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j 1 Introduction

1.1 Introduce the stability concepts for the system

ẋ = f(x), x ∈ <n (1)

where it is assumed f(0) = 0.

Stable

Unstable

Asymptotic stability

Exponential stability

Local and global asymptotic stability

1.2 Determine the stability of (1) without obtaining the solution of
(1)

Indirect method: linearization method

Direct method: construct a Lyapunov function for (1)

1.3 Introduce some control approaches based on Lyapunov Theory
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j 2 Concepts of stability 2.1 Notations

Fig. 3.1

Let x =

 x1
...
xn

 ∈ Rn. Then ‖x‖ =
√
x21 + ...+ x2n

BR = {x| ‖x‖ < R, R > 0} spherical region

SR = {x| ‖x‖ = R, R > 0} sphere itself
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j 2.2 Assumption

f(0) = 0

Remark: If f(x∗) = 0 for some x∗ 6= 0. Let z = x− x∗.
Then ż = ẋ = f(x) = f(z + x∗) = f̂(z).

Thus z = 0 is the equilibrium of ż = f̂(z).
Without loss of generality, we only need to consider the equilibrium at the
origin.
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j 2.3 Stability and instability

2.3.1 Definition 3.3 (P.48)

The equilibrium point x = 0 of (1) is said to be stable if, for any R > 0,
there exists r > 0, such that if ‖x0‖ < r, then ‖x(t, x0)‖ < R for all
t ≥ 0. Otherwise the equilibrium point is unstable.

2.3.2 Definition 3.4

The equilibrium point x = 0 of (1) is said to be asymptotically stable if

(a) It is stable.

(b) There exists some r > 0 such that

‖x0‖ < r ⇒ lim
t→∞

x(t, x0) = 0.

Note: (b) is called convergence condition.
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j 2.3 Stability and instability (cont.)

2.3.3 Remarks

(a) The concepts were introduced by Russian mathematician Lyapunov,
often called (asymptotic) stability in the sense of Lyapunov (i.s.o.L.), in
contrast with other stability concepts.

(b) Linear systems ẋ = Ax

ẋ = Ax is (strictly) stable ⇔ x = 0 is A.S. i.s.o.L.

ẋ = Ax is marginally stable ⇔ x = 0 is S. i.s.o.L.

ẋ = Ax is unstable ⇔ x = 0 is U.S. i.s.o.L.
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j 2.3 Stability and instability (cont.)

2.3.3 Remarks (cont.)

(c) Geometric interpretation of stability (Fig. 3.3 of textbook)

GivenBR, ∃ Br such that x0 ∈ Br ⇒ x(t, x0) ∈ BR, ∀t > 0
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j 2.3 Stability and instability (cont.)

2.3.3 Remarks (cont.)

(d) Asymptotic stability =Stability + Convergence.

Convergence does not imply stability (Fig. 3.5 of textbook)
Example (Vinogradov example)

ẋ1 =
x21(x2 − x1) + x52

(x21 + x22)(1 + (x21 + x22)
2)
, ẋ2 =

x2(x2 − 2x1)

(x21 + x22)(1 + (x21 + x22)
2)
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j 2.3 Stability and instability (cont.)

2.3.3 Remarks (cont.)

(e) Local A.S vs Global A.S.

limt→∞ x(t, x0) = 0 is only required for all x0 ∈ Br where r can be any
arbitrarily small positive number.

The ball Br is called a domain of attraction of the E.P.

If Br = Rn, then the convergence is called global.

S + G.C. = G.A.S.

All (strictly) stable linear systems are G.A.S.
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j 2.4 Examples

(a) Pendulum system

Fig. 3.2

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

g

R
sinx1

x∗ =

{[
0
0

]
,

[
π
0

]}
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j 2.4 Examples (cont.)

x =

[
0
0

]
is

{
(locally) A.S. k > 0
S k = 0

x =

[
π
0

]
is unstable

(using either phase plane method or physical intuition)

Fig. 3.3

An E.P. is G.A.S only if it is the unique E.P. of the system.
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j 2.4 Examples (cont.)

(b) Van der Pol equation

Fig. 3.4

ẋ1 = x2

ẋ2 = −x1 − 0.2(x21 − 1)x2

lim
t→∞

(x(t, x0)− xL) = 0 ∀ x0 6= 0.

Thus, x = (0, 0) is an unstable E.P.
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j 2.5 Exponentially stable

Definition 3.5 x = 0 is exponentially stable if there exists two strictly
positive numbers α and λ such that

‖x(t, x0)‖ ≤ α‖x0‖e−λt, ∀ t > 0

for all x0 ∈ Br where r is a positive number.

Example:

ẋ = −(1 + sin2 x)x, x(0) = x0, x ∈ <1

⇒ x(t, x0) = x0 exp

[
−
∫ t

0
1 + sin2(x(τ))

]
dτ

⇒ ‖x(t, x0)‖ ≤ ‖x0‖ exp(−t), ∀ t > 0
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j 2.5 Exponentially stable (cont.)

Remarks:

(a) E.S. ⇒ limt→∞ x(t, x0) = 0 at the rate faster than an
exponential function. λ is called the rate of the exponential function, and
τ = 1

λ is called the time constant of the exponential function.

(b) Note that e−1 = 0.3679, e−2 = 0.1353, e−3 = 0.0498, e−4 = 0.0183.
E.S. tells how fast the system trajectory approaches 0.

(c) Asymptotic convergence to the origin does not imply exponential
convergence to the origin. For example, the function x(t) = 1

1+t converges
to 0 as t→∞, but it does not converge to 0 exponentially.

(d) E.S ⇒ A.S. ⇒ S
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j 2.6 Global A.S. or Global E.S.

Definition 3.6.

If A.S. or E.S. holds for any initial state x0, the E.P. is said to be A.S. or
E.S. in the large. It is also called G.A.S. or G.E.S.

For linear systems,

A.S. ⇔ G.A.S. ⇔ G.E.S.

instability ⇔ exponential blowup.
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j 3. Lyapunov’s Indirect Method
3.1 Jacobian linearization

Consider (1), i.e., the system described by

ẋ = f(x)

where

x ∈ <n, f(x) =

 f1(x)
...

fn(x)

 , and f(0) = 0.

We call ∂f(x)∂x =


∂f1(x)
∂x1

... ∂f1(x)
∂xn

... ...
∂fn(x)
∂x1

... ∂fn(x)
∂xn

 the Jacobian matrix of f(x).

Let A = ∂f(x)
∂x

∣∣∣
x=0

. Then A is called the Jacobian matrix of f(x) at

x = 0.
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j 3.1 Jacobian linearization (cont.)

The linear system
ẋ = Ax (2)

is called the Jacobian linearization of (1), or the linear approximation of
(1) at the E.P. x = 0.

Since f(x) = Ax + higher-order terms in x, (2) is obtained from (1) by
ignoring all higher-order terms.

Example

ẋ1 = x2

ẋ2 = −a1x2 − a2 sinx1 = −a1x2 − a2(x1 −
1

3!
x31 +

1

5!
x51 − ...)

Its Jacobian linearization at x = 0 is

ẋ = Ax with A =

[
0 1
−a2 −a1

]
Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 18 / 97



j 3.2 Lyapunov linearization method

Theorem 3.1 Let λ1, ..., λn be eigenvalues of A.
� If Re{λi} < 0, ∀ i, then E.P. of (1) is (locally) A.S.
� If there exists one i such that Re{λi} > 0, then the E.P. of (1) is
unstable.
� If Re{λi} ≤ 0, ∀ i, and Re{λi} = 0 for at least one i, then the E.P. of
(1) can be stable, unstable or A.S. Or nothing can be said about the
stability property of (1).
Proof: using Lyapunov’s direct method to be introduced later.
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j 3.2 Lyapunov linearization method (cont.)

Examples (i)

ẋ1 = x2

ẋ2 = −a1x2 − a2 sinx1

where a1 = b
MR2 > 0, a2 = g

R > 0.

x∗ =

{[
0
0

]
,

[
π
0

]}
∂f

∂x
=

[
0 1

−a2 cosx1 −a1

]

⇒


A(0,0) =

[
0 1
−a2 −a1

]
A.S.

A(π,0) =

[
0 1
a2 −a1

]
unstable
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j 3.2 Lyapunov linearization method (cont.)

Examples (ii)
ẋ = ax+ bx5

Consider ẋ = ax.

a < 0 ⇒ x = 0 is A.S.

a > 0 ⇒ x = 0 is U.S.

a = 0 ⇒ cannot tell by linearization method.
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j 4 Local Stabilization of Nonlinear Control
Systems

4.1 Linearization of nonlinear control systems

Consider

ẋ = f(x, u)
y = h(x)

where
x ∈ <n
u ∈ <m
y ∈ <p

f(0, 0) = 0, and h(0) = 0

(3)

where

f(x, u) =

 f1(x, u)
...

fn(x, u)

 ∈ <n, h(x) =

 h1(x)
...

hp(x)

 ∈ <p
Let A = ∂f(x,u)

∂x

∣∣∣
x=0, u=0

, B = ∂f(x,u)
∂u

∣∣∣
x=0, u=0

, and C = ∂h(x)
∂x

∣∣∣
x=0

Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 22 / 97



j 4.1 Linearization of nonlinear control systems
(cont.)

where

∂f(x, u)

∂x
=


∂f1(x,u)
∂x1

... ∂f1(x,u)
∂xn

... ...
∂fn(x,u)
∂x1

... ∂fn(x,u)
∂xn

 ,
∂f(x, u)

∂u
=


∂f1(x,u)
∂u1

... ∂f1(x,u)
∂um

... ...
∂fn(x,u)
∂u1

... ∂fn(x,u)
∂um

 ,
and

∂h(x)

∂x
=


∂h1(x)
∂x1

... ∂h1(x)
∂xn

... ...
∂hp(x)
∂x1

...
∂hp(x)
∂xn

 .
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j 4.1 Linearization of nonlinear control systems
(cont.)

Then A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, and

ẋ = f(x, u) = Ax+Bu+ fh.o.t.(x, u)

y = Cx+ hh.o.t.(x)

We call

ẋ = Ax+Bu

y = Cx
(4)

the Jocabian linearization of (3) at (x, u) = (0, 0) or the linear
perturbation model of (3).
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j 4.1 Linearization of nonlinear control systems
(cont.)

Example

ẋ1 = x2
ẋ2 = 2x1 + x22 + sinu

y = x1

⇒ A =

[
0 1
2 0

]
, B =

[
0
1

]
, C = [1, 0].

Therefore,
ẋ1 = x2

ẋ2 = 2x1 + u
y = x1

is the Jacobian linearization at the origin.
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j 4.2 Local stabilization of nonlinear systems

Consider ẋ = f(x, u).
Under a linear state feedback control

u = −Kx where K ∈ <m×n,

the closed-loop system is

ẋ = f(x,−Kx) = fc(x) (5)

Clearly fc(0) = 0.
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j 4.2 Local stabilization of nonlinear systems
(cont.)

Moreover,

∂fc(x)

∂x

∣∣∣∣
x=0

=
∂f(x,−Kx)

∂x

∣∣∣∣
x=0

=
∂f(x, u)

∂x

∣∣∣∣
x=0,u=0

+
∂f(x, u)

∂u

∂u

∂x

∣∣∣∣
x=0,u=0

= A−BK.

Thus the E.P. of ẋ = fc(x) at the origin is (locally) A.S. if all the
eigenvalues of A−BK have negative real parts.
Recall that if {A,B} is controllable, i.e.

rank [B AB · · · An−1B] = n,

then there exist matrices K ∈ <m×n such that A−BK is stable.
In particular, when m = 1, K can be calculated using Arkerman’s formula
so that A−BK has desirable eigenvalues.
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j 4.2 Local stabilization of nonlinear systems
(cont.)

Remark

(i) ẋ = Ax+Bu is small perturbation model, valid only when x, u
are small.

(ii) The linear state feedback only guarantees local asymptotic
stability, not global A.S.
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j 5 Lyapunov’s Direct Method

5.1

Observation: If the total energy of a physical system is continuously
dissipated, then the system must eventually settle down to an E.P.

Finite energy ↘ no energy ↔ no motion

Example (Pendulum system)

MR2θ̈ + bθ̇ +MgR sin θ = 0

Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 29 / 97



j 5.1 (cont.)

or

ẋ1 = x2

ẋ2 = − b

MR2
x2 −

g

R
sinx1

where x1 = θ and x2 = θ̇, b is the friction coefficient at the hinge.

Total mechanical energy = kinetic energy + potential energy

V (x) =
1

2
MR2x22 +

∫ x1

0
MRg sinx1dx1

=
1

2
MR2x22 +MRg(1− cosx1).

Due to energy consumption (b > 0), V (x(t, x0)) ↘ w.r.t. t, and

lim
t→∞

V (x(t, x0)) = 0.
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j 5.1 (cont.)

But since

V (x) = 0 ⇒ x = 0,

we have

lim
t→∞

V (x(t, x0)) = 0 ⇒ lim
t→∞

x(t, x0) = 0.

Thus, we conclude that x = 0 is A.S.
Conclusion: The stability of a system may be related to the property of a
scalar energy function:

Zero energy corresponds to the equilibrium (x = 0).

The convergence of the total energy to zero ⇔ A.S.

Instability is related to the growth of the mechanical energy.
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j 5.2 Positive definite functions and Lyapunov
functions

(i) Definition 3.7

A scalar continuous function V (x) is locally positive definite if V (0) = 0
and there exists a ball BR0 such that x ∈ BR0 & x 6= 0 ⇒ V (x) > 0.

If BR0 = <n, then V (x) is globally positive definite.

(a) Examples
V (x) = xTx

is globally positive definite.

V (x) =
1

2
MR2x22 +MRg(1− cosx1)

is locally positive definite since whenever x21 + x22 < 1, x 6= 0, V (x) > 0.
But it is not globally positive definite since

V (2π, 0) = 0.
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j 5.2 Positive definite functions and Lyapunov
functions (cont.)

(b) Geometric interpretation
For n = 2 (Figs. 3.7 & 3.8 of the textbook).

V (x1, x2) typically corresponds to a surface looking like an upward cup.
The contour curves V (x1, x2) = constant represent a set of ovals
surrounding the origin.
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j 5.2 Positive definite functions and Lyapunov
functions (cont.)

(ii) Related concepts

V (x) is negative definite if −V (x) is positive definite.

V (x) is positive semi-definite if V (0) = 0 & V (x) ≥ 0 for x 6= 0.

V (x) is negative semi-definite if −V (x) is positive semi-definite.

Thus it can be seen that:

V (x) = 1
2MR2x22 +MRg(1− cosx1) is positive semi-definite.

V (x1, x2) = −x21 is negative semi-definite.
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j 5.2 Positive definite functions and Lyapunov
functions (cont.)

(iii) Lyapunov function

(a) Definition 3.8

If, in a ball BR, the function V (x) is P.D. and ∂V
∂x =

[
∂V
∂x1

... ∂V∂xn

]
exists

and is continuous, and if its time derivative along any state trajectory of
system (1) is negative semi-definite, i.e.,

V̇ (x)

(
=
∂V

∂x

dx

dt
=
∂V

∂x
f(x)

)
≤ 0,

then V (x) is said to be a Lyapunov function for the system (1).

(b) V (x) = 1
2MR2x22 +MRg(1− cosx1) is a Lyapunov function for the

pendulum system since V (x) is (locally) P.D. and

V̇ (x) = MRg sinx1ẋ1 +MR2x2ẋ2
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j 5.2 Positive definite functions and Lyapunov
functions (cont.)

=(MRg sinx1)x2 +MR2x2

[
− b

MR2
x2 −

g

R
sinx1

]
=− bx22 ≤ 0.

(c) Geometric interpretation (Fig. 3.9 of the textbook)

The point denoting the value of V (x1, x2) always points down an inverted
cup.
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j 5.2 Positive definite functions and Lyapunov
functions (cont.)

(d) Global: If ball BR = <n, Lyapunov function V (x) becomes globally
P.D. and V̇ (x) becomes globally negative semi-definite.

(e) V (x) is a generalization of a physical system’s total energy function.

V (x) > 0, x 6= 0, V (x) = 0 ⇒ x = 0

V̇ ≤ 0

Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 37 / 97



j 5.3 Lyapunov Theorems

(i) Theorem 3.2 (Local stability)

If, in a ball BR0 , there exists a Lyapunov function V (x) for (1), then the
equilibrium point x = 0 is (locally) stable. If, in addition, V̇ (x) is locally
negative definite, then the stability is asymptotic.

Proof: Part I

Want to show: Given R > 0, ∃r > 0, such that
x0 ∈ Br ⇒ x(t, x0) ∈ BR, ∀ t > 0. To this end, let

m = min
x∈SR

V (x) where SR =
{
x| ‖x‖2 = <2

}
V is continuous & SR compact ⇒ m exists
V is p.d. ⇒ m > 0.
Furthermore, since V (0) = 0 & V is continuous, ∃R > r > 0 such that
V (x) < m, ∀ x ∈ Br.
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j 5.3 Lyapunov Theorems (cont.)

Consider x(t, x0) with x0 ∈ Br. Since V̇ (x) ≤ 0, V (x(t)) is
monotonously decreasing with respect to t, that is.
V (x(t, x0)) ≤ V (x(0, x0)) = V (x0) < m, ∀ t > 0. Thus, there exists no
T > 0 such that x(T, x0) ∈ SR. Otherwise, V (x(T, x0)) ≥ m.

Part II

We have just shown that x(t, x0) ∈ BR, ∀ t > 0, ∀ x0 ∈ Br.
Since V (x) ≥ 0 (lower bounded) and V̇ (x(t)) ≤ 0 (monotonously
decreasing w.r.t. t), there exist L ≥ 0 such that
V (x(t, x0)) ≥ L & limt→∞ V (x(t, x0)) = L

We claim L = 0. Otherwise, if L > 0, then ∃ r0 < R such that V (x) < L,
∀ x ∈ Br0 since V (0) = 0, and V (x) is continuous,

i.e. x(t, x0) never enters Br0 .
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j 5.3 Lyapunov Theorems (cont.)

Let
L1 = min

r0≤‖x‖≤R

(
−V̇ (x)

)
. Then L1 > 0.

Therefore

−V (x(t, x0)) + V0(x0) =

∫ t

0
−V̇ (x(t, x0)) dt ≥

∫ t

0
L1dt = L1t

that is
V (x(t, x0)) ≤ V (x0)− L1t (6)

But (6) implies V (x(t, x0)) < 0 when t > V (x0)
L1

, which is a contradiction
to the fact that V (x) is P.D.
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j 5.2 Positive definite functions and Lyapunov
functions (cont.)
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j 5.3 Lyapunov Theorems (cont.)

Example

ẋ1 = x1(x
2
1 + x22 − 1)− x2

ẋ2 = x1 + x2(x
2
1 + x22 − 1)

Let V (x) = 1
2(x21 + x22) which is P.D.

V̇ (x1, x2) = x1ẋ1 + x2ẋ2

= x21(x
2
1 + x22 − 1)− x2x1 + x2x1 + x22(x

2
1 + x22 − 1)

= (x21 + x22 − 1)(x21 + x22) < 0 ∀ x

such that 0 < x21 + x22 < 1. Therefore V̇ (x) is N.D. and x = 0 is A.S.
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j 5.3 Lyapunov Theorems (cont.)

(ii) Theorem 3.3 (Global A.S.)
Assume that there exists a scalar function V (x) such that

V (x) is globally P.D.

V̇ (x) is globally N.D.

V (x)→∞ as ‖x‖ → ∞ (radially unbounded)

Then the E.P. of (1) at x = 0 is globally A.S.

Remark: Why radially unbounded? To ensure the region defined
{x | V (x) ≤ l} for any l > 0 is bounded so that x(t, x0) will not drift
away from E.P. (Fig. 3.12 of the textbook). Let
l = limr→∞ inf‖x‖≥r V (x). Then V (x) is radially unbounded ⇔ l =∞.
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j 5.3 Lyapunov Theorems (cont.)

Outline of the Proof: The first two conditions guarantee stability, and
also guarantee that, for any x0, V (x(t, x0)) ≤ V (x(0, x0)) = V (x0). This
fact together with condition 3 further implies x(t, x0) ∈ BR for some R for
all t ≥ 0 since {x | V (x) ≤ V (x0)} for any x0 is bounded. The rest of the
proof is the same as the proof of part II of Theorem 3.2.

Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 44 / 97



j 5.3 Lyapunov Theorems (cont.)

It can be shown that

V (x) =

[
x21

1 + x21

]
+ x22 is P.D.

But it is not radially unbounded since V (∞, 0) = 1. V (x) = Vα, Vα > 1
are open curves.

Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 45 / 97



j 5.3 Lyapunov Theorems (cont.)

Lemma 1
Consider

ẋ+ c(x) = 0, x ∈ <1

where c(x) is continuous, and satisfies the sign condition
xc(x) > 0 ∀ x 6= 0.
Then x = 0 is G.A.S. E.P.

Proof
Let

V (x) = x2, G.P.D.

and radially unbounded,

V̇ = −2xc(x) < 0 G.N.D.
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j 5.3 Lyapunov Theorems (cont.)

Example 1

ẋ = sin2 x− x i.e. c(x) = x− sin2 x which is continuous. Also

xc(x) = x2 − x sin2 x > 0 x 6= 0 since sin2 x ≤ | sinx| < |x|.

Therefore the E.P. x = 0 is G.A.S.

Example 2
ẋ = −x3

(cannot tell the stability property from linearization method)
i.e. c(x) = x3.
Clearly xc(x) = x4 > 0 x 6= 0. The E.P. x = 0 is G.A.S.
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j 6 Invariant Set Theorem

6.1 Introduction:
Theorems 3.2 and 3.3 require the negative definiteness of V̇ (x) to
guarantee A.S.

In practice, it is relatively easy to find a Lyapunov function with V̇ (x)
negative semi-definite.

It is desirable to replace the negative definiteness of V̇ (x) by some other
condition.
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j 6.2 Invariant Set

Definition 3.9

A set G ⊂ <n is an invariant set for (1) if every trajectory starting from a
point in G remains in G for all future time. In other words, let x(t, x0) be
the trajectory of (1) starting at x0. Then G is an invariant set for (1) if
and only if ∀t > 0, x(t, x0) ∈ G, ∀x0 ∈ G.

Examples

(i) <n is an invariant set of (1).

(ii) If x∗ is an E.P. of (1), i.e., f(x∗) = 0, then, G = {x∗} is an
invariant set of (1).

(iii) Limit cycle.

Exercise: Suppose V̇ (x) ≤ 0 along the trajectory of (1). Let
Ωl = {x | V (x) < l, l > 0}. Then Ωl is an invariant set for (1).
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Remark: Let R be a subset of <n. A set G is said to be an invariant set
of (1) in R if G is an invariant set for (1) and G ⊂ R. G is said to be the
largest invariant set of (1) in R if G is the union of all invariant sets of (1)
within R.

Example:

ẋ1 = x2

ẋ2 = sin
πx1
2
− x1 − |x21 − 1|x32.

It can be seen that G0 = {(0, 0)}, G1 = {(1, 0)}, G2 = {(−1, 0)}, and the
whole space <2 are invariant sets of (1). Let R = {x | x2 = 0}. Then the
largest invariant set of (1) in R is G0 ∪G1 ∪G2. Let
R = {x | |x1| < 1 and x2 = 0}. Then the largest invariant set of (1) in R
is G0.
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j 6.3 Invariant Set Theorem

(i) Theorem 3.4 (Local Invariant set theorem)
Consider ẋ = f(x) where f is continuous and V (x) is a scalar function
with continuous first partial derivative s.t.

� for some l > 0, the region Ωl
4
= {x | V (x) < l} is bounded.

� V̇ (x) ≤ 0, ∀x ∈ Ωl.

Let R be the set of all points within Ωl where V̇ (x) = 0, and M be the
largest invariant set in R. Then every solution x(t) originating in Ωl tends
to M as t→∞.

(ii) Geometric interpretation (Figure 3.14 of the textbook)
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j 6.3 Invariant Set Theorem (cont.)

(iii) Remarks

(a) Outline of the proof
Step 1. Using Barbalat’s lemma in Section 4.3 to show
limt→∞ V̇ (x(t, x0)) = 0, ∀x0 ∈ Ωl, i.e., all trajectories originating in Ωl

converge to R.

Step 2. Show that the trajectories cannot converge to just anywhere in the
set R. They must converge to the largest invariant set M in R.

(b) When V̇ is negative definite, V̇ = 0⇔ x = 0, i.e., R = M = {0}.
Thus, Theorem 3.2 is a special case of Theorem 3.4.

(c) Let l = limr→∞ inf‖x‖≥r V (x). Since V (x) is radially unbounded
⇔ l =∞, Ωl is bounded for all l > 0 if V (x) is radially unbounded.
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j 6.3 Invariant Set Theorem (cont.)

(iv) Corollary

Consider ẋ = f(x) with f continuous, and let V (x) be a scalar function
with continuous partial derivative. Assume in some neighborhood Ω of the
origin

V (x) is locally positive definite.

V̇ is negative semidefinite.

The set R = {x | V̇ (x) = 0}
⋂

Ω contains no trajectories of
ẋ = f(x) other than the trivial trajectory x = 0.

Then, the E.P. x = 0 is A.S.. Further, the largest connected region of the
form Ωl = {x | V (x) < l} within Ω is a domain of attraction of the E.P.
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j 6.3 Invariant Set Theorem (cont.)

Example(Pendulum)
θ̈ + θ̇ + sin θ = 0 (7)

Letting x1 = θ, x2 = θ̇ gives

ẋ1 = x2

ẋ2 = −x2 − sinx1

Let V (x) = (1− cos(x1)) +
x22
2 and Ω = {−π < x1 < π,−∞ < x2 <∞}.

Then V (x) is locally P.D. and

V̇ (x) =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= (sinx1)x2 + x2(−x2 − sinx1) = −x22 ≤ 0.

Thus, V̇ (x) is negative semi-definite.
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j 6.3 Invariant Set Theorem (cont.)

Now we have R = {x | V̇ (x) = 0}
⋂

Ω = {x | x22 = 0}
⋂
{−π < x1 <

π,−∞ < x2 <∞} = {(x1, 0)| − π < x1 < π}.

We claim M = {0}. Otherwise, ∃x1 6= 0 and −π < x1 < π s.t.
x0 = [x1 0]T ∈M ⊂ R.

Thus, x(t, x0) = [x1(t, x0) x2(t, x0)]
T ∈M,∀t > 0 since M is invariant.

But x2(t, x0) ≡ 0,∀t > 0 since M ⊂ R. Thus
0 = 0− sin(x1(t, x0)),∀t > 0 which is a contradiction.

Therefore x0 = 0. Thus the origin is the only E.P. in R, and is
asymptotically stable.
Remark: Theorem 3.4 can also estimate the domain of attraction. For the
above example, the whole Ω is a domain of attraction.
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j 6.4 Theorem 3.5
(Global Invariant Set Theorem)

Consider (1) with f ∈ C. Assume there exists V ∈ C11 such that

(1) V̇ (x) ≤ 0 over the whole space.

(2) V (x)→∞ as ‖x‖ → ∞.

Let R = {x | V̇ (x) = 0} and M be the largest invariant set in R. Then all
solutions globally asymptotically converge to M as t→∞. Moreover, if
M = {0}, then the E.P. is globally A.S.

1f ∈ Ck, k ≥ 0, means the kth derivatives of V exist and are continuous.
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j 6.5 When does M = {0}?

If (1) satisfies the conditions of Theorems 3.4 and 3.5, then the
trajectories of (1) are constrained by (n+ 1) equations

dx(t, x0)

dt
= f(x(t, x0)), t ≥ 0

lim
t→∞

V̇ (x(t, x0)) = 0.
(8)

Thus, if the only time function x(t) that satisfies the following (n+ 1)
equations

dx(t)

dt
= f(x(t))

V̇ (x(t)) = 0

is x(t) = 0, then necessarily M = {0}.
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j 6.5 When does M = {0}? (cont.)

Pendulum Example

ẋ1 = x2 (9)

ẋ2 = −x2(t)− sinx1(t) (10)

x22 = 0 (11)

(11) ⇔ x2 = 0,
(10)⇒ sinx1(t) = 0, ⇒ x1(t) = 0.
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j 6.6 Lemma 2
(A.S. of the E.P. for a class of 2nd order systems)

Consider
ÿ + b(ẏ) + c(y) = 0 y ∈ <1 (12)

or

ẋ1 = x2

ẋ2 = −c(x1)− b(x2)

where c(y), b(y) are continuous satisfying the sign condition
yc(y) > 0, y 6= 0, yb(y) > 0.

Then, the E.P. of (12) is A.S. Moreover, if

lim
|y|→∞

∫ y

0
c(r)dr =∞

then the E.P. of (12) is G.A.S.
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j 6.6 Lemma 2 (cont.)
(A.S. of the E.P. for a class of 2nd order systems)

Proof:

Define

V (x1, x2) =

∫ x1

0
c(y)dy +

1

2
x22, G.P.D.

Then

V̇ (x1, x2) =
∂V (x)

∂x1
ẋ1 +

∂V (x)

∂x2
ẋ2

= c(x1)x2 + x2(−c(x1)− b(x2)) = −x2b(x2) ≤ 0

Thus, the E.P. is stable by Theorem 3.2. But we cannot conclude the A.S.
by Theorem 3.2.
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j 6.6 Lemma 2 (cont.)
(A.S. of the E.P. for a class of 2nd order systems)

Next consider the invariant set theorem, we will show that the only
trajectory that satisfies

ẋ1(t) = x2(t) (13)

ẋ2(t) = −c(x1(t))− b(x2(t)) (14)

V̇ (x(t)) = −x2(t)b(x2(t)) = 0 (15)

is x(t) =

[
0
0

]
, ∀t > 0.

In fact,

(15) ⇒ x2(t) ≡ 0 (16)

(16) ⇒ ẋ2(t) ≡ 0 and b(x2(t)) ≡ 0

(14) ⇒ c(x1(t)) ≡ 0 ⇒ x1(t) ≡ 0

Therefore, the E.P. at the origin is A.S.
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j 6.6 Lemma 2 (cont.)
(A.S. of the E.P. for a class of 2nd order systems)

Moreover, if lim
|y|→∞

∫ y

0
c(r)dr =∞

then V (x) is radially unbounded. Then the E.P. is G.A.

Example

ẋ1 = x2

ẋ2 = −x51 − x32 + x41 sin2 x1 = −c(x1)− b(x2)

where
c(x1) = x51 − x41 sin2 x1 b(x2) = x32

Clearly

yb(y) = y4 > 0, y 6= 0, and

yc(y) = y6 − y5 sin2 y > 0, y 6= 0 since

sin2 y ≤ | sin y| < |y|, y 6= 0
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j 6.6 Lemma 2 (cont.)
(A.S. of the E.P. for a class of 2nd order systems)

Therefore, the E.P. is A.S.
Moreover

lim
|y|→∞

∫ y

0
(r5 − r4 sin2 r)dr =∞

Thus, the E.P. is G.A.S.
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j 7 Finding Lyapunov Function

7.1 Introduction

Quadratic function

Krasovskii’s method

The variable gradient method

Physically motivated Lyapunov Function
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j 7.2 Review of P.D. matrix

(a) M ∈ <n×n is symmetric if MT = M .

(b) M is P.D. if xTMx is P.D. The notation M > 0 denotes M is P.D.

M is positive semi-definite if xTMx is positive semi-definite. The
notation M ≥ 0 denotes M is positive semi-definite.

M is negative definite if −M is P.D.

M is negative semi-definite if −M is positive semi-definite.

(c) M is positive definite iff

λi(M) > 0, i = 1, ..., n

M is positive semi-definite if λi(M) ≥ 0 ∀ i.
If M is positive definite, then

λmin(M)‖x‖2 ≤ xTMx ≤ λmax(M)‖x‖2
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j 7.2 Review of P.D. matrix (cont.)

(d) Sylvester’s theorem

Let

M =

 m11 ... m1n

... ...
mn1 ... mnn


and

Mi =

 m11 ... m1i

... ...
mi1 ... mii

 . (17)

Then M > 0 iff
det(Mi) > 0, i = 1, 2, · · · , n
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j 7.3 Lyapunov function for LTI systems

Consider
ẋ = Ax, x ∈ <n.

Let V (x) = xTPx where P ∈ <n×n and P = P T . Then

V̇ (x) = ẋTPx+ xTPẋ = (Ax)TPx+ xTPAx = xT (ATP + PA)x.

Clearly, if P > 0 and ATP + PA < 0, then V (x) = xTPx is a Lyapunov
function for ẋ = Ax and x = 0 is asymptotically stable.

Question?

Given Q = QT , Q > 0, whether or not there exists P = P T > 0 such that

ATP + PA = −Q? Lyapunov equation

If yes, then V (x) = xTPx is a Lyapunov function for ẋ = Ax.
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j 7.3 Lyapunov function for LTI systems (cont.)

Theorem 3.6

The following are equivalent:

(i) x = 0 is the asymptotically stable E.P. of ẋ = Ax.

(ii) Re (λi(A)) < 0, i = 1, 2, ..., n.

(iii) For any Q ∈ <n×n, QT = Q, Q > 0, there exists a unique
P ∈ <n×n, P = P T , P > 0 such that

ATP + PA = −Q (18)
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Sketch of the Proof:

Let

P =

∫ ∞
0

exp(AT t)Q exp(At)dt. (19)

Since A is strictly stable, there exist some α > 0 and λ > 0 such that
|| exp(At)|| ≤ αe−λt, for all t ≥ 0. Thus,

||P || ≤ α2||Q||
∫ ∞
0

e−2λtdt =
α2||Q||

2λ
.

That is, P exists and is finite. Also P is P.D. since Q is. To show P
satisfies (18), note that

−Q =

∫ ∞
0

d[exp(AT t)Q exp(At)]

=

∫ ∞
0

[AT exp(AT t)Q exp(At) + exp(AT t)Q exp(At)A]dt

= ATP + PA
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To show the uniqueness, let ATP1 + P1A = −Q. Then

P1 = −
∫ ∞
0

d[exp(AT t)P1 exp(At)]

= −
∫ ∞
0

exp(AT t)(ATP1 + P1A) exp(At)dt

=

∫ ∞
0

exp(AT t)Q exp(At)dt = P
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j 7.4 Solution of Lyapunov equation

Given Q ∈ <n×n, Q = QT , assume

P =


P11 P12 ... P1n

P12 P22 ... P2n

...
P1n ... ... Pnn

 .
Since P T = P
equation

ATP + PA = −Q

consists of n+ (n− 1) + ...+ 1 =
n(n+ 1)

2
linearly independent equations

in
P11 P12 ... P1n

P22 ... P2n

... ...
Pn−1 n−1 Pn−1 n

Pnn
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j 7.4 Solution of Lyapunov equation (cont.)

For instance, A =

[
0 4
−8 −12

]
, Q =

[
1 0
0 1

]
> 0.

Assume P =

[
P11 P12

P12 P22

]
.

Then ATP + PA = −Q gives[
0 −8
4 −12

] [
P11 P12

P12 P22

]
+

[
P11 P12

P12 P22

] [
0 4
−8 −12

]
=

[
−1 0
0 −1

]
or [

−16P12 4P11 − 12P12 − 8P22

4P11 − 12P12 − 8P22 8P12 − 24P22

]
=

[
−1 0
0 −1

]
or

−16P12 = −1
8P12 − 24P22 = −1

4P11 − 12P12 − 8P22 = 0
⇒

P12 = 1
16

P22 = 1
16

P11 = 5
16

⇒ P =
1

16

[
5 1
1 1

]
.
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j 7.5 Proof of Theorem 3.1 (Lyapunov’s
linearization theorem)

Let A = ∂f(x)
∂x

∣∣∣
x=0

. Then

Re {λi(A)} < 0,∀i ⇒ A.S. of E.P. for ẋ = f(x).

Proof: Since all eigenvalues of A have negative real part, by Theorem 3.6,
for any Q ∈ <n×n, Q = QT , Q > 0, there exists a P ∈ <n×n, P > 0,
P = P T such that

PA+ATP = −Q.
Let V (x) = xTPx. Then V (x) is P.D. and

V̇ (x) = xTPf(x) + fT (x)Px.

By definition of A, there exists g(x) such that

f(x) = Ax+ g(x)

with ‖g(x)‖‖x‖ → 0 as ‖x‖ → 0, since f(x) is differentiable at x = 0.
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j 7.5 Proof of Theorem 3.1 (cont.)

Thus,

V̇ (x) = xTP [Ax+ g(x)] + [xTAT + gT (x)]Px

= xT (PA+ATP )x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

≤ −λmin(Q)‖x‖2 + 2xTPg(x)

since xTQx ≥ λmin(Q)‖x‖2. Moreover, since g(x) is higher order in x,

given any λ > 0, there exists rλ > 0 such that ||g(x)|| < λ||x||
2||P || , ∀x ∈ Brλ .

Thus, ∣∣xTPg(x)
∣∣ ≤ ||x||||P ||||g(x)|| < λ

2
‖x‖2 ∀x ∈ Brλ

Therefore,
V̇ (x) ≤ −[λmin(Q)− λ]‖x‖22 ∀x ∈ Brλ

Letting λ < λmin(Q) shows V̇ (x) is N.D. for x ∈ Brλ . Thus the E.P. is
A.S. by Theorem 3.2.
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j 7.7 Theorem 3.7 (Krasovskii)

Consider (1), i.e., the following system

ẋ = f(x)

where f ∈ C1. If the matrix F (x) = ∂f
∂x + ∂fT

∂x is N.D. for x ∈ Br for some
r > 0, then the E.P. of (1) at the origin is A.S. with the Lyapunov
function V (x) = fT (x)f(x).

If F (x) is globally N.D. and V (x) is radially unbounded, then the E.P. is
G.A.S.
Proof: Let us first note that, for any y ∈ <n,

yTFy = 2yT
∂f

∂x
y.

Therefore, the assumption that F (x) is N.D. ⇒ ∂f
∂x is invertible. Since ∂f

∂x
is invertible and continuous, by inversion function theorem, the function f
can be uniquely inverted in Br0 for some r0 > 0. This implies f(x) 6= 0 for
x 6= 0 and x ∈ Br0 . As a result, V (x) = fT (x)f(x) is P.D.
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j 7.7 Theorem 3.7 (cont.)

Also,

V̇ = fT ḟ + ḟT f = fT
∂f

∂x
f + fT (

∂f

∂x
)T f = fTFf

which is N.D.
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j An Example

Consider

ẋ1 = −6x1 + 2x2

ẋ2 = 2x1 − 6x2 − 2x32

We have

∂f

∂x
=

[
−6 2
2 −6− 6x22

]
F (x) =

∂f

∂x
+
∂fT

∂x
=

[
−12 4

4 −12− 12x22

]
< 0, ∀x

Thus the E.P. is A.S.
Moreover

V (x) = fT (x)f(x) = (−6x1 + 2x2)
2 + (2x1 − 6x2 − 2x32)

2

is radially unbounded. Thus, the E.P. is G.A.S.
Jie Huang ( MAE, CUHK ) Fundamentals of Lyapunov Theory 77 / 97



j 7.8 The Variable Gradient Method

The variable gradient method is a formal approach to constructing
Lyapunov functions. It involves assuming a certain form for the gradient of
an unknown Lyapunov function, and then finding the Lyapunov function
itself by integrating the assumed gradient.

Given a C1 function V : <n → <, the gradient of V (x) is defined as

∇V =

[
∂V

∂x1
, ...,

∂V

∂xn

]
.

If V is C2, then ∇V satisfies the following curl condition:
∂∇Vi
∂xj

=
∂∇Vj
∂xi

(i, j = 1, 2, ..., n), where ∇Vi =
∂V

∂xi
, ∇Vj =

∂V

∂xj
.

On the other hand, given an n dimensional vector valued C1 function
denoted by ∇V , if the component of ∇V satisfies the curl condition, then
there exists a unique C2 function V such that

∂V

∂xi
= ∇Vi, i = 1, 2, · · · , n.
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j 7.8 The Variable Gradient Method (cont.)

This function can be represented by the following integration:

V (x) =

∫ x

0
∇V dx.

Since satisfaction of curl conditions implies that the above integration
result is independent of the integration path, it is convenient to obtain V
by integrating along a path which is parallel to each axis in turn:

V (x) =

∫ x1

0
∇V1(x1, 0, ..., 0)dx1 +

∫ x2

0
∇V2(x1, x2, 0, ..., 0)dx2+

· · ·+
∫ xn

0
∇Vn(x1, x2, ..., xn)dxn

(20)
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j 7.8 The Variable Gradient Method (cont.)

The principle of the variable gradient method is to assume a specific form
for the gradient ∇V , instead of assuming a specific form for the Lyapunov
function itself.

Procedure for seeking a Lyapunov function:

assume that the gradient function ∇V is of the form

∇Vi = Σn
j=1aijxj (21)

where aij ’s are coefficients to be determined.

solve for coefficient aij so as to satisfy the curl equations

restrict the coefficient in (21) so that V̇ is negative semi-definite (at
least locally)

compute V from ∇V by integration (20)

check whether V is positive definite
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j 7.8 The Variable Gradient Method (cont.)

Example:

Use variable gradient method to find a Lyapunov function for the nonlinear
system{

ẋ1 = −2x1
ẋ2 = −2x2 + 2x1x

2
2

Solution:

Assume ∇V has the following form:

∇V1 = a11x1 + a12x2
∇V2 = a21x1 + a22x2
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j 7.8 The Variable Gradient Method (cont.)

Solution (cont.):

By curl equation,
∂∇V1
∂x2

=
∂∇V2
∂x1

⇒ x1
∂a11
∂x2

+ a12 + x2
∂a12
∂x2

= a21 + x1
∂a21
∂x1

+ x2
∂a22
∂x1

For simplicity, choosing a11 = a22 = 1, a12 = a21 = 0 leads to

∇V1 = x1 ∇V2 = x2

Then V̇ can be computed as

V̇ = ∇V ẋ = −2x21 − 2x22(1− x1x2)
Thus V̇ is locally N.D. in the region (1− x1x2 > 0).

So V (x) =

∫ x1

0
x1dx1 +

∫ x2

0
x2dx2 =

x21 + x22
2

, which is P.D.

Therefore asymptotic stability is guaranteed.
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j 7.8 The Variable Gradient Method (cont.)

Remark:

Coefficients aij can be chosen in other form. But aij are restricted by two
conditions:

the curl equations;

V̇ is negative semi-definite (at least locally).

Exercise: Consider the system in Lemma 2:

ẋ1 = x2

ẋ2 = −c(x1)− b(x2)
(22)

Using the variable gradient method to derive a Lyapunov function for (22)
as follows:

V (x1, x2) =

∫ x1

0
c(y)dy +

1

2
x22.
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j 7.9 Physically Motivated Lyapunov Function

Finding a Lyapunov function of a system often involves
trial-and-error. However, since Lyapunov function is a generalization
of energy function, engineering insight and physical knowledge may
lead to an elegant Lyapunov analysis.

A robot arm manipulator example: Shown in Figure 3.19 is a
robot arm manipulator. It consists of a number of links connected by
rotational or translational joints, with the last link equipped with
some end-effector

A fundamental task in robotic applications is for robot manipulators
to transfer objects from one point to another, the so-called robot
position control problem.
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j 7.9 Physically Motivated Lyapunov Function
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j 7.9 Physically Motivated Lyapunov Function

The dynamics of an n−link robot arm

H(q)q̈ + b(q, q̇) + g(q) = τ (23)

where q is an n−dimensional vector describing the joint positions of
the robot, τ is the vector of input torques, g is the vector of
gravitational torques, b represents the Coriolis and centripetal forces
caused by the motion of the links, H the n× n inertia matrix of the
robot arm and is positive definite for any q, and b(q.q̇) ∈ <n satisfies
b(q, 0) = 0.

P.D. controller with a gravity compensation:

τ = −KD q̇ −Kpq + g(q) (24)

where KD and Kp are constant positive definite n× n matrices.

(23) contains hundreds of terms for the 5-link or 6-link robot arms. It
is almost impossible to use trial-and-error to search for a Lyapunov
function for the closed loop dynamics defined by (23) and (24).
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j 7.9 Physically Motivated Lyapunov Function

However, physical insights leads to the following Lyapunov function
candidate

V =
1

2
[q̇THq̇ + qTKpq] (25)

where the first term represents the kinetic energy of the manipulator,
and the second term denotes the ”artificial potential energy”
associated with the virtual spring in the control law (24).

The P.D. control term can be interpreted as mimicking a combination
of dampers and springs.
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j 7.9 Physically Motivated Lyapunov Function

Physical insights also help derive the derivative of this function. In
fact, the energy theorem in mechanics states that the rate of change
of kinetic energy in a mechanical system is equal to the power
provided by the external forces. Therefore,

V̇ = q̇T (τ − g) + q̇TKpq (26)

Substitution of the control law (24) in the above equation then leads
to

V̇ = −q̇TKD q̇ (27)

Thus, the system is stable. Since the arm cannot get ”stuck” at any
position such that q 6= 0, the system must also be asymptotically
stable.
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j 7.9 Physically Motivated Lyapunov Function

In fact, by the invariant set theorem, limt→∞ q̇(t) = 0, which implies
limt→∞ q̈(t) = 0. Since the closed-loop system is

H(q)q̈ + b(q, q̇) +KD q̇ +Kpq = 0, (28)

we obtain
lim
t→∞

(b(q(t), 0) +Kpq(t)) = 0. (29)

Since b(q, 0) = 0 and Kp is positive definite, we have
limt→∞ q(t) = 0. That is, the system is actually globally
asymptotically stable.

Remark:
Two lessons can be learned from this practical example.

The first is that one should use as many as physical properties as
possible in analyzing the behavior of a system;

The second lesson is that physical concepts like energy may lead us to
some uniquely powerful choices of Lyapunov functions.
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j 7.10 Performance Analysis

Lyapunov functions can not only be used for stability analysis, but can also
provide estimates of the transient performance of stable systems.

ã A simple convergence lemma

Lemma 7.1

If a real function W (t) satisfies the inequality

Ẇ (t) + αW (t) ≤ 0 (30)

where α is a real number. Then

W (t) ≤W (0)e−αt (31)
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j 7.10 Performance Analysis

Proof: Define a function Z(t) by

Z(t) = Ẇ + αW (32)

Equation (30) implies that Z(t) is non-positive. The solution of the
first-order equation (32) is

W (t) = W (0)e−αt +

∫ t

0
e−α(t−r)Z(t)dr

Because the second term in the right-hand-side of the above equation is
non-positive, one has

W (t) ≤W (0)e−αt
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j 7.10 Performance Analysis

Remark:

The above lemma implies that, if W is a non-negative function, then
the satisfaction of (30) guarantees the exponential convergence of W
to zero. In particular, if W = xTPx with P a positive definite matrix,
then x(t) converges to the origin exponentially.

In using Lyapunov’s direct method for stability analysis, if one can
manipulate V̇ into the form of (30), the exponential convergence of
V and the convergence rate can be inferred and, in turn, the
exponential convergence rate of the state may then be determined if
V is a quadratic function of the state.
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j 7.10 Performance Analysis

ã Estimating convergence rates for linear systems

Let us evaluate the convergence rate of a stable linear system based on the
Lyapunov analysis. Let us denote the largest eigenvalue of the matrix P by
λmax(P ), the smallest eigenvalue of Q by λmin(Q), and their ratio
λmin(Q)/λmax(P ) by γ. The positive definiteness of P and Q implies
that these scalars are all strictly positive. Since matrix theory shows that

P ≤ λmax(P )I λmin(Q)I ≤ Q (33)

We have

xTQx ≥ λmin(Q)

λmax(P )
xT [λmax(P )I]x ≥ γV (34)
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j 7.10 Performance Analysis

This implies that
V̇ ≤ −γV

This, according to Lemma 7.1, means that

xTPx ≤ V (0)e−γt

This, together with the fact xTPx ≥ λmin(P ) ‖ x(t) ‖2, implies that the
state x converges to the origin with a rate of at least γ/2.
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j 7.10 Performance Analysis

One might naturally wander how this convergence rate estimate varies
with the choice of Q, and how it relates to the familiar notion of dominant
pole in linear theory. An interesting result is that the convergence rate
estimate is largest for Q = I. Indeed, let P0 be the solution of the
Lyapunov equation corresponding to Q = I:

ATP0 + P0A = −I

and let P be the solution corresponding to some other choice of Q

ATP + PA = −Q1
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j 7.10 Performance Analysis

Without loss of generality, we can assume that λmin(Q1) = 1, since
rescaling Q1 will rescale P by the same factor, and therefore will not affect
the value of the corresponding γ. Subtracting the above two equations
yields

AT (P − P0) + (P − P0)A = −(Q1 − I)

Now since λmin(Q1) = 1 = λmax(I), the matrix (Q1 − I) is positive
semi-definite, and hence the above equation implies that (P − P0) is
positive semi-definite. Therefore

λmax(P ) ≥ λmax(P0)

Since λmin(Q1) = 1 = λmin(I), 1/λmax(P0) ≥ 1/λmax(P ). That is, the
convergence rate estimate

γ = λmin(Q)/λmax(P )

corresponding to Q = I is larger than (or equal to) that corresponding to
Q = Q1.
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j 7.10 Performance Analysis

Remark:
If the stable matrix A is symmetric, then the meaning of this ”optimal”
value of γ, corresponding to the choice Q = I, can be interpreted easily.
Indeed, all eigenvalues of A are then real, and furthermore A is
diagonalizable, i.e., there exists a change of state coordinates such that in
these coordinates A is diagonal. One immediately verifies that, in these
coordinates, the matrix P = −1/2A−1 verifies the Lyapunov equation for
Q = I. Thus,

γ = 1/λmax(P ) = 2/λmax(−A−1) = 2λmin(−A)

Therefore the cooresponding γ/2 is simply the absolute value of the
dominant pole of the linear system. Furthermore, γ is obviously
independent of the choice of state coordinates.
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