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Liuchao JIN MAEGS5070 Nonlinear Control Systems Assignment #7

Problem 1

Show that if a function x : [0,c0) — R" is uniformly continuous, and there exists a positive

definite quadratic function V (x) such that

/OOV(x(t))dt <0 (1)
0

then x (7) tends to zero as t — oo.
Solution:

Because V (x) is a positive definite quadratic function, we can express V (x (¢)) as follows
V (x (1)) =xTPx (2)

where P is a positive definite matrix.
Define f (1) = fotx (T) dtv. We claim that f (¢) has a finite limit as t — co. Otherwise, if

tlim f(t)= /wx (1) dt = (3)
—00 0
we will have -
/0 I (0) 12 = oo @)
In addition,
[ @1Rar < das (P) [ 47 Pt = 2 () [V )
0 0 0
Hence, .
/ V(x(1)dt = (6)
0

which is contradicted to Equation (1). Therefore, f (¢) has a finite limit as t — co.
Besides, because x : [0,00) — R" is uniformly continuous, that is f (¢) is uniformly
continuous, by Barbalat’s Lemma 4.2, we can conclude that f (f) — 0 as t — 0, that is x ()

tends to zero as t — oo.
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Problem 2

Consider the following one dimensional single-input nonlinear control system

X=0g (x,t)+u (7)

where 6 is some constant parameter, and g (x, ¢) is some bounded smooth function defined for

all # and x.

(a)

(b)

(c)

(d)

Assuming 6 is known, show that, under the following state feedback nonlinear controller
u=-0g(x,t)—kx (8)

where k > 0, the equilibrium point of the closed-loop system is globally asymptotically
stable.

If 6 is unknown, the feedback controller u = —6g (x,t) — kx is not implementable. One

can use adaptive control to control the system. Show that, under the following adaptive

controller X
u=-0g(x,t)—kx
% 9)
0=g(x,t)x
the closed-loop system takes the following form
X = x,t) — kx
¢g (x,1) (10)

0= g(x,t)x
where ¢ = 6 — 6 (you can interpret 6 as an estimation of 6).

Using a Lyapunov-like function V = x2 + ¢ to show that both x and 6 are bounded and

hm[_)oox (t) = O.

For g (x,t) = cos (x) sin(t) and k = 2, do the simulation for the closed-loop system
using MATLAB with x (0) = 0 and 6 (0) = 1. Plot x(¢); 8 (t); ¢ (¢); u (¢) for 0 < 1 < 40

seconds.

Solution:

(a)

Substituting the controller in Equation (8) into the system in Equation (7) yields that
X=0g(x,t)+u=0g(x,t)—0g(x,t)—kx =—kx (11)

Because k > 0, according to linear system stability theory, —k is Hurwitz. Therefore, the

equilibrium point of the closed-loop system is globally asymptotically stable.
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(b) Substituting the controller in Equation (9) into the system in Equation (7) yields that

(c)

(d)

O 0 9 O L A W N =

e e e e
0 N N Lt WD~ O

X=0g (x,t)+u

. X = 1) —k
u=-0g(x,t) —kx = X =g (x.1) —kx

ézg(x,t)x 0=g(x,0)x

where ¢ = 6 — 6 (you can interpret 6 as an estimation of ).

V = x? + ¢? is lower bounded obviously. And its derivative
V = 2xi + 2¢¢

=2x (g (x,t) — kx) + 2¢ (9 - é)

=2x (¢pg (x,t) —kx) +2¢ (0 — g (x,1) x)
= —2kx2 <0

(12)

(13)

This implies that V (x (¢)) < V (x (0)), V¢ > 0, which indicate that x and ¢ should all be

bounded. Taking the derivative to V yields that

V = —dkxx = —4kx (¢g (x,1) — kx)

(14)

Here, x, ¢, and g (x, t) are all bounded. Therefore, V is bounded. According to Barbalat’s

Lemma 4.1, V is uniformly continuous. Again, using Barbalat’s Lemma 4.3,V (x,t) — 0

as t — oo, which means lim;_,, x () = 0.

We set 6 =  and use following Simulink to get the results:

And we use the following code to plot the results:

clear all; clc;

figgl = openfig(’x.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $x, \mathrm{\ \left (m\right)}$’, ’interpreter’,’latex’);
title('’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);

set (gcf, ' renderer’,'painters’);

filename = "x"+".pdf";

saveas (gecf, filename) ;

close(figgl);

figg2 = openfig(’theta.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $\hat {\theta}$’, ’interpreter’,’latex’);

title('’);

a = get(gca,’XTickLabel’);
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Figure 1: Block diagram for the system.

set (gca, ' XTickLabel’,a,’FontName’, ' Times’,’ fontsize’,12);
set (gcf, ' renderer’,’'painters’);

filename = "theta"+".pdf";

saveas (gecf, filename) ;

close (figg2);

figg3 = openfig(’'phi.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $\phi$’, ’'interpreter’,’latex’);

title('’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);
set (gcf, '’ renderer’,'painters’);

filename = "phi"+".pdf";

saveas (gef, filename) ;

close (figg3);

figgd4d = openfig(’u.fig’,’reuse’);
grid on;
xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' $u$’, ’interpreter’,’latex’);
title('’);
a = get(gca,’XTickLabel’);
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41 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
42 set (gecf,’renderer’,’painters’);

43 filename = "u"+".pdf";

44 saveas (gcf, filename) ;

45 close(figgd);

The results are shown as follows:
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Figure 2: Simulation results.

Page 5 of 9



Liuchao JIN MAEGS5070 Nonlinear Control Systems Assignment #7

Problem 3

Consider the system X = f (x) where x € R", and f is continuously differentiable with f (0) = 0.
Let J be the Jacobian matrix of f at the origin. It is known from the Lyapunov’s linearization
method that the equilibrium at x = 0 of this system is unstable if at least one of the eigenvalues
of J has positive real part. Prove a special case of this result by assuming that n = 2 and
1 0
J=
0 -2

Hint: LetV (x) = x% - xg.

Solution:

1 0
Because J = 0 2], the system can be described as

{ X1 = x1 + g1 (x1,%2) (15)

Xo = —2x2 + g2 (x1,X2)

where g1 (x1,x2) and g2 (x1, x2) are higher order terms.
Define V (x) = x% - x% satisfies V (0) = 0 and we can assume positive values arbitrarily near
the origin. Take the time derivative to V (x):

V (x) = 2x1%1 — 2x9X9
= 2x1 (x1 + g1 (x1,X2)) — 2x2 (=2x2 + g2 (x1,X2)) (16)

= 2x% + 4x3 + 2x181 (x1,X2) — 2xX282 (X1, X2)

Because g (x1,x2) and g2 (x1,x2) are higher order terms, Va2 > 0, 3r > 0 such that
llgi (x1,x2) |l < a;llx;ll,i = 1,2, Vx € B,. Therefore,

1%4 (x) = Zx% + 4x% +2x1g1 (x1,Xx2) — 2x282 (x1,x2)
> 2||x1]|% + 4llxal? - 2a1 [lx1[|? - 2a2]|x2]|? (17)

= (2= 2a1) |l |1? + (4 = 2a2) |lx2|l?

as long as we select 0 < @1 < land 0 < ag < l, 1% (x) can defined as positive definite in B,.
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Problem 4

Consider the second order system
X1 = X1X2

Xo=Xx1+UuU

using backstepping to design a state feedback controller to globally stabilize the origin.

Solution:

Letting u = u, — x1 gives

X1 = X1X9
X2 = U,
In this form, n = x; and { = x».
f@m=0
and
gm=n
Therefore,
oGy = "L,
g (m)

Here, @ > 0. The closed-loop system has a control Lyapunov function

1

Vi(x1) = §x%

By Lemma 1, we can have a control Lyapunov function

1 2

Vo (x1,x2) =V (x1) + 5 (x2 = ¢ (x1))
1o 1 2
=51 +§(x2+a/)

with respect to

Uq = o (X1,X2)

=2 1 g ] -
n

oV (i)

g () =k (L= ¢ () = =x} — k(12 + )
n

where k > 0. Therefore,
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Problem 5

(a) Using the Lyapunov function candidate V (x) = x? to determine the stability of the origin

of the following system

%= —x3 +x%sin’ x 27

(b) Using backstepping to design a state feedback controller to globally stabilize the origin

of the following system

X1 = —x:f + X1Xx9 sin? X1

X2 = X3 (28)
X3 = x3+exp (xo)u

Solution:
(a) V (x) = x? is positive definite. Taking the time derivative to V (x) yields
V(x) = 2x% = 2x (—x3 +x? sin® x) =-2 (x4 — x3 sin? x) <=2 (x4 -x3 ) =0 (29
Hence, V (x) is negative definite. Therefore, the system is globally asymptotically stable.

(b) Letting u = exp (—x2) (u, — x3) gives

X1 = —le)’ + X1Xx9 sin? X1
X =Xx3 (30)
X3 = Uy
In this form, n = x; and £ = xs.
f @) =—x] (31)
and
g () =x1sin’x (32)

From part (a), we can have a control Lyapunov function
L o
Vix) = oM (33)

with respect to
¢ (x1) =x1 (34)

By Lemma 1, we can have a control Lyapunov function
Vo (x1,x2) =V (x1) + % (x2 = ¢ (x1))?

(35)

1 1
= ix% +3 (x2 — x1)*
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with respect to

¢a (.X]_,XQ)

0o () ov (n)
- on on

= —x:{' + xqx9 sin?xy — x% sinxy — ky (xo —x1)

[f (m)+g (] - g —k(&—-¢(m) (36)

where k1 > 0. Applying the extension of Lemma 1 to the whole system yields

1
V (x1,x2,x3) =V, (x1,x2) + 3 (x3 — ¢ (x1,x2))*

1 1
= §x% +3 (x3 —x1)? (37)
1
+ 3 (X3 +xi1)’ — x1x9 sin® x1 +x% sinxy + ky (x2 —xl))

with respect to

ua = ¢a’ (X15x2’x3)
_ 0¢a (x1,X2) OV (x1,x2)
d (x1,x2) d (x1,x2)

= (—3x% + X9 sin? X1 + 2x1x9 Sinxq1 cosxy] — 2x7 sin? X1 — 2x% sinxj cosxy + k1) (—x:l)’ + X1X9 sin? x1)

[f (x1,x2) + g (x1,x2) x3] — g (x1,x2) — k (x3 — ¢ (x1,%2))

+ (x1 sinxy + k1) x3— (xo —x1) — ko (X3 +xz1)’ — x1x9 sin® x1 +x% sin?xy + ky (x9 — xl))
(33)

Therefore,

u = exp (—x2) (ug —x3)

2

= exp (—x2) (—Sx% + x98in? x1 + 2x1x9 sinxy cos x1 — 2xq sin® xy — Qx% sin xi cosxi + kl)

. (—xif + x1x9 sin? xl) + exp (—x2) (x1 sin?xy + kl) x3 —exp (=x2) (x2 — x1)

2 2

— ko exp (—x2) ()C3 + x:f — X1x2 8in” x1 + X7 sin?

X1+ kq (x2 — X1))

(39)
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