MAEG4070 Engineering Optimization

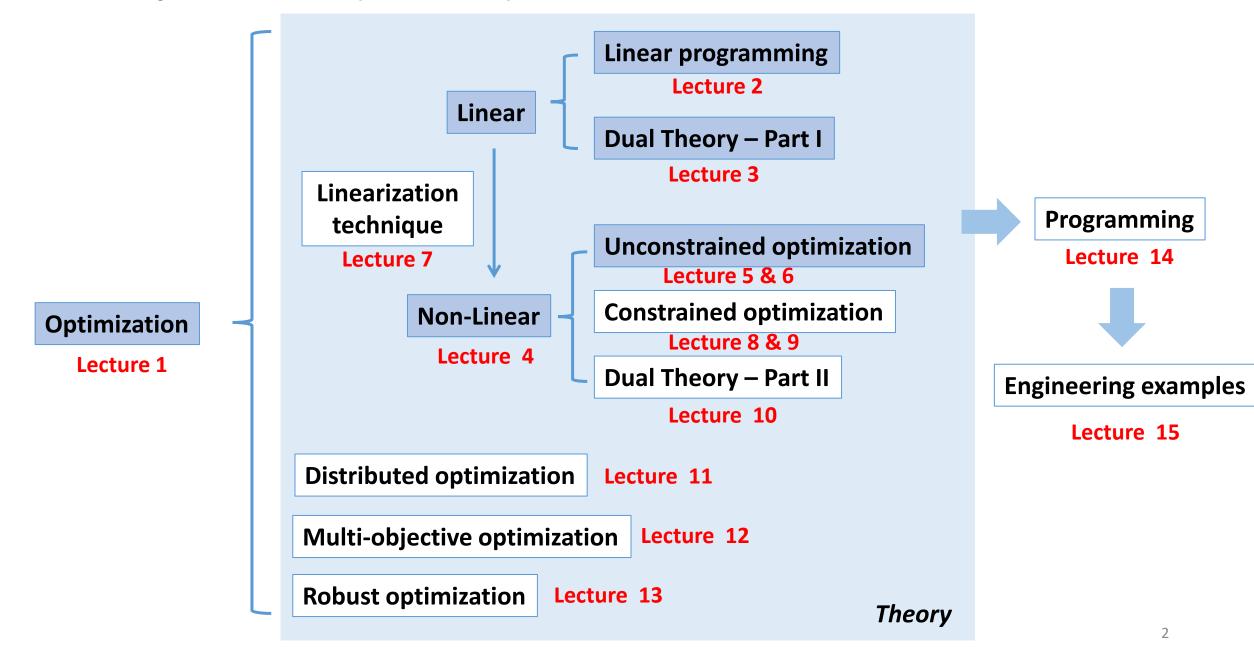
Lecture 6 Unconstrained Optimization Gradient Based Methods

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk

Oct 3, 2022

Content of this course (tentative)



Overview

We consider the unconstrained optimization problem:

$$x^* \in \operatorname{argmin}_{x} f(x)$$

In the last lecture, we provide necessary (sufficient) conditions for the optimal solution x^* based on gradient and Hessian. However, for high-dimension optimization, to check those conditions can be time-consuming and even impossible.

In practice, we usually use iterative algorithms

- Compute sequence of iterates $\{x_k\}$ that converge to x^* at a fast rate
- x_{k+1} is a function of f and previous iterate x_k

or
$$\nabla f$$
, $H(x)$, ...

What will be learned?

Today's course may be a little bit complicated, BUT the thing you have to remember is

Algorithm: Choose initial point $x_0 \in \mathbb{R}^n$, repeat:

Gradient Descent:
$$x_k = x_{k-1} - \alpha \nabla f(x_{k-1})$$

Or Newton:
$$x_k = x_{k-1} - [\nabla^2 f(x_{k-1})]^{-1} \nabla f(x_{k-1})$$

Stop until convergence, e.g. $||x_k - x_{k-1}|| \le \varepsilon$

Two kinds of iterative algorithms

Descent & Line search algorithm

$$x_{k+1}$$

- Iteratively find directions d_k and (approximately) solve for $\min_{\alpha>0} f(x_k + \alpha d_k)$
- Some well-known algorithms based on different d_k
 - ✓ Gradient descent
 - ✓ Conjugate descent
 - ✓ Newton
 - ✓ Quasi-Newton

Trust Region Algorithm Surrogate model that is easier to solve

Iteratively solve $\min_{d} s_k(x_k + d)$ where $x_k + d$ lies in some "trust region"; $s_k(.)$ is an approximation of f(x) that is accurate in trust region.

Descent & Line Search Algorithm

 x_k αd_k x_{k+1}

Question 1: How to determine the direction d_k ?

We want to find d_k such that $f(x_k + \alpha d_k) < f(x_k)$; as "steep" as possible

By Taylor's Theorem:

$$f(x_k + \alpha d) = f(x_k) + \alpha d^T \nabla f_k + \frac{1}{2} \alpha^2 d^T \nabla^2 f(x_k + td) d, \text{ for some } t \in (0, \alpha)$$

Rate of change of f along direction d is

$$\lim_{\alpha \to 0} \frac{f(x_k + \alpha d) - f(x_k)}{\alpha} = d^T \nabla f_k$$

Without loss of generality, we assume d is a unit direction

$$\min_{d} d^{T} \nabla f_{k}, \text{ s.t. } ||d|| = 1$$

d $\theta \qquad \nabla f_k$

Therefore

$$d = -\nabla f_k / ||\nabla f_k||$$

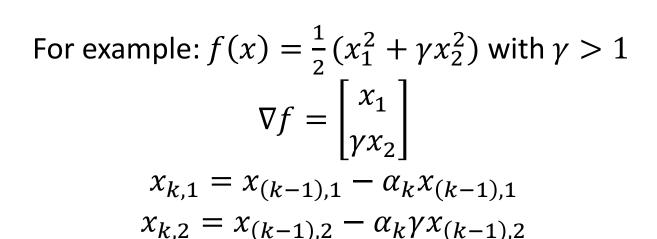
Gradient Descent

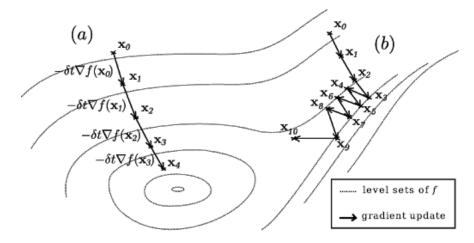
When $d_k = -\nabla f_k / ||\nabla f_k||$, it is called the "gradient descent" method.

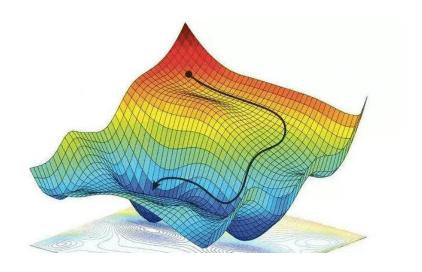
Algorithm: choose initial point $x_0 \in \mathbb{R}^n$, repeat:

$$x_k = x_{k-1} - \alpha_k \nabla f(x_{k-1}), k = 1, 2, 3, \dots$$

Stop until convergence, e.g. $||x_k - x_{k-1}|| \le \epsilon$.







Gradient Descent

Interpretation:

If we approximate the Hessian
$$\nabla^2 f$$
 by $\frac{1}{\alpha}I$, then
$$f(y) \approx f(x) + \nabla f(x)^T (y-x) + \frac{1}{2\alpha} \|y-x\|_2^2$$

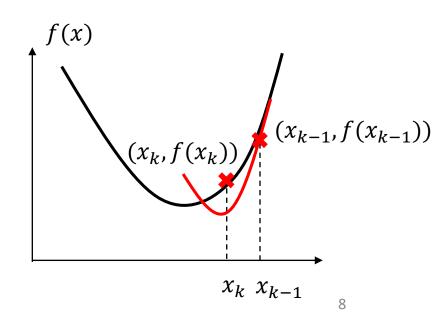
Let $x = x_{k-1}$, we want to choose $x_k = y$ that minimizes f(y)

$$\min_{y} \frac{1}{2\alpha} \|y - x\|_{2}^{2} + \nabla f(x)^{T} (y - x)$$

$$\frac{1}{\alpha} (y - x) + \nabla f(x_{k-1}) = 0$$

Therefore

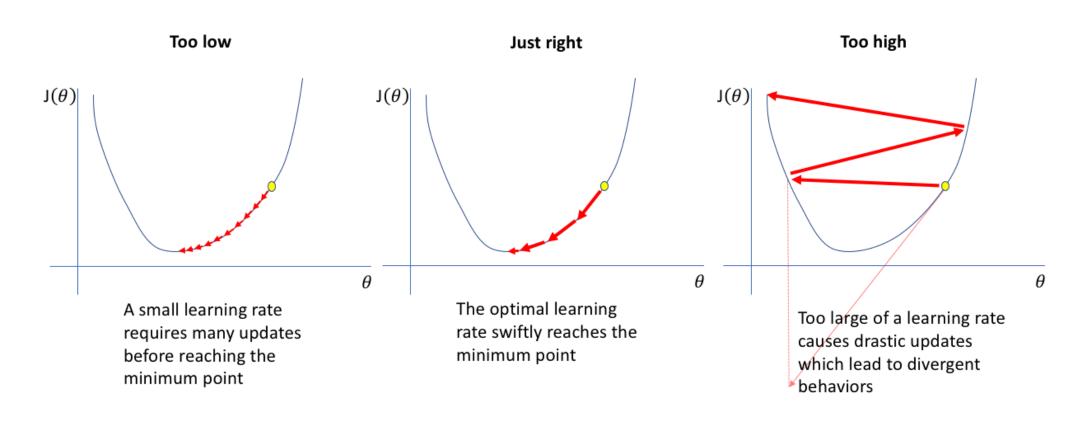
$$x_k = x_{k-1} - \alpha \nabla f(x_{k-1})$$



Gradient Descent

Question 2: How to choose the step size α :

Gradient descent is also widely used in machine learning, where *step size* is called *learning rate*.



Descent based algorithms with better guarantees

Algorithms with improved convergence

- Newton methods
- Quasi-Newton methods
- Conjugate gradient method
- Accelerated gradient method

Algorithms for nondifferentiable or constrained problems

- Subgradient method
- Proximal gradient method
- Smoothing methods
- Cutting-plane methods

Newton method was originally developed to find a root of an equation f(x) = 0.

First, we give the linear approximation of function

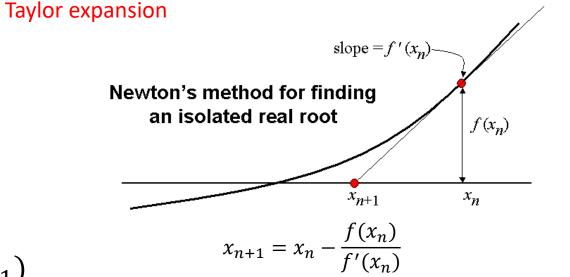
$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

Let $f(x + \Delta x) = 0$, we have

$$\Delta x = -\frac{f(x)}{f'(x)}$$

Then

$$x_k = x_{k-1} + \Delta x = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$$



It can be easily extended to multi-variate case as

$$x_k = x_{k-1} - [\nabla f(x_{k-1})]^{-1} f(x_{k-1})$$

$$\mathbb{R}^n \quad \mathbb{R}^n \quad \mathbb{R}^{n \times m} \quad \mathbb{R}^m$$

Newton method for the unconstrained optimization problem

$$\min_{x} f(x)$$

Is the same as Newton method for finding a root of

$$\nabla f(x) = 0$$

History: Newton (1685) and Raphson (1690) originally focused on finding the roots of polynomials. Simpson (1740) applied this idea to general nonlinear equations and minimizations.

Consider the unconstrained optimization problem

$$\min_{x} f(x)$$

Where $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable

g(x)

We want to find the optimal point that satisfies $\nabla f(x^*) = 0_n$ Note that $\Delta f: \mathbb{R}^n \to \mathbb{R}^n$

$$g(x + \Delta x) \approx g(x) + g'(x)\Delta x$$

Similarly, through linear approximation

$$\nabla f(x + \Delta x) \approx \nabla f(x) + \nabla^2 f(x) \Delta x = 0_n$$

Newton step:
$$x_k = x_{k-1} - \left[\nabla^2 f(x_{k-1}) \right]^{-1} \nabla f(x_{k-1})$$

Iterate until convergence, or exceed a maximum number of iterates

Interpretation:

Consider the second-order Taylor approximation

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$

Assume $\nabla^2 f(x)$ is positive definite, so that f(x) has a strict global optimum. Let $x = x_{k-1}$, we want to choose $x_k = y$ that minimizes f(y)

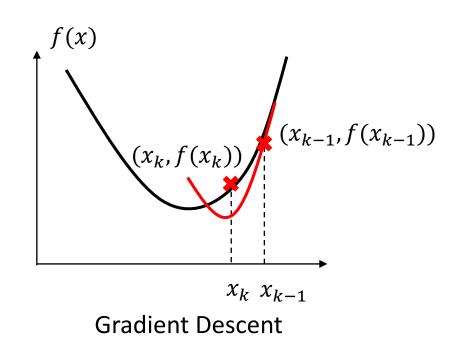
$$\min_{y} \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x) + \nabla f(x)^T (y - x)$$

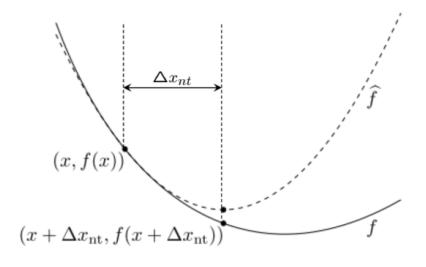
 $\nabla^2 f(x)(y-x) + \nabla f(x) = 0$

Therefore

$$x_k = x_{k-1} - \left[\nabla^2 f(x_{k-1})\right]^{-1} \nabla f(x_{k-1})$$

Comparison of Gradient Descent & Newton Method





Newton Method

Newton method is obtained by minimizing over quadratic approximation:

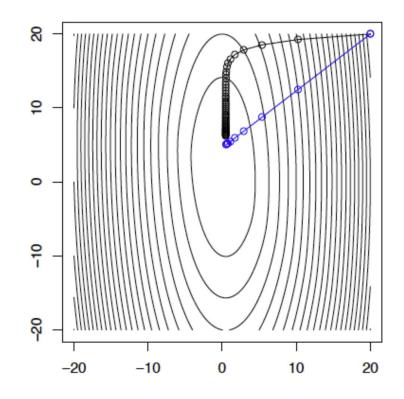
$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$

Gradient descent uses another quadratic approximation:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2\alpha} ||y - x||_{2}^{2}$$

Comparison of Gradient Descent & Newton Method

Example: for $f(x) = \frac{10x_1^2 + x_2^2}{2} + 5\log(1 + e^{-x_1 - x_2})$, the result of gradient descent (black) and Newton method (blue) is compared. (step size are similar)



Newton method is faster

Example

Solve the optimization $\min_{x_1,x_2} f(x) = 2x_1^2 + 4x_2^2$ for one step, using gradient descent and Newton method, respectively. Choose $\alpha = 0.1$.

Solution: Let $x^{(0)} = (1,1)^T$, then

$$\nabla f(x^{(0)}) = \begin{pmatrix} 4x_1 \\ 8x_2 \end{pmatrix} \bigg|_{x^{(0)}} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$

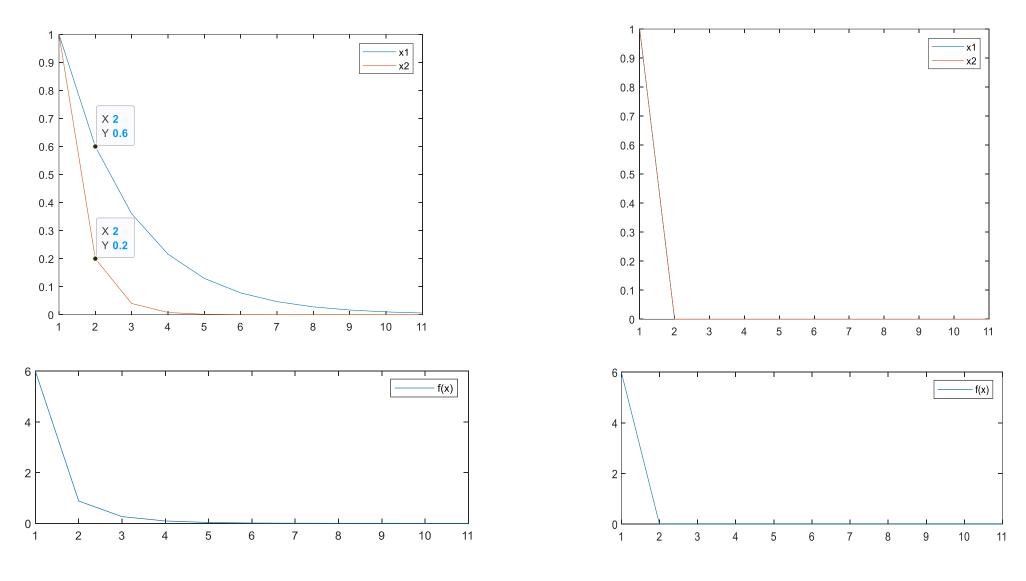
$$\nabla^2 f(x^{(0)}) = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}, \nabla^2 f(x^{(0)})^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{8} \end{pmatrix}$$

Gradient descent: $x^{(1)} = x^{(0)} - \alpha \nabla f(x^{(0)}) = \begin{pmatrix} 0.6 \\ 0.2 \end{pmatrix}$

Newton method: $x^{(1)} = x^{(0)} - \nabla^2 f(x^{(0)})^{-1} \nabla f(x^{(0)})$

$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 4 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Example



Gradient Descent

Newton Method

Acceleration Techniques

Recall Gradient Descent $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$

- It can be slow since it relies too much on local information $\nabla f(x_k)$ to decide the iterate direction
- To accelerate this process, an "momentum" item is included

Heavy Ball Algorithm

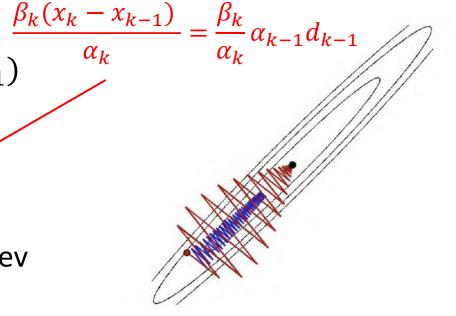
•
$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

It can be rewritten as

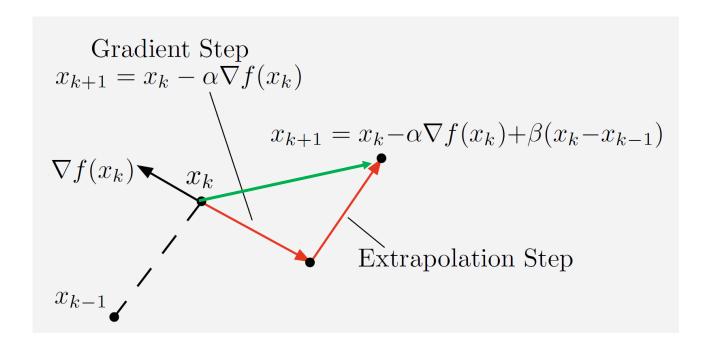
$$d_k = -\nabla f(x_k) + \frac{\alpha_{k-1}}{\alpha_k} \beta_k d_{k-1}$$

$$x_{k+1} = x_k + \alpha_k d_k$$

- When f is quadratic, this is the Chebyshev Iterative Method
- Momentum prevents oscillation due to localdriven direction



Acceleration Techniques



Level sets of f $x_k - \alpha \nabla f(x_k)$ $x_k - \alpha D_k \nabla f(x_k)$

Interpretation

Need not be a descent direction

Acceleration Techniques

Methods using Momentum:

Heavy ball Method

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

Conjugate Gradient

$$d_k = -\nabla f(x_k) + \beta_k d_{k-1}$$

$$x_{k+1} = x_k + \alpha_k d_k$$
v are said to be mutual if and only if $u^T A v = 0$.

Let u, v be vectors in \mathbb{R}^n and let A be a positive definite $n \times n$ matrix. u and v are said to be mutually A-conjugate if and only if $u^T A v = 0$.

Similar to Heavy ball, but β_k is specially chosen to ensure d_k is conjugate to $\{d_1,\dots,d_{k-1}\}$

Nesterov's Optimal Method

$$d_k = -\nabla f(x_k + \beta_k(x_k - x_{k-1})) + \beta_k d_{k-1}$$
$$x_{k+1} = x_k + \alpha_k d_k$$

Summary

Algorithm: Choose initial point $x_0 \in \mathbb{R}^n$, repeat:

Gradient Descent:
$$x_k = x_{k-1} - \alpha \nabla f(x_{k-1})$$

Or Newton:
$$x_k = x_{k-1} - [\nabla^2 f(x_{k-1})]^{-1} \nabla f(x_{k-1})$$

Stop until convergence, e.g. $||x_k - x_{k-1}|| \le \varepsilon$

Other issues (outside the scope of this lecture)

- How to prove the convergence of the algorithms? (will reach optimum or not)
- What's the convergence rate of the algorithms? (How fast)

Gradient based methods

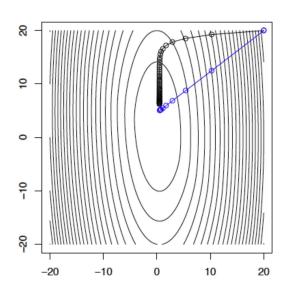
How to apply gradient descent in machine learning

https://www.youtube.com/watch?v=sDv4f4s2SB8

Why not Netwon method widely used in machine learning?

- Though it takes fewer steps to converge
- But it has significant computational burden
 - full Hessian is costly
 - inverted Hessian is costly and unstable
 - Hard to implement online
 - etc.
- More discussion:

https://stats.stackexchange.com/questions/253632/why-is-newtons-method-not-widely-used-in-machine-learning



Thanks!