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Liuchao JIN MAEGS5070 Nonlinear Control Systems Assignment #1

Problem 1

Consider the following system.

(a) Find the equilibrium points for the system.
(b) Verify the solution of the system is given by
g
H=—"20 _ 0<t<T
z(t) z0+ (1 — zo)et -
for some T" > 0.
(c) Show that T' = In —%0= when zo > 1.

I()—l

Solution:
(a)
In this nonlinear dynamical system,
fx0) = =x (1) +x* (1) (1)
Letting f (x) = 0 gives
—x () +x* () =0=x" = {0, 1} (2)
(b)
For
X0
t) = 3
x (1) xo+ (1 —xp)e’ ®)
The left side of the equation is equal to
) X0 ’ —x0 (1 —xq) e
£ (1) = ] e )
xo+(1-xp)e [x0 + (1 —xq) €]
The right side of the equation is equal to
2 t 2
—xg |xg+ (1 —xp)e'| +x
R R R et I i
xo+ (1 —xp)e xo+(1-xp)e [x0 + (1 —xq) €] (5)

_ _ t
= Xo (1= xo) e 5 = left side W
[x0 + (1 —x0) ']

Therefore, x (t) = m is the solution of the system.
()

Equation (3) is not defined for all # > 0. In fact, it can be seen that when xo > 1, there

exists a finite ¢ > 0 such that

X0

x0+(1=x0)e'=0 or t=In (6)
X0 — 1
Therefore, Equation (3) is not defined at t = In xgﬂl , which means
T =1n—2 7
xo—1
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Problem 2

It is known that the following Van del Pol equation has a limit cycle.

il = X2

iy = —x1—02(zF — 1)y

Write a MATLAB program to generate (x1(t),z2(t)), 0 < t < 100 for (21(0),22(0)) = (2.3,—2) and
(21(0), 22(0)) = (0.2,0.3). Plot the phase portraits in the same Figure (that is, z2(¢) vs. z1(¢) for 0 <t < 100).
Hint: You can try the following Matlab 6 program

x01 = [2.3; -2];

x02 [0.2; 0.3];

t0 = 0; tf = 100;

tspan=[t0 tf];

[t,x1] = ode23(’1limit’, tspan , x01);
[t,x2] = 0de23(’1limit’, tspan , x02);
plot(x1(:,1), x1(:,2), x2(:,1), x2(:,2))

where limit is the following matlab function named as limit.m.

function xdot = limit(t,x)

xdot (1) = x(2);

xdot(2) = -x(1) -0.2*(x(1)*x(1)-1)*x(2);
xdot = xdot(:);

However, make sure you understand the program.

Solution:
The MATLAB code in main file is shown below:

clc; clf; clear all;

hold on;

x01 = [2.3; -21;

x02 = [0.2; 0.31]1;

t0 = 0; tf = 100;

tspan = [t0 tf];

[t,x1] ode23 (' 1imit’, tspan , x01);

(t,x2] ode23 (' 1imit’, tspan , x02);

plot (x1(:,1), x1(:,2),"color’,[0.667 0.667 1],’LineWidth’,2.5);

plot (x2(:,1), x2(:,2),"’color’,[1 0.5 0],’LineWidth’,2.5);

xlabel (' $x_1 \left (t\right)$’,’interpreter’,’latex’);

ylabel (' $x_2 \left (t\right)$’,’interpreter’,’latex’);

legend ([’ $\left (x_1\left (0\right),x_2\left (O\right)\right)’
r=\left (2.3,-2\right)$’], [’ $\left (x_1\left (O\right),’
’x_2\left (0O\right)\right)=\1left (0.2,0.3\right)s$’],

"interpreter’,’latex’);
a = get(gca,’XTickLabel’);
set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);
set (gcf, '’ renderer’,'painters’);
hold off;
filename = "Ql_2_ Code"+".pdf";

saveas (gecf, filename) ;
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The MATLAB code in function that defines the Van del Pol equation is shown below:

function xdot = limit (t, x)
xdot (1) = x(2);
xdot (2) = —-x (1) -0.2x(x(1)*x(1)-1)+*x(2);

xdot = xdot (:);

And the results for phase portraits are plotted in Figure 1.

3r (21 (0), 22 (0)) = (2.3,-2)
e (21 (0) , 2 (0)) = (0.2,0.3)

Figure 1: Phase Portraits for Given Nonlinear System.
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Problem 3

It is known that the following system displays chaotic behavior.

i+ 0.05y + vy = 7.5cost

(a) Give a state space realization for this system.

(b) Write a MATLAB program to generate y(t),

0 <t < 50 for (y(0),9(0)) = (3,4) and (y(0),5(0)) =

(3.01,4.01). Plot them in the same Figure. (The curve should be similar to Figure 1.6, page 11 of the text-

book).

Solution:

(a)

First, we need to select the state variables. Choosing the state variables as successive

derivatives, we get

X1 =Y

X9 =y

(8a)
(8b)

Differentiating both sides and making use of Equation (8) to find X;, and equation in the

question to find y = X2, we obtain the state equations (Nise, 2020). The combined state and

output equations are

In vector-matrix form,

where
X

—

X2

(b)

X1 = X2

X9 = —x:l)’ —0.05x9 + 7.5 cost

x(1)=fx@),0n

. fx(),0) = -

—x? — 0.05x2 + 7.5 cost

The MATLAB code in main file is shown below:

(9a)
(9b)

(10)

(11)

clc; clf; clear all;
hold on;

x01 = [3; 47];

x02 = [3.01; 4.017;
t0 = 0; tf = 50;
tspan = [t0 tf];

[t,x1] = ode23(’/1limit’,

tspan , x01);

plot (t,x1(:,1),’color’,[0.667 0.667 1],"LineWidth’,2.5);

[t,x2] = ode23('1limit’,

tspan , x02);

plot (t,x2(:,1),"coloxr’,[1 0.5 0],’LineWidth’,2.5);

grid on;
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xlabel (' $t$’,’ interpreter’,’ latex’);

ylabel (' Sy \left (t\right)$’,’interpreter’,’latex’);

legend ([’ $\left (y\left (0O\right),\dot{y}\left (0O\right)\right)’
"=\left (3,4\right)$’1, [’ S\left (y\left (O\right),’
"\dot{y}\left (O\right)\right)=\1left (3.01,4.01\right)$’],
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, ' renderer’,’'painters’);

hold off;

filename = "Q1_3_Code"+".pdf";

saveas (gef, filename) ;

The MATLAB code in function that defines the Van del Pol equation is shown below:

function xdot = limit (t, x)

xdot (1) = x(2);

xdot (2) -x(1)*x(1)*x(1)-0.05%x(2)+7.5*cos (t);
xdot = xdot (:);

And the results for y () are plotted in Figure 2.

(y(0),9(0)) = (3,4)

4 I

(y(0),9(0)) = (3.01,4.01)

-4 I I I I
0 10 20 30 40

t

Figure 2: Results for Chaotic Behavior with Different Initial Conditions.
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Problem 1

For each of the following systems, find all equilibrium points and determine the type of
each isolated equilibrium.

(a)

.Ci?l = X9
i + i x
Ty = —I — —
2 1 2
(b)
Zifl = —2,171 + ZL’Q(l + SCl)
fQ = —.7}1(1 + x1>
Solution:
(a)
The equilibrium points x* = [ xi ] satisfy
X
2

3 =" = , , (D
—x]+ 2 —-x;=0 0 0 0

Taking the Jacobian of the appropriate function yields that

0 0 1
e lisa
0
For x* = ,
0 0 1
I 3)
ax x=x* —1 _1
The eigenvalues of A, are
~1+V3i
A1 = — 4)
Therefore, the equilibrium point (0, 0) is a stable focus.
2
For x* = ,
0 0 1
a. =9 5)
a.x x=x* 2 _1
The eigenvalues of A, are
=] ©®)
2=,
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Therefore, the equilibrium point (2, 0) is a saddle point.
-2
For x* = ,
[ 0
0 0 1
Ac=) o ™
Ox | |2 -1
The eigenvalues of A+ are
A2 = ! (8)
2= 5
Therefore, the equilibrium point (-2, 0) is a saddle point.
(b)
The equilibrium points x* = [ xi ] satisfy
X
2
2+ x5 (1+x7) =0 N 0 ©)
—x; (1+x7) =0 0
Taking the Jacobian of the appropriate function yields that
0 -2+ 1+
9 _ 2T (10)
Ox —-1+2x; 0
0
For x* = ,
of -2 1
Ay = — = 11
OX [ _ [—1 O] (1)
The eigenvalues of A,+ are
-1
2= . (12)

Therefore, the equilibrium point (0, 0) is a stable node.
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Problem 2

Consider the nonlinear system

T, = Tg— 561(1'% + a;§ — 1)2,1’1(0) = 210

By = —x1 — a2 + 25 —1)% 29(0) = w99

(a) Show that the system has a limit cycle.
(b) Determine the stability of the limit cycle.
(Hint:) Use polar coordinates.

Solution:

(a)

The polar coordinates are introduced as follows:
1/2
r=(x3+3)
and
0 = tan~! (x2/x1)

Rearranging Equation (13) gives
r? = x? +x2

Taking the derivative of Equation (15) yields

Substituting the conditions in the question into Equation (16) gets

2

d 2
2r—r =2x1 [xz - X1 (x% +x§ — 1) + 2x9

dt

Simplifying Equation (17) leads to

Rearranging Equation (14) gives

Differentiating Equation (19) yields
1 do _ 1 dX2 1 dx 1

- = X -
cos2@dt xp dt Zx% dt

Substituting the conditions in the question into Equation (20) gets

1 d0 1 Y
L P +x2 - 1)
cos?20dt x1 [ R (xl *2

X
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Simplifying Equation (21) leads to
do

i
When the state starts on the unit circle, the above equation shows that 7 (¢) = 0. Therefore, the

-1 (22)

state will circle around the origin with a period 1/27. When r > 1, then 7 < 0. This implies
that the state tends toward the unit circle from the outside. When r < 1, then 7 < 0. This
implies that the state tends to diverge from it. Therefore, the unit circle is a semi-stable limit
cycle (Slotine et al., 1991).
(b)

When the state starts on the unit circle, the above equation shows that 7 () = 0. Therefore,
the state will circle around the origin with a period 1/27. When r > 1, then 7# < 0. This implies
that the state tends toward the unit circle from the outside. When r < 1, then 7 < 0. This

implies that the state tends to diverge from it. Therefore, the limit cycle is semi-stable.
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Problem 3

Consider the system

T = @9

To = axy+ bry — x%xz - x?

Show that there can be no limit cycle if b < 0.

Solution:

ofi , 0fs _

=b-x2<0 23
8x1 (9)62 x1< ( )

By Bendixson’s criterion, there are no periodic orbits. Therefore, there can be no limit cycle if
b < 0.
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Problem 1

Does the system have any limit cycle?

1 = 2a3sinmy
o = 1—-cosxzi+ 2x9
Solution:
ofi 0fs
—+—=2>0 1
(9)61 6x2 ( )

By Bendixson’s criterion, there are no periodic orbits. Therefore, there can be no limit cycle.
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Problem 2

Consider the following nonlinear equation.

T, = X9 — .T% + 3$§’
i‘g = I3 — 2$2£L‘1 — T1T3
T3 = 3x1+ 2x3700 — 223+ U

(a) Find the Jacobian linearization of the system at the origin.
(b) Using the Lyapunov’s linearization method to determine the stability property of the closed-loop system
under the state feedback control law u = — K« for K = [-4 — 3 — 1].

Solution:
(a)
The Jacobian matrix of the nonlinear equation is (Close et al., 2001)
9An(x) A dfi(x) 2
Of (1) |ohty onty oni| 2_2X1 9X22+ : ’ 1 2)
ox ity opty anta| | x23— B —2x1 o
X3 2x9 — 2

0x1 0x2 0x3

For the system at the origin,

5 01 0
A= % -lo 0o 1 3)
x=0,u=0 30 -9
af (x,u) 0
B % ~ 1o @
u x=0,u=0 1

Therefore, the Jacobian linearization of the system at the origin is
X1 01 O0f]|x 0]
X2 =10 0 1] [x2|+|0fu (5)
X3 3 0 =2||x3| [1]

(b)
01 0 0 01 0
A-BK=10 0 1|-lof|-4 -3 -1]=lo 0 1 (©6)
3 0 =2 1 73 -1
The eigenvalues of A — BK are
A1 = —=1.5370 + 1.0064i
Az = =1.5370 — 1.0064i (7)

A3 =2.0739

Because the real part of one of the eigenvalues of A — BK—A3—is positive, the closed-loop system
under the state feedback control law u = —Kx for K = [—4 -3 —1] is unstable.
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Problem 3

The motion of the ball and beam system can be described by

() = wa(t)
io(t) = Buxi(t)zi(t) — BGsin(x3(t))
3(t) = wa(t)
za(t) = u(t)
y(t) = x(t)

where 21 is the position of the ball, u is the torque applied to the beam, G = 9.81 m/s? is the acceleration of
gravity, and B = 0.7134 is a constant.
(a) Show that the Jacobian linearization of (1) at the origin is given by

i 01 0 0][m 0
g2 | |00 —BG 0| 2 o|

is | =100 0 1||as|t|o|eTATTe
i 00 0 0] 1

(b) Verify that the pair (A, b) is controllable, i.e., the matrix [b Ab --- A™1b] is nonsingular.

(¢c) Using Arkerman’s Formula to find K so that the eigenvalues of A — bK are {—1,—2,—3,—24}.

(d) Simulate the closed-loop system composed of (1) and u = —Kx with z(0) = a1, 1,1,1] for o = 1,20 from
t =0 to t = 20. Is the equilibrium point = = 0 of the closed-loop system globally asymptotically stable?

Arkerman’s Formula
Let A € R™™ and b € R". Assume the pair (A4,b) is controllable, i.e., the matrix [b Ab --- A"71}] is
nonsingular. Let g(s) = s" + a1s" ' + -+ + ay,_15 + a,, which is called the desired polynomial.
Let ¢(F) = F"+ an F" L + -+ a1 F + an
Then
K= [ 0 - 01 an[b Ab - AP g (F)

is such that
det(sI — (A — BK)) = q(s)

Solution:
(a)
The Jacobian matrix of the nonlinear equation is
In®) A A 0fK)
0 lelx g 81)52x g 8;3)( F} alx4x 0 1 0 0
of (x,u) _ a?:l; aé%%; a?%; 8%?1 _ B3 () 0 =BG cos(x3 (1) 2Bxi (1) x4 (1)
X X X X
” a?iﬁ ) a?if ) B?SX(3 ) a?i(‘ ) b ; 1
X X X X
(94;1 (';;2 34;3 84;4 0 0 0 0
8)
For the system at the origin,
01 0 O
of (x, 0 0 -BG O
Ox x=0,u=0 00 0 1
o0 0 O
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0
of (x, 0
B = 9f (x,u) = (10)
du x=0,u=0 0
1
Therefore, the Jacobian linearization of the system at the origin is
X1 0 1 0 Of [x1 0
X9 0 0 =BG 0f |x9 0
= +| |u (11)
X3 00 0 1] |x3 0
X4 00 0 Of]|xa 1
(b)
00 0 =BG
9 3 00 -BG 0
B AB AB A%B|= (12)
01 0 0
10 O 0
rank [B AB A2B A3B] — 4 (13)

Therefore, the matrix [B AB A’B A3B] is nonsingular, which indicates that the pair (A, b)

is controllable.

()

According to Arkerman’s Formula,

-1

00 0 -BG
0 0 -BG

K:[ooo1] A 14
01 0 q (A) (14)
10 0 0

Because the eigenvalues of A — bK are {—1, -2, -3, —-24} and det (s] — (A — BK)) = g (s), the
desired polynomial is
g(s)=(s+1)(s+2)(s+3)(s+24) (15)

Therefore,

q(A)=(A+1)-(A+2])- (A+3])- (A+24])
144 270 1084.8 =210

| 0 144 -1889.6 -1084.8 (16)
I R 144 270
0 0 0 144

where [ is the identity matrix. Then, we can get
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-1r
0 0 0 —6.9985 144 270 1084.8 -210
[ 0 —6.9985 0 0 144 -1889.6 -1084.8
K=10 0 0 1
L 1 0 0 0 0 144 270 (17)
0 0 0 | 0 0 0 144

= [=20.5760 —38.5799 155.0000 30.0000]

Instead of Arkerman’s Formula, I also use another way to find out the answer, whose

MATLAB codes are shown below:

clc; clear all;

B = 0.7134;
G = 9.81;
BG = B*G;

syms k1 k2 k3 k4

sp = sym(’'sp’,[4 4 4]1);

lambda = [-1 -2 -3 -247];

detsp = sym(’detsp’,[1 4]);

for i = 1:4

sp(:,:,1) = [-lambda (i)

0 —-lambda (i) -BG 0;
0 0 -lambda (i) 1;

1 0 0;

-kl -k2 -k3 -k4-lambda(i)];

detsp(i) = det(sp(:,:,1));
end

[k1,k2,k3,k4] = solve(detsp==0);
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(d)
I use the Simulink model as shown in Figure 1 to simulate the closed-loop system composed
of (1) and u = —Kx with x (0) = @ [1 11 1] forr=1and 20 from = 0 to 7 = 20 s,

9.81
X
G Ll
1
- -C- —
N x1
B O ox >
1 "1 x j L
—» - >
s x2 X
4’ Ll
X
+
o 1 NI
E x3 ! Y v
sin
sin
1
4’ - Lt
N x4
; H
-1
7] Matrix : X
» Multiply
K [oo 0]
GetK
K
Figure 1: Simulink model to simulate the closed-loop system composed of (1) and ¥ = —Kx with x (0) =

a[l 1 1 1]fora:1and20fromt:0tot=20s.

The results I get from the simulation is shown in Figure 2 and 3 for @ = 1 and 20, respectively,
From Figure 3, we can know that for the initial conditions of x (0) = 20 [1 11 1] , the
system is unstable. Therefore, the equilibrium point x = 0 of the closed-loop system is not

globally asymptotically stable.
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15

2.5

15

0.5

T
T2
3
\ n
\ \\
0 2 4 6 8 100 12 14 16
t, (s)
Figure 2: Simulation results for the system with @ = 1.
%107
r
T2
3
Ty

0 001 002 003 004 005 006 0.07 0.08 0.09

Figure 3: Simulation results for the system with a = 20.

t, (s)
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Problem 1

For the following systems, find the equilibrium points and determine their stability. Indicate

whether the stability is asymptotic, and whether it is global.

(a)
% =—x>+sintx (D)
(b)
i=(5-x)° )
Solution:
(a) The equilibrium points x* satisfy —x*3 + sin* x* = 0. Obviously, x* = 0 is one solution.

Next, I will prove that x* = 0 is the only solution. Let f (x) = —x3 + sin® x.

f’ (x) = 4sin® x cosx — 3x? 3)

. in2 2 . .
Because sin x cosx < S-S = % (Cauchy-Schwarz inequality),

f(x) = 4sin®xsinxcosx —3x%2 < 2sin’x - 3x? < A2 - 32 =-x%2 <0 4)

Hence, f (x) is a monotonically decreasing function, which indicates that x* = 0 is the
only solution. Therefore, the equilibrium point for this system is x* = (. Then, the

following Lyapunov function is selected as the candidate:

1
V(x) = §x2 (5)
V (x) is positive definite for Vx € R — {0}. Taking the derivative of Equation (5) yields
that
V(x)=xk=x (—x3 + sin’ x) (6)

From the analysis above for f (x), it can be concluded that f (x) > 0 when x < 0 and
f (x) < 0 when x > 0. Combing this conclusion with Equation (6) obtains V (x) < 0 for
Vx € R - {0}, indicating that V' (x) is negative definite. Therefore, the system is globally
asymptotically stable.

(b) The equilibrium points x* satisfy (5 — x*)° = 0. Obviously, x* = 5 is one solution and
(5—x)° is monotonically-decreasing. Therefore, the equilibrium point for this system is

x* = 5. Then, the following Lyapunov function is selected as the candidate:
1
Vx) =5 (G-’ (7)

V (x) is positive definite for Vx € R — {5}. Taking the derivative of Equation (7) yields
that
Vix)==(G-x)x=—=(5-x)%<0forVx € R - {5} (8)

Therefore, V (x) is negative definite, which means that the system is globally asymptoti-

cally stable.
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Problem 2

Consider the following pendulum equation:

1= ©)

X9 = —aj sinx] — asxy
where a1 > 0 and as > 0.

(a) Show the equilibrium point x = 0 is stable using the Lyapunov function candidate
V(x)=a; (1-cos x1)+%x§. Can you conclude the asymptotic stability of the equilibrium
point x = 0 with this V (x)?

(b) Consider the Lyapunov function candidate

1
Vi(x)= 3 (Puxf +2p1ax1x2 + P22x§) +ay (1 —cosxy) (10)

where p2s = 1 and p11 = azp12. Can you find appropriate value for pi2 to conclude the

asymptotic stability of the equilibrium point x = 0 with this V (x)?
Solution:
(a) .
V(x)=ay (1 —-cosxy)+ §x§ >ay(l—cosxy) >2a;(1-1)=0 (1D
V (x) = a1 sinx1x1 + xoX2 = a1xosinx1 + x9 (—a1 sinx; — asxs) = —agxg <0 (12

Therefore, V (x) is positive definite, and V (x) is negative semi-definite, which means I

can not conclude the asymptotic stability of the equilibrium point x = 0 with this V (x).
(b)

Vi(x) = (an% +2p1ox1xo + pgzxg) +ay (1 —-cosxy)

(13)

N =N =

(112]712)6% + 2p19X1X2 +x§) +ay (1 —cosxy)

>a;(l—cosxy) >a;(1-1)=0

V (x) = prixik1 + praxixg + p1axix2 + pooxoko + ay sinxii
= P11X1X2 + P12X3 + p1ox1 (—a1 sinx| — asxs)
+ po29xs (—ay sinxy — asxs) + ajxg sin xy (14)
=azpiax1xg + p12xg + p12x1 (—aq sinx; — asxa)

+ x9 (—aq sinxy — asxs) + aijxs sin xq

2 .
= (p12 — a2) x5 — aipi2x1 sinxy
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For x; € (-, m) and xo € R, 0 < p12 < as is selected to make V (x) ND. Therefore,
the appropriate value for pi9, i.e. 0 < p12 < a9, can be selected to conclude that the

equilibrium point x = 0 is locally asymptotic stable.

However, 1 can not find appropriate value for pis to conclude the globally asymptotic
stability of the equilibrium point x = 0 with this V (x). Because for Ypi2 € R*, 3k € Z,

which satisfies )
(p12—a2)x; 3

k> ———=—— 15
2raipi2 4 (15)
so that when x1 = 2km + %n,
V (x) = (p12 — a2) X3 — a1 p1ax1 sinx
= (p12 — a2) X5 + a1p12x1
3
= (plg—ag)x%+a1p12 (2k7r+§7r) (16)
(p12—a2)x3 3\ 3
> (p12 —a2)x§ +aipiz |2n 2 4 ox|=0
27ra1p12 4 2
and for Vp12 € R™, 3k € Z, which satisfies
2
—as)x5 3
k<_(P12 2)%; 3 a7
2raipi2 4
so that when x1 = 2km + %Tl’,
V (x) = (p12 — a2) x5 — a1 p1ax1 sinx
= (p12 — a2) X3 + a1p12x1
3
= (p12 — a2) X5 + ai1p12 (2k7r + éﬂ) (18)
(p12—a2)x5 3| 3
> (p12 —ag)xg +aipie |27 e N B |
2naipi2 4 2

In addition, for p12 = 0, this situation has been discussed in (a). Therefore, the appropriate
value for p12 to conclude the globally asymptotic stability of the equilibrium point x = 0
with this V (x) can not be found.
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Problem 3

Show that if symmetric p.d. matrices P and Q exists such that
ATP+PA+21P =-0 (19)

then all the eigenvalues of A have a real part strictly less than —A.
Solution:

Consider the linear homogeneous continuous-time system
x()=(A+al)x (1) (20)
Let us associate with this system and the equilibrium point x* = 0 the quadratic function
V (x) =x"Px (21)

where P is symmetric and positive definite. This V' is continuous and has continuous first partial
derivatives. Furthermore, since P is positive definite, the origin is the unique minimum point of
V. Thus in terms of general characteristics, such a positive definite quadratic form is a suitable
candidate for a Lyapunov function. It remains, of course, to determine how V (x) is influenced
by the dynamics of the system.

We have

. d
Vix)= ExTPx
=x'Px +x"Px
=xT (A+AD) Px+x"P(A+A)x (22)
= (ATP+PA+24P)x
= —xTQx
Because matrix Q is symmetric p.d., V (x) < 0 for Vx € R — {0}, indicating that V (x) is
ND. Therefore, the system is globally asymptotically stable. To ensure the system is global

asymptotically stable, the real parts of the eigenvalues of (A + A7) need to be always negative,

which means all the eigenvalues of A have a real part strictly less than —4 (Luenberger, 1979).
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Problem 4

For the linear system
e (23)
X9 = —6x1 — Bx9

(a) what can you say about its stability and asymptotic stability from the candidate Lyapunov

functions
_ 2 2
Vi (x) = 6x] + x5

Vo (x) = x% +x% — X1X9 4)

(b) For Q = I, solve the Lyapunov equation for a symmetric p.d. matrix P.
ATP+PA=-Q (25)

where
0 1
A= > _5] (26)
Solution:
(a) For the candidate Vq,

Vi (x):6x%+x%>0f0r\7’x€R2—{[8 } (27)

Therefore, Vi (x) is positive definite. Taking the derivative of Equation (27) yields that
Vi (x) = 12x1471 + 2x9%9 = 12x1x9 + 2x9 (—6x1 — 5xg) = —10x3 < 0 (28)

Therefore, V (x) is negative semi-definite, which means the system is stable at the equi-
0

librium point x =
P.S. If Invariant Set Theorem is used in this question, asymptotic stability can be con-
cluded. Because let R = R2, if V; (x) = 0, xo = 0, so x9 = 0. Substituting xo = 0
and X2 = 0 into Equation (23), we can get x; = 0. Therefore, V; (x) = 0 if and only if
X1 0
X = =
X9 0

For the candidate V5,

Therefore, the system is asymptotically stable.

1 1 1 0
Vs (x) :x%+x§ — X1X9 = 3 (x1 —x2)2+§x%+§x3 > 0 for Vx € R% - {[O}} (29)
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Therefore, V5 (x) is positive definite. Taking the derivative of Equation (29) yields that

VQ (x) = 2x1X1 + 2x9X9 — X1X9 — X1X2
= 2x1x2 + 2x9 (—6x1 — Hx2) — x% —x1 (—6x1 — bx9) 30)
= 6x% - 11x% — DX1X9

= (6x1 - 11)62) (X1 +.X2)

The sign of V5 (x) can not be told from Equation (30). Therefore, this candidate Lyapunov

functions can not conclude the stability of the equilibrium point x = 0.

(b) Let P = P piz , Where p12 = poy.
P21 P22
(0 1] 0 1 10
ATP+PA=-0 P11 piz| |P1L P12 _ |~
-6 —=5| [p21 p22| |p21 p22||-6 -5 0 -1
0 -6/ 0 1 1 0
PN P11 P12 + P11 P12 _
1 =5| |p21 p22| |p21 p22||-6 -5 0 -1
- —6pa1 —6p22 N —6p12 pui—5piz| _|-1 0
P11 —5p21 pi2—5pa2| |-6p22 p21—5p2e 0 -1
- —6p21 — 6p12 —6p2+pu-5p1z | _|-1 0
P11 —5p21 —6p22 p12 —Sp22 + p21 — 5p22 0 -1
(3D
Therefore, we can know that
—6p21 —6p12 = -1
~6pa + p11 — 5p12 =0
P22 + P11 P12 (32)
P11 —5p21 —6p22 =0
P12 —9p22+ po1 —Opa2 = —1
Solving Equation (32) yields that
67 1
_ |60 12
p=| T (33)
12 60
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Problem 1

Determine the stability of the following system at the origin. Indicate whether the stability is
asymptotic, and whether it is global.
X1 =x2
: 3 4 i o — 57 0
X = —x{ +sin”x1 — x,
Solution:

Here we use Lemma 2 of Invariant Set Theorem (Slotine et al., 1991). For the system (1),

c(x1) = xil)’ —sin?x; and b (x2) = xg . Therefore,
yb(y)=y>>0,y#0 )
and
_ 3 und
ye(y)=y (y — sin y) 3)
Let f (x) = x3 —sin?x.
£’ (x) = —4sin® x cos x + 3x? 4)
Because sinx cosx < m2”’+82" = % (Cauchy—Schwarz inequality),
f(x)=-4 sinxsinxcosx +3x%2 > —sin?x+3x2 > —2? =32 =x? > 0 (5)

Hence, f (x) is a monotonically increase function, And we note that f (0) = 0. Therefore,

f(x) >0whenx > 0and f (x) <0 when x < 0. Therefore, we can conclude that

ye(y) =y (y3 — sin* y) >0 (6)

Hence, the system is asymptotically stable at the equilibrium point x = 0.

Moreover,
Y Y3 4 Y3 L4
lim c(r)dr = lim (r — sin r) dr > lim rodr= lim —y" =00 (7)
lyl—e Jo lyl=e Jo lyl—=e Jo lyl>e0 4

Hence, the system is globally asymptotically stable at the equilibrium point x = 0.
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Problem 2

Consider Lienard’s equation
X1 =x9

8
X9 = —xosinx; — b (x1) ®
where b (y) is continuous function over y € R and satisfies yb (y) > 0, y # 0.
(a) Show the following function
1, [
R R AL ©
0

is a Lyapunov function for the system.
(b) Show that the origin is locally asymptotically stable.

(c) Can you conclude global asymptotic stability of the origin based on this Lyapunov
function? Why?

Solution:

(a) Because yb (y) > 0,b(y) >0fory > 0andb (y) < Ofory < 0. Hence, foxl b(y)dy >0
for x1 # 0. Therefore,

1 *1
V(x1,x9) = §x% +./0 b(y)dy >0 (10)

Taking the derivative of Equation (9) gets
ovV(x)., JV(x).
0x1 A 0x9 2
=b(x1)x2+x2 (—xg sin xy —b(xl)) (1D

V (x1,x2) =

2X1S0

= x% sin
Therefore, V (x) is positive definite, and V (x) is negative-semi definite, from which we

can conclude that 1 x1
V(x1,x2) = §x% +/ b (y)dy (12)
0

is a Lyapunov function for the system.

(b) Invariant Set Theorem is used in this question. For x1 € (—m, ) — {0}, if V (x1,x2) = 0,
x2 = 0, so Xo = 0. Substituting xo = 0 and X2 = 0 into Equation (8), we can get x; = 0.
. X
Therefore, V; (x) = Oif and only if x = | | =
X2
Therefore, the system is locally asymptotically stable.

0
O] for {(x1,x2) |-m < x1 <m,x9 € R}.

(c) Global asymptotic stability of the origin based on this Lyapunov function can not be
concluded because V (x1,x2) = 0 when {(x1,x2) |x1 = kn, k € Z, x5 € R} so we cannot

find the invariant set.

Page 2 of 5



Liuchao JIN MAEGS5070 Nonlinear Control Systems

Assignment #5

Problem 3

Using the Krasovskii Theorem to show the global asymptotic stability of the equilibrium point

at the origin of the following system

X1 = —=3x1 +x2

X9 :)C1—3X2—Xg

Solution:

of |-3 1
dx |1 -3-5xd

of of7 -6 2
F = — _ = V.
(x) o + ox [2 6 le‘J < 0,Vx

Thus, the equilibrium point is asymptotic stable.

Moreover, )
V(0 = 1T () () = (=3x1 +22) + (1 = 335 - 2]

is radially unbounded. Thus, the equilibrium point is global asymptotic stable.
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Problem 4

Consider the following system:

X1 =Xx9
_ (17)
X3 = —c (x1) = b (x2)

where the functions ¢ and b are continuous satisfying the sign condition. Using the variable

gradient method to derive a Lyapunov function for Equation (17) as follows:

X1 1
V (x1,x2) :/0 c(y) dy+§x§’ (18)

Solution:

Let VV = [ajc (x1) , asxa]. Because

ovVvy _ daic (x1) _0= 0asxs _ oVVy (19)
X9 X2 X1 X1
we can make a; = as = 1. Then, V can be computed as
V =VVi = ¢ (x1) x2+x2 (—¢ (x1) — b (x2)) = —x2b (x2) (20)

Bcause b is continuous satisfying the sign condition, V < 0, which means V is negative definite.

Therefore, the Lyapunov function can be expressed as

X1 X2
V (X) = / VVl (Xl, 0) dx1 + / VVQ ()Cl,XQ) dXQ
0 0

X1 X2
_ / ¢ (x1) diy + / xadxs 21
0 0
X1 1 5
= c(y) dy+§)c2
0
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Problem 1

Show that the one-dimensional system x = —a (¢) x where a(t) is continuous and nonnegative
. . . . T

overt > ( is exponentially stable if there exista 7 > 0 such that, for any > 0, ft " a (r)ydr>vy

for some y > 0.

leT a(r)dr

Hint: For any ¢ > 19, e~ <e V<l

Solution:

For the system, x = —a (¢) x, the solutioin for x (¢) is
x (1) = x (t9) & o “* ()

If for any ¢ > 0, ftHTa (r) dr > vy for some y > 0,

t t+T to+2T t t—tg
/a(T)dT:/ a(T)dT+/ a(T)dT+-"+/ a(t)ydr > y @
fo to to+T =T r

Therefore,

t

— dx _t—to
¢ o MO g Y

T (3)
Hence,
/t(t) a(x)dx

x (1) =x(to) e <x(tg) eVe ()

We can conclude that X = —a () x is exponentially stable.
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Problem 2

Condition (4.19) on the eigenvalues of A (1) + AT (1) is only, of course, a sufficient condition.

For instance, show that the linear time-varying system associated with the matrix

—1 e!/2
A(r) = 5
ool .
is globally asymptotically stable.
Solution:
—1 e'/2 ¢ x| +e?
A(I)Z e — X1 _ X1 +é€2X9 (6)
0 -1 X2 —X2
we can obtain the solution for xs (7):
xg (1) = x2 (1) €70 (7)
Because x1 = —x1 + eéxg
t T
x1 (1) = x1 (89) e~ 710 +/ e U elxy (1) dr
o
1
=x1 (19) e 710) 4 / e Delxy (1) e T dr
o
(8)

t
= x1 (19) e 710 4 xq (1g) e~ (710 / e2dr

)
= x1 (19) e 710) 4 2x5 (1) e~ 10 (e% - et?o)

= x1 (1) €™ 1710) + 25 (1) " (570) — 2 (19) €™ (1 570)

We can conclude that X = —A (¢) x is globally asymptotically stable since lim;_, x; (#) = 0,7 =
1,2.
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Problem 3

Determine whether the following systems have a stable equilibrium. Indicate whether the

stability is asymptotic, and whether it is global.

(a)
RN
X9 0 =2 [x9
(b)
[X1] 3 [—1 2sint X1] (10)
X9 0 - (l + 1) X9
(c)
Xl -1 €2t X1
= 11
MR PN g
Solution:
(a)
_ 3t : _ 3t
A(t):[ 10 e ]:>[X1]:[ 10x1 +e XQI (12)
0 -2 X9 —2x9
we can obtain the solution for x3 (7):
xg (1) = x3 (1) €7 20710) (13)

Because %] = —10x] + e%xy

t
x1 (£) = xq (19) e 1000) 4 / e 0003 (1) dr

10

t
~ 1y (19) e~ +/ £~100-0) 37 (10) ¢=2(-10) g
o

t
=xq (tO) e—(t—to) + X9 (t()) e—(lOt—Qto) / elleT (14)

fo
=x1 (t0) e—(t—lo) + %XZ (t0) e—(z—2to) (ellt _ 611t0)

t+310 —(10t-1319)

1
- —xa(tp) e

1
_ —(t-tp)
= t + —x9 (¢
x1 (to) e 72 (to) e 11

We can conclude that X = —A () x is unstable since lim;_,, X1 (¢) = oo.
(b)

—2sint
—2sint 2(t+1)

-2 2sint

T _
AW +AT (1) = [ZSint —2(t+1)

:—(A(t)+AT(t)):[

(15)
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The determinant of — (A (1) + AT (1)) is equal to
det [— (A () + AT (r))] —4(r+1)—4sin2r > 4(1+1) =4t >0 (16)

Therefore, — (A (¢) + AT (1)) is positive definite, which means A (¢) + AT (¢) is negative
definite. Hence, A; (A (¢) + AT (1)) < —A for some A > 0. We can conclude that the
system is globally asymptotically stable.

(©)

-1 % X1 —1xq + €% x5
A = =
L PR e o Y s I

we can obtain the solution for x3 (7):
xa (1) = xg (1) € 21710 (18)

Because %] = —10x] + e%xy

t
x1 (2) = x1 (19) e~ 10 +/ e U3 xy (1) dr

to
t

=x1 (t9) 710 4 / e e xy (19) e 210 g
to

t (19)
= x1 (t9) €710 + xo (1) 720 / e'dr

10
= x1 (t0) e~ (1710) 4 xo (t0) e~ (1=210) (et — ')

= x1 (t0) €77 + x3 (19) €' — x5 (19) ™70

Since we can find constant r (R, tg) = %e‘S’O,VR > (0, such that ||x (7p)|| < r = ||x ()| <

R, t > 19, so, the equilibrium point at origin is stable.

However, lim; o, x1 (¢) = x2 (¢9) €', so it is not asymptotically stable.
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Problem 4

Show that the following system is globally exponentially stable with a detailed argument.

X;=— (5+x§ +x§)x1
Xg = —xg +4x3 (20)
X3 =—(2+sint)x3

Solution:
Leta (t) = 2+sint. Then

- fr(z) (2+sinT1)dT

x3 (1) = x3 (t9) e = ||x3le~ "0 (21)

Therefore,

t
x9 (1) = e 70 x5 (10) + / e 4 (1) dr (22)

to
Thus, it is ready to see that the system is globally exponentially stable upon using Proposition

1 on the x; subsystem (Slotine et al., 1991).
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Problem 5

(i) For the autonomous system x = f (x), x € R", show that, if, in a certain neighborhood Q

of the origin, there exists a continuously differentiable scalar function V' (x) such that

*V(0)=0 Vt>0
* V (x) can assume strictly positive values arbitrarily close to the origin.

s V (x) is positive definite (locally in Q)
then the equilibrium point O is unstable.

(ii) Show that the E.P. of x = ¢ (x) is unstable where ¢ (x) is continuous and satisfies
xc(x) > 0,x #0.

Hint: Let R > 0 be such that V is P.D. on By = {)c|||x||2 < R2} and Bg C Q, and let

M =maxV (x) (23)

X€Br

V is continuous & Bg compact = M exists. Also, M > 0 since V (x) can assume strictly
positive values arbitrarily close to the origin. For any R > r > 0, there exists x (0) such
that 0 < |lx (0)]| < r, and V (x (0)) = a > 0. Since V (x) is positive definite (locally in Q),
V(x(t)) >V (x(0)) >0forallt > 0. Let U = {x|x € Bg and V (x)} > a. Then U is compact.
Thus there exists L > 0 such that

L =min {V} (24)

xeU

If ||x (¢,x0)]| < R for all t > 0, then

V (x (t,x0)) — Vo (x0) = ‘/Ot V (x (t,x0)) dt > [}t Ldt = Lt

(25)
= V (x(t,x0)) > Vo (x0) + Lt > M
when r > %(XO) which contradicts Equation (23). Thus, the E.P. is unstable.
Solution:
(i) Let R > 0 be such that V is P.D. on Bg = {x|||x||> < R?} and Bg C Q, and let
M =maxV (x) (26)

xeBgr
V is continuous & By compact = M exists. Also, M > 0 since V (x) can assume strictly
positive values arbitrarily close to the origin. For any R > r > 0, there exists x (0) such
that 0 < ||x (0)|| < r, and V (x (0)) = a > 0. Since V (x) is positive definite (locally in
Q),V(x(t))>V(x(0)) >0forallt > 0. Let U = {x|]x € Bgand V (x)} > a. Then U
is compact. Thus there exists L > 0 such that

L = min {v} (27)
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If ||x (¢,x0)]| < R for all t > 0, then

V (x(t,x0)) — Vo (x0) = /Ot V (x (t,x0)) dt > /Ot Ldt = Lt

= V(x(t,x9)) = Vo(xo) + Lt > M

(28)

when t > W

which contradicts Equation (23). Thus, the E.P. is unstable.

(i) If we take V (x) = x2, we can see that V (0) =0 V¢ > 0. And V (x) = 2xx = 2xc (x) >
0,Vx # 0, so V is globally positive definite.

Therefore, the equilibrium point of X = ¢ (x) is unstable.
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Problem 1

Show that if a function x : [0,c0) — R" is uniformly continuous, and there exists a positive

definite quadratic function V (x) such that

/OOV(x(t))dt <0 (1)
0

then x (7) tends to zero as t — oo.
Solution:

Because V (x) is a positive definite quadratic function, we can express V (x (¢)) as follows
V (x (1)) =xTPx (2)

where P is a positive definite matrix.
Define f (1) = fotx (T) dtv. We claim that f (¢) has a finite limit as t — co. Otherwise, if

tlim f(t)= /wx (1) dt = (3)
—00 0
we will have -
/0 I (0) 12 = oo @)
In addition,
[ @1Rar < das (P) [ 47 Pt = 2 () [V )
0 0 0
Hence, .
/ V(x(1)dt = (6)
0

which is contradicted to Equation (1). Therefore, f (¢) has a finite limit as t — co.
Besides, because x : [0,00) — R" is uniformly continuous, that is f (¢) is uniformly
continuous, by Barbalat’s Lemma 4.2, we can conclude that f (f) — 0 as t — 0, that is x ()

tends to zero as t — oo.
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Problem 2

Consider the following one dimensional single-input nonlinear control system

X=0g (x,t)+u (7)

where 6 is some constant parameter, and g (x, ¢) is some bounded smooth function defined for

all # and x.

(a)

(b)

(c)

(d)

Assuming 6 is known, show that, under the following state feedback nonlinear controller
u=-0g(x,t)—kx (8)

where k > 0, the equilibrium point of the closed-loop system is globally asymptotically
stable.

If 6 is unknown, the feedback controller u = —6g (x,t) — kx is not implementable. One

can use adaptive control to control the system. Show that, under the following adaptive

controller X
u=-0g(x,t)—kx
% 9)
0=g(x,t)x
the closed-loop system takes the following form
X = x,t) — kx
¢g (x,1) (10)

0= g(x,t)x
where ¢ = 6 — 6 (you can interpret 6 as an estimation of 6).

Using a Lyapunov-like function V = x2 + ¢ to show that both x and 6 are bounded and

hm[_)oox (t) = O.

For g (x,t) = cos (x) sin(t) and k = 2, do the simulation for the closed-loop system
using MATLAB with x (0) = 0 and 6 (0) = 1. Plot x(¢); 8 (t); ¢ (¢); u (¢) for 0 < 1 < 40

seconds.

Solution:

(a)

Substituting the controller in Equation (8) into the system in Equation (7) yields that
X=0g(x,t)+u=0g(x,t)—0g(x,t)—kx =—kx (11)

Because k > 0, according to linear system stability theory, —k is Hurwitz. Therefore, the

equilibrium point of the closed-loop system is globally asymptotically stable.
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(b) Substituting the controller in Equation (9) into the system in Equation (7) yields that

(c)

(d)

O 0 9 O L A W N =

e e e e
0 N N Lt WD~ O

X=0g (x,t)+u

. X = 1) —k
u=-0g(x,t) —kx = X =g (x.1) —kx

ézg(x,t)x 0=g(x,0)x

where ¢ = 6 — 6 (you can interpret 6 as an estimation of ).

V = x? + ¢? is lower bounded obviously. And its derivative
V = 2xi + 2¢¢

=2x (g (x,t) — kx) + 2¢ (9 - é)

=2x (¢pg (x,t) —kx) +2¢ (0 — g (x,1) x)
= —2kx2 <0

(12)

(13)

This implies that V (x (¢)) < V (x (0)), V¢ > 0, which indicate that x and ¢ should all be

bounded. Taking the derivative to V yields that

V = —dkxx = —4kx (¢g (x,1) — kx)

(14)

Here, x, ¢, and g (x, t) are all bounded. Therefore, V is bounded. According to Barbalat’s

Lemma 4.1, V is uniformly continuous. Again, using Barbalat’s Lemma 4.3,V (x,t) — 0

as t — oo, which means lim;_,, x () = 0.

We set 6 =  and use following Simulink to get the results:

And we use the following code to plot the results:

clear all; clc;

figgl = openfig(’x.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $x, \mathrm{\ \left (m\right)}$’, ’interpreter’,’latex’);
title('’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);

set (gcf, ' renderer’,'painters’);

filename = "x"+".pdf";

saveas (gecf, filename) ;

close(figgl);

figg2 = openfig(’theta.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $\hat {\theta}$’, ’interpreter’,’latex’);

title('’);

a = get(gca,’XTickLabel’);
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pi +
» -
theta T

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

— sin 4W4%> |
4J44>

hat{theta} ‘ -

]
]
U g oo

Figure 1: Block diagram for the system.

set (gca, ' XTickLabel’,a,’FontName’, ' Times’,’ fontsize’,12);
set (gcf, ' renderer’,’'painters’);

filename = "theta"+".pdf";

saveas (gecf, filename) ;

close (figg2);

figg3 = openfig(’'phi.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $\phi$’, ’'interpreter’,’latex’);

title('’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);
set (gcf, '’ renderer’,'painters’);

filename = "phi"+".pdf";

saveas (gef, filename) ;

close (figg3);

figgd4d = openfig(’u.fig’,’reuse’);
grid on;
xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' $u$’, ’interpreter’,’latex’);
title('’);
a = get(gca,’XTickLabel’);
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41 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
42 set (gecf,’renderer’,’painters’);

43 filename = "u"+".pdf";

44 saveas (gcf, filename) ;

45 close(figgd);

The results are shown as follows:

\\ .
&- o \\ / a Nl ) \

N I

e A N A -
/] AN A

[ NEINARANARANE
r AN RYRRYIYE
A
1 AR VARV VAR VRR VAR

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
s

Figure 2: Simulation results.
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Problem 3

Consider the system X = f (x) where x € R", and f is continuously differentiable with f (0) = 0.
Let J be the Jacobian matrix of f at the origin. It is known from the Lyapunov’s linearization
method that the equilibrium at x = 0 of this system is unstable if at least one of the eigenvalues
of J has positive real part. Prove a special case of this result by assuming that n = 2 and
1 0
J=
0 -2

Hint: LetV (x) = x% - xg.

Solution:

1 0
Because J = 0 2], the system can be described as

{ X1 = x1 + g1 (x1,%2) (15)

Xo = —2x2 + g2 (x1,X2)

where g1 (x1,x2) and g2 (x1, x2) are higher order terms.
Define V (x) = x% - x% satisfies V (0) = 0 and we can assume positive values arbitrarily near
the origin. Take the time derivative to V (x):

V (x) = 2x1%1 — 2x9X9
= 2x1 (x1 + g1 (x1,X2)) — 2x2 (=2x2 + g2 (x1,X2)) (16)

= 2x% + 4x3 + 2x181 (x1,X2) — 2xX282 (X1, X2)

Because g (x1,x2) and g2 (x1,x2) are higher order terms, Va2 > 0, 3r > 0 such that
llgi (x1,x2) |l < a;llx;ll,i = 1,2, Vx € B,. Therefore,

1%4 (x) = Zx% + 4x% +2x1g1 (x1,Xx2) — 2x282 (x1,x2)
> 2||x1]|% + 4llxal? - 2a1 [lx1[|? - 2a2]|x2]|? (17)

= (2= 2a1) |l |1? + (4 = 2a2) |lx2|l?

as long as we select 0 < @1 < land 0 < ag < l, 1% (x) can defined as positive definite in B,.
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Problem 4

Consider the second order system
X1 = X1X2

Xo=Xx1+UuU

using backstepping to design a state feedback controller to globally stabilize the origin.

Solution:

Letting u = u, — x1 gives

X1 = X1X9
X2 = U,
In this form, n = x; and { = x».
f@m=0
and
gm=n
Therefore,
oGy = "L,
g (m)

Here, @ > 0. The closed-loop system has a control Lyapunov function

1

Vi(x1) = §x%

By Lemma 1, we can have a control Lyapunov function

1 2

Vo (x1,x2) =V (x1) + 5 (x2 = ¢ (x1))
1o 1 2
=51 +§(x2+a/)

with respect to

Uq = o (X1,X2)

=2 1 g ] -
n

oV (i)

g () =k (L= ¢ () = =x} — k(12 + )
n

where k > 0. Therefore,
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Problem 5

(a) Using the Lyapunov function candidate V (x) = x? to determine the stability of the origin

of the following system

%= —x3 +x%sin’ x 27

(b) Using backstepping to design a state feedback controller to globally stabilize the origin

of the following system

X1 = —x:f + X1Xx9 sin? X1

X2 = X3 (28)
X3 = x3+exp (xo)u

Solution:
(a) V (x) = x? is positive definite. Taking the time derivative to V (x) yields
V(x) = 2x% = 2x (—x3 +x? sin® x) =-2 (x4 — x3 sin? x) <=2 (x4 -x3 ) =0 (29
Hence, V (x) is negative definite. Therefore, the system is globally asymptotically stable.

(b) Letting u = exp (—x2) (u, — x3) gives

X1 = —le)’ + X1Xx9 sin? X1
X =Xx3 (30)
X3 = Uy
In this form, n = x; and £ = xs.
f @) =—x] (31)
and
g () =x1sin’x (32)

From part (a), we can have a control Lyapunov function
L o
Vix) = oM (33)

with respect to
¢ (x1) =x1 (34)

By Lemma 1, we can have a control Lyapunov function
Vo (x1,x2) =V (x1) + % (x2 = ¢ (x1))?

(35)

1 1
= ix% +3 (x2 — x1)*
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with respect to

¢a (.X]_,XQ)

0o () ov (n)
- on on

= —x:{' + xqx9 sin?xy — x% sinxy — ky (xo —x1)

[f (m)+g (] - g —k(&—-¢(m) (36)

where k1 > 0. Applying the extension of Lemma 1 to the whole system yields

1
V (x1,x2,x3) =V, (x1,x2) + 3 (x3 — ¢ (x1,x2))*

1 1
= §x% +3 (x3 —x1)? (37)
1
+ 3 (X3 +xi1)’ — x1x9 sin® x1 +x% sinxy + ky (x2 —xl))

with respect to

ua = ¢a’ (X15x2’x3)
_ 0¢a (x1,X2) OV (x1,x2)
d (x1,x2) d (x1,x2)

= (—3x% + X9 sin? X1 + 2x1x9 Sinxq1 cosxy] — 2x7 sin? X1 — 2x% sinxj cosxy + k1) (—x:l)’ + X1X9 sin? x1)

[f (x1,x2) + g (x1,x2) x3] — g (x1,x2) — k (x3 — ¢ (x1,%2))

+ (x1 sinxy + k1) x3— (xo —x1) — ko (X3 +xz1)’ — x1x9 sin® x1 +x% sin?xy + ky (x9 — xl))
(33)

Therefore,

u = exp (—x2) (ug —x3)

2

= exp (—x2) (—Sx% + x98in? x1 + 2x1x9 sinxy cos x1 — 2xq sin® xy — Qx% sin xi cosxi + kl)

. (—xif + x1x9 sin? xl) + exp (—x2) (x1 sin?xy + kl) x3 —exp (=x2) (x2 — x1)

2 2

— ko exp (—x2) ()C3 + x:f — X1x2 8in” x1 + X7 sin?

X1+ kq (x2 — X1))

(39)
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Liuchao JIN MAEGS5070 Nonlinear Control Systems Assignment #8

Problem 1

Consider the controlled van del Pol equation

X1 = X2
x2:—x1+e(1—x%)x2+u,e>0 (D)
y=x1

(a) Calculate the relative degree of the system.

(b) Find a state feedback control law so that the equilibrium point at the origin of the closed-

loop is globally asymptotically stable.

Solution:
(a)
y=X1=x2 (2)
y:xQ:—x1+e(1—x%)x2+u:a(x)+,8(x)u (3)
Therefore, the relative degree of the system is 2.

(b) The state feedback control law so that the equilibrium point at the origin of the closed-loop

is globally asymptotically stable is shown as follows:

Y -3 e —a (x)
B (x)

= —a1é — age — a (x) 4)

=—a1y —azy —a(x)

= —@{X9 —@9X] +X] — € (1 - x%) X9

Because p = n, the closed-loop system can always be made an asymptotically stable

linear system.

Choosing a1 = 1 and ap = 2, the control law becomes

U =—xg— x| &)
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Problem 2
The motion equation of a single-link robot manipulator is given by
JO+ MgLsin® =u (6)
(a) Give the state space equation of (6) with x; = 6, xo = 6, and y = x1

(b) Assume J =5, gL =1, and M = 10. Let y, (¢) be a sufficiently smooth time function
overt € [0,00). Lete(t) = y(t) — yq(t). Design a state feedback control law so that
e () satisfies & (1) +2¢ (t) + e (t) = 0.

(c) Check your design in simple simulation for y, () to be a unit step input, and a sinusoidal

function sin ¢, respectively.
Solution:

(a) The state space equation of (6) with x; = 6, x = 6, and y = x1 is shown as follows

X1 = X2

. MgLsi

Ko = —TEIL 4 2y (7)
y =X

(b) Because J =5, gL =1, and M = 10, the state space equation of (6) becomes

X1 = X2
X9 = —2sinx; +0.2u (8)
y=x1

Then, we will find the relative degree p:
Yy =X1=x2 )

Vy=xo=-2sinx1+02u=a(x)+B(x)u (10)

Therefore, the relative degree of the system is 2. state feedback control law so that the

system is globally asymptotically stable

Y -3 e —a (x)

B (x)
_Ja () —é (1) —aze (1) —a () (11)
B (x)

=5(Jq(t) —aié (t) —age (1) + 2sinxy)

Substituting Equation (11) into Equation (10) obtains
Y () =Fa (1) —aré (1) — aze (1) (12)
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That is
é(t)+aié(t)+age(t) =0 (13)

Therefore, @y = 2 and @ = 1 can satisfy the requirements of & (1) + 2¢ (¢) + e (1) = 0.

Hence, the state feedback control law is

u=5Fa(t)—2(x2—yq) = (x1 = yq) +2sinxy) (14)

(c) We use the following Simulink to get the results:

F

<

O 0 9 O L A W NN =

[ W S
B W O = O

Bu Au
At [\dotfy)_d At \ddot{y)_d

Figure 1: Block diagram for the system.

And we use the following code to plot the results:

clear all; clc;

figgl = openfig(’Q2Step.fig’,’'reuse’);

grid onj;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' Sy, \mathrm{\ \left (m\right)}$’, ’interpreter’,’latex’);
legend ('’ Sy_d$’, 'S$y$’, ’'interpreter’,’latex’,’Location’,’southeast’);
title('’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);

set (gcf, ' renderer’,’'painters’);

filename = "Q2Step"+".pdf";

saveas (gecf, filename) ;

close(figgl);

figg2 = openfig(’Q2Sine.fig’,’reuse’);
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15
16
17
18
19
20
21
22
23
24
25

08
06
=04

0.2

grid on;
xlabel (' st,
ylabel (' Sy,
legend (’ $y_ds$’,
title(’’);

a = get(gca,’XTickLabel’);

\mathrm{\ \left (s\right) }$’,’ interpreter’,’latex’);
\mathrm{\ \left (m\right) }$’,
’$y$’,

"interpreter’,’latex’);

"interpreter’,’latex’,’Location’,’southeast’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);
set (gcf, ' renderer’,’'painters’);

"Q2Sine"+" . .pdf";

filename =

saveas (gcf, filename) ;

close (figg2);

The results are shown as follows:

0.5

/\
[\

\
v, (m)

\

-0.5

— 1

15 0 5

t, (s) t, (s)

(a) Step input. (b) Sinusoidal input.

Figure 2: Simulation results.
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Problem 3

Another way to achieve asymptotic tracking: Consider

Y = () +B(x)u (15)
or
X1 = X2
Xp-1 = Xp (16)
Xn=a(x)+B(x)u
y=x1
where x = [y y .- y(”‘l)], @ (x) and B (x) are known and S (x) # 0 for all x. Given y, (1),
lete (1) =y (t) — yq (¢) and define
s=e" V101" 4+, e (17)
where a1, ..., a,_1 are such that
Va2 4 o+ ol + @y (18)
is a stable polynomial.
(a) Design a control law such that
s+ks=0 (19)

where k > 0.
(b) Show that the control law achieves lim;_, e () = 0.

(¢c) Show that, when y; = 0, the closed-loop system is globally asymptotically stable.
Solution:

(a) To achieve asymptotic tracking for Equation (16), note that using an input transformation

a(x)+B(x)u=u, (20)
or )
u, —a(x
sl 27 21
"SR D
gives
Y =, (22)
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(b)

which is in the chain integrator form. In order to achieve Equation (19) with p = n, i.e.,

(y(”) _ yﬁln)) + (a'l + k) (y(n—l) _ yfin—l)) + (0,2 + ka’l) (y(n—Q) _ yEJn—Q))

+o+ (an-1 + kay-2) (y(l) - y;”) +kap-1(y—ya) =0

Substituting Equation (22) into (23) gives

(100 = ") + @1 +0) (7 = 5 ) o+ (@2 + k) (¥ = 5§ 2)

+.+ (-1 + kay-2) (y(l) - yg)) +kap-1(y—ya) =0

n
U, = ygl) - Z (ozi + ka’i_l) €n_i
i=1

Here ag = 1 and «,, = 0. Thus,

(n) _

ug —a (x) Yy " (et kaisy) e - a(x)

u =

B (x) B (x)
Because
s=e™ Y+ 4+ +a,_te
where a1, ..., a,—1 are such that

N "2 4 v a0l + @y
is a stable polynomial, for
s=e™ +a1e™ V1 +a, eV
where a1, ..., a,—1 are such that
'+ "+ ay0® + @y
is also a stable polynomial by Routh-Hurwitz stability criterion. Therefore,

s+ks=e" + (a1 +k) eV + (a2 + kay) e

+ ...+ (@p-1 + kay—2) e+ ka,_1e =0

where «a; + ka;j_1, i = 1, ..., n are such that
A+ (a1 + )7 4 o+ (e + k) A+ ka1

is also a stable polynomial. As a result, e satisfies lim;_, e (¢) = 0.
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(c) When y, = 0, the closed-loop system is

X =Ax+ Bk (x,0,...,0) = (A = B [kay-1, (-1 + ka,—2), ..., (a1 + k)]) x

0 1 0 0
0 0 1 0 (32)
= X
0 0 0 1
__ka'n—l — (a1 +kay—2) —(ap2+ka,3) ... —(a1+ k)
Clearly, (A — B [kay-1, (@y-1 + kay—2) , ..., (@1 + k)]) is a companion matrix with its
characteristic polynomial being
'+ (a1 + )7 4+ (e + k) A+ ka1 (33)

Thus, when y; = 0, the closed-loop system is globally asymptotically stable.
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Problem 1

Consider the following system

X1 = X1+Xx9

Xo = x3+cos(x1)u 1
= 2 (1)
X3 = X1+x5+Ax3

y = 1

(a) For what values of A is the system minimum phase? nonminimum phase?

(b) Assume a state feedback control law u = k (x) is such that j (¢) + 4y (¢) + 2y (¢) = 0.
Is the equilibrium point at the origin of the closed-loop system (locally) asymptotically
stable for all 1 € R? Why or Why not?

Solution:

(a) The Jacobian linearization of the system at the origin is given by

X =Ax+ Bu
(2)
y=Cx
with
110 0
a=lo 0 1], B=[1|, c=[1 0 0] 3)
10 A 0
The transfer function of the above linear system is then given by
H(s)=C(sI-A)'B
. s(s—=2A) s—A 1
= C 1 -1)(s— -1 |B
SG-DG-D+1 (s=Ds=1 s (4)
s 1 s(s=1)

s—A
s(s=1 (-1 +1

The system has a zero at s = A. Thus, it is minimum phase for all 4 < 0 and it is

nonminimum phase for all 2 > 0.

(b) No. Since when A4 > 0, the system is nonminimum phase at the origin, the equilibrium

cannot be made locally asymptotically stable.
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Problem 2
The motion equation of a single-link robot rigid-joint manipulator is given by

y+aysin(y) =p(x)u &)
(a) Give the state space equation of Equation (5) with x; = y and x9 = y.

(b) Assume 1 < a <2and 0.5 < B(x) < 2.5, using a = 1.5 to design a sliding mode control
law u such that
ds®

o < —|s] (6)

where s = é + 2e withe =y — y,.

(c) Assume y, is a unit step function, simulate your design on the closed-loop system
consisting of the plant Equation (5) with a = 2 and the sliding mode control law with
a = 1.5. Illustrate the performance of your control law by plotting y (¢) and y, (¢) in the
same figure for 0 < ¢ < 20. Also, plot u (¢) for 0 < ¢ < 20.

(d) In the control law designed in part (b), replace sgn (s) by sat (s/0.2), and repeat part (c).

Hint: In simulation, you can let F (x) = |@ (x) — @ (x)| and B (x) = 1.

Solution:

(a) Letx; =y and xo = y, the state-space equation is

X1 = X2
X9 = —axgsinxy + B (x) u (7)
y=x1

(b) Define the estimate ,é of B (x) by ,é = (b,m-,,b,,,ax)l/2 = ‘/75 and let b = (b,,m/bmin)l/2 =
V5.

Using a = 1.5 yields that

@ = —1.5x9sinxy (8)
Aa=a(x)—a= |Aa| =|a(x) —a| < 0.5 |x2sinx)| = F (x) = 0.5 |xosinx| (9)

Therefore,

u=-a(x)+j;—aé (10)
Because s = ¢ + 2e, a1 = 2. Therefore,
i =1.bxosinx; + 4 — 2é (11)

Because the sliding mode control law u should satisfy

ds?

Page 2 of 14



Liuchao JIN MAEGS5070 Nonlinear Control Systems Assignment #9

we can know that n = % Therefore, we can let ¢ (x) be

¢ (x) =b(F(x)+n)+(b-1)u

1
= V5 (0.5 [xzsinx |+ 5| + («/S - 1) I1.5x sinx; + g — 2€|
. 1 . (13)
=v5(0.5 |xo sinxq| + 3 + (\/5— 1) |1.5x9 sinxy + Vg —2 (¥ — yq)|
1
= ‘/5 0.5 |x9 sinxq| + 5 + (\/g - 1) [1.5x9 sinxy + ¥4 — 2 (x2 — y4)|
Hence, we can design a sliding mode control law u as follows:
w=p"[a—¢(x)sgn(s)]
= [1.5xosinx; + J4 —2¢ — ¢ (x) sgn (s)] (14)

[1.5x9 sinx1 + Jg — 2 (x2 = yq) — ¢ (x) sgn (s)]

Sl Gl

where

¢ (x)=V5 (0.5 |xo sinxq| + %) + (\/5 - 1) |1.5x9 sinxy + Jg — 2 (x2 — ya)| (15)

s=¢+2e=(y—yq)+2(y—ya) = (x2 = Yq) +2 (x1 = yq) (16)

The MATLAB shown below is used to simulate the performance of the designed controller.

1 elec; clf; clear all;

2 %% sgn part

3 [t,x] = oded5(’'Q9_2_Systemsgn’, [0,20],[0 0]);

4 phi = 0.540.5+abs(x(:,2) .*sin(x(:,1)));

5 y.d=1;

6 y_ddot = 0;

7 y_dddot = 0;

8 v = x(:,1);

9 ydot = x(:,2);

10 s = ydot-y_ddot+2«* (y-y_d);

11 u = -phi.xsgn(s)+1.5%x(:,2).*sin(x(:,1))+y_dddot-2« (ydot-y_ddot);
12 figure(l);

13 hold on;

14 plot(t, y,’color’,[0.667 0.667 1],’LineWidth’,2.5);

15 plot(t, y_d+t*0,’color’, [l 0.5 0],’LineWidth’,2.5);

16 hold off;

17 grid on;

18 legend(’ Sy\left (t\right)s$’,’Sy_d\left (t\right)$’,’ interpreter’,’ latex’);
19 =xlabel(’S$t, \ (\mathrm{s})$’,’interpreter’,’latex’);

20 ylabel (' $\theta, \ (\mathrm{rad})$’,’interpreter’,’latex’);
21 a = get(gca,’XTickLabel’);

22 set(gca,’XTickLabel’,a,’FontName’,’'Times’,’ fontsize’,12);
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23 set(gca,’'position’, [0.15 0.20 0.6 0.6]1);

24 set (gcf,’position’, [100 100 800 600]);

25 set(gcf,’renderer’,’painters’);

26 filename = "Q9-2-yyd-sgn"+".pdf";

27 saveas (gcf, filename);

28 figure(2);

29 plot(t, u,’color’,[0.667 0.667 1],’LineWidth’,2.5);
30 grid on;

31 =xlabel (’$t, \ (\mathrm{s})$’,’interpreter’,’latex’);
32 ylabel (' $Su, \ (\mathrm{N\cdot m})$’,’interpreter’,’latex’);
33 a = get(gca,’XTickLabel’);

34 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);

35 set(gca,’position’, [0.15 0.20 0.6 0.6]);

36 set (gcf, 'position’, [100 100 800 600]);

37 set(gcf,’renderer’,’painters’);

38 filename = "Q9-2-u-sgn"+".pdf";

39 saveas (gcf, filename) ;

40 %% sat part

41 [t,x] = oded5(’Q9_2_ Systemsat’, [0,20],[0 01]);

42 phi = 0.5+0.5+abs(x(:,2) .*sin(x(:,1)));

43 y d = 1;

44 y_ddot = 0;

45 y_dddot = 0;

46 yv = x(:,1);

47 ydot = x(:,2);

48 s ydot-y_ddot+2x (y-y_d) ;

49 u = -phi.*sgn(s)+1.5xx(:,2) .*sin(x(:,1))+y_dddot-2* (ydot-y_ddot) ;
50 figure(3);

51 hold on;

52 plot(t, y,’color’,[0.667 0.667 1],’LineWidth’,2.5);

53 plot(t, y_d+tx0,’color’,[1 0.5 0],’LineWidth’,2.5);

54 hold off;

55 grid on;

56 legend(’S$y\left (t\right)s$’,’Sy_d\left (t\right)$’,’interpreter’,’latex’);
57 =xlabel(’$t, \ (\mathrm{s})$’,’interpreter’,’latex’);

58 ylabel(’S\theta, \ (\mathrm{rad})$’,’interpreter’,’latex’);

59 a = get(gca,’XTickLabel’);

60 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
61 set(gca,’position’,[0.15 0.20 0.6 0.6]1);

62 set (gcf,’position’, [100 100 800 600]);

63 set (gcf,’renderer’,’painters’);

64 filename = "Q9-2-yyd-sat"+".pdf";

65 saveas(gcf, filename);

66 figure (4);

67 plot(t, u,’color’,[0.667 0.667 1],’LineWidth’,2.5);

68 grid on;
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69
70
71
72
73
74
75
76
77

O© 0 9 O L A W NN =

b
W o = O

~N N bW =

~
(@]
~

0 N N Lt AW

xlabel (' $t, \ (\mathrm{s})$’,’interpreter’,’latex’);

ylabel (' Su, \ (\mathrm{N\cdot m})$’,’interpreter’,’latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);
(geca, 'position’, [0.15 0.20 0.6 0.61);

set (gcf, "position’, [100 100 800 6001);

set (gcf, '’ renderer’,'painters’);

filename = "Q9-2-u-sat"+".pdf";

saveas (gef, filename) ;

where the codes for the system representation are shown below:

function xd = Q9_2_Systemsgn (t, x)
xd (1) = x(2);
phi = 0.5+0.5%abs (x(2)*sin(x(1)));
y_d =1;

y_ddot = 0;

y_dddot = 0;

y = x(1);

ydot = x(2);

s = ydot-y_ddot+2« (y-y_d);

u = —-phixsgn(s)+1.5xx(2)+*sin(x (1)) +y_dddot-2x (ydot-y_ddot) ;
xd(2) = —-2xx(2)+*sin(x (1)) +tu;
xd = xd’;

end

and the sgn function is designed as follows:

function y = sgn(s)
if s ==
y = 0;
else
y = s./abs(s);

end

end

The simulation results are shown in Figure 1.

The codes for the controller are changed for sat function as shown below:

function xd = Q9_2_Systemsat (t, x)
xd (1) = x(2);
phi = 0.5+0.5+xabs (x(2) *sin(x(1)));
y_d = 0xt+1;
y_ddot = 0;
y_dddot = 0;
y = x(1);
ydot = x(2);
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10
11
12
13

0.6
y ()
ya(t) 04
0.2+
— o [
&
:\Z/ -0.2
B}
04}
-0.6
-0.8
, , , , , , ) 1 , , ,
8 10 12 14 16 18 20 0 2 4 6

(@) y (¢) and yg4 (¢) v.s. t.

Figure 1: Simulation results for the controller with sgn.

s = ydot-y_ddot+2x (y-y_d);
u =
xd(2) =
xd = xd’;

end

-2xx(2)*sin (x (1)) +u;

(b)uvs. t.

—phi*sat (s)+1.5*x(2)*sin(x (1)) +y_dddot-2«* (ydot-y_ddot) ;

and the sat function is designed as follows:

sat (s)
< 0.2

function y =
if abs(s)
y = S;
elseif s < O
y = -1;
else
y = 1;
end
end

The simulation results are shown in Figure 2.
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1 0.5
091 ya (t) 045 - 4
0.8
0.4 4
0.7
0.35 J
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04 T 025F 1
03+
0.2 J
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o1l 015 1
0 : ‘ ‘ : ‘ ‘ 0.1 ‘ ‘ ‘ ‘ ‘ ‘ : ‘
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(@) y () and yq (1) v.s. 1.

Figure 2: Simulation results for the controller with sat.
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Problem 3

Consider the motion equation of a single-link robot rigid-joint manipulator given in Equation
(5) where 8 (x) =1 for all x.

(a)

(b)

(©)

(d)

Assume a = 1.5, yg = 2sint and s = é + 3e. Design a control law of the form (8.7) of
the lecture note with k = 2 and simulate the performance of your control law by plotting
y (t) and y, (¢) in the same figure for 0 < ¢ < 20. Also, plot u (¢) for 0 < t < 20.

Assume the actual value of a = 2. Use the same control law as the one in Part (i) to
simulate the performance of your control law by plotting y (¢) and y, (¢) in the same
figure for 0 < ¢ < 20. Also, plot u (¢) for 0 < ¢ < 20.

Assume a is unknown, put the system in the form (8.3) of the lecture note and identify

aop, ai, az and fi, fo.

Design an adaptive control law of the form (8.10) and (8.12) of the lecture note with
vi = 3. Assume the actual value of a = 2.5, respectively. Simulate the performance of
your control law by plotting y (7) and y, () in the same figure for 0 < ¢ < 20. Also, plot
u (t) and a; (¢) for 0 <t < 20.

Hint: Note Part (iv) of Remark 8.1.
Solution:

(a)

AN L AW N~

Because B (x) =1, ag = 1. Consider the control law,

m
u:aofo(x,t)—ks+2a,-ﬁ(x,t) (17)
i=1
where k = 2, and
fo(x,t) =Fg—aré (18)

Because s = ¢ + 3e, a1 = 3. Therefore, the designed control law for the system is as

follows:
u=7yq—3é—2s+1.5ysin(y)
d . (19)
= §a—3(xa—ya) — 2 ((x2 — ya) + 3 (x1 — ya)) + 1.5x9 sinxy

The MATLAB shown below is used to simulate the performance of the designed controller.

clc; clf; clear all;

%% Q9-3-a

[t,x] = oded5('Q9_3_a_System’, [0,20],[0 01);
y_d = 2*sin(t);

y_ddot = 2xcos(t);

y_dddot = -2xsin(t);
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ydot = x(:,2);

s = ydot-y_ddot+3* (y-y_d);
10 a0 = 1;
11 f0 = y_dddot-3* (ydot-y_ddot) ;
12 u = a0*xf0-2%xs+1.5%xx(:,2) .*sin(x(:,1));
13 figure(l);
14 hold on;
15 plot(t, y,’color’,[0.667 0.667 1],’LineWidth’,2.5);
16 plot(t, y_d+t*0,’color’, [l 0.5 0],’LineWidth’,2.5);
17 hold off;
18 grid on;
19 legend(’S$y\left (t\right)$’,’Sy_d\left (t\right)$’,’ interpreter’,’latex’);
20 xlabel(’$t, \ (\mathrm{s})$’,’interpreter’,’latex’);
21 ylabel (' $\theta, \ (\mathrm{rad})$’,’interpreter’,’latex’);
22 a = get(gca,’XTickLabel’);
23 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
24 set (gca,’position’,[0.15 0.20 0.6 0.6]);
25 set (gcf,’position’, [100 100 800 600]);
26 set (gcf,’renderer’,’painters’);
27 filename = "Q9-3-a-yyd"+".pdf";
28 saveas (gcf, filename) ;
29 figure(2);
30 plot(t, u,’color’,[0.667 0.667 1],’LineWidth’,2.5);
31 grid on;
32 xlabel (' $t, \ (\mathrm{s})$’,’interpreter’,’latex’);
33 ylabel (’Su, \ (\mathrm{N\cdot m})$’,’interpreter’,’latex’);
34 a = get(geca,’XTickLabel’);
35 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
36 set(gca,’position’, [0.15 0.20 0.6 0.6]);
37 set (gcf,’position’, [100 100 800 600]);
38 set (gcf,’renderer’,’painters’);
39 filename = "Q9-3-a-u"+".pdf";
40 saveas (gcf, filename);
41 %% Q9-3-b
42 [t,x] = oded5('Q9_3_b_System’, [0,20],([0 0]);
43 y_d = 2xsin(t);
44 y_ddot = 2xcos(t);
45 vy_dddot = -2*sin(t);
46 yv = x(:,1);
47 ydot = x(:,2);
48 s = ydot-y_ddot+3* (y-y_d);
49 a0 = 1;
50 f0 = y_dddot-3* (ydot-y_ddot) ;
51 u = a0*xf0-2xs+1.5*x(:,2) .*sin(x(:,1));
52 figure (3);
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53 hold on;

54 plot(t, y,’color’,[0.667 0.667 1],’LineWidth’,2.5);

55 plot(t, y_d+t*0,’color’,[1 0.5 0],’LineWidth’,2.5);

56 hold off;

57 grid on;

58 legend(’S$y\left (t\right)$’,’Sy_d\left (t\right)$’,’interpreter’,’latex’);
59 xlabel(’$t, \ (\mathrm{s})$’,’interpreter’,’latex’);

60 ylabel (’S$\theta, \ (\mathrm{rad})$’,’interpreter’,’latex’);
61 a = get(gca,’XTickLabel’);

62 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
63 set(gca,’position’,[0.15 0.20 0.6 0.6]);

64 set (gcf,’position’, [100 100 800 600]);

65 set (gcf,’renderer’,’painters’);

66 filename = "Q9-3-b-yyd"+".pdf";

67 saveas (gcf, filename) ;

(
(
(
(

68 figure(4);

69 plot(t, u,’color’,[0.667 0.667 1],'LineWidth’,2.5);

70 grid on;

71 =xlabel(’$t, \ (\mathrm{s})$’,’interpreter’,’latex’);

72 ylabel (’S5u, \ (\mathrm{N\cdot m})$’,’interpreter’,’latex’);
73 a = get(gca,’XTickLabel’);

74 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
75 set(gca,’position’,[0.15 0.20 0.6 0.6]);

76 set (gcf,’'position’, [100 100 800 6001);

77 set (gcf,’ renderer’,’painters’);

78 filename = "Q9-3-b-u"+".pdf";

79 saveas (gcf, filename);

where the codes for the system representation are shown below:

1 function xd = Q9_3_a_System(t,x)

2 xd (1) = x(2);

3 % phi = 0.5+0.5+xabs (x(2)*sin(x(1)));
4 y_d = 2xsin(t);

5 y_ddot = 2*cos(t);

6 y_dddot = —-2%sin(t);

7 y = x(1);

8 ydot = x(2);

9 s = ydot-y_ddot+3* (y-y_d);

10 a0 = 1;

11 f0 = y_dddot-3x (ydot-y_ddot) ;

12 u = a0xf0-2*s+1.5%x(2)*sin(x (1)) ;
13 xd(2) = -1.5*%x(2)*sin(x (1)) +u;

14 xd = xd’;

15 end

The simulation results are shown in Figure 3.
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(@) y(t)and yg (1) v.s. t. (b)uvs. t.

Figure 3: Simulation results for the controller with for the adaptive control with k = 2.

(b) The codes for the system representation are changed as shown below:

o\

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 end

function xd =

Q9_3_b_System(t, x)
x(2);
0.5+40.5%abs (x(2)*sin(x(1)));

2xsin(t);

xd (1) =
phi =

y_d =

y_ddot =

y_dddot =

y = x(1);

ydot = x(2);

s = ydot-y_ddot+3x (y-y_d);

a0 = 1;

f0 = y_dddot-3« (ydot—-y_ddot);

2+«cos (t);

-2xsin (t) ;

u = al0*xf0-2%s+1.5%x(2)*sin(x(1));
xd(2) = —-2xx(2)+*sin(x (1)) +tu;
xd = xd’;

The simulation results are shown in Figure 4.

(c)

m
aoy(”) + Zaif (x,t)=u
i=1

Here,ap=1,a; =a,as =0, fi (x) =x2sinxy, fo(x) =0

(d)

u=aofo(x,t)—ks+2" a;fi (x,1)

éi:—yl-sgn(ag)sf,-,izl,--- ,m

Because y; = 3 and ag = 1, Equation (21) can be simplified into

u=(Js-3(x2—-yq) —2((x2—yq) +3 (x1 — yq)) +d1xzsinx;
ar=-3((x2 = yq) +3(x1 — yq)) x2sinxy
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Figure 4: Simulation results for the controller with for the adaptive control with k = 2 and the actual value of

a=2.

The Simulink as shown in Figure 5 is used to simulate the performance of the designed

controller.

And we use the following code to plot the results:

clear all; clc;

figgl = openfig(’Q9-3-d-ahat.fig’,’'reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}S$’,’interpreter’,’latex’);
ylabel (' $\hat{a}$’, ’interpreter’,’latex’);

% legend (' $y_ds’, ’'Sy$’, ’interpreter’,’latex’,’Location’,’southeast’);
title('’);

a = get(gca,’XTickLabel’);

O 00 N N L AW N =

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);
(geca, "position’, [0.15 0.20 0.6 0.61);
(
(

—_
o

set

—
—_—

set (gcf, "position’, [100 100 800 6001);
set (gcf, ' renderer’,’'painters’);

filename = "Q9-3-d-ahat"+".pdf";

—_ = =
A W

saveas (gecf, filename) ;

—_
W

close(figgl);

—_
(@)}

figg2 = openfig(’Q9-3-d-u.fig’,’reuse’);

—_
-

grid onj;

x1im ([0.07 2017);

ylim([=5 6]);

xlabel (' $t, \ (\mathrm{s})$’,’interpreter’,’latex’);
ylabel (' Su, \ (\mathrm{N\cdot m})$’,’interpreter’,’latex’);

NN = =
N = O O

% legend(’$y_ds’, ’'SyS$’, ’interpreter’,’latex’,’Location’,’southeast’);
title(’’);
a = get(gca,’XTickLabel’);

N DN
wn A~ W

set (gca, ' XTickLabel’,a,’FontName’, ' Times’,’ fontsize’,12);
set (gca, 'position’, [0.15 0.20 0.6 0.6]1);

[\
@)}
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Figure 5: Block diagram for the system.

27 set (gecf,’position’, [100 100 800 600]);

28 set (gcf,’ renderer’,’painters’);

29 filename = "Q9-3-d-u"+".pdf";

30 saveas (gcf, filename) ;

31 close(figg2);

32 figg3 = openfig(’Q9-3-d-yyd.fig’,’reuse’);

33 grid on;

34 legend(’S$y\left (t\right)$’,’Sy_d\left (t\right)$’,’ interpreter’,’latex’);
35 xlabel (' S$t, \ (\mathrm{s})$’,’interpreter’,’latex’);

36 ylabel (’$\theta, \ (\mathrm{rad})$’,’interpreter’,’latex’);
37 title(’'’);

38 a = get(geca,’XTickLabel’);

39 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
40 set(geca,’position’,[0.15 0.20 0.6 0.6]);

41 set (gef,’'position’, [100 100 800 600]);

42 set (gcf,’renderer’,’painters’);

43 filename = "Q9-3-d-yyd"+".pdf";

44 saveas (gcf, filename) ;

45 close (figg3);

The simulation results are shown in Figure 6.
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Figure 6: Simulation results for the controller with for the adaptive control law of the form (8.10) and (8.12) of
the lecture note.
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