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Affine Sets

line passing through points x; and x,
y=0x;+(1—-0)x,, V8 ER

line segment between points x; and x,
y=0x;+(1—-6)x,,v0 €[0,1]

Affine set: the set that contains all line through any two distinct points in
the set C
Vx,x, EC,0ER = Ox;+(1—-0)x, €EC
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Affine Sets

Example: solution set of linear equations X' = {x|Ax = b} is an affine set.

Proof: Given any two points x; € X and x, € X, forany 6 € R,
then 8x; + (1 — 0)x, represents a point on the line crossing x; and x,.

Since Ax; = b and Ax, = b, we have
AlOx; + (1 —0)xy,] = 0Ax; + (1 —60)Ax, = b

Therefore, 0x; + (1 — 0)x, € X.



Affine Sets

Example: solution set of linear equations X = {x|Ax = b}

Affine combination of points x4, ..., x,, is
x=0;x;+-+0,x, 04+---+6,=1

Affine hull of set C is
e The smallest affine set that contains C
* Set of all affine combinations of pointsin C

A

X = Uy + o+ U <
R Oy + (1= 0)ay) + -
Yy =01Y1++ 0pYn -+ (0,[1” + (1 —-60)a,)
V6, 0x + (1 — 0)y .y ul+(1—6)2
= (O + (1 —6)oy)ys + - :Q+(111_ 0) =1 -

+ (Qlfln + (1 o B)Un)Yn
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Convex Sets

Convex set: the set that contains all line segment between any two
distinct points in the set C
Vx,x, €EC,0€]01] = O0x;+(1—-0)x, €C

Intuitive explanation: in a convex set, you can see everywhere
wherever you stand

Try it yourself: Are the following sets convex?
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Convex Sets

Convex combination of points x4, ..., X, is
x=60x +--+0,x, 0,+--+6,=1,0,=0,Vk=1,..,n

Convex hull of set C is
e The smallest convex set that contains C
e Set of all convex combinations of pointsin C
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Cones

. 68;x, € C (cone)
Cone: if foreveryx € Cand 8 = 0, we have 8x € C 8,x, € C (cone)

Vx € 6, 0 2 O = Hx S C 0.581x1 + 0.592362 eC (ConVEX)
2(0.560,x1 + 0.56,x,) € C (cone)

Convex cone: if C is convex and also a cone
vxl,XZ (S C, 91, 92 >0 = Hlxl + Hzxz eEC

L1

)
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Cones

Conic combination of points x4, ..., x,, is

X = 91x1 + -+ ann, Hk > O,Vk = 1, ., N

Conic hull of set C is

The smallest cone that contains C

* Set of all conic combinations of pointsin C

\lllx 0 \

N
0
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Comparison of affine set, convex set, cone

Affineset: Vx,x, EC,0 ER = Ox;+(1—-0)x, €C
Convex set: Vx{,x, €C,0€[0,1] = Ox;+(1—-0)x, €C

Cone:Vx€e€(C,06>20 = 0xeC

Try to identify: are these affine set, convex set, or cone?

cone convex set affine set cone
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Polyhedron

Hyperplane: set of the form {x |a’x = b, a # 0}

Hyperplane is affine and convex

a x =25

Halfspace: set of the form {x |a"x < b, a # 0}

halfspace is convex
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Polyhedron

Hyperplane: set of the form {x |a’x = b, a # 0}

Hyperplane is affine and convex

a x =25

Proof: We have proved that S = {x |a’x = b, a # 0} is an affine set.
Next, let’s prove it is convex. Suppose we have two points x4, x,, then for any

0 € [0,1], we have
a(@x;+(1—-0)x,) =0ax;+(1—0)ax, =6b+(1—-60)b=0>b

Therefore, we have 0x; + (1 — 0)x, € S.
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Polyhedron

Halfspace: set of the form {x |a"x < b, a # 0}

T .
2o\ & T =0 halfspace is convex

Proof: Suppose we have two points x4, x,, then forany 8 € [0,1], we have
a(@x;+(1—-0)x,) =0ax;+(1—0)ax, <60b+(1—-60)b=0>b

Therefore, we have 0x; + (1 — 0)x, € S. not affine because we need 8 = 0
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Polyhedron

A polyhedron is defined as the solution set of linear equalities and
inequalities
P = {x|aij <b,j=1,..,m, c,fx =d, k=1,..,p}
Or in a compact form
P ={x|Ax < b,Cx = d}

ay as

as,  —
as

a4y

Polyhedron is intersection of finite number of halfspaces and hyperplanes
14
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How to prove a set C is convex?

To prove a set C is convex, we can

* Apply definition
Vx,x, €EC,0€]01] = O0x;+(1—-0)x, €C

 Show that C is obtained from simple convex sets by operations that
preserve convexity, e.g.
v’ Intersection
v’ Affine mapping
v’ Perspective mapping
v’ Linear-fractional mapping
v’ epigraph



Example - 1

Prove that the set S = {(x, x,)|x; + x, < 6, —x; + 2x, < 1}is convex.

Proof: Given any x = (x,x,) € S,y = (y1,V2) € S. Forany 8 € [0,1], we have
Ox +(1—0)y = (0x; + (1 = 60)y1,0x; + (1 = 60)y2)

Then we check x + (1 — 08)yisin S
Ox;+(1—0)y1 +0x,+ (1 —0)y, =0(x1 +x) + (1 —-60)(y1 +y2) <6
—Ox; —(1—-0)y; +20x, +2(1 —0)y, =0(—x; +2x,) + (1 —-60)(—y; + 2y,) < 1

Therefore,0x + (1 — 0)y € S.



Example -2 Positive semidefinite cone

Let S™ be a set of symmetric n X n matrices, define
S" = {X € "X » 0}« Convex cone (try to prove it)
ST, ={X eS"X >0}

Then we have

X eSSl = ' X2>0forall z e R”
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Example -2 Positive semidefinite cone

S" ={X € S"|X = 0}

Proof: 1) Convex

VX, Xo € X €S" and 6 € [0, 1], we have for all z

ZT(QXl + (1 — Q)XQ)Z
= 02" X124+ (1 —0)2! X»z
> 0

Therefore, (0X; + (1 —0)X3) € S
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Example -2 Positive semidefinite cone

S" ={X € S"|X = 0}

Proof: 2) Cone
VX € S and 0 > 0, we have for all z

AO0X2 =01 X2 >0

Therefore, 0.X € ST}
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Example — 3 Intersection of two sets

Suppose we have two convex sets C and §. Then, let’s prove C N § is a convex set.

Proof:
Given any x{,x, € C NS, then we have x{,x, € Cand xq,x, €S
Since C and § are all convex sets, then given any 8 € [0,1]
We have
O0x;+(1—60)x, €C
Ox;+(1—0)x, €S
Therefore,
Ox;+(1—0)x, eCNS



Convex function

Function f: R™ — R is convex if dom(f) is a convex set, and the following
inequality holds

fOxy + (1 —0)xo) <Of(x1)+ (1 —0)f(x2),¥0 € [0,1],Vr1, 22 € dom(f)

flx)
A

< ° > . .
afi) + (1 — o) ixs) If we change < into =, then it is concave

Fxq )T~
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Convex function

Function f: R™ — R is strictly convex if dom(f) is a convex set, and the
following inequality holds

fOxy+ (1 —0)xo) <Of(x1) + (1 —0)f(x2),V0 € (0,1),Vr1 # x2 € dom(f)

x2

Function f is strongly convex if 3a > 0: f(x) — a||x]|5 is convex
fis (strictly, strongly) concave if —f is (strictly, strongly) convex \/

o m

stronger
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Review of mathematics

Gradient

The gradient of a scalar-valued differentiable function f of several variables is
the vector field (or vector-valued function) Vf, whose value at a point x is the
vector, whose components are the partial derivatives of f at x. i.e.

) of 1"
U@ = [

0x4 0xy

For example, f(x) = 3x# + 5x, + x;x,, then

of of

=6x1 tX,m=—=5+x
d0x4 1 > 9x, 1

Therefore
Vf(x) = [6x1 + x5,5 + x1]"
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Review of mathematics

Hessian

the Hessian matrix or Hessian is a square matrix of second-order
partial derivatives of a scalar-valued function, or scalar field

T o2
E‘f " Orq0xpy
H(x") = ; ; oF oF
o2 f 92 f . =
| drnOxy T dr‘z\r | 0x, 6%1 + X2, dx, >t X
For example, f(x) = 3x# + 5x, + x;x,, we have
d%f d%f %f %f 0
0x? T 0x,0x, 0x,0x;  0x2
Therefore 6 1 For twice continuously differentiable
H(x) = 1 0 functions, Hessian is always symmetric.

(which can be used to double check the

calculation of cross term)
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Convex function

Apart from proving the convexity by definition, in the following, we provide
two conditions, i.e. first-order condition & second-order condition

Suppose fis differentiable and Vf (x) exists at each x € dom(f)

First-order condition f with convex domain is convex iff

fy) > f(x)+ Vf(x) (y — z),Va,y € dom(y)

f(y) first-order approximation of f(y)
f(x) is global underestimator )+ V(1) (y—x)

\
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Convex function
Simple proof: (-1
ty+ (1 —1t)x
7

Necessity: consider x + t(y — ) € dom(f),Vt € [0,1]. Since f(x) is convex, then we have
flo+ty —x) < (1 =1)f(x) +1f(y)

which is equivalent to

fle +t(y — ) = f()
t

fly) = f(x) +

Let t — 0. we can get the conclusion.
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Convex function

Sufficiency: for any = # y, let z = tx + (1 — t)y,Vt € [0, 1]

Xt

X (1-—-1t)

(tz + (1= t)y)f (2) —||f (2)

-
~ -
—_—————
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Convex function

Suppose fis twice differentiable and the Hessian H(x) exists at every

x € dom(f).
Second-order condition function f with convex domain is
* convex iff positive semidefinite

¥

H(:L') = 0, Vo € dOTn(.f) [CCl Z] is positive semidefinite iff
i i o o a=0andad —bc =0

e Strictly convex iff positive definite

/

H(x) > 0,Vx € dom(f)

e Strongly convex iff

H(x) —al = 0,Ye € dom(f)
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Example

Convex functions
e Affine:ax + bon Rforanyaandb

 Quadratic function: ax® + bx + con Rforanya = 0
e Exponential: e** on R for any a

* Negative entropy: xlog(x) on R,

Try to prove f(x) = ax? + bx + c on R for any a > 0 is convex.

Proof:
f'(x)=2ax+b,f"(x) =2a=0
According to the second-order condition, it is convex.



Epigraph

The graph of a function f: R™ — R is defined as

{(x, f(x))| x € dom(f)} € R**1

The epigraph of a function f: R™ — R is defined as

epi f = {(x,t)] x € dom(f), f(x) < t} € R+

f(x) is convex if and only if epi f is a convex set.

Epigraph

A\ 4B

p—————— dom(f) ————————+

b dom(f) —————=
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How to prove a function f(x) is convex?

To prove a function f(x) is convex, we can
* Verify definition
* For twice differentiable functions, apply second-order condition

* Show that f(x) is obtained from simple convex functions by operations that
preserve convexity, e.g.
v" Nonnegative weighted sum
v' Composition with affine function
v’ Pointwise maximum
v' Composition
v" Minimization
v’ Perspective



Example - 1
Prove that f(xq,xy) = x# — 2xyx, + 4x5 + 3x, is convex.

Proof: The gradient of f(x{,xy) = x# — 2x;x, + 4x5 + 3x4 is

of of
a—x1:2X1—2X2+3, a—x2:—2X1+8X2

The Hessian is
2>0

H(ac)z[z2 _82] 2x8—(-2)x(-2)=16—-4=12>0

H(x) is positive semi-definite. Therefore, f (x4, x,) is a convex function.



Example — 2 Pointwise maximum of convex functions

If f1,..., f;n are convex, then f(x) = max;{f;(x)} is convex

fltz + (1 —t)y) =max{fi(tr + (1 —1)y)}
Gjppose the maximum is the i* terrh < Iﬂ?X{tfz(ﬂC’) +(1—t)fily)}
maxi(0)} 2 fir (x) — < tmax{f;(x)} + (1 — t) max{fi(y)}
max{f;(¥)} = fi*(y) L e
tmax(fi(0} + (1 - Omax(fGyy | @O0

> tfi+(x) + (1 - Ofi-(¥)
\ = max{tf;(x) + (1 — Ofi(¥)} /

Example: piecewise-linear functions

f(z) =max{alx +bi,...,al x +b,)}
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Example — 3 Minimization

C is a convex set, f(z,y) is convex in the (z,y) space, then the function

g(xr) =min f(x,y)
. . yec
1S convex 111 »r

Proof: For any x; and x5, the minimizers are y; and y»

g($1) — f(xlayl)a 9(332) — f(IQ:QQ)

g(try + (1 —t)xe) = rynelg fltey + (1 —t)z2,y)

< f(toy 4+ (1 —t)aa, tyr + (1 — t)y2)
< tf(xr.yn) + (1 —1) f(x2, y2)
= tg(x1) + (1 —t)g(x2)
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Thanks!
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