HHE P XKE

The Chinese University of Hong Kong

THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MECHANICAL & AUTOMATION ENGINEERING

MAEGS5070 Nonlinear Control Systems

Assignment #4

by

Liuchao JIN (Student ID: 1155184008)
ngl&m %M?

2022-23 Term 1

© Copyright in this work rests with the authors. Please ensure that any reproduction or re-use

is done in accordance with the relevant national copyright legislation.



Liuchao JIN MAEGS5070 Nonlinear Control Systems Assignment #4

Problem 1

For the following systems, find the equilibrium points and determine their stability. Indicate

whether the stability is asymptotic, and whether it is global.

(a)
% =—x>+sintx (D)
(b)
i=(5-x)° )
Solution:
(a) The equilibrium points x* satisfy —x*3 + sin* x* = 0. Obviously, x* = 0 is one solution.

Next, I will prove that x* = 0 is the only solution. Let f (x) = —x3 + sin® x.

f’ (x) = 4sin® x cosx — 3x? 3)

. in2 2 . .
Because sin x cosx < S-S = % (Cauchy-Schwarz inequality),

f(x) = 4sin®xsinxcosx —3x%2 < 2sin’x - 3x? < A2 - 32 =-x%2 <0 4)

Hence, f (x) is a monotonically decreasing function, which indicates that x* = 0 is the
only solution. Therefore, the equilibrium point for this system is x* = (. Then, the

following Lyapunov function is selected as the candidate:

1
V(x) = §x2 (5)
V (x) is positive definite for Vx € R — {0}. Taking the derivative of Equation (5) yields
that
V(x)=xk=x (—x3 + sin’ x) (6)

From the analysis above for f (x), it can be concluded that f (x) > 0 when x < 0 and
f (x) < 0 when x > 0. Combing this conclusion with Equation (6) obtains V (x) < 0 for
Vx € R - {0}, indicating that V' (x) is negative definite. Therefore, the system is globally
asymptotically stable.

(b) The equilibrium points x* satisfy (5 — x*)° = 0. Obviously, x* = 5 is one solution and
(5—x)° is monotonically-decreasing. Therefore, the equilibrium point for this system is

x* = 5. Then, the following Lyapunov function is selected as the candidate:
1
Vx) =5 (G-’ (7)

V (x) is positive definite for Vx € R — {5}. Taking the derivative of Equation (7) yields
that
Vix)==(G-x)x=—=(5-x)%<0forVx € R - {5} (8)

Therefore, V (x) is negative definite, which means that the system is globally asymptoti-

cally stable.
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Problem 2

Consider the following pendulum equation:

1= ©)

X9 = —aj sinx] — asxy
where a1 > 0 and as > 0.

(a) Show the equilibrium point x = 0 is stable using the Lyapunov function candidate
V(x)=a; (1-cos x1)+%x§. Can you conclude the asymptotic stability of the equilibrium
point x = 0 with this V (x)?

(b) Consider the Lyapunov function candidate

1
Vi(x)= 3 (Puxf +2p1ax1x2 + P22x§) +ay (1 —cosxy) (10)

where p2s = 1 and p11 = azp12. Can you find appropriate value for pi2 to conclude the

asymptotic stability of the equilibrium point x = 0 with this V (x)?
Solution:
(a) .
V(x)=ay (1 —-cosxy)+ §x§ >ay(l—cosxy) >2a;(1-1)=0 (1D
V (x) = a1 sinx1x1 + xoX2 = a1xosinx1 + x9 (—a1 sinx; — asxs) = —agxg <0 (12

Therefore, V (x) is positive definite, and V (x) is negative semi-definite, which means I

can not conclude the asymptotic stability of the equilibrium point x = 0 with this V (x).
(b)

Vi(x) = (an% +2p1ox1xo + pgzxg) +ay (1 —-cosxy)

(13)

N =N =

(112]712)6% + 2p19X1X2 +x§) +ay (1 —cosxy)

>a;(l—cosxy) >a;(1-1)=0

V (x) = prixik1 + praxixg + p1axix2 + pooxoko + ay sinxii
= P11X1X2 + P12X3 + p1ox1 (—a1 sinx| — asxs)
+ po29xs (—ay sinxy — asxs) + ajxg sin xy (14)
=azpiax1xg + p12xg + p12x1 (—aq sinx; — asxa)

+ x9 (—aq sinxy — asxs) + aijxs sin xq

2 .
= (p12 — a2) x5 — aipi2x1 sinxy
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For x; € (-, m) and xo € R, 0 < p12 < as is selected to make V (x) ND. Therefore,
the appropriate value for pi9, i.e. 0 < p12 < a9, can be selected to conclude that the

equilibrium point x = 0 is locally asymptotic stable.

However, 1 can not find appropriate value for pis to conclude the globally asymptotic
stability of the equilibrium point x = 0 with this V (x). Because for Ypi2 € R*, 3k € Z,

which satisfies )
(p12—a2)x; 3

k> ———=—— 15
2raipi2 4 (15)
so that when x1 = 2km + %n,
V (x) = (p12 — a2) X3 — a1 p1ax1 sinx
= (p12 — a2) X5 + a1p12x1
3
= (plg—ag)x%+a1p12 (2k7r+§7r) (16)
(p12—a2)x3 3\ 3
> (p12 —a2)x§ +aipiz |2n 2 4 ox|=0
27ra1p12 4 2
and for Vp12 € R™, 3k € Z, which satisfies
2
—as)x5 3
k<_(P12 2)%; 3 a7
2raipi2 4
so that when x1 = 2km + %Tl’,
V (x) = (p12 — a2) x5 — a1 p1ax1 sinx
= (p12 — a2) X3 + a1p12x1
3
= (p12 — a2) X5 + ai1p12 (2k7r + éﬂ) (18)
(p12—a2)x5 3| 3
> (p12 —ag)xg +aipie |27 e N B |
2naipi2 4 2

In addition, for p12 = 0, this situation has been discussed in (a). Therefore, the appropriate
value for p12 to conclude the globally asymptotic stability of the equilibrium point x = 0
with this V (x) can not be found.
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Problem 3

Show that if symmetric p.d. matrices P and Q exists such that
ATP+PA+21P =-0 (19)

then all the eigenvalues of A have a real part strictly less than —A.
Solution:

Consider the linear homogeneous continuous-time system
x()=(A+al)x (1) (20)
Let us associate with this system and the equilibrium point x* = 0 the quadratic function
V (x) =x"Px (21)

where P is symmetric and positive definite. This V' is continuous and has continuous first partial
derivatives. Furthermore, since P is positive definite, the origin is the unique minimum point of
V. Thus in terms of general characteristics, such a positive definite quadratic form is a suitable
candidate for a Lyapunov function. It remains, of course, to determine how V (x) is influenced
by the dynamics of the system.

We have

. d
Vix)= ExTPx
=x'Px +x"Px
=xT (A+AD) Px+x"P(A+A)x (22)
= (ATP+PA+24P)x
= —xTQx
Because matrix Q is symmetric p.d., V (x) < 0 for Vx € R — {0}, indicating that V (x) is
ND. Therefore, the system is globally asymptotically stable. To ensure the system is global

asymptotically stable, the real parts of the eigenvalues of (A + A7) need to be always negative,

which means all the eigenvalues of A have a real part strictly less than —4 (Luenberger, 1979).
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Problem 4

For the linear system
e (23)
X9 = —6x1 — Bx9

(a) what can you say about its stability and asymptotic stability from the candidate Lyapunov

functions
_ 2 2
Vi (x) = 6x] + x5

Vo (x) = x% +x% — X1X9 4)

(b) For Q = I, solve the Lyapunov equation for a symmetric p.d. matrix P.
ATP+PA=-Q (25)

where
0 1
A= > _5] (26)
Solution:
(a) For the candidate Vq,

Vi (x):6x%+x%>0f0r\7’x€R2—{[8 } (27)

Therefore, Vi (x) is positive definite. Taking the derivative of Equation (27) yields that
Vi (x) = 12x1471 + 2x9%9 = 12x1x9 + 2x9 (—6x1 — 5xg) = —10x3 < 0 (28)

Therefore, V (x) is negative semi-definite, which means the system is stable at the equi-
0

librium point x =
P.S. If Invariant Set Theorem is used in this question, asymptotic stability can be con-
cluded. Because let R = R2, if V; (x) = 0, xo = 0, so x9 = 0. Substituting xo = 0
and X2 = 0 into Equation (23), we can get x; = 0. Therefore, V; (x) = 0 if and only if
X1 0
X = =
X9 0

For the candidate V5,

Therefore, the system is asymptotically stable.

1 1 1 0
Vs (x) :x%+x§ — X1X9 = 3 (x1 —x2)2+§x%+§x3 > 0 for Vx € R% - {[O}} (29)
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Therefore, V5 (x) is positive definite. Taking the derivative of Equation (29) yields that

VQ (x) = 2x1X1 + 2x9X9 — X1X9 — X1X2
= 2x1x2 + 2x9 (—6x1 — Hx2) — x% —x1 (—6x1 — bx9) 30)
= 6x% - 11x% — DX1X9

= (6x1 - 11)62) (X1 +.X2)

The sign of V5 (x) can not be told from Equation (30). Therefore, this candidate Lyapunov

functions can not conclude the stability of the equilibrium point x = 0.

(b) Let P = P piz , Where p12 = poy.
P21 P22
(0 1] 0 1 10
ATP+PA=-0 P11 piz| |P1L P12 _ |~
-6 —=5| [p21 p22| |p21 p22||-6 -5 0 -1
0 -6/ 0 1 1 0
PN P11 P12 + P11 P12 _
1 =5| |p21 p22| |p21 p22||-6 -5 0 -1
- —6pa1 —6p22 N —6p12 pui—5piz| _|-1 0
P11 —5p21 pi2—5pa2| |-6p22 p21—5p2e 0 -1
- —6p21 — 6p12 —6p2+pu-5p1z | _|-1 0
P11 —5p21 —6p22 p12 —Sp22 + p21 — 5p22 0 -1
(3D
Therefore, we can know that
—6p21 —6p12 = -1
~6pa + p11 — 5p12 =0
P22 + P11 P12 (32)
P11 —5p21 —6p22 =0
P12 —9p22+ po1 —Opa2 = —1
Solving Equation (32) yields that
67 1
_ |60 12
p=| T (33)
12 60
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