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Overview

In Lecture 2-3, we introduce the linear programming, which can be solved efficiently
by geometrical methods, simplex methods, interior point algorithms, etc; and by
mature commercial software, e.g. CPLEX, Gurobi, Lingo, etc.

Most practical problems involve nonlinearility, e.g.
• The cost function of a thermal generator can be modeled as a quadratic function
• The power output of a hydro unit is the product of water head and flow rate

Two ways to deal with the nonlinearility:
• algorithms to solve nonlinear optimization (Lecture 5-6, 8-9);
• linearization techniques (Lecture 7).
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Basic concept

Global optimum. Let 𝑓𝑓(𝑥𝑥) be the objective function, 𝒳𝒳 be the feasible region, and 
𝑥𝑥0 ∈ 𝒳𝒳. Then 𝑥𝑥0 is the global optimum if and only if 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓 𝑥𝑥0 ,∀𝑥𝑥 ∈ 𝒳𝒳.

Local optimum. Let 𝑓𝑓(𝑥𝑥) be the objective function, 𝒳𝒳 be the feasible region , and 
𝑥𝑥0 ∈ 𝒳𝒳. If there is a neighborhood of 𝑥𝑥0 with radius 𝜀𝜀 > 0:

Such that ∀𝑥𝑥 ∈ 𝜒𝜒 ∩ 𝑁𝑁𝜀𝜀(𝑥𝑥0), we have 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓 𝑥𝑥0 . Then 𝑥𝑥0 is a local optimum.
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Recall the single variable optimization

Recall what we have learned in Calculus, a necessary condition for an
optimal point is as follows:

Suppose the derivative 𝑑𝑑𝑓𝑓(𝑥𝑥)/𝑑𝑑𝑥𝑥 exists as a finite number at 𝑥𝑥 = 𝑥𝑥∗.
If a function 𝑓𝑓(𝑥𝑥) is defined in the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 and has a local
minimum at 𝑥𝑥 = 𝑥𝑥∗, where 𝑎𝑎 < 𝑥𝑥∗ < 𝑏𝑏, we have 𝑑𝑑𝑓𝑓(𝑥𝑥∗)/𝑑𝑑𝑥𝑥 = 0.

Remark-1:
it is a necessary condition, not a
sufficient condition.

For example, for 𝑓𝑓 𝑥𝑥 = 𝑥𝑥3 , we
have 𝑑𝑑𝑓𝑓(𝑥𝑥)/𝑑𝑑𝑥𝑥 = 3𝑥𝑥2 , which
equals to 0 when 𝑥𝑥 = 0. But…
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Recall the single variable optimization

Remark-2:
It is possible that the derivative of 𝑓𝑓(𝑥𝑥) at its
maximum or minimum point does not exist.

For example, for 𝑓𝑓 𝑥𝑥 = 𝑥𝑥 obviously the
minimum point is 𝑥𝑥∗ = 0 . However, its
derivative is defined as:
lim
∆𝑥𝑥→0

0+∆𝑥𝑥 − 0
∆𝑥𝑥

=1 (positive), -1 (negative)
Therefore, 𝑑𝑑𝑓𝑓(𝑥𝑥)/𝑑𝑑𝑥𝑥 does not exist.

𝑓𝑓 𝑥𝑥 = |𝑥𝑥|
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lim
∆𝑥𝑥→0

𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)
∆𝑥𝑥



Recall the single variable optimization

A sufficient condition for an optimal point is as follows:

Let 𝑓𝑓′ 𝑥𝑥∗ = 𝑓𝑓′′ 𝑥𝑥∗ = ⋯ = 𝑓𝑓 𝑛𝑛−1 𝑥𝑥∗ = 0, but 𝑓𝑓𝑛𝑛(𝑥𝑥∗) ≠ 0. Then 𝑥𝑥 = 𝑥𝑥∗ is
• a minimum point of 𝑓𝑓(𝑥𝑥) if 𝑓𝑓𝑛𝑛 𝑥𝑥∗ > 0 and 𝑛𝑛 is even
• a maximum point of 𝑓𝑓(𝑥𝑥) if 𝑓𝑓𝑛𝑛 𝑥𝑥∗ < 0 and 𝑛𝑛 is even
• Neither a minimum nor a maximum point if 𝑛𝑛 is odd

For the previous example, 𝑓𝑓 𝑥𝑥 = 𝑥𝑥3 , we have 𝑓𝑓′ 𝑥𝑥 = 3𝑥𝑥2,𝑓𝑓′′ 𝑥𝑥 =
6𝑥𝑥,𝑓𝑓′′′ 𝑥𝑥 = 6. For 𝑥𝑥∗ = 0, due to the above condition, we have 𝑛𝑛 = 3,
satisfies the 3rd condition, so is neither a minimum nor a maximum.
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Taylor Expansion

𝑓𝑓 𝑥𝑥∗ + ∆𝑥𝑥 = 𝑓𝑓 𝑥𝑥∗ + 𝑓𝑓′ 𝑥𝑥∗ ∆𝑥𝑥 +
1
2
𝑓𝑓′′ 𝑥𝑥∗ ∆𝑥𝑥 2 + ⋯



Example

Determine the maximum and minimum values of the function
𝑦𝑦 = 𝑥𝑥5 − 5𝑥𝑥4 + 5𝑥𝑥3 + 1

Solution: First, we have the following
𝑓𝑓′ 𝑥𝑥 = 5𝑥𝑥4 − 20𝑥𝑥3 + 15𝑥𝑥2
𝑓𝑓′′ 𝑥𝑥 = 20𝑥𝑥3 − 60𝑥𝑥2 + 30𝑥𝑥
𝑓𝑓′′′ 𝑥𝑥 = 60𝑥𝑥2 − 120𝑥𝑥 + 30

𝑓𝑓 4 𝑥𝑥 = 120𝑥𝑥 − 120
𝑓𝑓 5 𝑥𝑥 = 120

Let 𝑓𝑓′ 𝑥𝑥 = 0, we have 𝑥𝑥 = 0,1,3. We check each of them as follows
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Example

Solution:
For 𝑥𝑥 = 0, we have 𝑓𝑓′ 0 = 0,𝑓𝑓′′ 0 = 0,𝑓𝑓′′′ 0 = 30
For 𝑥𝑥 = 1, we have 𝑓𝑓′ 1 = 0,𝑓𝑓′′ 1 = 20 − 60 + 30 = −10
For 𝑥𝑥 = 3, we have 𝑓𝑓′ 3 = 0,𝑓𝑓′′ 3 = 90

Therefore
• 𝑥𝑥 = 0 is neither a maximum nor a minimum point
• 𝑥𝑥 = 1 is a maximum point with 𝑓𝑓 1 = 2
• 𝑥𝑥 = 3 is a minimum point with 𝑓𝑓 3 = −26
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Multivariable optimization – Review of mathematics

The gradient of a scalar-valued differentiable function 𝑓𝑓 of several variables is 
the vector field (or vector-valued function) ∇𝑓𝑓, whose value at a point 𝑥𝑥 is the 
vector, whose components are the partial derivatives of 𝑓𝑓 at 𝑥𝑥. i.e.

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

, … ,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑁𝑁

𝑇𝑇

For example, 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥12 + 5𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2, then

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

= 6𝑥𝑥1 + 𝑥𝑥2,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

= 5 + 𝑥𝑥1

Therefore
∇𝑓𝑓 𝑥𝑥 = 6𝑥𝑥1 + 𝑥𝑥2, 5 + 𝑥𝑥1 𝑇𝑇

Gradient
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Multivariable optimization – Review of mathematics

Hessian

For example, 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥12 + 5𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2, we have

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥12

= 6,
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥1

= 1,
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥22

= 0

Therefore

the Hessian matrix or Hessian is a square matrix of second-order 
partial derivatives of a scalar-valued function, or scalar field

𝐻𝐻 𝑥𝑥 = 6 1
1 0

11

For twice continuously differentiable
functions, Hessian is always symmetric.
(which can be used to double check the
calculation of cross term)



Multivariable optimization – Review of mathematics

A function may be approximated locally by its Taylor series expansion 
about a point 𝑥𝑥∗

Taylor Expansion

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

, … ,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑁𝑁

𝑇𝑇

where

12

𝑓𝑓 𝑥𝑥∗ + ∆𝑥𝑥 = 𝑓𝑓 𝑥𝑥∗ + 𝑓𝑓′ 𝑥𝑥∗ ∆𝑥𝑥 +
1
2
𝑓𝑓′′ 𝑥𝑥∗ ∆𝑥𝑥 2 + ⋯

𝑓𝑓 𝑥𝑥∗ + ∆𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥∗ + ∇𝑓𝑓𝑇𝑇(𝑥𝑥∗)∆𝑥𝑥 +
1
2
∆𝑥𝑥 𝑇𝑇𝐻𝐻(𝑥𝑥∗)∆𝑥𝑥



Multivariable optimization – Review of mathematics

Positive/negative-definite matrix

13

M is symmetric

Otherwise, M is indefinite.



Multivariable optimization – Review of mathematics

Positive-definite and positive semidefinite matrices can be characterized in many ways:

Criterion 1: Denote 𝜆𝜆 as the eigenvalue, then it satisfies the determinental equation 

𝑀𝑀 − 𝜆𝜆𝐼𝐼 = 0

Then
• A matrix 𝑀𝑀 is positive definite if all its eigenvalues are positive.
• A matrix 𝑀𝑀 is negative definite if its eigenvalues are negative.
• A matrix 𝑀𝑀 is positive semi-definite if all its eigenvalues are positive or zero.
• A matrix 𝑀𝑀 is negative semi-definite if its eigenvalues are negative or zero.

14



15

Multivariable optimization – Review of mathematics

The eigenvalue of 𝐴𝐴 = 3 1
0 3 .

𝐴𝐴 − 𝜆𝜆𝐼𝐼 = 3 − 𝜆𝜆 1
0 3 − 𝜆𝜆 = 3 − 𝜆𝜆 2 = 0

So we have 𝜆𝜆1 = 𝜆𝜆2 = 3.

The eigenvalue of 𝐴𝐴 =
2 2 2
2 2 2
2 2 2

.

𝐴𝐴 − 𝜆𝜆𝐼𝐼 =
2 − 𝜆𝜆 2 2

2 2 − 𝜆𝜆 2
2 2 2 − 𝜆𝜆

= 2 − 𝜆𝜆 3 + 8 + 8 − 3 × 4 2 − 𝜆𝜆

= 8 − 12𝜆𝜆 + 6𝜆𝜆2 − 𝜆𝜆3 + 16 − 24 + 12𝜆𝜆 = 6𝜆𝜆2 − 𝜆𝜆3 = 0
So we have 𝜆𝜆1 = 𝜆𝜆2 = 0, 𝜆𝜆3 = 6.

−3 × 5 × 7 − 1 × 6 × 8 − 2 × 4 × 9



Multivariable optimization – Review of mathematics

Criterion 2: Let

• The matrix 𝑀𝑀 will be positive definite if and only if all the values 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑛𝑛
are positive

• The matrix 𝑀𝑀 will be negative definite if and only if the sign of 𝑀𝑀𝑗𝑗 is −1 𝑗𝑗 for 𝑗𝑗 =
1,2, … ,𝑛𝑛

• If some of the 𝑀𝑀𝑗𝑗 are positive and the remaining 𝑀𝑀𝑗𝑗 are zero, the matrix 𝑀𝑀 will be 
positive semidefinite
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Multivariable optimization – Review of mathematics

Consider matrix 𝐴𝐴 = 3 1
0 3 .

𝑀𝑀1 = 3, 𝑀𝑀2 = 3 1
0 3 = 3 × 3 − 0 × 1 = 9 > 0

So 𝐴𝐴 is a positive definite matrix.

Consider matrix 𝐴𝐴 =
2 2 2
2 2 2
2 2 2

.

𝑀𝑀1 = 2, 𝑀𝑀2 = 2 2
2 2 = 0, 𝑀𝑀3 =

2 2 2
2 2 2
2 2 2

= 0

So 𝐴𝐴 is a positive semidefinite matrix.
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Example

Consider matrix 𝑀𝑀 = 1 0
0 1 , we try to prove that it is positive definite in three ways.

1. By definition 
For any non-zero vector 𝑧𝑧 = [𝑥𝑥,𝑦𝑦]𝑇𝑇, we have

𝑧𝑧𝑇𝑇𝑀𝑀𝑧𝑧 = 𝑥𝑥,𝑦𝑦 1 0
0 1

𝑥𝑥
𝑦𝑦 = 𝑥𝑥 𝑦𝑦

𝑥𝑥
𝑦𝑦 = 𝑥𝑥2 + 𝑦𝑦2 > 0

2. Calculate the eigenvalue

𝑀𝑀 − 𝜆𝜆𝐼𝐼 = 1 − 𝜆𝜆 0
0 1 − 𝜆𝜆 = 1 − 𝜆𝜆 2 = 𝜆𝜆2 − 2𝜆𝜆 + 1 = 0

The eigenvalues are 𝜆𝜆1 = 𝜆𝜆2 = 1.

3. 𝑀𝑀1 = 1,𝑀𝑀2 = 1 0
0 1 = 1.



Multivariable optimization

First-order necessary condition: If 𝑓𝑓(𝑥𝑥) has an extreme point at 𝑥𝑥 = 𝑥𝑥∗, 
and its gradient exists at point 𝑥𝑥∗, then ∇𝑓𝑓 𝑥𝑥∗ = 𝟎𝟎𝐓𝐓.

Remark: if the gradient of 𝑓𝑓(𝑥𝑥) exists at point 𝑥𝑥∗ and ∇𝑓𝑓 𝑥𝑥∗ = 𝟎𝟎𝐓𝐓, then 
𝑥𝑥 = 𝑥𝑥∗ is called a “stationary point”; if a stationary point 𝑥𝑥 = 𝑥𝑥∗ is neither 
a maximum nor minimum point, then it is called a “saddle point”.

For example, for function 𝑓𝑓 𝑥𝑥 = 𝑥𝑥1𝑥𝑥2, 𝑥𝑥∗ = 0,0 𝑇𝑇 is a stationary point 
and a saddle point. (try to prove it)
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𝑥𝑥1

𝑥𝑥2
∇𝑓𝑓 = 𝑥𝑥2, 𝑥𝑥1 𝑇𝑇

vector



Multivariable optimization

Second-order necessary condition: If 𝑓𝑓(𝑥𝑥) has a minimum point at 𝑥𝑥 = 𝑥𝑥∗ ,  
and it is twice-differentiable at 𝑥𝑥∗, then ∇𝑓𝑓 𝑥𝑥∗ = 0 and its Hessian 𝐻𝐻(𝑥𝑥∗)
is positive semi-definite.
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𝑯𝑯(𝒙𝒙∗)



Multivariable optimization

Sufficient condition: If 𝑓𝑓(𝑥𝑥) is twice-differentiable at 𝑥𝑥∗,∇𝑓𝑓 𝑥𝑥∗ = 0 and its 
Hessian 𝐻𝐻(𝑥𝑥∗) is positive definite, then 𝑥𝑥 = 𝑥𝑥∗ is a strict local minimum point.

Remark: If 𝐻𝐻(𝑥𝑥∗) is positive semi-definite, then 𝑥𝑥 = 𝑥𝑥∗ is a relative minimum point.

21

this means 𝑓𝑓(𝑥𝑥∗) is strict minimum in any ball centered at 
𝑥𝑥∗ with radius 𝛿𝛿 𝑑𝑑 = 𝛿𝛿. 

∇𝑓𝑓 𝑥𝑥∗ = 0

≥



Find the minimum point of 𝑓𝑓 𝑥𝑥 = 𝑥𝑥1 − 2 4 + 𝑥𝑥1 − 2𝑥𝑥2 2

Example
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Find the minimum point of 𝑓𝑓 𝑥𝑥 = 5𝑥𝑥12 − 6𝑥𝑥1𝑥𝑥2 + 5𝑥𝑥22

Example

Actually, it is a global minimum point since 𝑓𝑓(𝑥𝑥) is a convex function.
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Hessian is positive semi-
definite (definite) everywhere 
in a domain implies  (strict) 
convex function in that domain



24

Necessary and sufficient condition: If 𝑓𝑓(𝑥𝑥) is twice-differentiable at 𝑥𝑥∗ and is 
a convex function, then 𝑥𝑥∗ is a global minimum if and only if ∇𝑓𝑓 𝑥𝑥∗ = 0.

Multivariable optimization

Proof:
⇒ If 𝑥𝑥∗ is a global minimum, then it is a local minimum. According to the first-
order necessary condition, we have ∇𝑓𝑓 𝑥𝑥∗ = 0.

⇐ If ∇𝑓𝑓 𝑥𝑥∗ = 0, then for any 𝑥𝑥 ∈ ℝ𝑛𝑛, we have ∇𝑓𝑓 𝑥𝑥∗ 𝑇𝑇 𝑥𝑥 − 𝑥𝑥∗ = 0. Since 
𝑓𝑓(𝑥𝑥) is a convex function, we have

𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓 𝑥𝑥∗ + ∇𝑓𝑓 𝑥𝑥∗ 𝑇𝑇 𝑥𝑥 − 𝑥𝑥∗ = 𝑓𝑓(𝑥𝑥∗)
Therefore, 𝑥𝑥∗ is a global minimum.



Summary

Second-order necessary condition: If 𝑓𝑓(𝑥𝑥) has a minimum point at 𝑥𝑥 = 𝑥𝑥∗ ,  
and it is twice-differentiable at 𝑥𝑥∗, then ∇𝑓𝑓 𝑥𝑥∗ = 0 and its Hessian 𝐻𝐻(𝑥𝑥∗)
is positive semi-definite.
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Sufficient condition: If 𝑓𝑓(𝑥𝑥) is twice-differentiable at 𝑥𝑥∗,∇𝑓𝑓 𝑥𝑥∗ = 0 and 
its Hessian 𝐻𝐻(𝑥𝑥∗) is positive definite, then 𝑥𝑥 = 𝑥𝑥∗ is a strict minimum point.

Remark: If 𝐻𝐻(𝑥𝑥∗) is positive semi-definite, then 𝑥𝑥 = 𝑥𝑥∗ is a relative minimum point.

First-order necessary condition: If 𝑓𝑓(𝑥𝑥) has an extreme point at 𝑥𝑥 = 𝑥𝑥∗, 
and its gradient exists at point 𝑥𝑥∗, then ∇𝑓𝑓 𝑥𝑥∗ = 0.

Necessary and sufficient condition: If 𝑓𝑓(𝑥𝑥) is twice-differentiable at 𝑥𝑥∗ and is 
a convex function, then 𝑥𝑥∗ is a global minimum if and only if ∇𝑓𝑓 𝑥𝑥∗ = 0.

𝒇𝒇(𝒙𝒙∗) is optimal → ？

？→ 𝒇𝒇(𝒙𝒙∗) is optimal 

𝒇𝒇(𝒙𝒙∗) is optimal ↔ ？



Find the minimum point of 𝑓𝑓 𝑥𝑥 = 𝑥𝑥1 − 2 4 + 𝑥𝑥1 − 2𝑥𝑥2 2

Example
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Find the minimum point of 𝑓𝑓 𝑥𝑥 = 𝑥𝑥1 − 2 4 + 𝑥𝑥1 − 2𝑥𝑥2 2 + 𝑥𝑥1 − 2 2

Example
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Find the minimum point of 𝑓𝑓 𝑥𝑥 = 7𝑥𝑥12 − 3𝑥𝑥1𝑥𝑥2 + 4𝑥𝑥22

Example

28
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Comparison

Example 1

Example 2

Example 3local global

Relative minimum

Strict minimum

Question 1: 
If is a convex function? 
Hessian matrix positive definite/semi-definite over the 
whole domain? 
• Yes: global
• No: local

Question 2:
the Hessian matrix at a specific point
• Positive definite: strict minimum
• Positive semidefinite: relative minimum



Thanks！
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