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[Tl 1  Introduction

1.1 Introduce the stability concepts for the system

&= f(z), zeR" (1)
where it is assumed f(0) = 0.
o Stable
@ Unstable
o Asymptotic stability
@ Exponential stability

Local and global asymptotic stability

1.2 Determine the stability of (1) without obtaining the solution of
(1)

@ Indirect method: linearization method

@ Direct method: construct a Lyapunov function for (1)

1.3 Introduce some control approaches based on Lyapunov Theory
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O 2 Concepts of stability 2.1 Notations

AXy

A :
N7, ’“

Fig. 3.1

I

Letz=| .. | € R" Then |z| = /22 + ...+ 22

Tn

Br ={z| |z|| <R, R >0} spherical region
Sr =A{z| ||z||=R, R >0} sphere itself
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2.2 Assumption

e f(0)=0

Remark: If f(z*) =0 for some z* # 0. Let z = x — z™.

Then =i = f(z) = f(z + 2*) = f(2).

Thus z = 0 is the equilibrium of z = f(z).

Without loss of generality, we only need to consider the equilibrium at the

origin.
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[C] 2.3 Stability and instability

@ 2.3.1 Definition 3.3 (P.48)

The equilibrium point z = 0 of (1) is said to be stable if, for any R > 0,
there exists r > 0, such that if ||zo|| < r, then [|z(t, z0)| < R for all
t > 0. Otherwise the equilibrium point is unstable.

@ 2.3.2 Definition 3.4
The equilibrium point z = 0 of (1) is said to be asymptotically stable if
(a) It is stable.
(b) There exists some r > 0 such that

|lzo|| <r = tli)r&a:(t,xo) =0.

Note: (b) is called convergence condition.
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Tl 2.3 Stability and instability (cont.)

@ 2.3.3 Remarks

(a) The concepts were introduced by Russian mathematician Lyapunov,
often called (asymptotic) stability in the sense of Lyapunov (i.s.o.L.), in
contrast with other stability concepts.

(b) Linear systems & = Ax

& = Ax is (strictly) stable & 2 =0is AS. is.o.L.

& = Ax is marginally stable < x=0isS. is.o.L.

Z = Az is unstable < 2z =0isUS. is.o.L.
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Tl 2.3 Stability and instability (cont.)

@ 2.3.3 Remarks (cont.)

(c) Geometric interpretation of stability (Fig. 3.3 of textbook)

curve 1 - asymptotically stable
curve 2 - marginally stable

curve 3 - unstable

Figure 3.3 : Concepts of stability

GivenBgr, 3 B, such that xzo9 € B, = z(t,z9) € Br, Vt >0
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Tl 2.3 Stability and instability (cont.)

@ 2.3.3 Remarks (cont.)

(d) Asymptotic stability =Stability + Convergence.

Convergence does not imply stability (Fig. 3.5 of textbook)
Example (Vinogradov example)

22 (zo — 21) + 23 . xo(x9 — 211)

.flz To =

(@ +ad)(L+ (@] +a3)?) 7 (@2 +ad) (1 + (22 + 23)?)

Figure 3.5 : State convergence does not imply stability
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Tl 2.3 Stability and instability (cont.)

@ 2.3.3 Remarks (cont.)

(e) Local A.S vs Global A.S.

limy_, o0 2(t, 29) = 0 is only required for all zy € B, where r can be any
arbitrarily small positive number.

The ball B, is called a domain of attraction of the E.P.
If B, = R™, then the convergence is called global.

S+GC =GAS.

All (strictly) stable linear systems are G.A.S.
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24 Examples

(a) Pendulum system

Jie Huang ( MAE, CUHK) Fundamentals of Lyapunov Theory



Tl 2.4 Examples (cont.)

10 : (locally) AS. k>0
4]+ (s g

T )
a::[ ] is unstable

(using either phase plane method or physical intuition)

-

Fig. 3.3

An E.P. is G.A.S only if it is the unique E.P. of the system.

Fundamentals of Lyapunov Theory
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Tl 2.4 Examples (cont.)

(b) Van der Pol equation

LS

Fig. 3.4

.CfCl = X9

iz = —I1 — 0.2(1’% — 1):1,‘2

lim (z(t,x0) —z1) =0 YV x9 # 0.
t—o0

Thus, z = (0,0) is an unstable E.P.
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[C] 2.5 Exponentially stable

Definition 3.5 z = 0 is exponentially stable if there exists two strictly
positive numbers v and A such that

lz(t, z0) | < allzolle™, V>0

for all zg € B, where r is a positive number.

Example:
i = —(1+sin’ )z, z(0) = o, reR!
t
= x(t,x0) = xoexp {—/ 1+ sin2(x(7))} dr
0
= ot @)l < lzollexp(—), V>0
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[Tl 2.5 Exponentially stable (cont.)

Remarks:

(a) ES. = limy,o x(t,9) = 0 at the rate faster than an
exponential function. X is called the rate of the exponential function, and

T= % is called the time constant of the exponential function.

(b) Note that e~ = 0.3679, e=2 = 0.1353, e~3 = 0.0498, e~* = 0.0183.
E.S. tells how fast the system trajectory approaches 0.

(c) Asymptotic convergence to the origin does not imply exponential
convergence to the origin. For example, the function z(t) = 1%% converges
to 0 as t — oo, but it does not converge to 0 exponentially.

(d ES = AS. = S
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Tl 2.6 Global A.S. or Global E.S.

Definition 3.6.

If A.S. or E.S. holds for any initial state xg, the E.P. is said to be A.S. or
E.S. in the large. It is also called G.A.S. or G.E.S.

For linear systems,
AS. & GAS. & GES.

instability < exponential blowup.
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C 3. Lyapunov’s Indirect Method

3.1 Jacobian linearization

Consider (1), i.e., the system described by

&= f(z)
where
fi(z)
reR", f(x)= , and f(0)=0.
df1(x) of1(x)
2/(@) fre O . _
We call =5~ = the Jacobian matrix of f(z).
Ofn(z) Ofn(x)
o1 OTn
Let A= ag(zx) . Then A is called the Jacobian matrix of f(z) at
x = 0. -
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Tl 3.1 Jacobian linearization (cont.)

The linear system
T = Ax (2)

is called the Jacobian linearization of (1), or the linear approximation of
(1) at the E.P. z = 0.

Since f(z) = Az + higher-order terms in z, (2) is obtained from (1) by
ignoring all higher-order terms.

Example
T = T2
. . 1 3 1 5
To9 = —A1X92 —A28S1INX1 = —A1T2 — a2($1 — 5371 + gml — )

Its Jacobian linearization at x =0 is

T = Ax with A:{ 0 1 }
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] 3.2 Lyapunov linearization method

Theorem 3.1 Let \q, ..., A\, be eigenvalues of A.

o If Re{\;} <0, Vi, then E.P. of (1) is (locally) A.S.

o If there exists one i such that Re{\;} > 0, then the E.P. of (1) is
unstable.

o If Re{\;} <0, Vi, and Re{\;} = 0 for at least one i, then the E.P. of
(1) can be stable, unstable or A.S. Or nothing can be said about the
stability property of (1).

Proof: using Lyapunov’s direct method to be introduced later.

Ira(h) Tt (%) Im()
»Re(h) »Re(}) »Re(?)
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Tl 3.2 Lyapunov linearization method (cont.)

Examples (i)

i‘lzl‘Q

To = —a1xo — ag Sinxy

of _ 0 1
Or | —agcosxy —ap

0 1
A(O,O) == |: _a2 _al :| AS

Alr0) = [ 4 —ay ] unstable

4
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Tl 3.2 Lyapunov linearization method (cont.)

Examples (ii)
Consider = = ax.
a<0

a>0

a=20

Jie Huang ( MAE, CUHK )
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& = azx + b

x=0 isAS.
=0 isU.S.
cannot tell by linearization method.
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[Tl 4 Local Stabilization of Nonlinear Control

Systems

4.1 Linearization of nonlinear control systems

Consider
. r e R
t —_ff(LﬂU, u) where u € R™
f(0,0)=0, and h(0)=0
where
fi(z,u) hi(x)
flz,u) = e, hz)= e R
fo(z,u) hp(z)
Let A — Of (z,u) B— Af (x,u) dC = Oh(x)
€ Ox =0, u=0' Ou =0, u=0' and € oz

Jie Huang ( MAE, CUHK )
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T 4.1 Linearization of nonlinear control systems

(cont.)

where _ -
afl (xvu) 6f1 (x,u)
Of(wyu) _ | om om
Ox Ofn(z,u) O fn(z,u) ’
L Om Orn |
i 8fl ('Tvu) 6f1 (x,u) ]
8f(x,u) - ouq Oum
Ou 9 fn (1) fplaa) |
L ouy Oum .
and
Oh1(x) Oh1(x)
ah(ﬂ?) B ox1 Oxn
Oz Ohy() Ohy()
oz OTn
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T 4.1 Linearization of nonlinear control systems

(cont.)

Then A e R, B e R™™, C e RP*", and

&= f(x,u) = Ax + Bu+ frot(z,u)
y=Cx+ hp o ()
We call
z = Ax + Bu
_ (4)
y=Cz

the Jocabian linearization of (3) at (x,u) = (0,0) or the linear
perturbation model of (3).
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T 4.1 Linearization of nonlinear control systems

(cont.)

Example

1= T2 01 0
iy = 271 + 23 +sinu :A:[ },B:[ ],02[1,0].

2 0 1
y=1x
T1 = T2
Therefore, &9 = 2x1 +u is the Jacobian linearization at the origin.
Y=o
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[T 4.2 Local stabilization of nonlinear systems

Consider & = f(x,u).
Under a linear state feedback control

u=—Kzx where K € R7*",

the closed-loop system is

&= f(z,-Kz) = fe(z) (5)
Clearly f.(0) =0.
z=f(zu) >
D
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[T 4.2 Local stabilization of nonlinear systems

(cont.)

Moreover,
Ofc(x) Of(x,—Kx)
or |,— - Oz 2=0
~ 0f(w,u) | () du
Ox £=0,u=0 ou  Ox £=0,u=0
= A — BK.

Thus the E.P. of & = f.(x) at the origin is (locally) A.S. if all the
eigenvalues of A — BK have negative real parts.
Recall that if {A, B} is controllable, i.e.

rank [B AB --- A" 'B] =n,

then there exist matrices X € R™*"™ such that A — BK s stable.

In particular, when m = 1, K can be calculated using Arkerman’s formula
so that A — BK has desirable eigenvalues.
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[T 4.2 Local stabilization of nonlinear systems

(cont.)

Remark

o (i) & = Az 4 Bu is small perturbation model, valid only when z, u
are small.

o (ii) The linear state feedback only guarantees local asymptotic
stability, not global A.S.
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Cls Lyapunov’s Direct Method

5.1

Observation: If the total energy of a physical system is continuously
dissipated, then the system must eventually settle down to an E.P.

Finite energy ™\, no energy <+ no motion

Example (Pendulum system)

MR?*(+bd + MgRsinf =0
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or

i71:£62

b g .
MR2SU2 — Esmxl

To = —

where 1 = 0 and x5 = 9 b is the friction coefficient at the hinge.

Total mechanical energy = kinetic energy + potential energy

1 o
V(z) = 5MRZQJ% +/0 M Rgsin x1dxy

1
= 5MR2$% + MRg(1 — cosxy).
Due to energy consumption (b > 0), V(x(t,x¢)) “\, w.r.t. t, and

lim V' (z(t,z0)) = 0.

t—o00
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But since
V)= 0 = z=0,
we have

tliglo V(z(t,xzg)) =0 = tllglo x(t,xg) = 0.

Thus, we conclude that £ = 0 is A.S.
Conclusion: The stability of a system may be related to the property of a
scalar energy function:

@ Zero energy corresponds to the equilibrium (z = 0).
@ The convergence of the total energy to zero < A.S.

@ Instability is related to the growth of the mechanical energy.

Jie Huang ( MAE, CUHK) Fundamentals of Lyapunov Theory



[C] 5.2 Positive definite functions and Lyapunov

functions

(i) Definition 3.7

A scalar continuous function V() is locally positive definite if 1/ (0) = 0
and there exists a ball Bg, such that z € Bg, &  #0 = V(z) > 0.

If Br, = R", then V(z) is globally positive definite.

(a) Examples
V(z) =2z

is globally positive definite.
1
Viz) = iMR2x§ + MRg(1 — cosxy)

is locally positive definite since whenever 22 + 22 < 1, x # 0, V(x) > 0.
But it is not globally positive definite since

V(27m,0) =0.
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[C] 5.2 Positive definite functions and Lyapunov

functions (cont.)

(b) Geometric interpretation
For n = 2 (Figs. 3.7 & 3.8 of the textbook).

V=Y N A
T Y /gi%

V=V \ £
L

Figure 3.7 : Typical shape of a positive definite function V(x|, x,) Figure 3.8 : Interpreting positive definite functions using contour curves

; ;
% L:‘ S ]"l B ‘l

V(x1,x2) typically corresponds to a surface looking like an upward cup.
The contour curves V (x1,x2) = constant represent a set of ovals
surrounding the origin.
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[C] 5.2 Positive definite functions and Lyapunov

functions (cont.)

(i) Related concepts
o V(z) is negative definite if —V'(x) is positive definite.
e V(z) is positive semi-definite if V/(0) =0 & V(z) > 0 for x # 0.
e V(x) is negative semi-definite if —V'(x) is positive semi-definite.
Thus it can be seen that:
V(z) = $MR?z% + MRg(1 — coszy) is positive semi-definite.

V(z1,72) = —27 is negative semi-definite.
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[C] 5.2 Positive definite functions and Lyapunov

functions (cont.)

(iii) Lyapunov function
(a) Definition 3.8

If, in a ball Bg, the function V(z) is P.D. and %—‘; = [%"‘%} exists
and is continuous, and if its time derivative along any state trajectory of
system (1) is negative semi-definite, i.e.,

. oVde 0V
= —— = — <
Vi) < Oxr dt  Ox (3:)) =0,

then V() is said to be a Lyapunov function for the system (1).

(b) V(z) = %MR%% + MRg(1 — cosz) is a Lyapunov function for the

pendulum system since V' (x) is (locally) P.D. and

V(:I;) = MRgsinzi1 + MR?zois
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[C] 5.2 Positive definite functions and Lyapunov

functions (cont.)

g .
— =sinx

=(MRgsinx)zy + MR?z5 [— U RE T 7

= —ba3 <0.

(c) Geometric interpretation (Fig. 3.9 of the textbook)

Figure 3.9 : Illustrating Definition 3.8 for n =2

The point denoting the value of V(x1,x2) always points down an inverted
cup.
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[C] 5.2 Positive definite functions and Lyapunov

functions (cont.)

d) Global: If ball B = R", Lyapunov function V(z) becomes globally
.D. and V(z) becomes globally negative semi-definite.
)

(
(e) V(x) is a generalization of a physical system'’s total energy function.

V(z)>0, 2#0, V(z)=0 = z=0
V<0
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53 Lyapunov Theorems

(i) Theorem 3.2 (Local stability)

If, in a ball Bg,, there exists a Lyapunov function V() for (1), then the
equilibrium point = = 0 is (locally) stable. If, in addition, V() is locally
negative definite, then the stability is asymptotic.

Proof: Part |

Want to show: Given R > 0, 3r > 0, such that
x9g € B, = x(t,xy) € Bg, V't > 0. To this end, let

m = min V(z) where Sp={z| |z||? = %2}
TESR
V' is continuous & Si compact = m exists
Vis p.d. = m>0.
Furthermore, since V(0) = 0 & V' is continuous, 3R > r > 0 such that
V(z) <m, VYuxe€B,.
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C] 5.3 Lyapunov Theorems (cont.)

Consider z(t, z9) with 29 € B,.. Since V(z) <0, V(x(t)) is
monotonously decreasing with respect to ¢, that is.

V (z(t,z0)) <V (2(0,20)) = V(xg) <m, Vt>0. Thus, there exists no
T > 0 such that z(T,z¢) € Sg. Otherwise, V (z(T', x0)) > m.

Part Il

We have just shown that x(t,x9) € Bgr, Vt >0, ¥V ¢ € B,.

Since V() > 0 (lower bounded) and V (z(t)) < 0 (monotonously
decreasing w.r.t. t), there exist L > 0 such that

V (z(t,z0)) > L & limysoo V (2(t, z0)) = L

We claim L = 0. Otherwise, if L > 0, then 3 ryg < R such that V(z) < L,
V x € By, since V(0) =0, and V (z) is continuous,

i.e. z(t,zo) never enters By, .
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C] 5.3 Lyapunov Theorems (cont.)

Let
L= i -V . Then L; > 0.
1= min (<V(@) Then Ly
Therefore
t t
—V(x(t,xo))—i—vo(xo):/ —V(a:(t,:z:o))dtz/ Lydt = Lyt
0 0
that is

V (a;(t, xo)) S V(.T()) — L1t (6)

But (6) implies V' (x(t,z0)) < 0 when ¢t > %mlo) which is a contradiction

to the fact that V(x) is P.D.
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[C] 5.2 Positive definite functions and Lyapunov
functions (cont.)

(a) (b)

Figure 3.11 : Tllustrating the proof of Theorem 3.2 for n =2
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C] 5.3 Lyapunov Theorems (cont.)

Example

T :.Tl(l'%-i-.ilf% — 1) — X2

By =1 + xo(2? + 23 — 1)
Let V(z) = $(2% +23) which is P.D.

V(z1,22) = z181 + z2d2

= w%(w% + l‘% —1) — zoxy + oy + :L‘g(x% + x% -1)
= (422D +23) <0 vV x

such that 0 < 22 + 23 < 1. Therefore V(z) is N.D. and z = 0 is A.S.
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C] 5.3 Lyapunov Theorems (cont.)

(ii) Theorem 3.3 (Global A.S.)
Assume that there exists a scalar function V' (x) such that

e V(x) is globally P.D.

o V(x)is globally N.D.

e V(x) — oo as ||z|| = oo (radially unbounded)
Then the E.P. of (1) at x = 0 is globally A.S.

Remark: Why radially unbounded? To ensure the region defined

{z | V(x) <1} for any I > 0 is bounded so that z(t, zo) will not drift
away from E.P. (Fig. 3.12 of the textbook). Let

| = lim, 0 inf)z >, V(). Then V(z) is radially unbounded <« [ = oo.
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C] 5.3 Lyapunov Theorems (cont.)

Outline of the Proof: The first two conditions guarantee stability, and
also guarantee that, for any xg, V(z(t,z0)) < V(x(0,20)) = V(o). This
fact together with condition 3 further implies z(t,z) € Bg for some R for
all t > 0 since {z | V(z) < V(x0)} for any xg is bounded. The rest of the
proof is the same as the proof of part Il of Theorem 3.2.
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C] 5.3 Lyapunov Theorems (cont.)

X(1)

/ﬂ—\ ‘
\¥ 1
\ Vx) =V,

\\ Vix) =V,
Vx) = \I
| Vo>
1 2
Figure 3.12 : Motivation of the radial unboundedness condition

It can be shown that
g

Vo= i

But it is not radially unbounded since V(00,0) = 1. V(z) =V,, Vo, > 1
are open curves.

} +a25  isP.D.
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C] 5.3 Lyapunov Theorems (cont.)

Lemma 1
Consider
i+c(x)=0, xRt

where ¢(x) is continuous, and satisfies the sign condition
ze(x) >0V x #0.
Then z =0is G.AS. E.P.

Proof
Let
V(z) = 2?, G.P.D.

and radially unbounded,

V = —2zc(z) <0 G.N.D.
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C] 5.3 Lyapunov Theorems (cont.)

Example 1

i =sin?z — z i.e. ¢(x) = z — sin® x which is continuous. Also

ze(z) =22 —xsin?z > 02 #0 since sinz < |sinz| < |z|.
Therefore the E.P. x =0 is G.A.S.

Example 2

T=—-x
(cannot tell the stability property from linearization method)
ie. c(x) =z
Clearly zc(z) =2* > 02 #0. The EP. x =0 is G.AS.
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[T 6 Invariant Set Theorem

6.1 Introduction:

Theorems 3.2 and 3.3 require the negative definiteness of V() to
guarantee A.S.

In practice, it is relatively easy to find a Lyapunov function with V(ac)
negative semi-definite.

It is desirable to replace the negative definiteness of V() by some other
condition.
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[Tl 6.2 Invariant Set

Definition 3.9
A set G C R™ is an invariant set for (1) if every trajectory starting from a
point in G remains in G for all future time. In other words, let x(t, zo) be
the trajectory of (1) starting at xyp. Then G is an invariant set for (1) if
and only if V&t > 0,z(t,z0) € G,V € G.
Examples

e (i) ™ is an invariant set of (1).

o (i) If z* is an E.P. of (1), i.e., f(z*) =0, then, G = {z*} is an

invariant set of (1).

e (iii) Limit cycle.
Exercise: Suppose V() < 0 along the trajectory of (1). Let
O ={z| V(z) <l, Il >0}. Then € is an invariant set for (1).
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Remark: Let R be a subset of R". A set G is said to be an invariant set
of (1) in R if G is an invariant set for (1) and G C R. G is said to be the
largest invariant set of (1) in R if G is the union of all invariant sets of (1)
within R.

Example:

T = T2

o = sin%u1 —x — |2} — 1|23,
It can be seen that Go = {(0,0)}, G1 = {(1,0)}, G2 = {(—1,0)}, and the
whole space R? are invariant sets of (1). Let R = {x | 75 = 0}. Then the
largest invariant set of (1) in R is Go UGy U Ga. Let
R ={z | |x1| <1 and z2 = 0}. Then the largest invariant set of (1) in R

is Go.
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Tl 6.3 Invariant Set Theorem

(i) Theorem 3.4 (Local Invariant set theorem)

Consider © = f(z) where f is continuous and V' (x) is a scalar function
with continuous first partial derivative s.t.

o for some [ > 0, the region 2 {z | V(x) < 1} is bounded.

o V(z) <0,Vx €.

Let R be the set of all points within €; where V() = 0, and M be the

largest invariant set in R. Then every solution x(t) originating in §2; tends
to M ast — oo.

(ii) Geometric interpretation (Figure 3.14 of the textbook)
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C] 6.3 Invariant Set Theorem (cont.)

(iii) Remarks

(a) Outline of the proof

Step 1. Using Barbalat’s lemma in Section 4.3 to show

limy o V(a:(t,:vg)) =0,Vxg € Qy, i.e., all trajectories originating in
converge to R.

Step 2. Show that the trajectories cannot converge to just anywhere in the

set R. They must converge to the largest invariant set M in R.
(b) When V is negative definite, V =0< 2 =0, i.e., R= M = {0}.
Thus, Theorem 3.2 is a special case of Theorem 3.4.

(c) Let I = lim, o0 inf|3 >, V(). Since V(z) is radially unbounded
& [ = o0, § is bounded for all [ > 0 if V(x) is radially unbounded.
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C] 6.3 Invariant Set Theorem (cont.)

(iv) Corollary

Consider & = f(x) with f continuous, and let V' (z) be a scalar function
with continuous partial derivative. Assume in some neighborhood €2 of the
origin
e V(x) is locally positive definite.
o V is negative semidefinite.
o Theset R={x | V(z) =0} contains no trajectories of
& = f(x) other than the trivial trajectory z = 0.

Then, the E.P. x = 0 is A.S.. Further, the largest connected region of the
form ; = {z | V(x) < I} within Q is a domain of attraction of the E.P.
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C] 6.3 Invariant Set Theorem (cont.)

Example(Pendulum)

0 +60+sinf =0 (7)
Letting x1 = 0,29 = 6 gives

i?l = T2

i?Q = —X9 — sin:vl

Let V(z) = (1 — cos(z1)) + %3 and Q ={—-7 <2 <7, —00 < x3 < 00}.
Then V(x) is locally P.D. and

. ov . ov .
V(ﬂ?) = 871'11’1 + aiszCQ

= (sinzy)xy + xo(—xy — sinzy) = —z3 < 0.

Thus, V(z) is negative semi-definite.
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C] 6.3 Invariant Set Theorem (cont.)

Now we have R = {z | V(z) = 0}NQ={z |23 =0} {7 < z1 <
T, —00 < x9 < 00} = {(x1,0)] =7 <z <7}

We claim M = {0}. Otherwise, 321 # 0 and —7 < 21 < 7 s.t.
1‘0:[1131 O]TEMCR.

Thus, x(t,20) = [x1(t, 20) x2(t,z0)]T € M,¥t > 0 since M is invariant.
But zo(t, z9) = 0,Vt > 0 since M C R. Thus
0 =0 —sin(x1(¢,x0)), Vt > 0 which is a contradiction.

Therefore o = 0. Thus the origin is the only E.P. in R, and is
asymptotically stable.

Remark: Theorem 3.4 can also estimate the domain of attraction. For the
above example, the whole €0 is a domain of attraction.
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T 6.4 Theorem 3.5

(Global Invariant Set Theorem)

Consider (1) with f € C. Assume there exists V € C'! such that

(1) V(z) < 0 over the whole space.
(2) V(z) = o0 as ||z|| — oo.

Let R = {z | V() = 0} and M be the largest invariant set in R. Then all
solutions globally asymptotically converge to M as t — co. Moreover, if
M = {0}, then the E.P. is globally A.S.

lf e C*, k>0, means the k" derivatives of V exist and are continuous.
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C] 6.5 When does M = {0}?

If (1) satisfies the conditions of Theorems 3.4 and 3.5, then the
trajectories of (1) are constrained by (n + 1) equations

dz(t, zp)
dt.” = f(a(t,z0)), t =0 @)
tlgrolo V(z(t,z0)) = 0.

Thus, if the only time function x(¢) that satisfies the following (n + 1)
equations

is 2(t) = 0, then necessarily M = {0}.
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C] 6.5 When does M = {0}? (cont.)

Pendulum Example

S'Cl = X9
—x9(t) — sinz (¢)
x% = 0

i)

(11) © 25 =0, 2 sina(t) =0, = z1(t) = 0.
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C 6.6 Lemma 2

(A.S. of the E.P. for a class of 2nd order systems)

Consider
i+ () + c(y) =0 yeR! (12)
or
T1 = T9
&9 = —c(x1) — b(x2)
where ¢(y), b(y) are continuous satisfying the sign condition

ye(y) >0, y#0, yby) > 0.
Then, the E.P. of (12) is A.S. Moreover, if
v

lim c(r)dr = oo
lyl=00 Jo

then the E.P. of (12) is G.A.S.
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] 6.6 Lemma 2 (cont.)

(A.S. of the E.P. for a class of 2nd order systems)

Proof:
Define o )
V(z1,22) = / c(y)dy + §x§, G.P.D.
0
Then
. oV (x) . oV (x) .
V(x1,x2) = e + oy 2

= ¢(z1)ze + x2(—c(x1) — b(x2)) = —22b(22) <0

Thus, the E.P. is stable by Theorem 3.2. But we cannot conclude the A.S.
by Theorem 3.2.

Jie Huang ( MAE, CUHK )
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] 6.6 Lemma 2 (cont.)

(A.S. of the E.P. for a class of 2nd order systems)

Next consider the invariant set theorem, we will show that the only
trajectory that satisfies

a1(t) = wa(t) (13)
C@a(t) = —c(21(?)) — blz2(t)) (14)
V(z(t)) = —za(t)b(z2(t)) =0 (15)

(16)

Therefore, the E.P. at the origin is A.S.
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] 6.6 Lemma 2 (cont.)

(A.S. of the E.P. for a class of 2nd order systems)

y
Moreover, if  lim e(r)dr = oo
lyl—=o0 Jo

then V() is radially unbounded. Then the E.P. is G.A.

Example
T1 = X9
iy = —1) — 25 4+ i sin? 2y = —c(z1) — b(x2)
where
c(z) = o} —atsin®z;  b(ag) = 23
Clearly

yb(y) =y* >0, y#0, and
ye(y) = y® —yPsin®y >0, y#0 since
sin®y <|[siny| <ly|, y#0
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] 6.6 Lemma 2 (cont.)

(A.S. of the E.P. for a class of 2nd order systems)

Therefore, the E.P. is A.S.

Moreover y
lim (r° — rtsin® r)dr = oo
lyl—o0 Jo

Thus, the E.P. is G.A.S.

Jie Huang ( MAE, CUHK )
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I Finding Lyapunov Function

7.1 Introduction

Quadratic function

Krasovskii's method

@ The variable gradient method

Physically motivated Lyapunov Function
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[Tl 7.2 Review of P.D. matrix

(a) M € R is symmetric if MT = M.
(b) M is P.D. if 7 Mz is P.D. The notation M > 0 denotes M is P.D.
M is positive semi-definite if 7 Mz is positive semi-definite. The
notation M > 0 denotes M is positive semi-definite.
M is negative definite if —M is P.D.
M is negative semi-definite if —M is positive semi-definite.

(c) M is positive definite iff
/\z(M) > 0, t=1,...,n

M is positive semi-definite if A\;(M) >0 V4.
If M is positive definite, then

Aanin(M)|2]| < 27 M2 < Ao (M) ]|
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Tl 7.2 Review of P.D. matrix (cont.)

(d) Sylvester's theorem

Let ~
mi1 Min
M =
L Mn1 Mnn
and )
mi1 ... My
M= | .. o (17)
L i1 myi;
Then M > 0 iff
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C 73 Lyapunov function for LTI systems

Consider
i=Ax, xeR".

Let V(z) = 27 Px where P € R and P = PT. Then
V(z) = &' Px 4+ 2' Pi = (Az)T Pz + 2T PAz = 27 (ATP + PA)x.

Clearly, if P >0 and ATP 4+ PA < 0, then V(z) = 27 Pz is a Lyapunov
function for © = Ax and x = 0 is asymptotically stable.

Question?
Given Q = QT, @ > 0, whether or not there exists P = PT > 0 such that

ATP + PA=—-Q? Lyapunov equation

If yes, then V(x) = 2T Pz is a Lyapunov function for i = Ax.
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Tl 7.3 Lyapunov function for LTI systems (cont.)

Theorem 3.6

The following are equivalent:
o (i) z = 0 is the asymptotically stable E.P. of & = Ax.
o (ii) Re(N\i(A)) <0,i=1,2,...,n.
o (iii) For any Q € ™", QT = Q, Q > 0, there exists a unique
P e R P =PI P >0 such that

ATP 4+ PA=-Q (18)
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Sketch of the Proof:

Let
P:/ exp(ATt)Q exp(At)dt. (19)
0

Since A is strictly stable, there exist some « > 0 and A > 0 such that
|| exp(At)|| < ae™, for all t > 0. Thus,

Pl < a®all [ e i

That is, P exists and is finite. Also P is P.D. since @) is. To show P
satisfies (18), note that

< - " dlexp(ATH)Q exp(At)
0

= /0 h [AT exp(ATt)Q exp(At) + exp(ATt)Q exp(At) A]dt

= ATP+PA
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To show the uniqueness, let ATP; + PLA = —Q. Then
P = —/ dlexp(ATt) Py exp(At))]
0
= —/ exp(ATt) (AT Py + Py A) exp(At)dt
0

= /00 exp(ATt)Q exp(At)dt = P
0
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T 7.4 Solution of Lyapunov equation

Given Q € ™", Q = QT assume

Py P ... Py
P — P12 P22 cee P27’L
Pln Pnn
Since pPT=p
equation
ATP+PA=—-Q
1
consistsof n+ (n—1)+...+1= n(nz—{—) linearly independent equations
in
P22 Pgn

Pnfl n—1 Pnfl n
Pnn
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Tl 7.4 Solution of Lyapunov equation (cont.)

12 |

. 0 4 1 0
Forlnstance,A—[_8 _12], Q—[O 1}>0.
P Pio }
Assume P = }
[ Py Py
Then ATP + PA = —Q gives
0 -8 Py Pio n Py Pio 0 4
or
—16P;9 4P —12P19 — 8P |
4P)1 — 12P9 — 8Py 8P9 — 24 Pyo o
or
—16P1g = —1 Py = 15
8P1g — 24Py = —1 =  Py= % =
4P;1 — 12Pj9 — 8Py =0 Pllzﬁ

Jie Huang ( MAE, CUHK )
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Tl 7.5 Proof of Theorem 3.1 (Lyapunov’s

linearization theorem)

Let A = /()

Lr . Then

=0

Re{)\i(A)} <0,¥i = AS. of E.P. for & = f(z).

Proof: Since all eigenvalues of A have negative real part, by Theorem 3.6,

for any Q € ™" Q = QT, Q > 0, there exists a P € R"*" P > 0,
P = PT such that

PA+ ATP =—qQ.
Let V(z) = 27 Px. Then V(x) is P.D. and

V(z) =2l Pf(x) + fT(z)Px.
By definition of A, there exists g(z) such that

f(z) = Az + g()

with ”“"‘(;”)H — 0 as ||z|| — 0, since f(z) is differentiable at x = 0.
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Tl 7.5 Proof of Theorem 3.1 (cont.)

Thus,
V(z) = 2T P[Az + g(z)] + [T AT + g7 (2)] Pz
= 2T (PA+ ATP)x + 227 Pg(x)
= —21Qx + 22T Pg(z)
< Amin(Q)||z]|? + 227 Pg(x)
since 27 Qx > A\nin(Q)||z||?. Moreover, since g(z) is higher order in z,

given any A\ > 0, there exists r) > 0 such that ||g(z)|| < é\”"]ﬁ"", Va € By,.
Thus,

A
7 Pg()| < IlallIPIlllg(a)l| < Sliall® ¥z € B,
Therefore, '
V(2) < —Puin(@) = Alllz3  Vz € By,

Letting A\ < Amin(Q) shows V(z) is N.D. for € B,,. Thus the E.P. is
A.S. by Theorem 3.2.
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Tl 7.7 Theorem 3.7 (Krasovskii)

Consider (1), i.e., the following system

&= f(x)
where f € CL. If the matrix F(z) = gii +9 am is N.D. for z € B, for some

r > 0, then the E.P. of (1) at the origin is A.S. with the Lyapunov
function V(z) = fT(z)f(x).

If F(z) is globally N.D. and V'(z) is radially unbounded, then the E.P. is
G.AS.

Proof: Let us first note that, for any y € R",

0
y' Fy = 2yTaffy-
X

Therefore, the assumption that F(z) is N.D. = g—i is invertible. Since %
is invertible and continuous, by inversion function theorem, the function f
can be uniquely inverted in B,, for some rg > 0. This implies f(x) # 0 for

r#0and x € By,. As a result, V(z) = fT(z)f(z) is P.D.
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Tl 7.7 Theorem 3.7 (cont.)

Also,
of

V=i = Oy = ey

which is N.D.
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O An Example

Consider
T1 = —6x1 + 229
iy = 211 — 629 — 2005
We have
g | —6 2
or | 2 —6-— 693%
_of L oft [ —12 4
F@) =t 20 = | 4 —12-1222 | <0 ™

Thus the E.P. is A.S.
Moreover

V() = T (2)f(x) = (—6z1 + 222)” + (221 — 625 — 225)°

is radially unbounded. Thus, the E.P. is G.A.S.
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[Tl 7.8 The Variable Gradient Method

The variable gradient method is a formal approach to constructing
Lyapunov functions. It involves assuming a certain form for the gradient of
an unknown Lyapunov function, and then finding the Lyapunov function
itself by integrating the assumed gradient.

Given a C* function V : R" — R, the gradient of V() is defined as

oV oV
VV = |—, ..., —|.
|:8$1 T al’n:|
If V is C2, then VV satisfies the following curl condition:
ovv, ovv; . ov oV
= =1,2,...,n), wh Vi=— VV,= —.
oz, o7, (i, ,2,...,n), where V 7, W% oz,

On the other hand, given an n dimensional vector valued C' function
denoted by VV, if the component of VV satisfies the curl condition, then
there exists a unique C? function V such that

oV =VV, i=1,2,--,n.
8xz~
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[Tl 7.8 The Variable Gradient Method (cont.)

This function can be represented by the following integration:
xr
Viz) = / VVx.
0

Since satisfaction of curl conditions implies that the above integration
result is independent of the integration path, it is convenient to obtain V
by integrating along a path which is parallel to each axis in turn:

1 T2
V(x):/ V%(:L’l,O,...,O)dasl—}—/ VVa(x1,x2,0,...,0)dxo+
0 0
—1—/ VVp(x1, 2, ..., xp)dzy,
0
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[Tl 7.8 The Variable Gradient Method (cont.)

The principle of the variable gradient method is to assume a specific form
for the gradient V'V, instead of assuming a specific form for the Lyapunov
function itself.

Procedure for seeking a Lyapunov function:

@ assume that the gradient function VV is of the form
VVZ = E?Zlaijxj (21)

where a;;'s are coefficients to be determined.
@ solve for coefficient a;; so as to satisfy the curl equations

@ restrict the coefficient in (21) so that V is negative semi-definite (at
least locally)

e compute V' from VV by integration (20)

@ check whether V' is positive definite
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[Tl 7.8 The Variable Gradient Method (cont.)

Example:
Use variable gradient method to find a Lyapunov function for the nonlinear
system
il = —2.731
{ T9 = —2x9 + 21?11‘%
Solution:

Assume VV has the following form:

VVi = a1z + a1aw2
VVa = ag121 + aznxs
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[Tl 7.8 The Variable Gradient Method (cont.)

Solution (cont.):

By curl equation,

8VV1 8VV2 8@11 8@12 - 8a21 aagg
97s o1y = 21 O + a2 + x2 7(%2 = ao1 + 33178361 T2 o1

For simplicity, choosing a11 = a22 = 1,a12 = a21 = 0 leads to
VVi=x1 VVi =29

Then V can be computed as
V =VVi=—2z} - 2231 — z123)

Thus V is locally N.D. in the region (1 — 2129 > 0).

1 T2
So V(:L’) = / l‘ldl‘l +/ IL’gdl‘Q =
0 0

Therefore asymptotic stability is guaranteed.

:1:%4—3:%

, which is P.D.
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[Tl 7.8 The Variable Gradient Method (cont.)

Remark:
Coefficients a;; can be chosen in other form. But a;; are restricted by two
conditions:

@ the curl equations;

e V is negative semi-definite (at least locally).

Exercise: Consider the system in Lemma 2:

1'121‘2

:t'Q = —C(:L’l) — b(wg) (22)

Using the variable gradient method to derive a Lyapunov function for (22)
as follows:

1 1
Vienas) = [ ey + 53
0
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[C] 7.9 Physically Motivated Lyapunov Function

@ Finding a Lyapunov function of a system often involves
trial-and-error. However, since Lyapunov function is a generalization
of energy function, engineering insight and physical knowledge may
lead to an elegant Lyapunov analysis.

@ A robot arm manipulator example: Shown in Figure 3.19 is a
robot arm manipulator. It consists of a number of links connected by
rotational or translational joints, with the last link equipped with
some end-effector

@ A fundamental task in robotic applications is for robot manipulators

to transfer objects from one point to another, the so-called robot
position control problem.
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[C] 7.9 Physically Motivated Lyapunov Function

base(link 0)

Figure 3.19 : A robot manipulator
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[C] 7.9 Physically Motivated Lyapunov Function

@ The dynamics of an n—link robot arm

H(q)G+b(q,q4) +g(q) =7 (23)

where ¢ is an n—dimensional vector describing the joint positions of
the robot, 7 is the vector of input torques, g is the vector of
gravitational torques, b represents the Coriolis and centripetal forces
caused by the motion of the links, H the n x n inertia matrix of the
robot arm and is positive definite for any ¢, and b(q.4) € R™ satisfies
b(q,0) = 0.

o P.D. controller with a gravity compensation:

T=—Kpj—Kpq+9(q) (24)

where Kp and K, are constant positive definite n x n matrices.

@ (23) contains hundreds of terms for the 5-link or 6-link robot arms. It
is almost impossible to use trial-and-error to search for a Lyapunov
function for the closed loop dynamics defined by (23) and (24).
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[C] 7.9 Physically Motivated Lyapunov Function

@ However, physical insights leads to the following Lyapunov function
candidate

1., .
V= §[qTH G+ q" Kyq] (25)

where the first term represents the kinetic energy of the manipulator,
and the second term denotes the "artificial potential energy”
associated with the virtual spring in the control law (24).

@ The P.D. control term can be interpreted as mimicking a combination
of dampers and springs.
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[C] 7.9 Physically Motivated Lyapunov Function

@ Physical insights also help derive the derivative of this function. In
fact, the energy theorem in mechanics states that the rate of change
of kinetic energy in a mechanical system is equal to the power
provided by the external forces. Therefore,

V=4¢(r-9)+qi" Ky (26)

Substitution of the control law (24) in the above equation then leads

to )
V=—"Kpg (27)

@ Thus, the system is stable. Since the arm cannot get "stuck” at any
position such that ¢ # 0, the system must also be asymptotically
stable.
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[C] 7.9 Physically Motivated Lyapunov Function

@ In fact, by the invariant set theorem, lim;_, o ¢(t) = 0, which implies
limy_,o0 G(t) = 0. Since the closed-loop system is

H(q)§ +b(q,4) + Kpg + Kpg =0, (28)
we obtain
Jim (b(g(t),0) + Kpa(t)) = 0. (29)

Since b(q,0) = 0 and K, is positive definite, we have
lim¢ o q(t) = 0. That is, the system is actually globally
asymptotically stable.
Remark:
Two lessons can be learned from this practical example.
@ The first is that one should use as many as physical properties as
possible in analyzing the behavior of a system;
@ The second lesson is that physical concepts like energy may lead us to
some uniquely powerful choices of Lyapunov functions.
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[C] 7.10 Performance Analysis

Lyapunov functions can not only be used for stability analysis, but can also
provide estimates of the transient performance of stable systems.

> A simple convergence lemma )

Lemma 7.1

If a real function W (t) satisfies the inequality

W(t) + aW(t) <0 (30)

where o is a real number. Then

W (t) < W(0)e~et (31)
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[C] 7.10 Performance Analysis

Proof: Define a function Z(t) by
Z(t) =W +aW (32)

Equation (30) implies that Z(¢) is non-positive. The solution of the
first-order equation (32) is

Because the second term in the right-hand-side of the above equation is
non-positive, one has
W(t) < W(0)e ™
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[C] 7.10 Performance Analysis

Remark:

@ The above lemma implies that, if W is a non-negative function, then
the satisfaction of (30) guarantees the exponential convergence of W
to zero. In particular, if W = 2T Px with P a positive definite matrix,
then x(t) converges to the origin exponentially.

@ In using Lyapunov's direct method for stability analysis, if one can
manipulate V into the form of (30), the exponential convergence of
V' and the convergence rate can be inferred and, in turn, the
exponential convergence rate of the state may then be determined if
V' is a quadratic function of the state.
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[C] 7.10 Performance Analysis

> Estimating convergence rates for linear systems J

Let us evaluate the convergence rate of a stable linear system based on the
Lyapunov analysis. Let us denote the largest eigenvalue of the matrix P by
Amaz (P), the smallest eigenvalue of @ by A\yin (@), and their ratio
Amin(Q) /Amaz(P) by . The positive definiteness of P and @ implies
that these scalars are all strictly positive. Since matrix theory shows that

P S )\mam(P)I )\mzn(Q)I S Q (33)
We have Aomin(Q)
Qx> #(P)x:p[x\max(P)I]x >V (34)
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[C] 7.10 Performance Analysis

This implies that
V<V

This, according to Lemma 7.1, means that
2T Pz <V(0)e

This, together with the fact 27 Pz > A\pin(P) || (t) ||?, implies that the
state = converges to the origin with a rate of at least v/2.
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[C] 7.10 Performance Analysis

One might naturally wander how this convergence rate estimate varies
with the choice of @), and how it relates to the familiar notion of dominant
pole in linear theory. An interesting result is that the convergence rate
estimate is largest for () = I. Indeed, let Py be the solution of the
Lyapunov equation corresponding to QQ = I:

AT Py + PhA = —1
and let P be the solution corresponding to some other choice of )

ATP+ PA=—-Q
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[C] 7.10 Performance Analysis

Without loss of generality, we can assume that A, (Q1) = 1, since
rescaling )1 will rescale P by the same factor, and therefore will not affect
the value of the corresponding . Subtracting the above two equations
yields

AT(P - Py)+ (P - Py)A=—(Q1—1I)
Now since A\pin(Q1) = 1 = A\ppaz (1), the matrix (Qq — I) is positive
semi-definite, and hence the above equation implies that (P — Fp) is
positive semi-definite. Therefore

Amaz(P) > Amaz(PO)
Since Apin(Q1) =1 = Anin(I), 1/ Amaz(FPo) > 1/Amaz(P). That is, the
convergence rate estimate

Y= )\mzn(Q)/Amax(P)

corresponding to Q = I is larger than (or equal to) that corresponding to

Q= Q.
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Remark:

If the stable matrix A is symmetric, then the meaning of this "optimal”
value of v, corresponding to the choice () = I, can be interpreted easily.
Indeed, all eigenvalues of A are then real, and furthermore A is
diagonalizable, i.e., there exists a change of state coordinates such that in
these coordinates A is diagonal. One immediately verifies that, in these
coordinates, the matrix P = —1/2A~! verifies the Lyapunov equation for
Q= 1. Thus,

Y =1/ Amaz(P) = 2/ Amaz(—A7H) = 2X\nin(—A)

Therefore the cooresponding /2 is simply the absolute value of the
dominant pole of the linear system. Furthermore, 7y is obviously
independent of the choice of state coordinates.
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