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Affine Sets

line passing through points 𝑥𝑥1 and 𝑥𝑥2
𝑦𝑦 = 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2,∀𝜃𝜃 ∈ ℝ

line segment between points 𝑥𝑥1 and 𝑥𝑥2
𝑦𝑦 = 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2,∀𝜃𝜃 ∈ [0,1]

Affine set: the set that contains all line through any two distinct points in 
the set 𝒞𝒞

∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃 ∈ ℝ ⇒ 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞
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Affine Sets

Example: solution set of linear equations 𝒳𝒳 = {𝑥𝑥|𝐴𝐴𝑥𝑥 = 𝑏𝑏} is an affine set.

Proof: Given any two points 𝑥𝑥1 ∈ 𝒳𝒳 and 𝑥𝑥2 ∈ 𝒳𝒳, for any 𝜃𝜃 ∈ ℝ, 
then 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 represents a point on the line crossing 𝑥𝑥1 and 𝑥𝑥2.

Since 𝐴𝐴𝑥𝑥1 = 𝑏𝑏 and 𝐴𝐴𝑥𝑥2 = 𝑏𝑏, we have
𝐴𝐴 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2 = 𝜃𝜃𝐴𝐴𝑥𝑥1 + 1 − 𝜃𝜃 𝐴𝐴𝑥𝑥2 = 𝑏𝑏

Therefore, 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒳𝒳.
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Affine Sets

Example: solution set of linear equations 𝒳𝒳 = {𝑥𝑥|𝐴𝐴𝑥𝑥 = 𝑏𝑏}

Affine combination of points 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 is
𝑥𝑥 = 𝜃𝜃1𝑥𝑥1 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛, 𝜃𝜃1+⋯+ 𝜃𝜃𝑛𝑛 = 1

Affine hull of set 𝒞𝒞 is
• The smallest affine set that contains 𝒞𝒞
• Set of all affine combinations of points in 𝒞𝒞
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𝑥𝑥 = 𝜇𝜇1𝑥𝑥1 + ⋯+ 𝜇𝜇𝑛𝑛𝑥𝑥𝑛𝑛
𝑦𝑦 = 𝜎𝜎1𝑦𝑦1 + ⋯+ 𝜎𝜎𝑛𝑛𝑦𝑦𝑛𝑛

∀𝜃𝜃,𝜃𝜃𝑥𝑥 + (1 − 𝜃𝜃)𝑦𝑦
= (𝜃𝜃𝜇𝜇1 + 1 − 𝜃𝜃 𝜎𝜎1)𝑦𝑦1 + ⋯
+ (𝜃𝜃𝜇𝜇𝑛𝑛 + 1 − 𝜃𝜃 𝜎𝜎𝑛𝑛)𝑦𝑦𝑛𝑛

𝜃𝜃𝜇𝜇1 + 1 − 𝜃𝜃 𝜎𝜎1 + ⋯
+ 𝜃𝜃𝜇𝜇𝑛𝑛 + 1 − 𝜃𝜃 𝜎𝜎𝑛𝑛
= 𝜃𝜃�

𝑖𝑖=1

𝑛𝑛
𝜇𝜇𝑖𝑖 + 1 − 𝜃𝜃 �

𝑖𝑖=1

𝑛𝑛
𝜎𝜎𝑖𝑖

= 𝜃𝜃 + 1 − 𝜃𝜃 = 1



Convex Sets

Convex set: the set that contains all line segment between any two 
distinct points in the set 𝒞𝒞

∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃 ∈ [0,1] ⇒ 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞

Intuitive explanation: in a convex set, you can see everywhere
wherever you stand

Try it yourself: Are the following sets convex?
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Convex Sets

Convex combination of points 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 is
𝑥𝑥 = 𝜃𝜃1𝑥𝑥1 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛, 𝜃𝜃1+⋯+ 𝜃𝜃𝑛𝑛 = 1,𝜃𝜃𝑘𝑘 ≥ 0,∀𝑘𝑘 = 1, … ,𝑛𝑛

Convex hull of set 𝒞𝒞 is
• The smallest convex set that contains 𝒞𝒞
• Set of all convex combinations of points in 𝒞𝒞
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Cones

Cone: if for every 𝑥𝑥 ∈ 𝒞𝒞 and 𝜃𝜃 ≥ 0, we have 𝜃𝜃𝑥𝑥 ∈ 𝒞𝒞
∀𝑥𝑥 ∈ 𝒞𝒞,𝜃𝜃 ≥ 0 ⇒ 𝜃𝜃𝑥𝑥 ∈ 𝒞𝒞

Convex cone: if 𝒞𝒞 is convex and also a cone
∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃1,𝜃𝜃2 ≥ 0 ⇒ 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 ∈ 𝒞𝒞
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𝜃𝜃1𝑥𝑥1 ∈ 𝒞𝒞 (cone)
𝜃𝜃2𝑥𝑥2 ∈ 𝒞𝒞 (cone)

0.5𝜃𝜃1𝑥𝑥1 + 0.5𝜃𝜃2𝑥𝑥2 ∈ 𝐶𝐶 (convex)
2(0.5𝜃𝜃1𝑥𝑥1 + 0.5𝜃𝜃2𝑥𝑥2) ∈ 𝐶𝐶 (cone)



Cones

Conic combination of points 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 is
𝑥𝑥 = 𝜃𝜃1𝑥𝑥1 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛,𝜃𝜃𝑘𝑘 ≥ 0,∀𝑘𝑘 = 1, … ,𝑛𝑛

Conic hull of set 𝒞𝒞 is
• The smallest cone that contains 𝒞𝒞
• Set of all conic combinations of points in 𝒞𝒞
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Comparison of affine set, convex set, cone

Affine set: ∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃 ∈ ℝ ⇒ 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞

Convex set: ∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃 ∈ [0,1] ⇒ 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞

Cone: ∀𝑥𝑥 ∈ 𝒞𝒞,𝜃𝜃 ≥ 0 ⇒ 𝜃𝜃𝑥𝑥 ∈ 𝒞𝒞

Try to identify: are these affine set, convex set, or cone?

convex setcone affine set cone
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Polyhedron

Hyperplane: set of the form 𝑥𝑥 𝑎𝑎𝑇𝑇𝑥𝑥 = 𝑏𝑏,𝑎𝑎 ≠ 0}

Hyperplane is affine and convex

Halfspace: set of the form 𝑥𝑥 𝑎𝑎𝑇𝑇𝑥𝑥 ≤ 𝑏𝑏,𝑎𝑎 ≠ 0}

halfspace is convex
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Polyhedron

Hyperplane: set of the form 𝑥𝑥 𝑎𝑎𝑇𝑇𝑥𝑥 = 𝑏𝑏,𝑎𝑎 ≠ 0}

Hyperplane is affine and convex
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Proof: We have proved that 𝑆𝑆 = 𝑥𝑥 𝑎𝑎𝑇𝑇𝑥𝑥 = 𝑏𝑏,𝑎𝑎 ≠ 0} is an affine set.
Next, let’s prove it is convex. Suppose we have two points 𝑥𝑥1, 𝑥𝑥2, then for any 
𝜃𝜃 ∈ [0,1], we have

𝑎𝑎 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2 = 𝜃𝜃𝑎𝑎𝑥𝑥1 + 1 − 𝜃𝜃 𝑎𝑎𝑥𝑥2 = 𝜃𝜃𝑏𝑏 + 1 − 𝜃𝜃 𝑏𝑏 = 𝑏𝑏

Therefore, we have 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2 ∈ 𝑆𝑆.



Polyhedron

Halfspace: set of the form 𝑥𝑥 𝑎𝑎𝑇𝑇𝑥𝑥 ≤ 𝑏𝑏,𝑎𝑎 ≠ 0}

halfspace is convex
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Proof: Suppose we have two points 𝑥𝑥1, 𝑥𝑥2, then for any 𝜃𝜃 ∈ [0,1], we have

𝑎𝑎 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2 = 𝜃𝜃𝑎𝑎𝑥𝑥1 + 1 − 𝜃𝜃 𝑎𝑎𝑥𝑥2 ≤ 𝜃𝜃𝑏𝑏 + 1 − 𝜃𝜃 𝑏𝑏 = 𝑏𝑏

Therefore, we have 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2 ∈ 𝑆𝑆. not affine because we need 𝜃𝜃 ≥ 0



Polyhedron

A polyhedron is defined as the solution set of linear equalities and 
inequalities

𝑃𝑃 = {𝑥𝑥|𝑎𝑎𝑗𝑗𝑇𝑇𝑥𝑥 ≤ 𝑏𝑏𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚, 𝑐𝑐𝑘𝑘𝑇𝑇𝑥𝑥 = 𝑑𝑑𝑘𝑘 ,𝑘𝑘 = 1, … ,𝑝𝑝}
Or in a compact form 

𝑃𝑃 = {𝑥𝑥|𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏,𝐶𝐶𝑥𝑥 = 𝑑𝑑}

Polyhedron is intersection of finite number of halfspaces and hyperplanes
14
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How to prove a set 𝓒𝓒 is convex?

To prove a set 𝒞𝒞 is convex, we can

• Apply definition
∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃 ∈ [0,1] ⇒ 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞

• Show that 𝒞𝒞 is obtained from simple convex sets by operations that 
preserve convexity, e.g.
 Intersection
 Affine mapping
 Perspective mapping
 Linear-fractional mapping
 epigraph
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Prove that the set 𝑆𝑆 = 𝑥𝑥1, 𝑥𝑥2 𝑥𝑥1 + 𝑥𝑥2 ≤ 6,−𝑥𝑥1 + 2𝑥𝑥2 ≤ 1} is convex.

Example - 1

Proof: Given any 𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑆𝑆,𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆. For any 𝜃𝜃 ∈ [0,1], we have
𝜃𝜃𝑥𝑥 + 1 − 𝜃𝜃 𝑦𝑦 = (𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑦𝑦1,𝜃𝜃𝑥𝑥2 + 1 − 𝜃𝜃 𝑦𝑦2)

Then we check 𝜃𝜃𝑥𝑥 + 1 − 𝜃𝜃 𝑦𝑦 is in 𝑆𝑆

𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑦𝑦1 + 𝜃𝜃𝑥𝑥2 + 1 − 𝜃𝜃 𝑦𝑦2 = 𝜃𝜃 𝑥𝑥1 + 𝑥𝑥2 + (1 − 𝜃𝜃)(𝑦𝑦1 + 𝑦𝑦2) ≤ 6

−𝜃𝜃𝑥𝑥1 − 1 − 𝜃𝜃 𝑦𝑦1 + 2𝜃𝜃𝑥𝑥2 + 2 1 − 𝜃𝜃 𝑦𝑦2 = 𝜃𝜃 −𝑥𝑥1 + 2𝑥𝑥2 + (1 − 𝜃𝜃)(−𝑦𝑦1 + 2𝑦𝑦2) ≤ 1

Therefore,𝜃𝜃𝑥𝑥 + 1 − 𝜃𝜃 𝑦𝑦 ∈ 𝑆𝑆.



Example -2 Positive semidefinite cone

Let 𝑺𝑺𝑛𝑛 be a set of symmetric 𝑛𝑛 × 𝑛𝑛 matrices, define

Then we have 

Convex cone (try to prove it)
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Proof: 1) Convex
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Example -2 Positive semidefinite cone



Proof: 2) Cone
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Example -2 Positive semidefinite cone
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Example – 3 Intersection of two sets

Suppose we have two convex sets 𝒞𝒞 and 𝒮𝒮. Then, let’s prove 𝒞𝒞 ∩ 𝒮𝒮 is a convex set.

Proof:
Given any 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞 ∩ 𝒮𝒮, then we have 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞 and 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒮𝒮
Since 𝒞𝒞 and 𝒮𝒮 are all convex sets, then given any 𝜃𝜃 ∈ 0,1
We have

𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞
𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒮𝒮

Therefore,
𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞 ∩ 𝒮𝒮



Convex function

Function f : ℝ𝑛𝑛 → ℝ is convex if dom(f) is a convex set, and the following 
inequality holds

If we change ≤ into ≥, then it is concave
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Convex function

Function f : ℝ𝑛𝑛 → ℝ is strictly convex if dom(f) is a convex set, and the 
following inequality holds

Function f  is strongly convex if ∃𝛼𝛼 > 0: 𝑓𝑓 𝑥𝑥 − 𝛼𝛼 𝑥𝑥 2
2 is convex

f is (strictly, strongly) concave if –f is (strictly, strongly) convex 

stronger
22
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Review of mathematics

The gradient of a scalar-valued differentiable function 𝑓𝑓 of several variables is 
the vector field (or vector-valued function) ∇𝑓𝑓, whose value at a point 𝑥𝑥 is the 
vector, whose components are the partial derivatives of 𝑓𝑓 at 𝑥𝑥. i.e.

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

, … ,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑁𝑁

𝑇𝑇

For example, 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥12 + 5𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2, then

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

= 6𝑥𝑥1 + 𝑥𝑥2,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

= 5 + 𝑥𝑥1

Therefore
∇𝑓𝑓 𝑥𝑥 = 6𝑥𝑥1 + 𝑥𝑥2, 5 + 𝑥𝑥1 𝑇𝑇

Gradient
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Review of mathematics

Hessian

For example, 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥12 + 5𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2, we have

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥12

= 6,
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥1

= 1,
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥22

= 0

Therefore

the Hessian matrix or Hessian is a square matrix of second-order 
partial derivatives of a scalar-valued function, or scalar field

𝐻𝐻 𝑥𝑥 = 6 1
1 0

24

For twice continuously differentiable
functions, Hessian is always symmetric.
(which can be used to double check the
calculation of cross term)



Convex function

Apart from proving the convexity by definition, in the following, we provide 
two conditions, i.e. first-order condition & second-order condition

Suppose f is differentiable and ∇𝑓𝑓(𝑥𝑥) exists at each 𝑥𝑥 ∈ 𝑑𝑑𝑑𝑑𝑚𝑚(𝑓𝑓)

First-order condition f with convex domain is convex iff

25
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Convex function

Simple proof:

26

𝑡𝑡𝑦𝑦 + 1 − 𝑡𝑡 𝑥𝑥



Convex function

× 𝒕𝒕

× (𝟏𝟏 − 𝒕𝒕)
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Convex function

Suppose f is twice differentiable and the Hessian 𝐻𝐻(𝑥𝑥) exists at every 
𝑥𝑥 ∈ 𝑑𝑑𝑑𝑑𝑚𝑚(𝑓𝑓).

Second-order condition function f with convex domain is 
• convex iff

• Strictly convex iff

• Strongly convex iff

28

positive semidefinite

positive definite

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑 is positive semidefinite iff

𝑎𝑎 ≥ 0 and 𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 ≥ 0



Example

Convex functions
• Affine: 𝑎𝑎𝑥𝑥 + 𝑏𝑏 on ℝ for any a and b
• Quadratic function: 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 on ℝ for any 𝑎𝑎 ≥ 0
• Exponential: 𝑒𝑒𝑎𝑎𝑎𝑎 on ℝ for any a
• Negative entropy: 𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥(𝑥𝑥) on ℝ++

Try to prove 𝑓𝑓 𝑥𝑥 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 on ℝ for any 𝑎𝑎 ≥ 0 is convex.

Proof: 
𝑓𝑓′ 𝑥𝑥 = 2𝑎𝑎𝑥𝑥 + 𝑏𝑏, 𝑓𝑓′′ 𝑥𝑥 = 2𝑎𝑎 ≥ 0

According to the second-order condition, it is convex.

29



Epigraph

The graph of a function 𝑓𝑓:ℝ𝑛𝑛 → ℝ is defined as
𝑥𝑥,𝑓𝑓 𝑥𝑥 𝑥𝑥 ∈ 𝑑𝑑𝑑𝑑𝑚𝑚 𝑓𝑓 } ⊆ ℝ𝑛𝑛+1

The epigraph of a function 𝑓𝑓:ℝ𝑛𝑛 → ℝ is defined as
𝑒𝑒𝑝𝑝𝑒𝑒 𝑓𝑓 = 𝑥𝑥, 𝑡𝑡 𝑥𝑥 ∈ 𝑑𝑑𝑑𝑑𝑚𝑚 𝑓𝑓 ,𝑓𝑓(𝑥𝑥) ≤ 𝑡𝑡} ⊆ ℝ𝑛𝑛+1

𝑓𝑓(𝑥𝑥) is convex if and only if 𝑒𝑒𝑝𝑝𝑒𝑒 𝑓𝑓 is a convex set.
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How to prove a function 𝒇𝒇(𝒙𝒙) is convex?

To prove a function 𝑓𝑓(𝑥𝑥) is convex, we can

• Verify definition

• For twice differentiable functions, apply second-order condition

• Show that 𝑓𝑓(𝑥𝑥) is obtained from simple convex functions by operations that 
preserve convexity, e.g.
 Nonnegative weighted sum
 Composition with affine function
 Pointwise maximum
 Composition
 Minimization
 Perspective
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Prove that 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥12 − 2𝑥𝑥1𝑥𝑥2 + 4𝑥𝑥22 + 3𝑥𝑥1 is convex.

Example - 1

Proof: The gradient of 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥12 − 2𝑥𝑥1𝑥𝑥2 + 4𝑥𝑥22 + 3𝑥𝑥1 is

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

= 2𝑥𝑥1 − 2𝑥𝑥2 + 3,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

= −2𝑥𝑥1 + 8𝑥𝑥2

The Hessian is

𝐻𝐻 𝑥𝑥 = 2 −2
−2 8

𝐻𝐻(𝑥𝑥) is positive semi-definite. Therefore, 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 is a convex function.

2 ≥ 0
2 × 8 − −2 × −2 = 16 − 4 = 12 ≥ 0



Example – 2 Pointwise maximum of convex functions

Example: piecewise-linear functions

33

Suppose the maximum is the 𝑒𝑒∗ term

max
𝑖𝑖

{𝑓𝑓𝑖𝑖(𝑥𝑥)} ≥ 𝑓𝑓𝑖𝑖∗(𝑥𝑥)
max
𝑖𝑖

{𝑓𝑓𝑖𝑖(𝑦𝑦)} ≥ 𝑓𝑓𝑖𝑖∗ 𝑦𝑦
𝑡𝑡max

𝑖𝑖
{𝑓𝑓𝑖𝑖(𝑥𝑥)} + 1 − 𝑡𝑡 max

𝑖𝑖
𝑓𝑓𝑖𝑖 𝑦𝑦

≥ 𝑡𝑡𝑓𝑓𝑖𝑖∗ 𝑥𝑥 + 1 − 𝑡𝑡 𝑓𝑓𝑖𝑖∗ 𝑦𝑦
= max

𝑖𝑖
{𝑡𝑡𝑓𝑓𝑖𝑖 𝑥𝑥 + (1 − 𝑡𝑡)𝑓𝑓𝑖𝑖(𝑦𝑦)}

𝑓𝑓1(𝑥𝑥)

𝑓𝑓2(𝑥𝑥)



Example – 3 Minimization
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Thanks！
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