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j 1 Introduction: 1.1 Phase Plane Method

Consider the following two dimensional autonomous system:

ẋ1 = f1(x1, x2), x1(0) = x10

ẋ2 = f2(x1, x2), x2(0) = x20
(1)

Assume x(t, x0) =

[
x1(t, x0)
x2(t, x0)

]
, t ∈ [0,∞), is the system trajectory

starting at x0.

The plane with x1(t, x0) and x2(t, x0) as coordinates is called phase
plane.

Jie Huang ( MAE, CUHK ) Phase Plane Analysis 3 / 39



j 1.1 Phase Plane Method (cont.)

The family of trajectories x(t, x0), t ∈ [0,∞), plotted on the phase
plane corresponding to various initial conditions x0 is called phase
portrait.

For example, consider the harmonic system:

ẋ1 = ωx2, x1(0) = A

ẋ2 = −ωx1, x2(0) = B

⇒ x1(t, x0) =
√
A2 +B2 sin(ωt+ θ)

x2(t, x0) =
√
A2 +B2 cos(ωt+ θ)

⇒ x21 + x22 = A2 +B2
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j 1.1 Phase Plane Method (cont.)

Usage: display graphically the nature of the system response.

For example, the above phase portraits show that the solution of the
harmonic system starting from any initial condition is periodic, and neither
converge to the origin nor diverge to infinity. Such a system is called
marginally stable.

Jie Huang ( MAE, CUHK ) Phase Plane Analysis 5 / 39



j 1.2 Slope of the Phase Trajectories

The slope of the phase trajectory passing through a point (x1, x2) is
determined by

dx2
dx1

=
f2(x1, x2)

f1(x1, x2)

It is unique at each (x1, x2) as long as

[
f1(x1, x2)
f2(x1, x2)

]
6= 0.

It implies that the phase trajectories will not intersect.
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j 1.3 Singular Points

f1(x1, x2) = 0

f2(x1, x2) = 0

i.e. singular points are equilibrium points of two dimensional systems.

At singular points, dx2
dx1

= 0
0 . The slope is indeterminate. Many

trajectories may intersect at such points.

For linear systems, the stability behaviors are uniquely determined by
the nature of singular points.

However, for nonlinear systems, the behaviors may be more complex
as illustrated in Fig. 2.2 of the textbook. The system may have
multiple isolated singular points some of which are stable and some of
which are not. The stable singular point may be globally
asymptotically stable or just locally asymptotically stable.
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j 1.3 Singular Points (cont.)
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j 2 Constructing Phase Portraits

2.1 Analytic Method

Solving (1) to obtain x1(t, x0) and x2(t, x0).
Eliminating t to obtain an equation of the form g(x1, x2, x0) = 0. For
example,

x1(t, x0) =
√
A2 +B2 sin(ωt+ θ)

x2(t, x0) =
√
A2 +B2 cos(ωt+ θ)

⇒ x21 + x22 = A2 +B2 = x20

2.2 Numerical Method

Using computer simulation. Problem 2 of Assignment 1.
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j 3 Phase Plane Analysis of Linear Systems

For classification of a singular point.

Visuallizing the system trajectories.

3.1 Solution of Second Order Linear Systems
Consider[

ẋ1
ẋ2

]
= A

[
x1
x2

]
=

[
a b
c d

] [
x1
x2

]
,

[
x1(0)
x2(0)

]
=

[
x10
x20

]
Assume A is nonsingular. Then the system has a unique equilibrium point
at x = 0. Let λ(A) = {λ1, λ2}. Then, λ1 6= 0 and λ2 6= 0 It is known that

x(t, x0) =

[
x1(t)
x2(t)

]
= eAtx0 =

{
k1e

λ1t + k2e
λ2t, λ1 6= λ2

(α+ βt)eλ1t, λ1 = λ2

where k1, k2 or α, β ∈ R2 depend on A and x0.
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j 3.2 Types of Singular Points

Consider the following four cases based on the eigenvalue locations:

Case 1: λ1 and λ2 are both real and have the same sign (stable or
unstable node)

Case 2: λ1 and λ2 are both real and have the opposite sign (saddle
point)

Case 3: λ1 and λ2 are complex conjugate with nonzero real part
(stable or unstable focus)

Case 4: λ1 and λ2 are complex conjugate with zero real part
(center)
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j 3.3 Phase Portraits Vs.Types of Singular Points

Case 1 (stable or unstable node) :

If λ1 < 0 and λ2 < 0, x(t, x0)→ 0 exponentially as t→∞,
as shown in Fig. 2.9(a) of the textbook. The singular point is called
stable node.

If λ1 > 0 and λ2 > 0, x(t, x0)→∞ exponentially as t→∞, as
shown in Fig. 2.9(b). The singular point is called unstable node.
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Fig. 2.9 (a)(b) of textbook
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Case 2 (saddle point):
Without loss of generality (WLG), assume λ1 < 0, λ2 > 0. Then,
lim
t→∞

x(t, x0) =∞ for ∀ x0 such that k2 6= 0 as shown in Fig. 2.9(c).

Two special cases,
a)

k2 = 0,

[
x1(t)
x2(t)

]
= k1e

λ1t =

[
k11
k12

]
eλ1t ⇒ x1(t)

x2(t)
=
k11
k12

(straight lines approaching the origin.)
b)

k1 = 0,

[
x1(t)
x2(t)

]
= k2e

λ2t → ∞, t→∞

A saddle point is always unstable.
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Fig. 2.9 (c) of textbook
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Case 3 (stable or unstable focus):
λ1 and λ2 are complex conjugate with nonzero real parts.
Let λ1,2 = −σ ± jω. Then

x(t) =

[
x1(t)
x2(t)

]
=

[
A(x0) sin(ωt+ θ)
B(x0) cos(ωt+ θ)

]
e−σt.

If σ > 0, then the singular point is called stable focus since x(t, x0)→ 0
as t→∞ as shown in Fig. 2.9(d).
If σ < 0, then the singular point is called unstable focus since x(t, x0) goes
unbounded as t→∞ as shown in Fig. 2.9(e).
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Fig. 2.9 (d)(e) of textbook
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Case 4 (center point)

λ1,2 = ±jω

x(t, x0) =

[
x1(t, x0)
x2(t, x0)

]
=

[
A sin(ωt+ θ)
B cos(ωt+ θ)

]
⇒ x21

A2
+
x22
B2

= 1

x(t, x0) are ellipses and the singular point is the center of these ellipses as
shown in Fig. 2.9(f).
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j 3.3 Phase Portraits Vs.Types of Singular Points
(cont.)

Fig. 2.9 (f) of textbook
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j 3.4 Phase Portraits Vs.Types of Singular Points
(cont.)

Fig. 2.9 (f) of textbook
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j 3.5 Remark

Remark:
If A is singular, then at least one of the eigenvalues of A is at the origin.
The solution of Ax = 0 is either a straight line when rank(A) = 1 or
every point x is an equilibrium when A = 0. This case is less interesting as
will be seen later.
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j 4 Phase Plane Analysis of Nonlinear Systems
4.1 Jacobian Linearization

Consider the following two dimensional autonomous system:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Assume that

f1(x
∗
1, x
∗
2) = 0

f2(x
∗
1, x
∗
2) = 0

i.e. x∗ is the equilibrium point. (E.P.)
Let

Ax∗ =

[
a b
c d

]
x∗

=

[
∂f1
∂x1

(x1, x2)
∂f1
∂x2

(x1, x2)
∂f2
∂x1

(x1, x2)
∂f2
∂x2

(x1, x2)

]∣∣∣∣∣
x=x∗
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j 4.1 Jacobian Linearization (cont.)

Then Taylor expansion gives

f1(x1, x2) = f1(x
∗
1, x
∗
2) + a(x1 − x∗1) + b(x2 − x∗2) + o(x1 − x∗1, x2 − x∗2)

f2(x1, x2) = f2(x
∗
1, x
∗
2) + c(x1 − x∗1) + d(x2 − x∗2) + o(x1 − x∗1, x2 − x∗2)

where o(x1 − x∗1, x2 − x∗2) means higher order terms in (x1 − x∗1) and
(x2 − x∗2),
e.g. (x1 − x∗1)2, (x1 − x∗1)(x2 − x∗2), ....
Let xδ1 = x1 − x∗1, xδ2 = x2 − x∗2.
Then

ẋδ1 = ẋ1 = axδ1 + bxδ2 + o(xδ1, xδ2)

ẋδ2 = ẋ2 = cxδ1 + dxδ2 + o(xδ1, xδ2)
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j 4.1 Jacobian Linearization (cont.)

We call

ẋδ1 = axδ1 + bxδ2

ẋδ2 = cxδ1 + dxδ2
(2)

as the Jacobian linearization of (1) at E.P. x = x∗ and Ax∗ is called

Jacobian matrix of

[
f1
f2

]
at x = x∗.

To save notation, we will use

ẋ1 = ax1 + bx2
ẋ2 = cx1 + dx2

or ẋ = Ax where A =

[
a b
c d

]
to denote (2).
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j 4.1 Jacobian Linearization (cont.)

Example:

Consider

ẋ1 = x2 = f1(x1, x2)

ẋ2 = −2x1 − 0.5x2 − x21 = f2(x1, x2)

Clearly f1(0, 0) = f2(0, 0) = 0 and its Jacobian linearization at x = 0 is

ẋ1 = x2

ẋ2 = −2x1 − 0.5x2
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j 4.2 Local Behavior of System (1)

It can be shown that the phase portraits of (1) in a neighborhood of an
E.P. is quite similar to the phase portraits of (2) using the Lyapunov
theory. For this reason, we call a singular point x∗ of (1) as a node, saddle
point, focus or center if xδ = 0 is the node, saddle point, focus, or center
of (2).
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j 4.2 Local Behavior of System (1) (cont.)

Example:

ẋ1 = −x1 + x1x2
ẋ2 = x1 + x2 − 2x1x2

⇒ x∗ =

{[
0
0

]
,

[
1
1

]}
Ax∗ =

[
−1 + x2 x1
1− 2x2 1− 2x1

]
⇒ A(0,0) =

[
−1 0
1 1

]
A(1,1) =

[
0 1
−1 −1

]
λ(A(0,0)) = {1 − 1} ⇒ saddle point of ẋ = A(0,0)x.

λ(A(1,1)) = {−1±j
√
3

2 } ⇒ stable focus of ẋ = A(1,1)x.

x∗ =

[
0
0

]
is a saddle point of (1), while

x∗ =

[
1
1

]
is a stable focus of (1).
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j 4.3 Remark

Remark:
If the Jacobian matrix of A is singular, then, from the Lyapunov’s
linearization method to be studied in Chapter 3, the local behavior of the
equilibrium of the nonlinear system in general cannot be inferred from the
behavior of the system ẋ = Ax.

Jie Huang ( MAE, CUHK ) Phase Plane Analysis 28 / 39



j 4.3 Three Types of Limit Cycles

4.3.1

Limit Cycle: A limit cycle is defined as an isolated closed curve in the
phase plane.

Closed: the trajectory has to be closed, indicating the periodic nature
of the motion, and

Isolated: indicating the limiting nature of the cycle (with nearby
trajectories converging or diverging from it)

Remark:
Let L denote a closed phase trajectory of a system. Let
dist(x, L) = infy∈L ‖x− y‖ denote the distance of x to L. Then L is
isolated if there exists some region B = {x |, dist(x, L) < ε} for some
ε > 0, such that L is the only closed phase trajectory in the region B.
An equilibrium x∗ is a special case of a limit cycle. x∗ is said to be
isolated if, for some ε > 0, x∗ is the only equilibrium inside the region
B = {x |, ‖x− x∗‖ < ε}.
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j 4.3 Three Types of Limit Cycles (cont.)

4.3.2 Three types of Limit cycles

Stable Limit Cycles: lim
t→∞

dist(x(t, x0)− L) = 0 for all x0 sufficiently

close to L. That is, all trajectories in the vicinity of the limit cycle
converge to it as t→∞
Unstable Limit Cycles: all trajectories in the vicinity of the limit cycle
diverge from it as t→∞
Semi-Stable Limit Cycles: some of the trajectories in the vicinity of
the limit cycle converge to it, while the others diverge from it as
t→∞
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j 4.3 Three Types of Limit Cycles (cont.)
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j 4.3 Three Types of Limit Cycles (cont.)

4.3.3 Example

ẋ1 = x2 − x1(x21 + x22 − 1), x1(0) = x10

ẋ2 = −x1 − x2(x21 + x22 − 1), x2(0) = x20

Introducing polar coordinates

r =
√
x21 + x22, θ = tan−1(

x2
x1

)

gives

dr
dt = −r(r2 − 1), r(0) = r0
dθ
dt = −1, θ(0) = θ0

⇒
r(t) = 1√

1+c0e−2t

θ(t) = θ0 − t

with c0 =
1

r20
− 1
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j 4.3 Three Types of Limit Cycles (cont.)

If c0 = 0 ⇔ r0 = 1, then r(t) = 1, t ≥ 0
i.e. x21(t) + x22(t) = 1 is a limit cycle.

If c0 6= 0, then limt→∞ r(t) = 1 ⇒ stable limit cycle.
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j 5 Existence of Limit Cycles

Limit cycles exist as the phenomenon in electronic oscillators, interaction
of aerodynamics, aircraft wing flattering and structural vibration.
Theorem 2.1 (Poincare) [Index Theorem]
If a limit cycle exists in a second order system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

then

N = S + 1

where N is the number of nodes, centers and foci enclosed by a limit
cycle, and S is the number of saddle points enclosed by a limit cycle.
Note: A limit cycle must enclose at least one equilibrium point.
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j 5 Existence of Limit Cycles (cont.)

Example

ẋ1 = −x1 + x1x2
ẋ2 = x1 + x2 − 2x1x2

⇒ x∗ =

{[
0
0

]
,

[
1
1

]}
∂f

∂x
=

[
−1 + x2 x1
1− 2x2 1− 2x1

]
⇒ A(0,0) =

[
−1 0
1 1

]
saddle point

and

A(1,1) =

[
0 1
−1 −1

]
stable focus since λ(A(1,1)) = {−1± j

√
3

2
}
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j 5 Existence of Limit Cycles (cont.)

There is no limit cycle in the region x21 + x22 < 2 since
N(= 1) 6= S + 1(= 2).
The theorem is also called index theorem.
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j 5 Existence of Limit Cycles (cont.)

Theorem 2.2 (Poincare-Bendixson)

If a trajectory of the second-order system (1) remains in a finite region Ω,
then one of the following is true.

(a): The trajectory goes to an equilibrium point.

(b): The trajectory tends to an asymptotic stable limit cycle.

(c): The trajectory is itself a closed-curve.

Note: The theorem gives the asymptotic properties of the trajectories of
second-order systems.
For linear systems, either (a) or (c) can happen.
For nonlinear systems, (b) may also happen.
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j 5 Existence of Limit Cycles (cont.)

Theorem 2.3 (Bendixson)

For the nonlinear systems (1), no limit cycle can exist in a region Ω of the
phase plane in which ∂f1

∂x1
+ ∂f2

∂x2
is not identically zero and does not change

sign.

Proof: From ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2), we have

f2dx1 − f1dx2 = 0 (3)

for all (x1, x2) ∈ Ω. Thus, if there exists a limit cycle in Ω which is a
closed curve L, then ∫

L
(f1dx2 − f2dx1) = 0. (4)

By Stoke’s Theorem, we have∫
L

(f1dx2 − f2dx1) =

∫ ∫
(
∂f1
∂x1

+
∂f2
∂x2

)dx1dx2 = 0 (5)

where the integration on the right-hand side is carried out on the area
enclosed by the limit cycle. Thus a contradiction occurs.
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Example:

ẋ1 = x2 + x1x
2
2

ẋ2 = −x1 + x21x2
⇒ ∂f1

∂x1
+
∂f2
∂x2

= x21 + x22 > 0 x 6= 0

No limit cycle can exist.
Note:

(i): The origin is a center of the system. Theorem 2.1 cannot rule out
the existence of a limit cycle encircling the origin since N = S + 1.

(ii): All three theorems apply only to second-order systems.
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