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What have we learned?

Lecture 5:
* Single-variable optimization (necessary condition & sufficiency condition)
* Multivariable optimization (necessary condition & sufficiency condition)

Lecture 6:
e Gradient descent method
e Newton method

Lecture 7:

* Linearization techniques
* minimizing a convex piecewise linear function
* A piecewise linear function in constraints
* the product of a binary and a continuous variable
 complementary and slackness condition in KKT condition
* minimum values/maximum values



Basic concept

Global optimum. Let f (x) be the objective function, X be the feasible region, and
Xo € X.Then x, is the global optimum if and only if f(x) = f(x,),Vx € X.

Local optimum. Let f (x) be the objective function, X be the feasible region, and
Xo € X. If there is a neighborhood of x4 with radius € > 0:

Ne(wo) = {z | ||z — xol| <€}

Such that Vx € y N N.(x,), we have f(x) = f(xy). Then x, is a local optimum.

Global minimum

Local minimum



Recall the single variable optimization

Recall what we have learned in Calculus, a necessary condition for an
optimal point is as follows:

Suppose the derivative df (x)/dx exists as a finite number at x = x™.
If a function f(x) 1s defined in the interval a < x < b and has a local

minimum at x = x*, where a < x™ < b, we have df (x)/dx = 0.

A sufficient condition for an optimal point is as follows:

Let f'(x*) = f"(x*) = - = F@D(x*) = 0, but f*(x*) # 0. Then x = x* is
* a minimum point of f(x) if f*(x*) > 0 and n is even

* a maximum point of f(x) if f*(x*) < 0 and n is even

* Neither a minimum nor a maximum point if n is odd



Example

Determine the optimal the maximum and minimum values of the function:
f(x)=12x> —45x* +40x° +5

Solution: Since f'(x) = 60(x* — 3x3 + 2x%) = 60x2?(x — 1)(x — 2)
Let f'(x) =0, wehavex =0,x =1,and x = 2.

The second derivative is
f"(x) = 60(4x3 — 9x? + 4x)

(1) = —60and hence x = 1 is a relative maximum and f,,,q, = 12.
* f"(2) =240 and hence x = 2 is a relative minimum and f,,,;;, = —11.
« f"(0) =0, so we must investigate the next derivative
f"(x)=60(12x> —18x+4)=240atx =0
Therefore, x = 0 is neither a maximum nor a minimum.



Multivariable optimization

First-order necessary condition: If f(x) has an extreme pointatx = x7,
and its gradient exists at point x*, then Vf(x*) = 0.

vector

Remark: if the gradient of f(x) exists at point x* and Vf(x*) = 0T, then
x = x" is called a “stationary point”; if a stationary point x = x™ is neither
a maximum nor minimum point, then it is called a “saddle point”.

For example, for function f(x) = x;x,, x* = (0,0)7 is a stationary point

and a saddle point. (try to prove it)
£ X
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Multivariable optimization

Second-order necessary condition: If f(x) has a minimum pointat x = x~,
and it is twice-differentiable at x*, then Vf(x*) = 0 and its Hessian H(x™)
is positive semi-definite.

Sufficient condition: If f(x) is twice-differentiable at x*,Vf(x*) = 0 and
its Hessian H(x") is positive definite, then x = x™ is a strict minimum point.

Remark: If H(x™) is positive semi-definite, then x = x™ is a relative minimum point.

Necessary and sufficient condition: If f (x) is twice-differentiable at x™ and is
a convex function, then x* is a global minimum if and only if Vf(x*) = 0.




Review of mathematics

Consider matrix M = B ﬂ, we try to prove that it is positive definite in three ways.

1. By definition
For any non-zero vector z = [x, y]!, we have

=3 |l bl
z' Mz = [x,y] 3 ally = [3x + 3y 3x+4y]y
=3x2+6xy+4y2=3(x+y)>+y2>0

2. Calculate the eigenvalue

M- =Ph 3 l=G-ne-n-9=2-71+3=0
The eigenvalues are A, 1, = -2 429_12.
3.M, =3,M,=|> 3|=12-9=3.
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Example-1

Consider the function f(x,y) = x?% — yz
We have

af af ﬂJ‘c;yJ
— = 2x,— = —2
d0x * dy Y
These first derivatives are zeroat x™ = 0,y* = 0
The Hessian matrix of f at (x™, y™) is given by

H=[§ —02]

Since this matrix is neither positive definite nor
negative definite, the point (x*, y*) is a saddle point.

It can be seen that f(x,y*) = f(x,0) has a relative
minimum and f(x*,y ) = f(0,y) has a relative
maximum at the saddle point (x*,y™).



Example-2

Find the extreme points of the function

F(x,x)=x +x, +2x° +4x> +6

Solution: The necessary conditions for the existence of an extreme point are:

@23)612 +4x, =x,(3x,+4)=0

Ox,

i:3x22 +8x, =x,(3x,+8)=0

Oox,

These equations are satisfied at the points: (0,0), (O, — g) , (— i, O) , (— i, — §).



Example-2

The second-order partial derivatives of f are:
2 2
v 6x, +4 i

2 >
Ox, Ox,

Ox, +8

The Hessian matrix of f is given by:
6X1 + 4 0

H(x)zl 0  6x,+8

To check whether the nature of H(x), we calculate
H1 — 6x1 + 4

6x1+4 0

210 6x,+8




Example-2

Point x Value of H, | Value of H, | Nature of H | Nature of x f(x)
local
Positive Strict
- -
(0,0) 4 32 definite minimum 0
8 418
0, —— +4 -32 Indefinite | >2ddle ki
3 point 27
4 194
(—=,0) -4 -32 Indefinite Sad.dle —
3 point 27
4 8 - Strict | 50
(—= 3 4 139 Negat.lve .TIC ol
3" 3 definite maximum 3




Example-2

c d

(i) @ > 0,ad — bc > 0, it is positive definite
(ii) @ < 0,ad — bc > 0, it is negative definite

—a —b

—c —d
and —a > 0, (—a)(—d) — (=b)(—c) = ad — bc > 0
Hence — A is positive definite, and A is negative definite.
(iii) others, it is indefinite

Fora2><2matrixA::(a b),if:

This is because —A =

Suppose a point x* satisfies V f(z*) = 0 and H(x*) is negative definite.
Then, we have —V f(z*) = 0 and —H (z*) is positive definite.

Hence, z* is the strict optimum of min, — f(x),

which is equivalent to max, f(z).

Hence, z* is a strict maximum of f(x).
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Example-3

Find the minimum point of f(x) = x? — 2x,x, + x2

Solution:
The gradient of f(x) is

Vf(x)

]
1
~| |
e
EE

or1 _ 2’!1 — 2:1’,‘2
v —211 + 219
8.1‘2

The Hessian matrix is

Let Vf(x) =0, we have z* = (0,0).

Since H (x*) is positive semi-definite, x* is a global relative minimum point.
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Example-4

Find the minimum point of f(x) = 6x% — 2x,x, + x>

Solution:
The gradient of f(x) is

Vir)

1

oo

e
B8

| 122 — 2w
) || =2z + 29
81:2

The Hessian matrix is

Let Vf(x) =0, we have 2* = (0,0).

Since H(z™) is positive definite, 2™ is a global strict minimum point.
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Gradient-based algorithms

Algorithm: Choose initial point x, € R", repeat:

Gradient Descent: Xp = Xp—1 — aVf (Xr—1)

Or Newton: Xg = Xp—1 — [sz(xk—l)]_lvf(xk—l)

Stop until convergence, e.g. ||x, — xx_1|| < €

16



Gradient Descent

Interpretation:

If we approximate the Hessian V2 f by %I, then

1
FO) = FG) +VFCOT(r =) 4 5 lly = x5

Let x = x;_1, we want to choose x;, = y that minimizes f (y)

1
min— |ly — x|I5 + V£ ()" (y — x) £ ()
y 2«a N

1
E(y —x)+Vf(xp-1) =0
Therefore (Xk—1, f (Xk=1))

X = Xg—1 — aVf(Xg—1)

Xk Xk—1



Newton Method
Interpretation:

Consider the second-order Taylor approximation

1
fO) = fE)+ V)T —x) 456 =0TV (y — x)

Assume V2 f(x) is positive definite, so that f(x) has a strict global optimum. Let
X = Xj_1, we want to choose x;, = y that minimizes f (y)

1 T2 T
m;nz(y—x) V) —x) + V() (y — x)

Therefore
—1
X = xp_1 — |V2f ()| V(o)



Comparison of Gradient Descent & Newton Method

@)

(e, £ (1)) i (Xk—1, f (Xk-1))

‘ (x + Az, flz + A.z',,l;j — f
Xk Xk—1
Gradient Descent Newton Method
-1
X = Xp—1 — aVf(xr_1) Xg = Xg—1 — [sz(xk—l)] Vf(Xk-1)

Tradeoff: Newton method takes fewer steps, but more time for each step
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Example

Solve the optimization min f(x) = x# + 25x% for one step, using gradient
x1;x2
descent and Newton method, respectively. Choose o = 0.1.

Solution: Let x(® = (2,2)7, then

Vf(x©@) = (SZOxyclz)

+(0)
1
2 0 -1 2

sz(x(o)):(o 50)'V2f(x(0)) B 0

—8
Newton method: x(1) = x(0) — sz(x(o))_lwf(x(o))
1

Gradient descent: x(1) = x(0) — an(x(O)) _ (1-6)

B @ -( (1) (130) - (8)

0 55



Example

Solve the optimization min f(x) = 4x% + x5 — x#x, using Newton method,
X1,X2

with initial points x4, = (1,1)7, x5 = (3,4)7, and x, = (2,0)7, respectively.

Solution:

The gradient is

7f(x) = (8%, — 2x,%5, 2%, — xlz)T
The Hessian matrix is

0= (P52 750)



Example

x0 =x, = (1,17

x| fa®) | vra®) (9O v E®)
10000 | oo | S0 | oo | Somme o
00 e | 70 | e | 1
o o | 2%m | o | 22RO
0w aoom | 90 oo | o
om0 | oo | 200 | oo | Smme0come




Example

x(O = x5 = (3,4)7

ko|ox® ] ™) | vra®) v | v ra®)
o |2 e | S0 | oo | ooom e
IR
| eom | om0 | aoom | oo s

indefinite
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Example

x(0) = x. = (2,0)T

Vif(x(©) = (_84 _24) which is irreversible, cannot calculate x (1.

Applying Newton method may:

* Converges to the minimum point

* Converges to the saddle point

 Hessian matrix is irreversible, cannot proceed



Linearization techniques

Minimizing a convex piecewise linear function (univariate)

min f(x)

st.op <ax <y

kix 4+ b1, x € |r1, 9]
kox + Do, €T e [fﬂ% «’L‘.tﬂ
ksx 4+ b3, x € |r3,14]

\ ¢

min o
T,

s.t. o > ki + by
o > kox + by
o > kax + b3

v <x < x4

y 3

y

f(x)

X

n
>

Xy

/y=k3x+b3

y=k2x+b2

VA y=k1x+b1
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Linearization techniques

Minimizing a convex piecewise linear function (univariate)

Another equivalent form
Epigraph of a convex function is a convex set

min 4
LY, A y

A?—
S.t. x = E )\T.L,’L‘n

n=1

N
Y = Z )\nf(wn) /
n=1

0< N\, <1,Vn=1,...,.N X

N
d A =1

n=1
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Example

min f(x)
T

s.t. 1 <ax <4

Method 1:

min o
€T,

s.t.o>2r+1
(723;’1?—1
1 <x<A4

Method 2:
g
s.t. x= A + 2Xo + 43
y =3\ + 5 2+ 113
0< A1, A2,A3 <1
Mo+ Ao+ Ay =1

27



Linearization techniques
Linearize the product of a binary and a continuous variable

Consider z = xy, x € [x;, x, ],y € {0,1}
It can be linearized by
X1y <z < xuy
x(1l—y)<x—z<x,(1-7y)

Proof of equivalence:

1. Ify = 0, then the first inequality becomes z = 0 and the second x; < x < x,,.
Meanwhile, we have z = xy = 0.

2. Ify =1, then the second inequality becomes x = z and thefirstx; < x =2z <
X, - Meanwhile, we have z = xy = x.



Linearization techniques
Complementary condition in KKT condition
Consider condition0 <x Ly =0

It is equivalenttox,y = 0,xy =0
And can be linearized by

0<x< Mz
0<y<M(1-2)
z € {0,1}"
Proof of equivalence: Remark: M can be chosen as the
1. fx=0,y>0,thenletz=0 upper bound of the values of x, y;
2. Ifx>0,y=0,thenletz=1 called Big-M method in literature.

3. fx=0,y=0,thenletz=00rz=1



Linearization techniques

Minimum values

Consider y = min{xy, ..., x,},x; € [xl-l,x}"]
Let L = min{xi, ...,x,ll}. It can be represented as
x; < x; < xP, Vi
y < x;, Vi
xi—(xF =LY A —2z) <y Vi

n
Z; € {0,1},2 Zi = 1
i=1

Proof of equivalence:
* Onlyone z; =1 and others =0.

e Ifz; =1, we havexl-l <x <xy<x;,xi <y
 Ifz; =0, we havexl-l <x<xy<xp,xi—y<x;—L



Linearization techniques

Maximum values

Consider y = max{xy,...,x,},x; € [xl-l,x}‘]
Let U = max{x{, ..., x4 }. It can be represented as
x; < x; < x}, Vi
y = Xi,Vi
x +(U—x})(1—2z) =y,Vi

n
Z; € {0,1},2 Zi = 1
=1

Proof of equivalence:
* Onlyone z; =1 and others =0.

e Ifz; =1, we havexl-l <x; <xy=xp,xi =Yy
* Ifz; =0, we havex,;l <x <x'y=x;,y—x; < U—xl-l



Example

Consider z = 5xy,x € [4,8],y € {0,1}
It can be linearized by
20y < z <40y
201 —y) <5x—2z<40(1—y)

Consider y = min{xq, x5, x3},x; € [1,10],x, € [0,8], x5 € [3,12]
Let L = min{1,0,3} = 0. It can be represented as
1<x,<10,0<x,<8,3<x3 <12
V<X,V < X5,V < X3
x1—10(1—2z) <y
x,—8(1—2,) <y
x3—12(1—2z3) <y

3
7, € {0,1},2_ =1
1=



Thanks!
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