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Liuchao JIN MAEG5070 Nonlinear Control Systems Assignment #4

Problem 1

For the following systems, find the equilibrium points and determine their stability. Indicate
whether the stability is asymptotic, and whether it is global.

(a)
¤𝑥 = −𝑥3 + sin4 𝑥 (1)

(b)
¤𝑥 = (5 − 𝑥)5 (2)

Solution:

(a) The equilibrium points 𝑥∗ satisfy −𝑥∗3 + sin4 𝑥∗ = 0. Obviously, 𝑥∗ = 0 is one solution.
Next, I will prove that 𝑥∗ = 0 is the only solution. Let 𝑓 (𝑥) = −𝑥3 + sin4 𝑥.

𝑓 ′ (𝑥) = 4 sin3 𝑥 cos 𝑥 − 3𝑥2 (3)

Because sin 𝑥 cos 𝑥 ≤ sin2 𝑥+cos2 𝑥
2 = 1

2 (Cauchy–Schwarz inequality),

𝑓 ′ (𝑥) = 4 sin2 𝑥 sin 𝑥 cos 𝑥 − 3𝑥2 ≤ 2 sin2 𝑥 − 3𝑥2 ≤ 2𝑥2 − 3𝑥2 = −𝑥2 ≤ 0 (4)

Hence, 𝑓 (𝑥) is a monotonically decreasing function, which indicates that 𝑥∗ = 0 is the
only solution. Therefore, the equilibrium point for this system is 𝑥∗ = 0. Then, the
following Lyapunov function is selected as the candidate:

𝑉 (𝑥) = 1

2
𝑥2 (5)

𝑉 (𝑥) is positive definite for ∀𝑥 ∈ R − {0}. Taking the derivative of Equation (5) yields
that

¤𝑉 (𝑥) = 𝑥 ¤𝑥 = 𝑥

(
−𝑥3 + sin4 𝑥

)
(6)

From the analysis above for 𝑓 (𝑥), it can be concluded that 𝑓 (𝑥) > 0 when 𝑥 < 0 and
𝑓 (𝑥) < 0 when 𝑥 > 0. Combing this conclusion with Equation (6) obtains ¤𝑉 (𝑥) < 0 for
∀𝑥 ∈ R − {0}, indicating that ¤𝑉 (𝑥) is negative definite. Therefore, the system is globally
asymptotically stable.

(b) The equilibrium points 𝑥∗ satisfy (5 − 𝑥∗)5 = 0. Obviously, 𝑥∗ = 5 is one solution and
(5 − 𝑥)5 is monotonically-decreasing. Therefore, the equilibrium point for this system is
𝑥∗ = 5. Then, the following Lyapunov function is selected as the candidate:

𝑉 (𝑥) = 1

2
(5 − 𝑥)2 (7)

𝑉 (𝑥) is positive definite for ∀𝑥 ∈ R − {5}. Taking the derivative of Equation (7) yields
that

¤𝑉 (𝑥) = − (5 − 𝑥) ¤𝑥 = − (5 − 𝑥)6 < 0 for ∀𝑥 ∈ R − {5} (8)

Therefore, ¤𝑉 (𝑥) is negative definite, which means that the system is globally asymptoti-
cally stable.
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Problem 2

Consider the following pendulum equation:

¤𝑥1 = 𝑥2

¤𝑥2 = −𝑎1 sin 𝑥1 − 𝑎2𝑥2
(9)

where 𝑎1 > 0 and 𝑎2 > 0.

(a) Show the equilibrium point 𝑥 = 0 is stable using the Lyapunov function candidate
𝑉 (𝑥) = 𝑎1 (1 − cos 𝑥1)+1

2𝑥
2
2. Can you conclude the asymptotic stability of the equilibrium

point 𝑥 = 0 with this 𝑉 (𝑥)?

(b) Consider the Lyapunov function candidate

𝑉 (𝑥) = 1

2

(
𝑝11𝑥

2
1 + 2𝑝12𝑥1𝑥2 + 𝑝22𝑥

2
2

)
+ 𝑎1 (1 − cos 𝑥1) (10)

where 𝑝22 = 1 and 𝑝11 = 𝑎2𝑝12. Can you find appropriate value for 𝑝12 to conclude the
asymptotic stability of the equilibrium point 𝑥 = 0 with this 𝑉 (𝑥)?

Solution:

(a)
𝑉 (𝑥) = 𝑎1 (1 − cos 𝑥1) +

1

2
𝑥22 > 𝑎1 (1 − cos 𝑥1) ≥ 𝑎1 (1 − 1) = 0 (11)

¤𝑉 (𝑥) = 𝑎1 sin 𝑥1 ¤𝑥1 + 𝑥2 ¤𝑥2 = 𝑎1𝑥2 sin 𝑥1 + 𝑥2 (−𝑎1 sin 𝑥1 − 𝑎2𝑥2) = −𝑎2𝑥22 ≤ 0 (12)

Therefore, 𝑉 (𝑥) is positive definite, and ¤𝑉 (𝑥) is negative semi-definite, which means I
can not conclude the asymptotic stability of the equilibrium point 𝑥 = 0 with this 𝑉 (𝑥).

(b)

𝑉 (𝑥) = 1

2

(
𝑝11𝑥

2
1 + 2𝑝12𝑥1𝑥2 + 𝑝22𝑥

2
2

)
+ 𝑎1 (1 − cos 𝑥1)

=
1

2

(
𝑎2𝑝12𝑥

2
1 + 2𝑝12𝑥1𝑥2 + 𝑥22

)
+ 𝑎1 (1 − cos 𝑥1)

> 𝑎1 (1 − cos 𝑥1) ≥ 𝑎1 (1 − 1) = 0

(13)

¤𝑉 (𝑥) = 𝑝11𝑥1 ¤𝑥1 + 𝑝12 ¤𝑥1𝑥2 + 𝑝12𝑥1 ¤𝑥2 + 𝑝22𝑥2 ¤𝑥2 + 𝑎1 sin 𝑥1 ¤𝑥1
= 𝑝11𝑥1𝑥2 + 𝑝12𝑥

2
2 + 𝑝12𝑥1 (−𝑎1 sin 𝑥1 − 𝑎2𝑥2)

+ 𝑝22𝑥2 (−𝑎1 sin 𝑥1 − 𝑎2𝑥2) + 𝑎1𝑥2 sin 𝑥1

= 𝑎2𝑝12𝑥1𝑥2 + 𝑝12𝑥
2
2 + 𝑝12𝑥1 (−𝑎1 sin 𝑥1 − 𝑎2𝑥2)

+ 𝑥2 (−𝑎1 sin 𝑥1 − 𝑎2𝑥2) + 𝑎1𝑥2 sin 𝑥1

= (𝑝12 − 𝑎2) 𝑥22 − 𝑎1𝑝12𝑥1 sin 𝑥1

(14)
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For 𝑥1 ∈ (−𝜋, 𝜋) and 𝑥2 ∈ R, 0 < 𝑝12 < 𝑎2 is selected to make ¤𝑉 (𝑥) ND. Therefore,
the appropriate value for 𝑝12, i.e. 0 < 𝑝12 < 𝑎2, can be selected to conclude that the
equilibrium point 𝑥 = 0 is locally asymptotic stable.

However, I can not find appropriate value for 𝑝12 to conclude the globally asymptotic
stability of the equilibrium point 𝑥 = 0 with this 𝑉 (𝑥). Because for ∀𝑝12 ∈ R+, ∃𝑘 ∈ Z,
which satisfies

𝑘 > −
(𝑝12 − 𝑎2) 𝑥22
2𝜋𝑎1𝑝12

− 3

4
(15)

so that when 𝑥1 = 2𝑘𝜋 + 3
2𝜋,

¤𝑉 (𝑥) = (𝑝12 − 𝑎2) 𝑥22 − 𝑎1𝑝12𝑥1 sin 𝑥1

= (𝑝12 − 𝑎2) 𝑥22 + 𝑎1𝑝12𝑥1

= (𝑝12 − 𝑎2) 𝑥22 + 𝑎1𝑝12

(
2𝑘𝜋 + 3

2
𝜋

)
> (𝑝12 − 𝑎2) 𝑥22 + 𝑎1𝑝12

[
2𝜋

(
−
(𝑝12 − 𝑎2) 𝑥22
2𝜋𝑎1𝑝12

− 3

4

)
+ 3

2
𝜋

]
= 0

(16)

and for ∀𝑝12 ∈ R−, ∃𝑘 ∈ Z, which satisfies

𝑘 < −
(𝑝12 − 𝑎2) 𝑥22
2𝜋𝑎1𝑝12

− 3

4
(17)

so that when 𝑥1 = 2𝑘𝜋 + 3
2𝜋,

¤𝑉 (𝑥) = (𝑝12 − 𝑎2) 𝑥22 − 𝑎1𝑝12𝑥1 sin 𝑥1

= (𝑝12 − 𝑎2) 𝑥22 + 𝑎1𝑝12𝑥1

= (𝑝12 − 𝑎2) 𝑥22 + 𝑎1𝑝12

(
2𝑘𝜋 + 3

2
𝜋

)
> (𝑝12 − 𝑎2) 𝑥22 + 𝑎1𝑝12

[
2𝜋

(
−
(𝑝12 − 𝑎2) 𝑥22
2𝜋𝑎1𝑝12

− 3

4

)
+ 3

2
𝜋

]
= 0

(18)

In addition, for 𝑝12 = 0, this situation has been discussed in (a). Therefore, the appropriate
value for 𝑝12 to conclude the globally asymptotic stability of the equilibrium point 𝑥 = 0

with this 𝑉 (𝑥) can not be found.

Page 3 of 7



Liuchao JIN MAEG5070 Nonlinear Control Systems Assignment #4

Problem 3

Show that if symmetric p.d. matrices 𝑃 and 𝑄 exists such that

𝐴𝑇𝑃 + 𝑃𝐴 + 2𝜆𝑃 = −𝑄 (19)

then all the eigenvalues of 𝐴 have a real part strictly less than −𝜆.
Solution:

Consider the linear homogeneous continuous-time system

¤𝑥 (𝑡) = (𝐴 + 𝜆𝐼) 𝑥 (𝑡) (20)

Let us associate with this system and the equilibrium point 𝑥∗ = 0 the quadratic function

𝑉 (𝑥) = 𝑥𝑇𝑃𝑥 (21)

where 𝑃 is symmetric and positive definite. This𝑉 is continuous and has continuous first partial
derivatives. Furthermore, since 𝑃 is positive definite, the origin is the unique minimum point of
𝑉 . Thus in terms of general characteristics, such a positive definite quadratic form is a suitable
candidate for a Lyapunov function. It remains, of course, to determine how ¤𝑉 (𝑥) is influenced
by the dynamics of the system.

We have

¤𝑉 (𝑥) = 𝑑

𝑑𝑡
𝑥𝑇𝑃𝑥

= ¤𝑥𝑇𝑃𝑥 + 𝑥𝑇𝑃 ¤𝑥
= 𝑥𝑇 (𝐴 + 𝜆𝐼) 𝑃𝑥 + 𝑥𝑇𝑃 (𝐴 + 𝜆𝐼) 𝑥

= 𝑥𝑇
(
𝐴𝑇𝑃 + 𝑃𝐴 + 2𝜆𝑃

)
𝑥

= −𝑥𝑇𝑄𝑥

(22)

Because matrix 𝑄 is symmetric p.d., ¤𝑉 (𝑥) < 0 for ∀𝑥 ∈ R − {0}, indicating that ¤𝑉 (𝑥) is
ND. Therefore, the system is globally asymptotically stable. To ensure the system is global
asymptotically stable, the real parts of the eigenvalues of (𝐴 + 𝜆𝐼) need to be always negative,
which means all the eigenvalues of 𝐴 have a real part strictly less than −𝜆 (Luenberger, 1979).
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Problem 4

For the linear system
¤𝑥1 = 𝑥2

¤𝑥2 = −6𝑥1 − 5𝑥2
(23)

(a) what can you say about its stability and asymptotic stability from the candidate Lyapunov
functions

𝑉1 (𝑥) = 6𝑥21 + 𝑥22

𝑉2 (𝑥) = 𝑥21 + 𝑥22 − 𝑥1𝑥2
(24)

(b) For 𝑄 = 𝐼, solve the Lyapunov equation for a symmetric p.d. matrix 𝑃.

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 (25)

where

𝐴 =

[
0 1

−6 −5

]
(26)

Solution:

(a) For the candidate 𝑉1,

𝑉1 (𝑥) = 6𝑥21 + 𝑥22 > 0 for ∀𝑥 ∈ R2 −
{[

0

0

]}
(27)

Therefore, 𝑉1 (𝑥) is positive definite. Taking the derivative of Equation (27) yields that

¤𝑉1 (𝑥) = 12𝑥1 ¤𝑥1 + 2𝑥2 ¤𝑥2 = 12𝑥1𝑥2 + 2𝑥2 (−6𝑥1 − 5𝑥2) = −10𝑥22 ≤ 0 (28)

Therefore, ¤𝑉 (𝑥) is negative semi-definite, which means the system is stable at the equi-

librium point 𝑥 =

[
0

0

]
.

P.S. If Invariant Set Theorem is used in this question, asymptotic stability can be con-
cluded. Because let 𝑅 = R2, if ¤𝑉1 (𝑥) = 0, 𝑥2 = 0, so ¤𝑥2 = 0. Substituting 𝑥2 = 0

and ¤𝑥2 = 0 into Equation (23), we can get 𝑥1 = 0. Therefore, ¤𝑉1 (𝑥) = 0 if and only if

𝑥 =

[
𝑥1

𝑥2

]
=

[
0

0

]
Therefore, the system is asymptotically stable.

For the candidate 𝑉2,

𝑉2 (𝑥) = 𝑥21 + 𝑥22 − 𝑥1𝑥2 =
1

2
(𝑥1 − 𝑥2)2 +

1

2
𝑥21 +

1

2
𝑥22 > 0 for ∀𝑥 ∈ R2 −

{[
0

0

]}
(29)
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Therefore, 𝑉2 (𝑥) is positive definite. Taking the derivative of Equation (29) yields that

¤𝑉2 (𝑥) = 2𝑥1 ¤𝑥1 + 2𝑥2 ¤𝑥2 − ¤𝑥1𝑥2 − 𝑥1 ¤𝑥2
= 2𝑥1𝑥2 + 2𝑥2 (−6𝑥1 − 5𝑥2) − 𝑥22 − 𝑥1 (−6𝑥1 − 5𝑥2)
= 6𝑥21 − 11𝑥22 − 5𝑥1𝑥2

= (6𝑥1 − 11𝑥2) (𝑥1 + 𝑥2)

(30)

The sign of ¤𝑉2 (𝑥) can not be told from Equation (30). Therefore, this candidate Lyapunov
functions can not conclude the stability of the equilibrium point 𝑥 = 0.

(b) Let 𝑃 =

[
𝑝11 𝑝12

𝑝21 𝑝22

]
, where 𝑝12 = 𝑝21.

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 ⇔
[
0 1

−6 −5

]𝑇 [
𝑝11 𝑝12

𝑝21 𝑝22

]
+

[
𝑝11 𝑝12

𝑝21 𝑝22

] [
0 1

−6 −5

]
=

[
−1 0

0 −1

]
⇔

[
0 −6
1 −5

] [
𝑝11 𝑝12

𝑝21 𝑝22

]
+

[
𝑝11 𝑝12

𝑝21 𝑝22

] [
0 1

−6 −5

]
=

[
−1 0

0 −1

]
⇔

[
−6𝑝21 −6𝑝22

𝑝11 − 5𝑝21 𝑝12 − 5𝑝22

]
+

[
−6𝑝12 𝑝11 − 5𝑝12

−6𝑝22 𝑝21 − 5𝑝22

]
=

[
−1 0

0 −1

]
⇔

[
−6𝑝21 − 6𝑝12 −6𝑝22 + 𝑝11 − 5𝑝12

𝑝11 − 5𝑝21 − 6𝑝22 𝑝12 − 5𝑝22 + 𝑝21 − 5𝑝22

]
=

[
−1 0

0 −1

]
(31)

Therefore, we can know that
−6𝑝21 − 6𝑝12 = −1
−6𝑝22 + 𝑝11 − 5𝑝12 = 0

𝑝11 − 5𝑝21 − 6𝑝22 = 0

𝑝12 − 5𝑝22 + 𝑝21 − 5𝑝22 = −1

(32)

Solving Equation (32) yields that

𝑃 =

[
67
60

1
12

1
12

7
60

]
(33)
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