

THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MECHANICAL & AUTOMATION ENGINEERING

MAEG5070 Nonlinear Control Systems

Assignment #6

by

Liuchao JIN (Student ID: 1155184008)

Liuchao Gin

2022-23 Term 1

© Copyright in this work rests with the authors. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation.

Show that the one-dimensional system $\dot{x} = -a(t)x$ where a(t) is continuous and nonnegative over $t \ge 0$ is exponentially stable if there exist a T > 0 such that, for any t > 0, $\int_t^{t+T} a(r) dr \ge \gamma$ for some $\gamma > 0$.

Hint: For any $t \ge t_0$, $e^{-\int_t^{t+T} a(r)dr} \le e^{-\gamma} < 1$.

Solution:

For the system, $\dot{x} = -a(t)x$, the solution for x(t) is

$$x(t) = x(t_0) e^{-\int_{t_0}^t a(x)dx}$$
 (1)

If for any t > 0, $\int_{t}^{t+T} a(r) dr \ge \gamma$ for some $\gamma > 0$,

$$\int_{t_0}^{t} a(\tau) d\tau = \int_{t_0}^{t+T} a(\tau) d\tau + \int_{t_0+T}^{t_0+2T} a(\tau) d\tau + \dots + \int_{t-T}^{t} a(\tau) d\tau \ge \frac{t-t_0}{T} \gamma \qquad (2)$$

Therefore,

$$e^{-\int_{t_0}^t a(x)dx} \le e^{-\frac{t-t_0}{T}\gamma} \tag{3}$$

Hence,

$$x(t) = x(t_0) e^{-\int_{t_0}^t a(x)dx} \le x(t_0) e^{\frac{t_0}{T}\gamma} e^{-\frac{\gamma}{T}t}$$
(4)

We can conclude that $\dot{x} = -a(t)x$ is exponentially stable.

Condition (4.19) on the eigenvalues of $A(t) + A^{T}(t)$ is only, of course, a sufficient condition. For instance, show that the linear time-varying system associated with the matrix

$$\mathbf{A}\left(t\right) = \begin{bmatrix} -1 & e^{t/2} \\ 0 & -1 \end{bmatrix} \tag{5}$$

is globally asymptotically stable.

Solution:

$$\mathbf{A}(t) = \begin{bmatrix} -1 & e^{t/2} \\ 0 & -1 \end{bmatrix} \Longrightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -x_1 + e^{\frac{t}{2}} x_2 \\ -x_2 \end{bmatrix}$$
 (6)

we can obtain the solution for $x_2(t)$:

$$x_2(t) = x_2(t_0) e^{-(t-t_0)}$$
(7)

Because $\dot{x}_1 = -x_1 + e^{\frac{t}{2}}x_2$

$$x_{1}(t) = x_{1}(t_{0}) e^{-(t-t_{0})} + \int_{t_{0}}^{t} e^{-(t-\tau)} e^{\frac{\tau}{2}} x_{2}(\tau) d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + \int_{t_{0}}^{t} e^{-(t-\tau)} e^{\frac{\tau}{2}} x_{2}(t_{0}) e^{-(\tau-t_{0})} d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{-(t-t_{0})} \int_{t_{0}}^{t} e^{\frac{\tau}{2}} d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + 2x_{2}(t_{0}) e^{-(t-t_{0})} \left(e^{\frac{t}{2}} - e^{\frac{t_{0}}{2}} \right)$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + 2x_{2}(t_{0}) e^{-(\frac{t}{2}-t_{0})} - 2x_{2}(t_{0}) e^{-(t-\frac{3}{2}t_{0})}$$

$$(8)$$

We can conclude that $\dot{x} = -A(t)x$ is globally asymptotically stable since $\lim_{t\to\infty} x_i(t) = 0$, i = 1, 2.

Determine whether the following systems have a stable equilibrium. Indicate whether the stability is asymptotic, and whether it is global.

(a)
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -10 & e^{3t} \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (9)

(b)
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 2\sin t \\ 0 & -(t+1) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (10)

(c)
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & e^{2t} \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (11)

Solution:

(a)
$$A(t) = \begin{bmatrix} -10 & e^{3t} \\ 0 & -2 \end{bmatrix} \Longrightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -10x_1 + e^{3t}x_2 \\ -2x_2 \end{bmatrix}$$
 (12)

we can obtain the solution for $x_2(t)$:

$$x_2(t) = x_2(t_0) e^{-2(t-t_0)}$$
 (13)

Because $\dot{x}_1 = -10x_1 + e^{3t}x_2$

$$x_{1}(t) = x_{1}(t_{0}) e^{-10(t-t_{0})} + \int_{t_{0}}^{t} e^{-10(t-\tau)} e^{3\tau} x_{2}(\tau) d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + \int_{t_{0}}^{t} e^{-10(t-\tau)} e^{3\tau} x_{2}(t_{0}) e^{-2(\tau-t_{0})} d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{-(10t-2t_{0})} \int_{t_{0}}^{t} e^{11\tau} d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + \frac{1}{11} x_{2}(t_{0}) e^{-(t-2t_{0})} \left(e^{11t} - e^{11t_{0}} \right)$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + \frac{1}{11} x_{2}(t_{0}) e^{t+3t_{0}} - \frac{1}{11} x_{2}(t_{0}) e^{-(10t-13t_{0})}$$

$$(14)$$

We can conclude that $\dot{x} = -A(t)x$ is unstable since $\lim_{t\to\infty} x_1(t) = \infty$.

(b)
$$A(t) + A^{T}(t) = \begin{bmatrix} -2 & 2\sin t \\ 2\sin t & -2(t+1) \end{bmatrix} \Longrightarrow -\left(A(t) + A^{T}(t)\right) = \begin{bmatrix} 2 & -2\sin t \\ -2\sin t & 2(t+1) \end{bmatrix}$$
(15)

The determinant of $-(A(t) + A^{T}(t))$ is equal to

$$\det \left[-\left(A\left(t\right) +A^{T}\left(t\right) \right) \right] =4\left(t+1\right) -4\sin ^{2}t\geq 4\left(t+1\right) -4t>0 \tag{16}$$

Therefore, $-(A(t) + A^T(t))$ is positive definite, which means $A(t) + A^T(t)$ is negative definite. Hence, $\lambda_i(A(t) + A^T(t)) < -\lambda$ for some $\lambda > 0$. We can conclude that the system is globally asymptotically stable.

(c) $\mathbf{A}(t) = \begin{bmatrix} -1 & e^{2t} \\ 0 & -2 \end{bmatrix} \Longrightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1x_1 + e^{2t}x_2 \\ -2x_2 \end{bmatrix}$ (17)

we can obtain the solution for $x_2(t)$:

$$x_2(t) = x_2(t_0) e^{-2(t-t_0)}$$
(18)

Because $\dot{x}_1 = -10x_1 + e^{3t}x_2$

$$x_{1}(t) = x_{1}(t_{0}) e^{-(t-t_{0})} + \int_{t_{0}}^{t} e^{-(t-\tau)} e^{3\tau} x_{2}(\tau) d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + \int_{t_{0}}^{t} e^{-(t-\tau)} e^{2\tau} x_{2}(t_{0}) e^{-2(\tau-t_{0})} d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{-(t-2t_{0})} \int_{t_{0}}^{t} e^{\tau} d\tau$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{-(t-2t_{0})} (e^{t} - e^{t_{0}})$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{t_{0}} - x_{2}(t_{0}) e^{-(t-3t_{0})}$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{t_{0}} - x_{2}(t_{0}) e^{-(t-3t_{0})}$$

$$= x_{1}(t_{0}) e^{-(t-t_{0})} + x_{2}(t_{0}) e^{t_{0}} - x_{2}(t_{0}) e^{-(t-3t_{0})}$$

Since we can find constant $r(R, t_0) = \frac{R}{4}e^{-3t_0}$, $\forall R > 0$, such that $||x(t_0)|| < r \Rightarrow ||x(t)|| < R$, $t \ge t_0$, so, the equilibrium point at origin is stable.

However, $\lim_{t\to\infty} x_1(t) = x_2(t_0) e^{t_0}$, so it is not asymptotically stable.

Show that the following system is globally exponentially stable with a detailed argument.

$$\dot{x}_1 = -\left(5 + x_2^5 + x_3^8\right) x_1
\dot{x}_2 = -x_2 + 4x_3^2
\dot{x}_3 = -\left(2 + \sin t\right) x_3$$
(20)

Solution:

Let $a(t) = 2 + \sin t$. Then

$$x_3(t) = x_3(t_0) e^{-\int_{t_0}^t (2+\sin\tau)d\tau} \Longrightarrow ||x_3|| e^{-(t-t_0)}$$
 (21)

Therefore,

$$x_2(t) = e^{-(t-t_0)} x_2(t_0) + \int_{t_0}^t e^{-(t-\tau)} 4x_3^2(\tau) d\tau$$
 (22)

Thus, it is ready to see that the system is globally exponentially stable upon using Proposition 1 on the x_1 subsystem (Slotine et al., 1991).

- (i) For the autonomous system $\dot{x} = f(x), x \in \mathbb{R}^n$, show that, if, in a certain neighborhood Ω of the origin, there exists a continuously differentiable scalar function V(x) such that
 - $V(0) = 0 \quad \forall t \ge 0$
 - V(x) can assume strictly positive values arbitrarily close to the origin.
 - $\dot{V}(x)$ is positive definite (locally in Ω)

then the equilibrium point 0 is unstable.

(ii) Show that the E.P. of $\dot{x} = c(x)$ is unstable where c(x) is continuous and satisfies $xc(x) > 0, x \neq 0$.

Hint: Let R > 0 be such that \dot{V} is P.D. on $B_R = \{x | ||x||^2 \le R^2\}$ and $B_R \subset \Omega$, and let

$$M = \max_{x \in B_R} V(x) \tag{23}$$

V is continuous & B_R compact $\Longrightarrow M$ exists. Also, M>0 since V(x) can assume strictly positive values arbitrarily close to the origin. For any R>r>0, there exists x(0) such that $0<\|x(0)\|< r$, and V(x(0))=a>0. Since $\dot{V}(x)$ is positive definite (locally in Ω), V(x(t))>V(x(0))>0 for all $t\geq 0$. Let $U=\{x|x\in B_R \text{ and } V(x)\}\geq a$. Then U is compact. Thus there exists L>0 such that

$$L = \min_{x \in U} \left\{ \dot{V} \right\} \tag{24}$$

If $||x(t, x_0)|| < R$ for all $t \ge 0$, then

$$V(x(t,x_0)) - V_0(x_0) = \int_0^t \dot{V}(x(t,x_0)) dt \ge \int_0^t L dt = Lt$$

$$\implies V(x(t,x_0)) \ge V_0(x_0) + Lt > M$$
(25)

when $t > \frac{M-V(x_0)}{L}$ which contradicts Equation (23). Thus, the E.P. is unstable.

Solution:

(i) Let R > 0 be such that \dot{V} is P.D. on $B_R = \{x | ||x||^2 \le R^2\}$ and $B_R \subset \Omega$, and let

$$M = \max_{x \in B_R} V(x) \tag{26}$$

V is continuous & B_R compact $\Longrightarrow M$ exists. Also, M>0 since V(x) can assume strictly positive values arbitrarily close to the origin. For any R>r>0, there exists x(0) such that $0<\|x(0)\|< r$, and V(x(0))=a>0. Since $\dot{V}(x)$ is positive definite (locally in Ω), V(x(t))>V(x(0))>0 for all $t\geq 0$. Let $U=\{x|x\in B_R \text{ and } V(x)\}\geq a$. Then U is compact. Thus there exists L>0 such that

$$L = \min_{x \in U} \left\{ \dot{V} \right\} \tag{27}$$

If $||x(t, x_0)|| < R$ for all $t \ge 0$, then

$$V(x(t,x_0)) - V_0(x_0) = \int_0^t \dot{V}(x(t,x_0)) dt \ge \int_0^t Ldt = Lt$$

$$\implies V(x(t,x_0)) \ge V_0(x_0) + Lt > M$$
(28)

when $t > \frac{M - V(x_0)}{L}$ which contradicts Equation (23). Thus, the E.P. is unstable.

(ii) If we take $V(x) = x^2$, we can see that V(0) = 0 $\forall t \ge 0$. And $\dot{V}(x) = 2x\dot{x} = 2xc(x) > 0$, $\forall x \ne 0$, so \dot{V} is globally positive definite.

Therefore, the equilibrium point of $\dot{x} = c(x)$ is unstable.

References

Slotine, J.-J. E., Li, W., et al. (1991). *Applied nonlinear control*, volume 199. Prentice hall Englewood Cliffs, NJ.