MAEG4070 Engineering Optimization

Lecture 5 Unconstrained Optimization Basics

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk Sep 28, 2022

Content of this course (tentative)

Overview

In Lecture 2-3, we introduce the linear programming, which can be solved efficiently by geometrical methods, simplex methods, interior point algorithms, etc; and by mature commercial software, e.g. CPLEX, Gurobi, Lingo, etc.

Most practical problems involve nonlinearility, e.g.

- The cost function of a thermal generator can be modeled as a quadratic function
- The power output of a hydro unit is the product of water head and flow rate

Two ways to deal with the nonlinearility:

- algorithms to solve nonlinear optimization (Lecture 5-6, 8-9);
- linearization techniques (Lecture 7).

Basic concept

Global optimum. Let f(x) be the objective function, \mathcal{X} be the feasible region, and $x_0 \in \mathcal{X}$. Then x_0 is the global optimum if and only if $f(x) \ge f(x_0)$, $\forall x \in \mathcal{X}$.

Local optimum. Let f(x) be the objective function, \mathcal{X} be the feasible region, and $x_0 \in \mathcal{X}$. If there is a neighborhood of x_0 with radius $\varepsilon > 0$:

$$\mathcal{N}_{\epsilon}(x_0) = \{x \mid ||x - x_0|| < \epsilon\}$$

Such that $\forall x \in \chi \cap N_{\varepsilon}(x_0)$, we have $f(x) \ge f(x_0)$. Then x_0 is a local optimum.

Recall the single variable optimization

Recall what we have learned in Calculus, a *necessary condition* for an optimal point is as follows:

Suppose the derivative df(x)/dx exists as a finite number at $x = x^*$. If a function f(x) is defined in the interval $a \le x \le b$ and has a local minimum at $x = x^*$, where $a < x^* < b$, we have $df(x^*)/dx = 0$.

Remark-1:

it is a necessary condition, not a sufficient condition.

For example, for $f(x) = x^3$, we have $df(x)/dx = 3x^2$, which equals to 0 when x = 0. But...

Recall the single variable optimization

Remark-2:

It is possible that the derivative of f(x) at its maximum or minimum point does not exist.

For example, for f(x) = |x| obviously the minimum point is $x^* = 0$. However, its derivative is defined as:

$$\lim_{\Delta x \to 0} \frac{|0 + \Delta x| - |0|}{\Delta x} = 1 \text{ (positive), -1 (negative)}$$

Therefore, df(x)/dx does not exist.

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Recall the single variable optimization

Taylor Expansion

$$f(x^* + \Delta x) = f(x^*) + f'(x^*)\Delta x + \frac{1}{2}f''(x^*)(\Delta x)^2 + \cdots$$

A *sufficient condition* for an optimal point is as follows:

Let
$$f'(x^*) = f''(x^*) = \dots = f^{(n-1)}(x^*) = 0$$
, but $f^n(x^*) \neq 0$. Then $x = x^*$ is

- a minimum point of f(x) if $f^n(x^*) > 0$ and n is even
- a maximum point of f(x) if $f^n(x^*) < 0$ and n is even
- Neither a minimum nor a maximum point if n is **odd**

For the previous example, $f(x) = x^3$, we have $f'(x) = 3x^2$, f''(x) = 6x, f'''(x) = 6. For $x^* = 0$, due to the above condition, we have n = 3, satisfies the 3^{rd} condition, so is neither a minimum nor a maximum.

Determine the maximum and minimum values of the function

$$y = x^5 - 5x^4 + 5x^3 + 1$$

Solution: First, we have the following

$$f'(x) = 5x^4 - 20x^3 + 15x^2$$

$$f''(x) = 20x^3 - 60x^2 + 30x$$

$$f'''(x) = 60x^2 - 120x + 30$$

$$f^{(4)}(x) = 120x - 120$$

$$f^{(5)}(x) = 120$$

Let f'(x) = 0, we have x = 0,1,3. We check each of them as follows

Solution:

For
$$x = 0$$
, we have $f'(0) = 0$, $f''(0) = 0$, $f'''(0) = 30$
For $x = 1$, we have $f'(1) = 0$, $f''(1) = 20 - 60 + 30 = -10$
For $x = 3$, we have $f'(3) = 0$, $f''(3) = 90$

Therefore

- x = 0 is neither a maximum nor a minimum point
- x = 1 is a maximum point with f(1) = 2
- x = 3 is a minimum point with f(3) = -26

Gradient

The *gradient* of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) ∇f , whose value at a point x is the vector, whose components are the partial derivatives of f at x. i.e.

$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_N} \right]^T$$

For example, $f(x) = 3x_1^2 + 5x_2 + x_1x_2$, then

$$\frac{\partial f}{\partial x_1} = 6x_1 + x_2, \frac{\partial f}{\partial x_2} = 5 + x_1$$

Therefore

$$\nabla f(x) = [6x_1 + x_2, 5 + x_1]^T$$

Hessian

the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field

$$\mathbf{H}(\mathbf{x}^*) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix} \qquad \frac{\partial f}{\partial x_1} = 6x_1 + x_2, \frac{\partial f}{\partial x_2} = 5 + x_1$$

$$\frac{\partial f}{\partial x_1} = 6x_1 + x_2, \frac{\partial f}{\partial x_2} = 5 + x_1$$

For example, $f(x) = 3x_1^2 + 5x_2 + x_1x_2$, we have

$$\frac{\partial^2 f}{\partial x_1^2} = 6, \frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial^2 f}{\partial x_2 \partial x_1} = 1, \frac{\partial^2 f}{\partial x_2^2} = 0$$

Therefore

$$H(x) = \begin{bmatrix} 6 & 1 \\ 1 & 0 \end{bmatrix}$$

 $H(x) = \begin{bmatrix} 6 & 1 \\ 1 & 0 \end{bmatrix}$ For twice continuously differentiable functions, Hessian is always symmetric. (which can be used to double check the calculation of cross term)

Taylor Expansion

A function may be approximated locally by its Taylor series expansion about a point x^* $f(x^* + \Delta x) = f(x^*) + f'(x^*)\Delta x + \frac{1}{2}f''(x^*)(\Delta x)^2 + \cdots$

$$f(x^* + \Delta x) \approx f(x^*) + \nabla f^T(x^*) \Delta x + \frac{1}{2} (\Delta x)^T H(x^*) \Delta x$$

where

$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_N}\right]^T$$

$$\mathbf{H}(\mathbf{x}^*) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_N} \ dots & dots \ rac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & rac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$

Positive/negative-definite matrix

M is symmetric

$$M ext{ positive-definite } \iff \mathbf{x}^\mathsf{T} M \mathbf{x} > 0 ext{ for all } \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$$

$$M$$
 positive semi-definite \iff $\mathbf{x}^\mathsf{T} M \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$

$$M ext{ negative-definite} \quad \Longleftrightarrow \quad \mathbf{x}^\mathsf{T} M \mathbf{x} < 0 ext{ for all } \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$$

$$M$$
 negative semi-definite \iff $\mathbf{x}^\mathsf{T} M \mathbf{x} \leq 0$ for all $\mathbf{x} \in \mathbb{R}^n$

Otherwise, **M** is indefinite.

Positive-definite and positive semidefinite matrices can be characterized in many ways:

Criterion 1: Denote λ as the eigenvalue, then it satisfies the determinental equation

$$|M - \lambda I| = 0$$

Then

- A matrix M is positive definite if all its eigenvalues are positive.
- A matrix M is negative definite if its eigenvalues are negative.
- A matrix M is positive semi-definite if all its eigenvalues are positive or zero.
- A matrix M is negative semi-definite if its eigenvalues are negative or zero.

The eigenvalue of
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$
.

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 = 0$$

So we have $\lambda_1 = \lambda_2 = 3$.

The eigenvalue of
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
.
$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 2 - \lambda & 2 & 2 \\ 2 & 2 - \lambda$$

Criterion 2: Let

$$M_{1} = |m_{11}|$$

$$M_{2} = \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix}$$

$$M_{3} = \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix}$$

$$M_{n} = \begin{vmatrix} m_{11} & m_{12} & m_{13} & \dots & m_{1n} \\ m_{21} & m_{22} & m_{23} & \dots & m_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ m_{n1} & m_{n2} & m_{n3} & \dots & m_{nn} \end{vmatrix}$$

 m_{12}

 m_{11}

 m_{13} ... m_{1n}

 $m_{22} \mid m_{23} \mid \dots \mid m_{2n}$

- The matrix M will be positive definite if and only if all the values M_1, M_2, \dots, M_n are positive
- The matrix M will be negative definite if and only if the sign of M_j is $(-1)^j$ for $j=1,2,\ldots,n$
- If some of the M_j are positive and the remaining M_j are zero, the matrix M will be positive semidefinite

Consider matrix
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$
.

$$M_1 = 3$$
, $M_2 = \begin{vmatrix} 3 & 1 \\ 0 & 3 \end{vmatrix} = 3 \times 3 - 0 \times 1 = 9 > 0$

So A is a positive definite matrix.

Consider matrix
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
.

$$M_1 = 2,$$
 $M_2 = \begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix} = 0,$ $M_3 = \begin{vmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{vmatrix} = 0$

So *A* is a positive semidefinite matrix.

Consider matrix $M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, we try to prove that it is positive definite in three ways.

1. By definition

For any non-zero vector $z = [x, y]^T$, we have

$$z^{T}Mz = \begin{bmatrix} x, y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^{2} + y^{2} > 0$$

2. Calculate the eigenvalue

$$|M - \lambda I| = \begin{vmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 = \lambda^2 - 2\lambda + 1 = 0$$

The eigenvalues are $\lambda_1 = \lambda_2 = 1$.

3.
$$M_1 = 1$$
, $M_2 = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$.

First-order necessary condition: If f(x) has an extreme point at $x = x^*$, and its gradient exists at point x^* , then $\nabla f(x^*) = \mathbf{0}^T$.

Remark: if the gradient of f(x) exists at point x^* and $\nabla f(x^*) = \mathbf{0^T}$, then $x = x^*$ is called a "stationary point"; if a stationary point $x = x^*$ is neither a maximum nor minimum point, then it is called a "saddle point".

For example, for function $f(x) = x_1 x_2$, $x^* = (0,0)^T$ is a stationary point and a saddle point. (try to prove it) $\nabla f = [x_2, x_1]^T$

Second-order necessary condition: If f(x) has a minimum point at $x = x^*$, and it is twice-differentiable at x^* , then $\nabla f(x^*) = 0$ and its Hessian $H(x^*)$ is positive semi-definite.

Proof: Let d be any non-zero vector. λ is a nonzero scalar that can be positive or negative. According to the first-order necessary condition, we have $\nabla f(x) = 0$.

$$f(x^* + \lambda d) = f(x^*) + \lambda \nabla f(x^*)^T d + \frac{1}{2} \lambda^2 d^T \nabla^2 f(x^*) d + \lambda^2 ||d||^2 o(x^*, \lambda d)$$

$$H(x^*)$$

Then

$$\frac{f(x^* + \lambda d) - f(x^*)}{\lambda^2} = \frac{1}{2} d^T \nabla^2 f(x^*) d + ||d||^2 o(x^*, \lambda d)$$

When $\lambda \to 0$, we have $o(x^*, \lambda d) \to 0$.

Since $x = x^*$ is a relative minimum point, then

$$f(x^* + \lambda d) \ge f(x^*)$$

Therefore, let $\lambda \to 0$, we have

$$d^T \nabla^2 f(x^*) d \ge 0$$

Sufficient condition: If f(x) is twice-differentiable at x^* , $\nabla f(x^*) = 0$ and its Hessian $H(x^*)$ is positive definite, then $x = x^*$ is a strict local minimum point.

Proof: Let d be any non-zero vector.

$$\nabla f(x^*) = 0$$

$$f(x^* + \lambda d) = f(x^*) + \lambda \nabla f(x^*)^T d + \frac{1}{2} \lambda^2 d^T \nabla^2 f(x^*) d + \lambda^2 ||d||^2 o(x^*, \lambda d)$$

Since $\nabla^2 f(x)$ is positive definite, $d^T \nabla^2 f(x^*) d > 0$. There exists δ , given any $\lambda \in (0, \delta]$

$$\frac{1}{2}\lambda^2 d^T \nabla^2 f(x^*) d + \lambda^2 ||d||^2 o(x^*, \lambda d) > 0$$
 this means $f(x^*)$ is strict minimum in any ball centered at $f(x^*) = f(x^*) d + \lambda d = \delta$.

Remark: If $H(x^*)$ is positive semi-definite, then $x = x^*$ is a relative minimum point.

Find the minimum point of $f(x) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$

Solution:

The gradient of f(x) is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4(x_1 - 2)^3 + 2(x_1 - 2x_2) \\ -4(x_1 - 2x_2) \end{bmatrix}$$

The Hessian matrix is

$$H(x) = \begin{bmatrix} 12(x_1 - 2)^2 + 2 & -4 \\ -4 & 8 \end{bmatrix}$$

Let $\nabla f(x) = 0$, we have $x^* = (2,1)^T$ and

$$H(x^*) = \left[\begin{array}{cc} 2 & -4 \\ -4 & 8 \end{array} \right]$$

Since $H(x^*)$ is positive semi-definite, x^* is a local relative minimum point.

Find the minimum point of $f(x) = 5x_1^2 - 6x_1x_2 + 5x_2^2$

Solution:

The gradient of f(x) is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 10x_1 - 6x_2 \\ -6x_1 + 10x_2 \end{bmatrix}$$

The Hessian matrix is

$$H(x) = \left[\begin{array}{cc} 10 & -6 \\ -6 & 10 \end{array} \right]$$

Let $\nabla f(x) = 0$, we have $x^* = (0,0)$.

Since $H(x^*)$ is positive definite, x^* is a strict minimum point.

Hessian is positive semidefinite (definite) everywhere in a domain implies (strict) convex function in that domain

Actually, it is a *global* minimum point since f(x) is a convex function.

Necessary and sufficient condition: If f(x) is twice-differentiable at x^* and is a <u>convex function</u>, then x^* is a global minimum if and only if $\nabla f(x^*) = 0$.

Proof:

 \Rightarrow If x^* is a global minimum, then it is a local minimum. According to the first-order necessary condition, we have $\nabla f(x^*) = 0$.

 \Leftarrow If $\nabla f(x^*) = 0$, then for any $x \in \mathbb{R}^n$, we have $\nabla f(x^*)^T(x - x^*) = 0$. Since f(x) is a convex function, we have

$$f(x) \ge f(x^*) + \nabla f(x^*)^T (x - x^*) = f(x^*)$$

Therefore, x^* is a global minimum.

Summary

First-order necessary condition: If f(x) has an extreme point at $x = x^*$, and its gradient exists at point x^* , then $\nabla f(x^*) = 0$.

 $f(x^*)$ is optimal \rightarrow ?

Second-order necessary condition: If f(x) has a minimum point at $x = x^*$, and it is twice-differentiable at x^* , then $\nabla f(x^*) = 0$ and its Hessian $H(x^*)$ is positive semi-definite.

? $\rightarrow f(x^*)$ is optimal

Sufficient condition: If f(x) is twice-differentiable at x^* , $\nabla f(x^*) = 0$ and its Hessian $H(x^*)$ is positive definite, then $x = x^*$ is a strict minimum point.

Remark: If $H(x^*)$ is <u>positive semi-definite</u>, then $x = x^*$ is a relative minimum point. $f(x^*)$ is optimal \leftrightarrow ?

Necessary and sufficient condition: If f(x) is twice-differentiable at x^* and is a <u>convex function</u>, then x^* is a global minimum if and only if $\nabla f(x^*) = 0$.

Find the minimum point of $f(x) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$

Solution:

The gradient of f(x) is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4(x_1 - 2)^3 + 2(x_1 - 2x_2) \\ -4(x_1 - 2x_2) \end{bmatrix}$$

The Hessian matrix is

$$H(x) = \begin{bmatrix} 12(x_1 - 2)^2 + 2 & -4 \\ -4 & 8 \end{bmatrix}$$

Let $\nabla f(x) = 0$, we have $x^* = (2,1)^T$ and

$$H(x^*) = \left[\begin{array}{cc} 2 & -4 \\ -4 & 8 \end{array} \right]$$

Since $H(x^*)$ is positive semi-definite, x^* is a local relative minimum point.

Find the minimum point of $f(x) = (x_1 - 2)^4 + (x_1 - 2x_2)^2 + (x_1 - 2)^2$

Solution:

The gradient of f(x) is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4(x_1 - 2)^3 + 2(x_1 - 2x_2) + 2(x_1 - 2) \\ -4(x_1 - 2x_2) \end{bmatrix}$$

The Hessian matrix is

$$H(x) = \begin{bmatrix} 12(x_1 - 2)^2 + 4 & -4 \\ -4 & 8 \end{bmatrix}$$

Let $\nabla f(x^*) = 0$, we have $x^* = (2,1)^T$ and

$$H(x^*) = \left[\begin{array}{cc} 4 & -4 \\ -4 & 8 \end{array} \right]$$

Since $H(x^*)$ is positive definite, x^* is a local strict minimum point.

Find the minimum point of $f(x) = 7x_1^2 - 3x_1x_2 + 4x_2^2$

Solution:

The gradient of f(x) is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 14x_1 - 3x_2 \\ -3x_1 + 8x_2 \end{bmatrix}$$

The Hessian matrix is

$$H(x) = \left[\begin{array}{cc} 14 & -3 \\ -3 & 8 \end{array} \right]$$

Let $\nabla f(x) = 0$, we have $x^* = (0, 0)$.

Since $H(x^*)$ is positive definite, x^* is a global strict minimum point.

Comparison

Example 1 local

The Hessian matrix is

$$H(x) = \begin{bmatrix} 12(x_1 - 2)^2 + 2 & -4 \\ -4 & 8 \end{bmatrix}$$

Let $\nabla f(x) = 0$, we have $x^* = (2,1)^T$ and

$$H(x^*) = \left[\begin{array}{cc} 2 & -4 \\ -4 & 8 \end{array} \right]$$

Relative minimum

Example 2

The Hessian matrix is

$$H(x) = \begin{bmatrix} 12(x_1 - 2)^2 + 4 & -4 \\ -4 & 8 \end{bmatrix}$$

Let $\nabla f(x^*) = 0$, we have $x^* = (2,1)^T$ and

$$H(x^*) = \left[\begin{array}{cc} 4 & -4 \\ -4 & 8 \end{array} \right]$$

Strict minimum

Example 3 global

The Hessian matrix is

$$H(x) = \left[\begin{array}{cc} 14 & -3 \\ -3 & 8 \end{array} \right]$$

Question 1:

If is a convex function?

Hessian matrix positive definite/semi-definite over the whole domain?

Yes: global

No: local

Question 2:

the Hessian matrix at a specific point

Positive definite: strict minimum

Positive semidefinite: relative minimum

Thanks!