Ax = b defines the feasible region (M equations in N unknowns, N > M).
- To find a vertex of the feasible region, we can set N-M variables to zero and solve for the others.
- If all the obtained variables are non-negative, this point is in fact a vertex of the feasible region.



Algorithms for solving LPs - Simplex

We could generate all possible vertexes (basic feasible solutions), check the value of the cost function, and find the optimum by enumeration.

However...

- There are $\binom{N}{N-M} = \frac{N!}{M!(N-M)!}$ candidates
- Even for a small problem, we need to try many times. For example, N=10, M=4, we get 210 candidates.
- The typical size of realistic LPs is such that N, M are often in the range of several hundreds or even thousands.
- Computational inefficient

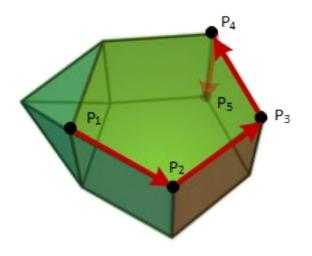
Algorithms for solving LPs - Simplex

Idea of the Simplex:

- Start at a vertex of the feasible region, e.g. P₁
- While there is an adjacent vertex that has a better objective value, move to that vertex, e.g. P₂
- Usually, the algorithm reaches an optimal solution in a finite number of steps

Key points:

- A vertex is identified by setting N-M variables to zero and compute the others (basic variables) uniquely.
- Two vertices are adjacent if they share all their (non-) basic variables, except one.
- So: in order to find neighbors to a vertex, remove one of the (non-) basic variables and add another one.



Algorithms for solving LPs - Interior point algorithm

Consider optimization problem:

$$\min_{x} \sum_{i=1}^{N} c_i x_i$$
s.t.
$$\sum_{i=1}^{N} a_{ij} x_i \le b_j, \forall j = 1, ..., M$$

Convert the above problem into an unconstrained minimization problem by adding barrier functions.

$$\mathbb{I}(u) = \begin{cases} 0, & \text{if } u < 0 \\ \infty, & \text{if } u \ge 0 \end{cases}$$

$$\min_{x} \sum_{i=1}^{N} c_{i}x_{i} + \sum_{j=1}^{M} \mathbb{I}(\sum_{i=1}^{N} a_{ij}x_{i} - b_{j})$$
or

$$I_t(u) = -\frac{1}{t}\log(-u)$$
 convex (future lectures)

Algorithms for solving LPs - Interior point algorithm

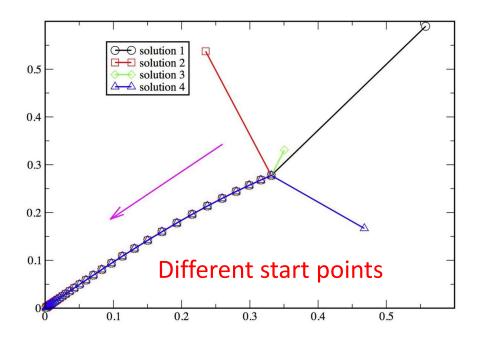
Interior point methods are widely applicable to convex optimization problems (future lectures), linear programs are just an example.

For example:

$$\min_{x,y} x + y$$
s.t. $x + 2y \le 1$

$$2x + y \le 1$$

$$x, y \ge 0$$



Solve LPs using Solvers

Free LP Solvers:

- CDD, CLP, GLPK, LPSOLVE, QSOPT, SCIP
- LINPROG (not free but is embedded in MATLAB)

Commercial LP Solvers (free for academia):

- CPLEX, GUROBI
- MOSEK

How to choose a solver? How to describe the model in coding?

• • •

Will discuss in future lectures.

Thanks!