MAEG4070 Engineering Optimization

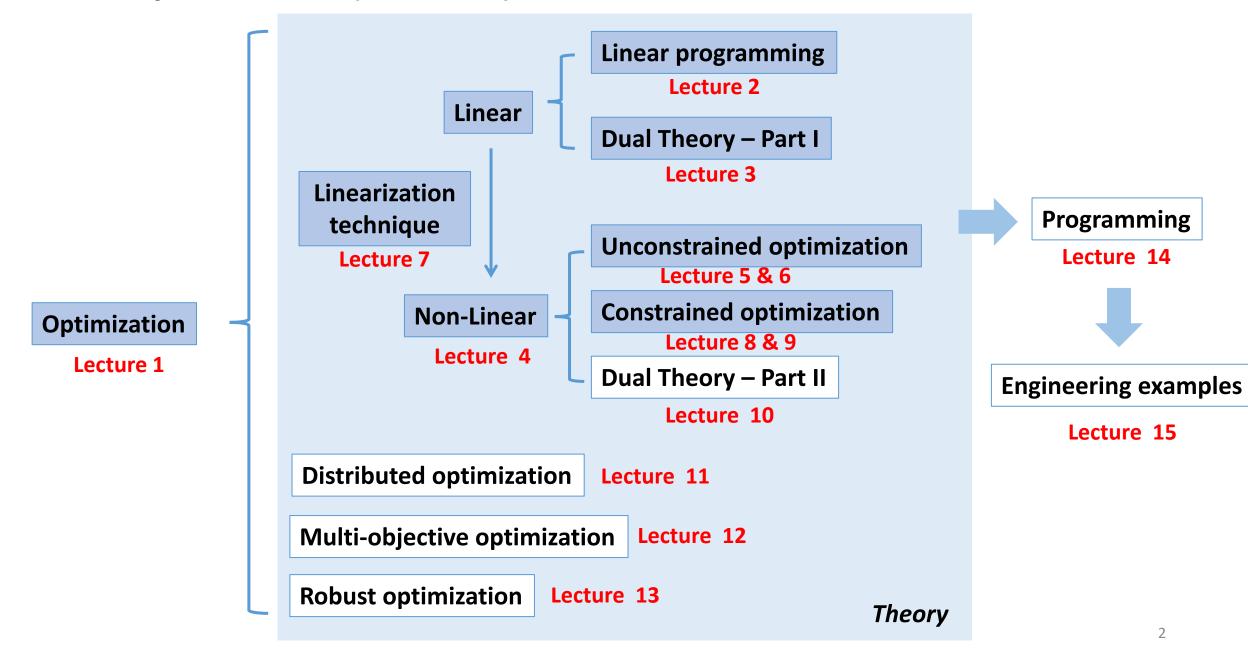
Lecture 8 Constrained Optimization Lagrange Multiplier

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk

Oct 17, 2022

Content of this course (tentative)



Introduction

Nonlinear problems with constraints are quite common in practice.

Let's look at an example:

A company produces product A and B, whose selling prices are 30 and 450, respectively. It takes 0.5 hours to sell product A and $(2+0.3x_2)$ hours to sell product B. The operational time for the company is 800 hours. How to decide on the production plan to maximize the profit?

Solution: suppose quantities for A and B are x_1 and x_2 , respectively.

$$\max_{x_1, x_2} 30x_1 + 450x_2$$
s.t. $0.5x_1 + 2x_2 + 0.3x_2^2 \le 800$

$$x_1 \ge 0, x_2 \ge 0$$

Geometrical method

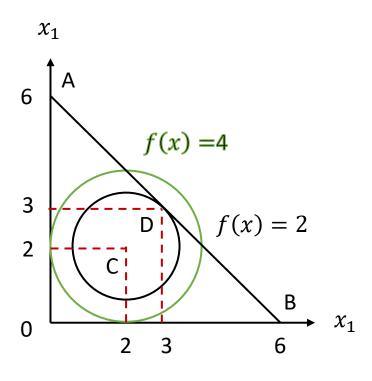
Solve this optimization problem:

$$\min_{x_1, x_2} f(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $h(x) = x_1 + x_2 - 6 = 0$

- The constraint is line AB
- We want to minimize the distance from a point at line AB to the point (2,2)
- Draw a circle centered at (2,2), increase its radius until the circle is tangent to the line

$$f(x^*) = 2, x^* = (3,3)$$



Geometrical method

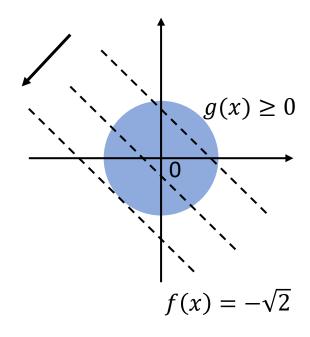
Solve this optimization problem:

$$\min_{x_1, x_2} f(x) = x_1 + x_2$$

s.t. $g(x) = 1 - x_1^2 - x_2^2 \ge 0$

- The constraint represents all points within the unit circle centered at (0,0)
- We move the line with a slope of -1 until it is tangent to the circle

$$f(x^*) = -\sqrt{2}, x^* = (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$$



$$\min_{x} f(x)$$
s.t. $h_i(x) = 0, i = 1, ..., m$

where
$$f: \mathbb{R}^n \to R$$
, $h_i: \mathbb{R}^n \to R$, $\forall i = 1, ..., m$.

- We suppose both f and h_i , $\forall i$ are continuously differentiable functions
- Note that the theory also applies to case where f and h_i , $\forall i$ are continuously differentiable in a neighborhood of a local minimum.

$\sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) = 0$ If and only if $\lambda_i^* = 0$, $\forall i$

Lagrange Multiplier Theorem

Let x^* be a local minimum and a regular point $(\nabla h_i(x^*), \forall i \text{ are linearly independent})$. Then, there exists unique scalars $\lambda_1^*, ..., \lambda_m^*$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0$$
 Unconstrained case:
$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0$$

If in addition f and h are twice continuous differentiable

$$y^T \left(\nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*) \right) y \ge 0 \quad \text{s.t. } \nabla h(x^*)^T y = 0$$
se:
$$y^T \nabla^2 f(x^*) y \ge 0, \forall y$$

Unconstrained case:

Exercise on linearly independent

Consider two vectors $v_1 = (1,1)^T$ and $v_2 = (-3,2)^T$, are they linearly independent?

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Therefore,

$$\begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Vectors $v_1 = (1,1)^T$ and $v_2 = (-3,2)^T$ are linearly independent.

Exercise on linearly independent

Consider three vectors $v_1 = (1,1)^T$, $v_2 = (-3,2)^T$, and $v_3 = (2,4)^T$

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Therefore,

$$\begin{pmatrix} 1 & -3 & 2 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

We have $(\lambda_1, \lambda_2, \lambda_3) = (-16, -2, 5)$ satisfies the equation.

Vectors $v_1 = (1,1)^T$, $v_2 = (-3,2)^T$, and $v_3 = (2,4)^T$ are not linearly independent.

Lagrange Multiplier Theorem (Necessary condition)

Define the Lagrangian function

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x)$$

Then, if x^* is a local minimum which is regular, the Lagrange multiplier conditions are written

$$\nabla_x L(x^*, \lambda^*) = 0, \quad \nabla_\lambda L(x^*, \lambda^*) = 0$$

There are
$$n+m$$
 unknowns variables and $n+m$ equations.
$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0 \qquad h_i(x^*) = 0, i=1,...,m$$

Consider the optimization problem:

$$\min_{x_1,x_2,x_3} \frac{1}{2} (x_1^2 + x_2^2 + x_3^2)$$
 s.t. $x_1 + x_2 + x_3 = 3$ Linear independent

The Lagrangian function is

$$L(x,\lambda) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) + \lambda(x_1 + x_2 + x_3 - 3)$$

Then the necessary condition is

$$x_1^* + \lambda^* = 0, \ x_2^* + \lambda^* = 0$$

 $x_3^* + \lambda^* = 0, \ x_1^* + x_2^* + x_3^* = 3$

Therefore, $x^* = (1, 1, 1), \lambda^* = -1.$

Consider the optimization problem:

$$\min_{x_1,x_2} (x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $x_1 + x_2 - 6 = 0$ Linearly independent

The Lagrangian function is

$$L(x,\lambda) = (x_1 - 2)^2 + (x_2 - 2)^2 + \lambda(x_1 + x_2 - 6)$$

Then the necessary condition is

$$2(x_1^* - 2) + \lambda^* = 0$$
$$2(x_2^* - 2) + \lambda^* = 0$$
$$x_1^* + x_2^* - 6 = 0$$

Therefore, $x^* = (3, 3), \lambda^* = -2.$

Portfolio Selection

We plan to invest in n different assets, indexed by i = 1, ..., n. The total wealth is 1.

The return e_i is random with an expectation of \bar{e}_i and the covariance matrix $Q \in \mathbb{R}^{n \times n}$ with its (ij)-th item $Q_{ij} = \mathbb{E}[(e_i - \bar{e}_i)(e_j - \bar{e}_j)]$.

The expected return is R, and we want to minimize the variance of return x^TQx .

$$\min_{x} x^{T} Q x$$
s.t.
$$\sum_{i=1}^{n} x_{i} = 1$$

$$\sum_{i=1}^{n} \bar{e}_{i} x_{i} = R$$

$$\lambda_{2}$$

^{*} Suppose $(\bar{e}_1, ..., \bar{e}_n) \neq a(1, ..., 1)$

Portfolio Selection

The Lagrangian function is

$$L(x,\lambda) = x^{T}Qx + \lambda_{1}(\sum_{i=1}^{n} x_{i} - 1) + \lambda_{2}(\sum_{i=1}^{n} \bar{e}_{i}x_{i} - R)$$

Then the necessity condition is

$$2Qx^* + \lambda_1^* u + \lambda_2^* \bar{e} = 0$$
$$u^T x^* = 1$$
$$\bar{e}^T x^* = R$$

When $\bar{e} \neq au$ Linearly independent

Replace x^* we can obtain λ_1^*, λ_2^* as the solution of

$$\frac{\lambda_1^*}{2} u^T Q^{-1} u + \frac{\lambda_2^*}{2} u^T Q^{-1} \bar{e} = -1$$
$$\frac{\lambda_1^*}{2} \bar{e}^T Q^{-1} u + \frac{\lambda_2^*}{2} \bar{e}^T Q^{-1} \bar{e} = -R$$

where $u = (1, ..., 1)^T$, $\bar{e} = (\bar{e}_1, ..., \bar{e}_n)^T$.

Portfolio Selection

First, according to definition
$$Q_{ij} = E[(e_i - e_i)(e_j - e_j)]$$

$$= E[(e_j - e_j)(e_i - e_j)] = 0;$$
 Q_i is a symmetric matrix
$$L(x,\lambda) = \chi^T Q \chi + \lambda_1 (\frac{h}{h} \chi_i - 1) + \lambda_2 (\frac{h}{h} e_i \chi_i - R)$$

$$= (\chi_1, \chi_2, \dots, \chi_n) \begin{pmatrix} Q_{11}, Q_{12}, \dots, Q_{1n} \\ Q_{21}, Q_{22}, \dots, Q_{2n} \\ Q_{n1}, Q_{n2}, \dots, Q_{nn} \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{pmatrix} + \lambda_1 (\frac{h}{h} \chi_i - 1) + \lambda_2 (\frac{h}{h} e_i \chi_i - R)$$

$$= (\frac{h}{h} \chi_i Q_{i1}, \frac{h}{h} \chi_i Q_{i2}, \dots, \frac{h}{h} \chi_i Q_{in}) \begin{pmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{pmatrix} + \lambda_1 (\frac{h}{h} \chi_i - 1) + \lambda_2 (\frac{h}{h} e_i \chi_i - R)$$

$$= \chi_1 \frac{h}{h} \chi_i Q_{i1} + \chi_2 \frac{h}{h} \chi_i Q_{i2} + \dots + \chi_n \frac{h}{h} \chi_i Q_{in} + \lambda_1 (\frac{h}{h} \chi_i - 1) + \lambda_2 (\frac{h}{h} e_i \chi_i - R)$$

$$= \chi_1 \frac{h}{h} \chi_i Q_{i1} + \chi_2 \frac{h}{h} \chi_i Q_{i2} + \dots + \chi_n \frac{h}{h} \chi_i Q_{in} + \lambda_1 (\frac{h}{h} \chi_i - 1) + \lambda_2 (\frac{h}{h} e_i \chi_i - R)$$

Portfolio Selection

when taking the partial derivative with respet to
$$X_1$$
. For example:

$$\frac{\partial L}{\partial X_1} = \sum_{i=1}^{n} X_i \partial i_1 + X_1 \partial i_1 + X_2 \partial i_2 + \dots + X_n \partial i_n + \lambda_1 + \overline{e}_1 \lambda_2$$

because
$$\frac{\partial L}{\partial X_1} = \sum_{i=1}^{n} Q_{1i} \chi_1^2 + \lambda_1 + \overline{e}_1 \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{2i} \chi_2^2 + \lambda_1 + \overline{e}_2 \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{2i} \chi_1^2 + \lambda_1 + \overline{e}_2 \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_2} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_1 + \overline{e}_n \lambda_2$$

$$\frac{\partial L}{\partial X_1} = 2 \sum_{i=1}^{n} Q_{ni} \chi_1^2 + \lambda_$$

Sufficiency condition

When f and h_i , $\forall i$ are twice continuously differentiable. If $x^* \in \mathbb{R}^n$ and $\lambda^* \in \mathbb{R}^m$ satisfy

$$\nabla_x L(x^*, \lambda^*) = 0, \ \nabla_\lambda L(x^*, \lambda^*) = 0$$
$$y^T \nabla_{xx}^2 L(x^*, \lambda^*) y > 0, \forall y \neq 0, \nabla h(x^*)^T y = 0$$

Then x^* is a strict local minimum.

$$\left(\nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*)\right) \qquad \text{If } \geq \text{, then } relative$$

If >, then *strict*

How about *local* v.s. *global*? Next lecture

Consider the optimization problem:

$$\min_{x_1, x_2, x_3} - (x_1 x_2 + x_2 x_3 + x_1 x_3)$$
s.t. $x_1 + x_2 + x_3 = 3$

(Review) **First**, we obtain the x^* and λ^* according to the necessary condition. The Lagrangian function is

$$L(x,\lambda) = -(x_1x_2 + x_2x_3 + x_1x_3) + \lambda(x_1 + x_2 + x_3 - 3)$$

Then the necessity condition is

$$-x_2^* - x_3^* + \lambda^* = 0$$
$$-x_1^* - x_3^* + \lambda^* = 0$$
$$-x_1^* - x_2^* + \lambda^* = 0$$
$$x_1^* + x_2^* + x_3^* = 3$$

Therefore, $x^* = (1, 1, 1)^T$, $\lambda^* = 2$.

Second, we check the *sufficiency condition*.

$$\nabla_{xx}^2 L(x^*, \lambda^*) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

Let $y \neq 0$ be a vector that satisfies $\nabla h(x^*)^T y = 0$, i.e. $y_1 + y_2 + y_3 = 0$. Therefore,

$$y^{T} \nabla_{xx}^{2} L(x^{*}, \lambda^{*}) y$$

$$= -y_{1}(y_{2} + y_{3}) - y_{2}(y_{1} + y_{3}) - y_{3}(y_{1} + y_{2})$$

$$= -y_{1}(-y_{1}) - y_{2}(-y_{2}) - y_{3}(-y_{3})$$

$$= y_{1}^{2} + y_{2}^{2} + y_{3}^{2} > 0$$

Hence, x^* is a strict local optimum.

Sensitivity Theorem* (Extended Reading)

Consider a family of optimization problems:

$$\min_{x} f(x)$$
s.t. $h(x) = u$

where u is a parameter.

Suppose when u = 0, the above problem has a local minimum x^* that is regular and associated with a unique λ^* satisfying the sufficiency condition.

Then, there exists an open sphere S centered at u = 0 such that:

- (1) for every $u \in \mathcal{S}$, there is a local-minimum-Lagrange multiplier $x(u), \lambda(u)$.
- (2) x(u) and $\lambda(u)$ are continuously differentiable with $x(0) = x^*$ and $\lambda(0) = \lambda^*$.
- (3) Denote f(x(u)) as $\mathcal{F}(u)$, we have

$$\nabla \mathcal{F}(u) = -\lambda(u), \forall u \in \mathcal{S}$$

The impact of one unit change of u on the optimal objective value

Sensitivity Theorem* (Extended Reading)

Consider this optimization problem:

$$\min_{x} f(x) = \frac{1}{2}(x_1^2 - x_2^2) - x_2$$

s.t. $h(x) = x_2 = u$

The Lagrangian function is

$$L(x,\lambda) = \frac{1}{2}(x_1^2 - x_2^2) - x_2 + \lambda(x_2 - u)$$

Then

$$x_1^* = 0, -x_2^* - 1 + \lambda^* = 0, x_2^* - u = 0$$

Therefore $x(u) = (0, u), \lambda(u) = 1 + u$.

$$\mathcal{F}(u) = -\frac{1}{2}u^2 - u$$

and $\nabla \mathcal{F}(0) = -u - 1 = -\lambda(0) = -1$, consistent with the sensitivity theorem.

Sensitivity Theorem* (Extended Reading)

Consider this problem:

$$\min_{x} f(x)$$
s.t. $a^{T}x = b : \lambda$

If coefficient b changes to $b + \Delta b$, the minimum x^* will change to $x^* + \Delta x$.

Since $a^T x^* = b$ and $a^T (x^* + \Delta x) = a^T x^* + a^T \Delta x = b + \Delta b$.

So we have $a^T \Delta x = \Delta b$. According to the condition $\nabla f(x^*) = -\lambda^* a$.

$$\Delta f = f(x^* + \Delta x) - f(x^*)$$

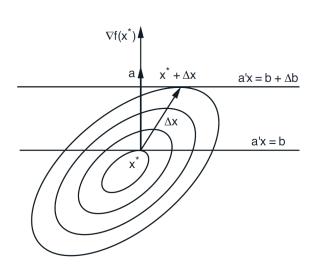
$$= \nabla f(x^*)^T \Delta x + o(||\Delta x||)$$

$$= -\lambda^* a^T \Delta x + o(||\Delta x||)$$

$$= -\lambda^* \Delta b + o(||\Delta x||)$$

Therefore

$$\lambda^* = -\frac{\Delta f}{\Delta b}$$



Lecture-3: Economic Interpretation

According to Optimality criterion, we have

$$f^* = c^T x^* = b^T \lambda^* = \lambda_1^* b_1 + \dots + \lambda_N^* b_N$$

If parameter b_n changes, what is the impact on the optimal value f^* ?

$$\frac{\partial f^*}{\partial b_1} = \lambda_1^*, ..., \frac{\partial f^*}{\partial b_N} = \lambda_N^*$$

Therefore, λ_n^* can be interpreted as the change of f^* should there be 1 unit change of b_n . We call it "shadow price" in economics.

The scarcer the resource, the greater the impact of its changes on the objective function (cost), and therefore the higher the shadow price.

General Form:

$$\min_{x} f(x)$$
s.t. $h(x) = 0, g(x) \le 0$

where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}^r$ are continuously differentiable. Here,

$$h = (h_1, ..., h_m)$$

 $g = (g_1, ..., g_r)$

Let's look at the inequality constraint $g(x) \le 0$. If x^* is a local minimum, then

- If $g_i(x^*) = 0$, then the *j*-th constraint is active Treated as equality
- If $g_j(x^*) < 0$, then the *j*-th constraint is inactive Doesn't matter

Let $\mathcal{A}(x) \coloneqq \{j | g_j(x) = 0\}$ be the set of active constraints

tter $g_3(x) = 0$ $g_1(x) = 0$

Assume that x^* is regular, similarly, we can write down the Lagrangian function

$$L(x, \lambda, \mu) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* h_i(x^*) + \sum_{j=1}^{r} \mu_j^* g_j(x^*)$$

- Let the μ_j^* corresponds to inactive constraint equal to zero. $\mu_j^* = 0$, $\forall j \notin \mathcal{A}(x)$
- Let $\mu_j^* \ge 0$, $\forall j$ (explain later)

 $g_2(x) = 0$

We try to explain the logic behind " $\mu_i^* \ge 0$, $\forall j$ " using sensitivity theorem. Relax the *j*-th constraint to $g_i(x) = u_i$, $u_i > 0$. Since $\Delta f \leq 0$, we have $\mu_i^* = -(\Delta f)/u_i \ge 0$

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^{r} \mu_j \nabla g_j(x^*) = 0$$

Point that satisfies these conditions is called Karush-Kuhn-Tucker (KKT) point

$$h_i(x^*) = 0, \forall i = 1, ..., m$$

$$g_j(x^*) = 0, \mu_j^* \ge 0, \forall j \in \mathcal{A}(x^*)$$

$$g_j(x^*) < 0, \mu_j^* = 0, \forall j \notin \mathcal{A}(x^*)$$

$$g_j(x^*)\mu_j^* = 0, g_j(x^*) \le 0, \mu_j^* \ge 0, \forall j = 1, ..., r$$

or $0 \le -g_j(x^*) \perp \mu_j^* \ge 0$

Steps to write down the KKT condition

1. Turn it into standard form:

$$\min_{x} f(x)$$
s.t. $h(x) = 0, g(x) \le 0$

2. Write down the Lagrangian function

$$L(x, \lambda, \mu) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* h_i(x^*) + \sum_{j=1}^{r} \mu_j^* g_j(x^*)$$

3. The KKT condition is

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$h_i(x^*) = 0, \forall i = 1, ..., m$$

$$0 \le -g_j(x^*) \perp \mu_j^* \ge 0, \forall j = 1, ..., r$$

Consider this optimization problem:

$$\min_{x_1, x_2} (x_1 - 2)^2 + x_2^2$$
s.t. $x_1 - x_2^2 \ge 0$

$$- x_1 + x_2 \ge 0$$

Are
$$x^{(1)} = (0,0)^T$$
, $x^{(2)} = (1,1)^T$ KKT points?

Solution: For both points, the equality holds for all constraints.

$$L(x,\mu) = (x_1 - 2)^2 + x_2^2 + \mu_1(-x_1 + x_2^2) + \mu_2(x_1 - x_2)$$

Therefore, the KKT conditions are

$$2x_1 - 4 - \mu_1 + \mu_2 = 0$$
$$2x_2 + 2\mu_1 x_2 - \mu_2 = 0$$
$$0 \le \mu_1 \perp (x_1 - x_2^2) \ge 0$$
$$0 \le \mu_2 \perp (-x_1 + x_2) \ge 0$$

For point $x^{(1)} = (0,0)^T$, we have $\mu_2 = 0$ and $\mu_1 = -4 < 0$, no feasible μ . For point $x^{(2)} = (1,1)^T$, $\mu = (0,2)^T$.

Find the KKT point of problem:

$$\min_{x} f(x) = (x_1 - 1)^2 + x_2$$
s.t. $g_1(x) = -x_1 - x_2 + 2 \ge 0$

$$g_2(x) = x_2 \ge 0$$

Solution: The Lagrange function is

$$L(x,\mu) = (x_1 - 1)^2 + x_2 + \mu_1(x_1 + x_2 - 2) + \mu_2(-x_2)$$

Then the KKT condition is

$$2(x_1 - 1) + \mu_1 = 0$$
$$1 + \mu_1 - \mu_2 = 0$$
$$0 \le (-x_1 - x_2 + 2) \perp \mu_1 \ge 0$$
$$0 \le x_2 \perp \mu_2 \ge 0$$

We can get $x^* = (1,0), \mu^* = (0,1).$

Kuhn-Tucker Necessary Conditions

Let x^* be a local minimum and a regular point.

Then there exist unique Lagrange multiplier vectors $\lambda^* = (\lambda_1^*, ..., \lambda_m^*), \, \mu^* = (\mu_1^*, ..., \mu_r^*)$

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$h_i(x^*) = 0, \forall i = 1, ..., m$$

$$0 \le -g_j(x^*) \perp \mu_j^* \ge 0, \forall j = 1, ..., r$$

Complementary Slackness

If f, h, and g are twice continuously differentiable, then

$$y^T \nabla_{xx}^2 L(x^*, \lambda^*, \mu^*) y \ge 0, \forall y \in V(x^*)$$

where

$$V(x^*) = \{y | \nabla h_i(x^*)^T y = 0, \forall i = 1, ..., m; \nabla g_j(x^*)^T y = 0, \forall j \in \mathcal{A}(x^*) \}$$

A local minimum is a KKT point How about sufficiency condition? Convex optimization (next lecture)

Thanks!