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j 1 Nonlinearity: 1.1 Nonlinear Function

Fig. 1.1

y = f(x) is linear,

iff f(x1 + x2) = f(x1) + f(x2) and f(αx1) = αf(x1), ∀α ∈ <,

iff y = kx with k some constant.
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j 1.2 Nonlinear Elements in Dynamical Systems

i = h(v) = −v + 1

3
v3

Fig. 1.2 : twin-tunnel diode

Fig. 1.3 : twin-tunnel diode Fig. 1.4 : mass-spring-damper system
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j 1.2 Nonlinear Elements in Dynamical Systems
(cont.)

1.2.1 Nonlinear resistor

1.2.2 Nonlinear spring

mÿ + Ff + Fsp = F

Fsp: restoring force of the spring

Fsp = g(y) =

{
ky k constant linear spring

ky + ka2y3 hardening spring

Beyond a certain displacement, a small displacement increment produces a
large force increment.

1.2.3 Other nonlinearities

Saturation, Deadzone, on-off, backlash etc. (pp. 171-174)
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j 1.3 Nonlinear Systems Examples
1.3.1 Duffing equation (mass-spring-damper system)

mÿ + Ff + Fsp = F

where,

Ff = cẏ is frictional force due to viscosity

Fsp = k(1 + a2y2)y is hardening spring

F = Acosωt is external force

⇒ mÿ + cẏ + ky + ka2y3 = A cosωt
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j 1.3.2 Van der Pol equation

Fig. 1.5

Kirchhoff’s Current Law

iC + iL + iR = 0

⇒ C
dVR
dt

+
1

L

∫ t

−∞
VR(τ)dτ + h(VR) = 0

⇒ C
d2VR
dt

+
VR
L

+
dh

dVR

dVR
dt

= 0

To be continued...
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j 1.3.2 Van der Pol equation (cont.)

⇒ C
d2VR
dt

+
VR
L

+ (−1 + V 2
R)
dVR
dt

= 0

LC
d2VR
dt

+ L(V 2
R − 1)V̇R + VR = 0

which is in the form of mÿ + 2c(y2 − 1)ẏ + ky = 0 with y = VR
where m, c, k are positive constant, and was used by Van der Pol to study
oscillation in vacuum tube circuits.

1.3.3 Other nonlinear systems

Pendulum equation, robot arm manipulator, helicopter, spacecraft, neural
networks, motors, etc.
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j 1.4 Nonlinear Dynamical Systems in State
Equations 1.4.1 State equation of Duffing equation

Given
mÿ + cẏ + ky + ka2y3 = A cosωt

Let x1 = y and x2 = ẏ,

Then

ẋ1 = x2 ( 6= Ax+Bu)

ẋ2 =
1

m
(−cx2 − kx1 − ka2x31 +A cosωt)

y = x1
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j 1.4.2 State equation of Van der Pol equation

Given
mÿ + 2c(y2 − 1)ẏ + ky = 0

Let

x1 = y

x2 = ẏ

Then

ẋ1 = x2

ẋ2 =
1

m
{−2c(x21 − 1)x2 − kx1}

y = x1
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j 1.4.3 General representation of nonlinear
dynamical systems

ẋ(t) = f(x(t), t) , x(0) = x0 (1)

where

x =


x1
x2
...
xn

 , f(x, t) =


f1(x1, ..., xn, t)

...

...
fn(x1, ..., xn, t)


n is called the dimension of the system.
When f(x, t) = f(x), i.e. f(x, t) does not explicitly rely on t, we have

ẋ(t) = f(x(t)) (2)

In this case, the system is called autonomous system, otherwise
nonautonomous system.
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j 1.4.3 General representation of nonlinear
dynamical systems (cont.)

Van der Pol equation[
ẋ1
ẋ2

]
=

[
x2

1
m{−2c(x

2
1 − 1)x2 − kx1}

]
is an autonomous system while the Duffing equation:

ẋ1 = x2

ẋ2 =
1

m
(−cx2 − kx1 − ka2x31 +A cosωt)

y = x1

is nonautonomous.
The linear system

ẋ = Ax

is a special case of autonomous system when f(x) = Ax.
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j 1.4.4 Nonlinear control systems

ẋ = f(x, u), y = h(x, u) (3)

where

x =

 x1
...
xn

 ∈ <n, u =

 u1
...
um

 ∈ <m, y =

 y1
...
yp

 ∈ <p

f(x, u) =

 f1(x, u)
...

fn(x, u)

 ∈ <n, h(x, u) =

 h1(x, u)
...

hp(x, u)

 ∈ <p

f and h are continuous functions of x and u.
Clearly (3) includes linear systems

ẋ = Ax+Bu

y = Cx+Du

as a special case with f(x, u) = Ax+Bu and h(x, u) = Cx+Du.
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j 1.4.5 Nonlinear control law

u = k(x, t) =

 k1(x, t)
...

km(x, t)

 ∈ <m (4)

Applying (4) to (3) results in a closed-loop system of the form

ẋ = f(x, k(x, t)) = fc(x, t)

y = h(x, k(x, t)) = hc(x, t)
(5)

which is a nonautonomous dynamic system. When k(x, t) does not
explicitly rely on t, i.e. k(x, t) = k(x), (5) becomes

ẋ = f(x, k(x)) = fc(x)

y = h(x, k(x)) = hc(x)
(6)

which is an autonomous system.
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j 1.5 Solution of a Dynamical System

Consider
ẋ = f(x), x(0) = x0, x ∈ <n, f ∈ C0 (7)

A C0 time function x(t) ∈ <n defined for t ∈ [0, T ), T > 0, is said to be a
solution of (7) satisfying the initial condition if

(i) x(0) = x0 and

(ii) dx(t)
dt = f(x(t)) 0 ≤ t < T .

x(t) is also called the system trajectory starting at x0.
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j 1.5 Solution of a Dynamical System (cont.)

In the special case where f(x) = Ax with A ∈ <n×n, (7) always has a
unique solution.

x(t) = eAtx0, 0 ≤ t <∞, ∀ x0

However, for nonlinear systems, (7) may not have a solution for some
initial condition, or its solution for some initial condition may not be
unique, or its solution may tend to infinity as t tends to some finite T .

Sometimes, to emphasize the reliance of a solution on the initial condition
x0, we may use the notation x(t, x0).
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j 1.5 Solution of a Dynamical System (cont.)

Example 1 (finite escape time)

ẋ = −x+ x2, x ∈ <1, x(0) = x0

Solution: Integrating gives

dx

−x+ x2
= dt ⇒ x(t) =

x0
x0 + (1− x0)et

(8)

Verify: (i) x(0) = x0, (ii) ẋ(t) = −x0(1−x0)et

(x0+(1−x0)et)2
.

On the other hand,

−x(t)+x2(t) = −x0
x0 + (1− x0)et

+
x20

(x0 + (1− x0)et)2
=
−x0(1− x0)et

(x0 + (1− x0)et)2

Therefore
ẋ = −x+ x2
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j 1.5 Solution of a Dynamical System (cont.)

But (8) may not be defined for all t ≥ 0. In fact, it can be seen that when
x0 > 1, there exists a finite t > 0 such that

x0 + (1− x0)et = 0 or t = ln
x0

x0 − 1

(8) is not defined at t = ln x0
x0−1 . On the other hand, when x0 ≤ 1, (8) is

defined for all t ≥ 0. In conclusion, (8) exists for 0 ≤ t < T where

T =

{
ln x0

x0−1 x0 > 1

∞ x0 ≤ 1

When T is finite, we say T is finite escape time.
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j 1.5 Solution of a Dynamical System (cont.)

Fig. 1.6 Finite escape time

Example 2 (nonuniqueness of the solution)

dx

dt
= 2
√
x, x(0) = 0

Solution:

x(t) =

{
0 0 ≤ t <∞
t2 0 ≤ t <∞
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j 1.6 Equilibrium Points

An equilibrium of (7) is a vector x∗ ∈ <n satisfying

f(x∗) = 0

Let x(t, x∗) = x∗, ∀t ∈ [0,∞). Then

(i) x(0, x∗) = x∗

(ii) dx(t,x∗)
dt = f(x∗)

Thus, the equilibrium of (7) is the solution of (7) over [0,∞) starting at
x∗. That is, x∗ has the property that once x(t0) = x∗ for some t0, then
x(t) = x∗, ∀ t ≥ t0.
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j 1.6 Equilibrium Points (cont.)

For linear systems ẋ = Ax, x∗ satisfies

Ax∗ = 0

If A is invertible, x∗ = 0 is the unique equilibrium. Otherwise, the solution
of Ax∗ = 0 is a linear subspace in <n each point of which is an equilibrium
of ẋ = Ax. In other words, linear systems do not have multiple isolated
equilibrium points.

On the other hand, a nonlinear system may have multiple isolated
equilibrium points, e.g., the system ẋ = −x+ x2 has two isolated

equilibrium points x∗ =

{
0
1
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j 1.6 Equilibrium Points (cont.)

Pendulum example

MR2θ̈ + kθ̇ +MgR sin θ = 0

Fig. 1.7 Pendulum

where
k is the friction coefficient, M is mass
R is pendulum length, g is the gravity constant
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j 1.6 Equilibrium Points (cont.)

Letting x1 = θ, x2 = θ̇ gives

ẋ1 = x2

ẋ2 = −
k

MR2
x2 −

g

R
sinx1

Letting f(x) = 0 gives

x2 = 0
sinx1 = 0

⇒ x∗ =

{[
0
0

]
,

[
π
0

]
,

[
2π
0

]
, · · ·

}
Physically, these points correspond to the pendulum resting exactly at the
vertical up and down positions.
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j 2 Nonlinear System Behaviors
2.1 Limit cycles (isolated periodic motion)

In addition to finite escape time, and multiple isolated equilibrium points,
nonlinear systems have some other peculiar behaviors not seen in linear
systems.

2.1 Limit cycles (isolated periodic motion)
Consider linear systems[

ẋ1
ẋ2

]
=

[
0 ω
−ω 0

] [
x1
x2

]
,

[
x1(0)
x2(0)

]
=

[
x10
x20

]
,

e.g. undamped mass spring system or LC circuit.
The solution is

x1(t) =
√
x210 + x220 sin(ωt+ θ)

x2(t) =
√
x210 + x220 cos(ωt+ θ)

where θ = tg−1(x10
x20

).
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j 2.1 Limit cycles (isolated periodic motion)

Fig. 1.8

The equation describes a periodical motion called harmonic oscillation.
Since x21 + x22 = x210 + x220, the trajectories of the system are circles in the
x1 − x2 plane whose radii depend on the initial condition.
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j 2.1 Limit cycles (isolated periodic motion)

In general, for the linear system

ẋ = Ax, x(0) = x0

the solution is given by x(t) = eAtx0, and its limiting behavior is

x(t) = eAtx0


→ 0 as t→∞ A stable,

unbounded A unstable,

periodic function depending on
both A and initial condition

marginally stable.
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j 2.1 Limit cycles (isolated periodic motion)

Next consider Van der Pol equation

or
ÿ + 2c(y2 − 1)ẏ + ky = 0
ẋ1 = x2, x1(0) = x10
ẋ2 = −2c(x21 − 1)x2 − kx1, x2(0) = x20

It can be shown that the trajectories of the system starting at any
non-zero initial point converge to a closed-curve in the x1 − x2 plane.

Fig. 1.9
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j 2.1 Limit cycles (isolated periodic motion)

The closed-curve represents a periodic motion different from the harmonic
oscillation as follows:
(a) isolated
(b) not depending on initial conditions
Such a periodic motion is called a limit cycle. It only happens to nonlinear
systems.
Physical interpretation: due to the nonlinear damping 2c(y2 − 1),
when y is large, the damper removes energy from the system
⇒ the motion is convergent, and
when y is small, the damper adds energy into the system
⇒ the motion is divergent.
Because the damping varies with y, the system motion can never grow
unboundedly nor decay to zero.
Thus, it displays a sustained oscillation independent of initial conditions.
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j 2.2 Bifurcations

Consider mÿ + cẏ + ka2y3 = A cosωt or

ẋ1 = x2

ẋ2 = −αx1 − x31

(can be viewed as an undamped Duffing equation)
α is a parameter.

The equilibrium points x∗ =

[
x∗1
x∗2

]
satisfy

x∗2 = 0
−αx∗1 − x∗31 = 0

⇔ x∗1 = 0 and x∗21 + α = 0
⇒ x∗ =

[
x∗1
0

]
where

x∗1 =


0, j
√
α, − j

√
α α > 0

0 α = 0
0,
√
−α, −

√
−α α < 0

, with j =
√
−1.

Jie Huang ( MAE, CUHK ) Introduction to Nonlinear Control 29 / 33



j 2.2 Bifurcations (cont.)

That is, as α varies from positive to negative, three equilibrium points
merge into one, and then split into three.

Such phenomenon as quantitative change of parameter leads to qualitative
change of motion behavior is called bifurcation.

For this example, α = 0 is called critical or bifurcation value.
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j 2.3 Chaos

Consider ÿ + 0.05ẏ + y3 = 7.5 cos t (Duffing equation)
Lightly damped, sinusoidally forced mechanical structure undergoing large
elastic deflection.
Solution of this system for

x(0) =

[
3
4

]
and x(0) =

[
3.01
4.01

]
is shown as follows ( Fig 1.6 of the textbook).
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j 2.3 Chaos (cont.)

Butterfly effect:

E. N. Lorenz, “Predictability: Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?” Dec. 29, 1972.

Small variation in initial conditions incurs radical changes in the solution -
chaos.
Atmospheric dynamics display chaotic behavior, making long-term weather
prediction impossible.

2.4 Other behaviors
Jump resonance, subharmonic generation, asynchronous quenching and
frequency-amplitude dependence of free vibrations.
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j 3 Nonlinear System Analysis and Design

� Complexity:
many peculiar behaviors.

� Difficulty:
closed-form solutions are usually unavailable, analytic, graphical, or

approximate methods are adopted.

� Major tools:

Phase plane methods: mainly for second order systems

Describing functions: mainly for predicting limit cycles

Lyapunov theory: indirect method or linearization, and direct method:
construct a scalar function to study stability

Other more recent methods: Input-output linearization, Sliding mode
control, Backstepping design, Adaptive control, etc.
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