Name:	SID:	

MAEG4070 Engineering Optimization

Mid-Term Exam

Date: Oct 24, 2022 1.5 hours

- 1. Are the following statements correct ($\sqrt{}$) or wrong (\times)? Briefly explain why. (10 points)
 - (1) The optimal solution of a linear program cannot be a point that is not a vertex of its feasible region.
 - (2) If f(x) is a convex function, then -3f(x) is a concave function.
 - (3) Gradient descent method can always reach the global optimal point.
 - (4) Function f(x) = 2|x| + |-2x| is a linear function.
 - (5) Halfspace $\{x | a^T x \le b, a \ne 0\}$ is an affine set.

Answer:

 $(1) \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} (2) \underline{\hspace{1cm}} \sqrt{\hspace{1cm}} (3) \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} (4) \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} (5) \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$

Explanation:

- (1) For the case with multiple optimal solutions, a point that is not a vertex can also be an optimal point.
- (2) f(x) is a convex function, so $\nabla^2 f(x) \ge 0$. Hence, $\nabla^2 (-3f(x)) = -3\nabla^2 f(x) \le 0$ and -3f(x) is a concave function.
- (3) It may reach a saddle point or a local optimal point.
- (4) Let x = 1 and y = -1, then $f(x + y) = 0 \neq f(x) + f(y)$.
- (5) Page 13, Lecture 4.
- 2. Consider the following linear program:

$$\max_{x_1, x_2} 2x_1 + x_2$$
s.t. $x_1 + 6x_2 \le 18$

$$x_1 + 2x_2 \ge 4$$

$$3x_1 + x_2 \ge 6$$

$$x_1 \ge 0, x_2 \ge 0$$

- (1) Determine the optimal solution using graphical method. (20 points)
- (2) Suppose λ_1 is the dual variable corresponding to the first constraint, then one of the complementary slackness conditions is $0 \le (-x_1 6x_2 + 18) \perp \lambda_1 \ge 0$. Please linearize it using the Big-M method. (5 points)

Answer:

(1)

SID:

The optimal solution is $x^* = (18,0)$.

(2) The complementary slackness condition $0 \le (-x_1 - 6x_2 + 18) \perp \lambda_1 \ge 0$ can be linearized as

$$0 \le (-x_1 - 6x_2 + 18) \le Mz$$
$$0 \le \lambda_1 \le M(1 - z)$$
$$z \in \{0,1\}$$

where M is a large enough constant.

- 3. Suppose $S_1 = \{(x_1, x_2) | 3x_1 + x_2 \ge 2\}$ and $S_2 = \{(x_1, x_2) | x_1 + 6x_2 \le 12\}$, please prove that:
 - (1) S_1 and S_2 are all convex sets. (10 points)
 - (2) $S_1 \cap S_2$ is a convex set. (5 points)

Answer:

(1) Given any two points $x = [x_1, x_2] \in S_1$, $y = [y_1, y_2] \in S_1$. For any $0 \le \lambda \le 1$, we have $\lambda x + (1 - \lambda)y = [\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2]$

Since

$$3[\lambda x_1 + (1 - \lambda)y_1] + [\lambda x_2 + (1 - \lambda)y_2] = \lambda(3x_1 + x_2) + (1 - \lambda)(3y_1 + y_2)$$

$$\geq 2\lambda + 2(1 - \lambda) = 2$$

We have $\lambda x + (1 - \lambda)y$ is in S_1 , so S_1 is a convex set.

Given any two points $x=[x_1,x_2]\in S_2, y=[y_1,y_2]\in S_2$. For any $0\leq \lambda\leq 1$, we have $\lambda x+(1-\lambda)y=[\lambda x_1+(1-\lambda)y_1,\lambda x_2+(1-\lambda)y_2]$

Since

$$[\lambda x_1 + (1 - \lambda)y_1] + 6[\lambda x_2 + (1 - \lambda)y_2] = \lambda(x_1 + 6x_2) + (1 - \lambda)(y_1 + 6y_2)$$

$$\leq 12\lambda + 12(1 - \lambda) = 12$$

We have $\lambda x + (1 - \lambda)y$ is in S_2 , so S_2 is a convex set.

(3) Let $S := S_1 \cap S_2$. Given any two points $x \in S, y \in S$. We have $x \in S_1, y \in S_1$ and $x \in S_2, y \in S_2$. For any $0 \le \lambda \le 1$, we have

$$\lambda x + (1 - \lambda)y \in S_1$$
 and $\lambda x + (1 - \lambda)y \in S_2$,

which is due to the convexity of S_1 and S_2 proved in (1).

Hence, $\lambda x + (1 - \lambda)y \in S$, showing that S is a convex set.

- 4. (1) Determine the optimal solution of $\min f(x_1, x_2) = 9x_1^2 2x_1x_2 + 8x_2^2$. Is it a global or local optimum? Is it a strict or relative optimum? (20 points)
- (2) Given an initial point $x^{(0)} = (1,1)^T$ and step size $\alpha = 0.1$, apply the gradient descent method to solve $\min_{x_1,x_2} f(x_1,x_2)$ for one iteration. (5 points)

Answer:

(1) The gradient of $f(x_1, x_2) = 9x_1^2 - 2x_1x_2 + 8x_2^2$ is $\frac{\partial f}{\partial x_1} = 18x_1 - 2x_2, \qquad \frac{\partial f}{\partial x_2} = -2x_1 + 16x_2$

The Hessian is

$$H(x) = \begin{pmatrix} 18 & -2 \\ -2 & 16 \end{pmatrix}$$

H(x) is positive definite. Therefore, $f(x_1, x_2)$ is a convex function.

Let $\nabla f = 0$, we have $x^* = (0,0)$. Since the Hessian matrix is positive definite, according to the sufficient and necessary condition, x^* is a *global strict* minimum.

(2)

$$\nabla f(x^{(0)}) = {16 \choose 14}$$

$$x^{(1)} = x^{(0)} - \alpha \nabla f(x^{(0)}) = {1 \choose 1} - 0.1 \times {16 \choose 14} = {-0.6 \choose -0.4}$$

5. Suppose the primal problem is:

$$\max_{x_1, x_2, x_3} 3x_1 + 4x_2 - x_3$$
s.t. $x_1 + 2x_2 - x_3 \le 10$

$$2x_1 + 2x_2 - x_3 \le 16$$

$$x_1 - 2x_2 \ge 1$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \le 0$$

- (1) Please write down the dual problem. (15 points)
- (2) If we know the optimal solution of the primal problem is $x^* = (6, 2, 0)$, try to determine the optimal solution of dual problem based on the complementary slackness condition. (10 points)

Answer:

(1) The dual problem is

$$\min_{\lambda_1, \lambda_2, \lambda_3} 10\lambda_1 + 16\lambda_2 + \lambda_3$$
s.t.
$$\lambda_1 + 2\lambda_2 + \lambda_3 \ge 3$$

$$2\lambda_1 + 2\lambda_2 - 2\lambda_3 \ge 4$$

$$-\lambda_1 - \lambda_2 \le -1$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \le 0$$

(2) Since $x_1^* > 0$, $x_2^* > 0$, we have

$$\lambda_1^* + 2\lambda_2^* + \lambda_3^* = 3 2\lambda_1^* + 2\lambda_2^* - 2\lambda_3^* = 4$$

Moreover, as $x_1^* - 2x_2^* > 1$, we have $\lambda_3^* = 0$. Therefore,

$$\lambda_1^* + 2\lambda_2^* = 3$$

$$2\lambda_1^* + 2\lambda_2^* = 4$$

This implies $\lambda_1^*=1, \lambda_2^*=1, \lambda_3^*=0$.