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Liuchao JIN MAEG5070 Nonlinear Control Systems Assignment #8

Problem 1

Consider the controlled van del Pol equation

¤𝑥1 = 𝑥2

¤𝑥2 = −𝑥1 + 𝜖
(
1 − 𝑥21

)
𝑥2 + 𝑢, 𝜖 > 0

𝑦 = 𝑥1

(1)

(a) Calculate the relative degree of the system.

(b) Find a state feedback control law so that the equilibrium point at the origin of the closed-
loop is globally asymptotically stable.

Solution:

(a)
¤𝑦 = ¤𝑥1 = 𝑥2 (2)

¥𝑦 = ¤𝑥2 = −𝑥1 + 𝜖

(
1 − 𝑥21

)
𝑥2 + 𝑢 = 𝛼 (𝑥) + 𝛽 (𝑥) 𝑢 (3)

Therefore, the relative degree of the system is 2.

(b) The state feedback control law so that the equilibrium point at the origin of the closed-loop
is globally asymptotically stable is shown as follows:

𝑢 =
𝑦
(𝑛)
𝑑

−∑𝑛
𝑖=1 𝛼𝑖𝑒

(𝑛−𝑖) − 𝛼 (𝑥)
𝛽 (𝑥)

= −𝛼1 ¤𝑒 − 𝛼2𝑒 − 𝛼 (𝑥)
= −𝛼1 ¤𝑦 − 𝛼2𝑦 − 𝛼 (𝑥)

= −𝛼1𝑥2 − 𝛼2𝑥1 + 𝑥1 − 𝜖

(
1 − 𝑥21

)
𝑥2

(4)

Because 𝜌 = 𝑛, the closed-loop system can always be made an asymptotically stable
linear system.

Choosing 𝛼1 = 1 and 𝛼2 = 2, the control law becomes

𝑢 = −𝑥2 − 𝑥1 (5)
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Problem 2

The motion equation of a single-link robot manipulator is given by

𝐽 ¥𝜃 + 𝑀𝑔𝐿 sin 𝜃 = 𝑢 (6)

(a) Give the state space equation of (6) with 𝑥1 = 𝜃, 𝑥2 = ¤𝜃, and 𝑦 = 𝑥1

(b) Assume 𝐽 = 5, 𝑔𝐿 = 1, and 𝑀 = 10. Let 𝑦𝑑 (𝑡) be a sufficiently smooth time function
over 𝑡 ∈ [0,∞). Let 𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦𝑑 (𝑡). Design a state feedback control law so that
𝑒 (𝑡) satisfies ¥𝑒 (𝑡) + 2 ¤𝑒 (𝑡) + 𝑒 (𝑡) = 0.

(c) Check your design in simple simulation for 𝑦𝑑 (𝑡) to be a unit step input, and a sinusoidal
function sin 𝑡, respectively.

Solution:

(a) The state space equation of (6) with 𝑥1 = 𝜃, 𝑥2 = ¤𝜃, and 𝑦 = 𝑥1 is shown as follows

¤𝑥1 = 𝑥2

¤𝑥2 = −𝑀𝑔𝐿 sin 𝑥1
𝐽

+ 1
𝐽
𝑢

𝑦 = 𝑥1

(7)

(b) Because 𝐽 = 5, 𝑔𝐿 = 1, and 𝑀 = 10, the state space equation of (6) becomes

¤𝑥1 = 𝑥2

¤𝑥2 = −2 sin 𝑥1 + 0.2𝑢

𝑦 = 𝑥1

(8)

Then, we will find the relative degree 𝜌:

¤𝑦 = ¤𝑥1 = 𝑥2 (9)

¥𝑦 = ¤𝑥2 = −2 sin 𝑥1 + 0.2𝑢 = 𝛼 (𝑥) + 𝛽 (𝑥) 𝑢 (10)

Therefore, the relative degree of the system is 2. state feedback control law so that the
system is globally asymptotically stable

𝑢 =
𝑦
(𝑛)
𝑑

−∑𝑛
𝑖=1 𝛼𝑖𝑒

(𝑛−𝑖) − 𝛼 (𝑥)
𝛽 (𝑥)

=
¥𝑦𝑑 (𝑡) − 𝛼1 ¤𝑒 (𝑡) − 𝛼2𝑒 (𝑡) − 𝛼 (𝑥)

𝛽 (𝑥)
= 5 ( ¥𝑦𝑑 (𝑡) − 𝛼1 ¤𝑒 (𝑡) − 𝛼2𝑒 (𝑡) + 2 sin 𝑥1)

(11)

Substituting Equation (11) into Equation (10) obtains

¥𝑦 (𝑡) = ¥𝑦𝑑 (𝑡) − 𝛼1 ¤𝑒 (𝑡) − 𝛼2𝑒 (𝑡) (12)
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That is
¥𝑒 (𝑡) + 𝛼1 ¤𝑒 (𝑡) + 𝛼2𝑒 (𝑡) = 0 (13)

Therefore, 𝛼1 = 2 and 𝛼2 = 1 can satisfy the requirements of ¥𝑒 (𝑡) + 2 ¤𝑒 (𝑡) + 𝑒 (𝑡) = 0.
Hence, the state feedback control law is

𝑢 = 5 ( ¥𝑦𝑑 (𝑡) − 2 (𝑥2 − ¤𝑦𝑑) − (𝑥1 − 𝑦𝑑) + 2 sin 𝑥1) (14)

(c) We use the following Simulink to get the results:

x

+
−
−
+

x+
−

x+
−

x

sin

x

−
+

x
sin

u

x_1

\ddot{y}_d\dot{y}_d

x_2

y_d

y_d

Figure 1: Block diagram for the system.

And we use the following code to plot the results:

1 clear all; clc;

2 figg1 = openfig(’Q2Step.fig’,’reuse’);

3 grid on;

4 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

5 ylabel(’$y, \mathrm{\ \left(m\right)}$’, ’interpreter’,’latex’);

6 legend(’$y_d$’, ’$y$’, ’interpreter’,’latex’,’Location’,’southeast’);

7 title(’’);

8 a = get(gca,’XTickLabel’);

9 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

10 set(gcf,’renderer’,’painters’);

11 filename = "Q2Step"+".pdf";

12 saveas(gcf,filename);

13 close(figg1);

14 figg2 = openfig(’Q2Sine.fig’,’reuse’);
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15 grid on;

16 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

17 ylabel(’$y, \mathrm{\ \left(m\right)}$’, ’interpreter’,’latex’);

18 legend(’$y_d$’, ’$y$’, ’interpreter’,’latex’,’Location’,’southeast’);

19 title(’’);

20 a = get(gca,’XTickLabel’);

21 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

22 set(gcf,’renderer’,’painters’);

23 filename = "Q2Sine"+".pdf";

24 saveas(gcf,filename);

25 close(figg2);

The results are shown as follows:
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(a) Step input.
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0

0.5

1

(b) Sinusoidal input.

Figure 2: Simulation results.
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Problem 3

Another way to achieve asymptotic tracking: Consider

𝑦 (𝑛) = 𝛼 (𝑥) + 𝛽 (𝑥) 𝑢 (15)

or

¤𝑥1 = 𝑥2

· · ·
¤𝑥𝑛−1 = 𝑥𝑛

¤𝑥𝑛 = 𝛼 (𝑥) + 𝛽 (𝑥) 𝑢
𝑦 = 𝑥1

(16)

where 𝑥 =

[
𝑦 ¤𝑦 · · · 𝑦 (𝑛−1)

]
, 𝛼 (𝑥) and 𝛽 (𝑥) are known and 𝛽 (𝑥) ≠ 0 for all 𝑥. Given 𝑦𝑑 (𝑡),

let 𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦𝑑 (𝑡) and define

𝑠 = 𝑒(𝑛−1) + 𝛼1𝑒
(𝑛−2) + ... + 𝛼𝑛−1𝑒 (17)

where 𝛼1, ..., 𝛼𝑛−1 are such that

𝜆𝑛−1 + 𝛼1𝜆
𝑛−2 + ... + 𝛼𝑛−2𝜆 + 𝛼𝑛−1 (18)

is a stable polynomial.

(a) Design a control law such that
¤𝑠 + 𝑘𝑠 = 0 (19)

where 𝑘 > 0.

(b) Show that the control law achieves lim𝑡→∞ 𝑒 (𝑡) = 0.

(c) Show that, when 𝑦𝑑 = 0, the closed-loop system is globally asymptotically stable.

Solution:

(a) To achieve asymptotic tracking for Equation (16), note that using an input transformation

𝛼 (𝑥) + 𝛽 (𝑥) 𝑢 = 𝑢𝑎 (20)

or
𝑢 =

𝑢𝑎 − 𝛼 (𝑥)
𝛽 (𝑥) (21)

gives
𝑦 (𝑛) = 𝑢𝑎 (22)
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which is in the chain integrator form. In order to achieve Equation (19) with 𝜌 = 𝑛, i.e.,(
𝑦 (𝑛) − 𝑦

(𝑛)
𝑑

)
+ (𝛼1 + 𝑘)

(
𝑦 (𝑛−1) − 𝑦

(𝑛−1)
𝑑

)
+ (𝛼2 + 𝑘𝛼1)

(
𝑦 (𝑛−2) − 𝑦

(𝑛−2)
𝑑

)
+ ... + (𝛼𝑛−1 + 𝑘𝛼𝑛−2)

(
𝑦 (1) − 𝑦

(1)
𝑑

)
+ 𝑘𝛼𝑛−1 (𝑦 − 𝑦𝑑) = 0

(23)

Substituting Equation (22) into (23) gives(
𝑢𝑎 − 𝑦

(𝑛)
𝑑

)
+ (𝛼1 + 𝑘)

(
𝑦 (𝑛−1) − 𝑦

(𝑛−1)
𝑑

)
+ (𝛼2 + 𝑘𝛼1)

(
𝑦 (𝑛−2) − 𝑦

(𝑛−2)
𝑑

)
+ ... + (𝛼𝑛−1 + 𝑘𝛼𝑛−2)

(
𝑦 (1) − 𝑦

(1)
𝑑

)
+ 𝑘𝛼𝑛−1 (𝑦 − 𝑦𝑑) = 0

=⇒𝑢𝑎 = 𝑦
(𝑛)
𝑑

−
𝑛∑︁
𝑖=1

(𝛼𝑖 + 𝑘𝛼𝑖−1) 𝑒𝑛−𝑖
(24)

Here 𝛼0 = 1 and 𝛼𝑛 = 0. Thus,

𝑢 =
𝑢𝑎 − 𝛼 (𝑥)

𝛽 (𝑥) =
𝑦
(𝑛)
𝑑

−∑𝑛
𝑖=1 (𝛼𝑖 + 𝑘𝛼𝑖−1) 𝑒𝑛−𝑖 − 𝛼 (𝑥)

𝛽 (𝑥) (25)

(b) Because
𝑠 = 𝑒(𝑛−1) + 𝛼1𝑒

(𝑛−2) + ... + 𝛼𝑛−1𝑒 (26)

where 𝛼1, ..., 𝛼𝑛−1 are such that

𝜆𝑛−1 + 𝛼1𝜆
𝑛−2 + ... + 𝛼𝑛−2𝜆 + 𝛼𝑛−1 (27)

is a stable polynomial, for

¤𝑠 = 𝑒(𝑛) + 𝛼1𝑒
(𝑛−1) + ... + 𝛼𝑛−1𝑒

(1) (28)

where 𝛼1, ..., 𝛼𝑛−1 are such that

𝜆𝑛 + 𝛼1𝜆
𝑛−1 + ... + 𝛼𝑛−2𝜆

2 + 𝛼𝑛−1𝜆 (29)

is also a stable polynomial by Routh-Hurwitz stability criterion. Therefore,

¤𝑠 + 𝑘𝑠 = 𝑒(𝑛) + (𝛼1 + 𝑘) 𝑒(𝑛−1) + (𝛼2 + 𝑘𝛼1) 𝑒(𝑛−2)

+ ... + (𝛼𝑛−1 + 𝑘𝛼𝑛−2) 𝑒(1) + 𝑘𝛼𝑛−1𝑒 = 0
(30)

where 𝛼𝑖 + 𝑘𝛼𝑖−1, 𝑖 = 1, ..., 𝑛 are such that

𝜆𝑛 + (𝛼1 + 𝑘) 𝜆𝑛−1 + ... + (𝛼𝑛−1 + 𝑘𝛼𝑛−2) 𝜆 + 𝑘𝛼𝑛−1 (31)

is also a stable polynomial. As a result, 𝑒 satisfies lim𝑡→∞ 𝑒 (𝑡) = 0.
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(c) When 𝑦𝑑 = 0, the closed-loop system is

¤𝑥 = 𝐴𝑥 + 𝐵𝑘 (𝑥, 0, ..., 0) = (𝐴 − 𝐵 [𝑘𝛼𝑛−1, (𝛼𝑛−1 + 𝑘𝛼𝑛−2) , ..., (𝛼1 + 𝑘)]) 𝑥

=



0 1 0 ... 0

0 0 1 ... 0

...

0 0 0 ... 1

−𝑘𝛼𝑛−1 − (𝛼𝑛−1 + 𝑘𝛼𝑛−2) − (𝛼𝑛−2 + 𝑘𝛼𝑛−3) ... − (𝛼1 + 𝑘)


𝑥

(32)

Clearly, (𝐴 − 𝐵 [𝑘𝛼𝑛−1, (𝛼𝑛−1 + 𝑘𝛼𝑛−2) , ..., (𝛼1 + 𝑘)]) is a companion matrix with its
characteristic polynomial being

𝜆𝑛 + (𝛼1 + 𝑘) 𝜆𝑛−1 + ... + (𝛼𝑛−1 + 𝑘𝛼𝑛−2) 𝜆 + 𝑘𝛼𝑛−1 (33)

Thus, when 𝑦𝑑 = 0, the closed-loop system is globally asymptotically stable.
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