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What have we learned?

Lecture 1:
• The basic concept of optimization
• How to model an engineering problem

Lecture 2:
• Definition & Standard form of linear programming
• Graphical method for solving an LP

Lecture 3:
• The definition and interpretations of dual problems
• How to construct the dual problem of an LP

Lecture 4:
• Affine sets, convex sets, cones, polyhedron, etc
• Convex function & methods to prove a function is convex
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Engineering problem → Optimization model
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A company produces two products: A and B. The raw material consumptions, space 
needed for storage, production rates, and selling prices for these products are

Product
Endowment

A B
Storage space (ft2/unit) 4 5 1500
Raw material (lb/unit) 5 3 1575
Production rate (units/hr) 60 30 7 hours to produce
Selling price ($/unit) 13 11

Objective: maximize the selling income
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Engineering problem → Optimization model

Variables: Denote 𝑥𝑥1, 𝑥𝑥2 be the production of products A, B, respectively.

Objective: How to maximize the selling income? 

Constraints: do not violate the resource endowment

𝑥𝑥1
60

+
𝑥𝑥2
30

≤ 7
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Non-standard form → Standard form (compact form)



Graphical method for solving LP

Procedure:

Step 1:  Draw the feasible region of the
LP problem

Step 2: Draw the contours of the objective
function

Step 3: Move the contour until it reaches
the optimal point
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Example - 1 

Vertices are
8
3

, 0 , 5,0 , 27
4

, 7
4

The contour is −𝑥𝑥1 + 𝑥𝑥2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
There are multiple optimal solutions
For example, 𝑥𝑥∗ = 27

4
, 7
4

,𝑓𝑓∗ = −5

0

8
3

−
8
7

−5

5

(
27
4

,
7
4

)

𝑥𝑥1

𝑥𝑥2
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Example - 2 

𝑥𝑥1 + 4𝑥𝑥2 = 20

𝑥𝑥1 + 𝑥𝑥2 = 10

−10𝑥𝑥1 + 𝑥𝑥2 = 10

−5𝑥𝑥1 + 5𝑥𝑥2 = 25

(
20
3 ,

10
3 ) (20,0)

(
5
2

,
15
2

)

Vertices are
20
3

, 10
3

, 20,0 , 5
2

, 15
2

The contour is −20𝑥𝑥1 + 10𝑥𝑥2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑥𝑥∗ = 5

2
, 15
2

,𝑓𝑓*=25

𝑥𝑥1

𝑥𝑥2

0
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Principles for LP duality
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General Form
Primal problem Dual problem
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Example - 1 
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Example - 2
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Duality Theorems

Complementarity and slackness: Suppose 𝑥𝑥∗, 𝜆𝜆∗ are the primal and dual
optimal solutions, respectively. Then, we have

𝑎𝑎𝑛𝑛𝑇𝑇𝑥𝑥∗ > 𝑏𝑏 ⇒ 𝜆𝜆𝑛𝑛∗ = 0
𝜆𝜆𝑛𝑛∗ > 0 ⇒ 𝑎𝑎𝑛𝑛𝑇𝑇 𝑥𝑥∗ = 𝑏𝑏

Primal problem Dual problem
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An Example

Primal problem Dual problem

If we know the optimal solution of the primal problem is 𝑥𝑥∗ = 1, 1, 2, 0 ,
Try to determine the optimal solution of dual problem based on 
Complementarity and slackness.
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An Example

Dual problem

Primal problem

𝝀𝝀𝟏𝟏
𝝀𝝀𝟐𝟐
𝝀𝝀𝟑𝟑
𝝀𝝀𝟒𝟒

𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
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𝒙𝒙𝟑𝟑
𝒙𝒙𝟒𝟒
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Convex Sets

Convex set: the set that contains all line segment between any two 
distinct points in the set 𝒞𝒞

∀𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞,𝜃𝜃 ∈ [0,1] ⇒ 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 ∈ 𝒞𝒞

Procedure:
1. Given any two points 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒞𝒞 and 𝜃𝜃 ∈ [0,1]
2. Try to prove that 𝜃𝜃𝑥𝑥1 + (1 − 𝜃𝜃)𝑥𝑥2 satisfies the constraints of 𝒞𝒞

with the knowledge that both 𝑥𝑥1 and 𝑥𝑥2 satisfy the constraints of 𝒞𝒞
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Example - 1

Suppose 𝑆𝑆1 and 𝑆𝑆2 are two convex sets, 𝛽𝛽 ∈ ℝ. 
Please prove the following sets are convex:
1. 𝛽𝛽𝑆𝑆1 = 𝛽𝛽𝑥𝑥 𝑥𝑥 ∈ 𝑆𝑆1}
2. 𝑆𝑆1 ∩ 𝑆𝑆2
3. 𝑆𝑆1 + 𝑆𝑆2 = 𝑥𝑥 1 + 𝑥𝑥 2 𝑥𝑥(1) ∈ 𝑆𝑆1, 𝑥𝑥(2) ∈ 𝑆𝑆2}
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Example - 1
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Example - 2

Prove that 𝑆𝑆 = {(𝑥𝑥1, 𝑥𝑥2)|𝑥𝑥2 ≥ |𝑥𝑥1|} is a convex set.
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Convex function

Function f : ℝ𝑛𝑛 → ℝ is convex if dom(f) is a convex set, and the following 
inequality holds

If we change ≤ into ≥, then it is concave
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Convex function

Function f : ℝ𝑛𝑛 → ℝ is strictly convex if dom(f) is a convex set, and the 
following inequality holds

Function f  is strongly convex if ∃𝛼𝛼 ≥ 0: 𝑓𝑓 𝑥𝑥 − 𝛼𝛼 𝑥𝑥 2
2 is convex

f is (strictly, strongly) concave if –f is (strictly, strongly) convex 

stronger
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Convex function

Apart from proving the convexity by definition, in the following, we provide 
two conditions, i.e. first-order condition & second-order condition

Suppose f is differentiable and ∇𝑓𝑓(𝑥𝑥) exists at each 𝑥𝑥 ∈ 𝑑𝑑𝑐𝑐𝑑𝑑(𝑓𝑓)

First-order condition f with convex domain is convex iff
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Convex function

Suppose f is twice differentiable and the Hessian 𝐻𝐻(𝑥𝑥) exists at every 
𝑥𝑥 ∈ 𝑑𝑑𝑐𝑐𝑑𝑑(𝑓𝑓).

Second-order condition function f with convex domain is 
• convex iff

• Strictly convex iff

• Strongly convex iff
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Example - 1

Is 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥12 − 4𝑥𝑥1𝑥𝑥2 + 𝑥𝑥22 + 𝑥𝑥1 + 𝑥𝑥2 a convex function? 
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Solution: The gradient and Hessian matrix of 𝑓𝑓 are
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

= 2𝑥𝑥1 − 4𝑥𝑥2 + 1,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

= −4𝑥𝑥1 + 2𝑥𝑥2 + 1

𝐻𝐻 𝑥𝑥 = 2 −4
−4 2

is indefinite matrix. Therefore, 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 is not a convex function.
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Example - 2

Is 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥1 − 𝑥𝑥2 2 + 4𝑥𝑥1𝑥𝑥2 + 𝑒𝑒𝑥𝑥1+𝑥𝑥2 a convex function? 

Solution: The gradient and Hessian matrix of 𝑓𝑓 are
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

= 2 𝑥𝑥1 − 𝑥𝑥2 + 4𝑥𝑥2 + 𝑒𝑒𝑥𝑥1+𝑥𝑥2

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

= −2 𝑥𝑥1 − 𝑥𝑥2 + 4𝑥𝑥1 + 𝑒𝑒𝑥𝑥1+𝑥𝑥2

𝐻𝐻 𝑥𝑥 = 1 1
1 1 (2 + 𝑒𝑒𝑥𝑥1+𝑥𝑥2)

is positive semi-definite matrix. Therefore, 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 is a convex function.



Thanks！

28


	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28

