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Overview

Despite the various algorithms we have learned to solve nonlinear
optimization problems, they can be computationally inefficient with a
growing number of variables; may only reach a local optimum.

In today’s lecture, we will introduce a new kind of optimization problem –
mixed integer linear programming (MILP); and try to solve the nonlinear
optimization by turning it into MILPs via linearization techniques.
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Typical MILP problems

Knapsack problem
• The weight capacity of the knapsack is 𝑐
• Weight of each item is 𝑤𝑘 , ∀𝑘 = 1,… , 𝐾
• Value of each item is 𝑣𝑘 , ∀𝑘 = 1,… , 𝐾
• We aim to maximize the total value

𝑥𝑘 = 1 means item 𝑘 is included
𝑥𝑘 = 0 means item 𝑘 is not included

Solution:
• Try all possible situations
• Dynamic programming
• heuristic
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Typical MILP problems

Traveling Salesman problem
• There are 𝑛 cities, and the salesman want to

find the shortest route to visit every city
once and returns to the origin.

• The distance between city 𝑖 and city 𝑗 is 𝑑𝑖𝑗,

and 𝑑𝑖𝑖 = ∞.

To ensure each city is visited only once, there is 
only one way in and only one way out of the city.
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𝑥𝑖𝑗 = 1 if the salesman travels from city 𝑖 to city 𝑗.



Typical MILP problems

However..
It is possible that there are loops.

To eliminate the subtours, Dantzig, Fulkerson and
Johnson proposed the DFJ formulation in 1954.

For example, let 𝑛 = 10, 𝑆 = 2,3,4 , 𝑆 = 3
The subtour elimination constraint is

𝑥23 + 𝑥24 + 𝑥34 + 𝑥32 + 𝑥42 + 𝑥43 ≤ 2
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Typical MILP problems

The problem can be modeled as Another formulation

𝑥𝑖𝑗 = 1 if the salesman travels from city 𝑖 to city 𝑗.
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Solution Methods

To solve the MILP, we can

• Enumeration
✓ The number of feasible solutions are finite
✓ High computational burden under high dimension

• Relaxation and rounding

• Branch and bound
✓ Relax integrality requirement
✓ Enumeration on non-integer solutions
✓ Cut branches without an optimal solution
✓ Used by solvers: CPLEX, Gurobi
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Solution Methods

We compare the performance of different methods using the following
example. Let’s consider the optimization:

Relaxed LP Rounding Nearest feasible Exact Solution

Optimal point (9.2, 2.4) (9, 2) (8, 2) (2, 4)

Optimal value 58.8 infeasible 50 58
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Linearization techniques-1

Minimizing a convex piecewise linear function (univariate)

where
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𝑓(𝑥)

𝑦 = 𝑘1𝑥 + 𝑏1

𝑦 = 𝑘2𝑥 + 𝑏2

𝑦 = 𝑘3𝑥 + 𝑏3



Linearization techniques-1

Minimizing a convex piecewise linear function (univariate)

Another equivalent form
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Convex combination

𝑓(𝑥1)
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Example

For the function 𝑓 𝑥 = 𝑥2

Take some sample points
𝑥 = −2,−1.5,−0.7, 0.1, 0.9, 1.4, 2

We can use a piecewise linear function to 
approximate it, then minimizing 𝑓(𝑥) is 
equivalent to

𝑥∗ = 0.1, 𝑦∗ = 0.01

More segments, more accurate
But more time-consuming



Linearization techniques-2

Representing a piecewise linear function (univariate)

We can approximate a nonlinear function
by a piecewise linear function as in the Fig.

How to represent this piecewise linear
function in a MILP form?

How to tackle this issue?

?

13

When the function appear in constraints



Linearization techniques-2

Representing a piecewise linear function (univariate)

Special-ordered set of Type 2 (SOS2)
• An ordered set of non-negative variables,

of which at most two consecutive
elements can take strictly positive values,
and the remaining ones equals to zero.

𝜆1, 𝜆2 > 0
𝜆3, 𝜆4, 𝜆5, 𝜆6=0

𝜆4, 𝜆5 > 0
𝜆1, 𝜆2, 𝜆3, 𝜆6=0
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Example

𝜆1 ≤ 𝜃1
𝜆2 ≤ 𝜃1 + 𝜃2
𝜆3 ≤ 𝜃2 + 𝜃3
𝜆4 ≤ 𝜃3

𝜃 ∈ 0,1 ,෍
𝑖=1
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𝜃𝑖 = 1

If 𝜃1 = 1, then we have 𝜆1 ≤ 1, 𝜆2 ≤ 1, 𝜆3 ≤ 0, 𝜆4 ≤ 0
Since 0 ≤ 𝜆𝑖 ≤ 1, we have 𝜆3 = 0, 𝜆4 = 0

𝑥 = 𝑥1𝜆1 + 𝑥2𝜆2
𝑦 = 𝑦1𝜆1 + 𝑦2𝜆2

Line segment between (𝑥1, 𝑦1) and (𝑥2, 𝑦2)



Linearization techniques-2

Representing a piecewise linear function (bivariate)
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Linearization techniques-3

Linearize the product of two binary variables

Consider 𝑧 = 𝑥𝑦, 𝑥, 𝑦 ∈ {0,1}
It can be linearized by

0 ≤ 𝑧 ≤ 𝑦
0 ≤ 𝑥 − 𝑧 ≤ 1 − 𝑦

Proof of equivalence:
1. If 𝑦 = 0, then the first inequality becomes 𝑧 = 0 and the second 0 ≤ 𝑥 ≤ 1. 

Meanwhile, we have 𝑧 = 𝑥𝑦 = 0.
2. If 𝑥 = 0, then we have 0 ≤ 𝑧 ≤ 𝑦 and 0 ≤ −𝑧 ≤ 1 − 𝑦, therefore, 𝑧 = 0 and 

0 ≤ 𝑦 ≤ 1.
3. If 𝑥 = 1 and 𝑦 = 1, then we have 0 ≤ 𝑧 ≤ 1 and 0 ≤ 1 − 𝑧 ≤ 0, thus, 𝑧 = 1.
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How about 𝑧 = 3𝑥𝑦?



Linearization techniques-4

Linearize the product of a binary and a continuous variable

Consider 𝑧 = 𝑥𝑦, 𝑥 ∈ 𝑥𝑙 , 𝑥𝑢 , 𝑦 ∈ {0,1}
It can be linearized by

𝑥𝑙𝑦 ≤ 𝑧 ≤ 𝑥𝑢𝑦
𝑥𝑙 1 − 𝑦 ≤ 𝑥 − 𝑧 ≤ 𝑥𝑢(1 − 𝑦)

Proof of equivalence:
1. If 𝑦 = 0, then the first inequality becomes 𝑧 = 0 and the second 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢. 

Meanwhile, we have 𝑧 = 𝑥𝑦 = 0.
2. If 𝑦 = 1, then the second inequality becomes 𝑥 = 𝑧 and the first 𝑥𝑙 ≤ 𝑥 = 𝑧 ≤

𝑥𝑢. Meanwhile, we have 𝑧 = 𝑥𝑦 = 𝑥.
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How about 𝑧 = 3𝑥𝑦?



Linearization techniques-5

Linearize monomial of binary variables

Consider 𝑧 = 𝑥1𝑥2…𝑥𝑁, 𝑥𝑛 ∈ 0,1 , ∀𝑛 = 1,… ,𝑁

It is equivalent to
𝑧 ∈ 0,1

𝑧 ≤
𝑥1 +⋯+ 𝑥𝑁

𝑁

𝑧 ≥
𝑥1 +⋯+ 𝑥𝑁 − 𝑛 + 1

𝑁

• If one of the 𝑥𝑛 = 0, then the first inequality removes 𝑧 = 1 from the feasible 
region, and the second inequality is redundant.

• If all 𝑥𝑛 = 1, then the second inequality removes 𝑧 = 0 from the feasible region, 
and the first inequality is redundant.

19



Linearization techniques-6

Complementary and slackness condition in KKT condition (will learn in lecture 8)

Consider condition 0 ≤ 𝑥 ⊥ 𝑦 ≥ 0
It is equivalent to 𝑥, 𝑦 ≥ 0, 𝑥𝑦 = 0
And can be linearized by

0 ≤ 𝑥 ≤ 𝑀𝑧
0 ≤ 𝑦 ≤ 𝑀(1 − 𝑧)

𝑧 ∈ 0,1 𝑛

Proof of equivalence:
1. If 𝑥 = 0, 𝑦 > 0, then let 𝑧 = 0
2. If 𝑥 > 0, 𝑦 = 0, then let 𝑧 = 1
3. If 𝑥 = 0, 𝑦 = 0, then let 𝑧 = 0 or 𝑧 = 1

Remark: M can be chosen as the 
upper bound of the values of 𝑥, 𝑦; 
called big-M method in literature.
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Still remember the complementary and slackness condition?

Complementary and slackness: Suppose 𝑥∗, 𝜆∗ are the primal and dual optimal
solutions, respectively. Then, we have

𝑎𝑛
𝑇𝑥∗ > 𝑏 ⇒ 𝜆𝑛

∗ = 0
𝜆𝑛
∗ > 0 ⇒ 𝑎𝑛

𝑇 𝑥∗ = 𝑏

0 ≤ 𝜆 ⊥ (𝐴𝑥 − 𝑏) ≥ 0

Primal problem Dual problem
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How to linearize this constraint?



Linearization techniques-7

Minimum values

Consider 𝑦 = min 𝑥1, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝑥𝑖
𝑙 , 𝑥𝑖

𝑢

Let 𝐿 = min 𝑥1
𝑙 , … , 𝑥𝑛

𝑙 . It can be represented as

𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢, ∀𝑖
𝑦 ≤ 𝑥𝑖 , ∀𝑖

𝑥𝑖 − 𝑥𝑖
𝑢 − 𝐿 1 − 𝑧𝑖 ≤ 𝑦, ∀𝑖

𝑧𝑖 ∈ 0,1 ,෍
𝑖=1

𝑛

𝑧𝑖 = 1

Proof of equivalence:
• Only one 𝑧𝑖 = 1 and others =0. 

• If 𝑧𝑖 = 1, we have 𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢, 𝑦 ≤ 𝑥𝑖 , 𝑥𝑖 ≤ 𝑦

• If 𝑧𝑖 = 0, we have 𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢, 𝑦 ≤ 𝑥𝑖 , 𝑥𝑖 − 𝑦 ≤ 𝑥𝑖
𝑢 − 𝐿
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For example, if 𝑧1 = 1
𝑦 = 𝑥1

𝑦 ≤ 𝑥2, … , 𝑦 ≤ 𝑥𝑛



Linearization techniques-8

Maximum values

Consider 𝑦 = m𝑎𝑥 𝑥1, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝑥𝑖
𝑙 , 𝑥𝑖

𝑢

Let 𝑈 = m𝑎𝑥 𝑥1
𝑢, … , 𝑥𝑛

𝑢 . It can be represented as

𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢, ∀𝑖
𝑦 ≥ 𝑥𝑖 , ∀𝑖

𝑥𝑖 + 𝑈 − 𝑥𝑖
𝑙 1 − 𝑧𝑖 ≥ 𝑦, ∀𝑖

𝑧𝑖 ∈ 0,1 ,෍
𝑖=1

𝑛

𝑧𝑖 = 1

Proof of equivalence:
• Only one 𝑧𝑖 = 1 and others =0. 

• If 𝑧𝑖 = 1, we have 𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢, 𝑦 ≥ 𝑥𝑖 , 𝑥𝑖 ≥ 𝑦

• If 𝑧𝑖 = 0, we have 𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢, 𝑦 ≥ 𝑥𝑖 , 𝑦 − 𝑥𝑖 ≤ 𝑈 − 𝑥𝑖
𝑙
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Linearization techniques-9

Absolute values

𝑦 = 𝑥 , 𝑥 ∈ ℝ, 𝑥 ≤ 𝑥𝑢

It can be represented as
0 ≤ 𝑦 − 𝑥 ≤ 2𝑥𝑢𝑧, 𝑥𝑢(1 − 𝑧) ≥ 𝑥
0 ≤ 𝑦 + 𝑥 ≤ 2𝑥𝑢 1 − 𝑧 , −𝑥𝑢𝑧 ≤ 𝑥

−𝑥𝑢 ≤ 𝑥 ≤ 𝑥𝑢, 𝑧 ∈ {0,1}
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0 ≤ 𝑦 − 𝑥 ≤ 0, 𝑥𝑢 ≥ 𝑥
0 ≤ 𝑦 + 𝑥 ≤ 2𝑥𝑢, 0 ≤ 𝑥

−𝑥𝑢 ≤ 𝑥 ≤ 𝑥𝑢

𝑧 =0 𝑧 =1

0 ≤ 𝑦 − 𝑥 ≤ 2𝑥𝑢, 0 ≥ 𝑥
0 ≤ 𝑦 + 𝑥 ≤ 0, −𝑥𝑢≤ 𝑥

−𝑥𝑢 ≤ 𝑥 ≤ 𝑥𝑢



Thanks！
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