MAEG4070 Engineering Optimization

Summary of Lecture 1-4

Yue Chen MAE, CUHK

email: yuechen@mae.cuhk.edu.hk Sep 26, 2022

What have we learned?

Lecture 1:

- The basic concept of optimization
- How to model an engineering problem

Lecture 2:

- Definition & Standard form of linear programming
- Graphical method for solving an LP

Lecture 3:

- The definition and interpretations of dual problems
- How to construct the dual problem of an LP

Lecture 4:

- Affine sets, convex sets, cones, polyhedron, etc
- Convex function & methods to prove a function is convex

Engineering problem → Optimization model

A company produces two products: A and B. The raw material consumptions, space needed for storage, production rates, and selling prices for these products are

	Pr	Endowment		
	Α	В	Endowment	
Storage space (ft²/unit)	4	5	1500	
Raw material (lb/unit)	5	3	1575	
Production rate (units/hr)	60	30	7 hours to produce	
Selling price (\$/unit)	13	11		

Objective: maximize the selling income

Engineering problem → Optimization model

Variables: Denote x_1, x_2 be the production of products A, B, respectively.

Objective: How to maximize the selling income?

Constraints: do not violate the resource endowment

$$\max_{x_1, x_2} 13x_1 + 11x_2$$
s.t. $4x_1 + 5x_2 \le 1500$

$$5x_1 + 3x_2 \le 1575$$

$$x_1 + 2x_2 \le 420$$

$$x_1 > 0, x_2 > 0$$

$$\frac{x_1}{60} + \frac{x_2}{30} \le 7$$

Non-standard form → Standard form (compact form)

$$\max_{x_1, x_2} 13x_1 + 11x_2$$
s.t. $4x_1 + 5x_2 \le 1500$

$$5x_1 + 3x_2 \le 1575$$

$$x_1 + 2x_2 \le 420$$

$$x_1 \ge 0, x_2 \ge 0$$

$$\min_{x_1, x_2, y_1, y_2, y_3} -13x_1 - 11x_2$$
s.t. $4x_1 + 5x_2 + y_1 = 1500$

$$5x_1 + 3x_2 + y_2 = 1575$$

$$x_1 + 2x_2 + y_3 = 420$$

$$x_1 \ge 0, x_2 \ge 0, y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

$$\min_{x_1, x_2} -13x_1 - 11x_2$$
s.t. $4x_1 + 5x_2 \le 1500$

$$5x_1 + 3x_2 \le 1575$$

$$x_1 + 2x_2 \le 420$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x = [x_1, x_2, y_1, y_2, y_3]^T$$

$$c = [-13, -11, 0, 0, 0]$$

$$b = [1500, 1575, 420]^T$$

$$A = \begin{bmatrix} 4 & 5 & 1 & 0 & 0 \\ 5 & 3 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

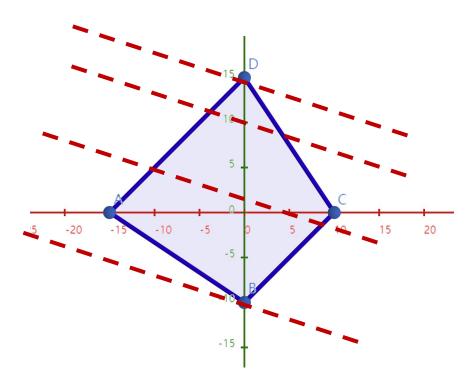
Graphical method for solving LP

Procedure:

Step 1: Draw the feasible region of the LP problem

Step 2: Draw the contours of the objective function

Step 3: Move the contour until it reaches the optimal point



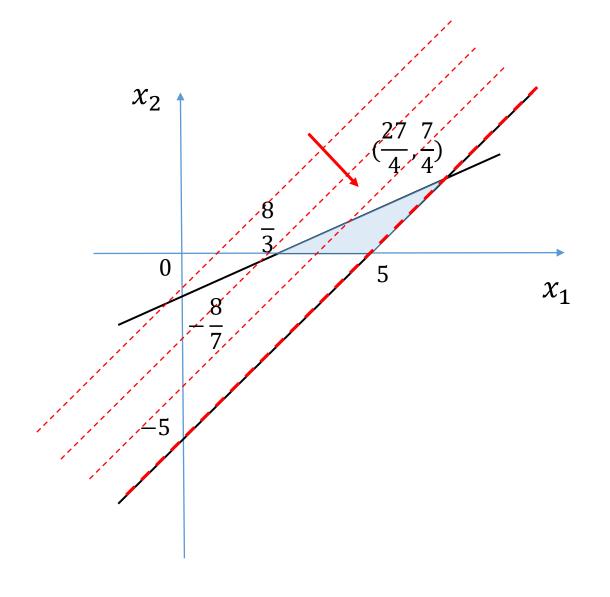
$$\min_{x_1, x_2} - x_1 + x_2$$
s.t. $3x_1 - 7x_2 \ge 8$

$$x_1 - x_2 \le 5$$

$$x_1 \ge 0, x_2 \ge 0$$

Vertices are

$$\left(\frac{8}{3},0\right)$$
, $(5,0)$, $\left(\frac{27}{4},\frac{7}{4}\right)$
The contour is $-x_1+x_2=const$
There are multiple optimal solutions
For example, $x^*=\left(\frac{27}{4},\frac{7}{4}\right)$, $f^*=-5$



$$\max_{x_1, x_2} -20x_1 + 10x_2$$
s.t. $x_1 + x_2 \ge 10$

$$-10x_1 + x_2 \le 10$$

$$-5x_1 + 5x_2 \le 25$$

$$x_1 + 4x_2 \ge 20$$

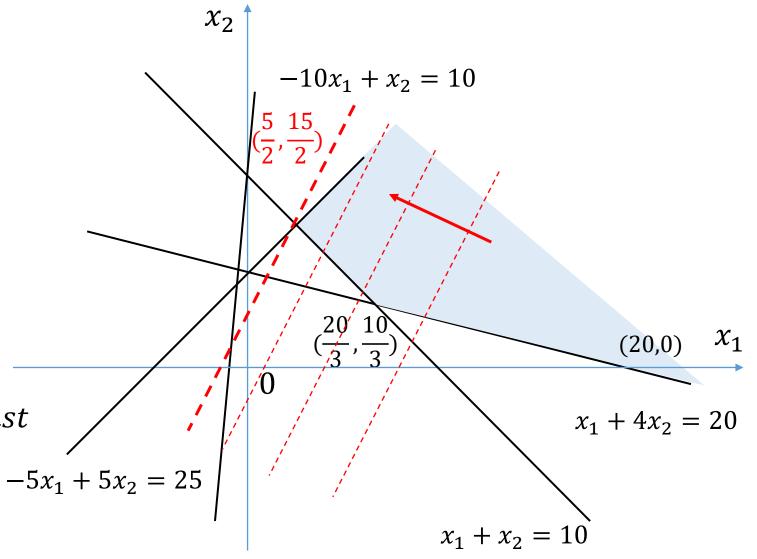
$$x_1 \ge 0, x_2 \ge 0$$

Vertices are

$$\left(\frac{20}{3}, \frac{10}{3}\right)$$
, $(20,0)$, $\left(\frac{5}{2}, \frac{15}{2}\right)$

The contour is $-20x_1 + 10x_2 = const$

$$x^* = \left(\frac{5}{2}, \frac{15}{2}\right), f^* = 25$$



Principles for LP duality

\min_x	$c^T x$
s.t.	$Ax \ge b$
	$x \ge 0$

Primal LP		Dual LP	
Objecti	ive: min ive coefficient: c ^T aint coefficient: (A,b)	Objective: max Objective coefficient: b ^T Constraint coefficient: (A ^T ,c)	
Vars:	n-th variable ≥0 ≤0 free	Cons:	n-th constraint ≤ ≥ =
Cons:	m-th constraint ≤ ≥ =	Vars:	m-th variable ≤0 ≥0 free

$$\max_{y} b^{T} y$$
s.t. $A^{T} y \leq c$

$$y \geq 0$$

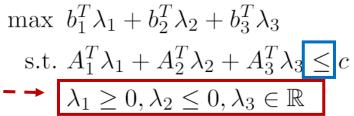
General Form

Primal problem

Dual problem

$$\min c^T x$$
s.t. $A_1 x \ge b_1 : \lambda_1$

$$A_2 x \le b_2 : \lambda_2$$



$$\min c^T x$$

s.t.
$$A_1 x \ge b_1 : \lambda_1$$

 $-A_2 x \ge -b_2 : \lambda_2$
 $A_3 x \ge b_3 : \lambda_3$
 $-A_3 x \ge -b_3 : \lambda_3'$
 $x \ge 0 : \lambda_4$

$$\max b_{1}^{T} \lambda_{1} - b_{2}^{T} \lambda_{2} + b_{3}^{T} (\lambda_{3} - \lambda_{3}') + 0^{T} \lambda_{4}$$
s.t. $A_{1}^{T} \lambda_{1} - A_{2}^{T} \lambda_{2} + A_{3}^{T} (\lambda_{3} - \lambda_{3}') + I \lambda_{4} = c$

$$\lambda_{1} \geq 0, \lambda_{2} \geq 0, \lambda_{3} \geq 0, \lambda_{3}' \geq 0, \lambda_{4} \geq 0$$

Primal LP		Dual LP	
Objective: min Objective coefficient: c ^T Constraint coefficient: (A,b)		Objective: max Objective coefficient: b ^T Constraint coefficient: (A ^T ,c)	
Vars:	n-th variable ≥0 ≤0 free	Cons:	n-th constraint ≤ ≥ =
Cons:	m-th constraint ≤ ≥ =	Vars:	m-th variable ≤0 ≥0 free

$$\min_{x_1, x_2, x_3} 5x_1 + 4x_2 + 3x_3$$
s.t. $x_1 + x_2 + x_3 = 4$

$$3x_1 + 2x_2 + x_3 = 5$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$\max_{\lambda_1, \lambda_2} 4\lambda_1 + 5\lambda_2$$
s.t. $\lambda_1 + 3\lambda_2 \le 5$

$$\lambda_1 + 2\lambda_2 \le 4$$

$$\lambda_1 + \lambda_2 \le 3$$

Primal LP		Dual LP	
Objective: min Objective coefficient: c ^T Constraint coefficient: (A,b)		Objective: max Objective coefficient: b ^T Constraint coefficient: (A ^T ,c)	
Vars:	n-th variable ≥0 ≤0 free	Cons:	n-th constraint ≤ ≥ =
Cons:	m-th constraint ≤ ≥ =	Vars:	m-th variable ≤0 ≥0 free

$$\max_{x_1, x_2, x_3} -x_1 + x_2 + x_3 \qquad \min_{\lambda_1, \lambda_2, \lambda_3} 25\lambda_1 + 2\lambda_2 + 3\lambda_3$$
s.t. $x_1 + x_2 + 2x_3 \leq 25$

$$-x_1 + 2x_2 - x_3 \geq 2$$

$$x_1 - x_2 + x_3 = 3$$

$$x_1 \geq 0, x_2 \geq 0$$
s.t. $\lambda_1 - \lambda_2 + \lambda_3 \geq -1$

$$\lambda_1 + 2\lambda_2 - \lambda_3 \geq 1$$

$$2\lambda_1 - \lambda_2 + \lambda_3 = 1$$

$$\lambda_1 \geq 0, \lambda_2 \leq 0$$

Duality Theorems

Primal problem

$$\min_{x} c^{T} x$$
s.t. $Ax \ge b$

$$x \ge 0$$

Dual problem

$$\max_{\lambda} b^{T} \lambda$$

$$A^{T} \lambda \le c$$

$$\lambda > 0$$

Complementarity and slackness: Suppose x^*, λ^* are the primal and dual optimal solutions, respectively. Then, we have

$$a_n^T x^* > b \implies \lambda_n^* = 0$$

 $\lambda_n^* > 0 \implies a_n^T x^* = b$

An Example

Primal problem

$$\min_{x_1, x_2, x_3, x_4} 8x_1 + 6x_2 + 3x_3 + 6x_4$$
s.t.
$$x_1 + 2x_2 + x_4 \ge 3$$

$$3x_1 + x_2 + x_3 + x_4 \ge 6$$

$$x_3 + x_4 \ge 2$$

$$x_1 + x_3 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Dual problem

$$\max_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} 3\lambda_1 + 6\lambda_2 + 2\lambda_3 + 2\lambda_4$$
s.t.
$$\lambda_1 + 3\lambda_2 + \lambda_4 \le 8$$

$$2\lambda_1 + \lambda_2 \le 6$$

$$\lambda_2 + \lambda_3 + \lambda_4 \le 3$$

$$\lambda_1 + \lambda_2 + \lambda_3 \le 6$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$$

If we know the optimal solution of the primal problem is $x^* = (1, 1, 2, 0)$, Try to determine the optimal solution of dual problem based on Complementarity and slackness.

An Example

Since $x_1^* > 0, x_2^* > 0, x_3^* > 0$, we have

$$\lambda_1^* + 3\lambda_2^* + \lambda_4^* = 8$$
$$2\lambda_1^* + \lambda_2^* = 6$$
$$\lambda_2^* + \lambda_3^* + \lambda_4^* = 3$$

Moreover, as $x_1^* + x_3^* > 2$, we have $\lambda_4^* = 0$. Therefore,

$$\lambda_1^* + 3\lambda_2^* = 8$$
$$2\lambda_1^* + \lambda_2^* = 6$$
$$\lambda_2^* + \lambda_3^* = 3$$

It indicates $\lambda_1^* = 2, \lambda_2^* = 2, \lambda_3^* = 1$. $\lambda^* = (2, 2, 1, 0)$.

Primal problem

$$\min_{x_1, x_2, x_3, x_4} 8x_1 + 6x_2 + 3x_3 + 6x_4$$
s.t. $x_1 + 2x_2 + x_4 \ge 3$

$$3x_1 + x_2 + x_3 + x_4 \ge 6$$

$$x_3 + x_4 \ge 2$$

$$x_1 + x_3 \ge 2$$

$$x_1, x_2, x_3, x_4 > 0$$

$$\lambda_4$$

Dual problem

$$\max_{\lambda_1,\lambda_2,\lambda_3,\lambda_4} 3\lambda_1 + 6\lambda_2 + 2\lambda_3 + 2\lambda_4$$
s.t.
$$\lambda_1 + 3\lambda_2 + \lambda_4 \le 8 \quad \mathbf{X_1}$$

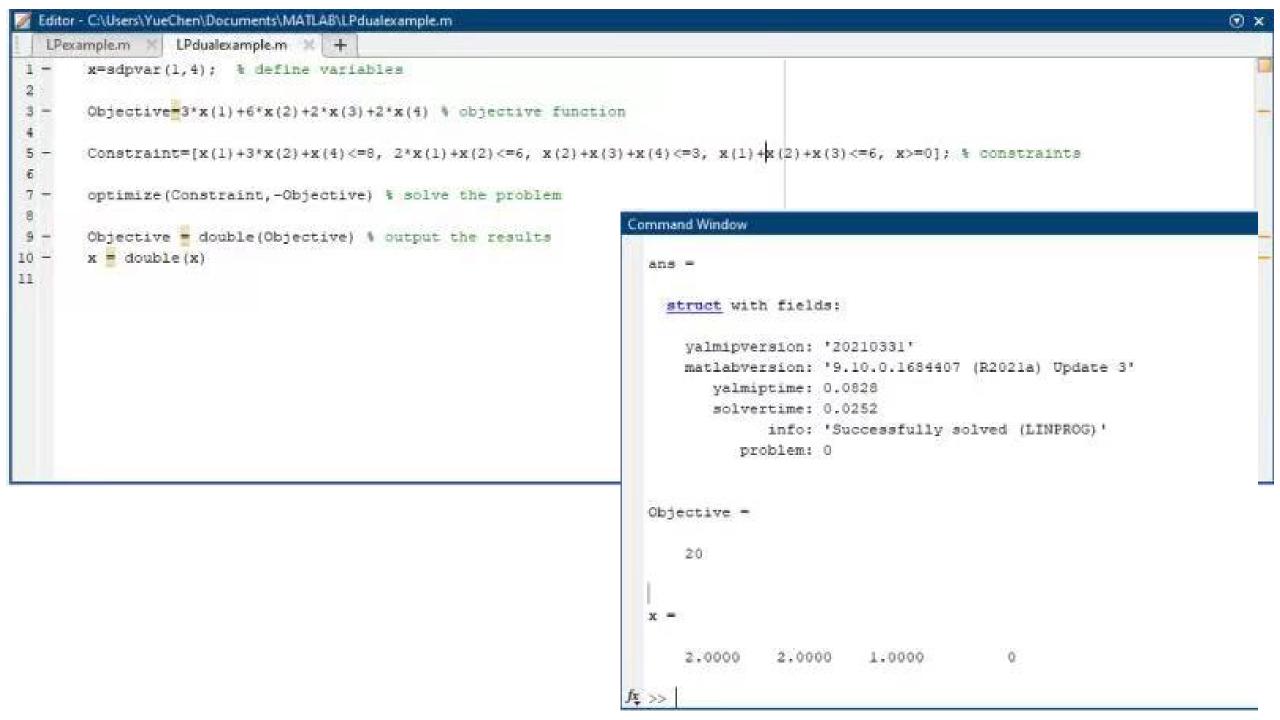
$$2\lambda_1 + \lambda_2 \le 6 \quad \mathbf{X_2}$$

$$\lambda_2 + \lambda_3 + \lambda_4 \le 3 \quad \mathbf{X_3}$$

$$\lambda_1 + \lambda_2 + \lambda_3 \le 6 \quad \mathbf{X_4}$$

$$\lambda_1,\lambda_2,\lambda_3,\lambda_4 \ge 0$$

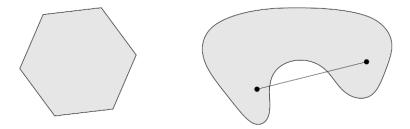
```
Editor - C:\Users\YueChen\Documents\MATLAB\LPexample.m
                                                                                                                                                 (F) X
   LPexample.m X LPdualexample.m X +
        x=sdpvar(1,4); % define variables
2
        Objective=8*x(1)+6*x(2)+3*x(3)+6*x(4) % objective function
         \text{Constraint} = [x(1) + 2 * x(2) + x(4) > = 3, \ 3 * x(1) + x(2) + x(3) + x(4) > = 6, \ x(3) + x(4) > = 2, \ x(1) + x(3) > = 2, \ x > = 0]; \ \text{% constraints} 
6
7 -
        optimize (Constraint, Objective) & solve the problem
                                                                           Command Window
9 -
        Objective - double (Objective) & output the results
10 -
        x = double(x)
                                                                             ans =
11
                                                                                struct with fields:
                                                                                 valmipversion: '20210331'
                                                                                 matlabversion: '9.10.0.1684407 (R2021a) Update 3'
                                                                                     valmiptime: 0.1054
                                                                                     solvertime: 0.0416
                                                                                           info: 'Successfully solved (LIMPROG)'
                                                                                        problem: 0
                                                                             Objective =
                                                                                 20
                                                                             20 =
                                                                                 1.0000
                                                                                           1.0000
                                                                                                        2.0000
                                                                           fx >>
```



Convex Sets

Convex set: the set that contains all <u>line segment</u> between any two distinct points in the set C

$$\forall x_1, x_2 \in \mathcal{C}, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta)x_2 \in \mathcal{C}$$



Procedure:

- 1. Given any two points $x_1, x_2 \in \mathcal{C}$ and $\theta \in [0,1]$
- 2. Try to prove that $\theta x_1 + (1 \theta)x_2$ satisfies the constraints of \mathcal{C} with the knowledge that both x_1 and x_2 satisfy the constraints of \mathcal{C}

Suppose S_1 and S_2 are two convex sets, $\beta \in \mathbb{R}$. Please prove the following sets are convex:

- 1. $\beta S_1 = \{ \beta x \mid x \in S_1 \}$
- $2. S_1 \cap S_2$

3.
$$S_1 + S_2 = \{x^{(1)} + x^{(2)} | x^{(1)} \in S_1, x^{(2)} \in S_2 \}$$

1. Denote $C = \beta S_1$.

For any two points $y_1, y_2 \in \mathcal{C}$, there exists $x_1, x_2 \in S_1$ such that $y_1 = \beta x_1, y_2 = \beta x_2$. Then for any $\theta \in [0, 1]$, since

$$\theta y_1 + (1 - \theta)y_2$$

$$= \theta \beta x_1 + (1 - \theta)\beta x_2$$

$$= \beta \left[\theta x_1 + (1 - \theta)x_2\right]$$

As S_1 is a convex set and $x_1, x_2 \in S_1$, we have $\hat{x} := \theta x_1 + (1 - \theta)x_2 \in S_1$. Therefore, $\theta y_1 + (1 - \theta)y_2 = \beta \hat{x}, \hat{x} \in S_1$. $\theta y_1 + (1 - \theta)y_2 \in \mathcal{C}$.

2. Denote $C = S_1 \cap S_2$.

For any two points $y_1, y_2 \in \mathcal{C}$, then $y_1, y_2 \in S_1$ and $y_1, y_2 \in S_2$.

For any $\theta \in [0, 1]$:

Since S_1 and S_2 are convex sets, $\theta y_1 + (1 - \theta)y_2 \in S_1$, $\theta y_1 + (1 - \theta)y_2 \in S_2$.

Therefore, $\theta y_1 + (1 - \theta)y_2 \in S_1 \cap S_2 = \mathcal{C}$.

3. Denote $C = S_1 + S_2$.

For any two points $y_1, y_2 \in \mathcal{C}$, then y_1 can be represented as the sum of two points $x_1^{(1)} \in S_1, x_1^{(2)} \in S_2$; y_2 can be represented as the sum of two points $x_2^{(1)} \in S_1, x_2^{(2)} \in S_2$.

Given $\theta \in [0, 1]$:

$$\theta y_1 + (1 - \theta)y_2$$

$$= \theta(x_1^{(1)} + x_1^{(2)}) + (1 - \theta)(x_2^{(1)} + x_2^{(2)})$$

$$= \underbrace{\theta x_1^{(1)} + (1 - \theta)x_2^{(1)}}_{\in S_1} + \underbrace{\theta x_1^{(2)} + (1 - \theta)x_2^{(2)}}_{\in S_2}$$

Therefore, $\theta y_1 + (1 - \theta)y_2 \in \mathcal{C}$.

Prove that $S = \{(x_1, x_2) | x_2 \ge |x_1| \}$ is a convex set.

For any
$$y_1 := (x_1^{(1)}, x_2^{(1)}) \in S$$
, $y_2 := (x_1^{(2)}, x_2^{(2)}) \in S$, and $\theta \in [0, 1]$:

$$|\theta x_1^{(1)} + (1 - \theta) x_1^{(2)}|$$

$$\leq |\theta x_1^{(1)}| + |(1 - \theta) x_1^{(2)}|$$

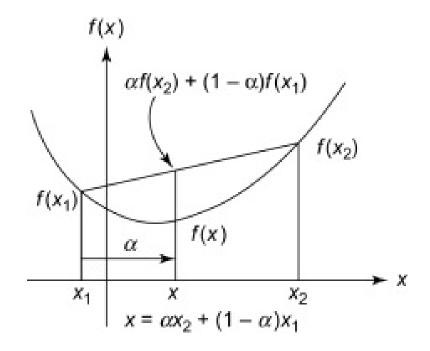
$$\leq \theta |x_1^{(1)}| + (1 - \theta)|x_1^{(2)}|$$

$$\leq \theta x_2^{(1)} + (1 - \theta) x_2^{(2)}$$

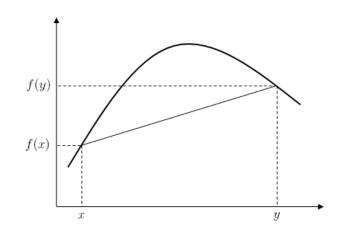
Therefore, $\theta y_1 + (1 - \theta)y_2 \in S$.

Function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if dom(f) is a convex set, and the following inequality holds

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2), \forall \theta \in [0, 1], \forall x_1, x_2 \in dom(f)$$



If we change \leq into \geq , then it is **concave**



Function $f: \mathbb{R}^n \to \mathbb{R}$ is **strictly convex** if dom(f) is a convex set, and the following inequality holds

$$f(\theta x_1 + (1 - \theta)x_2) < \theta f(x_1) + (1 - \theta)f(x_2), \forall \theta \in (0, 1), \forall x_1 \neq x_2 \in dom(f)$$

Function f is strongly convex if $\exists \alpha \geq 0$: $f(x) - \alpha ||x||_2^2$ is convex

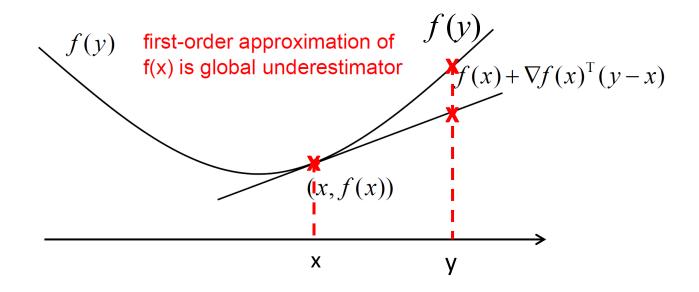
f is (strictly, strongly) concave if –f is (strictly, strongly) convex

Apart from proving the convexity by definition, in the following, we provide two conditions, i.e. first-order condition & second-order condition

Suppose f is differentiable and $\nabla f(x)$ exists at each $x \in dom(f)$

First-order condition *f* with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y \in dom(y)$$



Suppose f is twice differentiable and the Hessian H(x) exists at every $x \in dom(f)$.

Second-order condition function *f* with convex domain is

convex iff

$$H(x) \succeq 0, \forall x \in dom(f)$$

Strictly convex iff

$$H(x) \succ 0, \forall x \in dom(f)$$

Strongly convex iff

$$H(x) - \alpha I \succeq 0, \forall x \in dom(f)$$

Is
$$f(x_1, x_2) = x_1^2 - 4x_1x_2 + x_2^2 + x_1 + x_2$$
 a convex function?

Solution: The gradient and Hessian matrix of f are

$$\frac{\partial f}{\partial x_1} = 2x_1 - 4x_2 + 1, \frac{\partial f}{\partial x_2} = -4x_1 + 2x_2 + 1$$

$$H(x) = \begin{bmatrix} 2 & -4 \\ -4 & 2 \end{bmatrix}$$

is indefinite matrix. Therefore, $f(x_1, x_2)$ is not a convex function.

Is
$$f(x_1, x_2) = (x_1 - x_2)^2 + 4x_1x_2 + e^{x_1+x_2}$$
 a convex function?

Solution: The gradient and Hessian matrix of f are

$$\frac{\partial f}{\partial x_1} = 2(x_1 - x_2) + 4x_2 + e^{x_1 + x_2}$$

$$\frac{\partial f}{\partial x_2} = -2(x_1 - x_2) + 4x_1 + e^{x_1 + x_2}$$

$$H(x) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (2 + e^{x_1 + x_2})$$

is positive semi-definite matrix. Therefore, $f(x_1, x_2)$ is a convex function.

Thanks!