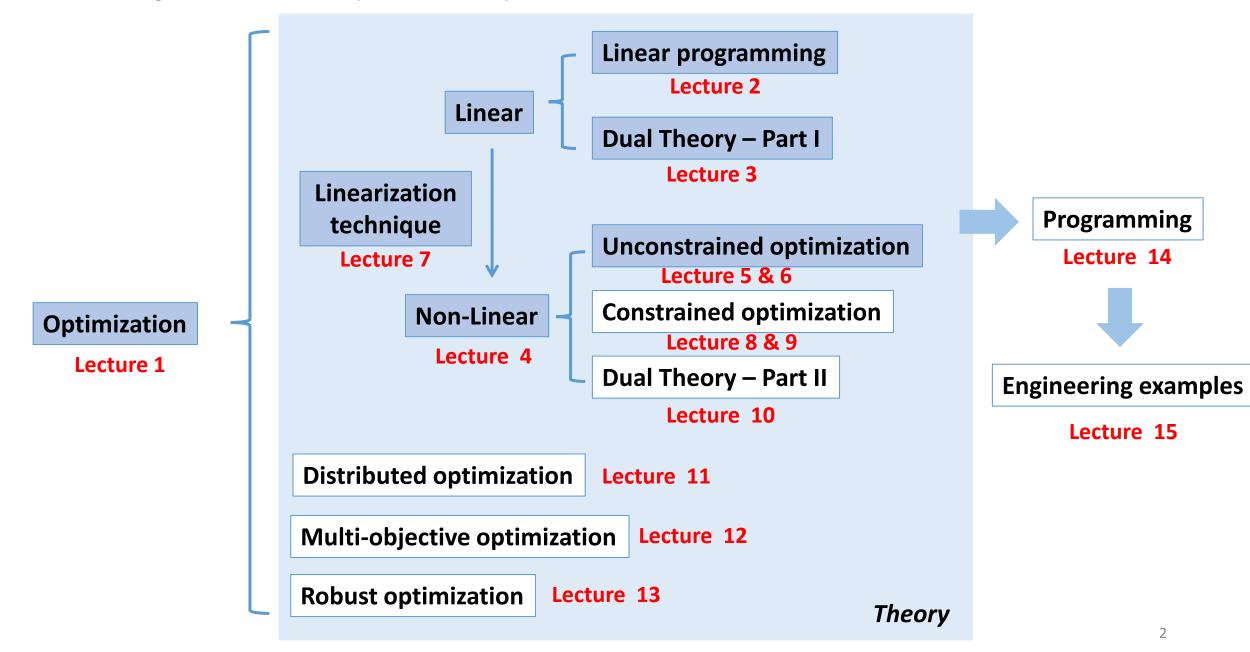
MAEG4070 Engineering Optimization

Mid-term Review

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk
Oct 19, 2022

Content of this course (tentative)



Problem description

A company has some resources to produce three products (denoted as A, B, C). Each product consumes a different mix of resources, and there will be a profit from selling the product. The endowment of resources and its relationship with products are:

	А	В	С	Endowment
Steel	3	4	2	600
Wood	2	1	2	400
Label	1	3	3	300
Machine	1	4	4	200
Profit	2	4	3	

The company aims to maximize its profit. Please answer the following questions.

- 1. Try to translate the above statement into an optimization problem. Is it a linear programming?
- 2. solve it using graphical method.
- 3. Write down the dual problem of the optimization.
- 4. Write down the complementary and slackness conditions. Linearize it?
- 5. Suppose we know the optimal solution of the primal problem, how about the optimal solution of the dual problem?
- 6. What if the profit per unit depends on the quantity? How to model the optimization?
- 7. Prove the feasible region is a convex set.
- 8. If we temporarily ignore the constraints, prove the new objective function is a convex function.
- 9. If we temporarily ignore the constraints, try to solve the problem using different methods.

1. Try to translate the above statement into an optimization problem. Is it a linear programming?

Key points:

Lecture-1: model an engineering problem using optimization

- What are the decision variables?
- What are the constraints?
- What is the objective function?

Lecture-2 how to identify if a problem is an LP?

Does it satisfy

$$f(a+b) = f(a) + f(b)$$

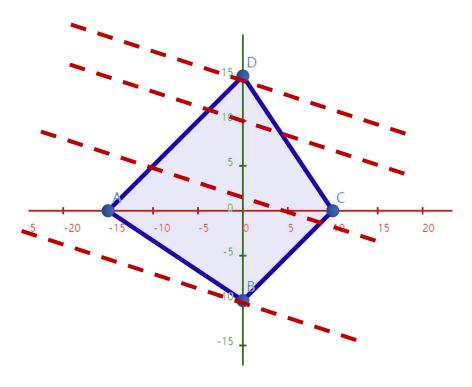
$$f(ka) = kf(a)$$

2. Solve it using graphical method.

Key points:

Lecture-2: solve an optimization using graphical method

- How to draw the feasible region?
- How to draw the contours of objective?
- How to find the optimal point?



3. Write down the dual problem of the optimization.

Key points:

Lecture-3: construct the dual problem of an LP.

- The objective min or max?
- The constraints $\ge \text{ or } \le \text{ or } = ?$
- The variables $\ge \text{ or } \le \text{ or } = ?$

$$\min_{x} c^{T}x \qquad \max_{y} b^{T}y
\text{s.t. } Ax \ge b \qquad \text{s.t. } A^{T}y \le c
x \ge 0 \qquad y \ge 0$$

Primal LP		Dual LP		
Objective: min Objective coefficient: c ^T Constraint coefficient: (A,b)		Objective: max Objective coefficient: b ^T Constraint coefficient: (A ^T ,c)		
Vars:	n-th variable ≥0 ≤0 free	Cons:	n-th constraint ≤ ≥ =	
Cons:	m-th constraint ≤ ≥ =	Vars:	m-th variable ≤0 ≥0 free	

4. Write down the complementary and slackness conditions. Linearize it?

Key points:

Lecture-3: complementary slackness condition.

Complementarity slackness: Suppose x^* , λ^* are the primal and dual optimal solutions, respectively. Then, we have

$$a_n^T x^* > b \implies \lambda_n^* = 0$$

 $\lambda_n^* > 0 \implies a_n^T x^* = b$

Lecture-7: Linearization of $0 \le x \perp y \ge 0$

Big-M method

5. Suppose we know the optimal solution of the primal problem, how about the optimal solution of the dual problem?

Key points:

Lecture-3: complementary and slackness condition.

- Which of the x are >0 \rightarrow which of the constraints in the dual problem is binding
- Which of the constraints in the primal problem is not binding \rightarrow which of the λ equal to 0
- Solve for the λ

6. What if the profit per unit depends on the quantity? How to model the optimization?

Key points:

Lecture-1: model an engineering problem using optimization.

	А	В	С	Endowment
Steel	3	4	2	600
Wood	2	1	2	400
Label	1	3	3	300
Machine	1	4	4	200
Profit	$2x_1$	$4x_2$	$3x_3$	

The objective will become max $2x_1^2 + 4x_2^2 + 3x_3^2$

7. Prove the feasible region is a convex set.

Key points:

Lecture-4: how to prove a set is convex.

- For any two distinct points $x^1 = (x_1^1, x_2^1, x_3^1)$ and $x^2 = (x_1^2, x_2^2, x_3^2)$
- For any $\theta \in [0,1]$
- Try to prove $\theta x^1 + (1 \theta)x^2$ is inside the set given that x^1 , x^2 is inside the set.

$$3x_1 + 4x_2 + 2x_3 \le 600$$

$$2x_1 + x_2 + 3x_3 \le 400$$

$$x_1 + 3x_2 + 3x_3 \le 300$$

$$x_1 + 4x_2 + 4x_3 \le 200$$

$$x_1, x_2, x_3 > 0$$

8. If we temporarily ignore the constraints, prove the new objective function is a convex function.

Key points:

Lecture-4: how to prove a function is convex.

- Apply definition
- First-order condition

Suppose f is differentiable and $\nabla f(x)$ exists at each $x \in dom(f)$ **First-order condition** f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y \in dom(y)$$

Second-order condition

$$H(x) \succeq 0, \forall x \in dom(f)$$

9. If we temporarily ignore the constraints, try to solve the problem using different methods.

Key points:

Method-1: Lecture-5 necessary and sufficient conditions

- Let the gradient equal to $0 \rightarrow$ candidate point x^*
- Calculate the Hessian matrix → Is the function a convex function?
 - → global optimum or local optimum?
- Substitute x^* into the Hessian matrix \rightarrow Is it positive (semi-)definite?
 - → relative minimum or strict minimum?

(attention: first turn the maximization problem into a minimization)

9. If we temporarily ignore the constraints, try to solve the problem using different methods.

Key points:

Method-2: Lecture-6 gradient-based methods

- Calculate the gradient
- Calculate the Hessian, the inverted Hessian
- Apply gradient descent method/Newton method

Algorithm: Choose initial point $x_0 \in \mathbb{R}^n$, repeat:

Gradient Descent: $x_k = x_{k-1} - \alpha \nabla f(x_{k-1})$

Or Newton: $x_k = x_{k-1} - [\nabla^2 f(x_{k-1})]^{-1} \nabla f(x_{k-1})$

Stop until convergence, e.g. $||x_k - x_{k-1}|| \le \varepsilon$

9. If we temporarily ignore the constraints, try to solve the problem using different methods.

Key points:

Method-3: Lecture-7 linearize piecewise linear function

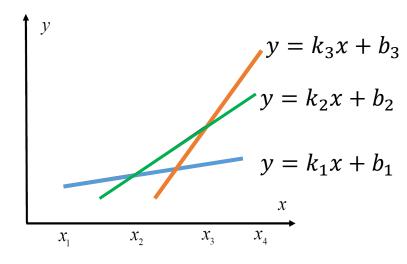
• Linearize $2x_1^2$, $4x_2^2$, $3x_3^2$, respectively

$$\min_{x,\sigma} \sigma$$
s.t. $\sigma \ge k_1 x + b_1$

$$\sigma \ge k_2 x + b_2$$

$$\sigma \ge k_3 x + b_3$$

$$x_1 \le x \le x_4$$



$$\min_{x,y,\lambda} y$$
s.t. $x = \sum_{n=1}^{N} \lambda_n x_n$

$$y = \sum_{n=1}^{N} \lambda_n f(x_n)$$

$$0 \le \lambda_n \le 1, \forall n = 1, ..., N$$

$$\sum_{n=1}^{N} \lambda_n = 1$$

Mid-term exam

Time: Oct 24, 2022 16:30-18:00

Location: LPN LT (in class)

- Closed-book, No calculator, No cheat sheet.
- Formal answer books and scratch papers will be provided.
- No discussion or communication with others during the exam.
- Coverage: Lecture 1-7

Good luck!