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Liuchao JIN MAEG5070 Nonlinear Control Systems Assignment #7

Problem 1

Show that if a function 𝑥 : [0,∞) → 𝑅𝑛 is uniformly continuous, and there exists a positive
definite quadratic function 𝑉 (𝑥) such that∫ ∞

0
𝑉 (𝑥 (𝑡)) 𝑑𝑡 < 0 (1)

then 𝑥 (𝑡) tends to zero as 𝑡 → ∞.
Solution:

Because 𝑉 (𝑥) is a positive definite quadratic function, we can express 𝑉 (𝑥 (𝑡)) as follows

𝑉 (𝑥 (𝑡)) = 𝑥𝑇𝑃𝑥 (2)

where 𝑃 is a positive definite matrix.
Define 𝑓 (𝑡) =

∫ 𝑡

0
𝑥 (𝜏) 𝑑𝜏. We claim that 𝑓 (𝑡) has a finite limit as 𝑡 → ∞. Otherwise, if

lim
𝑡→∞

𝑓 (𝑡) =
∫ ∞

0
𝑥 (𝜏) 𝑑𝜏 = ∞ (3)

we will have ∫ ∞

0
∥𝑥 (𝜏)∥2𝑑𝜏 = ∞ (4)

In addition, ∫ ∞

0
∥𝑥 (𝜏)∥2𝑑𝜏 ≤ 𝜆𝑚𝑎𝑥 (𝑃)

∫ ∞

0
𝑥𝑇𝑃𝑥𝑑𝑡 = 𝜆𝑚𝑎𝑥 (𝑃)

∫ ∞

0
𝑉 (𝑥 (𝑡)) 𝑑𝑡 (5)

Hence, ∫ ∞

0
𝑉 (𝑥 (𝑡)) 𝑑𝑡 = ∞ (6)

which is contradicted to Equation (1). Therefore, 𝑓 (𝑡) has a finite limit as 𝑡 → ∞.
Besides, because 𝑥 : [0,∞) → 𝑅𝑛 is uniformly continuous, that is ¤𝑓 (𝑡) is uniformly

continuous, by Barbalat’s Lemma 4.2, we can conclude that ¤𝑓 (𝑡) → 0 as 𝑡 → 0, that is 𝑥 (𝑡)
tends to zero as 𝑡 → ∞.
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Problem 2

Consider the following one dimensional single-input nonlinear control system

¤𝑥 = 𝜃𝑔 (𝑥, 𝑡) + 𝑢 (7)

where 𝜃 is some constant parameter, and 𝑔 (𝑥, 𝑡) is some bounded smooth function defined for
all 𝑡 and 𝑥.

(a) Assuming 𝜃 is known, show that, under the following state feedback nonlinear controller

𝑢 = −𝜃𝑔 (𝑥, 𝑡) − 𝑘𝑥 (8)

where 𝑘 > 0, the equilibrium point of the closed-loop system is globally asymptotically
stable.

(b) If 𝜃 is unknown, the feedback controller 𝑢 = −𝜃𝑔 (𝑥, 𝑡) − 𝑘𝑥 is not implementable. One
can use adaptive control to control the system. Show that, under the following adaptive
controller

𝑢 = −𝜃𝑔 (𝑥, 𝑡) − 𝑘𝑥
¤̂
𝜃 = 𝑔 (𝑥, 𝑡) 𝑥

(9)

the closed-loop system takes the following form

¤𝑥 = 𝜙𝑔 (𝑥, 𝑡) − 𝑘𝑥
¤̂
𝜃 = 𝑔 (𝑥, 𝑡) 𝑥

(10)

where 𝜙 = 𝜃 − 𝜃 (you can interpret 𝜃 as an estimation of 𝜃).

(c) Using a Lyapunov-like function 𝑉 = 𝑥2 + 𝜙2 to show that both 𝑥 and 𝜃 are bounded and
lim𝑡→∞ 𝑥 (𝑡) = 0.

(d) For 𝑔 (𝑥, 𝑡) = 𝑐𝑜𝑠 (𝑥) 𝑠𝑖𝑛 (𝑡) and 𝑘 = 2, do the simulation for the closed-loop system
using MATLAB with 𝑥 (0) = 0 and 𝜃 (0) = 1. Plot 𝑥(𝑡); 𝜃 (𝑡); 𝜙 (𝑡); 𝑢 (𝑡) for 0 < 𝑡 < 40

seconds.

Solution:

(a) Substituting the controller in Equation (8) into the system in Equation (7) yields that

¤𝑥 = 𝜃𝑔 (𝑥, 𝑡) + 𝑢 = 𝜃𝑔 (𝑥, 𝑡) − 𝜃𝑔 (𝑥, 𝑡) − 𝑘𝑥 = −𝑘𝑥 (11)

Because 𝑘 > 0, according to linear system stability theory, −𝑘 is Hurwitz. Therefore, the
equilibrium point of the closed-loop system is globally asymptotically stable.
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(b) Substituting the controller in Equation (9) into the system in Equation (7) yields that

¤𝑥 = 𝜃𝑔 (𝑥, 𝑡) + 𝑢

𝑢 = −𝜃𝑔 (𝑥, 𝑡) − 𝑘𝑥
¤̂
𝜃 = 𝑔 (𝑥, 𝑡) 𝑥

=⇒
¤𝑥 = 𝜙𝑔 (𝑥, 𝑡) − 𝑘𝑥
¤̂
𝜃 = 𝑔 (𝑥, 𝑡) 𝑥

(12)

where 𝜙 = 𝜃 − 𝜃 (you can interpret 𝜃 as an estimation of 𝜃).

(c) 𝑉 = 𝑥2 + 𝜙2 is lower bounded obviously. And its derivative

¤𝑉 = 2𝑥 ¤𝑥 + 2𝜙 ¤𝜙

= 2𝑥 (𝜙𝑔 (𝑥, 𝑡) − 𝑘𝑥) + 2𝜙
(
¤𝜃 − ¤̂

𝜃

)
= 2𝑥 (𝜙𝑔 (𝑥, 𝑡) − 𝑘𝑥) + 2𝜙 (0 − 𝑔 (𝑥, 𝑡) 𝑥)
= −2𝑘𝑥2 ≤ 0

(13)

This implies that 𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (0)), ∀𝑡 > 0, which indicate that 𝑥 and 𝜙 should all be
bounded. Taking the derivative to ¤𝑉 yields that

¥𝑉 = −4𝑘𝑥 ¤𝑥 = −4𝑘𝑥 (𝜙𝑔 (𝑥, 𝑡) − 𝑘𝑥) (14)

Here, 𝑥, 𝜙, and 𝑔 (𝑥, 𝑡) are all bounded. Therefore, ¥𝑉 is bounded. According to Barbalat’s
Lemma 4.1, ¤𝑉 is uniformly continuous. Again, using Barbalat’s Lemma 4.3, ¤𝑉 (𝑥, 𝑡) → 0

as 𝑡 → ∞, which means lim𝑡→∞ 𝑥 (𝑡) = 0.

(d) We set 𝜃 = 𝜋 and use following Simulink to get the results:

And we use the following code to plot the results:

1 clear all; clc;

2 figg1 = openfig(’x.fig’,’reuse’);

3 grid on;

4 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

5 ylabel(’$x, \mathrm{\ \left(m\right)}$’, ’interpreter’,’latex’);

6 title(’’);

7 a = get(gca,’XTickLabel’);

8 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

9 set(gcf,’renderer’,’painters’);

10 filename = "x"+".pdf";

11 saveas(gcf,filename);

12 close(figg1);

13 figg2 = openfig(’theta.fig’,’reuse’);

14 grid on;

15 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

16 ylabel(’$\hat{\theta}$’, ’interpreter’,’latex’);

17 title(’’);

18 a = get(gca,’XTickLabel’);

Page 3 of 9



Liuchao JIN MAEG5070 Nonlinear Control Systems Assignment #7

theta

sin

cos

x

x

x
−
−

k

x

+
+

x

+
−

x

g

hat{theta}

kx

u

Figure 1: Block diagram for the system.

19 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

20 set(gcf,’renderer’,’painters’);

21 filename = "theta"+".pdf";

22 saveas(gcf,filename);

23 close(figg2);

24 figg3 = openfig(’phi.fig’,’reuse’);

25 grid on;

26 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

27 ylabel(’$\phi$’, ’interpreter’,’latex’);

28 title(’’);

29 a = get(gca,’XTickLabel’);

30 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

31 set(gcf,’renderer’,’painters’);

32 filename = "phi"+".pdf";

33 saveas(gcf,filename);

34 close(figg3);

35 figg4 = openfig(’u.fig’,’reuse’);

36 grid on;

37 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

38 ylabel(’$u$’, ’interpreter’,’latex’);

39 title(’’);

40 a = get(gca,’XTickLabel’);
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41 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

42 set(gcf,’renderer’,’painters’);

43 filename = "u"+".pdf";

44 saveas(gcf,filename);

45 close(figg4);

The results are shown as follows:
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Figure 2: Simulation results.
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Problem 3

Consider the system ¤𝑥 = 𝑓 (𝑥) where 𝑥 ∈ 𝑅𝑛, and 𝑓 is continuously differentiable with 𝑓 (0) = 0.
Let 𝐽 be the Jacobian matrix of 𝑓 at the origin. It is known from the Lyapunov’s linearization
method that the equilibrium at 𝑥 = 0 of this system is unstable if at least one of the eigenvalues
of 𝐽 has positive real part. Prove a special case of this result by assuming that 𝑛 = 2 and

𝐽 =

[
1 0

0 −2

]
Hint: Let 𝑉 (𝑥) = 𝑥21 − 𝑥22.
Solution:

Because 𝐽 =

[
1 0

0 −2

]
, the system can be described as

{
¤𝑥1 = 𝑥1 + 𝑔1 (𝑥1, 𝑥2)
¤𝑥2 = −2𝑥2 + 𝑔2 (𝑥1, 𝑥2)

(15)

where 𝑔1 (𝑥1, 𝑥2) and 𝑔2 (𝑥1, 𝑥2) are higher order terms.
Define 𝑉 (𝑥) = 𝑥21 − 𝑥22 satisfies 𝑉 (0) = 0 and we can assume positive values arbitrarily near

the origin. Take the time derivative to 𝑉 (𝑥):

¤𝑉 (𝑥) = 2𝑥1 ¤𝑥1 − 2𝑥2 ¤𝑥2
= 2𝑥1 (𝑥1 + 𝑔1 (𝑥1, 𝑥2)) − 2𝑥2 (−2𝑥2 + 𝑔2 (𝑥1, 𝑥2))
= 2𝑥21 + 4𝑥22 + 2𝑥1𝑔1 (𝑥1, 𝑥2) − 2𝑥2𝑔2 (𝑥1, 𝑥2)

(16)

Because 𝑔1 (𝑥1, 𝑥2) and 𝑔2 (𝑥1, 𝑥2) are higher order terms, ∀𝛼1,2 > 0, ∃𝑟 > 0 such that
∥𝑔𝑖 (𝑥1, 𝑥2)∥ < 𝛼𝑖∥𝑥𝑖∥, 𝑖 = 1, 2, ∀𝑥 ∈ 𝐵𝑟 . Therefore,

¤𝑉 (𝑥) = 2𝑥21 + 4𝑥22 + 2𝑥1𝑔1 (𝑥1, 𝑥2) − 2𝑥2𝑔2 (𝑥1, 𝑥2)
≥ 2∥𝑥1∥2 + 4∥𝑥2∥2 − 2𝛼1∥𝑥1∥2 − 2𝛼2∥𝑥2∥2

= (2 − 2𝛼1) ∥𝑥1∥2 + (4 − 2𝛼2) ∥𝑥2∥2
(17)

as long as we select 0 < 𝛼1 < 1 and 0 < 𝛼2 < 1
2 , ¤𝑉 (𝑥) can defined as positive definite in 𝐵𝑟 .
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Problem 4

Consider the second order system
¤𝑥1 = 𝑥1𝑥2

¤𝑥2 = 𝑥1 + 𝑢
(18)

using backstepping to design a state feedback controller to globally stabilize the origin.
Solution:

Letting 𝑢 = 𝑢𝑎 − 𝑥1 gives
¤𝑥1 = 𝑥1𝑥2

¤𝑥2 = 𝑢𝑎
(19)

In this form, 𝜂 = 𝑥1 and 𝜁 = 𝑥2.
𝑓 (𝜂) = 0 (20)

and
𝑔 (𝜂) = 𝜂 (21)

Therefore,
𝜙 (𝑥1) =

−𝛼𝜂 − 𝑓 (𝜂)
𝑔 (𝜂) = −𝛼 (22)

Here, 𝛼 > 0. The closed-loop system has a control Lyapunov function

𝑉 (𝑥1) =
1

2
𝑥21 (23)

By Lemma 1, we can have a control Lyapunov function

𝑉𝛼 (𝑥1, 𝑥2) = 𝑉 (𝑥1) +
1

2
(𝑥2 − 𝜙 (𝑥1))2

=
1

2
𝑥21 +

1

2
(𝑥2 + 𝛼)2

(24)

with respect to

𝑢𝑎 = 𝜙𝛼 (𝑥1, 𝑥2)

=
𝜕𝜙 (𝜂)
𝜕𝜂

[ 𝑓 (𝜂) + 𝑔 (𝜂) 𝜁] − 𝜕𝑉 (𝜂)
𝜕𝜂

𝑔 (𝜂) − 𝑘 (𝜁 − 𝜙 (𝜂)) = −𝑥21 − 𝑘 (𝑥2 + 𝛼)
(25)

where 𝑘 > 0. Therefore,

𝑢 = 𝑢𝑎 − 𝑥1 = −𝑥21 − 𝑥1 − 𝑘 (𝑥2 + 𝛼) (26)
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Problem 5

(a) Using the Lyapunov function candidate 𝑉 (𝑥) = 𝑥2 to determine the stability of the origin
of the following system

¤𝑥 = −𝑥3 + 𝑥2 sin2 𝑥 (27)

(b) Using backstepping to design a state feedback controller to globally stabilize the origin
of the following system

¤𝑥1 = −𝑥31 + 𝑥1𝑥2 sin
2 𝑥1

¤𝑥2 = 𝑥3

¤𝑥3 = 𝑥3 + exp (𝑥2)𝑢
(28)

Solution:

(a) 𝑉 (𝑥) = 𝑥2 is positive definite. Taking the time derivative to 𝑉 (𝑥) yields

¤𝑉 (𝑥) = 2𝑥 ¤𝑥 = 2𝑥
(
−𝑥3 + 𝑥2 sin2 𝑥

)
= −2

(
𝑥4 − 𝑥3 sin2 𝑥

)
< −2

(
𝑥4 − 𝑥3𝑥

)
= 0 (29)

Hence, ¤𝑉 (𝑥) is negative definite. Therefore, the system is globally asymptotically stable.

(b) Letting 𝑢 = exp (−𝑥2) (𝑢𝑎 − 𝑥3) gives

¤𝑥1 = −𝑥31 + 𝑥1𝑥2 sin
2 𝑥1

¤𝑥2 = 𝑥3

¤𝑥3 = 𝑢𝑎

(30)

In this form, 𝜂 = 𝑥1 and 𝜁 = 𝑥2.
𝑓 (𝜂) = −𝑥31 (31)

and
𝑔 (𝜂) = 𝑥1 sin

2 𝑥1 (32)

From part (a), we can have a control Lyapunov function

𝑉 (𝑥1) =
1

2
𝑥21 (33)

with respect to
𝜙 (𝑥1) = 𝑥1 (34)

By Lemma 1, we can have a control Lyapunov function

𝑉𝛼 (𝑥1, 𝑥2) = 𝑉 (𝑥1) +
1

2
(𝑥2 − 𝜙 (𝑥1))2

=
1

2
𝑥21 +

1

2
(𝑥2 − 𝑥1)2

(35)
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with respect to

𝜙𝛼 (𝑥1, 𝑥2)

=
𝜕𝜙 (𝜂)
𝜕𝜂

[ 𝑓 (𝜂) + 𝑔 (𝜂) 𝜁] − 𝜕𝑉 (𝜂)
𝜕𝜂

𝑔 (𝜂) − 𝑘 (𝜁 − 𝜙 (𝜂))

= −𝑥31 + 𝑥1𝑥2 sin
2 𝑥1 − 𝑥21 sin

2 𝑥1 − 𝑘1 (𝑥2 − 𝑥1)

(36)

where 𝑘1 > 0. Applying the extension of Lemma 1 to the whole system yields

𝑉 (𝑥1, 𝑥2, 𝑥3) = 𝑉𝛼 (𝑥1, 𝑥2) +
1

2
(𝑥3 − 𝜙 (𝑥1, 𝑥2))2

=
1

2
𝑥21 +

1

2
(𝑥2 − 𝑥1)2

+ 1

2

(
𝑥3 + 𝑥31 − 𝑥1𝑥2 sin

2 𝑥1 + 𝑥21 sin
2 𝑥1 + 𝑘1 (𝑥2 − 𝑥1)

)2 (37)

with respect to

𝑢𝑎 = 𝜙𝛼 (𝑥1, 𝑥2, 𝑥3)

=
𝜕𝜙𝛼 (𝑥1, 𝑥2)
𝜕 (𝑥1, 𝑥2)

[ 𝑓 (𝑥1, 𝑥2) + 𝑔 (𝑥1, 𝑥2) 𝑥3] −
𝜕𝑉𝛼 (𝑥1, 𝑥2)
𝜕 (𝑥1, 𝑥2)

𝑔 (𝑥1, 𝑥2) − 𝑘 (𝑥3 − 𝜙𝛼 (𝑥1, 𝑥2))

=

(
−3𝑥21 + 𝑥2 sin

2 𝑥1 + 2𝑥1𝑥2 sin 𝑥1 cos 𝑥1 − 2𝑥1 sin
2 𝑥1 − 2𝑥21 sin 𝑥1 cos 𝑥1 + 𝑘1

) (
−𝑥31 + 𝑥1𝑥2 sin

2 𝑥1

)
+
(
𝑥1 sin

2 𝑥1 + 𝑘1

)
𝑥3 − (𝑥2 − 𝑥1) − 𝑘2

(
𝑥3 + 𝑥31 − 𝑥1𝑥2 sin

2 𝑥1 + 𝑥21 sin
2 𝑥1 + 𝑘1 (𝑥2 − 𝑥1)

)
(38)

Therefore,

𝑢 = exp (−𝑥2) (𝑢𝑎 − 𝑥3)

= exp (−𝑥2)
(
−3𝑥21 + 𝑥2 sin

2 𝑥1 + 2𝑥1𝑥2 sin 𝑥1 cos 𝑥1 − 2𝑥1 sin
2 𝑥1 − 2𝑥21 sin 𝑥1 cos 𝑥1 + 𝑘1

)
·
(
−𝑥31 + 𝑥1𝑥2 sin

2 𝑥1

)
+ exp (−𝑥2)

(
𝑥1 sin

2 𝑥1 + 𝑘1

)
𝑥3 − exp (−𝑥2) (𝑥2 − 𝑥1)

− 𝑘2 exp (−𝑥2)
(
𝑥3 + 𝑥31 − 𝑥1𝑥2 sin

2 𝑥1 + 𝑥21 sin
2 𝑥1 + 𝑘1 (𝑥2 − 𝑥1)

)
(39)

Page 9 of 9


	Cover page
	1 
	2 
	3 
	4 
	5 


