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Overview

Despite the various algorithms we have learned to solve nonlinear
optimization problems, they can be computationally inefficient with a
growing number of variables; may only reach a local optimum.

In today’s lecture, we will introduce a new kind of optimization problem —
mixed integer linear programming (MILP); and try to solve the nonlinear
optimization by turning it into MILPs via linearization techniques.

min ¢z + dt -
r.2

s.t. A + Bz <b
reR" z2e{0,1}" (or z € Z")



Typical MILP problems

Knapsack problem ?

 The weight capacity of the knapsack is ¢ -
< >
)

* Weight of eachitemisw,,Vk =1, ..., K

e Value of eachitemisv,, Vk =1, ..., K %
k :’l

e We aim to maximize the total value

max g VLT <>
r. Vk=1,....K —1
K
s.t. E WETE < ¢ Solution:
k=1

* Try all possible situations
* Dynamic programming
* heuristic

rr €{0,1},Vk=1,.... K

X, = 1 means item k is included
X = 0 means item k is not included
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Typical MILP problems

Traveling Salesman problem

* There are n cities, and the salesman want to
find the shortest route to visit every city
once and returns to the origin.

* The distance between city i and city j is d;;,
and dii = OO,

x;j = 1if the salesman travels from city i to city j.

To ensure each city is visited only once, there is
only one way in and only one way out of the city.

T

E ri; =1,Vi=1,...n

j=1

n

Z.’I)ij =1.Vij=1,...n

i=1
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Typical MILP problems

However..
It is possible that there are loops.

To eliminate the subtours, Dantzig, Fulkerson and
Johnson proposed the DFJ formulation in 1954.

Z ri; <|S|—-1,VS C{l,...n}, 1 <|S|<n

1,JES ‘\
For example, letn = 10, S = {2,3,4},1S| = 3 /D
The subtour elimination constraint is

X923 +XZ4 +X34 +x32 +X42 +x43 < 2
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Typical MILP problems

The problem can be modeled as Another formulation

n n
Iﬂil'l E E dU ,"L‘ij n )
min E E dijr;j

Llfz'j VLJ

i=1 j=1 T
n B A J=1
E ri; = 1,Vi=1,...,n n '
= E ri;=1,Vi=1,...n
n J=1
E ri; = 1,Vj=1..n n _
1 E ri; =1,Vj=1,...,n
=1
E zij <|S|—-1,VS C{l,...,n}, 1 < |5 <n | - o
i5es wi —u;+nry; <n—1,1<i#j<n
rij € {0,1}, Vi, j,u; € R

.’I,'ij c {O- 1}:V77

x;j = 1if the salesman travels from city i to city j.



Solution Methods

To solve the MILP, we can

* Enumeration
v" The number of feasible solutions are finite
v High computational burden under high dimension

* Relaxation and rounding

* Branch and bound
v’ Relax integrality requirement
v" Enumeration on non-integer solutions
v’ Cut branches without an optimal solution
v’ Used by solvers: CPLEX, Gurobi



Solution Methods

We compare the performance of different methods using the following
example. Let’s consider the optimization:

X
max 321 + 132, DL e
s.t. 2x1 + 929 < 40 X ! ] \\%‘\

. N B(©.2,04
11x; — 8o < 82 . H [ (‘ By ( :
x1, T € Lix i E /

/
- X,

O 1 2 3 4 5 6E7 A8 9 10

Relaxed LP Rounding Nearest feasible | Exact Solution
Optimal point (9.2, 2.4) (9, 2) (8, 2) (2, 4)
Optimal value 58.8 infeasible 50 58
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Linearization techniques-1

Minimizing a convex piecewise linear function (univariate)
y

min f(x)

s.t.rp <o <y f(x)

kix 4+ b1, x € |r1, 9]
f(zx) =< kox+ by, x € [xg, x3 X
ksx 4+ b3, x € |r3,14] X, X, X,

Y
‘ /y=k3x+b3

min o y = kyx+ b,

T.0
s.t. o > ki + by
o > kox + by
o > kax + b3 X

v

=

/ y=k1x+b1

A 4

1 < x <1y X X, X, X
10



Linearization techniques-1

Minimizing a convex piecewise linear function (univariate)

Another equivalent form

iy v
N
s.t.x = Z AL
n=1
N
Y = Z )\n.f(;rn)
n=1

0< AN\, <1.Vn=1,....N

N
Z \, =1

n=1

f(x1)

Convex combination
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Example

For the function f(x) = x?
Take some sample points

We can use a piecewise linear function to
approximate it, then minimizing f (x) is

x =-2,—15,-0.7,0.1,0.9,1.4,2

equivalent to

min y
xﬁyﬁg

s.t. x = —201 — 1.509 — 0.703 + 0.104 + 0.905 + 1.40¢ + 20~

4
X -2 |
3.5 Y-.-.4 Y:r4
-.,;:_\_}. X 1.7
Al \‘ e
.
I\%} X-1.5
2.5 a\ Y 2.25 X14
. Y 1.96
2 _ \\ t. _
\ Vi
: \ A
1} \ | ¥ 0 .
N\ | Y 0.49
05 0\ 2
0 I I | . I I
- ) - 05 0.5 1 15 2

y =401 + 2.2509 4+ 0.4905 + 0.0104 + 0.8105 + 1.960¢ + 407
O 2 O,Vk - 1, ,7

7
Zak =1
k=1

x*=0.1,y* =0.01

More segments, more accurate
But more time-consuming
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Linearization techniques-2

When the function appear in constraints

Representing a piecewise linear function (univariate)

A
. . . f()
We can approximate a nonlinear function
by a piecewise linear function as in the Fig.
How to represent this piecewise linear
function in a MILP form?
»-
N X1 X X3 Xy X, X
€r = Z AL,
n=1
Yy = Z )\n.f(mn) o
n=1 How to tackle this issue?
N

0< A\, <1,Vn=1,....N; Z/\” =1
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Linearization techniques-2

Representing a piecewise linear function (univariate)

Special-ordered set of Type 2 (SOS2)
* An ordered set of non-negative variables,
of which at most two consecutive

elements can take strictly positive values, * % %y x, x; s
and the remaining ones equals to zero.

A <04
N Ay <01 + 0
r = Z AT, Ay < 0y + 6
n=1
N
y=> Af(xn) AN-1 S On—2 + O
n=1 )\N < QN—l
N N
0< A, <1,Vn=1,.., N; Z/\n =1 AN > 0n=1,..,N; Z)\n =1
n—1 n=1
A 1s S0S2

N—1
O, €01} s=1,..,(N=1); Y 6,=1

n=1



Example

A
Al < 61 f(x)

If60, =1,thenwehave4; < 1,4, <1,4;,<0,4, <0
Since0 <A4; <1,wehavei; =0,4, =0

X = xlﬂ.l + xZAZ

Yy =Yy1h1 + Y24,
Line segment between (x4, y7) and (x5, y,)



Linearization techniques-2

Representing a piecewise linear function (bivariate)

})N SRR S R RS N TSN VIS (S Bl B =

Pz | vovw v — ; N TR :

M e

M N
AT
€T = E E AmnTni AT = g Amn 18 S0S2

m=1n=1 m=1 gy |-eenems ........ ....... Bannn s RSN 3
M N N . : : : :
y 7 . | P - y() > . . £ <
Y = E E )\mnynu A= § A 18 S0S2 %, X % % W xN>
m=1n=1 n=1
M N M N
f (:‘Y: Y ) — E E /\?'n:n f mmns A-‘r.‘ﬁ:-n 2 0; Vn l, \VITL; E E )\mn =1
m=1n=1 m=1n=1 -
300 4
? 200 4




Linearization techniques-3

Linearize the product of two binary variables

— ?
Consider z = xy, x,y € {0,1} How about z = 3xy*

It can be linearized by

= O
A
N N
IN IA

y
1—-y

Proof of equivalence:

1. Ify =0, then the first inequality becomes z = 0 and the second 0 < x < 1.
Meanwhile, we have z = xy = 0.

2. Ifx=0,thenwehave0 <z<yand0 < —-z<1—y,therefore, z =0 and
0<y<1

3. fx=1andy=1,thenwehave0<z<1and0<1-2z<0,thus,z=1.



Linearization techniques-4

Linearize the product of a binary and a continuous variable

Consider z = xy, x € [x;, x,], v € {0,1} How about z = 3xy?
It can be linearized by
Xy < zZ<xy,y
x(1-y)<x—z<x,1-y)

Proof of equivalence:

1. If y =0, then the first inequality becomes z = 0 and the second x; < x < x,,.
Meanwhile, we have z = xy = 0.

2. Ify =1, then the second inequality becomes x = zand thefirstx; < x =z <
X, . Meanwhile, we have z = xy = x.



Linearization techniques-5

Linearize monomial of binary variables

Consider z = xyx, ... Xy, X, €{0,1},Vn =1, ...,N

It is equivalent to

z € {0,1}
X+t X
z < ! N
N
x1+'°°+xN—Tl+1
Z =
N

* |f one of the x,, = 0, then the first inequality removes z = 1 from the feasible

region, and the second inequality is redundant.
* Ifall x,, =1, then the second inequality removes z = 0 from the feasible region,

and the first inequality is redundant.



Linearization techniques-6

Complementary and slackness condition in KKT condition (will learn in lecture 8)

Consider condition0 <x Ly =0
It is equivalenttox,y = 0,xy =0
And can be linearized by

0<x< Mz
0<y<M(-2)
z € {0,1}"
Proof of equivalence: Remark: M can be chosen as the
1. fx=0,y>0,thenletz=0 upper bound of the values of x, y;
2. Ifx>0,y=0,thenletz =1 called big-M method in literature.

3. fx=0,y=0,thenletz=00rz=1



Still remember the complementary and slackness condition?

Primal problem Dual problem
min ¢’z max b’ \
T A
s.t. Ax > b AN < e
x>0 A>0

Complementary and slackness: Suppose x*, A* are the primal and dual optimal
solutions, respectively. Then, we have

alx*>b = A2=0
2,>0 = alx*=b

0<AL(Ax—b) =0 How to linearize this constraint?



Linearization techniques-7

Minimum values

Consider y = min{xq, ..., x,},x; € [xl-l,xi”]
Let L = min{xi, ...,x,ll}. It can be represented as
x; < x; < x}, Vi
y < x;, Vi
xi—(xF—L)(1—z) <y, Vi

n
7, € {0,1},2_ Z=1
1=

: For example, ifz; = 1
Proof of equivalence: yp_ ; !
— M1

* Onlyonez; =1 andl others =0. Y < Xpy s Y < X
e Ifz;=1,wehavex; <x; <x',y<x;,x;i <y
. Ile-=0,wehavexl-l£xl-Sx,;“,nyi,xi—ny}"—L



Linearization techniques-8
Maximum values

Consider y = max{xq, ..., x,},x; € [xl-l,x}“"]
Let U = max{xy, ..., x4%}. It can be represented as
x; < x; < x}, Vi
y = Xi,Vi
x; + (U — xf)(l —2z;) =y, Vi

n
7, € {0,1},2_ Z=1
1=

Proof of equivalence:
* Onlyone z; =1 and others =0.

e Ifz; =1, we havexl-l <x <xy=xi,xi =Yy
e Ifz; =0, we havexl-l <x; <xiy=x,y—x; < U—xl-l



Linearization techniques-9

Absolute values

y=|lx|,x eR, |x| < xU

It can be represented as

0<y—x<2xYz

x"(1—2)=x

0<y+x<2x%(1—-2), —x%z < x

—x4 < x < xY,

i 4

0<y—-x<0, x* > x
0<y+x<2x4, 0<x
—x* < x<x%

z € {0,1}

N\
0<y-—x<2xH, 0=>x
0<y+x<0, —x4< x
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Thanks!



