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Overview

We consider the unconstrained optimization problem:
𝑥∗ ∈ argmin𝑥 𝑓(𝑥)

In the last lecture, we provide necessary (sufficient) conditions for the
optimal solution 𝑥∗ based on gradient and Hessian. However, for high-
dimension optimization, to check those conditions can be time-consuming
and even impossible.

In practice, we usually use iterative algorithms
• Compute sequence of iterates {𝑥𝑘} that converge to 𝑥∗ at a fast rate
• 𝑥𝑘+1 is a function of 𝑓 and previous iterate 𝑥𝑘
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or ∇𝑓, 𝐻(𝑥), …
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What will be learned?

𝑥𝑘 = 𝑥𝑘−1 − ∇2𝑓 𝑥𝑘−1
−1
∇𝑓(𝑥𝑘−1)

𝑥𝑘 = 𝑥𝑘−1 − 𝛼∇𝑓(𝑥𝑘−1)

Today’s course may be a little bit complicated, BUT the thing you have to remember is

Algorithm: Choose initial point 𝑥0 ∈ ℝ𝑛, repeat:

Gradient Descent: 

Or Newton:

Stop until convergence, e.g. 𝑥𝑘 − 𝑥𝑘−1 ≤ 𝜀



Two kinds of iterative algorithms

Descent & Line search algorithm
• Iteratively find directions 𝑑𝑘 and (approximately) solve for

min
𝛼>0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘)

• Some well-known algorithms based on different 𝑑𝑘
✓ Gradient descent
✓ Conjugate descent
✓ Newton
✓ Quasi-Newton
✓ …

Trust Region Algorithm
• Iteratively solve min

𝑑
𝑠𝑘(𝑥𝑘 + 𝑑) where 𝑥𝑘 + 𝑑 lies in some “trust region”;

𝑠𝑘(. ) is an approximation of 𝑓(𝑥) that is accurate in trust region.
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𝑥𝑘+1

𝑥𝑘

𝑥𝑘+1
𝛼𝑑𝑘

Surrogate model that is easier to solve



Descent & Line Search Algorithm

Question 1: How to determine the direction 𝑑𝑘?

We want to find 𝑑𝑘 such that 𝑓 𝑥𝑘 + 𝛼𝑑𝑘 < 𝑓(𝑥𝑘); as “steep” as possible
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𝜃

∇𝑓𝑘

𝑑



Gradient Descent

When 𝑑𝑘 = −∇𝑓𝑘/ ∇𝑓𝑘 , it is called the “gradient descent” method. 

For example: 𝑓 𝑥 =
1

2
(𝑥1

2 + 𝛾𝑥2
2) with 𝛾 > 1

∇𝑓 =
𝑥1
𝛾𝑥2

𝑥𝑘,1 = 𝑥 𝑘−1 ,1 − 𝛼𝑘𝑥 𝑘−1 ,1

𝑥𝑘,2 = 𝑥 𝑘−1 ,2 − 𝛼𝑘𝛾𝑥 𝑘−1 ,2
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Gradient Descent

Interpretation:

If we approximate the Hessian ∇2𝑓 by 
1

𝛼
𝐼, then

𝑓 𝑦 ≈ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
1

2𝛼
𝑦 − 𝑥 2

2

Let 𝑥 = 𝑥𝑘−1, we want to choose 𝑥𝑘 = 𝑦 that minimizes 𝑓(𝑦)

min
𝑦

1

2𝛼
𝑦 − 𝑥 2

2 +∇𝑓 𝑥 𝑇 𝑦 − 𝑥

Therefore
𝑥𝑘 = 𝑥𝑘−1 − 𝛼∇𝑓(𝑥𝑘−1)
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1

𝛼
𝑦 − 𝑥 + ∇𝑓 𝑥𝑘−1 = 0

𝑥𝑘−1𝑥𝑘

(𝑥𝑘−1, 𝑓(𝑥𝑘−1))
(𝑥𝑘 , 𝑓(𝑥𝑘))

𝑓(𝑥)



Gradient Descent

Question 2: How to choose the step size 𝜶:
Gradient descent is also widely used in machine learning, where step size is called 
learning rate.
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Descent based algorithms with better guarantees

Algorithms with improved convergence
• Newton methods
• Quasi-Newton methods
• Conjugate gradient method
• Accelerated gradient method

Algorithms for nondifferentiable or constrained problems
• Subgradient method
• Proximal gradient method
• Smoothing methods
• Cutting-plane methods
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Newton Method

Newton method was originally developed to find 
a root of an equation 𝑓 𝑥 = 0.

First, we give the linear approximation of function 
𝑓(𝑥)

𝑓 𝑥 + ∆𝑥 ≈ 𝑓 𝑥 + 𝑓′(𝑥)∆𝑥

Let 𝑓 𝑥 + ∆𝑥 = 0, we have

∆𝑥 = −
𝑓(𝑥)

𝑓′(𝑥)
Then 

𝑥𝑘 = 𝑥𝑘−1 + ∆𝑥 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
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𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

Taylor expansion



Newton Method

It can be easily extended to multi-variate case as
𝑥𝑘 = 𝑥𝑘−1 − ∇𝑓 𝑥𝑘−1

−1𝑓(𝑥𝑘−1)

ℝ𝑛 ℝ𝑛 ℝ𝑛×𝑚 ℝ𝑚

Newton method for the unconstrained optimization problem
min
𝑥

𝑓(𝑥)

Is the same as Newton method for finding a root of
∇𝑓 𝑥 = 0

History: Newton (1685) and Raphson (1690) originally focused on finding
the roots of polynomials. Simpson (1740) applied this idea to general
nonlinear equations and minimizations.
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Newton Method

Consider the unconstrained optimization problem
min
𝑥

𝑓(𝑥)

Where 𝑓: ℝ𝑛 → ℝ is twice differentiable

We want to find the optimal point that satisfies ∇𝑓 𝑥∗ = 0𝑛
Note that ∆𝑓:ℝ𝑛 → ℝ𝑛

Similarly, through linear approximation
∇𝑓(𝑥 + ∆𝑥) ≈ ∇𝑓 𝑥 + ∇2𝑓 𝑥 ∆𝑥 = 0𝑛

Newton step: 𝑥𝑘 = 𝑥𝑘−1 − ∇2𝑓 𝑥𝑘−1
−1
∇𝑓(𝑥𝑘−1)

Iterate until convergence, or exceed a maximum number of iterates
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𝑔 𝑥 + ∆𝑥 ≈ 𝑔 𝑥 + 𝑔′(𝑥)∆𝑥

𝑔 𝑥



Newton Method

Interpretation:

Consider the second-order Taylor approximation

𝑓 𝑦 ≈ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
1

2
𝑦 − 𝑥 𝑇∇2𝑓(𝑥)(𝑦 − 𝑥)

Assume ∇2𝑓(𝑥) is positive definite, so that 𝑓 𝑥 has a strict global optimum. Let 
𝑥 = 𝑥𝑘−1, we want to choose 𝑥𝑘 = 𝑦 that minimizes 𝑓(𝑦)

min
𝑦

1

2
𝑦 − 𝑥 𝑇∇2𝑓(𝑥)(𝑦 − 𝑥) +∇𝑓 𝑥 𝑇 𝑦 − 𝑥

Therefore

𝑥𝑘 = 𝑥𝑘−1 − ∇2𝑓 𝑥𝑘−1
−1
∇𝑓(𝑥𝑘−1)
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∇2𝑓 𝑥 𝑦 − 𝑥 + ∇𝑓 𝑥 = 0



Comparison of Gradient Descent & Newton Method

Gradient Descent Newton Method

Newton method is obtained by minimizing over quadratic approximation:

𝑓 𝑦 ≈ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
1

2
𝑦 − 𝑥 𝑇∇2𝑓(𝑥)(𝑦 − 𝑥)

Gradient descent uses another quadratic approximation:

𝑓 𝑦 ≈ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
1

2𝛼
𝑦 − 𝑥 2

2
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𝑥𝑘−1𝑥𝑘

(𝑥𝑘−1, 𝑓(𝑥𝑘−1))
(𝑥𝑘 , 𝑓(𝑥𝑘))

𝑓(𝑥)



Comparison of Gradient Descent & Newton Method

Example: for 𝑓 𝑥 =
10𝑥1

2+𝑥2
2

2
+ 5 log 1 + 𝑒−𝑥1−𝑥2 , the result of gradient 

descent (black) and Newton method (blue) is compared. (step size are similar)

Newton method is faster
16
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Example

Solve the optimization min
𝑥1,𝑥2

𝑓 𝑥 = 2𝑥1
2 + 4𝑥2

2 for one step, using gradient 

descent and Newton method, respectively. Choose 𝛼 = 0.1.

Solution: Let 𝑥(0) = 1,1 𝑇, then

∇𝑓 𝑥 0 = ቤ
4𝑥1
8𝑥2

𝑥(0)
=

4
8

∇2𝑓 𝑥 0 =
4 0
0 8

, ∇2𝑓 𝑥 0 −1
=

1

4
0

0
1

8

Gradient descent: 𝑥(1) = 𝑥(0) − 𝛼∇𝑓 𝑥 0 =
0.6
0.2

Newton method: 𝑥(1) = 𝑥(0) − ∇2𝑓 𝑥 0 −1
∇𝑓 𝑥 0

=
1
1

−

1

4
0

0
1

8

4
8

=
0
0
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Example

Gradient Descent Newton Method



Acceleration Techniques

Recall Gradient Descent 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘)
• It can be slow since it relies too much on local information ∇𝑓(𝑥𝑘) to decide 

the iterate direction 
• To accelerate this process, an “momentum” item is included

Heavy Ball Algorithm
• 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓 𝑥𝑘 + 𝛽𝑘(𝑥𝑘 − 𝑥𝑘−1)
• It can be rewritten as

𝑑𝑘 = −∇𝑓 𝑥𝑘 +
𝛼𝑘−1
𝛼𝑘

𝛽𝑘𝑑𝑘−1

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘
• When 𝑓 is quadratic, this is the Chebyshev 

Iterative Method
• Momentum prevents oscillation due to local-

driven direction
19

Pictures from Google image

𝛽𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝛼𝑘
=
𝛽𝑘
𝛼𝑘

𝛼𝑘−1𝑑𝑘−1



Acceleration Techniques

Interpretation Need not be a descent direction
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Acceleration Techniques

Methods using Momentum:
• Heavy ball Method

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓 𝑥𝑘 + 𝛽𝑘(𝑥𝑘 − 𝑥𝑘−1)

• Conjugate Gradient
𝑑𝑘 = −∇𝑓 𝑥𝑘 + 𝛽𝑘𝑑𝑘−1

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘
Similar to Heavy ball, but 𝛽𝑘 is specially chosen to ensure 𝑑𝑘 is conjugate 
to {𝑑1, … , 𝑑𝑘−1}

• Nesterov’s Optimal Method

𝑑𝑘 = −∇𝑓 𝑥𝑘 + 𝛽𝑘 𝑥𝑘 − 𝑥𝑘−1 + 𝛽𝑘𝑑𝑘−1
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘
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Let 𝑢, 𝑣 be vectors in ℝ𝑛 and let 𝐴 be 
a positive definite 𝑛 × 𝑛 matrix. 𝑢 and 
𝑣 are said to be mutually 𝐴-conjugate 
if and only if 𝑢𝑇𝐴𝑣=0.
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Summary

𝑥𝑘 = 𝑥𝑘−1 − ∇2𝑓 𝑥𝑘−1
−1
∇𝑓(𝑥𝑘−1)

𝑥𝑘 = 𝑥𝑘−1 − 𝛼∇𝑓(𝑥𝑘−1)

Algorithm: Choose initial point 𝑥0 ∈ ℝ𝑛, repeat:

Gradient Descent: 

Or Newton:

Stop until convergence, e.g. 𝑥𝑘 − 𝑥𝑘−1 ≤ 𝜀

Other issues (outside the scope of this lecture)
• How to prove the convergence of the algorithms? (will reach optimum or not)
• What’s the convergence rate of the algorithms? (How fast)
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https://www.youtube.com/watch?v=sDv4f4s2SB8

Gradient based methods

How to apply gradient descent in machine learning

Why not Netwon method widely used in machine learning?
• Though it takes fewer steps to converge
• But it has significant computational burden

• full Hessian is costly
• inverted Hessian is costly and unstable
• Hard to implement online
• etc.

• More discussion:
https://stats.stackexchange.com/questions/253632/why-is-newtons-method-not-
widely-used-in-machine-learning

https://www.youtube.com/watch?v=sDv4f4s2SB8
https://stats.stackexchange.com/questions/253632/why-is-newtons-method-not-widely-used-in-machine-learning


Thanks！
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