

THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MECHANICAL & AUTOMATION ENGINEERING

MAEG5070 Nonlinear Control Systems

Assignment #3

by

Liuchao JIN (Student ID: 1155184008)

Liuchao Gin

2022-23 Term 1

© Copyright in this work rests with the authors. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation.

Problem 1

Does the system have any limit cycle?

$$\dot{x}_1 = 2x_2^2 \sin x_2
\dot{x}_2 = 1 - \cos x_1 + 2x_2$$

Solution:

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 2 > 0 \tag{1}$$

By Bendixson's criterion, there are no periodic orbits. Therefore, there can be no limit cycle.

Problem 2

Consider the following nonlinear equation.

$$\dot{x}_1 = x_2 - x_1^2 + 3x_2^3
\dot{x}_2 = x_3 - 2x_2x_1 - x_1x_3
\dot{x}_3 = 3x_1 + 2x_3x_2 - 2x_3 + u$$

- (a) Find the Jacobian linearization of the system at the origin.
- (b) Using the Lyapunov's linearization method to determine the stability property of the closed-loop system under the state feedback control law u = -Kx for K = [-4 3 1].

Solution:

(a)

The Jacobian matrix of the nonlinear equation is (Close et al., 2001)

$$\frac{\partial f(x,u)}{\partial x} = \begin{bmatrix}
\frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \frac{\partial f_1(x)}{\partial x_3} \\
\frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \frac{\partial f_2(x)}{\partial x_3} \\
\frac{\partial f_3(x)}{\partial x_1} & \frac{\partial f_3(x)}{\partial x_2} & \frac{\partial f_3(x)}{\partial x_3}
\end{bmatrix} = \begin{bmatrix}
-2x_1 & 9x_2^2 + 1 & 0 \\
-2x_2 - x_3 & -2x_1 & -x_1 + 1 \\
3 & 2x_3 & 2x_2 - 2
\end{bmatrix}$$
(2)

For the system at the origin,

$$A = \frac{\partial f(x, u)}{\partial x} \Big|_{x=0, u=0} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & -2 \end{bmatrix}$$
 (3)

$$B = \frac{\partial f(x, u)}{\partial u} \Big|_{x=0, u=0} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (4)

Therefore, the Jacobian linearization of the system at the origin is

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \tag{5}$$

(b)

$$A - BK = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & -2 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -4 & -3 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 7 & 3 & -1 \end{bmatrix}$$
 (6)

The eigenvalues of A - BK are

$$\lambda_1 = -1.5370 + 1.0064i$$

$$\lambda_2 = -1.5370 - 1.0064i$$

$$\lambda_3 = 2.0739$$
(7)

Because the real part of one of the eigenvalues of $A - BK - \lambda_3$ —is positive, the closed-loop system under the state feedback control law u = -Kx for $K = \begin{bmatrix} -4 & -3 & -1 \end{bmatrix}$ is unstable.

Problem 3

The motion of the ball and beam system can be described by

$$\begin{array}{rcl} \dot{x}_1(t) & = & x_2(t) \\ \dot{x}_2(t) & = & Bx_1(t)x_4^2(t) - BGsin(x_3(t)) \\ \dot{x}_3(t) & = & x_4(t) \\ \dot{x}_4(t) & = & u(t) \\ y(t) & = & x_1(t) \end{array}$$

where x_1 is the position of the ball, u is the torque applied to the beam, $G = 9.81 \ m/s^2$ is the acceleration of gravity, and B = 0.7134 is a constant.

(a) Show that the Jacobian linearization of (1) at the origin is given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -BG & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u = Ax + bu$$

- (b) Verify that the pair (A, b) is controllable, i.e., the matrix $[b \ Ab \ \cdots \ A^{n-1}b]$ is nonsingular.
- (c) Using Arkerman's Formula to find K so that the eigenvalues of A bK are $\{-1, -2, -3, -24\}$.
- (d) Simulate the closed-loop system composed of (1) and u = -Kx with $x(0) = \alpha[1, 1, 1, 1]$ for $\alpha = 1, 20$ from t = 0 to t = 20. Is the equilibrium point x = 0 of the closed-loop system globally asymptotically stable?

Arkerman's Formula

Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. Assume the pair (A, b) is controllable, i.e., the matrix $[b \ Ab \ \cdots \ A^{n-1}b]$ is nonsingular. Let $q(s) = s^n + \alpha_1 s^{n-1} + \cdots + \alpha_{n-1} s + \alpha_n$ which is called the desired polynomial. Let $q(F) = F^n + \alpha_1 F^{n-1} + \cdots + \alpha_{n-1} F + \alpha_n I_n$

$$K = \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 \end{array} \right]_{1\times n} [b \ Ab \ \cdots \ A^{n-1}b]^{-1}q(F)$$

is such that

$$\det(sI - (A - BK)) = q(s)$$

Solution:

(a)

The Jacobian matrix of the nonlinear equation is

$$\frac{\partial f\left(x,u\right)}{\partial x} = \begin{bmatrix}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} & \frac{\partial f_{1}(x)}{\partial x_{3}} & \frac{\partial f_{1}(x)}{\partial x_{4}} \\
\frac{\partial f_{2}(x)}{\partial x_{1}} & \frac{\partial f_{2}(x)}{\partial x_{2}} & \frac{\partial f_{2}(x)}{\partial x_{3}} & \frac{\partial f_{2}(x)}{\partial x_{4}} \\
\frac{\partial f_{3}(x)}{\partial x_{1}} & \frac{\partial f_{3}(x)}{\partial x_{2}} & \frac{\partial f_{3}(x)}{\partial x_{3}} & \frac{\partial f_{3}(x)}{\partial x_{4}} \\
\frac{\partial f_{4}(x)}{\partial x_{1}} & \frac{\partial f_{4}(x)}{\partial x_{2}} & \frac{\partial f_{4}(x)}{\partial x_{3}} & \frac{\partial f_{4}(x)}{\partial x_{4}}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
Bx_{4}^{2}(t) & 0 & -BG\cos(x_{3}(t)) & 2Bx_{1}(t)x_{4}(t) \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$
(8)

For the system at the origin,

$$A = \frac{\partial f(x, u)}{\partial x}\Big|_{x=0, u=0} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -BG & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(9)

$$B = \frac{\partial f(x, u)}{\partial u}\Big|_{x=0, u=0} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$
 (10)

Therefore, the Jacobian linearization of the system at the origin is

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -BG & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u \tag{11}$$

(b)

$$\begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -BG \\ 0 & 0 & -BG & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
(12)

$$\operatorname{rank} \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix} = 4 \tag{13}$$

Therefore, the matrix $\begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix}$ is nonsingular, which indicates that the pair (A, b) is controllable.

(c)

According to Arkerman's Formula,

$$K = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -BG \\ 0 & 0 & -BG & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1} q(A)$$
(14)

Because the eigenvalues of A - bK are $\{-1, -2, -3, -24\}$ and $\det(sI - (A - BK)) = q(s)$, the desired polynomial is

$$q(s) = (s+1)(s+2)(s+3)(s+24)$$
(15)

Therefore,

$$q(A) = (A+I) \cdot (A+2I) \cdot (A+3I) \cdot (A+24I)$$

$$= \begin{bmatrix} 144 & 270 & 1084.8 & -210 \\ 0 & 144 & -1889.6 & -1084.8 \\ 0 & 0 & 144 & 270 \\ 0 & 0 & 0 & 144 \end{bmatrix}$$
(16)

where *I* is the identity matrix. Then, we can get

$$K = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -6.9985 \\ 0 & 0 & -6.9985 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 144 & 270 & 1084.8 & -210 \\ 0 & 144 & -1889.6 & -1084.8 \\ 0 & 0 & 144 & 270 \\ 0 & 0 & 0 & 144 \end{bmatrix}$$
(17)
$$= \begin{bmatrix} -20.5760 & -38.5799 & 155.0000 & 30.0000 \end{bmatrix}$$

Instead of Arkerman's Formula, I also use another way to find out the answer, whose MATLAB codes are shown below:

```
1 clc; clear all;
2 B = 0.7134;
3 G = 9.81;
4 BG = B*G;
5 syms k1 k2 k3 k4
6 sp = sym('sp', [4 \ 4 \ 4]);
7 lambda = [-1 -2 -3 -24];
8 \text{ detsp} = \text{sym}('\text{detsp'}, [1 \ 4]);
9 for i = 1:4
10
        sp(:,:,i) = [-lambda(i) 1 0 0;
           0 -lambda(i) -BG 0;
11
12
           0 0 -lambda(i) 1;
13
            -k1 - k2 - k3 - k4 - lambda(i);
14
       detsp(i) = det(sp(:,:,i));
15 end
16
   [k1, k2, k3, k4] = solve(detsp==0);
```

(d)

I use the Simulink model as shown in Figure 1 to simulate the closed-loop system composed of (1) and u = -Kx with $x(0) = \alpha \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ for $\alpha = 1$ and 20 from t = 0 to t = 20 s.

Figure 1: Simulink model to simulate the closed-loop system composed of (1) and u = -Kx with $x(0) = \alpha \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ for $\alpha = 1$ and 20 from t = 0 to t = 20 s.

The results I get from the simulation is shown in Figure 2 and 3 for $\alpha = 1$ and 20, respectively, From Figure 3, we can know that for the initial conditions of $x(0) = 20\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$, the system is unstable. Therefore, the equilibrium point x = 0 of the closed-loop system is not globally asymptotically stable.

Figure 2: Simulation results for the system with $\alpha = 1$.

Figure 3: Simulation results for the system with $\alpha = 20$.

References

Close, C. M., Frederick, D. K., & Newell, J. C. (2001). *Modeling and analysis of dynamic systems*. John Wiley & Sons.