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Introduction

Nonlinear problems with constraints are quite common in practice.

Let’s look at an example:
A company produces product A and B, whose selling prices are 30 and 450,

respectively. It takes 0.5 hours to sell product A and (2+0.3x,) hours to sell product
B. The operational time for the company is 800 hours. How to decide on the

production plan to maximize the profit?

Solution: suppose quantities for A and B are x; and x,, respectively.

max 30x1 + 450z

1,12

s.t. 0.521 + 229 + 0.325 < 800
r1 2> 0,79 >0



Geometrical method

Solve this optimization problem:

min f(z) = (r1 —2)* + (22 — 2)°

£1,T2

s.t. h(x) =x1+22—6=0

e The constraintis line AB

* We want to minimize the distance from a
point at line AB to the point (2,2)

 Draw a circle centered at (2,2), increase its
radius until the circle is tangent to the line

f(x*) =2,x"=(33)




Geometrical method

Solve this optimization problem:

min f(x) = x1 + 22
1,22

st.g(z)=1—a29—25>0

* The constraint represents all points within
the unit circle centered at (0,0)

* We move the line with a slope of -1 until it is
tangent to the circle




Constrained Optimization with Equality

min f(x)

X

s.t. hi(x)=0,i=1,....,m

where f :R" - R, h; : R*" - R.Vi=1,....m.

* We suppose both f and h;, Vi are continuously differentiable functions
* Note that the theory also applies to case where f and h;, Vi are continuously
differentiable in a neighborhood of a local minimum.



Constrained Optimization with Equality

Lagrange Multiplier Theorem

Let 2* be a local minimum and a regular point (Vh;(z*), Vi are
Then, there exists unique scalars A7, ..., A\;, such that

m
AVhi(x*) =0
i=1
If and only if A7 = 0, Vi
/

linearly independent

m Unconstrained case:

Vi) +Y ANVhi(*)=0 47 Vf(x)=0

1=1

If in addition f and h are twice continuous differentiable

y' (sz(:c*) +y A;}‘v%(as*)) y >0 s.t. Vh(z*) 'y =0
1=1

Unconstrained case: yIVif(x*)y = 0,Vy




Constrained Optimization with Equality

Exercise on linearly independent

Consider two vectors v; = (1,1)" and v, = (=3,2)7, are they linearly independent?

m(y)+2(35)=(o)

¢ D=0
=G 2 =0

Vectors v; = (1,1)T and v, = (—3,2)" are linearly independent.

Therefore,



Constrained Optimization with Equality

Exercise on linearly independent

Consider three vectors v; = (1,1)7, v, = (=3,2)7, and v; = (2,4)7

n (e (F)+n(?)- ()
¢ 7 3(n)-0)

A3

Therefore,

We have (14, 4,,13) = (—16,—2,5) satisfies the equation.

Vectors v; = (1,1)7, v, = (=3,2)7, and v3 = (2,4)" are not linearly independent.



Constrained Optimization with Equality

Lagrange Multiplier Theorem (Necessary condition)

Define the Lagrangian function

L(z, ) = f(x)+ Y Nihi(x)
1=1

Then, if 2™ is a local minimum which is regular,
the Lagrange multiplier conditions are written

ViL(z™,\*) =0, VL(z",\*)=0

There are n + m unknowns variables/and n + m equations.

Vf(x")+ Z NVh;(2*) =0 hi(xz*) =0,i=1,....,m
i=1
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Example-1
Consider the optimization problem:

: 1
min 5(58% + 23 4 15)

r1,Tr2,r3

s.t. x1 +x9 +x3 =3 Linear independent

The Lagrangian function is

1
Lz, \) = 5(:1’:% + 254+ 23) + Moy + 29 + 23 — 3)

Then the necessary condition is

]+ AN =0, 25+ A" =0
rs + A" =0, 2]+ 25+ 25 =3

Therefore, z* = (1,1,1), A\* = —1.
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Example-2

Consider the optimization problem:

min (1 — 2)% + (22 — 2)?

L1,
s.t. x1 +x90—6=20 Linearly independent
The Lagrangian function is
L(z,\) = (1 — 2)* + (x2 — 2)* + M2 + 22 — 6)
Then the necessary condition is

2(27 —2)+ X\ =0
2(x5 —2)+ \* =0
ri+ax5—6=0

Therefore, z* = (3,3), \* = —2.
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Example-3

Portfolio Selection

We plan to invest in n different assets, indexed by ¢ = 1,...,n. The total wealth is 1.
The return e; is random with an expectation of €; and the covariance matrix Q € R™*" with its

(ij)—th item Qij = E[(el — é@')(ej — éj)].
The expected return is R, and we want to minimize the variance of return z! Q.

min TTQT
xr

n
s.t. ZT; =1 Al

1=1

n

i=1
* Suppose (e, ...,e,) = a(l,...,1)
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Example-3
Portfolio Selection

The Lagrangian function is

Lz, \) = IETQI‘ + Al(zn: r; — 1)+ )\Q(Z e;r;i — R)

=1

Then the necessity condition is

2Qx™ + Nu + \se =0

A5
21 TQ u+ —22 uTQ_lé = —1
AT Ao
5 ety 22 2 el le=—
where u = (1,.... 1), e = (é1,...,é,)".

When e # au
Linearly independent
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Example-3
Portfolio Selection

Fivet, atwrdiﬂg 10 J@{iniﬁon Q:‘j =Ll {ej-enk ej”%‘)]
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Example-3
Portfolio Selection

When tukivg the partiod derivotve with respet +o ¥ .For exomPe ;
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Constrained Optimization with Equality

Sufficiency condition

When f and h;, Vi are twice continuously differentiable.
If ¥ € R" and A\* € R™ satisty

V.L(z*, A*) =0, VL(z*,\*) =0
y! V2 L(z* /\*)Iy > 0,Vy # 0, Vh(z*) 'y =0

Then 2™ is a strict local m&ﬂmum.

| If >, then strict
(v2f(a:*) + Z)\;v%i(,@*)) If =, then relative
=1

How about local v.s. global? Next lecture
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Example

Consider the optimization problem:

min  — (122 + rox3 + 1173)
£I1,r2,r3

st. 1 +ax9+23=23

(Review) First, we obtain the x* and A\* according to the necessary condition.
The Lagrangian function is

L(x,\) = —(x129 + xox3 + x123) + N1 + 2 + 23 — 3)
Then the necessity condition is
—x5 — x5+ A" =0
—x] — 23+ A =0
—x] — x5+ N =0
r] + x5+ a3 =3

Therefore, z* = (1,1, 1), \* = 2.



Example

Second, we check the sufficiency condition.

0 -1 -1
V2 L )= -1 0 -1
~-1 -1 0

Let iy # 0 be a vector that satisfies Vh(z*)Ty =0, i.e. y1 +y2 +y3 = 0.

Therefore,

y' V2, L(x* )y

= —yi(y2 +y3) — vy +vy3) —ys(y1 + vy2)
—y1(—=y1) — y2(—y2) — y3(—y3)

= yi+ys+y3 >0

Hence, x* is a strict local optimum.
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Sensitivity Theorem* (Extended Reading)

Consider a family of optimization problems:

s.t. h(x) =u

where u is a parameter.

Suppose when u = 0, the above problem has a local minimum z* that is regular and associated
with a unique A\* satisfying the sufficiency condition.

Then, there exists an open sphere & centered at u = 0 such that:

(1) for every u € S, there is a local-minimum-Lagrange multiplier x(u), A(u).
(2) z(u) and A\(u) are continuously differentiable with x(0) = z* and A(0) = \*.
(3)Denote f(x(u)) as F(u), we have

VFu)=—-MNu),Vu e S

/

The impact of one unit change of u on the optimal objective value

20



Sensitivity Theorem* (Extended Reading)

Consider this optimization problem:

1
min f(x) = 5(:17% — 3) — a9
s.t. h(zx) =x9 =u

Then

and VF(0) = —u— 1= —\(0) = —1, consistent with the sensitivity theorem.
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Sensitivity Theorem* (Extended Reading)

Consider this problem:
min f(z)

To=b M\

s.t. a

If coefficient b changes to b+ Ab, the minimum z* will change to ™ + Ax.
Since a’ 2* = b and o (z* + Azx) = a’ z* + o’ Az = b+ Ab.
So we have a! Az = Ab. According to the condition V f(2*) = —\*a.

Af = fla™ +Ax) = f(z7)
= V(") Az + o(]|Az]])

— —NalAx+ o(||Ax||)
= — ATAb+ o(||Az]])

Z
Therefore C/
Af C/

A=A

\
)

A generalization of “Shadow price” in Lecture 3 (next slide) .



Lecture-3: Economic Interpretation

According to Optimality criterion, we have
f* — cTx* = pT1* = Aibl + +/U<VbN

If parameter b,, changes, what is the impact on the optimal value f*?

of . Of _

_ I = \v
abl Ly @bN A

Therefore, A3, can be interpreted as the change of f* should there be 1
unit change of b,,. We call it “shadow price” in economics.

The scarcer the resource, the greater the impact of its changes on the
objective function (cost), and therefore the higher the shadow price.



Constrained Optimization with Inequality

General Form:

where f:R" - R, h:
Here,

min f(x)
xT

s.t. h(z) =0Jg(z) <0

R"™ — R™, g : R™ — R" are continuously differentiable.

24



Constrained Optimization with Inequality

Let’s look at the inequality constraint g(x) < 0. If x™ is a local minimum, then
* If gj(x*) = 0, then the j-th constraint is active Treated as equality

* Ifg; (x*) < 0, then the j-th constraint is inactive ~ Doesn’t matter
gs3(x) =0

g2(x) =0

Let A(x) = {j|g;(x) = 0} be the set of active constraints

. . . . . 't =0
Assume that x™ is regular, similarly, we can write down the Lagrangian function 91(x)
L(x, \ 1) ) + Zx\ hi( Zu;gj(zt*)l
J=1

* Letthe ,u;f corresponds to inactive constraint equal to zero. ,u;f =0,Vj &€ A(x)
* Letu; = 0,Vj (explain later)

25



Constrained Optimization with Inequality

We try to explain the logic behind ”,u} => 0, Vj” using sensitivity theorem.
Relax the j-th constraint to g;(x) = u;, u; > 0. Since Af < 0, we have

ki =~@f)/y 2 0 Y,
N =R

Z)\*Vh +Z,ujvgj ) =0

7=1
hi(z®) =0,Vi=1,...m
gj(@™) = 0,pu; > 0,Vj € A(x”

Point that satisfies these »
conditions is called Karush- )
Kuhn-Tucker (KKT) point gj(2") < 0,u; =0,Vj & A(x™)

L

gi(x)Hu; =0,g;(x*) <0,u; 20,Vj=1,...
or 0<-—-g;(x")Lu;=0

ﬁ

26



Constrained Optimization with Inequality

Steps to write down the KKT condition
1. Turn it into standard form:

min f(x)

x

s.t. h(x) =0,¢9(x) <0

2. Write down the Lagrangian function
L, A ) = f(*) + ) AThi(a®) + > phg;(a™)
i=1 j=1
3. The KKT condition is

VeL(z® X 1) =0
hi(x®) =0,Vi=1,....,m
0<—g;(@®) Lu; >0,Vj=1,..,r



Example-1
Consider this optimization problem:

min (27 — 2)* 4 x5
I1,T2

s.t. xp — 5 >0
—x1+x0>0
Are 21 = (0,0)7, z® = (1,1)T KKT points?
Solution: For both points, the equality holds for all constraints.
L(x,p) = (w1 — 2)* + @3 + g (=1 + 23) + pa(21 — 2)
Therefore, the KKT conditions are

201 —4 — 1+ p2 =0
2x0 + 21102 — 12 = 0
0<py L(zg—23)>0
0<ps L (—x1+x2)>0

For point (") = (0,0)7, we have pup = 0 and 1 = —4 < 0, no feasible p.
For point ) = (1,1)T, 1 = (0,2)7.
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Example-2

Find the KKT point of problem:

min f(z) = (1 — 1)* + a2

st.gi(z)=—21 —29+2>0
g2(x) =22 >0

Solution: The Lagrange function is
Lz, p) = (27 — 1)* + a9 + py (a1 + 290 — 2) + pro(—x9)
Then the KKT condition is

21— 1)+ 1 =0

IL+p —p2=0

0< (=21 —22+2) L >0
0<xo L po>0

We can get * = (1,0), u* = (0,1).

29



Kuhn-Tucker Necessary Conditions

Let x* be a local minimum and a regular point.
Then there exist unique Lagrange multiplier vectors \* = (A}, ..., A\¥ ), u* = (i3, ..., 1)

VeL(x™, X", 1*) =0
hi(z*) =0,Vi=1,...m

‘ Complementary

Slackness

If f, h, and g are twice continuously differentiable, then
yI'V2 L(a* \*, u*)y > 0,Vy € V(a*)
where

V(™) = {y|Vhi(a™)"y = 0,Vi =1,....,m; Vg;(x*)"y = 0,Vj € A(")}

A local minimum is a KKT point
How about sufficiency condition? Convex optimization (next lecture)
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Thanks!
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