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j 1 Introduction

1.1 Topics

(i) Stability concepts for non-autonomous systems

ẋ = f(x, t), t ≥ t0 (1)

Stability vs uniform stability

Instability theorems

The converse theorems (existence of Lyapunov functions)

(ii) Barbalat’s Lemma (useful for adaptive control)

(iii) Absolute stability (classical results)

(iv) Total stability
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j 1.2 Non-autonomous systems

1.2.1 Equilibrium point

x∗ is the E.P. of (1) if

f(x∗, t) ≡ 0, ∀t ≥ t0

Example 1

ẋ = − a(t)x

1 + x2

x∗ = 0 is the E.P.
For linear system ẋ = A(t)x, x∗ = 0 is always an E.P., and is the unique
E.P. if A(t) is nonsingular for some t ≥ t0.
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j 1.2 Non-autonomous systems (cont.)

1.2.2 Shift-invariant
For autonomous systems

ẋ = f(x), t ≥ 0 (2)

Let x(t) be the solution of (2) satisfying x(0) = x0 and let
y(t) = x(t− t0). Then y(t0) = x(0) = x0 and

dy(t)

dt
=
dx(t− t0)

dt
= f(x(t− t0)) = f(y(t))

That is, x(t− t0) is the solution of (2) satisfying x(t0 − t0) = x0.
This property is called shift-invariant. As a result, we can always assume
the initial time to be zero.
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j 1.2 Non-autonomous systems (cont.)

But for non-autonomous systems, if x(t) satisfies

dx(t)

dt
= f(x(t), t).

Let y(t) = x(t− t0). Then

dy(t)

dt
=
dx(t− t0)

dt
= f(x(t− t0), t− t0) = f(y(t), t− t0) 6= f(y(t), t).

Therefore, x(t− t0) may not be the solution of (1).
Thus, the initial time matters, and the shift-invariant property does not
hold.
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j 1.2 Non-autonomous systems (cont.)

1.2.3 Nominal motion and motion stability
Let x∗(t) be the solution of (2) satisfying x∗(0) = x0, i.e.

ẋ∗(t) = f(x∗(t)), x∗(0) = x0.

x∗(t) is called the nominal motion.

Let x(t) be the solution of (2) satisfying x(0) = x0 + δx0, i.e., x(t) is such
that

ẋ(t) = f(x(t)), x(0) = x0 + δx0.

δx0 is called the perturbation of the initial condition and x(t) is called the
perturbed motion.

Let e(t) = x(t)− x∗(t). Then

ė(t) = ẋ(t)− ẋ∗(t) = f(x(t))− f(x∗(t))

= f(x∗(t) + e(t))− f(x∗(t))

= g(e, t), t ≥ 0

e(0) = δx0

Jie Huang ( MAE, CUHK ) Advanced Stability Theory 7 / 97

s1155184008
Highlight



j 1.2 Non-autonomous systems (cont.)

Clearly, g(0, t) = 0, ∀t ≥ 0. Therefore, the origin is an E.P. of the
non-autonomous system

ė = g(e, t).

We have seen that

(i) The stability property of a nominal motion of a system can be
converted into the stability property of an E.P. of the error system.

(ii) A non-autonomous system can arise from studying the motion
stability of an autonomous system.
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j 2 Stability Concepts 2.1 Stability

(i) Definition 4.1
The E.P. x∗ = 0 of (1) is stable at t0 if ∀R > 0, ∃ constant r(R, t0) > 0
such that

‖x(t0)‖ < r ⇒ ‖x(t)‖ < R, t ≥ t0
Otherwise, the E.P. x∗ = 0 is unstable.

(ii) Definition 4.2
The E.P. x∗ = 0 is A.S. at time t0 if

It is stable at t0.

∃r(t0) > 0 such that ‖x(t0)‖ < r(t0) ⇒ limt→∞ x(t) = 0

Note:

initial time t0 matters

r is allowed to rely on t0
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j 2.1 Stability (cont.)

(iii) Definition 4.3
The E.P. x∗ = 0 is E.S. if there exist α > 0 and λ > 0 such that, for all
sufficiently small x(t0),

‖x(t)‖ ≤ α‖x0‖e−λ(t−t0) t ≥ t0

(iv) Definition 4.4

The E.P. x∗ = 0 is G.A.S. if x∗ = 0 is stable at t0 and, ∀ x(t0),

lim
t→∞

x(t) = 0
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j 2.2 Example 4.2

ẋ(t) = −a(t)x(t), x ∈ <1 ⇒ dx

dt
= −a(t)x(t)

⇒ dx

x
= −a(t)dt

⇒ ln
x(t)

x(t0)
=

∫ t

t0

−a(τ)dτ

⇒ x(t) = x(t0) exp

[
−
∫ t

t0

a(τ)dτ

]
.

Thus, the E.P. of the system

(i) is stable if a(t) ≥ 0, ∀ t ≥ t0
(ii) A.S. if a(t) ≥ 0, ∀ t ≥ t0 and

∫∞
0 a(τ)dτ =∞

(iii) E.S. if a(t) ≥ 0, ∀ t ≥ t0 and ∃ T > 0 such that ∀ t ≥ 0∫ t+T

t
a(τ)dτ ≥ r, with r being a positive number
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j 2.2 Example 4.2 (cont.)

(i) and (ii) are clear, and (iii) is left for assignment.

Examples

� ẋ =
−x

1 + t2
is stable at any t0 since

a(t) =
1

(1 + t)2
≥ 0, ∀t ≥ t0

but not A.S. since∫ t

0
a(τ)dτ =

∫ t

0

1

(1 + τ)2
dτ =

−1

1 + t
+ 1→ 1 as t→∞

� ẋ =
−x

1 + t
is A.S. since

∫ t

0

dτ

1 + τ
= ln(1 + t)→∞ as t→∞ (3)

Jie Huang ( MAE, CUHK ) Advanced Stability Theory 12 / 97



j 2.2 Example 4.2 (cont.)

� ẋ = −tx is E.S. since∫ t+T

t
τdτ =

τ2

2

∣∣∣∣t+T
t

=
(t+ T )2 − t2

2
=
T (2t+ T )

2
≥ T 2

2

� ẋ = − x

1 + sin2 x
is E.S. since

x(t) = x(t0) exp

[
−
∫ t

t0

1

1 + sinx2(τ)
dτ

]
‖x(t)‖ ≤ ‖x(t0)‖ exp

[
−
∫ t

t0

1

2
dτ

]
≤ ‖x(t0)‖ exp

[
−(t− t0)

2

]
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j 2.3 Uniformity in stability concepts

2.3.1 Introduction

It is desirable for a system to have a certain uniformity in its behavior
regardless of when the operation starts.

Non-autonomous systems with uniform properties have some desirable
ability to withstand disturbance.

2.3.2 Definitions

Definitions 4.5
The E.P. x∗ = 0 is locally uniformly stable (U.S.) if the scalar r in
Definition 4.1 can be chosen independent of t0, i.e. r = r(R)

Definition 4.6
The E.P. x∗ = 0 is locally U.A.S. if
� It is U.S.
� There exists a ball of attraction BR0 whose radius is independent of t0
such that any system trajectory with initial states in BR0 converges to
x∗ = 0 uniformly in t0.

Jie Huang ( MAE, CUHK ) Advanced Stability Theory 14 / 97



j 2.3 Uniformity in stability concepts (cont.)

The uniform convergence in terms of t0 means that, for all R1 and R2

satisfying 0 < R2 < R1 < R0, ∃ T (R1, R2) > 0 such that ∀ t0 ≥ 0,

‖x(t0)‖ < R1 ⇒ ‖x(t)‖ ≤ R2, ∀t ≥ t0 + T (R1, R2)

i.e. the state trajectory, starting from within BR1 , will converge to a
smaller ball BR2 after a time period T which is independent of t0.

By definition,

U.A.S. ⇒ A.S., but the converse is generally not true.
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j 2.3 Uniformity in stability concepts (cont.)

2.3.3 Example 4.3

ẋ = − x

1 + t
⇒ x(t) =

1 + t0
1 + t

x(t0)

The E.P. x∗ = 0 is clearly A.S. but not uniformly A.S. In fact, for
∀0 < R2 < R1, and, for any |x(t0)| < R1,

t >
(1 + t0)R1

R2
− 1 ≥ (1 + t0)|x(t0)|

R2
− 1⇒ |x(t)| ≤ (1 + t0)|x(t0)|

1 + t
< R2

Let t = t0 + T (R1, R2, t0) = (1+t0)R1

R2
− 1. Then

T (R1, R2, t0) = (1+t0)(R1−R2)
R2

. Then

|x(t)| < R2, ∀t ≥ t0 + T (R1, R2, t0)

But T cannot be made independent of t0. This is because a larger t0
requires a longer time to get close to the origin.
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j 2.3 Uniformity in stability concepts (cont.)

2.3.4 Remark

(i) E.S. ⇒ U.A.S.

(ii) For linear systems, E.S. ⇔ U.A.S.

(iii) Global U.A.S. (replacing BR0 by <n)

(iv) For autonomous systems,
S ⇔ U.S.
U.A.S. ⇔ A.S.
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j 3 Lyapunov Analysis - Direct Method
3.1 P.D. functions and decrescent functions

Direct method

Linearization method

3.1.1 Definition 4.7

A scalar continuous time-varying function V (x, t) is locally positive
definite if V (0, t) = 0, ∀t ≥ 0 and there exists a time-invariant P.D.
function V0(x) such that

∀t ≥ 0, V (x, t) ≥ V0(x) (4)

i.e. a time-varying function is locally P.D. if it dominates a time-invariant
locally P.D. function. Similar definitions can be obtained for negative
definite, positive semi-definite, negative semi-definite or global positive
definite functions.
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j 3.1 P.D. functions and decrescent functions
(cont.)

3.1.2 Definition 4.8

A scalar function V (x, t) is decrescent if V (0, t) = 0, ∀t ≥ 0, and if ∃ a
time-invariant P.D. function V1(x) such that

∀t ≥ 0, V (x, t) ≤ V1(x)

i.e. a scalar function V (x, t) is decrescent if it is dominated by a
time-invariant locally P.D. function.

A time-invariant P.D. function is always decrescent.

3.1.3 Example

V0(x) = x21 + x22 ≤ V (x, t) = (1 + sin2 t)(x21 + x22)

≤ 2(x21 + x22) = V1(x)
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j 3.2 Lyapunov Theorem

3.2.1

Let V (x, t) be a time-varying function, its derivative along the trajectory
of system (1) is

dV

dt
=
∂V

∂t
+
∂V

∂x
ẋ =

∂V

∂t
+
∂V

∂x
f(x, t) (5)

3.2.2

V (x, t) is called a Lyapunov fucntion for (1) if V (x, t) ∈ C1 and ∃Br for
some r > 0 such that, in Br, V is positive definite and V̇ , its derivative
along the system trajectories, is negative semi-definite.
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j 3.2 Lyapunov Theorem (cont.)

3.2.3 Theorem 4.1

� Stability: If, in a ball BR0 around the E.P. x∗ = 0, there exists a scalar
function V (x, t) ∈ C1 such that

1. V is P.D.

2. V̇ is N.S.D.

then the E.P. x∗ = 0 is stable in the sense of Lyapunov.

� Uniform stability and uniform asymptotic stability: If, furthermore,

3. V is decrescent

then x∗ = 0 is U.S. If condition 2 is strengthened by requiring that V̇ be
negative definite, then x∗ = 0 is uniformly A.S.

� Global U.A.S.: If the ball BR0 is replaced by <n, and condition 1, the
strengthened condition 2, condition 3, and the condition

4. V (x, t) is radially unbounded.

are all satisfied, then x∗ = 0 is G.U.A.S.
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j 3.2 Lyapunov Theorem (cont.)

3.2.4 Example 4.5 (G.A.S)

ẋ1 = −x1(t)− e−2tx2(t)
ẋ2 = x1 − x2(t)

⇒
[
ẋ1
ẋ2

]
=

[
−1 −e−2t
1 −1

] [
x1
x2

]
Choose

V (x, t) = x21 + (1 + e−2t)x22

= [x1 x2]

[
1 0
0 1 + e−2t

] [
x1
x2

]
= xTP (t)x

which is P.D. and decrescent.
Furthermore

V̇ (x, t) =
∂V

∂t
+
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= −2e−2tx22 + 2x1(−x1 − e−2tx2) + 2(1 + e−2t)x2(−x1 − x2)
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j 3.2 Lyapunov Theorem (cont.)

= −2[x21 − x1x2 + x22(1 + 2e−2t)]

≤ −2(x21 − x1x2 + x22) = −(x1 − x2)2 − x21 − x22

Therefore V̇ is N.D. ⇒ The E.P. is G.A.S.

3.2.5 Example 4.6 (importance of the decrescence condition)

Consider

ẋ =
ġ(t)

g(t)
x, x ∈ <1 (6)

where g(t) is a continuously differentiable function which coincides with

the function e−
t
2 except around some peaks where it reaches the value 1.

The curve of g2(t) is shown in Figure 4.2.

Jie Huang ( MAE, CUHK ) Advanced Stability Theory 23 / 97



j 3.2 Lyapunov Theorem (cont.)

Assume g(t) = 1 t = 0, 1, ... and the width of the peak corresponding to
abcissa n is assumed to be smaller than

(
1
2

)n
. Thus,∫ ∞

0
g2(τ)dτ <

∫ ∞
0

e−τdτ +

∞∑
n=1

1

2n
= 2
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j 3.2 Lyapunov Theorem (cont.)

Let

V (x, t) =
x2

g2(t)

[
3−

∫ t

0
g2(τ)dτ

]
> x2

which is P.D. but not decrescent.
Then V̇ = −x2 which is N.D. Yet the solution of (6) is

x(t) =
g(t)

g(t0)
x(t0)

Therefore x∗ = 0 is not A.S.
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j 3.2 Lyapunov Theorem (cont.)

3.2.6 Example
ẍ+ c(t)ẋ+ k0x = 0

or

ẋ1 = x2
ẋ2 = −k0x1 − c(t)x2

⇒[
ẋ1
ẋ2

]
=

[
0 1
−k0 −c(t)

] [
x1
x2

]
= A(t)x

where c(t) ≥ 0 is a time-varying damping coefficient, and k0 > 0 is a
spring constant. This system is not necessarily A.S. In fact, let
c(t) = (2 + et) and k0 = 1. Then with x1(0) = 2, x2(0) = −1, we have

x1(t) = 1 + e−t, x2(t) = −e−t,

which is not A.S.

Interpretation: the damping increases so fast that the system gets ”stuck”
at x = 1.
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j 3.2 Lyapunov Theorem (cont.)

Remark: Various stability concepts with respect to the equilibrium point
can also be stated in terms of class K, and class KL functions.

Class K function:
A continuous function α : [0, a)→ R+ is said to belong to class K if it is
strictly increasing and satisfies α(0) = 0, and is said to be class K∞ if, in
addition, a =∞ and α(r)→∞ as r →∞.

Class KL function:
A continuous function β : [0, a)× [0,∞)→ R+ is said to belong to class
KL if, for each fixed s, the function β(·, s) is a class K function defined on
[0, a), and, for each fixed r, the function β(r, ·) : [0,∞)→ [0,∞) is
decreasing, and β(r, s)→ 0 as s→∞.

Examples:
α(r) = r, r2 belong to class K∞. β(r, s) = α(r)e−λs, where α(·) is a class
K function and λ > 0, belongs to class KL
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j 3.2 Remark

Lemma: Let V : BR × [0,∞)→ < for some R > 0 be a continuous
positive definite function. Let Br ⊂ BR for some R > r > 0. Then, there
exist class K functions α1 and α2, defined on [0, r], such that

α1(||x||) ≤ V (x, t) ≤ α2(||x||)

for all x ∈ Br. If BR = <n, the functions α1 and α2 will be defined on
[0,∞) and the foregoing inequality will hold for all x ∈ <n. Moreover, if
V (x, t) is radially unbounded, then α1 and α2 can be chosen to be class
K∞ functions.

See the following reference:
H. K. Khalil, Nonlinear Systems, third edition, Prentice Hall, 2002.
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j 3.2 Lyapunov Theorem (cont.)

Remark. The equilibrium point of the system (1) is

1 uniformly stable (US), if there exist a class K function α(·) and a
positive constant c, independent of t0, such that

||x(t)|| ≤ α(||x(t0)||), ∀ t ≥ t0, ∀ ||x(t0)|| < c; (7)

2 uniformly asymptotically stable (UAS), if there exist a class KL
function β(·, ·) and a positive constant c, independent of t0, such that

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀ t ≥ t0, ∀ ||x(t0)|| < c; (8)

3 exponentially stable (ES) if (8) is satisfied with β(r, s) = re−λs, for
some r > 0, λ > 0.

4 globally uniformly stable (GUS) if (7) is satisfied with α ∈ K∞ and
c =∞;

5 globally uniformly asymptotically stable (GUAS) if (8) is satisfied with
c =∞; and

6 globally exponentially stable (GES) if (8) is satisfied with
β(r, s) = re−λs with c =∞, for some r > 0, λ > 0.
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j 3.2 Lyapunov Theorem (cont.)

Remark. Suppose there exist a class K function α(·) and a positive
constant c, independent of t0, such that

||x(t)|| ≤ α(||x(t0)||), ∀ t ≥ t0,∀ ||x(t0)|| < c.

Then, the equilibrium point at the origin is uniformly stable.

Proof: For any 0 < R < α(b) with 0 < b < a, let
0 < r < min{c, α−1(R)}, which is independent of t0. Then

||x(t)|| ≤ α(||x(t0)||) ≤ α(r) < R, ∀ t ≥ t0, ∀ ||x(t0)|| < r.

Exercise:
Suppose there exist a class KL function β(·, ·) and a positive constant c,
independent of t0, such that

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀ t ≥ t0,∀ ||x(t0)|| < c.

Show that the equilibrium point at the origin is uniformly asymptotically
stable.
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j 3.2 Lyapunov Theorem (cont.)

Theorem. Let V : Rn ×R → R+ be a C1 function such that, for some
class K functions α1(·) and α2(·), defined on [0, d),

(i) α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖)

(ii) V̇ (x, t)
def
= ∂V

∂t + ∂V
∂x f(x, t) ≤ 0 for all ‖x‖ < d, and all

t ≥ t0.

Then the origin of system (1) is uniformly stable. If, (ii) is replaced by

(iii) V̇ (x, t) ≤ −α3(‖x‖), for all ‖x‖ < d, and all t ≥ t0,
where α3(·) is some class K function defined on [0, d),

then the origin is uniformly asymptotically stable.
If d =∞, and α1(·) and α2(·) are class K∞ functions, then the origin is
uniformly globally asymptotically stable.
If αi(r) = kir

λ on [0, d), ki > 0, λ > 0, i = 1, 2, 3, then the origin is
exponentially stable. If d =∞, then the origin is globally exponentially
stable.
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j 4 Linear Time-varying Systems

4.1 Consider systems
ẋ = A(t)x, t ≥ 0 (9)

where A(t) ∈ <n×n and is continuous in t for all t.

4.2 Corollary 1

The system (9) is uniformly asymptotically stable if ∃λ > 0 such that
λi(A(t) +AT (t)) ≤ −λ, ∀t ≥ 0, i = 1, ..., n.

Proof: Let V = xTx. Then

V̇ = xT ẋ+ ẋTx = xT (A(t) +AT (t))x ≤ −λxTx

By Theorem 4.1, (9) is uniformly asymptotically stable.
Remark: Note that V̇ ≤ −λV ⇒ xTx = V (t) ≤ V (0)e−λt (A simple
exercise). Thus (9) is actually exponentially stable.
In general, for (9), U.A.S. ⇔ E.S.
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j 4.3 Corollary 2

Assume ∃P (t) ∈ <n×n which is C1 and symmetric, and there exist
0 < c1 < c2 <∞ such that

c1I ≤ P (t) ≤ c2I ∀ t ≥ 0

Further assume for some Q(t) ∈ <n×n, continuous and symmetric such
that

Q(t) ≥ c3I > 0

Ṗ + P (t)A(t) +AT (t)P (t) = −Q(t)

Then (9) is U.A.S.

Proof: Let V (t, x) = xTP (t)x. Then

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2

Thus, V (t, x) is P.D. and decrescent. Moreover, ∀t ≥ 0,

V̇ = xT Ṗ (t)x+ xTP (t)ẋ+ ẋTP (t)x

= xT (Ṗ + P (t)A(t) +AT (t)P (t))x = −xTQ(t)x ≤ −c3‖x‖2
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j 4.3 Corollary 2 (cont.)

Remark: In general, for (9), U.A.S. ⇔ E.S.

Example 4.7

Given A(t) =

[
−1 −e−2t
1 −1

]
let P (t) =

[
1 0
0 1 + e−2t

]
Then

Ṗ + PA+ATP

=

[
0 0
0 −2e−2t

]
+

[
−1− e−2t e−2t

1 + e−2t −1− e−2t
]

+

[
−1 1 + e−2t

−e−2t −1− e−2t
]

=

[
−2 1
1 −2− 4e−2t

]
= −Q ≤

[
−2 1
1 −2

]
Therefore, the system is U.A.S.
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j 4.4 Perturbed linear systems

Proposition 1
ẋ = A1x+ g(t, x) (10)

where A1 ∈ <n×n is constant and Hurwitz, and g(t, x) is continuous
satisfying ||g(t, x)|| ≤ γ(t)||x||, t ≥ 0 where γ : < → < is continuous and
limt→∞ γ(t) = 0. Then (10) is G.E.S.
Hint of Proof: Let V (x) = xTPx where P is positive definite and
symmetric such that PA1 +AT1 P = −In.
Corollary Consider

ẋ = (A1 +A2(t))x (11)

where A1 ∈ <n×n is constant and Hurwitz, and A2(t) is such that

A2(t)→ 0 as t→∞

or ∫ ∞
0
‖A2(t)‖dt <∞

Then (10) is E.S.
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j 4.4 Perturbed linear systems (cont. )

Example 4.8

ẋ1 = (−5 + x52 + x83)x1, ẋ2 = −x2 + 4x23, ẋ3 = −(2 + sin t)x3

Let a(t) = 2 + sin t. Then

x3(t) = x3(t0) exp

[
−
∫ t

t0

(2 + sin t)dr

]
⇒ ‖x3‖ ≤ ‖x3(t0)‖ exp−(t−t0)

Therefore

x2(t) = e−(t−t0)x2(t0) +

∫ t

t0

e−(t−τ)4x23(τ)dτ

Thus, it is ready to see that the system is G.E.S upon using Proposition 1
on the x1 subsystem.
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j 4.4 Perturbed linear systems (cont. )

Proposition 2

Consider (9), and assume Re(λi[(A(t))]) ≤ −α for some α > 0, ∀ i.
Further assume A(t) is bounded, and∫ ∞

0
AT (t)A(t)dt <∞

Then the system is globally E.S.
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j 5 The Linearization Method

5.1

Given
ẋ = f(x, t) with f(0, t) = 0, ∀t ≥ 0

where x ∈ <n, f : Br × [0,∞)→ <n is C1.

Further suppose the Jacobian matrix

[
∂f

∂x

]
is bounded and Lipschitz on

Br uniformly in t, i.e., ∀1 ≤ i ≤ n, some constant L1 > 0,∥∥∥∥∂fi∂x
(xa, t)−

∂fi
∂x

(xb, t)

∥∥∥∥
2

≤ L1 ‖xa − xb‖2 ,

∀ xa, xb ∈ Br, ∀t ≥ 0.

Let

A(t) =

(
∂f

∂x

)∣∣∣∣
x=0

Then
ẋ = A(t)x+ fh.o.t.(x, t)
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j 5 The Linearization Method (cont.)

where

‖fh.o.t.(x, t)‖ ≤ L‖x‖2, ∀t ≥ 0, ∀x ∈ Br with L =
√
nL1.

The linear-time-varying system

ẋ = A(t)x

is said to be the linearization of the nonlinear system around the E.P.
x∗ = 0.

5.2 Theorem 4.2

If the linearization system is uniformly A.S., then the E.P. x∗ = 0 of the
original system is also U.A.S.

5.3 Theorem 4.3

If A(t) is constant, and one or more of the eigenvalues of A(t) has positive
real part, then the E.P. x∗ = 0 of the original system is unstable.
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j 5 The Linearization Method (cont.)

Remark: By the mean value theorem,

fi(x, t) = fi(0, t) +
∂fi
∂x

(ξx, t)x

for some 0 ≤ ξ ≤ 1. Since f(0, t) = 0 for all t ≥ 0, we have

fi(x, t) =
∂fi
∂x

(ξx, t)x =
∂fi
∂x

(0, t)x+

(
∂fi
∂x

(ξx, t)− ∂fi
∂x

(0, t)

)
x

Hence,
f(x, t) = A(t)x+ fh.o.t.(x, t)

where

fh.o.t.(x, t) =

(
∂f

∂x
(ξx, t)− ∂f

∂x
(0, t)

)
x
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j 5 The Linearization Method (cont.)

The function fh.o.t.(x, t) satisfies, ∀t ≥ 0, ∀x ∈ Br,

‖fh.o.t.(x, t)‖2 ≤

(
n∑
i=1

∥∥∥∥∂fi∂x
(ξx, t)− ∂fi

∂x
(0, t)

∥∥∥∥2
)
‖x‖2 ≤ L2‖x‖4

where L =
√
nL1.

Proof of Theorem 4.2: Let V (x, t) = xTP (t)x where P (t) is the
positive definite and symmetric solution of the equation
Ṗ + P (t)A(t) +AT (t)P (t) = −Q(t) for some continuous, positive
definite, and symmetric matrix Q(t). The rest of the proof is the same as
that of Theorem 3.1.
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j 5.4 Instability Theorems

There are three instability theorems which can be used to ascertain
instability of the equilibrium point of a dynamic system. One of the
instability theorems is stated as follows.
5.4 Theorem 4.4 (First instability theorem)

If, in a certain neighborhood Ω of the origin, there exist a continuously
differentiable, decrescent scalar function V (x, t) such that

V (0, t) = 0 ∀t ≥ t0
V (x, t0) can assume strictly positive values arbitrarily close to the
origin

V̇ (x, t) is positive definite (locally in Ω)

then the equilibrium point 0 at time t0 is unstable.
Remark (i) V does not have to be P.D., e.g., V (x) = x21 − x22 is not P.D.,
but it can assume positive values arbitrarily near the origin. (V (x) = x21
along the line x2 = 0)
(ii) For autonomous systems, V can be a function of x only.
(iii) The proof is left as problem 4 of Assignment 6.
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j 5.4 Instability Theorem

Example 4.9 Consider the system

ẋ1 = 2x2 + x1(x
2
1 + 2x42)

ẋ2 = −2x1 + x2(x
2
1 + x42)

The eigenvalues of the Jacobian linearization of the system are +2j and
−2j, indicating the inability of Lyapunov’s linearization method for this
system. However, if we take

V =
1

2
(x21 + x22)

its derivative is
V̇ = (x21 + x22)(x

2
1 + x42)

Thus, by Theorem 4.4, the E.P. of the system at the origin is unstable.
Remark: This theorem can also be used to prove the second part of
Theorem 3.1.
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j 6 Existence of Lyapunov Functions

Introduction

Existence of Lyapunov function ⇒ stability

Existence of Lyapunov function with V̇ N.D. ⇒ A.S.

What happen if a system is known to be stable or A.S.? Converse
Lyapunov Theorems give answers.

These theorems are useful in stability analysis of interconnected systems or
adaptive systems.
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j 6 Existence of Lyapunov Functions (cont.)

Theorem 4.7 (Stability)

If the origin of (1) is stable, there exists a positive definite function V (x, t)
with a non-positive derivative.

Theorem 4.8 (U.A.S.)

If the E.P. at the origin is U.A.S., there exists a P.D. and decrescent
function V (x, t) with a negative definite derivative.

The theorem is useful in establishing robustness of U.A.S. systems to
persistent disturbance.
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j 6 Existence of Lyapunov Functions (cont.)

Theorem 4.9 (E.S.)

If the vector function f(x, t) in (1) has continuous and bounded first
partial derivatives w.r.t. x and t, for all x ∈ Br for some r > 0 and for all
t ≥ 0, then the E.P. at the origin is E.S. iff ∃ a function V (x, t) and
α1 > 0, α2 > 0, α3 > 0, α4 > 0 such that ∀x ∈ Br, ∀t ≥ 0

α1‖x‖2 ≤ V (x, t) ≤ α2‖x‖2

V̇ ≤ −α3‖x‖2∥∥∥∥∂V∂x
∥∥∥∥ ≤ α4‖x‖

The theorem is useful for estimating the convergence rate and stability
analysis of interconnected systems.
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j 7 Barbalat’s Lemma 7.1 Introduction

7.1.1

Play a role for non-autonomous systems similar to what invariant set
theorem does for autonomous system (invariant set theorem does not
apply to non-autonomous system).

Barbalat’s Lemma is useful in stability analysis for non-autonomous
systems when V̇ (x, t) is negative semi-definite.

7.1.2 Some facts

� ḟ → 0 does not imply f converges, e.g., let f(t) = sin(log t)

ḟ(t) =
cos(log t)

t
→ 0 as t→∞

� f converges does not imply ḟ → 0
e.g., f(t) = e−t sin(e2t)→ 0 as t→∞,
but ḟ(t) = −e−t sin(e2t) + e2te−t cos(e2t) is unbounded.
� If f is lower bounded and decreasing (ḟ ≤ 0), then it converges to a
limit.
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j 7.2 Barbalat’s Lemma

(i) A function g(t) is continuous on [0,∞) if

∀t1 > 0, ∀ R > 0, ∃η(R, t1) > 0 such that

∀t ≥ 0, |t− t1| < η ⇒ |g(t)− g(t1)| < R

(ii) g(t) is uniformly continuous on [0,∞) if

∀R > 0, ∃η(R) > 0 such that

∀t1 ≥ 0, ∀t ≥ 0, |t− t1| < η ⇒ |g(t)− g(t1)| < R

i.e., ∃η which does not depend on the specific t1, and in particular, η does
not shrink as t1 →∞.
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j 7.2 Barbalat’s Lemma (cont.)

7.2.1

If ġ(t) is bounded, i.e., |ġ(t)| < M for some M > 0, t ∈ [0,∞),

then g(t) is uniformly continuous in [0,∞) since

g(t)− g(t1) = ġ(t2)(t− t1), ∀t,∀t1 where t ≤ t2 ≤ t1
7.2.2 Lemma 4.2

Assume f(t) is continuously differentiable for t ≥ t0 for some t0, and f(t)
has a finite limit as t→∞, and ḟ is uniformly continuous. Then ḟ(t)→ 0
as t→∞.

Proof: Assume ḟ(t) does not approach zero as t→∞. Then, for any
ε0 > 0, there exist T > 0, t > T , such that |ḟ(t)| ≥ ε0. Thus, there exists
an infinite sequence t1, t2, ... satisfying ti →∞ as i→∞ such that
|ḟ(ti)| ≥ ε0. Since ḟ(t) is uniformly continuous, ∃η > 0 such that

|ḟ(t′)− ḟ(t′′)| < ε0
2

for ∀t′, t′′ satisfying |t′ − t′′| < η
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j 7.2 Barbalat’s Lemma (cont.)

Thus, ∀ti,

|ḟ(t)| = |ḟ(t)− ḟ(ti) + ḟ(ti)| ≥ |ḟ(ti)| − |ḟ(t)− ḟ(ti)| >
ε0
2

whenever |t− ti| < η. Hence, for any ti∣∣∣∣∫ ti+η

ti−η
ḟ(t)dt

∣∣∣∣ =

∫ ti+η

ti−η
|ḟ(t)|dt ≥ ε0

2
2η = ε0η

where the left equality is due to the fact that ḟ keeps a constant sign over
integration interval since ḟ is continuous and |ḟ(t)| > ε0

2 > 0.

Thus, the integral
∫ t
t0
ḟ(τ)dτ = f(t)− f(t0) cannot have a limit as t→∞

(Why? Exercise), a contradiction.

Corollary: If the differentiable function f(t) has a finite limit as t→∞,
and is such that f̈ exists and is bounded, then ḟ(t)→ 0 as t→∞
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j 7.2 Barbalat’s Lemma (cont.)

Example 4.12

Consider

ẋ = Ax+Bu

y = Cx

where A is strictly stable and u is bounded. Show that y(t) is uniformly
continuous.

Proof: the state x is bounded since A is strictly stable and u is bounded
because

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

Thus, ẋ is also bounded since ẋ = Ax+Bu.
Therefore ẏ = Cẋ is also bounded. Thus, y(t) is uniformly continuous.
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j 7.2 Barbalat’s Lemma (cont.)

7.2.3 Lemma 4.3

If a scalar function V (x, t) satisfies the following conditions

� V (x, t) is lower bounded

� V̇ (x, t) is negative semi-definite

� V̇ (x, t) is uniformly continuous in time

then V̇ (x, t)→ 0 as t→∞.

Remark:
lim
t→∞

V (t) = V∞ ≤ V (x(0), 0)
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j 7.2 Barbalat’s Lemma (cont.)

7.2.4 Example 4.13

Consider a second order system

ė = −e+ θω(t)

θ̇ = −eω(t)

where e and θ are the two states, and ω(t) is a bounded continuous
function. Let us analyze the asymptotic properties of the system.

Consider the lower bounded function

V = e2 + θ2

Its derivative is

V̇ = 2eė+ 2θθ̇ = 2e(−e+ θω) + 2θ(−eω) = −2e2 ≤ 0

This implies that V (t) ≤ V (0), and therefore, that e and θ are bounded.
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j 7.2 Barbalat’s Lemma (cont.)

But we cannot use the invariant set theorem to conclude V̇ = −2e2 → 0
as t→∞ because the system is not autonomous. Nevertheless, we can
use Lemma 4.3.

Note that the derivative of V̇ is

V̈ = −4eė = −4e(−e+ θω)

This shows that V̈ is bounded since e, θ and ω are bounded. Hence, V̇ is
uniformly continuous. By Lemma 4.3, e(t)→ 0 as t→∞.

Remark:

An analysis based on Barbalat’s Lemma is called a Lyapunov like analysis.
It is usually used for stability analysis of a closed-loop system resulting
from adaptive control (Chapter 8). V does not have to be P.D. and can
be a lower bounded function. V̇ must be uniformly continuous.
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j 8 Total Stability

Total stability is concerned with systems of the form

ẋ = f(x, t) + g(x, t) (12)

where f(0, t) = 0 but g(0, t) may not be zero. Thus the origin is not
necessarily an equilibrium point for (12). The term g(x, t) can be
considered a perturbation term for the following unperturbed system

ẋ = f(x, t) (13)

which has an equilibrium point at the origin.
It is desirable to derive a boundedness condition for the perturbed equation
(12) from the stability properties of the associated unperturbed system
(13). The concept of total stability characterizes the ability of a system to
withstand small persistent disturbances, and is defined as follows:
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j 8 Total Stability (cont.)

Definition 4.13

The equilibrium point x = 0 for the unperturbed system (13) is said to be
totally stable if for every ε ≥ 0, two numbers δ1 and δ2 exist such that
‖x(t0)‖ < δ1 and ‖g(x, t)‖ < δ2 imply that every solution x(t) of the
perturbed system (12) satisfies the condition ‖x(t)‖ < ε.

Remark

The above definition means that an equilibrium point is totally stable
if the state of the perturbed system can be kept arbitrarily close to
zero by restricting the initial state and the perturbation to be
sufficiently small.
Let u(t) = g(x, t). Then total stability can be viewed as a local
version (with small input) of BIBO (bounded input bounded output)
stability.
If the unperturbed system is linear and time-invariant, then total
stability is guaranteed by the asymptotic stability of the unperturbed
system (x(t) = eA(t−t0)x(t0) +

∫ t
t0
eA(t−τ)Bu(τ)dτ).
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j 8 Total Stability (cont.)

Theorem 4.14

If the equilibrium point of (13) is uniformly asymptotically stable, then it is
totally stable.

Remarks

Uniformly asymptotically stable systems can withstand small
disturbances.

Total stability of a system may be established by Theorem 4.8.

Note that asymptotic stability is not sufficient to guarantee the total
stability of a nonlinear system as can be verified by counter-examples.

Exponentially stable systems are always totally stable because
exponential stability implies uniform asymptotic stability.
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j 8 Total Stability (cont.)

Example 4.22

Consider the system ẍ+ 2ẋ3 + 3x = d(t) which can be put in the standard
form

ẋ1 = x2, ẋ2 = −b(x2)− c(x1) + d(t)

where b(x2) = 2x32, c(x1) = 3x1, and d(t) is the perturbation. Using
Lemma 2 of Chapter 3 shows that the equilibrium point of the unperturbed
system is (uniformly) globally asymptotically stable. Thus, Theorem 4.14
shows that the system can withstand small disturbances d(t).

Remark

Total stability guarantees boundedness to only small-disturbance, and
requires only local uniform asymptotic stability of the E.P.

The global uniform asymptotic stability cannot guarantee the
boundedness of state in the presence of large (though still bounded)
perturbation. (See the following counter-example)
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j 8 Total Stability (cont.)

Example 4.23

The nonlinear equation

ẍ+ f(ẋ) + x = w(t) (14)

can be regarded as representing mass-spring-damper system containing
nonlinear damping f(ẋ) and excitation force w(t), where f is a first and
third quadrant continuous nonlinear function such that

|f(y)| ≤ 1, −∞ < y <∞
as illustrated below (Figure 4.12: A nonlinear damping function).
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j 8 Total Stability (cont.)

Example 4.23 (cont.)

The system is totally stable, because the E.P. of the unperturbed system is
globally uniformly asymptotically stable using Lemma 2 of Chapter 3 again.
Is the output bounded for bounded input?
Consider the response of the system to the excitation force w(t) = A sin t,
A > 8/π. By writing (14) as

ẍ+ x = A sin t− f(ẋ) (15)

and solving this linear equation with zero initial condition with
u(t) = (A sin t− f(ẋ)) as input

x(t) =

∫ t

0
sin(t− τ)(A sin τ − f(ẋ(τ))dτ

x(t) =
A

2
(sin tcos2t− cos t(t− 1

2
sin 2t))−

∫ t

0
sin(t− τ)f(ẋ)dτ

≥ A

2
(sin tcos2t− cos t(t− 1

2
sin 2t))−

∫ t

0
| sin(t− τ)|dτ
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j 8 Total Stability (cont.)

Example 4.23 (cont.)

It can be seen that at t = tn = (2n+ 1)π,

sin tcos2t− cos t(t− 1

2
sin 2t) = (2n+ 1)π.

Also, it can be shown that, at t = tn = (2n+ 1)π,∫ tn

0
| sin(t− τ)|dτ = 2(2n+ 1).

Thus

x(tn) ≥ (2n+ 1)π[
A

2
− 2

π
]

Therefore, if we take A > 8/π, then x(tn)→∞.
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j 8 Total Stability (cont.)

Remark to Example 4.23

The frequency domain representation of (15) is

X(s) =
1

s2 + 1
U(s)

where X(s) = L[x(t)] and U(s) = L[u(t)]. Since L−1[ 1
s2+1

] = sin t, we
have

x(t) =

∫ t

0
sin(t− τ)(A sin τ − f(ẋ(τ))dτ
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j 9 Positive Linear Systems

Introduction

Positive systems is a class of linear systems arising from the passive
circuits. It is closely related to passive systems.

Positive systems have some special property that is crucial for
adaptive control analysis.

In the analysis and design of nonlinear systems, it is often possible
and useful to decompose the system into a linear subsystem and a
nonlinear subsystem. If the transfer function (or transfer matrix) of
the linear subsystem is so-called positive real, then it has important
properties which may lead to the generation of a Lyapunov function
for the whole system.

The properties of positive systems play a central role in proving the
absolute stability result.
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j 9.1 PR and SPR Transfer Functions

Relative degree.
Let a rational function of nth−order single-input single-output linear
systems be represented in the form

h(p) =
bmp

m + bm−1p
m−1 + · · ·+ b0

pn + an−1pn−1 + · · ·+ a0

The coefficients of the numerator and denominator polynomials are
assumed to be real numbers, bm 6= 0, and n ≥ m. The number n−m,
which is the difference between the order of the denominator and that of
the numerator, is called the relative degree of the system.

Definition 8.1

A transfer function h(p) is positive real if

Re[h(p)] ≥ 0 for all Re[p] ≥ 0 (16)

It is strictly positive real if h(p− ε) is positive real for some ε > 0.
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j 9.1 PR and SPR Transfer Functions

ã Remark:

Condition (16), called the positive real condition, means that h(p)
always has a positive (or zero) real part when p has positive (or zero)
real part;

Geometrically, it means that the rational function h(p) maps every
point in the closed right half (i.e., including the imaginary axis) of the
complex plane into the closed right half of the h(p) plane;

The concept of positive real functions originally arose in the context
of circuit theory, where the transfer function of a passive network
(passive in the sense that no energy is generated in the network, e.g.,
a network consisting of only inductors, resistors, and capacitors) is
rational and positive real.
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j 9.1 PR and SPR Transfer Functions

ã Example: A strictly positive real function

Consider the rational function

h(p) =
1

p+ λ

which is the transfer function of a first-order system, with λ > 0.
Corresponding to the complex variable p = σ + jω,

h(p) =
1

(σ + λ) + jω
=

σ + λ− jω
(σ + λ)2 + ω2

Obviously, Re[h(p)] ≥ 0. Thus, h(p) is a positive real function. In fact,
one can easily see that h(p) is strictly positive real.
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j 9.1 PR and SPR Transfer Functions

For higher-order transfer functions, it is often difficult to use the definition
directly in order to test the positive realness condition, because this
involves checking the positivity condition over the entire right-half of the
complex plane.
The following theorem can simplify the algebraic complexity.

Theorem 8.2

A transfer function h(p) is strictly positive real (SPR) if and only if

1 h(p) is a strictly stable transfer function

2 the real part of h(p) is strictly positive along the jω axis, i.e.,

∀ω ≥ 0 Re[h(jω)] > 0 (17)

The proof of this theorem is presented in the next section, in connection
with the so-called passive systems.
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j 9.1 PR and SPR Transfer Functions

The above theorem implies simple necessary conditions for asserting
whether a given transfer function h(p) is SPR:

h(p) is strictly stable;

The Nyquist plot of h(jω) lies entirely in the right half complex
plane. Equivalently, the phase shift of the system in response to
sinusoidal inputs is always less than 90o;

h(p) has relative degree 0 or 1;

h(p) is strictly minimum-phase (i.e., all its zeros are strictly in the
left-half plane).

The first and second conditions are immediate from the theorem. The last
two conditions can be derived from the second condition simply by
recalling the procedure for constructing Bode or Nyquist frequency
response plots (systems with relative degree larger than 1 and
non-minimum phase systems have phase shifts larger than 90o at high
frequencies, or, equivalently have parts of the Nyquist plot lying in the
left-half plane).
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j 9.1 PR and SPR Transfer Functions

ã Example: SPR and non-SPR transfer functions

h1(p) =
p− 1

p2 + ap+ b

h2(p) =
p+ 1

p2 − p+ 1

h3(p) =
1

p2 + ap+ b

h4(p) =
p+ 1

p2 + p+ 1

The transfer functions h1, h2, and h3 are not SPR, because h1 is
non-minimum phase, h2 is unstable, and h3 has relative degree larger than
1.
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j 9.1 PR and SPR Transfer Functions

ã Example: SPR and non-SPR transfer functions

Is the (strictly stable, minimum-phase, and of relative degree 1) function
h4 actually SPR? We have

h4(jω) =
jω + 1

−ω2 + jω + 1
=

[jω + 1][−ω2 − jω + 1]

[1− ω2]2 + ω2

(where the second equality is obtained by multiplying numerator and
denominator by the complex conjugate of the denominator) and thus

Re[h4(jω)] =
−ω2 + 1 + ω2

[1− ω2]2 + ω2
=

1

[1− ω2]2 + ω2

which shows that h4 is SPR (since it is also strictly stable). Of course,
condition (15) can also be checked directly on a computer.
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j 9.1 PR and SPR Transfer Functions

The basic difference between PR and SPR transfer functions is that PR
transfer functions may tolerate poles on the jω axis, while SPR functions
cannot.

ã Example:

Consider the tranfer function of an integrator,

h(p) =
1

p

Its value corresponding to p = σ + jω is

h(p) =
σ − jω
σ2 + ω2

One easily sees that h(p) is PR but not SPR.
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j 9.1 PR and SPR Transfer Functions

More precisely, we have the following result, which complements Theorem
8.2.

Theorem 8.3

A transfer function h(p) is positive real if, and only if,

1 h(p) is a stable transfer function;

2 The poles of h(p) on the jω axis are simple (i.e., distinct) and the
associated residues are real and non-negative;

3 Re[h(jω)] ≥ 0 for any w ≥ 0 such that jω is not a pole of h(p).
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j 9.2 The Kalman-Yakubovich Lemma

If a transfer function of a system is SPR, there is an important
mathematical property associated with its state-space representation,
which is summarized in the celebrated Kalman-Yakubovich (KY) lemma.

Lemma 8.4

(Kalman-Yakubovich) Consider a controllable linear time-invariant system

ẋ = Ax+ bu

y = cTx

The transfer function
h(p) = cT [pI −A]−1b (18)

is strictly positive real if, and only if, there exist positive definite matrices
P and Q such that

ATP + PA = −Q
Pb = c

(19)
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j 9.2 The Kalman-Yakubovich Lemma

ã Remark:

The KY lemma can be easily extended to PR systems. For such
systems, it can be shown that there exist a positive definite matrix P
and a positive semi-definite matrix Q such that (17) are verified.

The usefulness of this result is that it is applicable to transfer
functions containing a pure integrator (1/p in the frequency-domain),
of which we shall see many in chapter 8 when we study adaptive
controller design.

The Kalman-Yakubovich lemma is also referred to as the positive real
lemma.
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j 9.2 The Kalman-Yakubovich Lemma

In the KY lemma, the involved system is required to be asymptotically
stable and completely controllable. A modified version of the KY lemma,
relaxing the controllability condition, can be stated as follows:

Lemma 8.5

(Meyer-Kalman-Yakubovich) Given a scalar γ ≥ 0, vectors b and c, an
asymptotically stable matrix A, and a symmetric positive definite matrix
L, if the transfer function

H(p) =
γ

2
+ cT [pI −A]−1b

is SPR, then there exist a scalar ε > 0, a vector q, and a symmetric
positive definite matrix P such that

ATP + PA = −qqT − εL
Pb = c+

√
γq

(20)
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j 9.2 The Kalman-Yakubovich Lemma

ã Remark:

This lemma is different from Lemma 8.4 in two aspects.

First, the involved system now has the output equation

y = cTx+
γ

2
u

Second, the system is only required to be stabilizable (but not
necessarily controllable).
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j 9.3 Positive Real Transfer Matrices

The concept of positive real transfer function can be generalized to
rational positive real matrices. Such generalization is useful for the
analysis and design of multi-input-multi-output nonlinear control systems.

Definition 8.6

An m×m transfer matrix H(p) is called PR if

H(p) has elements which are analytic for Re(p) > 0;

H(p) +HT (p∗) is positive semi-definite for Re(p) > 0.

where the asterisk ∗ denotes the complex conjugate transpose. H(p) is
SPR if H(p− ε) is PR for some ε > 0.

The Kalman-Yakubovich lemma and Meyer-Kalman-Yakubovich lemma
can be easily extended to positive real transfer matrices.
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j 10 Absolute Stability

The absolute stability concerns systems shown in Figure 4.8. The forward
path is a linear time-invariant system, and the feedback part is a
memoryless nonlinearity, i.e., a nonlinear static mapping. The equations of
such systems can be written as

ẋ = Ax− bφ(y)

y = cTx
(21)

where φ is some nonlinear function and G(p) = cT [pI −A]−1b. Many
systems of practical interest can be represented in this structure.
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j 10.1 The Issue of Absolute Stability

Remark:

If the feedback path simply contains a constant gain, i.e., if
φ(y) = αy, then the stability of the whole system, a linear feedback
system, can be simply determined by examining the eigenvalues of the
closed-loop system matrix A− αbcT .

What makes this absolute stability interesting is that it handles a
class of systems with an arbitrary nonlinear feedback function φ.
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j 10.1 The Issue of Absolute Stability

In analyzing this kind of system using Lyapunov’s direct method, we
usually require the nonlinearity to satisfy a so-called sector condition,
whose definition is given below.

Definition 8.7

A continuous function φ is said to belong to the sector [k1, k2], if there
exists two non-negative numbers k1 and k2 such that

y 6= 0 ⇒ k1 ≤
φ(y)

y
≤ k2 (22)

Geometrically, condition (20) implies that the nonlinear function always
lies between the two straight lines k1y and k2y, as shown in Figure 4.9.
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j 10.1 The Issue of Absolute Stability

Remark: Two properties are implied by equation (20).

First, it implies that that φ(0) = 0.
Secondly, it implies that yφ(y) ≥ 0, i.e., that the graph of φ(y) lies in
the first and third quadrants.

Note that in many of later discussions, we will consider the special case of
φ(y) belonging to the sector [0, k], i.e., ∃k > 0, such that

0 ≤ φ(y) ≤ ky (23)
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j 10.1 The Issue of Absolute Stability

Assume that the nonlinearity φ(y) is a function belonging to the sector
[k1, k2], and that the A matrix of the linear subsystem in the forward path
is stable (i.e., Hurwitz).
What additional constraints are needed to guarantee the sta-
bility of the whole system?

A plausible but incorrect conjecture (M.A. Aizerman, 1949):
if the matrix [A− bcTk] is stable for all values of k in [k1, k2], then the
nonlinear system is globally asymptotically stable.
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j 10.2 Popov’s Criterion

If the conjecture were true, it would allow us to deduce the stability of
a nonlinear system by simply studying the stability of linear systems.
However, several counter-examples show that this conjecure is false.

After Aizerman, many researchers continued to seek conditions that
guarantee the stability of the nonlinear system in Figure 4.8.

Popov’s criterion imposes additional conditions on the linear
subsystem, leading to a sufficient condition for asymptotic stability
reminiscent of Nyquist’s criterion (a necessary and sufficient
condition) in linear system analysis.
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j 10.2 Popov’s Criterion

A number of versions have been developed for Popov’s criterion. The
following basic version is fairly simple and useful.

Theorem 8.8

(Popov’s Criterion) If the system described by (19) satisfies the conditions

the matrix A is Hurwitz (i.e., has all its eigenvalues strictly in the
left-half plane) and the pair [A, b] is controllable;

the nonlinearity φ belongs to the sector [0, k];

there exists a strictly positive number α such that

∀ω ≥ 0 Re[(1 + jαw)G(jω)] +
1

k
≥ ε (24)

for an arbitrary small ε > 0, then the point 0 is globally
asymptotically stable.
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j 10.2 Popov’s Criterion

Inequality (22) is called Popov’s inequality. The criterion can be proven by
constructing a Lyapunov function candidate based on the KY lemma.
Let us note the main features of Popov’s criterion:

It only applies to autonomous systems.

It is restricted to a single memoryless nonlinearity.

The stability of the nonlinear system may be determined by examining
the frequency-response functions of a linear subsystem, without the
need of searching for explicit Lyapunov functions.

It only gives a sufficient condition.
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j 10.2 Popov’s Criterion

The criterion is most easy to apply by using its graphical interpretation.
Let

G(jω) = G1(ω) + jG2(ω)

Then the expression (22) can be written

G1(ω)− αwG2(ω) +
1

k
≥ ε (25)

Now let us construct associated transfer function W (jω), with the same
real part as G(jω), but an imaginary part equal to wIm(G(jω)), i.e.,

W (jω) = x+ jy = G1(ω) + jωG2(ω)

Then (23) implies that the nonlinear system is guaranteed to be globally
asymptotically stable if, in the complex plane having x and y as
coordinates, the polar plot of W (jω) is (uniformly) below the line
x− αy + (1/k) = 0 (Figure 4.10).
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j 10.2 Popov’s Criterion

The polar plot of W is called a Popov plot. One easily sees the similarity
of this criterion to the Nyquist criterion for linear systems.

In the Nyquist criterion, the stability of a linear feedback system is
determined by examining the position of the polar plot of G(jω)
relative to the point (0, -1);

In the Popov criterion, the stability of a nonlinear feedback system is
determined by checking the position of the associated transfer
function W (jω) with respect to a line.
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j 10.2 Popov’s Criterion

ã Example

Let us determine the stability of a nonlinear system of the form (19) where
the linear subsystem is defined by

G(jω) =
p+ 3

p2 + 7p+ 10

and the nonlinearity satisfies condition (21).
First, the linear subsystem is strictly stable, because its pole are -2 and -5.
Moreover, any dimension 2 realization of G(jω) is controllable, because
there is no pole-zero cancelation. Let us now check the Popov inequality.
The frequency response function G(jω) is

G(jω) =
jω + 3

−ω2 + 7wj + 10

Jie Huang ( MAE, CUHK ) Advanced Stability Theory 88 / 97



j 10.2 Popov’s Criterion

ã Example

Therefore,

G1(jω) =
4ω2 + 30

ω4 + 29ω2 + 100

G2(jω) =
−w(ω2 + 11)

ω4 + 29ω2 + 100

Substituting the above into (23) leads to

4ω2 + 30 + αω2(ω2 + 11) + (
1

k
− ε)(ω4 + 29ω2 + 100) > 0

It is clear that this inequality can be satisfied by any strictly positive
number α, and any strictly positive number k, i.e., 0 < k <∞. Thus the
nonlinear system is globally asymptotically stable as long as the
nonlinearity belongs to the first and third quadrants.

Jie Huang ( MAE, CUHK ) Advanced Stability Theory 89 / 97



j 10.3 The Circle Criterion

Theorem 8.9

(Circle Theorem) If the system (19) satisfies the conditions

the matrix A has no eigenvalue on the jω axis, and has ρ eigenvalues
strictly in the right-half plane;

the nonlinearity φ belongs to the sector [k1, k2];

one of the following is true

0 < k1 ≤ k2, the Nyquist plot of G(jω) does not enter the disk
D(k1, k2) and encircles it ρ times counter-clockwise;
0 = k1 < k2, and the Nyquist plot of G(jω) stays in the half-plane
Re p > −1/k2;
k1 < 0 < k2, and the Nyquist plot of G(jω) stays in the interior of the
disk D(k1, k2);
k1 < k2 < 0, the Nyquist plot of −G(jω) does not enter the disk
D(−k1,−k2) and encircles it ρ times counter-clockwise;

then the equilibrium point 0 of the system is globally asymptotically stable.
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j 10.3 The Circle Criterion

Essentially, the critical point −1/k in Nyquist’s criterion is replaced in the
circle criterion by the circle of Figure 4.11 (which tends towards the point
−1/k1 as k2 tends to k1, i.e., as the conic sector gets thinner). No that
the circle criterion states sufficient but not necessary conditions.
The circle criterion can be extended to non-autonomous systems.
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j 11 Establishing Boundedness of Signals

In the stability analysis or convergence analysis of nonlinear systems, a
frequently encountered problem is that of establishing the boundedness of
certain signals.
For instance, in order to use Barbalat’s lemma, one has to show the
uniform continuity of ḟ , which can be most conveniently shown by proving
the boundedness of f̈ . Similarly, in studying the effects of disturbances, it
is also desirable to prove the boundedness of system signals in the
presence of disturbances.
In this section, we provide two useful results for such purposes.
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j 11.1 The Bellman-Gronwall Lemma

In system analysis, one can often manipulate the signal relations into an
integral inequality of the form

y(t) ≤
∫ t

0
a(τ)y(τ)dτ + b(t) (26)

where y(t), the variable of concern, appears on both sides of the
inequality. The problem is to gain an explicit bound on the magnitude of y
from the above inequality. The Bellman-Gronwall lemma can be used for
this purpose.
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j 11.1 The Bellman-Gronwall Lemma

Lemma 8.10

(Bellman-Gronwall) Let a variable y(t) satisfy (26), where a(t), b(t) are
known real functions with a(t) nonnegative. Then

y(t) ≤
∫ t

0
a(τ)b(τ) exp[

∫ t

τ
a(r)dr]dτ + b(t) (27)

If b(t) is differentiable, then

y(t) ≤ b(0) exp[

∫ t

0
a(τ)dτ ] +

∫ t

0
ḃ(τ) exp[

∫ t

τ
a(r)dr]dτ (28)

In particular, if b(t) is a constant, we simply have

y(t) ≤ b(0) exp[

∫ t

0
a(τ)dτ ] (29)
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j 11.1 The Bellman-Gronwall Lemma

Proof: The proof is based on defining a new variable and transforming the
integral inequality into a differential equation, which can be easily solved.
Let

v(t) =

∫ t

0
a(τ)y(τ)dτ (30)

Then differentiation of v and use of (26), i.e., y ≤ v + b, leads to

v̇(t) = a(t)y(t) ≤ a(t)v(t) + a(t)b(t)

Let
s(t) = a(t)y(t)− a(t)v(t)− a(t)b(t)

which is a non-positive function. Then v(t) satisfies

v̇(t)− a(t)v(t) = a(t)b(t) + s(t) (31)
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j 11.1 The Bellman-Gronwall Lemma

(31) is a first order linear ODE. Consider the identity

(v(τ) exp[

∫ τ

0

−a(r)dr])′ = exp[

∫ τ

0

−a(r)dr](v̇(τ)− a(τ)v(τ))

= exp[

∫ τ

0

−a(r)dr](a(τ)b(τ) + s(τ))

(32)

Integrating both sides of (32) from τ = 0 to τ = t with the initial
condition v(0) = 0 yields

v(t) exp[

∫ t

0
−a(r)dr] =

∫ t

0
exp[

∫ τ

0
−a(r)dr][a(τ)b(τ) + s(τ)]dτ (33)

which gives

v(t) =

∫ t

0
exp[

∫ t

τ
a(r)dr][a(τ)b(τ) + s(τ)]dτ (34)

Since s(.) is a non-positive function,

v(t) ≤
∫ t

0

exp[

∫ t

τ

a(r)dr]a(τ)b(τ)dτ (35)
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j 11.1 The Bellman-Gronwall Lemma

This together with the definition of v and the inequality (26), leads to

y(t) ≤
∫ t

0
exp[

∫ t

τ
a(r)dr]a(τ)b(τ)dτ + b(t) (36)

If b(t) is differentiable, we obtain, by partial integration∫ t

0
exp[

∫ t

τ
a(r)dr]a(τ)b(τ)dτ

= −
∫ t

0
b(τ)d exp[

∫ t

τ
a(r)dr]

= −b(τ) exp[

∫ t

τ
a(r)dr] |τ=tτ=0 +

∫ t

0
ḃ(τ) exp[

∫ t

τ
a(r)dr]dτ

= −b(t) + b(0) exp[

∫ t

0
a(r)dr] +

∫ t

0
ḃ(τ) exp[

∫ t

τ
a(r)dr]dτ

(37)
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